WO2011021341A1 - Electromechanical converter, microphone, and method for manufacturing electromechanical converter - Google Patents

Electromechanical converter, microphone, and method for manufacturing electromechanical converter Download PDF

Info

Publication number
WO2011021341A1
WO2011021341A1 PCT/JP2010/004200 JP2010004200W WO2011021341A1 WO 2011021341 A1 WO2011021341 A1 WO 2011021341A1 JP 2010004200 W JP2010004200 W JP 2010004200W WO 2011021341 A1 WO2011021341 A1 WO 2011021341A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
film
region
electromechanical transducer
openings
Prior art date
Application number
PCT/JP2010/004200
Other languages
French (fr)
Japanese (ja)
Inventor
冨田佳宏
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011021341A1 publication Critical patent/WO2011021341A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction

Definitions

  • the present invention relates to an electromechanical transducer, in particular, a small microphone and a manufacturing method thereof.
  • electromechanical converters that detect or output various information such as heat, sound, pressure, acceleration, etc., are now installed inside. Therefore, there is a demand for miniaturization, high performance, and high stability.
  • a small microphone is also one of electromechanical converters that convert sound pressure into an electric signal, and both miniaturization, high sensitivity, high S / N ratio, and high stability are required.
  • FIG. 8A is a top view of a conventional MEMS microphone
  • FIGS. 8B and 8C are cross-sectional views taken along the line BB shown in FIG. 8A.
  • the vibrating membrane 102 is formed by a frame body 101 provided with an opening penetrating a silicon substrate. Is supported and fixed on the outer periphery thereof.
  • the fixed film 103 is arranged with a predetermined distance from the vibration film 102 by a spacer 104, and the fixed film 103 is provided with a sound hole 105 for transmitting sound pressure to the vibration film 102.
  • the vibration film 102 and the fixed film 103 are conductive and constitute a capacitor separated by a predetermined interval, and an electric field is applied between the vibration film 102 and the fixed film 103.
  • an electric field is applied between the vibration film 102 and the fixed film 103.
  • FIG. 8C when the vibration film 102 vibrates due to the sound pressure transmitted from the sound hole 105, an electric charge is induced between the vibration film 102 and the fixed film 103, and electromechanical conversion is performed.
  • the sound pressure transmitted from the sound hole 105 is output as an electrical signal.
  • Patent Documents 1 and 2 as prior art documents relating to such a microphone.
  • Patent Document 2 is an example in which the vibrating membrane 102 has a cantilever structure.
  • a vibration membrane of a conventional electromechanical transducer includes a first vibration region that vibrates due to sound pressure, and a second vibration region that is disposed on the outer periphery of the first vibration region. If the frame is made smaller and the vibration membrane is made smaller in order to reduce the size of the electromechanical transducer, the distance of the second vibration region from the first vibration region to the frame is supported and fixed to the frame by the second vibration region. Therefore, the displacement of the vibration in the first vibration region when receiving the sound pressure is reduced, the induced charge is also reduced, and the sensitivity is lowered.
  • the tension applied to the diaphragm by the frame is reduced, the diaphragm is thinned to reduce the bending rigidity and reduce the weight, and between the diaphragm and the fixed membrane.
  • the method of raising the electric field to be applied is taken.
  • the present invention aims to achieve both miniaturization and high performance of an electromechanical transducer, which has been a problem with conventional electromechanical transducers.
  • an electromechanical transducer has a first surface and a second surface opposite to the first surface, and includes a first vibration region and the first surface.
  • a vibration film having a second vibration region disposed around one vibration region, a fixed film disposed to face the first surface of the vibration film, and the second surface of the vibration film.
  • a reinforcing part disposed in the first vibration region, and the vibration of the vibration film is converted into an electric signal by a capacitor constituted by the vibration film and the fixed film.
  • the bending rigidity of the first vibration region can be increased by forming the reinforcing portion in the first vibration region, it is possible to suppress the bending of the first vibration region due to an applied voltage or an external force. Therefore, even if the film thickness of the vibrating membrane is reduced or the tension is lowered in order to increase the vibration displacement of the first vibration region, the bending of the first vibration region is suppressed, and the second vibration region is suppressed by sound pressure or the like. It can be easily bent.
  • the first vibration region suppresses the deflection and suppresses the proximity and contact with the fixed film, and the second vibration region can be easily bent to increase the displacement of the entire first vibration region due to the sound pressure or the like,
  • the vibration membrane can be prevented from locally contacting or approaching the fixed membrane, so that both the miniaturization and high performance of the electromechanical transducer can be achieved.
  • the reinforcing portion may be formed in a mesh shape having a plurality of openings, and the first vibration region may have a third vibration region for each of the openings.
  • each of the plurality of openings has the third vibration region, not only the entire first vibration region but also each third vibration region. Vibration can also be obtained, and the sensitivity of the electromechanical transducer can be improved. Further, by reducing the thickness of the vibration film constituting the third vibration region or decreasing the tension, the displacement of each third vibration region can be increased, and the sensitivity can be further improved.
  • the reinforcing portion may be formed integrally with the vibrating membrane.
  • the bending rigidity of the first vibration region can be further increased, and the bending of the first vibration region can be further suppressed.
  • the reinforcing portion may be formed as a mesh-shaped recess from the first surface of the vibrating membrane.
  • the reinforcing portion can be reduced in weight and the bending rigidity of the first vibration region can be increased, so that the bending of the first vibration region can be further suppressed.
  • the second vibration area may be bent and arranged at a position farther from the fixed film than the first vibration area.
  • the signal charge distributed between the second vibration region and the fixed film can be reduced, and the vibration in the first vibration region can be efficiently converted into an electric signal.
  • each of the openings may have a hexagonal shape.
  • each of the openings may have a circular shape.
  • the openings may be arranged such that the adjacent openings are in a staggered arrangement.
  • the opening may be arranged such that the adjacent opening has a honeycomb shape.
  • the opening may be formed so as to increase in shape as it is arranged from the center of the first vibration region toward the outer periphery.
  • an electric charge may be injected into at least one of the vibration film and the fixed film, and an electret capacitor may be configured by the vibration film and the fixed film.
  • the circuit configuration for applying an electric field between the vibrating membrane and the fixed membrane can be omitted, so that the electromechanical transducer can be further downsized.
  • the present invention can be realized not only as an electromechanical converter but also as a microphone having the above-described configuration that converts vibration of the vibrating membrane due to sound pressure into an electric signal.
  • a method of manufacturing an electromechanical converter includes a step of forming a mesh-like groove on a surface of a substrate, and the vibration film on the surface of the substrate and the groove. And a step of integrally forming a reinforcing portion that suppresses the bending of the first vibration region of the vibration film.
  • the mesh-shaped reinforcing portion can be easily formed integrally with the vibration membrane in the first vibration region, and an electromechanical transducer having high bending rigidity in the first vibration region can be easily formed. it can.
  • the thickness of the vibration film and the reinforcing portion formed on the surface of the substrate, the side surface and the bottom surface of the groove portion may be uniform.
  • FIG. 1 is a perspective sectional view of an electromechanical transducer according to a first embodiment of the present invention.
  • FIG. 2 is a top view of the electromechanical transducer according to the first embodiment of the present invention.
  • FIG. 3A is a cross-sectional view of an electromechanical transducer comparing the present invention with a conventional example.
  • FIG. 3B is a cross-sectional view of an electromechanical transducer comparing the present invention with a conventional example.
  • FIG. 4A is a cross-sectional view showing the manufacturing process of the electromechanical transducer according to the first embodiment of the present invention.
  • FIG. 4B is a cross-sectional view showing the manufacturing process of the electromechanical transducer according to the first embodiment of the present invention.
  • FIG. 4C is a cross-sectional view showing the manufacturing process of the electromechanical transducer according to the first embodiment of the present invention.
  • FIG. 4D is a cross-sectional view illustrating the manufacturing process of the electromechanical transducer according to the first embodiment of the invention.
  • FIG. 5A is a cross-sectional view illustrating the manufacturing process of the electromechanical transducer according to the second embodiment of the present invention.
  • FIG. 5B is a cross-sectional view illustrating the manufacturing process of the electromechanical transducer according to the second embodiment of the present invention.
  • FIG. 6 is a top view of an electromechanical transducer according to a modification of the present invention.
  • FIG. 7 is a top view of an electromechanical transducer according to another modification of the present invention.
  • FIG. 8A is a top view of an electromechanical transducer according to the prior art.
  • FIG. 8B is a cross-sectional view of an electromechanical transducer according to the prior art.
  • FIG. 8C is a cross-sectional view of an electromechanical transducer according to the prior art.
  • the configuration of the electromechanical converter according to the present invention will be described with reference to an example of a microphone.
  • the present invention can be applied to heat and pressure sensor devices in general and electrostatic actuators as electromechanical transducers having movable (vibrating) membranes having the same configuration, but this is for illustrative purposes only. It is not intended to be limited to
  • FIG. 1 is a perspective sectional view of the microphone 100 of the present embodiment
  • FIG. 2 is a top view thereof.
  • the display of the fixed membrane 3 is omitted inside the frame body 1 in the top view of the microphone 100 of FIG.
  • the microphone 100 includes a frame body 1, a vibration film 2, a spacer 4, a fixed film 3, a mesh frame body 8 as a reinforcing portion, and an extraction electrode 10.
  • the vibration film 2 is made of polysilicon, and has a first vibration region 6 that vibrates due to sound pressure, and a second vibration region 7 disposed around the first vibration region 6. Further, the first vibration region 6 includes a mesh frame 8 as a reinforcing portion for preventing the first vibration region 6 from bending over the entire back surface.
  • the mesh frame 8 is made of polysilicon formed in a mesh shape having a plurality of openings 9, and the first vibration regions 6 arranged at the positions of the openings 9 respectively form the minute diaphragms 2a. Yes.
  • the minute diaphragm 2a corresponds to the third vibration region in the present invention, and the front and back surfaces of the vibration film 2 correspond to the first surface and the second surface in the present invention, respectively.
  • FIG. 2 shows an example of a honeycomb structure having a particularly strong strength, that is, a regular hexagonal micro-diaphragm 2a arranged in a honeycomb shape without a gap. Note that such a honeycomb structure is not limited to a regular hexagon, and other polygonal micro diaphragms may be arranged without gaps.
  • the vibration membrane 2 is supported in the second vibration region by a frame body 1 that forms the outer shape of the microphone 100.
  • the frame 1 is made of a silicon substrate having a rhombus outer peripheral shape, and the inner peripheral shape of the frame 1 is formed in a hexagonal shape through the front and back surfaces of the silicon substrate.
  • the fixed film 3 is disposed on the surface of the vibration film 2 so as to be opposed to each other with a predetermined distance by a spacer 4.
