WO2011021779A2 - Method for evaluating water quality and toxicity using the growth rate of germ tubes of spores of algae belonging to the order laminariales - Google Patents

Method for evaluating water quality and toxicity using the growth rate of germ tubes of spores of algae belonging to the order laminariales Download PDF

Info

Publication number
WO2011021779A2
WO2011021779A2 PCT/KR2010/004682 KR2010004682W WO2011021779A2 WO 2011021779 A2 WO2011021779 A2 WO 2011021779A2 KR 2010004682 W KR2010004682 W KR 2010004682W WO 2011021779 A2 WO2011021779 A2 WO 2011021779A2
Authority
WO
WIPO (PCT)
Prior art keywords
spores
germination
water
toxicity
kelp
Prior art date
Application number
PCT/KR2010/004682
Other languages
French (fr)
Korean (ko)
Other versions
WO2011021779A3 (en
Inventor
한태준
공정애
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Publication of WO2011021779A2 publication Critical patent/WO2011021779A2/en
Publication of WO2011021779A3 publication Critical patent/WO2011021779A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1813Water specific cations in water, e.g. heavy metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/186Water using one or more living organisms, e.g. a fish
    • G01N33/1866Water using one or more living organisms, e.g. a fish using microorganisms

Definitions

  • the present invention relates to a method for evaluating water toxicity using the reactivity of toxic substances of seaweed spores belonging to kelp, and more particularly, to a method for evaluating water toxicity using germination rate or germination tube growth rate of seaweed spores belonging to kelp. will be.
  • the present invention relates to a water toxicity assessment kit comprising algae spores belonging to the seaweed
  • Physicochemical methods include gas chromatography (GC) and inductively coupled plasma.
  • GC-MS gas chromatography-mass spectroscopy
  • ICP-MS inductively coupled plasma-mass spectroscopy
  • biological methods that use organisms as biomarkers for toxic substances have emerged, and biological methods include microbial metabolism or enzymes such as bacteria, or shellfish, invertebrates, microalgae or protozoa. Etc. There is a method using eukaryotes. Toxicity investigation using microorganisms is a method of measuring growth inhibition, oxygen consumption rate, colon formation rate, ATP concentration, enzyme activity, lethality (or survival rate) or bioluminescence.
  • Daphnia magma and Ceriodaphnia dubia Daphnia
  • Daphnia magma and Ceriodaphnia dubia Daphnia
  • Daphnia magma and Ceriodaphnia dubia Daphnia
  • Korean Patent Nos. 10-0653100 and 10-0653101 disclose a method for evaluating water toxicity by using the spore formation rate of the seaweed, in order to determine the spore formation rate of significant seaweed culture for at least 96 hours There is a limit to the rapid determination of water toxicity.
  • the present invention is to solve the conventional problems, one object of the present invention is to have a stable reaction sensitivity to a water sample containing chlorine, even in a water sample having a high salt concentration is sensitive to a toxic substance, and discriminating It is to provide a method for evaluating water toxicity in a very short time.
  • Another object of the present invention is to provide a method for evaluating water toxicity with improved reaction sensitivity to metal toxic substances or volatile organic compound toxic substances.
  • Still another object of the present invention is to provide a water toxicity test kit that can implement the water toxicity test method according to the present invention.
  • the present invention comprises the steps of putting a water sample in a measuring container; Injecting spores of algae belonging to the kelp in a measuring container containing a water sample; Culturing the spores put into the measuring container; And measuring the germination rate of the cultured spores.
  • the present invention comprises the steps of putting a water sample in a measuring vessel; Injecting spores of algae belonging to the kelp in a measuring container containing a water sample; Culturing the spores put into the measuring container; And measuring the germination tube growth rate of the spores germinated in the cultured spores.
  • the germination rate of cultured spores is calculated as the ratio of the number of spores germinated to the number of cultured spores, and the germination tube growth rate of germinated spores is calculated as the germination tube average length of germinated spores.
  • Germinated spores or germinated tube average lengths of germinated spores were measured using a microscope equipped with a condenser for condensing light. Specifically, by converting an image of a spore from a color close to white to a color close to black), the number of germinated spores or the average length of germination tubes of the germinated spores can be easily measured.
  • spores may be cultured regardless of the light irradiation amount, it is characterized in that cultured at a temperature of 10 ⁇ 20 °C in the dark state.
  • the present invention is spores of seaweed belonging to the kelp;
  • the water toxicity assessment kit according to the present invention may further include a standard toxic substance solution prepared by dissolving a single toxic substance in an artificial saline having a salt concentration of 25 to 45 ⁇ . It can be used to test the state of the spores, ie, the sensitivity of the reaction to toxic substances before evaluating them.
  • the water toxicity evaluation method using the reactivity of the toxic substances of seaweed spores belonging to the kelp according to the present invention since the spore germination takes place in 24 hours, water toxicity compared to the water toxicity evaluation method using the conventional green spore formation rate Can be evaluated quickly.
  • the spores of seaweeds belonging to the sea tangle are more stable and reactive to chlorine, which is toxic than water fleas, it is reliable and accurate when using the germination rate or germination tube growth rate of seaweed spores belonging to the sea tangle as an assessment of water quality. Water toxicity can be assessed.
  • FIG. 1 shows the images of the sea tangle spores before incubation and the spores incubated for 24 hours in seawater containing no toxic substances before and after adjusting the condenser of the microscope
  • FIG. 2 shows copper (Cu) as a single toxic substance.
  • FIG. 3 is a view schematically showing a water toxicity evaluation method according to an embodiment of the present invention.
  • Figure 4 shows the germination rate of kelp spores under various culture conditions
  • Figure 5 shows the germination tube average length of the kelp spores under various culture conditions.
  • Figure 6 is a graph showing the germination rate of kelp spores according to the concentration of toxic substances of metals
  • Figure 7 is a graph showing the germination tube average length of the kelp spores according to the concentration of toxic substances of metals.
  • FIG. 8 is a graph showing the germination rate of kelp spores according to the concentration of toxic substances of volatile organic compounds
  • Figure 9 is a graph showing the germination tube average length of the kelp spores according to the concentration of toxic substances of volatile organic compounds.
  • An aspect of the present invention relates to a method for evaluating water toxicity, which has a stable reaction sensitivity to a chlorine-containing water sample, has a high sensitivity to a toxic substance even in a water sample having a high salinity concentration, and has a very short discrimination time.
  • Water toxicity evaluation method comprises the steps of putting a water sample in a measuring container; Injecting spores of algae belonging to the kelp in a measuring container containing a water sample; Culturing the spores put into the measuring container; And measuring the germination rate of the cultured spores.
  • another aspect of the present invention relates to a method for evaluating water toxicity with improved reaction sensitivity to metal toxic substances or volatile organic compound toxic substances
  • the method for evaluating water toxicity according to another aspect of the present invention includes a water sample in a measuring container. Putting a step; Injecting spores of algae belonging to the kelp in a measuring container containing a water sample; Culturing the spores put into the measuring container; And measuring the germination tube growth rate of the spores germinated in the cultured spores.
  • the water toxicity evaluation method according to the present invention will be described by dividing by component.
  • a water body sample refers to water in which water occupies a major volume, and the water body sample according to the present invention is collected from seawater, rivers, lakes, wastewater, effluent, sewage, sludge effluent, soil effluent, and sediment effluent.
  • One sample is included.
  • the water sample contains.
  • the water sample is adjusted to have a salt concentration in the range of 15 to 55 ⁇ , preferably 25 to 45 ⁇ , for the satisfactory cultivation of seaweed spores belonging to the kelp prior to being placed in the measuring vessel, usually from seawater. Since the collected water sample satisfies the salt concentration described above, no adjustment is necessary, but in the case of fresh water, the salt concentration needs to be adjusted.
  • the first water sample (hereafter referred to as raw water) was adjusted to have a salt concentration in the range of 15 to 55 ⁇ , preferably 25 to 45 ⁇ , and then to a salt concentration in the range of 15 to 55 ⁇ , preferably 25 to 45 ⁇ . It is preferably diluted with artificial brine, gradientd to at least five or more concentrations, and placed in a measuring vessel.
  • the dilution method used is not particularly limited, for example half dilution method [100% (raw water itself), 50% (diluted to 1/2 of raw water), 25% (diluted to 1/4 concentration of raw water) ), 12.5% (diluted to 1/8 concentration of raw water), 6.25% (diluted to 1/16 concentration of raw water)].
  • Artificial brine for diluting raw water is not particularly limited as long as it has a salt concentration in the range of 15 to 55 ⁇ , preferably 25 to 45 ⁇ , and if the salt concentration is the same as the adjusted salt concentration of the raw water, Can be.
  • the raw water and diluted aqueous sample have a pH of 5-9, preferably 6-9, for smooth cultivation of algae spores belonging to kelp prior to being placed in a measuring vessel.
  • the germination rate or growth rate of spores according to the diluting concentration of raw water can be obtained. Based on this, a single toxicity is more effective than half of the effective concentration (spore germination rate or growth rate of spores in the control group containing no toxic substance 50% less than the spore germination rate or growth rate in the control group containing no toxic substance).
  • the measuring container includes a water sample and spores of algae, and cultivates spores of algae, and the form thereof is not particularly limited, and an example is a well plate.
  • the well plate is preferably composed of at least six wells. In one well, sprinkle spores with artificial saline containing no toxic substance as a control, and the remaining five wells are diluted with raw water and raw water. Add four water samples and incubate the spores.
  • the present invention uses spores of algae belonging to the kelp as a biomarker for the evaluation of water toxicity, and more specifically, the germination rate of the spores to the growth rate of germinated spores is used as an evaluation criteria of water toxicity. Since the spore germination takes place within 24 hours, the water toxicity evaluation method using the reactivity of the toxic substances of seaweed spores belonging to the kelp is known. Water toxicities can be assessed quickly, compared to 96 hours). In addition, the Daphnia method, which uses daphnia as a biomarker, has the disadvantage of not being able to evaluate chlorine toxicity because daphnia dies in water samples containing trace amounts of chlorine.
  • the water toxicity evaluation method according to the present invention can accurately evaluate chlorine toxicity.
  • the response sensitivity to toxic substances can be significantly improved than when using the germination rate of the spores.
  • Life history of algae belonging to the kelp family "releases spores from the sleeping bag made in the spore body (Tashima) ⁇ 2 The released spores grow into spores (growth after germination) ⁇ 3 The female spores develop into eggs, the spores form eggs and the spores form spouses, and the spouses released are spliced with the eggs formed on the female spores.
  • Seaweeds belonging to the kelp family are characterized in that they are cultured in a cancerous state.
  • algae including the seaweed requires an appropriate dose of light to be cultured. Since the algae spores belonging to the kelp family according to the present invention are smoothly grown in the germination and germination tubes regardless of the amount of light, There is no need to worry about the amount of light.
  • the culture temperature for germination and germination tube growth of seaweed spores belonging to the kelp family is in the range of 5 ⁇ 25 °C, preferably 10 ⁇ 20 °C.
  • the culture temperature for germination tube growth is more preferably in the range of 15 ⁇ 20 °C.
  • the pH of the culture medium for germination and germination tube growth of seaweed spores belonging to the kelp family is in the range of 5-9, preferably 6-9.
  • the salinity of the culture medium is in the range of 15 to 55 ⁇ , preferably 25 to 45 ⁇ .
  • the pH of the culture medium for germination tube growth is more preferably in the range of 35 ⁇ 45 ⁇ .
  • the germination rate of cultured spores is calculated as the ratio of the number of germinated spores to the number of cultured spores.
  • the germination tube growth rate of is calculated as the germination tube average length of germinated spores, and the calculated value can be compared with the germination rate or germination tube average length of spores cultured in a control group containing no toxic substances to evaluate the toxicity of the water sample. Can be.
  • the number of germinated spores or germinated tube average length of the germinated spores is measured using an image analysis device.
  • the image analysis device is a microscope equipped with a condenser for condensing light.
  • the brightness of the cultured spore image is reduced by adjusting the microscope condenser (specifically, the image of the cultured spores is white).
  • Figure 1 shows the image of the seaweed spores before incubation and the spores incubated for 24 hours in seawater containing no toxic substances before and after adjusting the condenser of the microscope.
  • the kelp spores show rapid change in germination within 24 hours in a non-contaminated environment, and specifically, a germ tube having a thread shape of about 25 ⁇ m in a circular spore is formed. .
  • germination ability is reduced and germination tube growth rate (germination tube length) is also reduced.
  • the condenser of the microscope when the spores of kelp germinate, they form a germination tube close to white, and when the condenser of the microscope is not controlled, it is displayed as an image close to white, which may cause difficulty in observing the germination and germination tube length of the spores.
  • the condenser of the microscope by adjusting the condenser of the microscope to convert the image of the cultured spores from a color close to white to a color close to black can easily observe the germination and germination tube length of the spores.
  • Water quality toxicity of the water sample was evaluated by comparing the germination rate of spores cultured in raw water and diluted water sample or the germination rate of germinated tube growth of germinated spores with the germination rate or average length of germination tube grown in the control without toxic substances. Specifically, it is expressed as a value of Half maximal effective concentration (EC 50 ) to No Observed Effect Concentration (NOEC). In this case, when the spore germination tube growth rate is used as the water quality toxicity evaluation criterion, the response sensitivity to the toxic substance is improved than when the spore germination rate is used.
  • Half maximal effective concentration refers to the concentration of a water sample that is effective to reduce the germination rate or growth rate of spores to 50% less than the germination rate or growth rate of spores in a control free of toxic substances.
  • EC 50 Half maximal effective concentration
  • a water sample containing a single toxic substance it is expressed as a specific concentration of a single toxic substance, and for an unknown source containing multiple toxic substances, it is expressed as the dilution rate of the raw water.
  • No effect concentration means the concentration of the water sample effective to maintain the germination rate and growth rate of the spores at a level not significantly different from the germination rate or growth rate of the spores in the control group containing no toxic substances.
  • a water sample containing a single toxic substance is expressed at a certain concentration and for unknown raw water containing a large number of toxic substances, it is expressed as a dilution rate.
  • the results of the water toxicity evaluation method is expressed as half the effective concentration, the problem occurs that the toxicity of the actual water sample decreases as the size and the half effective concentration become larger. It can be expressed as:
  • FIG. 2 shows a toxic solution containing copper (Cu) as a single toxic substance (initial copper concentration is 0.4 mg / L) and cultivated spores of kelp in a toxic solution diluted by half dilution for 24 hours (cultivation conditions 35 ⁇ culture solution, 15 ° C., cancer state).
  • Cu copper
  • FIG. 2 describes the method for evaluating the effective half-effective concentration of the water sample containing a single toxic substance as follows. If the germination rate of spores is the basis for the evaluation of water toxicity, the number of spores cultured and the number of germinated spores in the control (copper concentration of 0 mg / L), the initial toxic solution, and the diluted 4 toxic solutions were measured, respectively.
  • the percentage of total spores divided by the number of spores germinated is taken as the germination rate in each toxic solution.
  • the germination rate of the control group is 100%.
  • the germination rate of each toxic solution and the control rate of germination in the control group were treated statistically to regard the copper concentration of the toxic solution having a germination rate of 50% compared to that of the control group as a half effective value, and statistically significant with the germination rate of the control group.
  • the maximum copper concentration value of the toxic solution with no difference in germination rate is considered as no effect concentration.
  • the growth rate of the germinated spores is a criterion for evaluating the water toxicity
  • the same number of germinated spores extracted from the control group and the spores cultured in each toxic solution were extracted into the population, and instead of the number of germinated spores,
  • the average length of germination spores of germinated spores was measured, and the average length of germination tubes in the toxic solution and the average length in the control group were statistically calculated to determine the copper concentration value of the toxic solution having an average length of 50% of the average length of the control group.
  • the maximum copper concentration value of the toxic solution having an average length that is not statistically significant different from the average length of the control group is considered as no effect concentration.
  • the water toxicity evaluation method of the present invention may be carried out by a water toxicity evaluation system including a water sample, a spore of kelp, and an incubator (a container for measuring). It can also be implemented by a ubiquitous system (remote control system) that takes pictures, sends them, analyzes them, and returns the results back.
  • a water toxicity evaluation system including a water sample, a spore of kelp, and an incubator (a container for measuring). It can also be implemented by a ubiquitous system (remote control system) that takes pictures, sends them, analyzes them, and returns the results back.
  • Toxic substances that can be evaluated by the water toxicity evaluation method of the present invention include cadmium (Cd; Cadmium), cobalt (Co; Cobalt), chromium (Cr; Chromium), copper (Cu; Copper), mercury (Hg; Mercury), Toxic substances in metals such as nickel (Ni; Nickel), lead (Pb), and zinc (Zn; Zinc), acetone, chloroform, dimethyl sulfoxide (DMSO), and ethyl alcohol ( It includes toxic substances of volatile organic compounds (VOCs) such as ethyl alcohol, formalaldehyde, methyl alcohol and phenol.
  • VOCs volatile organic compounds
  • the water toxicity evaluation method of the present invention can also be usefully used to quickly determine the sludge dilution drainage to be taken so as not to adversely affect the ecosystem before throwing sewage and wastewater sludge.
  • the method of the present invention cannot detect unknown toxic substances when introduced into water bodies among the problems inherent in water pollution measurement methods that rely on the conventional chemical analysis method, and furthermore, the actual ecosystem only has the result value by chemical analysis. It is a practical technique that makes up for the drawback that there is no prediction about the effects of water pollution.
  • kelp is widely distributed all over the world and is similar in germination process, it is easy to systemize it using domestic kelp, and it contributes to the development of aquaculture industry by using kelp, a major aquaculture species of Korea, as a plant for evaluating water toxicity. can do.
  • Another aspect of the present invention relates to a water toxicity test kit capable of implementing the water toxicity test according to the present invention, wherein the water toxicity test kit according to the present invention comprises spores of seaweeds belonging to kelp; A measuring container for injecting the water sample and the spores of the seaweed and culturing the spores of the seaweed; And artificial saline with a salt concentration of 25-45 ⁇ to dilute the water sample; It includes.
  • the water toxicity test kit is cadmium (Cd; Cadmium), cobalt (Co; Cobalt), chromium (Cr; Chromium), copper (Cu; Copper), mercury (Hg; Mercury), nickel (Ni; Nickel, Pb (Lead), Zinc (Zn; Zinc), Acetone (acetone), Chloroform, Dimethyl sulfoxide, Ethyl alcohol, Formalin, Methyl
  • Cd Cadmium
  • cobalt Co
  • Cr Cr
  • Chromium copper
  • Cu Copper
  • mercury Hg; Mercury
  • nickel nickel
  • Ni Nickel, Pb (Lead
  • Zinc Zinc
  • Acetone Acetone
  • Chloroform Dimethyl sulfoxide
  • Ethyl alcohol, Formalin Methyl
  • a standard toxic substance solution prepared by dissolving any toxic substance selected from the group consisting of alcohols and phenols in artificial saline having a salt concentration of 25 to 45 ⁇ may be further included.
  • Toxic solutions can be used to test the state of spores, ie, the sensitivity of reactions to toxic substances, before assessing the water toxicity of a water sample.
  • the standard toxic substance solution according to the present invention is a solution containing copper as a toxic substance
  • the data on the germination rate of the spores from the various copper solutions and the control group to the average length of the germination tube is obtained in advance, along with the water toxicity assessment kit.
  • the user measures the germination rate of the spores to the copper solution to the average length of the germination tube and compares it with the data provided in advance to determine whether the spores normally react to the toxic substances and determine a range (e.g., intrinsic response sensitivity). If more than 80% of the response sensitivity is known, you can proceed to assess water toxicity for unknown water samples.
  • a range e.g., intrinsic response sensitivity
  • the complexes attached to the surface were wiped off with a kitchen towel, and the surfaces were washed again by putting the leaves in sea water.
  • the leaf was taken out and placed in a beaker containing seawater to induce the release of motility spores.
  • the induced spore solution was placed in a Petri dish containing 20 ml of OTT's artificial seawater.
  • a cover glass was placed on the bottom of the petri dish to serve as an attachment substrate, and a cover glass with spores was prepared by maintaining the culture in a constant temperature incubator (10 ⁇ 0.5 ° C.) for 1 hour.
  • Table 1 shows the components and concentrations of the salts contained in the artificial seawater OTT's artificial seawater used in the embodiment of the present invention, OTT's artificial seawater has a salt concentration of 35 ⁇ .
  • the culture temperature for germination and germination tube growth of kelp spores is in the range of 5 to 25 ° C., preferably 10 to 20 ° C., in particular, the culture temperature for germination tube growth is more preferably in the range of 15 to 20 ° C. Seemed.
  • the pH of the culture medium for germination and germination tube growth of kelp spores was in the range of 5-9, preferably 6-9.
  • the salinity of the culture medium was in the range of 15-55 ⁇ , preferably 25-45 ⁇ , and in particular, the pH of the culture medium for germination tube growth was more preferably in the range of 35-45 ⁇ .
  • a control solution and a toxic substance solution were put into the well, and a cover glass with spores of Laminaria japonica was added thereto. I moved it. Thereafter, the cells were incubated at a temperature of 15 ° C. in a dark state for 24 hours.
  • a total of 500 cultured spores were selected using an image analysis device (Visus image analysis, Ista-Video Test. Ltd., Russia) and the germination rates in the control solution and the toxic solution were determined by counting the number of germinated spores.
  • the average length of the germination tube was determined by selecting 30 germinated spores, measuring the length from the beginning of the germination tube to the end of the germination tube of each spore and calculating their average value.
  • the image of the spores cultured by adjusting the condenser provided in the optical microscope on the image analyzer was changed from white to black to observe the germination of the spores and the length of the germination tube.
  • Figure 6 is a graph showing the germination rate of kelp spores according to the concentration of toxic substances of metals
  • Figure 7 is a graph showing the germination tube average length of the kelp spores according to the concentration of toxic substances of metals. As shown in FIGS. 6 to 7, the germination rate of kelp spores or the germinal tube average length of the kelp spores showed a linear relationship with the concentration of metal toxic substances in a range.
  • a control solution and a toxic substance solution were put into the well, and a cover glass with spores of Laminaria japonica was added thereto. I moved it. Thereafter, the cells were incubated at a temperature of 15 ° C. in a dark state for 24 hours.
  • a total of 500 cultured spores were selected using an image analysis device (Visus image analysis, Ista-Video Test. Ltd., Russia) and the germination rates in the control solution and the toxic solution were determined by counting the number of germinated spores.
  • the average length of the germination tube was determined by selecting 30 germinated spores, measuring the length from the beginning of the germination tube to the end of the germination tube of each spore and calculating their average value.
  • the image of the spores cultured by adjusting the condenser provided in the optical microscope on the image analyzer was changed from white to black to observe whether the spores germinated and the length of the germination tube.
  • FIGS. 8 to 9 are graph showing the germination rate of kelp spores according to the concentration of toxic substances of volatile organic compounds
  • Figure 9 is a graph showing the germination tube average length of the kelp spores according to the concentration of toxic substances of volatile organic compounds. As shown in FIGS. 8 to 9, the germination rate of kelp spores or the germinal tube average length of the kelp spores showed a linear relationship with the concentration of volatile organic compounds toxic substances in a certain range.
  • the salt concentration of the clean stream influent and the effluent treated with a small amount of chlorine disinfectant was adjusted to 35 ⁇ . Thereafter, the influent solution and the effluent solution were used as the culture medium, and the kelp spores were cultured under the same culture conditions as those of the single metal toxic substance to the single volatile organic toxic substance.
  • the water toxicity of the influent solution and the effluent solution was measured using the Daphnia method. At this time, OTT's artificial seawater (salin concentration was 35 ⁇ ) containing no toxic substances was used as a control solution.
  • Table 4 shows the germination rate, germination tube average length, and daphnia survival rate of kelp spores cultured in influent and effluent solutions diluted to 50% of their initial concentration. And percentage value divided by the survival rate of Daphnia.
  • the water fleas were killed in the effluent containing a small amount of chlorine disinfectant, and it was found that the Daphnia method using the water flea could not measure the water toxicity of a solution containing chlorine as a toxic substance. Can be.
  • kelp spores are very stable in chlorine disinfectants, it can be seen that the water toxicity evaluation method of the present invention can be applied to measure the water toxicity of a solution containing chlorine as a toxic substance.
  • EC 50 has units of "%" because the water sample contains a number of unknown toxic substances. For example, if the EC 50 value of influent is 70%, Kelp spores cultured in samples diluted to 70% of initial concentration show spore germination rate or spore germination tube average length corresponding to 50% of the spore germination rate or spore germination tube average length of the control group.
  • the water toxicity assessment method or water toxicity assessment kit according to the present invention can be used to monitor whether seawater, river water, or lake is contaminated with toxic substances, and can quickly purify contaminated water bodies based on the evaluation results. will be.