  • the fixed film 3 includes a plurality of sound holes 5, and the sound pressure from the outside is transmitted to the vibration film 2 through the sound holes 5, and the vibration film 2 vibrates according to the sound pressure.
  • the vibration film 2 and the fixed film 3 have conductivity, and a predetermined electric field is applied between the vibration film 2 and the fixed film 3, and the vibration film 2 vibrates due to sound pressure. As a result, an electric charge according to the displacement of the vibration film 2 is induced between the vibration film 2 and the fixed film 3 constituting the capacitor with a predetermined interval.
  • an electric field can be generated between the vibrating membrane 2 and the fixed membrane 3 without applying an external voltage.
  • an extraction electrode 10 for taking out an electric signal is formed at a position corresponding to a diamond-shaped acute margin of the frame 1 on the surface of the fixed film 3.
  • the extraction electrodes 10 on both sides are electrically connected to the vibration film 2 and the fixed film 3, respectively.
  • FIG. 3A is a cross-sectional view taken along the line AA in FIG. 2 and is a cross-sectional view showing the microphone according to the present embodiment.
  • FIG. 8C is a cross-sectional view showing a microphone according to a conventional example.
  • FIG. 3B is an enlarged cross-sectional view in the vicinity of a portion P in FIG. 3A.
  • the vibration film 102 is formed of a thin film having a uniform thickness. Therefore, the vibration film 102 is attracted to the fixed film 103 by the electric field applied between the vibration film 102 and the fixed film 103 according to the sound pressure from the sound hole 105, and the center of the vibration film 102 becomes closer to the fixed film 103. It will bend to approach. When the vibration film 102 is extremely bent, the vibration film 102 is locally in contact with the fixed film 103 and vibration is suppressed, and sensitivity as a microphone is not obtained.
  • the back surface of the first vibration region 6 is supported by the mesh frame 8
  • Deflection is suppressed.
  • the first vibration region 6 is supported and fixed to the frame body 1 via the second vibration region 7, and when the sound pressure is applied by making the vibration film 2 thin and making it easy to bend.
  • the displacement of the first vibration region 6 is easily generated.
  • the first vibrating region 6 is reinforced by the mesh frame body 8 and thus does not generate a large deflection as in the conventional microphone. Therefore, local contact between the vibrating membrane 2 and the fixed membrane 3 can be suppressed.
  • the vibrating membrane 2 is made thin and easily bent, the second vibrating region 7 is greatly displaced, and the first vibrating region 6 is largely displaced in a state substantially parallel to the fixed membrane 3 and is locally localized. It becomes possible to suppress an unnecessary contact.
  • the center of the vibration film 102 is closer to the fixed film 103, and thus the sensitivity of the vibration of the center vibration film 102 is higher. Therefore, the center of the vibration film 102 effectively contributes to the sensitivity of the condenser microphone, and the outer peripheral portion of the vibration film 102 contributes less to the sensitivity of the condenser microphone.
  • the entire first vibration region 6 vibrates with respect to the sound pressure from the sound hole 5 in a translational manner. The vibration of the entire 6 can be effectively extracted as a signal of the condenser microphone.
  • each micro diaphragm 2a arranged in each opening 9 can be easily vibrated by sound pressure. Therefore, in addition to the displacement due to the sound pressure of the entire first vibration region 6, each micro diaphragm 2a is also displaced by the sound pressure as shown in FIG. 3B, so that the sensitivity as a microphone can be further increased.
  • the individual openings 9 of the microphone according to the present embodiment are much smaller than the openings of the microphone frame 1 according to the conventional example, even if the microdiaphragm 2a is bent, it contacts the fixed film 3. It can be controlled not to bend as much.
  • the microphone manufacturing method according to the present embodiment will be described with reference to FIGS. 4A to 4D.
  • a silicon substrate is prepared as the support substrate 11 constituting the frame body 1, and the groove portion 15 corresponding to the shape of the mesh frame body 8 is formed on the surface of the support substrate 11.
  • a barrier film 12 is formed so as to cover the entire surface of the support substrate 11 including the bottom and side surfaces.
  • the barrier film 12 is formed of a silicon nitride film.
  • a polysilicon film is formed as the vibration film 2.
  • the polysilicon film is formed, for example, by CVD (Chemical Vapor Deposition) so as to cover the barrier film 12 and fill the groove 15 so that the mesh frame 8 and the vibration film 2 are integrated. To form.
  • an insulating film is formed using BPSG (Boro-Phospho Silicate Glass), for example, as the spacer 4 so as to cover the vibration film 2. Further, a polysilicon film is formed thereon as the fixed film 3. Then, a plurality of sound holes 5 penetrating the polysilicon film are formed by etching and removing a part of the polysilicon film to be the fixed film 3 into a hole shape.
  • BPSG Bi-Phospho Silicate Glass
  • the insulating film to be the spacer 4 is removed through the sound hole 5 by sacrificial layer etching, leaving a part of the outer periphery, thereby forming the frame-shaped spacer 4. Accordingly, the vibration film 2 and the fixed film 3 are arranged to face each other at a predetermined interval.
  • the frame 1 is provided by etching the support substrate 11 from the back surface to the barrier film 12 while leaving a part of the outer periphery. Further, the barrier film 12 is also removed by etching, and the mesh frame 8 is completed on the back surface of the first vibration region 6.
  • the vibrating membrane 2 and the mesh frame 8 are formed of the same material, but effects unique to the present invention can be obtained even when the members are separate members.
  • the barrier film 12 is provided to secure a selection ratio when the support substrate 11 is etched from the back surface in consideration of the difference in etching rate. If the support substrate 11 and the vibration film 2 are a combination of materials capable of providing an etching selectivity, the barrier film 12 need not be provided.
  • the second embodiment is different from the first embodiment in that in the microphone manufacturing method, the entire groove formed in the support substrate is not filled with polysilicon, and the surface of the support substrate, the side surface of the groove, The polysilicon film is formed so that the thickness of the polysilicon film is uniform on the bottom surface. That is, the reinforcing portion is formed as a mesh-shaped concave portion from the surface of the vibration film.
  • FIG. 5A is a cross-sectional view showing a part of the process of manufacturing the microphone according to the second embodiment of the present invention
  • FIG. 5B is a cross-sectional view showing the structure of the completed microphone.
  • a silicon substrate is prepared as the support substrate 11 constituting the frame 1. Then, a groove 25 corresponding to the shape of the mesh frame 28 and the second vibration region 27 is formed on the surface of the support substrate 11. Further, the barrier film 12 is formed so as to cover the entire surface of the support substrate 11 including the bottom surface and side surfaces of the groove 25.
  • the polysilicon film of the mesh frame 8 is formed so as to fill the groove 15 by the CVD method, whereas in this embodiment, the polysilicon film is shown in FIG. 5A.
  • the polysilicon film of the vibration film 22 is formed so as not to completely fill the groove 25.
  • a silicon nitride film is formed as the barrier film 12 so as to cover the surface of the support substrate 11 in which the groove 25 is formed.
  • the thickness of the polysilicon formed on the side surface and the bottom surface of the groove 25 is made uniform, The mesh frame 28 and the vibration film 22 are integrally formed.
  • an insulating film is formed as the spacer 4 by using, for example, BPSG as a constituent material so as to cover the vibration film 22. Further, a polysilicon film is formed thereon as the fixed film 3. Then, a plurality of sound holes 5 penetrating the polysilicon film are formed by etching and removing a part of the polysilicon film to be the fixed film 3 into a hole shape.
  • the insulating film serving as the spacer 4 is removed by sacrificial layer etching through the sound hole 5 while leaving a part of the outer periphery, thereby forming the frame-shaped spacer 4.
  • the vibration film 22 and the fixed film 3 are arranged to face each other at a predetermined interval.
  • the frame 1 is provided by etching the support substrate 11 from the back surface to the barrier film 12 while leaving a part of the outer periphery, and the barrier film 12 is also etched away, and an opening 29 is formed on the back surface of the first vibration region 26.
  • a mesh-like frame body 28 having the above is completed.
  • the vibration film 22 and the mesh frame 28 have a mesh-shaped recess 30 from the surface of the vibration film 22, and the mesh-shaped recess 30 causes the first vibration region 26 to be formed.
  • the structure is separated into a plurality of minute diaphragms 22a.
  • the mesh frame 28 can be formed of a thin film having the same film thickness as the vibration film 22, it is possible to suppress a decrease in sensitivity of the microphone due to an increase in the weight of the first vibration region 26 due to the mesh frame 28.
  • the distance between the vibration film 22 and the fixed film 3 in the second vibration region 27 is changed to the first. It can be separated from the vibration region 26.
  • the second vibration region 27, which has a small displacement even when subjected to sound pressure, has a small contribution to charge generation. This is also distributed to the capacity of the second vibration region 27 and the sensitivity is lowered. Accordingly, by separating the vibration film 22 and the fixed film 3 in the second vibration region 27, the signal charge distributed to the second vibration region 27 can be reduced, and a decrease in sensitivity can be suppressed.
  • the vibration film 22 in the part constituting the mesh frame 28 is moved away from the fixed film 3 rather than the vibration film 22 in the part constituting the micro diaphragm 22 a in the first vibration region 26.
  • the signal charge distributed between the mesh frame 28 and the fixed film 3 is also reduced, so that the signal charge in the micro diaphragm 22a that vibrates due to the sound pressure from the sound hole 5 can be effectively used. It can be taken out.
  • the microphone that is the electromechanical transducer according to the present modification has a mesh shape formed on the back surface of the first vibration region 36 with respect to the configuration of FIG. 2 illustrating the first embodiment.
  • the difference is that the sizes of the plurality of openings 39 of the frame 38 are designed to be different.
  • the response characteristic with respect to the sound pressure for each micro diaphragm 32a can be changed.
  • Frequency response characteristics are important for a microphone, but it is possible to control and design the frequency response of the entire microphone at a wide frequency by configuring the microphone with a micro diaphragm 32a formed in a plurality of sizes and having a plurality of response characteristics. Is possible.
  • the entire first vibration region 36 and the fixed film 3 The displacement of the vibration due to the sound pressure can be obtained efficiently while ensuring a substantially uniform distance. That is, although the first vibration region 36 of the vibration film 32 is reinforced by the mesh frame 38, a slight deflection occurs, and the center is closer to the fixed film 3.
  • the size of the micro diaphragm 32a in the vicinity of the center of the first vibration region 36 is reduced to suppress the vibration displacement of each micro diaphragm 32a in the vicinity of the center, and the size of the micro diaphragm 32a is made closer to the vicinity of the second vibration region 37.
  • the displacement is increased so that the displacement of the minute diaphragm 32a is increased. Therefore, it is possible to obtain a vibration displacement by sound pressure efficiently while ensuring a substantially uniform distance from the fixed film 3 in the entire first vibration region 36.
  • the microphone that is the electromechanical transducer according to the present modification has a mesh shape formed on the back surface of the first vibration region 46 with respect to the configuration of FIG. 2 illustrating the first embodiment.
  • the plurality of openings 49 of the frame body 48 are different in that each shape is circular.
  • the shapes of the opening 49 and the minute diaphragm 42a are not limited to hexagons, and the same effect can be obtained even in a circular shape.
  • a shape closer to a perfect circle is preferable to a flat shape having a different vertical and horizontal size.
  • the shape of the outer periphery of the second vibration region 47 that is, the shape of the outer periphery of the vibration film 42 is not limited to a hexagon, and may be changed to other shapes.
  • the present invention is not limited to the embodiment described above, various improvements without departing from the gist of the present invention may be carried out deformation.
  • the vibration film and the fixed film are described as the vibration film and the fixed film, but the effects of the present invention are not limited to this configuration.
  • the same effect can be obtained even if the vibration film is a multilayer film.
  • an insulating film may be formed on both sides of polysilicon as the vibration film, or a charge holding layer for holding injected charge in the case of the electret method may be formed.
  • the structure of the reinforcing portion is not limited to the mesh frame having an opening, but may be a plate shape having no opening.
  • the mesh frame body has a honeycomb structure in which fine diaphragms having regular hexagonal openings are arranged in a honeycomb shape without gaps.
  • a honeycomb structure is not limited to a regular hexagonal shape.
  • circular or other polygonal micro diaphragms may be arranged without gaps.
  • constituent materials such as the vibration film, the fixed film, and the spacer are not limited to the above-described constituent materials, and any constituent material other than polysilicon and BPSG may be used.
  • the film forming method is not limited to the CVD method, and any method may be used.
  • the etching method may be any method such as dry etching or wet etching.
  • the microphone that converts the vibration of the diaphragm corresponding to the sound pressure into an electric signal has been described as an example. It may be used in an electromechanical transducer for sensing or outputting information.
  • the present invention suppresses the proximity and contact with the fixed film by suppressing the bending of the first vibration region of the vibration film by the mesh frame.
  • the second vibration region supporting the first vibration region easy to bend, the displacement of the entire first vibration region due to sound pressure or the like is increased. Therefore, it is possible to achieve both miniaturization and high performance of the electromechanical transducer that senses or outputs various information such as heat, sound, pressure, and acceleration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Pressure Sensors (AREA)

Abstract

A microphone (100) is provided with: a vibrating membrane (2), which has a first surface and a second surface that is on the reverse side of the first surface, and which has a first vibrating region (6) and a second vibrating region (7) that is disposed at the periphery of the first vibrating region (6); a fixed membrane (3) disposed to face the first surface of the vibrating membrane (2); and a netlike frame body (8), which is disposed, as a reinforcing section, in the first vibrating region (6) on the second surface of the vibrating membrane. Vibration of the vibrating membrane (2) is converted into electric signals by means of a capacitor composed of the vibrating membrane (2) and the fixed membrane (3).

Description

電気機械変換器、マイクロフォンおよび電気機械変換器の製造方法Electromechanical transducer, microphone, and method of manufacturing electromechanical transducer
 本発明は、電気機械変換器、特に小型マイクロフォンとその製造方法に関するものである。 The present invention relates to an electromechanical transducer, in particular, a small microphone and a manufacturing method thereof.
 携帯電話や携帯端末などのパーソナル電子機器の機能の多様化に伴って、その内部に熱や音、圧力、加速度など、様々な情報を感知または出力する電気機械変換器が搭載されるようになり、その小型化、高性能化、高安定化が求められている。小型マイクロフォンも、音圧を電気信号に変換する電気機械変換器のひとつであり、その小型化と高感度、高S/N比、高安定性の両立が求められている。 With the diversification of functions of personal electronic devices such as mobile phones and mobile terminals, electromechanical converters that detect or output various information such as heat, sound, pressure, acceleration, etc., are now installed inside. Therefore, there is a demand for miniaturization, high performance, and high stability. A small microphone is also one of electromechanical converters that convert sound pressure into an electric signal, and both miniaturization, high sensitivity, high S / N ratio, and high stability are required.
 近年、小型マイクロフォンなどにMEMS(Micro Electro Mechanical Systems、微小電気機械素子)技術を用いて、小型・軽量化を図った電気機械変換器が登場しており、その構成について図8A~図8Cを参照しながら以下に説明する。 In recent years, electromechanical transducers that have been reduced in size and weight by using MEMS (Micro Electro Mechanical Systems, micro electromechanical element) technology for small microphones and the like have appeared, and refer to FIGS. 8A to 8C for their configurations. However, it will be described below.
 図8Aは、従来のMEMSマイクロフォンの上面図、図8Bおよび図8Cは図8Aに示すBB線における矢視断面図を表し、シリコン基板に貫通する開口部を設けた枠体101によって、振動膜102がその外周において支持固定されている。また、固定膜103はスペーサー104によって振動膜102に対して所定の間隔を隔てて配置され、固定膜103には音圧を振動膜102に伝達するための音孔105が設けられている。 FIG. 8A is a top view of a conventional MEMS microphone, and FIGS. 8B and 8C are cross-sectional views taken along the line BB shown in FIG. 8A. The vibrating membrane 102 is formed by a frame body 101 provided with an opening penetrating a silicon substrate. Is supported and fixed on the outer periphery thereof. The fixed film 103 is arranged with a predetermined distance from the vibration film 102 by a spacer 104, and the fixed film 103 is provided with a sound hole 105 for transmitting sound pressure to the vibration film 102.
 振動膜102および固定膜103は導電性を有し、所定の間隔で隔てられたコンデンサを構成しており、振動膜102と固定膜103との間には電界が印加されている。この電界の中で、図8Cに示すように、音孔105から伝達された音圧によって振動膜102が振動すると、振動膜102と固定膜103との間に電荷が誘起され、電気機械変換が行われて、音孔105から伝達された音圧は電気信号として出力される。 The vibration film 102 and the fixed film 103 are conductive and constitute a capacitor separated by a predetermined interval, and an electric field is applied between the vibration film 102 and the fixed film 103. In this electric field, as shown in FIG. 8C, when the vibration film 102 vibrates due to the sound pressure transmitted from the sound hole 105, an electric charge is induced between the vibration film 102 and the fixed film 103, and electromechanical conversion is performed. The sound pressure transmitted from the sound hole 105 is output as an electrical signal.
 近年では、微細な加工が可能なMEMS技術を用いることで、携帯電話などの小型化が強く求められている用途に対応するように、マイクロフォンの小型化、軽量化を図っている。 In recent years, the use of MEMS technology capable of fine processing has been attempted to reduce the size and weight of the microphone so that it can be used in applications where downsizing of mobile phones and the like is strongly demanded.
 このようなマイクロフォンに関する先行技術文献として、例えば下記特許文献1、2がある。下記特許文献2は振動膜102をカンチレバー構造とした例である。 For example, there are the following Patent Documents 1 and 2 as prior art documents relating to such a microphone. Patent Document 2 below is an example in which the vibrating membrane 102 has a cantilever structure.
特表2005-086535号公報JP 2005-086535 Gazette 特表2001-518246号公報JP-T-2001-518246
 上記従来例において、マイクロフォンの小型化と高性能化には相反する関係があり、その両立が困難であるという問題があった。 In the above conventional example, there is a conflicting relationship between miniaturization and high performance of the microphone, and there is a problem that it is difficult to achieve both.
 具体的には、従来の電気機械変換器の振動膜は、音圧により振動する第1振動領域と、第1振動領域の外周に配置された第2振動領域を備え、第1振動領域がその第2振動領域によって枠体に支持固定されており、電気機械変換器を小型化するために枠体を小さくし振動膜を小さくすると、第1振動領域から枠体までの第2振動領域の距離が短くなるため、音圧を受けた時の第1振動領域の振動の変位が小さくなってしまい、誘起される電荷も小さくなり感度が低下してしまう。 Specifically, a vibration membrane of a conventional electromechanical transducer includes a first vibration region that vibrates due to sound pressure, and a second vibration region that is disposed on the outer periphery of the first vibration region. If the frame is made smaller and the vibration membrane is made smaller in order to reduce the size of the electromechanical transducer, the distance of the second vibration region from the first vibration region to the frame is supported and fixed to the frame by the second vibration region. Therefore, the displacement of the vibration in the first vibration region when receiving the sound pressure is reduced, the induced charge is also reduced, and the sensitivity is lowered.
 このような感度低下を極力抑えて小型化を図るためには、枠体によって振動膜に加わる張力を下げる、振動膜を薄くして曲げ剛性を下げかつ軽量化する、振動膜と固定膜間に印加する電界を上げるといった方法が取られている。 In order to minimize such sensitivity reduction and reduce the size, the tension applied to the diaphragm by the frame is reduced, the diaphragm is thinned to reduce the bending rigidity and reduce the weight, and between the diaphragm and the fixed membrane. The method of raising the electric field to be applied is taken.
 ところが、振動膜の張力低下や振動膜の薄膜化を図ると、振動膜全体が変位し易くなるため第1振動領域が撓みを生じ易くなり、印加された電界による引力で第1振動領域の撓んだ部分が局部的に固定膜に近接や接触して感度が低下するという課題が生ずる。また、印加する電界を上げることも、第1振動領域の撓みを増長させるため、感度低下の要因となっている。 However, if the tension of the vibrating membrane is reduced or the vibrating membrane is made thinner, the entire vibrating membrane is easily displaced, and the first vibrating region is likely to bend, and the first vibrating region is bent by the attractive force due to the applied electric field. There is a problem that the sensitivity is lowered due to the local portion approaching or contacting the fixing film locally. In addition, increasing the electric field to be applied also increases the bending of the first vibration region, which causes a decrease in sensitivity.
 本発明は、従来の電気機械変換器で課題であった、電気機械変換器の小型化と高性能化の両立を図ることを目的とするものである。 The present invention aims to achieve both miniaturization and high performance of an electromechanical transducer, which has been a problem with conventional electromechanical transducers.
 この課題を解決するために本発明の一形態における電気機械変換器は、第1の面と、前記第1の面の反対側の第2の面とを有し、第1振動領域と前記第1振動領域の周囲に配置された第2振動領域とを有する振動膜と、前記振動膜の前記第1の面に対向して配置された固定膜と、前記振動膜の前記第2の面における前記第1振動領域に配置された補強部とを備え、前記振動膜および前記固定膜により構成されるコンデンサにより、前記振動膜の振動を電気信号に変換する。 In order to solve this problem, an electromechanical transducer according to an embodiment of the present invention has a first surface and a second surface opposite to the first surface, and includes a first vibration region and the first surface. A vibration film having a second vibration region disposed around one vibration region, a fixed film disposed to face the first surface of the vibration film, and the second surface of the vibration film. And a reinforcing part disposed in the first vibration region, and the vibration of the vibration film is converted into an electric signal by a capacitor constituted by the vibration film and the fixed film.