Abstract

The present invention relates to a method for evaluating water quality and toxicity using the reactivity of spores of algae belonging to the order Laminariales against toxic materials. The method of the present invention for evaluating water quality and toxicity comprises the steps of: putting a water sample into a measuring container; adding spores of algae belonging to the order Laminariales to the water sample in the measuring container; culturing the spores added into the measuring container; and measuring the germination rate of the cultured spores or measuring the growth rate of germ tubes of spores germinated from the cultured spores. The method for evaluating water quality and toxicity using the reactivity of spores of algae belonging to the order Laminariales against toxic materials according to the present invention can enable the quick evaluation of water quality and toxicity within 24 hours, as well as the effective measurement of toxic materials in a water sample, including chloride or a high salt content. Especially in the case of the method using the growth rate of germ tubes of spores as a standard for evaluating water quality and toxicity, the sensitivity against toxic materials can be enhanced as compared to the method for using the germination rate of spores. In addition, since a method for prolonged preservation of green laver has not yet been developed, the method of the present invention using Laminariales, which can preserve biological samples for more than 14 months, can be very progressive not only as a diagnostic technique for ecological toxicity but also as a process for establishing a kit.

Description

다시마목에 속하는 해조류 포자의 발아관 생장속도를 이용한 수질 독성 평가 방법Evaluation of Water Toxicity Using Germination Tube Growth Rate of Seaweed Spores in Sea Tangle
본 발명은 다시마목에 속하는 해조류 포자의 독성 물질에 대한 반응성을 이용한 수질 독성 평가 방법에 관한 것으로서, 보다 상세하게는 다시마목에 속하는 해조류 포자의 발아율 또는 발아관 생장속도를 이용한 수질 독성 평가 방법에 관한 것이다. 또한, 본 발명은 다시마목에 속하는 해조류 포자를 포함하는 수질 독성 평가 키트에 관한 것이다The present invention relates to a method for evaluating water toxicity using the reactivity of toxic substances of seaweed spores belonging to kelp, and more particularly, to a method for evaluating water toxicity using germination rate or germination tube growth rate of seaweed spores belonging to kelp. will be. In addition, the present invention relates to a water toxicity assessment kit comprising algae spores belonging to the seaweed
최근, 환경문제의 하나로 거론되고 있는 수질 오염 문제를 개선하기 위한 방법으로, 수질을 개선하는 방법과 함께 하천 등지에서의 유해물질 누출 사고를 감시하는 방법에 대한 관심이 높아지고 있다.Recently, as a method for improving the water pollution problem, which is mentioned as one of the environmental problems, there is increasing interest in the method of improving the water quality and monitoring the leakage of harmful substances in rivers and the like.
종래의 수계에 유입될 수 있는 독성 물질을 검출하는 방법으로 물리화학적인 방법과 생물학적인 방법이 있다. 물리화학적 방법으로는 가스 크로마토그래피(GC)법, 유도결합 플라즈마(inductively coupled plasma)를 이용하는 방법 등이 있다. 그러나 이러한 방법은 GC-MS(gas chromatography-mass spectroscopy), ICP-MS(inductively coupled plasma-mass spectroscopy) 등 고가의 분석장비와 고도로 숙련된 분석요원을 필요로 하며, 각각의 독성 물질에 따라 별도의 분석을 수행하여야 하는 문제가 있다. 또한 분석시간이 길고, 유입 독성 물질의 성분을 알 수 없는 경우에는 분석하기 어려운 문제가 있으며, 시료를 장거리로 이동시킬 경우 시료 내 반응으로 성분 및 농도 변화가 유발될 수 있다는 문제점이 있다.Conventional methods for detecting toxic substances that may enter the water system include physicochemical and biological methods. Physicochemical methods include gas chromatography (GC) and inductively coupled plasma. However, these methods require expensive analytical equipment such as gas chromatography-mass spectroscopy (GC-MS) and inductively coupled plasma-mass spectroscopy (ICP-MS), and highly skilled analytical personnel. There is a problem that must be performed. In addition, when the analysis time is long, and the components of the influx of toxic substances are unknown, there is a problem that is difficult to analyze, and when the sample is moved over a long distance, there is a problem that the components and concentration change may be caused by the reaction in the sample.
이러한 단점으로 인하여 생물을 독성 물질의 바이오마커로 이용하는 생물학적인 방법이 등장하였는데, 생물학적인 방법으로는 박테리아 등의 미생물 대사 또는 효소를 이용하는 방법, 또는 어패류, 무척추 동물, 미세조류(microalgae) 또는 원생동물 등 진핵생물을 이용하는 방법이 있다. 미생물을 이용한 독성 조사 방법은 성장저해, 산소 소모율, 콜론(colony) 생성율, ATP 농도, 효소 활성도, 치사율(또는 생존율) 또는 생체 발광성 등을 측정하는 방법이다.Due to these shortcomings, biological methods that use organisms as biomarkers for toxic substances have emerged, and biological methods include microbial metabolism or enzymes such as bacteria, or shellfish, invertebrates, microalgae or protozoa. Etc. There is a method using eukaryotes. Toxicity investigation using microorganisms is a method of measuring growth inhibition, oxygen consumption rate, colon formation rate, ATP concentration, enzyme activity, lethality (or survival rate) or bioluminescence.
일반적으로 어류나 무척추 동물을 이용하는 경우에는 치사율, 움직임의 저해, 생물학적 특성 분석으로 판단하며, 미세조류를 이용하는 경우에는 성장저해로 측정한다. 물벼룩류(Daphnia)인 Daphnia magmaCeriodaphnia dubia 등은 환경 독성 물질에 매우 민감하고 기르기 용이하며, 수명이 짧고 생체가 작으며, 많은 생체 수를 실험에 사용할 수 있어 통계적 분석이 가능하므로 대표적 실험생물로 이용되고 있다. 그러나 이러한 어류, 무척추 동물 또는 원생동물을 이용하는 방법은 측정자의 전문성과 고가의 기기가 요구되며, 독성 물질에 따라 민감도에 차이가 많으며, 특히 실험생물을 배양하는 기반기술을 갖추지 않은 경우 생물의 사멸에 따른 대처방안이 묘연하다는 문제점이 있다. 또한, 물벼룩은 염소에 매우 약해서, 염소를 미량으로 포함하는 방류수에서도 모두 사멸하고, 이로 인해 염소의 독성을 판별할 수 없는 심각한 문제를 안고 있다.In general, in the case of using fish or invertebrates, it is judged by mortality rate, movement inhibition, and biological characterization. In case of using microalgae, growth inhibition is measured. Daphnia magma and Ceriodaphnia dubia , Daphnia , are very sensitive to environmentally toxic substances and are easy to cultivate, have short lifespan and small biomass, and can be used for experiments. It is used. However, the method of using such fish, invertebrates or protozoa requires the expert's expertise and expensive equipment, and the sensitivity varies depending on the toxic substances. Especially, if the base technology for cultivating the experimental organism is not equipped, There is a problem that the countermeasures follow. In addition, daphnia are very vulnerable to chlorine, and all of them are killed in the effluent containing trace amounts of chlorine, which causes a serious problem that cannot be determined.
한편, 대한민국 등록특허 제10-0653100호 및 제10-0653101호는 파래의 포자 형성률을 이용하여 수질 독성을 평가하는 방법을 개시하고 있는데, 유의성 있는 파래의 포자 형성률을 판단하기 위해서는 적어도 96시간 이상 배양하여야 하므로, 수질 독성을 신속하게 판별하는데 한계가 있다.On the other hand, Korean Patent Nos. 10-0653100 and 10-0653101 disclose a method for evaluating water toxicity by using the spore formation rate of the seaweed, in order to determine the spore formation rate of significant seaweed culture for at least 96 hours There is a limit to the rapid determination of water toxicity.
본 발명은 종래의 문제점을 해결하기 위한 것으로서, 본 발명의 일 목적은 염소를 포함하는 수체 샘플에 대해 안정적인 반응 민감성을 가지고, 높은 염분 농도를 가진 수체 샘플에서도 독성 물질에 대한 반응 민감성이 크며, 판별시간이 매우 짧은 수질 독성 평가 방법을 제공하는데에 있다.The present invention is to solve the conventional problems, one object of the present invention is to have a stable reaction sensitivity to a water sample containing chlorine, even in a water sample having a high salt concentration is sensitive to a toxic substance, and discriminating It is to provide a method for evaluating water toxicity in a very short time.
본 발명의 다른 목적은 금속 독성 물질 또는 휘발성 유기 화합물 독성 물질에 대해 향상된 반응 민감성을 가진 수질 독성 평가 방법을 제공하는데에 있다.Another object of the present invention is to provide a method for evaluating water toxicity with improved reaction sensitivity to metal toxic substances or volatile organic compound toxic substances.
본 발명의 또 다른 목적은 본 발명에 따른 수질 독성 평가 방법을 구현할 수 있는 수질 독성 평가 키트를 제공하는데에 있다. Still another object of the present invention is to provide a water toxicity test kit that can implement the water toxicity test method according to the present invention.
본 발명의 일 목적을 해결하기 위하여, 본 발명은 측정용 용기에 수체 샘플을 넣는 단계; 수체 샘플을 함유하는 측정용 용기에 다시마목에 속하는 해조류의 포자를 투입하는 단계; 측정용 용기에 투입된 포자를 배양하는 단계; 및 배양된 포자의 발아율을 측정하는 단계;를 포함하는 수질 독성 평가 방법을 제공한다. 또한, 본 발명의 다른 목적을 해결하기 위하여, 본 발명은 측정용 용기에 수체 샘플을 넣는 단계; 수체 샘플을 함유하는 측정용 용기에 다시마목에 속하는 해조류의 포자를 투입하는 단계; 측정용 용기에 투입된 포자를 배양하는 단계; 및 배양된 포자 중에서 발아된 포자의 발아관 생장속도를 측정하는 단계;를 포함하는 수질 독성 평가 방법을 제공한다.In order to solve the object of the present invention, the present invention comprises the steps of putting a water sample in a measuring container; Injecting spores of algae belonging to the kelp in a measuring container containing a water sample; Culturing the spores put into the measuring container; And measuring the germination rate of the cultured spores. In addition, in order to solve the other object of the present invention, the present invention comprises the steps of putting a water sample in a measuring vessel; Injecting spores of algae belonging to the kelp in a measuring container containing a water sample; Culturing the spores put into the measuring container; And measuring the germination tube growth rate of the spores germinated in the cultured spores.
배양된 포자의 발아율은 배양된 포자 수에 대한 발아된 포자 수의 비로 계산되고, 발아된 포자의 발아관 생장속도는 발아된 포자의 발아관 평균 길이로 계산된다. 발아된 포자 수 또는 발아된 포자의 발아관 평균 길이는 빛을 집광하기 위한 콘덴서(Condenser)가 구비된 현미경을 이용하여 측정되는데, 현미경의 콘덴서를 조절하여 배양된 포자 영상의 명도를 낮게 변환시키면(구체적으로 포자의 이미지를 흰색에 가까운 색에서 검은색에 가까운 색으로 변환시키면) 발아된 포자 수 또는 발아된 포자의 발아관 평균 길이를 쉽게 측정할 수 있다. 또한, 포자는 광 조사량에 상관없이 배양될 수 있고, 암 상태에서 10~20℃의 온도로 배양되는 것을 특징으로 한다.The germination rate of cultured spores is calculated as the ratio of the number of spores germinated to the number of cultured spores, and the germination tube growth rate of germinated spores is calculated as the germination tube average length of germinated spores. Germinated spores or germinated tube average lengths of germinated spores were measured using a microscope equipped with a condenser for condensing light. Specifically, by converting an image of a spore from a color close to white to a color close to black), the number of germinated spores or the average length of germination tubes of the germinated spores can be easily measured. In addition, spores may be cultured regardless of the light irradiation amount, it is characterized in that cultured at a temperature of 10 ~ 20 ℃ in the dark state.
본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 다시마목에 속하는 해조류의 포자; 수체 샘플 및 해조류의 포자를 투입하고 해조류의 포자를 배양하기 위한 측정용 용기; 및 수체 샘플을 희석하기 위한 25~45‰의 염분 농도를 가진 인공 염수; 를 포함하는 수질 독성 평가 키트를 제공한다. 본 발명에 따른 수질 독성 평가 키트는 단일 독성 물질을 25~45‰의 염분 농도를 가진 인공 염수에 용해시켜 제조한 표준 독성 물질 용액을 더 포함할 수 있는데, 표준 독성 물질 용액은 수체 샘플의 수질 독성을 평가하기 전에 포자의 상태, 즉 독성 물질에 대한 반응 감응성 여부를 테스트하는데 이용될 수 있다.In order to achieve another object of the present invention, the present invention is spores of seaweed belonging to the kelp; A measuring container for injecting the water sample and the spores of the seaweed and culturing the spores of the seaweed; And artificial saline with a salt concentration of 25-45 ‰ to dilute the water sample; It provides a water toxicity assessment kit comprising a. The water toxicity assessment kit according to the present invention may further include a standard toxic substance solution prepared by dissolving a single toxic substance in an artificial saline having a salt concentration of 25 to 45 ‰. It can be used to test the state of the spores, ie, the sensitivity of the reaction to toxic substances before evaluating them.
본 발명에 따른 다시마목에 속하는 해조류 포자의 독성 물질에 대한 반응성을 이용한 수질 독성 평가 방법은 포자의 발아가 24시간 만에 이루어지므로, 기존의 파래 포자의 형성률을 이용한 수질 독성 평가 방법에 비해 수질 독성을 신속히 평가할 수 있다. 아울러, 다시마목에 속하는 해조류의 포자는 물벼룩에 비해 독성 물질인 염소에 대한 안정성 및 반응 감응성이 뛰어나므로, 수질 평가 기준으로 다시마목에 속하는 해조류 포자의 발아율 또는 발아관 생장속도를 이용하는 경우 신뢰성 있고 정확한 수질 독성을 평가할 수 있다. 특히, 수질 독성 평가 기준으로 포자의 발아관 생장속도를 이용하는 경우 포자의 발아율을 이용하는 경우보다 독성 물질에 대한 반응 감응성을 향상시킬 수 있다. 시험생물의 장기보관 및 대량배양 그리고 제공의 항상성 등이 생태 독성 기법의 수준을 결정한다는 입장에서 볼 때 아직까지 장기보관법이 개발되지 않은 파래기법에 비하여 현재 14개월 이상 시험생물의 보관이 가능한 다시마 기법이 생태 독성 진단 기법으로서 뿐만 아니라 키트화 하는 과정에서 매우 진보적인 기술이라고 할 수 있다.The water toxicity evaluation method using the reactivity of the toxic substances of seaweed spores belonging to the kelp according to the present invention, since the spore germination takes place in 24 hours, water toxicity compared to the water toxicity evaluation method using the conventional green spore formation rate Can be evaluated quickly. In addition, since the spores of seaweeds belonging to the sea tangle are more stable and reactive to chlorine, which is toxic than water fleas, it is reliable and accurate when using the germination rate or germination tube growth rate of seaweed spores belonging to the sea tangle as an assessment of water quality. Water toxicity can be assessed. In particular, when the spore germination tube growth rate is used as the water quality toxicity evaluation criterion, response sensitivity to toxic substances may be improved than when the spore germination rate is used. From the standpoint that long-term storage and mass culture of test organisms and homeostasis of provision determine the level of ecotoxicology techniques, kelp techniques that can store test organisms for more than 14 months are now compared to the seaweed technique, which has not yet been developed for long-term storage methods. This is not only an ecotoxicological diagnostic technique but also a very advanced technology in the kitting process.
도 1은 배양되기 전 다시마 포자의 영상과 독성 물질을 포함하지 않는 해수에 24시간 배양시킨 포자의 영상을 현미경의 콘덴서를 조절하기 전과 조절 후로 나타낸 것이고, 도 2는 단일 독성 물질로서 구리(Cu)를 포함하는 독성 용액(초기 구리 농도는 0.4 ㎎/L임)과 이를 반수 희석법으로 희석한 독성 용액에 다시마의 포자를 24시간 배양 시킨 후(배양 조건은 35 ‰의 배양액, 15℃, 암 상태) 현미경으로 관찰한 영상을 나타낸 것이다.FIG. 1 shows the images of the sea tangle spores before incubation and the spores incubated for 24 hours in seawater containing no toxic substances before and after adjusting the condenser of the microscope, and FIG. 2 shows copper (Cu) as a single toxic substance. After culturing the spores of kelp for 24 hours in a toxic solution containing (the initial copper concentration is 0.4 mg / L) and the toxic solution diluted by half dilution (cultivation conditions are 35 ‰ culture solution, 15 ℃, cancer) The image observed under the microscope is shown.
도 3은 본 발명의 일 실시예에 따른 수질 독성 평가 방법을 개략적으로 도시한 도면이다.3 is a view schematically showing a water toxicity evaluation method according to an embodiment of the present invention.
도 4는 다양한 배양 조건에서의 다시마 포자의 발아율을 나타낸 것이고, 도 5는 다양한 배양 조건에서의 다시마 포자의 발아관 평균 길이를 나타낸 것이다. Figure 4 shows the germination rate of kelp spores under various culture conditions, Figure 5 shows the germination tube average length of the kelp spores under various culture conditions.