 この構成によれば、第1振動領域に補強部を形成することで第1振動領域の曲げ剛性を高めることができるので、印加電圧や外力による第1振動領域の撓みを抑制することができる。したがって、第1振動領域の振動変位を大きくするために振動膜の膜厚を薄くしたり張力を下げたりしても、第1振動領域の撓みは抑制され、第2振動領域を音圧などによって撓み易くすることができる。よって、第1振動領域は撓みを抑制して固定膜との近接や接触を抑え、第2振動領域は撓み易くすることで音圧等による第1振動領域全体の変位を大きくすることができ、振動膜が局部的に固定膜に接触または近接することを防止して、電気機械変換器の小型化と高性能化を両立することができる。 According to this configuration, since the bending rigidity of the first vibration region can be increased by forming the reinforcing portion in the first vibration region, it is possible to suppress the bending of the first vibration region due to an applied voltage or an external force. Therefore, even if the film thickness of the vibrating membrane is reduced or the tension is lowered in order to increase the vibration displacement of the first vibration region, the bending of the first vibration region is suppressed, and the second vibration region is suppressed by sound pressure or the like. It can be easily bent. Therefore, the first vibration region suppresses the deflection and suppresses the proximity and contact with the fixed film, and the second vibration region can be easily bent to increase the displacement of the entire first vibration region due to the sound pressure or the like, The vibration membrane can be prevented from locally contacting or approaching the fixed membrane, so that both the miniaturization and high performance of the electromechanical transducer can be achieved.
 ここで、前記補強部は、複数の開口部を有する網目状に形成され、前記第1振動領域は、前記開口部ごとにそれぞれ第3振動領域を有するようにしてもよい。 Here, the reinforcing portion may be formed in a mesh shape having a plurality of openings, and the first vibration region may have a third vibration region for each of the openings.
 この構成によれば、補強部が開口部を有する網目状に形成され、複数の各開口部に第3振動領域を有しているので、第1振動領域全体だけでなく第3振動領域ごとの振動も得ることができ、電気機械変換器の感度を向上することができる。また、第3振動領域を構成する振動膜を薄くしたり張力を下げたりすることで、それぞれの第3振動領域の変位を大きくすることができ、より感度を向上することができる。 According to this configuration, since the reinforcing portion is formed in a mesh shape having openings, and each of the plurality of openings has the third vibration region, not only the entire first vibration region but also each third vibration region. Vibration can also be obtained, and the sensitivity of the electromechanical transducer can be improved. Further, by reducing the thickness of the vibration film constituting the third vibration region or decreasing the tension, the displacement of each third vibration region can be increased, and the sensitivity can be further improved.
 ここで、前記補強部は、前記振動膜と一体に形成されているようにしてもよい。 Here, the reinforcing portion may be formed integrally with the vibrating membrane.
 この構成によれば、第1振動領域の曲げ剛性をより高めることができ、第1振動領域の撓みをより抑制することができる。 According to this configuration, the bending rigidity of the first vibration region can be further increased, and the bending of the first vibration region can be further suppressed.
 ここで、前記補強部は、前記振動膜の前記第1の面から網目状の凹部として形成されてもよい。 Here, the reinforcing portion may be formed as a mesh-shaped recess from the first surface of the vibrating membrane.
 この構成によれば、補強部を軽量化し、かつ、第1振動領域の曲げ剛性を高くすることができるので、第1振動領域の撓みをより抑制することができる。 According to this configuration, the reinforcing portion can be reduced in weight and the bending rigidity of the first vibration region can be increased, so that the bending of the first vibration region can be further suppressed.
 ここで、前記第2振動領域は、前記第1振動領域よりも前記固定膜に対して離れた位置に屈曲して配置されているようにしてもよい。 Here, the second vibration area may be bent and arranged at a position farther from the fixed film than the first vibration area.
 この構成によれば、第2振動領域と固定膜の間に分配される信号電荷を減少して、第1振動領域の振動を効率よく電気信号に変換することができる。 According to this configuration, the signal charge distributed between the second vibration region and the fixed film can be reduced, and the vibration in the first vibration region can be efficiently converted into an electric signal.
 ここで、前記開口部は、それぞれ六角形の形状を有しているようにしてもよい。 Here, each of the openings may have a hexagonal shape.
 ここで、前記開口部は、それぞれ円形の形状を有しているようにしてもよい。 Here, each of the openings may have a circular shape.
 ここで、前記開口部は、隣接する前記開口部が千鳥配列になるように配置されているようにしてもよい。 Here, the openings may be arranged such that the adjacent openings are in a staggered arrangement.
 ここで、前記開口部は、隣接する前記開口部が蜂の巣状になるように配置されているようにしてもよい。 Here, the opening may be arranged such that the adjacent opening has a honeycomb shape.
 ここで、前記開口部は、前記第1振動領域の中心から外周に向かって配置されるほど形状が大きくなるように形成されてもよい。 Here, the opening may be formed so as to increase in shape as it is arranged from the center of the first vibration region toward the outer periphery.
 この構成によれば、開口部の形状や配列を変更することによって、電気機械変換器の周波数応答特性を広くすることが可能であり、また、第1振動領域の剛性を効率よく高めることができるので、電気機械変換器の性能をより高くすることができる。 According to this configuration, it is possible to widen the frequency response characteristics of the electromechanical transducer by changing the shape and arrangement of the openings, and it is possible to efficiently increase the rigidity of the first vibration region. Therefore, the performance of the electromechanical converter can be further increased.
 ここで、前記振動膜および前記固定膜の少なくともいずれかに電荷が注入され、前記振動膜および前記固定膜によりエレクトレットコンデンサが構成されるようにしてもよい。 Here, an electric charge may be injected into at least one of the vibration film and the fixed film, and an electret capacitor may be configured by the vibration film and the fixed film.
 この構成によれば、振動膜と固定膜の間に電界を印加するための回路構成を省略することができるので、電気機械変換器をより小型化することができる。 According to this configuration, the circuit configuration for applying an electric field between the vibrating membrane and the fixed membrane can be omitted, so that the electromechanical transducer can be further downsized.
 また、本発明は、電気機械変換器として実現できるだけでなく、音圧による前記振動膜の振動を電気信号に変換する、上記した構成を備えるマイクロフォンとして実現することもできる。 In addition, the present invention can be realized not only as an electromechanical converter but also as a microphone having the above-described configuration that converts vibration of the vibrating membrane due to sound pressure into an electric signal.
 また、この課題を解決するために本発明の一形態における電気機械変換器の製造方法は、基板の表面に網目状の溝部を形成する工程と、前記基板の表面および前記溝部に、前記振動膜および前記振動膜の前記第1振動領域の撓みを抑制する補強部を一体に形成する工程とを含む。 In order to solve this problem, a method of manufacturing an electromechanical converter according to an embodiment of the present invention includes a step of forming a mesh-like groove on a surface of a substrate, and the vibration film on the surface of the substrate and the groove. And a step of integrally forming a reinforcing portion that suppresses the bending of the first vibration region of the vibration film.
 この構成によれば、第1振動領域に網目状の補強部を振動膜と一体に容易に形成することができ、第1振動領域の曲げ剛性が高い電気機械変換器を容易に形成することができる。 According to this configuration, the mesh-shaped reinforcing portion can be easily formed integrally with the vibration membrane in the first vibration region, and an electromechanical transducer having high bending rigidity in the first vibration region can be easily formed. it can.
 ここで、前記基板の表面、前記溝部の側面および底面に形成される前記振動膜および前記補強部の厚さが均一であるようにしてもよい。 Here, the thickness of the vibration film and the reinforcing portion formed on the surface of the substrate, the side surface and the bottom surface of the groove portion may be uniform.
 この構成によれば、振動膜を均一な厚さに形成し、かつ、補強部を軽量化して、第1振動領域の曲げ剛性が高い電気機械変換器を容易に形成することができる。 According to this configuration, it is possible to easily form an electromechanical transducer in which the vibration film is formed to have a uniform thickness and the reinforcing portion is lightened and the bending rigidity of the first vibration region is high.
 本発明により、第1振動領域の撓みを抑制して、電気機械変換器の小型化と高性能化の両立を図ることができる。 According to the present invention, it is possible to suppress the bending of the first vibration region and achieve both the miniaturization and the high performance of the electromechanical transducer.
図1は、本発明の第1の実施の形態にかかる電気機械変換器の斜視断面図である。FIG. 1 is a perspective sectional view of an electromechanical transducer according to a first embodiment of the present invention. 図2は、本発明の第1の実施の形態にかかる電気機械変換器の上面図である。FIG. 2 is a top view of the electromechanical transducer according to the first embodiment of the present invention. 図3Aは、本発明と従来例を対比した電気機械変換器の断面図である。FIG. 3A is a cross-sectional view of an electromechanical transducer comparing the present invention with a conventional example. 図3Bは、本発明と従来例を対比した電気機械変換器の断面図である。FIG. 3B is a cross-sectional view of an electromechanical transducer comparing the present invention with a conventional example. 図4Aは、本発明の第1の実施の形態にかかる電気機械変換器の製造工程を示す断面図である。FIG. 4A is a cross-sectional view showing the manufacturing process of the electromechanical transducer according to the first embodiment of the present invention. 図4Bは、本発明の第1の実施の形態にかかる電気機械変換器の製造工程を示す断面図である。FIG. 4B is a cross-sectional view showing the manufacturing process of the electromechanical transducer according to the first embodiment of the present invention. 図4Cは、本発明の第1の実施の形態にかかる電気機械変換器の製造工程を示す断面図である。FIG. 4C is a cross-sectional view showing the manufacturing process of the electromechanical transducer according to the first embodiment of the present invention. 図4Dは、本発明の第1の実施の形態にかかる電気機械変換器の製造工程を示す断面図である。FIG. 4D is a cross-sectional view illustrating the manufacturing process of the electromechanical transducer according to the first embodiment of the invention. 図5Aは、本発明の第2の実施の形態にかかる電気機械変換器の製造工程を示す断面図である。FIG. 5A is a cross-sectional view illustrating the manufacturing process of the electromechanical transducer according to the second embodiment of the present invention. 図5Bは、本発明の第2の実施の形態にかかる電気機械変換器の製造工程を示す断面図である。FIG. 5B is a cross-sectional view illustrating the manufacturing process of the electromechanical transducer according to the second embodiment of the present invention. 図6は、本発明の変形例にかかる電気機械変換器の上面図である。FIG. 6 is a top view of an electromechanical transducer according to a modification of the present invention. 図7は、本発明の他の変形例にかかる電気機械変換器の上面図である。FIG. 7 is a top view of an electromechanical transducer according to another modification of the present invention. 図8Aは、従来技術にかかる電気機械変換器の上面図である。FIG. 8A is a top view of an electromechanical transducer according to the prior art. 図8Bは、従来技術にかかる電気機械変換器の断面図である。FIG. 8B is a cross-sectional view of an electromechanical transducer according to the prior art. 図8Cは、従来技術にかかる電気機械変換器の断面図である。FIG. 8C is a cross-sectional view of an electromechanical transducer according to the prior art.