도 6은 금속류의 독성 물질 농도에 따른 다시마 포자의 발아율을 나타낸 그래프이고, 도 7은 금속류의 독성 물질 농도에 따른 다시마 포자의 발아관 평균 길이를 나타낸 그래프이다.Figure 6 is a graph showing the germination rate of kelp spores according to the concentration of toxic substances of metals, Figure 7 is a graph showing the germination tube average length of the kelp spores according to the concentration of toxic substances of metals.
도 8은 휘발성 유기화합물류의 독성 물질 농도에 따른 다시마 포자의 발아율을 나타낸 그래프이고, 도 9는 휘발성 유기화합물류의 독성 물질 농도에 따른 다시마 포자의 발아관 평균 길이를 나타낸 그래프이다.8 is a graph showing the germination rate of kelp spores according to the concentration of toxic substances of volatile organic compounds, Figure 9 is a graph showing the germination tube average length of the kelp spores according to the concentration of toxic substances of volatile organic compounds.
본 발명의 일 측면은 염소를 포함하는 수체 샘플에 대해 안정적인 반응 민감성을 가지고, 높은 염분 농도를 가진 수체 샘플에서도 독성 물질에 대한 반응 민감성이 크며, 판별시간이 매우 짧은 수질 독성 평가 방법에 관한 것으로서, 본 발명의 일 측면에 따른 수질 독성 평가 방법은 측정용 용기에 수체 샘플을 넣는 단계; 수체 샘플을 함유하는 측정용 용기에 다시마목에 속하는 해조류의 포자를 투입하는 단계; 측정용 용기에 투입된 포자를 배양하는 단계; 및 배양된 포자의 발아율을 측정하는 단계;를 포함한다. 또한, 본 발명의 다른 측면은 금속 독성 물질 또는 휘발성 유기 화합물 독성 물질에 대해 향상된 반응 민감성을 가진 수질 독성 평가 방법에 관한 것으로서, 본 발명의 다른 측면에 따른 수질 독성 평가 방법은 측정용 용기에 수체 샘플을 넣는 단계; 수체 샘플을 함유하는 측정용 용기에 다시마목에 속하는 해조류의 포자를 투입하는 단계; 측정용 용기에 투입된 포자를 배양하는 단계; 및 배양된 포자 중에서 발아된 포자의 발아관 생장속도를 측정하는 단계;를 포함한다. 이하, 본 발명에 따른 수질 독성 평가 방법을 구성요소별로 나누어 설명한다.An aspect of the present invention relates to a method for evaluating water toxicity, which has a stable reaction sensitivity to a chlorine-containing water sample, has a high sensitivity to a toxic substance even in a water sample having a high salinity concentration, and has a very short discrimination time. Water toxicity evaluation method according to an aspect of the present invention comprises the steps of putting a water sample in a measuring container; Injecting spores of algae belonging to the kelp in a measuring container containing a water sample; Culturing the spores put into the measuring container; And measuring the germination rate of the cultured spores. In addition, another aspect of the present invention relates to a method for evaluating water toxicity with improved reaction sensitivity to metal toxic substances or volatile organic compound toxic substances, and the method for evaluating water toxicity according to another aspect of the present invention includes a water sample in a measuring container. Putting a step; Injecting spores of algae belonging to the kelp in a measuring container containing a water sample; Culturing the spores put into the measuring container; And measuring the germination tube growth rate of the spores germinated in the cultured spores. Hereinafter, the water toxicity evaluation method according to the present invention will be described by dividing by component.
수체 샘플Water sample
수체(water body) 샘플은 물이 주요 부피를 차지하는 물을 말하는 것으로서, 본 발명에 따른 수체 샘플은 해수, 하천, 호수, 폐수, 방류수, 오수, 슬러지 용출수, 토양 용출수, 퇴적토 용출수 등에서 채취한 샘플을 포함한다. 수체 샘플이 을 포함한다. 수체 샘플은 측정용 용기에 넣어지기 전에 다시마목에 속하는 해조류 포자의 원활한 배양을 위한 염분 농도인 15~55‰, 바람직하게는 25~45‰ 범위의 염분 농도를 가지도록 조정되는데, 일반적으로 해수로부터 채취한 수체 샘플은 상기의 염분 농도를 만족하므로 조정이 필요하지 않으나, 담수의 경우 염분 농도의 조정이 필요하다.A water body sample refers to water in which water occupies a major volume, and the water body sample according to the present invention is collected from seawater, rivers, lakes, wastewater, effluent, sewage, sludge effluent, soil effluent, and sediment effluent. One sample is included. The water sample contains. The water sample is adjusted to have a salt concentration in the range of 15 to 55 ‰, preferably 25 to 45 ‰, for the satisfactory cultivation of seaweed spores belonging to the kelp prior to being placed in the measuring vessel, usually from seawater. Since the collected water sample satisfies the salt concentration described above, no adjustment is necessary, but in the case of fresh water, the salt concentration needs to be adjusted.
최초의 수체 샘플(이하, 원수)은 15~55‰, 바람직하게는 25~45‰ 범위의 염분 농도로 가지도록 조정된 후 15~55‰, 바람직하게는 25~45‰ 범위의 염분 농도를 가진 인공 염수로 희석되어 적어도 5가지 이상의 농도로 구배화된 후 측정용 용기에 넣어지는 것이 바람직하다. 사용되는 희석 방법은 크게 제한되지 않으며, 일 예로 반수 희석법[100%(원수 자체), 50%(원수의 1/2 농도로 희석한 것), 25%(원수의 1/4 농도로 희석한 것), 12.5%(원수의 1/8 농도로 희석한 것), 6.25%(원수의 1/16 농도로 희석한 것)]이 있다. 원수를 희석하기 위한 인공 염수는 15~55‰, 바람직하게는 25~45‰ 범위의 염분 농도를 가지는 것이라면 크게 제한되지 않으며, 원수의 조정된 염분 농도와 동일한 염분 농도를 가지는 경우 원수를 쉽게 희석할 수 있다. 상기의 원수와 희석된 수체 샘플은 측정용 용기에 넣어지기 전에 다시마목에 속하는 해조류 포자의 원활한 배양을 위해 5~9, 바람직하게는 6~9의 pH를 가진다. The first water sample (hereafter referred to as raw water) was adjusted to have a salt concentration in the range of 15 to 55 ‰, preferably 25 to 45 ‰, and then to a salt concentration in the range of 15 to 55 ‰, preferably 25 to 45 ‰. It is preferably diluted with artificial brine, gradientd to at least five or more concentrations, and placed in a measuring vessel. The dilution method used is not particularly limited, for example half dilution method [100% (raw water itself), 50% (diluted to 1/2 of raw water), 25% (diluted to 1/4 concentration of raw water) ), 12.5% (diluted to 1/8 concentration of raw water), 6.25% (diluted to 1/16 concentration of raw water)]. Artificial brine for diluting raw water is not particularly limited as long as it has a salt concentration in the range of 15 to 55 ‰, preferably 25 to 45 ‰, and if the salt concentration is the same as the adjusted salt concentration of the raw water, Can be. The raw water and diluted aqueous sample have a pH of 5-9, preferably 6-9, for smooth cultivation of algae spores belonging to kelp prior to being placed in a measuring vessel.
본 발명에 있어서, 염분 농도가 조정된 원수 외에 희석된 4가지 이상의 수체 샘플을 배양액으로 하여 다시마목에 속하는 해조류 포자를 배양하는 경우 원수의 희석 농도에 따른 포자의 발아율 내지 생장속도를 구할 수 있고, 이를 기초로 수체 샘플의 수질 독성을 평가하는 경우보다 정확한 반수 유효 농도(포자의 발아율 내지 생장속도를 독성 물질을 포함하지 않는 대조군에서의 포자의 발아율 내지 생장속도보다 50% 감소시키는데 효과적인 농도로서 단일 독성 물질의 경우 특정 농도로 표시되고 미지의 원수의 경우 희석률로 표시됨; Half maximal effective concentration, EC50) 내지 무영향 농도(포자의 발아율 내지 생장속도를 독성 물질을 포함하지 않는 대조군에서의 포자의 발아율 내지 생장속도와 유의적 차이가 없는 수준으로 유지시키는데 효과적인 농도로서 단일 독성 물질의 경우 특정 농도로 표시되고 미지의 원수의 경우 희석률로 표시됨; No Observed Effect Concentration, NOEC)를 평가할 수 있다.In the present invention, in the case of culturing seaweed spores belonging to kelp, using four or more water samples diluted in addition to raw water whose salt concentration is adjusted, the germination rate or growth rate of spores according to the diluting concentration of raw water can be obtained. Based on this, a single toxicity is more effective than half of the effective concentration (spore germination rate or growth rate of spores in the control group containing no toxic substance 50% less than the spore germination rate or growth rate in the control group containing no toxic substance). Specified at specific concentrations for substances and dilution rates for unknown raw water; Half maximal effective concentration (EC 50 ) to no effect concentration (sprout germination rate to growth rate of spores in controls that do not contain toxic substances). Concentrations effective to maintain levels that are not significantly different from the growth rate For a single toxic substance, it is expressed at a certain concentration and for unknown raw water as a dilution rate; No Observed Effect Concentration (NOEC) can be evaluated.
측정용 용기Measuring vessel
측정용 용기는 수체 샘플 및 해조류의 포자를 포함하고, 해조류의 포자를 배양하기 것으로서, 그 형태는 크게 제한되지 않으며, 일 예로 웰 플레이트(Well plate)가 있다. 웰 플레이트는 적어도 6개 이상의 웰(Well)로 구성되는 것이 바람직한데, 1개의 웰에는 대조군으로서 독성 물질을 포함하지 않는 인공 염수를 넣고 포자를 배양하고, 나머지 5개의 웰에는 원수와 원수가 희석된 4개의 수체 샘플을 넣고 포자를 배양한다.The measuring container includes a water sample and spores of algae, and cultivates spores of algae, and the form thereof is not particularly limited, and an example is a well plate. The well plate is preferably composed of at least six wells. In one well, sprinkle spores with artificial saline containing no toxic substance as a control, and the remaining five wells are diluted with raw water and raw water. Add four water samples and incubate the spores.
다시마목에 속하는 해조류의 포자Spores of algae belonging to kelp
본 발명은 수질 독성의 평가를 위한 바이오마커로서 다시마목에 속하는 해조류의 포자를 이용하고, 보다 구체적으로 상기 포자의 발아율 내지 발아된 포자의 생장속도를 수질 독성의 평가 기준으로 사용한다. 다시마목에 속하는 해조류 포자의 독성 물질에 대한 반응성을 이용한 수질 독성 평가 방법은 포자의 발아가 24시간 만에 이루어지므로, 기존의 파래 포자의 형성률을 이용한 수질 독성 평가 방법(파래 포자의 형성을 위해 최소한 96시간을 필요로 함)에 비해 수질 독성을 신속히 평가할 수 있다. 또한, 물벼룩을 바이오마커로 이용하는 다프니아법(Daphnia method)은 물벼룩이 미량의 염소를 포함하는 수체 샘플에서도 모두 사멸하므로 염소 독성을 평가할 수 없는 단점을 가지는 반면, 다시마목에 속하는 해조류의 포자는 독성 물질인 염소에 대한 안정성 및 반응 감응성이 뛰어나므로 본 발명에 따른 수질 독성 평가 방법은 염소 독성을 정확하게 평가할 수 있다. 특히, 수질 독성 평가 기준으로 발아된 포자의 발아관 생장속도를 이용하는 경우 포자의 발아율을 이용하는 경우보다 독성 물질에 대한 반응 감응성을 크게 향상시킬 수 있다.The present invention uses spores of algae belonging to the kelp as a biomarker for the evaluation of water toxicity, and more specifically, the germination rate of the spores to the growth rate of germinated spores is used as an evaluation criteria of water toxicity. Since the spore germination takes place within 24 hours, the water toxicity evaluation method using the reactivity of the toxic substances of seaweed spores belonging to the kelp is known. Water toxicities can be assessed quickly, compared to 96 hours). In addition, the Daphnia method, which uses daphnia as a biomarker, has the disadvantage of not being able to evaluate chlorine toxicity because daphnia dies in water samples containing trace amounts of chlorine. Since the stability and reaction sensitivity to the substance chlorine is excellent, the water toxicity evaluation method according to the present invention can accurately evaluate chlorine toxicity. In particular, when using the germination tube growth rate of the spores germinated by the water toxicity evaluation criteria, the response sensitivity to toxic substances can be significantly improved than when using the germination rate of the spores.
이하, 본 발명에 따른 다시마과에 속하는 해조류의 생활사와 파래의 생활사를 비교하여 본 발명의 특징을 보다 명확하게 설명한다.Hereinafter, the characteristics of the present invention will be described more clearly by comparing the life history of seaweeds belonging to the kelp family according to the present invention and the life history of green seaweed.
(1) 파래의 생활사 및 이를 이용한 수질 독성 평가 방법(1) Life history of green seaweed and method for evaluating water toxicity using the same
파래의 생활사는 "① 포자체(파래)의 가장자리에서 포자형성(무성생식) 및 포자방출 ⇒ ② 방출된 포자가 배우체로 생장하고 배우체 가장자리에서 배우자 형성(유성생식) ⇒ ③ 암수배우자가 접합하여 접합자를 형성하고 접합자가 생장하여 포자체(파래) 형성"과 같은 단계를 거치는데, 파래의 포자 형성률을 이용한 기존의 수질 독성 평가 방법은 상기의 ① 단계를 이용한다. 보다 구체적으로 파래는 오염되지 않은 환경에서는 ① 단계의 생식(포자의 형성 및 방출)이 진행되어 잎이라 불리는 엽체의 색상 변화가 나타나는데, 처음에 연한 녹색을 띤 엽체가 생식(무성생식)이 시작되면서 진한 갈색(dark olive)으로 변화고 최종적으로 포자가 백색으로 바뀐다. 그러나, 오염되거나 또는 독성원이 함유된 수질에서는 생식력이 떨어져 그 색상 변화의 정도가 떨어진다. 이러한 원리에 근거하여 파래 잎을 독성원에 노출시킨 후에 잎(엽체)을 직접 육안 관찰하거나 또는 카메라로 이미지를 캡처하고, 여기에 눈금 돋보기를 이용하여 백색으로 색상 변화를 나타낸 엽체의 면적을 측정하여, 독성원이 포함되지 않은 대조군에서 나타난 백색 엽체의 면적과 비교하여 독성원의 독성 정도를 표시한다. 이때 파래의 포자 형성 및 방출을 위해서는 최소한 96시간이 필요하다.Life cycle of the green sea "① spore formation (asexual reproduction) and spore release at the edge of the spores (green) ⇒ ② spores are released as spores and spouse formation (oil reproduction) ⇒ ③ male and female spouses are joined Formation and splicer growth to form a spore body (green sea) ", such as, the existing water quality toxicity evaluation method using the spore formation rate of the seaweed using step ① above. More specifically, in a green, uncontaminated environment, ① stage of reproduction (formation and release of spores) proceeds, and the color change of the leaf body called leaf appears. At first, the light greenish leaf body begins to reproduce (asexual reproduction). It turns dark olive and finally the spores turn white. However, in contaminated or toxic waters, fertility decreases and the degree of color change is reduced. Based on this principle, after exposing the green leaf to the toxic source, the leaf (leaf) is visually observed or the image is captured by a camera, and a scale magnifier is used to measure the area of the leaf showing the color change to white. In addition, the degree of toxicity of the toxin is indicated by comparison with the area of white leaf in the control group that does not contain the toxin. At this time, at least 96 hours are required for the formation and release of the spores of the green.
(2) 다시마과에 속하는 해조류의 생활사(2) Life history of algae belonging to kelp
다시마과에 속하는 해조류의 생활사는 "① 포자체(다시마)에 만들어진 자낭반에서 포자를 방출 ⇒ ② 방출된 포자가 배우체로 생장(발아 후 생장) ⇒ ③ 암수배우체로 각각 발달하여 암배우체는 알을 형성하고 수배우체는 배우자를 형성한 뒤 방출되고, 방출된 배우자가 암배우체에 형성된 알과 접합하여 접합자를 형성하고 접합자가 생장하여 포자체(다시마)로 발달"과 같은 단계를 거치는데, 본 발명에 따른 수질 독성 평가 방법은 상기의 ② 단계를 이용하는 것으로서 다시마 생활사에서 포자가 현미경으로만 관찰될 정도로 아주 작은 크기를 보이는 시기인 포자의 발아 및 생장 시기를 측정 파라미터 또는 종말점(End point)으로 사용한다. 다시마과에 속하는 해조류 포자의 발아 및 발아관의 생장은 약 24시간 만에 이루어지므로, 본 발명에 따른 수질 독성 평가 방법을 이용하는 경우 파래의 포자 형성 및 방출을 이용한 수질 독성 평가 방법을 이용하는 경우에 비해 수질 독성을 신속하게 평가할 수 있다.Life history of algae belonging to the kelp family "releases spores from the sleeping bag made in the spore body (Tashima) ⇒ ② The released spores grow into spores (growth after germination) ⇒ ③ The female spores develop into eggs, the spores form eggs and the spores form spouses, and the spouses released are spliced with the eggs formed on the female spores. Formation of the conjugate and the development of the spores (Damashima) to go through the same step, "water toxicity evaluation method according to the present invention by using the step ② above, so that the spores in kelp life history can only be observed under a microscope The germination and growth timing of the spores, which are small-sized periods, are used as a measurement parameter or an end point.The germination and germination of the algae spores belonging to the kelp family takes place in about 24 hours. When using the water toxicity assessment method, the water toxicity assessment method using the spore formation and release of the green sea Water toxicity can be assessed quickly compared to cows.
본 발명에 따른 수질 독성 평가 방법에 이용할 수 있는 해조류는 다시마과에 속하는 해조류의 생활사와 동일한 생활사를 가진 것이라면 크게 제한되지 않으며, 구체적으로 감태(Ecklonia cava), 개다시마(Kjellmaniella crassifolia), 곰피(Ecklonia stolonifera), 미역(Undaria pinnatifida), 또는 참다시마(Laminaria. japonica)를 포함한다.Algae that can be used in the water toxicity assessment method according to the invention so long as it has the same life history and life of algae belonging to dasimagwa not greatly limited, specifically, Ecklonia cava (Ecklonia cava), more seaweed (Kjellmaniella crassifolia), gompi (Ecklonia stolonifera ), Seaweed ( Undaria pinnatifida ), or Chamdashima ( Laminaria. Japonica ).