 以下、本発明にかかる電気機械変換器の構成についてマイクロフォンの例をもって説明する。本発明は、同様な構成の可動(振動)膜を有する電気機械変換器として、熱・圧力のセンサーデバイス全般や静電アクチュエータなどに適用できるが、これは例示を目的としており、本発明がこれらに限定されることを意図しない。 Hereinafter, the configuration of the electromechanical converter according to the present invention will be described with reference to an example of a microphone. The present invention can be applied to heat and pressure sensor devices in general and electrostatic actuators as electromechanical transducers having movable (vibrating) membranes having the same configuration, but this is for illustrative purposes only. It is not intended to be limited to
 (第1の実施の形態)
 以下本発明の第1の実施の形態を、添付図面を用いて説明する。本実施の形態では、振動膜の第2の面における第1振動領域に配置された補強部を備えたマイクロフォンについて説明する。この構成によれば、第1振動領域に補強部を形成することで第1振動領域の曲げ剛性を高めることができるので、印加電圧や外力による第1振動領域の撓みを抑制することができる。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings. In the present embodiment, a microphone including a reinforcing portion arranged in the first vibration region on the second surface of the vibration membrane will be described. According to this configuration, since the bending rigidity of the first vibration region can be increased by forming the reinforcing portion in the first vibration region, it is possible to suppress bending of the first vibration region due to an applied voltage or an external force.
 図1に、本実施の形態のマイクロフォン100の斜視断面図、図2にその上面図を示す。なお、振動膜2の構成を分かりやすくするために、図2のマイクロフォン100の上面図において枠体1の内部は固定膜3の表示を省略している。 FIG. 1 is a perspective sectional view of the microphone 100 of the present embodiment, and FIG. 2 is a top view thereof. In addition, in order to make the configuration of the vibrating membrane 2 easier to understand, the display of the fixed membrane 3 is omitted inside the frame body 1 in the top view of the microphone 100 of FIG.
 図1に示すように、マイクロフォン100は、枠体1と、振動膜2と、スペーサー4と、固定膜3と、補強部としての網目状枠体8と、引き出し電極10とを備えている。 As shown in FIG. 1, the microphone 100 includes a frame body 1, a vibration film 2, a spacer 4, a fixed film 3, a mesh frame body 8 as a reinforcing portion, and an extraction electrode 10.
 振動膜2はポリシリコンからなり、音圧により振動する第1振動領域6と、第1振動領域6の周囲に配置された第2振動領域7とを有している。また、第1振動領域6は、裏面の全域に亘って第1振動領域6の撓みを防止するための補強部として網目状枠体8を備えている。網目状枠体8は、複数の開口部9を有する網目状に形成されたポリシリコンからなり、それぞれの開口部9の位置に配置された第1振動領域6は、それぞれ微小ダイアフラム2aを形作っている。なお、微小ダイアフラム2aが、本発明における第3振動領域、振動膜2の表面および裏面が、それぞれ本発明における第1の面および第2の面に相当する。 The vibration film 2 is made of polysilicon, and has a first vibration region 6 that vibrates due to sound pressure, and a second vibration region 7 disposed around the first vibration region 6. Further, the first vibration region 6 includes a mesh frame 8 as a reinforcing portion for preventing the first vibration region 6 from bending over the entire back surface. The mesh frame 8 is made of polysilicon formed in a mesh shape having a plurality of openings 9, and the first vibration regions 6 arranged at the positions of the openings 9 respectively form the minute diaphragms 2a. Yes. The minute diaphragm 2a corresponds to the third vibration region in the present invention, and the front and back surfaces of the vibration film 2 correspond to the first surface and the second surface in the present invention, respectively.
 また、図2に示すように、網目状枠体8の開口部9は、それぞれ上面からみた形状が六角形の形状を有しており、隣接する開口部9との間で千鳥配列となるように配置することで、特定の方向に対して網目状枠体8の曲げ剛性が弱くならないように工夫している。図2には、特に強度が強いハニカム構造、つまり、正六角形の微小ダイアフラム2aを蜂の巣状に隙間なく配置した例を示している。なお、このようなハニカム構造は、正六角形に限らず、その他の多角形の微小ダイアフラムを隙間なく並べて構成してもよい。 In addition, as shown in FIG. 2, the openings 9 of the mesh frame 8 have hexagonal shapes when viewed from the upper surface, and are arranged in a staggered manner between the adjacent openings 9. By arranging them in such a way, it is devised so that the bending rigidity of the mesh frame 8 does not become weak in a specific direction. FIG. 2 shows an example of a honeycomb structure having a particularly strong strength, that is, a regular hexagonal micro-diaphragm 2a arranged in a honeycomb shape without a gap. Note that such a honeycomb structure is not limited to a regular hexagon, and other polygonal micro diaphragms may be arranged without gaps.
 振動膜2は、図1に示すように、マイクロフォン100の外形を形成する枠体1により第2振動領域において支持されている。枠体1は、外周形状が菱形のシリコン基板からなり、シリコン基板の表面および裏面を貫通して、枠体1の内周形状が六角形に形成されている。 As shown in FIG. 1, the vibration membrane 2 is supported in the second vibration region by a frame body 1 that forms the outer shape of the microphone 100. The frame 1 is made of a silicon substrate having a rhombus outer peripheral shape, and the inner peripheral shape of the frame 1 is formed in a hexagonal shape through the front and back surfaces of the silicon substrate.
 また、図1に示すように、振動膜2の表面には、固定膜3がスペーサー4によって所定の間隔を隔てて対向して配置されている。 Further, as shown in FIG. 1, the fixed film 3 is disposed on the surface of the vibration film 2 so as to be opposed to each other with a predetermined distance by a spacer 4.
 固定膜3は、複数の音孔5を備え、音孔5を介して外部からの音圧が振動膜2に伝達され、音圧に応じて振動膜2が振動する。振動膜2と固定膜3とは導電性を有し、振動膜2と固定膜3の間には、所定の電界が印加されており、振動膜2が音圧によって振動する。これにより、所定の間隔を隔てたコンデンサを構成している振動膜2と固定膜3との間に振動膜2の変位に応じた電荷が誘起する。 The fixed film 3 includes a plurality of sound holes 5, and the sound pressure from the outside is transmitted to the vibration film 2 through the sound holes 5, and the vibration film 2 vibrates according to the sound pressure. The vibration film 2 and the fixed film 3 have conductivity, and a predetermined electric field is applied between the vibration film 2 and the fixed film 3, and the vibration film 2 vibrates due to sound pressure. As a result, an electric charge according to the displacement of the vibration film 2 is induced between the vibration film 2 and the fixed film 3 constituting the capacitor with a predetermined interval.
 振動膜2と固定膜3との間に電界を印加する方法として、外部電源によって電圧を印加する方法と、振動膜2もしくは固定膜3にあらかじめ電荷を注入して固定化することでエレクトレットコンデンサを構成する方法とがある。エレクトレットコンデンサ方式では、外部電圧を印加することなく振動膜2と固定膜3との間に電界を発生することができる。 As a method of applying an electric field between the vibrating membrane 2 and the fixed membrane 3, a method of applying a voltage by an external power source, or by electrifying the vibrating membrane 2 or the fixed membrane 3 by injecting an electric charge in advance to fix the electret capacitor There is a way to configure. In the electret capacitor method, an electric field can be generated between the vibrating membrane 2 and the fixed membrane 3 without applying an external voltage.
 また、図1に示すように、固定膜3の表面の枠体1の菱形の鋭角余白部に相当する位置には、電気信号を取り出す引き出し電極10が形成されている。両側の引き出し電極10は、それぞれ振動膜2と固定膜3に電気的に接続されている。このような構成により、振動膜2の振動変位により振動膜2と固定膜3との間に発生する電界変化を読み出して、振動膜2が受けた音圧という機械的変化を電気信号に変換している。 Further, as shown in FIG. 1, an extraction electrode 10 for taking out an electric signal is formed at a position corresponding to a diamond-shaped acute margin of the frame 1 on the surface of the fixed film 3. The extraction electrodes 10 on both sides are electrically connected to the vibration film 2 and the fixed film 3, respectively. With such a configuration, a change in electric field generated between the vibrating membrane 2 and the fixed membrane 3 due to vibration displacement of the vibrating membrane 2 is read, and a mechanical change called sound pressure received by the vibrating membrane 2 is converted into an electrical signal. ing.
 次に、図3A、図3B、図8Cを参照しながら、本実施の形態にかかるマイクロフォンの構成と従来例にかかるマイクロフォンとを対比しながらその差異について説明する。 Next, the difference between the configuration of the microphone according to the present embodiment and the microphone according to the conventional example will be described with reference to FIGS. 3A, 3B, and 8C.
 図3Aは、図2におけるAA線における矢視断面図であり、本実施の形態にかかるマイクロフォンを示す断面図である。また、図8Cは、従来例にかかるマイクロフォンを示す断面図である。また、図3Bは、図3AのP部付近の拡大断面図である。 FIG. 3A is a cross-sectional view taken along the line AA in FIG. 2 and is a cross-sectional view showing the microphone according to the present embodiment. FIG. 8C is a cross-sectional view showing a microphone according to a conventional example. FIG. 3B is an enlarged cross-sectional view in the vicinity of a portion P in FIG. 3A.
 図8Cに示した従来例にかかるマイクロフォンの構成では、振動膜102が均一な厚さの薄膜によって形成されている。そのため、振動膜102は、音孔105からの音圧に応じて振動膜102と固定膜103との間に印加された電界によって固定膜103に引き寄せられ、振動膜102の中央ほど固定膜103に近接するように撓んでしまう。振動膜102が極端に撓んだ場合には、振動膜102は、局部的に固定膜103と接触して振動が抑制され、マイクロフォンとしての感度が出なくなってしまう。 In the configuration of the microphone according to the conventional example shown in FIG. 8C, the vibration film 102 is formed of a thin film having a uniform thickness. Therefore, the vibration film 102 is attracted to the fixed film 103 by the electric field applied between the vibration film 102 and the fixed film 103 according to the sound pressure from the sound hole 105, and the center of the vibration film 102 becomes closer to the fixed film 103. It will bend to approach. When the vibration film 102 is extremely bent, the vibration film 102 is locally in contact with the fixed film 103 and vibration is suppressed, and sensitivity as a microphone is not obtained.