포자의 배양Culture of Spores
다시마과에 속하는 해조류, 보다 구체적으로 참다시마(Laminaria. japonica)의 포자는 암 상태에서 배양되는 것을 특징으로 한다. 파래를 포함한 일반적인 해조류는 배양되기 위해 적정의 광 조사량을 필요로 하는데, 본 발명에 따른 다시마과에 속하는 해조류 포자는 광 조사량의 유무에 관계없이 발아 및 발아관의 생장이 원활하게 이루어지므로, 배양 단계에서 광 조사량을 신경 쓸 필요가 없다.Seaweeds belonging to the kelp family, more specifically, spores of Laminaria (jaminica) are characterized in that they are cultured in a cancerous state. In general, algae including the seaweed requires an appropriate dose of light to be cultured. Since the algae spores belonging to the kelp family according to the present invention are smoothly grown in the germination and germination tubes regardless of the amount of light, There is no need to worry about the amount of light.
다시마과에 속하는 해조류 포자의 발아 및 발아관 생장을 위한 배양 온도는 5~25℃, 바람직하게는 10~20℃의 범위를 가진다. 특히, 발아관 생장을 위한 배양 온도는 보다 바람직하게는 15~20℃의 범위를 가진다.The culture temperature for germination and germination tube growth of seaweed spores belonging to the kelp family is in the range of 5 ~ 25 ℃, preferably 10 ~ 20 ℃. In particular, the culture temperature for germination tube growth is more preferably in the range of 15 ~ 20 ℃.
다시마과에 속하는 해조류 포자의 발아 및 발아관 생장을 위한 배양액의 pH는 5~9, 바람직하게는 6~9의 범위를 가진다. 또한, 배양액의 염분 농도는 15~55‰, 바람직하게는 25~45‰ 범위을 가진다. 특히, 발아관 생장을 위한 배양액의 pH는 보다 바람직하게는 35~45‰ 범위을 가진다. The pH of the culture medium for germination and germination tube growth of seaweed spores belonging to the kelp family is in the range of 5-9, preferably 6-9. In addition, the salinity of the culture medium is in the range of 15 to 55 ‰, preferably 25 to 45 ‰. In particular, the pH of the culture medium for germination tube growth is more preferably in the range of 35 ~ 45 ‰.
포자의 발아율 및 발아된 포자의 생장속도 측정Measurement of Spore Germination and Growth Rate of Germinated Spores
다시마과에 속하는 성체 해조류로부터 방출된 포자는 운동성을 잃고 기질에 부착하게 되며, 그 후 포자의 일부분에서 관이 형성되는데 이를 발아관(Germ tube)이라고 한다. 발아관은 길이 생장을 하고, 이 관을 따라 세포질이 발아관 끝으로 이동한다. 이때 포자에서 관이 형성되었을 때를 "발아(Germination)"라고 정의하고 관이 형성되어 있지 않으면 발아되지 않은 것으로 판단한다. Spores released from adult seaweeds belonging to the kelp family lose their motility and adhere to the substrate, and then a part of the spores forms a tube, which is called a germ tube. The germination tube grows in length, along which the cytoplasm moves to the end of the germination tube. At this time, when the tube is formed from the spores is defined as "germination" (Germination), and if the tube is not formed it is determined that the germination.
다시마과에 속하는 해조류로의 포자를 약 24시간 배양하면, 포자의 발아 및 발아관의 생장이 이루어지고, 배양된 포자의 발아율은 배양된 포자 수에 대한 발아된 포자 수의 비로 계산되고, 발아된 포자의 발아관 생장속도는 발아된 포자의 발아관 평균 길이로 계산되는데, 상기의 계산 값을 독성 물질을 포함하지 않는 대조군에서 배양된 포자의 발아율 또는 발아관 평균 길이와 비교하여 수체 샘플의 독성을 평가할 수 있다. 이때 발아된 포자 수 또는 발아된 포자의 발아관 평균 길이는 영상 분석 장치를 이용하여 측정된다. 상기 영상 분석 장치는 빛을 집광하기 위한 콘덴서(Condenser)가 구비된 현미경인 것이 바람직한데, 현미경의 콘덴서를 조절하여 배양된 포자 영상의 명도를 낮게 변환시키는 경우(구체적으로 배양된 포자의 영상을 흰색에 가까운 색에서 검은색에 가까운 색으로 변환시키면) 쉽게 발아된 포자 수 또는 발아된 포자의 발아관 평균 길이를 측정할 수 있다. After about 24 hours incubation of spores into seaweeds belonging to the kelp family, germination of spores and growth of germination tube are achieved, and the germination rate of cultured spores is calculated as the ratio of the number of germinated spores to the number of cultured spores. The germination tube growth rate of is calculated as the germination tube average length of germinated spores, and the calculated value can be compared with the germination rate or germination tube average length of spores cultured in a control group containing no toxic substances to evaluate the toxicity of the water sample. Can be. At this time, the number of germinated spores or germinated tube average length of the germinated spores is measured using an image analysis device. Preferably, the image analysis device is a microscope equipped with a condenser for condensing light. When the brightness of the cultured spore image is reduced by adjusting the microscope condenser (specifically, the image of the cultured spores is white). By changing from a color close to black to a color close to black), one can easily determine the number of spores germinated or the average length of germination tubes of germinated spores.
도 1은 배양되기 전의 다시마 포자의 영상과 독성 물질을 포함하지 않는 해수에 24시간 배양된 포자의 영상을 현미경의 콘덴서를 조절하기 전과 조절 후로 나타낸 것이다. 도 1에서 보이는 바와 같이 다시마 포자는 오염되지 않는 환경에서는 발아가 24시간 만에 신속하게 진행되어 형태 변화를 나타내는데, 구체적으로 원형의 포자에서 25 ㎛ 정도 길이의 실모양 형태를 가진 발아관이 형성된다. 그러나 독성 물질 등으로 오염된 환경에서는 발아 능력이 떨어지고 발아관 생장속도(발아관 길이)도 떨어진다. 한편, 다시마의 포자가 발아하면 흰색에 가까운 발아관을 형성하게 되고 현미경의 콘덴서를 조절하지 않는 경우 흰색에 가까운 영상으로 표시되어 포자의 발아 여부 및 발아관 길이를 관찰하는데 어려움이 발생할 수 있다. 이 경우 현미경의 콘덴서를 조절하여 배양된 포자의 영상을 흰색에 가까운 색에서 검은색에 가까운 색으로 변환시키면 쉽게 포자의 발아 여부 및 발아관 길이를 관찰할 수 있다.Figure 1 shows the image of the seaweed spores before incubation and the spores incubated for 24 hours in seawater containing no toxic substances before and after adjusting the condenser of the microscope. As shown in FIG. 1, the kelp spores show rapid change in germination within 24 hours in a non-contaminated environment, and specifically, a germ tube having a thread shape of about 25 μm in a circular spore is formed. . However, in an environment contaminated with toxic substances, germination ability is reduced and germination tube growth rate (germination tube length) is also reduced. On the other hand, when the spores of kelp germinate, they form a germination tube close to white, and when the condenser of the microscope is not controlled, it is displayed as an image close to white, which may cause difficulty in observing the germination and germination tube length of the spores. In this case, by adjusting the condenser of the microscope to convert the image of the cultured spores from a color close to white to a color close to black can easily observe the germination and germination tube length of the spores.
수질 독성의 평가Assessment of Water Toxicity
수체 샘플의 수질 독성은 원수와 희석된 수체 샘플에서 배양된 포자의 발아율 또는 발아된 포자의 발아관 생장속도를 독성 물질을 포함하지 않는 대조군에서 배양된 포자의 발아율 또는 발아관 평균 길이와 비교하여 평가되며, 구체적으로 반수 유효 농도(Half maximal effective concentration, EC50) 내지 무영향 농도(No Observed Effect Concentration, NOEC) 값으로 표시된다. 이때, 수질 독성 평가 기준으로 포자의 발아관 생장속도를 이용하는 경우 포자의 발아율을 이용하는 경우보다 독성 물질에 대한 반응 감응성이 향상되므로 보다 정확하게 수질 독성을 평가할 수 있다.Water quality toxicity of the water sample was evaluated by comparing the germination rate of spores cultured in raw water and diluted water sample or the germination rate of germinated tube growth of germinated spores with the germination rate or average length of germination tube grown in the control without toxic substances. Specifically, it is expressed as a value of Half maximal effective concentration (EC 50 ) to No Observed Effect Concentration (NOEC). In this case, when the spore germination tube growth rate is used as the water quality toxicity evaluation criterion, the response sensitivity to the toxic substance is improved than when the spore germination rate is used.
반수 유효 농도(Half maximal effective concentration, EC50)는 포자의 발아율 내지 생장속도를 독성 물질을 포함하지 않는 대조군에서의 포자의 발아율 내지 생장속도보다 50% 감소시키는데 효과적인 수체 샘플의 농도를 의미하는 것으로서, 단일 독성 물질을 포함하는 수체 샘플의 경우 단일 독성 물질의 특정 농도로 표시되고 다수의 독성 물질을 포함하는 미지의 원수의 경우 원수의 희석률로 표시된다. 무영향 농도는 포자의 발아율 내지 생장속도를 독성 물질을 포함하지 않는 대조군에서의 포자의 발아율 내지 생장속도와 유의적 차이가 없는 수준으로 유지시키는데 효과적인 수체 샘플의 농도를 의미하는 것으로서, 반수 유효 농도와 마찬가지로 단일 독성 물질을 포함하는 수체 샘플의 경우 특정 농도로 표시되고 다수의 독성 물질을 포함하는 미지의 원수의 경우 희석률로 표시된다. 한편, 수질 독성 평가 방법의 결과가 반수 유효 농도로 표시되는 경우 반수 유효 농도의 크기와 커질수록 실제 수체 샘플의 독성은 작아지는 문제점이 발생하고, 이를 해결하기 위해 독성 단위(Toxic Unit, TU)을 다음과 같이 표시할 수 있다.Half maximal effective concentration (EC 50 ) refers to the concentration of a water sample that is effective to reduce the germination rate or growth rate of spores to 50% less than the germination rate or growth rate of spores in a control free of toxic substances. For a water sample containing a single toxic substance, it is expressed as a specific concentration of a single toxic substance, and for an unknown source containing multiple toxic substances, it is expressed as the dilution rate of the raw water. No effect concentration means the concentration of the water sample effective to maintain the germination rate and growth rate of the spores at a level not significantly different from the germination rate or growth rate of the spores in the control group containing no toxic substances. Likewise, a water sample containing a single toxic substance is expressed at a certain concentration and for unknown raw water containing a large number of toxic substances, it is expressed as a dilution rate. On the other hand, when the results of the water toxicity evaluation method is expressed as half the effective concentration, the problem occurs that the toxicity of the actual water sample decreases as the size and the half effective concentration become larger. It can be expressed as:
TU = 100/반수 유효 농도(%)TU = 100 / half effective concentration (%)
도 2는 단일 독성 물질로서 구리(Cu)를 포함하는 독성 용액(초기 구리 농도는 0.4 ㎎/L임)과 이를 반수 희석법으로 희석한 독성 용액에 다시마의 포자를 24시간 배양 시킨 후(배양 조건은 35 ‰의 배양액, 15℃, 암 상태) 현미경으로 관찰한 영상을 나타낸 것이다. 도 2를 통해 단일 독성 물질을 포함하는 수체 샘플의 반수 유효 농도 내지 무영향 농도를 평가하는 방법을 설명하면 다음과 같다. 포자의 발아율을 수질 독성 평가의 기준으로 하는 경우 대조군(구리 농도가 0 ㎎/L), 초기 독성 용액, 희석된 4개의 독성 용액에서의 배양된 포자 수 및 발아된 포자 수를 각각 측정하고, 배양된 포자 수를 발아된 포자 수로 나눈 값의 백분율을 각 독성 용액에서의 발아율로 간주한다. 이때 일반적으로 대조군의 경우 발아율은 100%이다. 이후 각 독성 용액에서의 발아율 값과 대조군에서의 발아율 값을 통계 처리하여 대조군의 발아율 대비 50%의 발아율을 가지는 독성 용액의 구리 농도 값을 반수 유효 농도로 간주하고, 대조군의 발아율과 통계적으로 유의적 차이가 없는 발아율을 가지는 독성 용액의 최대 구리 농도 값을 무영향 농도로 간주한다. 한편, 발아된 포자의 생장속도를 수질 독성 평가의 기준으로 하는 경우, 대조군 및 각 독성 용액에서 배양된 포자 중 동일한 개수의 발아된 포자를 모집단으로 추출하고, 발아된 포자 수 대신 상기 모집단으로 추출된 발아 포자의 발아관 평균 길이를 측정하고 독성 용액에서의 발아관 평균 길이와 대조군에서의 평균 길이를 통계 처리하여 대조군의 평균 길이 대비 50%의 평균 길이를 가지는 독성 용액의 구리 농도 값을 반수 유효 농도로 간주하고, 대조군의 평균 길이와 통계적으로 유의적 차이가 없는 평균 길이를 가지는 독성 용액의 최대 구리 농도 값을 무영향 농도로 간주한다.FIG. 2 shows a toxic solution containing copper (Cu) as a single toxic substance (initial copper concentration is 0.4 mg / L) and cultivated spores of kelp in a toxic solution diluted by half dilution for 24 hours (cultivation conditions 35 ‰ culture solution, 15 ° C., cancer state). Referring to Figure 2 describes the method for evaluating the effective half-effective concentration of the water sample containing a single toxic substance as follows. If the germination rate of spores is the basis for the evaluation of water toxicity, the number of spores cultured and the number of germinated spores in the control (copper concentration of 0 mg / L), the initial toxic solution, and the diluted 4 toxic solutions were measured, respectively. The percentage of total spores divided by the number of spores germinated is taken as the germination rate in each toxic solution. In general, the germination rate of the control group is 100%. Afterwards, the germination rate of each toxic solution and the control rate of germination in the control group were treated statistically to regard the copper concentration of the toxic solution having a germination rate of 50% compared to that of the control group as a half effective value, and statistically significant with the germination rate of the control group. The maximum copper concentration value of the toxic solution with no difference in germination rate is considered as no effect concentration. On the other hand, when the growth rate of the germinated spores is a criterion for evaluating the water toxicity, the same number of germinated spores extracted from the control group and the spores cultured in each toxic solution were extracted into the population, and instead of the number of germinated spores, The average length of germination spores of germinated spores was measured, and the average length of germination tubes in the toxic solution and the average length in the control group were statistically calculated to determine the copper concentration value of the toxic solution having an average length of 50% of the average length of the control group. And the maximum copper concentration value of the toxic solution having an average length that is not statistically significant different from the average length of the control group is considered as no effect concentration.
본 발명에 따른 수질 독성 평가 방법의 용도Use of the method for evaluating water toxicity according to the present invention
본 발명의 수질 독성 평가 방법은 수체 샘플, 다시마의 포자, 및 배양기(측정용 용기)를 포함하는 수질 독성 평가 시스템에 의하여 실시될 수 있는데, 도 3에 도시된 바와 같이 배양된 다시마 포자의 모양을 촬영하여 이를 전송하고 분석하여 그 결과를 다시 반송하는 유비쿼터스 시스템(원격조정시스템)에 의해서도 실시될 수 있다. 본 발명의 수질 독성 평가 방법으로 평가할 수 있는 독성 물질로는 카드뮴(Cd; Cadmium), 코발트(Co; Cobalt), 크롬(Cr; Chromium), 구리(Cu; Copper), 수은(Hg; Mercury), 니켈(Ni; Nickel), 납(Pb; Lead), 아연(Zn; Zinc) 등과 같은 금속류의 독성물질, 아세톤(acetone), 클로로포름(Chloroform), 디메틸황산화물(DMSO; Dimethyl sulfoxide), 에틸알코올(Ethyl alcohol), 포르말린 (formaldehyde), 메틸알코올(methanol), 페놀(Phenol) 등과 같은 휘발성 유기화합물(Volatile Organic Compound, VOC)류의 독성 물질을 포함한다.The water toxicity evaluation method of the present invention may be carried out by a water toxicity evaluation system including a water sample, a spore of kelp, and an incubator (a container for measuring). It can also be implemented by a ubiquitous system (remote control system) that takes pictures, sends them, analyzes them, and returns the results back. Toxic substances that can be evaluated by the water toxicity evaluation method of the present invention include cadmium (Cd; Cadmium), cobalt (Co; Cobalt), chromium (Cr; Chromium), copper (Cu; Copper), mercury (Hg; Mercury), Toxic substances in metals such as nickel (Ni; Nickel), lead (Pb), and zinc (Zn; Zinc), acetone, chloroform, dimethyl sulfoxide (DMSO), and ethyl alcohol ( It includes toxic substances of volatile organic compounds (VOCs) such as ethyl alcohol, formalaldehyde, methyl alcohol and phenol.
본 발명의 수질 독성 평가 방법은 하수 및 폐수 오니를 투척하기 전에 생태계에 부정적인 영향을 끼치지 않도록 하기 위해서 취해야할 오니 희석 배수를 신속하게 결정하는데도 유용하게 사용될 수 있다. 본 발명의 방법은 종래의 화학적 분석 방식에 의존한 수질 오염 측정법에 내재된 문제점 중 미지의 독성물질이 수체 내에 투입되었을 때 그것을 탐지해낼 수 없고, 더 나아가 화학적 분석에 의한 결과 수치만을 가지고는 실제 생태계에 끼칠 수 있는 수질 오염의 영향에 대해 전혀 예측할 수가 없다는 단점을 보완한 실용적인 기법이라고 할 수 있다.The water toxicity evaluation method of the present invention can also be usefully used to quickly determine the sludge dilution drainage to be taken so as not to adversely affect the ecosystem before throwing sewage and wastewater sludge. The method of the present invention cannot detect unknown toxic substances when introduced into water bodies among the problems inherent in water pollution measurement methods that rely on the conventional chemical analysis method, and furthermore, the actual ecosystem only has the result value by chemical analysis. It is a practical technique that makes up for the drawback that there is no prediction about the effects of water pollution.