 一方、図3Aに示すように、本実施の形態にかかるマイクロフォンの構成では、第1振動領域6の裏面が網目状枠体8によって支持されているため、第1振動領域6内での極端な撓みは抑制される。第1振動領域6は、第2振動領域7を介して枠体1に支持固定されており、振動膜2の膜厚を薄くするなどして撓み易くすることで、音圧が加わった時の第1振動領域6の変位を発生し易くしている。ここで、振動膜2の膜厚を薄くしても、第1振動領域6は網目状枠体8によって強化されているため、従来例にかかるマイクロフォンのような大きな撓みを発生することがない。したがって、振動膜2と固定膜3とが局部的に接触するのを抑制することができる。したがって、振動膜2を薄くするなどして撓み易くすると、第2振動領域7が大きく変位することとなり、第1振動領域6を固定膜3に対してほぼ平行な状態で大きく変位させるとともに局部的な接触を抑制することが可能となる。 On the other hand, as shown in FIG. 3A, in the configuration of the microphone according to the present embodiment, since the back surface of the first vibration region 6 is supported by the mesh frame 8, Deflection is suppressed. The first vibration region 6 is supported and fixed to the frame body 1 via the second vibration region 7, and when the sound pressure is applied by making the vibration film 2 thin and making it easy to bend. The displacement of the first vibration region 6 is easily generated. Here, even if the film thickness of the vibrating membrane 2 is reduced, the first vibrating region 6 is reinforced by the mesh frame body 8 and thus does not generate a large deflection as in the conventional microphone. Therefore, local contact between the vibrating membrane 2 and the fixed membrane 3 can be suppressed. Therefore, if the vibrating membrane 2 is made thin and easily bent, the second vibrating region 7 is greatly displaced, and the first vibrating region 6 is largely displaced in a state substantially parallel to the fixed membrane 3 and is locally localized. It becomes possible to suppress an unnecessary contact.
 また、図8Cに示すように、従来例にかかるマイクロフォンの構成では、振動膜102の中央ほど固定膜103に近接するため、中央の振動膜102の振動ほど感度が高くなる。したがって、振動膜102の中央ほどコンデンサマイクロフォンの感度に有効に寄与し、振動膜102の外周部ほどコンデンサマイクロフォンの感度への寄与が少なくなってしまう。一方、図3Aに示すように、本実施の形態にかかるマイクロフォンの構成では、第1振動領域6全体が平行移動する形で音孔5からの音圧に対して振動するため、第1振動領域6全体の振動をコンデンサマイクロフォンの信号として有効に取り出すことができる。 Further, as shown in FIG. 8C, in the configuration of the microphone according to the conventional example, the center of the vibration film 102 is closer to the fixed film 103, and thus the sensitivity of the vibration of the center vibration film 102 is higher. Therefore, the center of the vibration film 102 effectively contributes to the sensitivity of the condenser microphone, and the outer peripheral portion of the vibration film 102 contributes less to the sensitivity of the condenser microphone. On the other hand, as shown in FIG. 3A, in the configuration of the microphone according to the present embodiment, the entire first vibration region 6 vibrates with respect to the sound pressure from the sound hole 5 in a translational manner. The vibration of the entire 6 can be effectively extracted as a signal of the condenser microphone.
 さらに、網目状枠体8が開口部9を有する場合、図3AのP部付近の拡大断面図である図3Bに示すように、網目状枠体8の開口部9に配置された微小ダイアフラム2aを薄くすることで、各開口部9に配置された微小ダイアフラム2aを音圧によって振動し易くすることができる。したがって、第1振動領域6全体の音圧による変位に加えて、図3Bに示すようにそれぞれの微小ダイアフラム2aも音圧によって変位するので、さらにマイクロフォンとしての感度を上げることができる。従来例にかかるマイクロフォンの枠体1の開口部よりも、本実施の形態にかかるマイクロフォンの個々の開口部9は格段小型であるため、微小ダイアフラム2aが撓んだとしても固定膜3に接触するほど撓まないよう制御ができる。 Further, when the mesh frame 8 has an opening 9, as shown in FIG. 3B, which is an enlarged cross-sectional view in the vicinity of the portion P in FIG. 3A, the micro-diaphragm 2a disposed in the opening 9 of the mesh frame 8 By thinning, the micro diaphragm 2a arranged in each opening 9 can be easily vibrated by sound pressure. Therefore, in addition to the displacement due to the sound pressure of the entire first vibration region 6, each micro diaphragm 2a is also displaced by the sound pressure as shown in FIG. 3B, so that the sensitivity as a microphone can be further increased. Since the individual openings 9 of the microphone according to the present embodiment are much smaller than the openings of the microphone frame 1 according to the conventional example, even if the microdiaphragm 2a is bent, it contacts the fixed film 3. It can be controlled not to bend as much.
 引き続き、図4A~図4Dを参照しながら、本実施の形態にかかるマイクロフォンの製造方法について説明する。 The microphone manufacturing method according to the present embodiment will be described with reference to FIGS. 4A to 4D.
 はじめに、図4Aに示すように、枠体1を構成する支持基板11としてシリコン基板を用意し、支持基板11の表面に網目状枠体8の形状に相当する溝部15を形成し、溝部15の底面および側面を含む支持基板11の表面全面を被覆するようにバリア膜12を形成する。バリア膜12は、一例としてシリコン窒化膜により形成する。 First, as shown in FIG. 4A, a silicon substrate is prepared as the support substrate 11 constituting the frame body 1, and the groove portion 15 corresponding to the shape of the mesh frame body 8 is formed on the surface of the support substrate 11. A barrier film 12 is formed so as to cover the entire surface of the support substrate 11 including the bottom and side surfaces. For example, the barrier film 12 is formed of a silicon nitride film.
 次に、図4Bに示すように、振動膜2としてポリシリコン膜を形成する。ポリシリコン膜は、例えばCVD(Chemical Vapor Deposition)法により、バリア膜12上を被覆するとともに溝部15内を充填するようにポリシリコン膜を形成し、網目状枠体8と振動膜2とを一体に形成する。 Next, as shown in FIG. 4B, a polysilicon film is formed as the vibration film 2. The polysilicon film is formed, for example, by CVD (Chemical Vapor Deposition) so as to cover the barrier film 12 and fill the groove 15 so that the mesh frame 8 and the vibration film 2 are integrated. To form.
 次に、図4Cに示すように、振動膜2上を被覆する形で、スペーサー4として例えばBPSG(Boro-Phospho Silicate Glass)を構成材料として絶縁膜を形成する。さらに、その上に固定膜3としてポリシリコン膜を形成する。そして、固定膜3となるポリシリコン膜の一部を孔状にエッチング除去することで、ポリシリコン膜を貫通する複数の音孔5を形成する。 Next, as shown in FIG. 4C, an insulating film is formed using BPSG (Boro-Phospho Silicate Glass), for example, as the spacer 4 so as to cover the vibration film 2. Further, a polysilicon film is formed thereon as the fixed film 3. Then, a plurality of sound holes 5 penetrating the polysilicon film are formed by etching and removing a part of the polysilicon film to be the fixed film 3 into a hole shape.
 さらに、図4Dに示すように、音孔5を介してスペーサー4となる絶縁膜を、外周となる一部を残して犠牲層エッチングにより除去して、枠状のスペーサー4を形成する。これにより、振動膜2と固定膜3とが所定の間隔で対向配置された構成となる。 Furthermore, as shown in FIG. 4D, the insulating film to be the spacer 4 is removed through the sound hole 5 by sacrificial layer etching, leaving a part of the outer periphery, thereby forming the frame-shaped spacer 4. Accordingly, the vibration film 2 and the fixed film 3 are arranged to face each other at a predetermined interval.
 その後、支持基板11を外周となる一部を残して裏面からバリア膜12までエッチングすることで枠体1を設ける。さらに、バリア膜12もエッチング除去し、第1振動領域6の裏面に網目状枠体8が完成する。 Thereafter, the frame 1 is provided by etching the support substrate 11 from the back surface to the barrier film 12 while leaving a part of the outer periphery. Further, the barrier film 12 is also removed by etching, and the mesh frame 8 is completed on the back surface of the first vibration region 6.
 本実施の形態にかかるマイクロフォンの製造方法では、振動膜2と網目状枠体8とを同一材料によって形成しているが、別々の部材とした構成でも本発明特有の効果が得られる。 In the microphone manufacturing method according to the present embodiment, the vibrating membrane 2 and the mesh frame 8 are formed of the same material, but effects unique to the present invention can be obtained even when the members are separate members.
 また、支持基板11がシリコンで、振動膜2をポリシリコンとしたため、エッチングレートの違いを考慮して支持基板11を裏面からエッチングする際の選択比確保のためにバリア膜12を設けているが、支持基板11と振動膜2とがエッチング選択比の取れる材料の組み合わせであれば、バリア膜12を設ける必要はない。 In addition, since the support substrate 11 is silicon and the vibration film 2 is polysilicon, the barrier film 12 is provided to secure a selection ratio when the support substrate 11 is etched from the back surface in consideration of the difference in etching rate. If the support substrate 11 and the vibration film 2 are a combination of materials capable of providing an etching selectivity, the barrier film 12 need not be provided.
 (第2の実施の形態)
 引き続き、本発明の第2の実施の形態について、図5Aおよび図5Bを参照しながら説明する。第2の実施の形態が第1の実施の形態と異なる点は、マイクロフォンの製造方法において、支持基板に形成された溝部全体にはポリシリコンを充填せず、支持基板の表面、溝部の側面および底面においてポリシリコン膜の厚さが均一になるようにポリシリコン膜を形成する点である。つまり、補強部は、振動膜の表面から網目状の凹部として形成されている。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. 5A and 5B. The second embodiment is different from the first embodiment in that in the microphone manufacturing method, the entire groove formed in the support substrate is not filled with polysilicon, and the surface of the support substrate, the side surface of the groove, The polysilicon film is formed so that the thickness of the polysilicon film is uniform on the bottom surface. That is, the reinforcing portion is formed as a mesh-shaped concave portion from the surface of the vibration film.
 図5Aは、本発明の第2の実施の形態にかかるマイクロフォンの製造方法の一部工程を示す断面図、図5Bは、完成したマイクロフォンの構造を示す断面図である。 FIG. 5A is a cross-sectional view showing a part of the process of manufacturing the microphone according to the second embodiment of the present invention, and FIG. 5B is a cross-sectional view showing the structure of the completed microphone.
 第1の実施の形態と同様に、枠体1を構成する支持基板11としてシリコン基板を用意する。そして、支持基板11の表面に、網目状枠体28および第2振動領域27の形状に相当する溝部25を形成する。また、溝部25の底面および側面を含む支持基板11の表面全面を被覆するようにバリア膜12を形成する。 As in the first embodiment, a silicon substrate is prepared as the support substrate 11 constituting the frame 1. Then, a groove 25 corresponding to the shape of the mesh frame 28 and the second vibration region 27 is formed on the surface of the support substrate 11. Further, the barrier film 12 is formed so as to cover the entire surface of the support substrate 11 including the bottom surface and side surfaces of the groove 25.