아울러 다시마는 전 세계적으로 널리 분포하고 있으며 발아과정에 있어서도 모두 유사하기 때문에 자국의 다시마를 이용하여 시스템화 시키기에 용이하며, 우리나라의 주요 양식 종인 다시마를 수질 독성 평가용 식물로 활용함으로써 양식산업 발전에 이바지 할 수 있다.In addition, since kelp is widely distributed all over the world and is similar in germination process, it is easy to systemize it using domestic kelp, and it contributes to the development of aquaculture industry by using kelp, a major aquaculture species of Korea, as a plant for evaluating water toxicity. can do.
본 발명의 또 다른 측면은 본 발명에 따른 수질 독성 평가 방법을 구현할 수 있는 수질 독성 평가 키트에 관한 것으로서, 본 발명에 따른 수질 독성 평가 키트는 다시마목에 속하는 해조류의 포자; 수체 샘플 및 해조류의 포자를 투입하고 해조류의 포자를 배양하기 위한 측정용 용기; 및 수체 샘플을 희석하기 위한 25~45‰의 염분 농도를 가진 인공 염수; 를 포함한다. 또한, 본 발명에 따른 수질 독성 평가 키트는 카드뮴(Cd; Cadmium), 코발트(Co; Cobalt), 크롬(Cr; Chromium), 구리(Cu; Copper), 수은(Hg; Mercury), 니켈(Ni; Nickel), 납(Pb; Lead), 아연(Zn; Zinc), 아세톤(acetone), 클로로포름(Chloroform), 디메틸황산화물(DMSO; Dimethyl sulfoxide), 에틸알코올(Ethyl alcohol), 포르말린 (formaldehyde), 메틸알코올(methanol), 및 페놀(Phenol)로 구성된 군으로부터 선택되는 어느 하나의 독성 물질을 25~45‰의 염분 농도를 가진 인공 염수에 용해시켜 제조한 표준 독성 물질 용액을 더 포함할 수 있는데, 표준 독성 물질 용액은 수체 샘플의 수질 독성을 평가하기 전에 포자의 상태, 즉 독성 물질에 대한 반응 감응성 여부를 테스트하는데 이용될 수 있다. 구체적으로 본 발명에 따른 표준 독성 물질 용액이 구리를 독성 물질로 포함하는 용액인 경우, 다양한 구리 용액 및 대조군에서의 포자의 발아율 내지 발아관 평균 길이에 대한 데이터를 미리 확보하여 수질 독성 평가 키트와 함께 제공할 수 있다. 사용자는 구리 용액에 대한 포자의 발아율 내지 발아관 평균 길이를 측정하고 이를 미리 제공하는 데이터와 비교하여 포자가 독성 물질에 대해 정상적으로 반응하는 지 여부를 판단하고, 일정 범위(예를 들어, 본래 반응 감응성의 80% 이상)의 반응 감응성을 보이는 경우 미지의 수체 샘플에 대한 수질 독성 평가를 진행할 수 있다.Another aspect of the present invention relates to a water toxicity test kit capable of implementing the water toxicity test according to the present invention, wherein the water toxicity test kit according to the present invention comprises spores of seaweeds belonging to kelp; A measuring container for injecting the water sample and the spores of the seaweed and culturing the spores of the seaweed; And artificial saline with a salt concentration of 25-45 ‰ to dilute the water sample; It includes. In addition, the water toxicity test kit according to the present invention is cadmium (Cd; Cadmium), cobalt (Co; Cobalt), chromium (Cr; Chromium), copper (Cu; Copper), mercury (Hg; Mercury), nickel (Ni; Nickel, Pb (Lead), Zinc (Zn; Zinc), Acetone (acetone), Chloroform, Dimethyl sulfoxide, Ethyl alcohol, Formalin, Methyl A standard toxic substance solution prepared by dissolving any toxic substance selected from the group consisting of alcohols and phenols in artificial saline having a salt concentration of 25 to 45 ‰ may be further included. Toxic solutions can be used to test the state of spores, ie, the sensitivity of reactions to toxic substances, before assessing the water toxicity of a water sample. Specifically, when the standard toxic substance solution according to the present invention is a solution containing copper as a toxic substance, the data on the germination rate of the spores from the various copper solutions and the control group to the average length of the germination tube is obtained in advance, along with the water toxicity assessment kit. Can provide. The user measures the germination rate of the spores to the copper solution to the average length of the germination tube and compares it with the data provided in advance to determine whether the spores normally react to the toxic substances and determine a range (e.g., intrinsic response sensitivity). If more than 80% of the response sensitivity is known, you can proceed to assess water toxicity for unknown water samples.
본 발명에 따른 수질 독성 평가 키트를 이용하여 다시마목에 속하는 해조류의 포자를 배양한 후, 포자의 발아 여부 및 발아관 평균 길이는 빛을 집광하기 위한 콘덴서(Condenser)가 구비된 현미경을 통해 측정할 수 있다. 아울러 상기 빛을 집광하기 위한 콘덴서(Condenser)가 구비된 현미경은 본 발명에 따른 수질 독성 평가 키트에 포함될 수 있다.After culturing spores of algae belonging to the kelp using the water quality toxicity assessment kit according to the present invention, whether the spores germinate and average germination tube length can be measured through a microscope equipped with a condenser for condensing light Can be. In addition, a microscope equipped with a condenser for condensing the light may be included in the water toxicity evaluation kit according to the present invention.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기의 실시예는 본 발명의 내용을 보다 명확하게 예시하기 위한 것일 뿐 본 발명의 보호범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only intended to more clearly illustrate the contents of the present invention and do not limit the protection scope of the present invention.
1. 다시마 포자의 발아 및 발아관 생장 유도를 위한 최적 배양 조건 확립1. Establishment of Optimal Culture Conditions for Germination of Germ Spores and Induction of Germination Tube Growth
(1) 다시마 포자의 준비(1) preparation of kelp spores
참다시마(Laminaria. japonica)의 엽체에서 포자엽 부위를 잘라내어 키친타올로 표면에 부착된 착생물들을 닦아 낸 다음, 엽체를 해수에 넣어 표면을 다시 한 번 세척하였다. 엽체 표면의 물기를 닦아낸 다음, 암 상태에서 12시간 보관한 후 엽체를 꺼내어 해수가 담긴 비이커에 넣어 운동성 포자의 방출을 유도하였다. 유도된 포자액을 20 ㎖의 인공 염수(OTT's artificial seawater)가 들어있는 페트리디쉬에 넣어 주었다. 이때 페트리디쉬 바닥에는 커버 글라스를 놓아 부착 기질로 삼았고, 항온 배양기에서 (10±0.5℃) 암 상태로 1시간 동안 유지 배양하여 포자가 부착된 커버 글라스를 준비하였다.After cutting the spores from the leaves of Laminaria japonica , the complexes attached to the surface were wiped off with a kitchen towel, and the surfaces were washed again by putting the leaves in sea water. After the surface of the leaf was wiped dry, stored for 12 hours in the dark, the leaf was taken out and placed in a beaker containing seawater to induce the release of motility spores. The induced spore solution was placed in a Petri dish containing 20 ml of OTT's artificial seawater. At this time, a cover glass was placed on the bottom of the petri dish to serve as an attachment substrate, and a cover glass with spores was prepared by maintaining the culture in a constant temperature incubator (10 ± 0.5 ° C.) for 1 hour.
표 1은 본 발명의 실시예에서 사용된 인공 염수인 OTT's 인공 해수에 포함되는 염의 성분과 그 농도를 나타낸 것으로서, OTT's 인공 해수는 35‰의 염분 농도를 가진다.Table 1 shows the components and concentrations of the salts contained in the artificial seawater OTT's artificial seawater used in the embodiment of the present invention, OTT's artificial seawater has a salt concentration of 35 ‰.
표 1
염의 성분 농도(g/L) 염의 성분 농도(g/L)
NaCl 21.00 NaNO3 0.20
MgSO47H2O 6.00 NaHCO3 0.20
MgCl26H2O 5.00 H3BO3 0.06
CaCl22H2O 1.00 Na2SIO39H2O 0.01
KCl 0.80 Sr(NO3)2 0.03
NaBr 0.10 Na2HPO4 0.02
Table 1
Salt Concentration (g / L) Salt Concentration (g / L)
NaCl 21.00 NaNO 3 0.20
MgSO 4 7H 2 O 6.00 NaHCO 3 0.20
MgCl 2 6H 2 O 5.00 H 3 BO 3 0.06
CaCl 2 2H 2 O 1.00 Na 2 SIO 3 9H 2 O 0.01
KCl 0.80 Sr (NO 3 ) 2 0.03
NaBr 0.10 Na 2 HPO 4 0.02
(2) 다시마 포자의 배양 (2) cultivation of kelp spores
포자가 부착된 커버 글라스를 24웰 플레이트에 넣은 후, 뚜껑을 닫고 배양기에 옮겨 넣고, 다양한 광 조사량, 배양액의 pH , 배양액의 염분 농도 및 배양 온도 조건하에서 24시간 배양하였다. 배양이 끝난 후 영상분석장치(Visus image analysis, Ista-Video Test. Ltd., Russia)를 사용하여 각 커버 글라스에 부착된 포자의 발아율과 발아관 평균 길이를 측정하였다. 도 4는 다양한 배양 조건에서의 다시마 포자의 발아율을 나타낸 것이고, 도 5는 다양한 배양 조건에서의 다시마 포자의 발아관 평균 길이를 나타낸 것이다.After spore-covered glass was put in a 24-well plate, the lid was closed and transferred to the incubator, and incubated for 24 hours under various light irradiation doses, pH of the culture solution, salt concentration of the culture solution, and culture temperature conditions. After the incubation, the germination rate and average germination length of the spores attached to each cover glass were measured by using an image analysis device (Visus image analysis, Ista-Video Test. Ltd., Russia). Figure 4 shows the germination rate of kelp spores under various culture conditions, Figure 5 shows the germination tube average length of the kelp spores under various culture conditions.
도 4 내지 도 5에 보이는 바와 같이 다시마 포자는 광 조사량의 유무에 관계없이 발아 및 발아관의 생장이 원활하게 이루어졌다. 다시마 포자의 발아 및 발아관 생장을 위한 배양 온도는 5~25℃, 바람직하게는 10~20℃의 범위이고, 특히, 발아관 생장을 위한 배양 온도는 보다 바람직하게는 15~20℃의 범위를 보였다. 다시마 포자의 발아 및 발아관 생장을 위한 배양액의 pH는 5~9, 바람직하게는 6~9의 범위를 보였다. 또한, 배양액의 염분 농도는 15~55‰, 바람직하게는 25~45‰ 범위이고, 특히, 발아관 생장을 위한 배양액의 pH는 보다 바람직하게는 35~45‰ 범위을 보였다. As shown in Figures 4 to 5, the kelp spores were smoothly germinated and germinated tube growth regardless of the amount of light irradiation. The culture temperature for germination and germination tube growth of kelp spores is in the range of 5 to 25 ° C., preferably 10 to 20 ° C., in particular, the culture temperature for germination tube growth is more preferably in the range of 15 to 20 ° C. Seemed. The pH of the culture medium for germination and germination tube growth of kelp spores was in the range of 5-9, preferably 6-9. In addition, the salinity of the culture medium was in the range of 15-55 ‰, preferably 25-45 ‰, and in particular, the pH of the culture medium for germination tube growth was more preferably in the range of 35-45 ‰.
2. 단일 금속류 독성 물질 용액의 수질 독성 평가2. Evaluation of Water Toxicity of Single Metal Toxic Solution
(1) 단일 금속류 독성 물질 용액의 준비(1) Preparation of single metal toxic substance solution
단일 금속류 독성 물질로 각각 카드뮴(초기 농도 20 ㎎/L), 구리(초기 농도 0.4 ㎎/L), 수은(초기 농도 0.4 ㎎/L), 니켈(초기 농도 20 ㎎/L), 납(초기 농도 20 ㎎/L), 아연(초기 농도 20 ㎎/L)을 포함하는 독성 물질 용액(염분 농도는 35‰임) 및 OTT's 인공 해수(염분 농도는 35‰임)를 이용하여 반수 희석법으로 희석하여 초기 농도의 50%, 25%, 12.5%, 6.25%로 희석된 독성 물질 용액을 제조하고 이들 독성 물질 용액의 수질 독성을 평가하였다. 대조군 용액으로는 독성 물질을 포함하지 않는 OTT's 인공 해수(염분 농도는 35‰임)를 사용하였다.Cadmium (initial concentration 20 mg / L), copper (initial concentration 0.4 mg / L), mercury (initial concentration 0.4 mg / L), nickel (initial concentration 20 mg / L), lead (initial concentration) 20 mg / L), diluted with half-water dilution using a solution of toxic substances containing zinc (initial concentration 20 mg / L) (salin concentration is 35 ‰) and OTT's artificial seawater (salin concentration is 35 ‰). Toxic solutions diluted to 50%, 25%, 12.5%, 6.25% of concentration were prepared and the water toxicity of these toxicant solutions was evaluated. As a control solution, OTT's artificial seawater (salin concentration: 35 ‰) containing no toxic substances was used.
(2) 다시마 포자의 배양(2) cultivation of kelp spores
24웰 플레이트(총 2개의 24 웰 플레이트 사용)의 웰에 대조군 용액 및 독성 물질 용액을 넣고, 여기에 참다시마(Laminaria. japonica)의 포자가 부착된 커버 글라스를 투입한 후 24웰 플레이트를 배양기에 옮겨 넣었다. 이후 암 상태 및 15℃의 온도에서 24시간 배양하였다.Into a well of a 24-well plate (using a total of two 24-well plates), a control solution and a toxic substance solution were put into the well, and a cover glass with spores of Laminaria japonica was added thereto. I moved it. Thereafter, the cells were incubated at a temperature of 15 ° C. in a dark state for 24 hours.
(3) 다시마 포자의 발아율 및 발아관 평균 길이의 측정(3) Measurement of germination rate and average length of germination tube of kelp spores
영상분석장치(Visus image analysis, Ista-Video Test. Ltd., Russia)를 사용하여 총 500개의 배양된 포자를 선택하고 발아된 포자 수를 계수하여 대조군 용액 및 독성 용액에서의 발아율을 판정하였다. 또한, 발아관의 평균 길이는 발아된 포자 30개를 선택하고 각 포자의 발아관 시작부분부터 발아관 끝까지의 길이를 측정하고 이들의 평균값을 계산하여 판정하였다. 이때, 영상분석장치상의 광학 현미경에 구비된 콘덴서를 조절하여 배양된 포자의 영상을 흰색에서 검은색으로 변경하여 포자의 발아 여부 및 발아관의 길이를 관찰하였다.A total of 500 cultured spores were selected using an image analysis device (Visus image analysis, Ista-Video Test. Ltd., Russia) and the germination rates in the control solution and the toxic solution were determined by counting the number of germinated spores. In addition, the average length of the germination tube was determined by selecting 30 germinated spores, measuring the length from the beginning of the germination tube to the end of the germination tube of each spore and calculating their average value. At this time, the image of the spores cultured by adjusting the condenser provided in the optical microscope on the image analyzer was changed from white to black to observe the germination of the spores and the length of the germination tube.
도 6은 금속류의 독성 물질 농도에 따른 다시마 포자의 발아율을 나타낸 그래프이고, 도 7은 금속류의 독성 물질 농도에 따른 다시마 포자의 발아관 평균 길이를 나타낸 그래프이다. 도 6 내지 도 7에서 보이는 바와 같이 다시마 포자의 발아율 또는 다시마 포자의 발아관 평균 길이는 일정 범위에서 금속류 독성 물질의 농도와 선형 관계를 나타내었다.Figure 6 is a graph showing the germination rate of kelp spores according to the concentration of toxic substances of metals, Figure 7 is a graph showing the germination tube average length of the kelp spores according to the concentration of toxic substances of metals. As shown in FIGS. 6 to 7, the germination rate of kelp spores or the germinal tube average length of the kelp spores showed a linear relationship with the concentration of metal toxic substances in a range.
(4) 다시마 포자의 발아율 및 발아관 평균 길이에 의한 단일 금속류 독성 물질의 수질 독성 판단(4) Determination of Water Toxicity of Single Metal Toxicity by Germination Rate of Kelp Spores and Germination Tube Average Length
도 6 내지 도 7에 표시된 다시마 포자의 발아율 및 발아관 평균 길이를 기준으로 단일 금속류 독성 물질의 반수 유효 농도(EC50) 내지 무영향 농도(NOEC)를 계산하고, 그 결과를 토대로 수질 독성 평가 기준을 다시마 포자의 발아율 내지 발아관 평균 길이로 하였을 때의 단일 금속류 독성 물질에 대한 반응 민감성을 판단하였다. 이때 EC50 값은 점예측기법(point estimation techniques)을 써서 계산하였고, NOEC 값은 Dunnett 과정과 같은 가설 검정 방법을 써서 계산하였다. 표 2는 다시마 포자의 발아율 내지 발아관 평균 길이를 수질 독성 평가 기준으로 하였을 때의 단일 금속류 독성 물질의 반수 유효 농도(EC50) 내지 무영향 농도(NOEC)를 나타낸 것이다.Based on the germination rate and germination tube average length of the kelp spores shown in Figures 6 to 7 calculate the half effective concentration (EC 50 ) to no effect concentration (NOEC) of a single metal-like toxic substance, based on the water quality evaluation criteria The sensitivity of the reaction to a single metal toxic substance was determined when the germination rate of the seaweed spores to the germinal tube length was determined. EC 50 values were calculated using point estimation techniques, and NOEC values were calculated using hypothesis testing methods such as Dunnett's procedure. Table 2 shows the half effective concentration (EC 50 ) to no effect concentration (NOEC) of a single metal-like toxic substance based on the germination rate of germ spores to the germinal tube average length of water toxicity evaluation criteria.
표 2에서 나타나는 바와 같이 발아관 평균 길이를 수질 독성 평가 기준으로 하였을때 단일 금속류 독성 물질에 대한 반응 민감성이 발아율을 수질 독성 평가 기준으로 하였을때보다 약 2배 가량 높았고, 특히 아연에서는 반응 민감성 차이가 매우 현저하였다.As shown in Table 2, when the average length of germination tube was used as the standard for evaluating water toxicity, the response sensitivity to the single metal toxic substance was about 2 times higher than when the germination rate was used as the criteria for evaluating water toxicity. Very remarkable.
표 2
금속류 독성 물질 발아율 기준 발아관 평균 길이 기준
NOEC(㎎/L) EC50(㎎/L) NOEC(㎎/L) EC50(㎎/L)
Cd 2.5 15.052 1.25 7.541
Cu 0.05 0.120 < 0.025 0.081
Hg 0.025 0.041 < 0.025 0.042
Ni < 1.25 2.009 < 1.25 1.360
Pb 1.25 4.760 < 1.25 4.429
Zn 1.25 6.049 < 0.025 0.078
TABLE 2
Metal Toxic Substances Germination rate standard Germination tube average length
NOEC (mg / L) EC 50 (mg / L) NOEC (mg / L) EC 50 (mg / L)
CD 2.5 15.052 1.25 7.541
Cu 0.05 0.120 <0.025 0.081
Hg 0.025 0.041 <0.025 0.042
Ni <1.25 2.009 <1.25 1.360
Pb 1.25 4.760 <1.25 4.429
Zn 1.25 6.049 <0.025 0.078
3. 단일 휘발성 유기화합물류 독성 물질 용액의 수질 독성 평가3. Evaluation of Water Toxicity of Single Volatile Organic Compound Toxic Solution
(1) 단일 휘발성 유기화합물류 독성 물질 용액의 준비(1) Preparation of a single volatile organic compound toxic substance solution
단일 휘발성 유기화합물류 독성 물질로 각각 아세톤(초기 농도 80 ㎖/L), 클로로포름(초기 농도 1 ㎖/L), 디메틸황산화물(초기 농도 40 ㎖/L), 에틸알코올(초기 농도 80 ㎖/L), 메틸알코올(초기 농도 80 ㎖/L), 페놀(초기 농도 0.25 ㎖/L)을 포함하는 독성 물질 용액(염분 농도는 35‰임) 및 OTT's 인공 해수(염분 농도는 35‰임)를 이용하여 반수 희석법으로 희석하여 초기 농도의 50%, 25%, 12.5%, 6.25%로 희석된 독성 물질 용액을 제조하고 이들 독성 물질 용액의 수질 독성을 평가하였다. 대조군 용액으로는 독성 물질을 포함하지 않는 OTT's 인공 해수(염분 농도는 35‰임)를 사용하였다.Single volatile organic compounds toxic substances, acetone (initial concentration 80 ㎖ / L), chloroform (initial concentration 1 ㎖ / L), dimethyl sulfate (initial concentration 40 ㎖ / L), ethyl alcohol (initial concentration 80 ㎖ / L) ), Methyl alcohol (initial concentration 80 ml / L), phenol (initial concentration 0.25 ml / L), toxic solution (salin concentration is 35 ‰) and OTT's artificial seawater (salin concentration is 35 ‰) Was diluted by half dilution method to prepare a toxic substance solution diluted to 50%, 25%, 12.5%, 6.25% of the initial concentration and evaluated the water toxicity of these toxic substance solutions. As a control solution, OTT's artificial seawater (salin concentration: 35 ‰) containing no toxic substances was used.
(2) 다시마 포자의 배양(2) cultivation of kelp spores
24웰 플레이트(총 2개의 24 웰 플레이트 사용)의 웰에 대조군 용액 및 독성 물질 용액을 넣고, 여기에 참다시마(Laminaria. japonica)의 포자가 부착된 커버 글라스를 투입한 후 24웰 플레이트를 배양기에 옮겨 넣었다. 이후 암 상태 및 15℃의 온도에서 24시간 배양하였다.Into a well of a 24-well plate (using a total of two 24-well plates), a control solution and a toxic substance solution were put into the well, and a cover glass with spores of Laminaria japonica was added thereto. I moved it. Thereafter, the cells were incubated at a temperature of 15 ° C. in a dark state for 24 hours.
(3) 다시마 포자의 발아율 및 발아관 평균 길이의 측정(3) Measurement of germination rate and average length of germination tube of kelp spores
영상분석장치(Visus image analysis, Ista-Video Test. Ltd., Russia)를 사용하여 총 500개의 배양된 포자를 선택하고 발아된 포자 수를 계수하여 대조군 용액 및 독성 용액에서의 발아율을 판정하였다. 또한, 발아관의 평균 길이는 발아된 포자 30개를 선택하고 각 포자의 발아관 시작부분부터 발아관 끝까지의 길이를 측정하고 이들의 평균값을 계산하여 판정하였다. 이때, 영상분석장치상의 광학 현미경에 구비된 콘덴서를 조절하여 배양된 포자의 영상을 흰색에서 검은색으로 변경하여 포자의 발아 여부 및 발아관의 길이를 관찰하였다.A total of 500 cultured spores were selected using an image analysis device (Visus image analysis, Ista-Video Test. Ltd., Russia) and the germination rates in the control solution and the toxic solution were determined by counting the number of germinated spores. In addition, the average length of the germination tube was determined by selecting 30 germinated spores, measuring the length from the beginning of the germination tube to the end of the germination tube of each spore and calculating their average value. At this time, the image of the spores cultured by adjusting the condenser provided in the optical microscope on the image analyzer was changed from white to black to observe whether the spores germinated and the length of the germination tube.
도 8은 휘발성 유기화합물류의 독성 물질 농도에 따른 다시마 포자의 발아율을 나타낸 그래프이고, 도 9는 휘발성 유기화합물류의 독성 물질 농도에 따른 다시마 포자의 발아관 평균 길이를 나타낸 그래프이다. 도 8 내지 도 9에서 보이는 바와 같이 다시마 포자의 발아율 또는 다시마 포자의 발아관 평균 길이는 일정 범위에서 휘발성 유기화합물류 독성 물질의 농도와 선형 관계를 나타내었다.8 is a graph showing the germination rate of kelp spores according to the concentration of toxic substances of volatile organic compounds, Figure 9 is a graph showing the germination tube average length of the kelp spores according to the concentration of toxic substances of volatile organic compounds. As shown in FIGS. 8 to 9, the germination rate of kelp spores or the germinal tube average length of the kelp spores showed a linear relationship with the concentration of volatile organic compounds toxic substances in a certain range.
(4) 다시마 포자의 발아율 및 발아관 평균 길이에 의한 단일 휘발성 유기화합물류 독성 물질의 수질 독성 판단(4) Water Toxicity of Single Volatile Organic Compounds Toxic Substances by Germination Rate of Germ Spores and Germination Tube Average Length
도 8 내지 도 9에 표시된 다시마 포자의 발아율 및 발아관 평균 길이를 기준으로 단일 휘발성 유기화합물류 독성 물질의 반수 유효 농도(EC50) 내지 무영향 농도(NOEC)를 계산하고, 그 결과를 토대로 수질 독성 평가 기준을 다시마 포자의 발아율 내지 발아관 평균 길이로 하였을 때의 단일 휘발성 유기화합물류 독성 물질에 대한 반응 민감성을 판단하였다. 이때 EC50 값은 점예측기법(point estimation techniques)을 써서 계산하였고, NOEC 값은 Dunnett 과정과 같은 가설 검정 방법을 써서 계산하였다. 표 3은 다시마 포자의 발아율 내지 발아관 평균 길이를 수질 독성 평가 기준으로 하였을 때의 단일 휘발성 유기화합물류 독성 물질의 반수 유효 농도(EC50) 내지 무영향 농도(NOEC)를 나타낸 것이다.Based on the germination rate and germination tube average length of the kelp spores shown in Figs. 8 to 9, half the effective concentration (EC 50 ) to no effect concentration (NOEC) of a single volatile organic compound toxic substance is calculated, and based on the results The sensitivity of the response to a single volatile organic compound toxic substance was determined when the toxicity evaluation criteria were the germination rate of germ spores to germinal tube length. EC 50 values were calculated using point estimation techniques, and NOEC values were calculated using hypothesis testing methods such as Dunnett's procedure. Table 3 shows the half effective concentration (EC 50 ) to no effect concentration (NOEC) of a single volatile organic compound toxic substance based on the germination rate of germ spores to the germinal tube average length based on the evaluation of water toxicity.
표 3에서 나타나는 바와 같이 발아관 평균 길이를 수질 독성 평가 기준으로 하였을때 단일 휘발성 유기화합물류 독성 물질에 대한 반응 민감성이 발아율을 수질 독성 평가 기준으로 하였을때보다 약 2배 가량 높았다.As shown in Table 3, when the average length of germination tube was used as the standard for evaluating the water toxicity, the sensitivity of the reaction to a single volatile organic compound toxic substance was about 2 times higher than when the germination rate was used as the criteria for evaluating the water toxicity.
표 3
유기 화합물류 독성 물질 발아율 기준 발아관 평균 길이 기준
NOEC(㎎/L) EC50(㎎/L) NOEC(㎎/L) EC50(㎎/L)
Acetone < 5 10.402 < 5 6.272
Chloroform 0.125 0.617 < 0.063 0.313
DMSO 2.5 21.705 2.5 11.649
Ethanol < 5 5.240 < 5 2.974
Methanol 10 22.240 < 5 13.161
Phenol 0.0625 0.187 < 0.016 0.081
TABLE 3
Organic Compounds Toxic Substances Germination rate standard Germination tube average length
NOEC (mg / L) EC 50 (mg / L) NOEC (mg / L) EC 50 (mg / L)
Acetone <5 10.402 <5 6.272
Chlororoform 0.125 0.617 <0.063 0.313
DMSO 2.5 21.705 2.5 11.649
Ethanol <5 5.240 <5 2.974
Methanol 10 22.240 <5 13.161
Phenol 0.0625 0.187 <0.016 0.081
4. 염소를 독성 물질로 함유한 용액의 수질 독성 평가4. Evaluation of Water Toxicity of Solutions Containing Chlorine as Toxic Substance
깨끗한 하천 유입수 및 이를 미량의 염소 소독제로 처리한 방류수의 염분 농도를 35‰로 조정하였다. 이후, 유입수 용액 및 방류수 용액을 배양액으로 하고 단일 금속류 독성 물질 내지 단일 휘발성 유기물류 독성 물질에서와 같은 배양 조건으로 다시마 포자를 배양하였다. 또한, 비교예로 유입수 용액 및 방류수 용액의 수질 독성을 다프니아 법(Daphnia method)을 이용하여 측정하였다. 이때 대조군 용액으로는 독성 물질을 포함하지 않는 OTT's 인공 해수(염분 농도는 35‰임)를 사용하였다. 표 4는 초기 농도의 50%로 희석된 유입수 용액 및 방류수 용액에 배양된 다시마 포자의 발아율, 발아관 평균 길이 및 물벼룩(Daphnia)의 생존률을 대조군 용액에 배양된 다시마 포자의 발아율, 발아관 평균 길이 및 물벼룩(Daphnia)의 생존률로 나눈 백분율 값을 나타낸 것이다.The salt concentration of the clean stream influent and the effluent treated with a small amount of chlorine disinfectant was adjusted to 35 ‰. Thereafter, the influent solution and the effluent solution were used as the culture medium, and the kelp spores were cultured under the same culture conditions as those of the single metal toxic substance to the single volatile organic toxic substance. In addition, as a comparative example, the water toxicity of the influent solution and the effluent solution was measured using the Daphnia method. At this time, OTT's artificial seawater (salin concentration was 35 ‰) containing no toxic substances was used as a control solution. Table 4 shows the germination rate, germination tube average length, and daphnia survival rate of kelp spores cultured in influent and effluent solutions diluted to 50% of their initial concentration. And percentage value divided by the survival rate of Daphnia.
표 4에서 나타나는 바와 같이 물벼룩은 미량의 염소 소독제를 포함하는 방류수에서 모두 사멸하여 물벼룩을 이용한 다프니아 법(Daphnia method)으로는 염소를 독성 물질로 포함하는 용액의 수질 독성을 측정할 수 없음을 알 수 있다. 반면, 다시마 포자는 염소 소독제에 매우 안정하여 본 발명의 수질 독성 평가 방법은 염소를 독성 물질로 포함하는 용액의 수질 독성을 측정하는데 적용될 수 있음을 알 수 있다.As shown in Table 4, the water fleas were killed in the effluent containing a small amount of chlorine disinfectant, and it was found that the Daphnia method using the water flea could not measure the water toxicity of a solution containing chlorine as a toxic substance. Can be. On the other hand, kelp spores are very stable in chlorine disinfectants, it can be seen that the water toxicity evaluation method of the present invention can be applied to measure the water toxicity of a solution containing chlorine as a toxic substance.
표 4
수체 샘플 구분 물벼룩 생존률(%) 다시마 포자의 발아율(%) 다시마 발아관 평균 길이 생장률(%)
유입수 100 100 100
방류수 0 100 100
Table 4
Water sample classification Daphnia Survival (%) Germination rate of kelp spores (%) Kelp germination tube average length growth rate (%)
Influent 100 100 100
Effluent 0 100 100
5. 파래의 포자 형성률, 다시마 포자의 발아율, 다시마 포자의 발아관 평균 길이를 기준으로 한 높은 염분 농도를 가진 수체 샘플의 수질 독성 평가5. Evaluation of Water Toxicity of Water Samples with High Saline Concentration Based on the Spore Formation Rate of Seaweed, Germination Rate of Kelp Spore, and Average Length of Germination Spore of Kelp Spore
초기 염분 농도가 40‰인 산업 폐수 유입수(이하, 유입 원수) 및 이를 정화처리하여 초기 염분 농도가 32‰인 산업 폐수 방류수(이하, 방류 원수)를 준비하였다. OTT's 인공 해수(염분 농도는 35‰임)를 가지고 유입 원수 및 방류 원수를 원수 초기 농도의 50%, 25%, 12.5%, 및 6.25%로 희석하였다. 이후, 원수 및 희석된 원수들을 배양액으로 하여 단일 금속류 독성 물질 내지 단일 휘발성 유기물류 독성 물질에서와 같은 방법으로 다시마 포자를 배양하였다. 또한, 비교예로 원수 및 희석된 원수들을 배양액으로 하여 동전 모양의 구멍 갈파래 엽체를 배양하였다(배양조건 : 광 조사량은 100 μ㏖/㎡·s, 광 주기는 12:12h 명암 주기, 배양 온도는 15℃, 배양 시간은 96h). 배양된 구멍 갈파래 엽체의 포자 형성 및 방출률을 색깔 변화의 면적으로 측정하였다. 한편, 대조군 용액으로는 독성 물질을 포함하지 않는 OTT's 인공 해수(염분 농도는 35‰임)를 사용하였다. 표 5는 다시마 포자의 발아율, 발아관 평균 길이 및 파래의 포자 형성률을 기준으로 하여 측정한 유입 원수 및 방류 원수의 수질 독성 결과를 나타낸 것이다.Industrial wastewater influent (hereinafter referred to as influent) with an initial salt concentration of 40 ‰ and industrial wastewater effluent (hereinafter, referred to as effluent) with an initial salt concentration of 32 ‰ were purified. With OTT's artificial seawater (salin concentration is 35 ‰), the influent and discharge waters were diluted to 50%, 25%, 12.5%, and 6.25% of the original water concentration. Then, the kelp spores were cultured in the same manner as in the single metal toxic substance to the single volatile organic substance toxic substance using the raw water and the diluted raw water as the culture medium. As a comparative example, raw and diluted raw water were used as culture medium, and the coin-shaped perforated green leafs were cultured. (Cultivation condition: 100 μmol / m 2 · s of light irradiation, 12: 12h light cycle of light cycle, 15 ° C., incubation time 96h). The spore formation and release rate of the cultured perforated green leaves were measured by the area of color change. On the other hand, OTT's artificial seawater (salin concentration is 35 ‰) containing no toxic substances was used as a control solution. Table 5 shows the water toxicity results of inflow and discharge water measured on the basis of germination rate of germ spores, average length of germination tube, and rate of spore formation of green seed.
표 5에서 나타나는 바와 같이 파래의 포자 형성률을 이용한 수질 독성 평가 방법을 적용하였을 때 유입 원수와 방류 원수 사이에 수질 차이가 없다는 판정을 내렸다. 반면, 다시마 포자의 발아율 내지 다시마 포자의 발아관 생장속도(평균 길이)를 이용한 본 발명의 수질 독성 평가 방법은 유입 원수와 방류 원수와의 독성 차이가 어느 정도 존재한다고 판정하여 파래 기법에 비하여 보다 고감도의 분별력을 나타냈다.As shown in Table 5, it was determined that there was no water quality difference between the inflow and discharge water when the water toxicity evaluation method using the spore formation rate of the green sea was applied. On the other hand, the water toxicity evaluation method of the present invention using the germination rate of the kelp spores to the germination tube growth rate (average length) of the kelp spores is judged that there exists a certain degree of toxicity difference between the inflowed and discharged water, and more sensitive than the conventional technique. The discernment of
표 5
원수 구분 원수 염분 농도(‰) 원수 pH 수질 독성 평가 기준 NOEC(%) EC50(%) TU(독성 단위)
유입 원수 40 7.56 다시마 포자 발아율 < 6.25 32.50 3.08
다시마 포자 발아관 평균 길이 < 6.25 21.24 4.71
파래 포자 형성률 25 73.40 1.36
방류 원수 32 7.77 다시마 포자 발아율 6.25 70.87 1.41
다시마 포자 발아관 평균 길이 50 71.94 1.39
파래 포자 형성률 25 75.00 1.33
Table 5
Enemies Raw water salinity (‰) Raw water pH Water Toxicity Evaluation Criteria NOEC (%) EC 50 (%) TU (toxic unit)
Influent 40 7.56 Kelp Spore Germination Rate <6.25 32.50 3.08
Kelp Spore Germination Tube Average Length <6.25 21.24 4.71
Green Spore Formation Rate 25 73.40 1.36
Discharge 32 7.77 Kelp Spore Germination Rate 6.25 70.87 1.41
Kelp Spore Germination Tube Average Length 50 71.94 1.39
Green Spore Formation Rate 25 75.00 1.33
※ 표 5에서 NOEC, EC50 은 "%"의 단위를 가지는데 이는 수체 샘플이 미지의 다수 독성 물질을 포함하고 있기 때문이며, 예를 들어 유입 원수의 EC50 값이 70%인 경우, 유입 원수를 초기 농도의 70% 농도로 희석한 샘플에서 배양된 다시마 포자는 대조군의 포자 발아율 또는 포자 발아관 평균 길이의 50%에 해당하는 포자 발아율 또는 포자 발아관 평균 길이를 나타낸다.※ In Table 5, NOEC, EC 50 has units of "%" because the water sample contains a number of unknown toxic substances. For example, if the EC 50 value of influent is 70%, Kelp spores cultured in samples diluted to 70% of initial concentration show spore germination rate or spore germination tube average length corresponding to 50% of the spore germination rate or spore germination tube average length of the control group.
본 발명에 따른 수질 독성 평가 방법 또는 수질 독성 평가 키트는 해수, 하천수, 또는 호수 등이 독성 물질에 오염되었는지 여부를 모니터링 하는데 이용될 수 있고, 평가 결과를 토대로 오염된 수체를 신속하게 정화시킬 수 있을 것이다. The water toxicity assessment method or water toxicity assessment kit according to the present invention can be used to monitor whether seawater, river water, or lake is contaminated with toxic substances, and can quickly purify contaminated water bodies based on the evaluation results. will be.