 そして、第1の実施の形態では、CVD法により溝部15内を充填するように網目状枠体8のポリシリコン膜を形成していたのに対して、本実施の形態では、図5Aに示すように、溝部25を完全に埋めないように振動膜22のポリシリコン膜を成膜する。具体的には、溝部25を形成した支持基板11の表面を被覆するようにバリア膜12としてシリコン窒化膜を成膜する。さらに、その上を被覆するように、CVD法により振動膜22のポリシリコン膜を成膜することで、溝部25の側面および底面に形成されるポリシリコンの厚さが均一になるようにして、網目状枠体28と振動膜22とを一体に形成する。 In the first embodiment, the polysilicon film of the mesh frame 8 is formed so as to fill the groove 15 by the CVD method, whereas in this embodiment, the polysilicon film is shown in FIG. 5A. As described above, the polysilicon film of the vibration film 22 is formed so as not to completely fill the groove 25. Specifically, a silicon nitride film is formed as the barrier film 12 so as to cover the surface of the support substrate 11 in which the groove 25 is formed. Furthermore, by forming a polysilicon film of the vibration film 22 by CVD so as to cover it, the thickness of the polysilicon formed on the side surface and the bottom surface of the groove 25 is made uniform, The mesh frame 28 and the vibration film 22 are integrally formed.
 その後、第1の実施の形態と同様に、振動膜22上を被覆する形で、スペーサー4として例えばBPSGを構成材料として絶縁膜を形成する。さらに、その上に固定膜3としてポリシリコン膜を形成する。そして、固定膜3となるポリシリコン膜の一部を孔状にエッチング除去することで、ポリシリコン膜を貫通する複数の音孔5を形成する。 Thereafter, as in the first embodiment, an insulating film is formed as the spacer 4 by using, for example, BPSG as a constituent material so as to cover the vibration film 22. Further, a polysilicon film is formed thereon as the fixed film 3. Then, a plurality of sound holes 5 penetrating the polysilicon film are formed by etching and removing a part of the polysilicon film to be the fixed film 3 into a hole shape.
 さらに、音孔5を介して、スペーサー4となる絶縁膜を、外周となる一部を残して犠牲層エッチングにより除去して、枠状のスペーサー4を形成する。これにより、振動膜22と固定膜3とが所定の間隔で対向配置された構成となる。 Further, the insulating film serving as the spacer 4 is removed by sacrificial layer etching through the sound hole 5 while leaving a part of the outer periphery, thereby forming the frame-shaped spacer 4. Thus, the vibration film 22 and the fixed film 3 are arranged to face each other at a predetermined interval.
 その後、支持基板11を外周となる一部を残して裏面からバリア膜12までエッチングすることで枠体1を設け、さらにバリア膜12もエッチング除去し、第1振動領域26の裏面に開口部29を有する網目状枠体28が完成する。 Thereafter, the frame 1 is provided by etching the support substrate 11 from the back surface to the barrier film 12 while leaving a part of the outer periphery, and the barrier film 12 is also etched away, and an opening 29 is formed on the back surface of the first vibration region 26. A mesh-like frame body 28 having the above is completed.
 完成したマイクロフォンは、図5Bに示すように、振動膜22および網目状枠体28が振動膜22の表面から網目状の凹部30を有し、この網目状の凹部30により第1振動領域26が複数の微小ダイアフラム22aに分離された構成となっている。 In the completed microphone, as shown in FIG. 5B, the vibration film 22 and the mesh frame 28 have a mesh-shaped recess 30 from the surface of the vibration film 22, and the mesh-shaped recess 30 causes the first vibration region 26 to be formed. The structure is separated into a plurality of minute diaphragms 22a.
 このようにすることで、振動膜22の曲げ剛性が高められ第1振動領域26の撓みを抑えることができる。さらに、網目状枠体28が振動膜22と同じ膜厚の薄膜で形成できることから、網目状枠体28による第1振動領域26の重量増加によるマイクロフォンの感度低下をも抑えることができる。 By doing so, the bending rigidity of the vibration film 22 is increased, and the bending of the first vibration region 26 can be suppressed. Furthermore, since the mesh frame 28 can be formed of a thin film having the same film thickness as the vibration film 22, it is possible to suppress a decrease in sensitivity of the microphone due to an increase in the weight of the first vibration region 26 due to the mesh frame 28.
 また、第2振動領域27の形状に相当する網目状の溝部25を形成することにより、図5Bに示すように、第2振動領域27における振動膜22と固定膜3との距離を、第1振動領域26よりも離すことが可能である。音圧を受けても変位が小さい第2振動領域27は、電荷発生への寄与が少ないが、固定膜3との間でも静電容量を持つため、第1振動領域26で発生した信号電荷が第2振動領域27の容量にも分配され、感度が低くなってしまう。そこで、第2振動領域27における振動膜22と固定膜3との距離を離すことで第2振動領域27に分配される信号電荷を削減し、感度低下を抑制することができる。 Further, by forming a mesh-like groove portion 25 corresponding to the shape of the second vibration region 27, as shown in FIG. 5B, the distance between the vibration film 22 and the fixed film 3 in the second vibration region 27 is changed to the first. It can be separated from the vibration region 26. The second vibration region 27, which has a small displacement even when subjected to sound pressure, has a small contribution to charge generation. This is also distributed to the capacity of the second vibration region 27 and the sensitivity is lowered. Accordingly, by separating the vibration film 22 and the fixed film 3 in the second vibration region 27, the signal charge distributed to the second vibration region 27 can be reduced, and a decrease in sensitivity can be suppressed.
 また、同様に、本実施の形態では、第1振動領域26の微小ダイアフラム22aを構成する部分の振動膜22よりも、網目状枠体28を構成する部分の振動膜22を固定膜3から遠ざけることが可能であり、網目状枠体28と固定膜3との間に分配される信号電荷も削減することで、音孔5からの音圧によって振動する微小ダイアフラム22aでの信号電荷を有効に取り出すことができる。 Similarly, in the present embodiment, the vibration film 22 in the part constituting the mesh frame 28 is moved away from the fixed film 3 rather than the vibration film 22 in the part constituting the micro diaphragm 22 a in the first vibration region 26. The signal charge distributed between the mesh frame 28 and the fixed film 3 is also reduced, so that the signal charge in the micro diaphragm 22a that vibrates due to the sound pressure from the sound hole 5 can be effectively used. It can be taken out.
 (変形例1)
 以下本発明の第1の実施の形態の変形例について、図6を参照しながら説明する。
(Modification 1)
Hereinafter, a modification of the first embodiment of the present invention will be described with reference to FIG.
 図6に示すように、本変形例にかかる電気機械変換器であるマイクロフォンは、第1の実施の形態を示す図2の構成に対して、第1振動領域36の裏面に形成された網目状枠体38の複数の開口部39のサイズが異なるように設計されているところが異なる。このようにすることで、個々の微小ダイアフラム32aごとの音圧に対する応答特性を変えることができる。マイクロフォンにとっては周波数応答特性が重要であるが、複数のサイズに形成されて複数の応答特性を有する微小ダイアフラム32aによってマイクロフォンを構成することで、マイクロフォン全体の周波数応答を広い周波数で制御設計することが可能である。 As shown in FIG. 6, the microphone that is the electromechanical transducer according to the present modification has a mesh shape formed on the back surface of the first vibration region 36 with respect to the configuration of FIG. 2 illustrating the first embodiment. The difference is that the sizes of the plurality of openings 39 of the frame 38 are designed to be different. By doing in this way, the response characteristic with respect to the sound pressure for each micro diaphragm 32a can be changed. Frequency response characteristics are important for a microphone, but it is possible to control and design the frequency response of the entire microphone at a wide frequency by configuring the microphone with a micro diaphragm 32a formed in a plurality of sizes and having a plurality of response characteristics. Is possible.
 特に、図6に示すように、第1振動領域36の中心近傍に配置された微小ダイアフラム32aほど小型で、外周ほどサイズが大きくなるように配置すると、第1振動領域36全体で固定膜3との距離をほぼ均一に確保しつつ効率よく音圧による振動の変位を得ることができる。つまり、振動膜32の第1振動領域36は網目状枠体38によって補強されているとは言え若干の撓みが発生し、中心ほど固定膜3に近接することになる。そこで、第1振動領域36の中心近傍の微小ダイアフラム32aのサイズを小さくして中心近傍のそれぞれの微小ダイアフラム32aの振動の変位を抑え、第2振動領域37に近づく周辺ほど微小ダイアフラム32aのサイズを大きくして微小ダイアフラム32aの変位が大きくなるようにしている。したがって、第1振動領域36全体で固定膜3との距離をほぼ均一に確保しつつ、効率よく音圧による振動変位を得る構成とすることができる。 In particular, as shown in FIG. 6, when the micro diaphragm 32 a disposed near the center of the first vibration region 36 is smaller and the outer periphery is larger in size, the entire first vibration region 36 and the fixed film 3 The displacement of the vibration due to the sound pressure can be obtained efficiently while ensuring a substantially uniform distance. That is, although the first vibration region 36 of the vibration film 32 is reinforced by the mesh frame 38, a slight deflection occurs, and the center is closer to the fixed film 3. Therefore, the size of the micro diaphragm 32a in the vicinity of the center of the first vibration region 36 is reduced to suppress the vibration displacement of each micro diaphragm 32a in the vicinity of the center, and the size of the micro diaphragm 32a is made closer to the vicinity of the second vibration region 37. The displacement is increased so that the displacement of the minute diaphragm 32a is increased. Therefore, it is possible to obtain a vibration displacement by sound pressure efficiently while ensuring a substantially uniform distance from the fixed film 3 in the entire first vibration region 36.
 (変形例2)
 以下本発明の第1の実施の形態の他の変形例について、図7を参照しながら説明する。
(Modification 2)
Hereinafter, another modification of the first embodiment of the present invention will be described with reference to FIG.
 図7に示すように、本変形例にかかる電気機械変換器であるマイクロフォンは、第1の実施の形態を示す図2の構成に対して、第1振動領域46の裏面に形成された網目状枠体48の複数の開口部49を、それぞれの形状を円形としたところが異なる。このように開口部49および微小ダイアフラム42aの形状は六角形に制約されるものではなく、円形でも同様の効果が得られる。特に、微小ダイアフラム42aを音圧によって効率よく振動させるためには、その形状が縦横のサイズが異なる扁平なものよりも真円に近い形状が好ましい。また、同様に、第2振動領域47の外周の形状、つまり振動膜42の外周の形状も六角形に限らずその他の形状に変更してもよい。 As shown in FIG. 7, the microphone that is the electromechanical transducer according to the present modification has a mesh shape formed on the back surface of the first vibration region 46 with respect to the configuration of FIG. 2 illustrating the first embodiment. The plurality of openings 49 of the frame body 48 are different in that each shape is circular. As described above, the shapes of the opening 49 and the minute diaphragm 42a are not limited to hexagons, and the same effect can be obtained even in a circular shape. In particular, in order to efficiently vibrate the minute diaphragm 42a by sound pressure, a shape closer to a perfect circle is preferable to a flat shape having a different vertical and horizontal size. Similarly, the shape of the outer periphery of the second vibration region 47, that is, the shape of the outer periphery of the vibration film 42 is not limited to a hexagon, and may be changed to other shapes.