Claims (9)

  1. 측정용 용기에 수체 샘플을 넣는 단계;Placing a water sample in a measuring container;
    수체 샘플을 함유하는 측정용 용기에 다시마목에 속하는 해조류의 포자를 투입하는 단계;Injecting spores of algae belonging to the kelp in a measuring container containing a water sample;
    측정용 용기에 투입된 포자를 배양하는 단계; 및Culturing the spores put into the measuring container; And
    배양된 포자 중에서 발아된 포자의 발아관 생장속도를 측정하는 단계;를 포함하는 수질 독성 평가 방법.Measuring the germination tube growth rate of the spores germinated in the cultured spores; water quality toxicity evaluation method comprising a.
  2. 제 1항에 있어서, 상기 발아된 포자의 발아관 생장속도는 발아된 포자의 발아관 평균 길이로 계산되는 것을 특징으로 하는 수질 독성 평가 방법.The method of claim 1, wherein the germination tube growth rate of the germinated spores is calculated as the germination tube average length of the germinated spores.
  3. 제 2항에 있어서, 상기 발아된 포자의 발아관 평균 길이는 빛을 집광하기 위한 콘덴서(Condenser)가 구비된 현미경을 이용하여 측정되는 것을 특징으로 하는 수질 독성 평가 방법.The method of claim 2, wherein the germination tube average length of the germinated spores is measured using a microscope equipped with a condenser for condensing light.
  4. 제 3항에 있어서, 상기 발아된 포자의 발아관 평균 길이는 현미경의 콘덴서를 조절하여 배양된 포자 영상의 명도를 낮게 변환시켜 측정하는 것을 특징으로 하는 수질 독성 평가 방법.4. The method of claim 3, wherein the germination tube average length of the germinated spores is measured by changing the brightness of the cultured spore image by adjusting the condenser of the microscope.
  5. 제 1항에 있어서, 상기 측정용 용기에 수체 샘플을 넣는 단계에서의 수체 샘플은 25~45‰의 염분 농도로 조정되는 것을 특징으로 하는 수질 독성 평가 방법.The method of claim 1, wherein the water sample in the step of placing the water sample in the measuring vessel is adjusted to a salinity concentration of 25 ~ 45 ‰.
  6. 제 5항에 있어서, 상기 25~45‰의 염분 농도로 조정된 수체 샘플은 25~45‰의 염분 농도를 가진 인공 염수로 희석되어 적어도 5가지 이상의 농도로 구배화되는 것을 특징으로 하는 수질 독성 평가 방법.The water toxicity assessment according to claim 5, wherein the water sample adjusted to a salt concentration of 25 to 45 ‰ is diluted with artificial brine having a salt concentration of 25 to 45 ‰ and gradientd to at least five or more concentrations. Way.
  7. 제 1항에 있어서, 상기 측정된 용기에 투입된 포자를 배양하는 단계는 암 상태에서 10~20℃의 온도로 배양하는 것을 특징으로 하는 수질 독성 평가 방법.The method of evaluating water toxicity according to claim 1, wherein the culturing the spores introduced into the measured container is incubated at a temperature of 10 to 20 ° C in a dark state.
  8. 제 1항 내지 제 7항 중 어느 한 항에 있어서, 다시마과에 속하는 해조류는 감태(Ecklonia cava), 개다시마(Kjellmaniella crassifolia), 곰피(Ecklonia stolonifera), 미역(Undaria pinnatifida), 및 참다시마(Laminaria. japonica)로 구성된 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 수질 독성 평가 방법.The method according to any one of claims 1 to 7, wherein the seaweeds belonging to the kelp family are Ecklonia cava , Kjellmaniella crassifolia , Ecklonia stolonifera , Undaria pinnatifida , and Laminaria. japonica ) water quality toxicity evaluation method, characterized in that any one selected from the group consisting of.
  9. 제 1항 내지 제 7항 중 어느 한 항에 있어서, 상기 수체 샘플은 카드뮴(Cd; Cadmium), 코발트(Co; Cobalt), 크롬(Cr; Chromium), 구리(Cu; Copper), 수은(Hg; Mercury), 니켈(Ni; Nickel), 납(Pb; Lead), 아연(Zn; Zinc), 아세톤(acetone), 클로로포름(Chloroform), 디메틸황산화물(DMSO; Dimethyl sulfoxide), 에틸알코올(Ethyl alcohol), 포르말린 (formaldehyde), 메틸알코올(methanol), 및 페놀(Phenol)로 구성된 군으로부터 선택되는 하나 이상의 독성 물질을 포함하는 것을 특징으로 하는 수질 독성 평가 방법.The water sample according to any one of claims 1 to 7, wherein the water sample comprises cadmium (Cd; Cadmium), cobalt (Co; Cobalt), chromium (Cr; Chromium), copper (Cu; Copper), mercury (Hg; Mercury, Nickel, Pb, Lead, Zinc, Acetone, Acetone, Chloroform, Dimethyl sulfoxide, Ethyl alcohol And at least one toxic substance selected from the group consisting of formalin (formaldehyde), methyl alcohol (methanol), and phenol (Phenol).
PCT/KR2010/004682 2009-08-19 2010-07-19 Method for evaluating water quality and toxicity using the growth rate of germ tubes of spores of algae belonging to the order laminariales WO2011021779A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090076637A KR101084761B1 (en) 2009-08-19 2009-08-19 Method for evaluating water toxicity using the germ tube growth rate of the spores of marine algae which belongs to Laminariales
KR10-2009-0076637 2009-08-19

Publications (2)

Publication Number Publication Date
WO2011021779A2 true WO2011021779A2 (en) 2011-02-24
WO2011021779A3 WO2011021779A3 (en) 2011-04-21

Family

ID=43607425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004682 WO2011021779A2 (en) 2009-08-19 2010-07-19 Method for evaluating water quality and toxicity using the growth rate of germ tubes of spores of algae belonging to the order laminariales

Country Status (2)

Country Link
KR (1) KR101084761B1 (en)
WO (1) WO2011021779A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018114938A1 (en) 2016-12-21 2018-06-28 Dsm Ip Assets B.V. Lipolytic enzyme variants
WO2018114940A1 (en) 2016-12-21 2018-06-28 Dsm Ip Assets B.V. Lipolytic enzyme variants
WO2018114912A1 (en) 2016-12-21 2018-06-28 Dsm Ip Assets B.V. Lipolytic enzyme variants
WO2018114941A1 (en) 2016-12-21 2018-06-28 Dsm Ip Assets B.V. Lipolytic enzyme variants
US10682245B2 (en) 2015-11-12 2020-06-16 The Provost, Fellows, Foundation Scholars, & The Other Members Of Board, Of The College Of The Holy & Undiv. Trinity Of Queen Elizabeth, Near Dublin Implantable biocompatible expander suitable for treatment of constrictions of body lumen
US11484398B2 (en) 2019-11-22 2022-11-01 ProVerum Limited Implant delivery methods
US11602621B2 (en) 2019-11-22 2023-03-14 ProVerum Limited Device for controllably deploying expandable implants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040175782A1 (en) * 2003-03-06 2004-09-09 Tethys Research Llc Biotransformation of compounds using non-prokaryotic microalgae
KR100653100B1 (en) * 2005-10-27 2006-12-05 인천대학교 산학협력단 A method for evaluating toxicity in water using ulva
KR100653101B1 (en) * 2005-10-27 2006-12-05 인천대학교 산학협력단 A method for evaluating toxicity in water using ulva

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040175782A1 (en) * 2003-03-06 2004-09-09 Tethys Research Llc Biotransformation of compounds using non-prokaryotic microalgae
KR100653100B1 (en) * 2005-10-27 2006-12-05 인천대학교 산학협력단 A method for evaluating toxicity in water using ulva
KR100653101B1 (en) * 2005-10-27 2006-12-05 인천대학교 산학협력단 A method for evaluating toxicity in water using ulva

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10682245B2 (en) 2015-11-12 2020-06-16 The Provost, Fellows, Foundation Scholars, & The Other Members Of Board, Of The College Of The Holy & Undiv. Trinity Of Queen Elizabeth, Near Dublin Implantable biocompatible expander suitable for treatment of constrictions of body lumen
US10881539B2 (en) 2015-11-12 2021-01-05 The Provost, Fellows, Foundation Scholars & The Other Members Of Board, Of The College Of The Holy & Undiv. Trinity Of Queen Elizabeth, Near Dublin Implantable biocompatible expander suitable for treatment of constrictions of body lumen
WO2018114938A1 (en) 2016-12-21 2018-06-28 Dsm Ip Assets B.V. Lipolytic enzyme variants
WO2018114940A1 (en) 2016-12-21 2018-06-28 Dsm Ip Assets B.V. Lipolytic enzyme variants
WO2018114912A1 (en) 2016-12-21 2018-06-28 Dsm Ip Assets B.V. Lipolytic enzyme variants
WO2018114941A1 (en) 2016-12-21 2018-06-28 Dsm Ip Assets B.V. Lipolytic enzyme variants
US11484398B2 (en) 2019-11-22 2022-11-01 ProVerum Limited Implant delivery methods
US11602621B2 (en) 2019-11-22 2023-03-14 ProVerum Limited Device for controllably deploying expandable implants

Also Published As

Publication number Publication date
WO2011021779A3 (en) 2011-04-21
KR101084761B1 (en) 2011-11-22
KR20110019066A (en) 2011-02-25

Similar Documents

Publication Publication Date Title
WO2011021779A2 (en) Method for evaluating water quality and toxicity using the growth rate of germ tubes of spores of algae belonging to the order laminariales
Selvin et al. Sponge-associated marine bacteria as indicators of heavy metal pollution
KR101136039B1 (en) Method for evaluating aquatic ecotoxicity using the growth area change rate or fluorescent property of Lemna paucicostata
Gabutti et al. Comparative survival of faecal and human contaminants and use of Staphylococcus aureus as an effective indicator of human pollution
WO2011021778A2 (en) Method for evaluating water quality and toxicity using the germination rate of spores of algae belonging to the order laminariales, and kit for evaluating water quality and toxicity
Zare et al. Resazurin reduction assay, a useful tool for assessment of heavy metal toxicity in acidic conditions
KR101974891B1 (en) An Evaluation Method for Ecotoxicity Test Using Algae
KR101037960B1 (en) A kit and a method for evaluating toxicity using spore release by the green alga ulva
KR101523638B1 (en) Method for evaluating aquatic ecotoxicity using the growth area change rate of Lemna paucicostata
Jugnia et al. Short-term variations in the abundance and cell volume of bacterioplankton in an artificial tropical lake
KR100653100B1 (en) A method for evaluating toxicity in water using ulva
Tong et al. Use of duckweed (Lemna minor L.) growth inhibition test to evaluate the toxicity of acrylonitrile, sulphocyanic sodium and acetonitrile in China
KR100653101B1 (en) A method for evaluating toxicity in water using ulva
WO2017131281A1 (en) Method for evaluating water toxicity using root abscission of spirodela polyrhiza and plants
Abu et al. Bacteriological analysis of water quality in a recreational park pond in Rivers State, Nigeria
Cartier Esham et al. Evaluation of two techniques: mFC and mTEC for determining distributions of fecal pollution in small, North Carolina tidal creeks
Losso et al. Sulfide as a confounding factor in toxicity tests with the sea urchin Paracentrotus lividus: Comparisons with chemical analysis data
RU2440418C2 (en) Method to determine toxicity of wastes and soils
Lewis et al. The relevance of rooted vascular plants as indicators of estuarine sediment quality
Selvakumar et al. Microorganisms die-off rates in urban stormwater runoff
Geldreich Microbiology of water
Oyedum A Survey of Bacteriological Quality of Boreholes Water from Various Locations in Bosso Town, North Central, Nigeria
Kumar Evaluation of β-glucuronidase assay for the detection of Escherichia coli from environmental waters
Ward et al. Toxicity testing of municipal solid waste leachates with CerioFAST.
Fowoyo et al. Bacteriological Profiling and Antibiotic Resistance of Bacteria Isolated From River Niger Lokoja Tributary, Nigeria

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10810087

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10810087

Country of ref document: EP

Kind code of ref document: A2