 なお、本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形を行ってもよい。 The present invention is not limited to the embodiment described above, various improvements without departing from the gist of the present invention may be carried out deformation.
 例えば、以上に示した本発明の実施の形態では、振動膜および固定膜として単層の薄膜について記載しているが、本発明の効果はこの構成に制約されるものではない。例えば、振動膜を多層膜としても同様の効果が得られる。具体的に、振動膜としてポリシリコンの両面に絶縁膜を形成したり、エレクトレット方式の場合の注入電荷を保持するための電荷保持層を形成したりといったことを行っても良い。また、補強部の構造は、開口部を有する網目状枠体に限らず、開口部を有さない板状の形状などであってもよい。 For example, in the embodiment of the present invention described above, single-layer thin films are described as the vibration film and the fixed film, but the effects of the present invention are not limited to this configuration. For example, the same effect can be obtained even if the vibration film is a multilayer film. Specifically, an insulating film may be formed on both sides of polysilicon as the vibration film, or a charge holding layer for holding injected charge in the case of the electret method may be formed. Further, the structure of the reinforcing portion is not limited to the mesh frame having an opening, but may be a plate shape having no opening.
 なお、網目状枠体として第1の実施の形態のような頑強な枠構造とするか、第2の実施の形態のような振動膜を屈曲した形状とするかは、振動膜の撓みの抑制を重視するか重量増加の抑制を重視するかで選択可能である。また、網目状枠体は、上記した実施の形態では、開口部が正六角形の微小ダイアフラムを蜂の巣状に隙間なく配置したハニカム構造を示したが、このようなハニカム構造は、正六角形に限らず、円形状やその他の多角形の微小ダイアフラムを隙間なく並べて構成してもよい。 Whether the mesh frame has a robust frame structure as in the first embodiment or a bent vibration film as in the second embodiment determines whether the vibration film is bent or not. Can be selected depending on whether the emphasis is on the suppression of weight increase. Further, in the above-described embodiment, the mesh frame body has a honeycomb structure in which fine diaphragms having regular hexagonal openings are arranged in a honeycomb shape without gaps. However, such a honeycomb structure is not limited to a regular hexagonal shape. Alternatively, circular or other polygonal micro diaphragms may be arranged without gaps.
 また、振動膜、固定膜、スペーサー等の構成材料は上記した構成材料に限定されるものではなく、ポリシリコン、BPSG以外のどのような構成材料を使用してもよい。また、成膜の方法はCVD法に限らずどのような方法であってもよい。また、エッチングの方法は、ドライエッチング、ウエットエッチング等どのような方法であってもよい。 Further, the constituent materials such as the vibration film, the fixed film, and the spacer are not limited to the above-described constituent materials, and any constituent material other than polysilicon and BPSG may be used. The film forming method is not limited to the CVD method, and any method may be used. The etching method may be any method such as dry etching or wet etching.
 また、上記した実施の形態では、音圧に対応する振動膜の振動を電気信号に変換するマイクロフォンを例として説明したが、本発明は、音に限らず、熱、圧力、加速度など、様々な情報を感知または出力するための電気機械変換器に利用してもよい。 Further, in the above-described embodiment, the microphone that converts the vibration of the diaphragm corresponding to the sound pressure into an electric signal has been described as an example. It may be used in an electromechanical transducer for sensing or outputting information.
 以上のごとく、本発明は、網目状の枠体によって振動膜の第1振動領域の撓みを抑制して固定膜との近接や接触を抑える。また、第1振動領域を支持する第2振動領域を撓み易くすることで、音圧等による第1振動領域全体の変位を大きくする。よって、熱や音、圧力、加速度など、様々な情報を感知または出力する電気機械変換器の小型化と高性能化を両立することができる。 As described above, the present invention suppresses the proximity and contact with the fixed film by suppressing the bending of the first vibration region of the vibration film by the mesh frame. In addition, by making the second vibration region supporting the first vibration region easy to bend, the displacement of the entire first vibration region due to sound pressure or the like is increased. Therefore, it is possible to achieve both miniaturization and high performance of the electromechanical transducer that senses or outputs various information such as heat, sound, pressure, and acceleration.
 したがって、携帯電話や携帯端末などのパーソナル電子機器の機能の多様化、高性能化、小型軽量化に貢献できるものである。 Therefore, it can contribute to diversification of functions, high performance, small size and light weight of personal electronic devices such as mobile phones and mobile terminals.
1、101 枠体
2、22、32、42、102 振動膜
2a、22a、32a、42a 微小ダイアフラム(第3振動領域)
3、103 固定膜
6、26、36、46 第1振動領域
7、27、37、47 第2振動領域
8、28、38、48 網目状枠体(補強部)
9、29、39、49 開口部
11 支持基板(基板)
15、25 溝部
30 網目状の凹部
100 マイクロフォン(電気機械変換器)
1, 101 Frame 2, 22, 32, 42, 102 Vibration membranes 2a, 22a, 32a, 42a Micro diaphragm (third vibration region)
3, 103 Fixed membrane 6, 26, 36, 46 First vibration region 7, 27, 37, 47 Second vibration region 8, 28, 38, 48 Mesh frame (reinforcement part)
9, 29, 39, 49 Opening 11 Support substrate (substrate)
15, 25 Groove 30 Reticulated recess 100 Microphone (electromechanical transducer)

Claims (14)

  1.  第1の面と、前記第1の面の反対側の第2の面とを有し、第1振動領域と前記第1振動領域の周囲に配置された第2振動領域とを有する振動膜と、
     前記振動膜の前記第1の面に対向して配置された固定膜と、
     前記振動膜の前記第2の面における前記第1振動領域に配置された補強部とを備え、
     前記振動膜および前記固定膜により構成されるコンデンサにより、前記振動膜の振動を電気信号に変換する
    電気機械変換器。
    A vibration film having a first surface and a second surface opposite to the first surface, the first vibration region and a second vibration region disposed around the first vibration region; ,
    A fixed film disposed opposite to the first surface of the vibration film;
    A reinforcing portion disposed in the first vibration region on the second surface of the vibration membrane,
    An electromechanical converter that converts vibration of the vibration film into an electric signal by a capacitor configured by the vibration film and the fixed film.
  2.  前記補強部は、複数の開口部を有する網目状に形成され、
     前記第1振動領域は、前記開口部ごとにそれぞれ第3振動領域を有する
    請求項1に記載の電気機械変換器。
    The reinforcing portion is formed in a mesh shape having a plurality of openings,
    The electromechanical transducer according to claim 1, wherein the first vibration area has a third vibration area for each of the openings.
  3.  前記補強部は、前記振動膜と一体に形成されている
    請求項1に記載の電気機械変換器。
    The electromechanical converter according to claim 1, wherein the reinforcing portion is formed integrally with the vibrating membrane.
  4.  前記補強部は、前記振動膜の前記第1の面から網目状の凹部として形成された
    請求項3に記載の電気機械変換器。
    The electromechanical transducer according to claim 3, wherein the reinforcing portion is formed as a mesh-shaped recess from the first surface of the vibrating membrane.
  5.  前記第2振動領域は、前記第1振動領域よりも前記固定膜に対して離れた位置に屈曲して配置されている
    請求項4に記載の電気機械変換器。
    5. The electromechanical transducer according to claim 4, wherein the second vibration region is bent and disposed at a position farther from the fixed film than the first vibration region.
  6.  前記開口部は、それぞれ六角形の形状を有している
    請求項2に記載の電気機械変換器。
    The electromechanical transducer according to claim 2, wherein each of the openings has a hexagonal shape.
  7.  前記開口部は、それぞれ円形の形状を有している
    請求項2に記載の電気機械変換器。
    The electromechanical transducer according to claim 2, wherein each of the openings has a circular shape.
  8.  前記開口部は、隣接する前記開口部が千鳥配列になるように配置されている
    請求項2に記載の電気機械変換器。
    The electromechanical transducer according to claim 2, wherein the openings are arranged such that adjacent openings are arranged in a staggered arrangement.
  9.  前記開口部は、隣接する前記開口部が蜂の巣状になるように配置されている
    請求項6に記載の電気機械変換器。
    The electromechanical transducer according to claim 6, wherein the openings are arranged such that the adjacent openings have a honeycomb shape.
  10.  前記開口部は、前記第1振動領域の中心から外周に向かって配置されるほど形状が大きくなるように形成されている
    請求項2に記載の電気機械変換器。
    The electromechanical transducer according to claim 2, wherein the opening is formed so that the shape increases as it is arranged from the center of the first vibration region toward the outer periphery.
  11.  前記振動膜および前記固定膜の少なくともいずれかに電荷が注入され、前記振動膜および前記固定膜によりエレクトレットコンデンサが構成される
    請求項1に記載の電気機械変換器。
    The electromechanical converter according to claim 1, wherein an electric charge is injected into at least one of the vibration film and the fixed film, and an electret capacitor is configured by the vibration film and the fixed film.
  12.  音圧による前記振動膜の振動を電気信号に変換する、
    請求項1に記載の電気機械変換器を備えるマイクロフォン。
    Converting vibration of the vibrating membrane by sound pressure into an electrical signal,
    A microphone comprising the electromechanical transducer according to claim 1.
  13.  第1の面と、前記第1の面の反対側の第2の面とを有し、第1振動領域と前記第1振動領域の周囲に配置された第2振動領域とを有する振動膜と、前記振動膜の前記第1の面に対向して配置された固定膜とを備えた電気機械変換器の製造方法であって、
     基板の表面に網目状の溝部を形成する工程と、
     前記基板の表面および前記溝部に、前記振動膜および前記振動膜の前記第1振動領域の撓みを抑制する補強部を一体に形成する工程とを含む
    電気機械変換器の製造方法。
    A vibrating membrane having a first surface and a second surface opposite to the first surface, the first vibrating region and a second vibrating region disposed around the first vibrating region; A method of manufacturing an electromechanical transducer comprising a stationary membrane disposed opposite to the first surface of the vibrating membrane,
    Forming a mesh-like groove on the surface of the substrate;
    And a step of integrally forming, on the surface of the substrate and the groove, a reinforcing part that suppresses bending of the vibration film and the first vibration region of the vibration film.
  14.  前記基板の表面、前記溝部の側面および底面に形成される前記振動膜および前記補強部の厚さが均一である
    請求項13に記載の電気機械変換器の製造方法。
    The method of manufacturing an electromechanical converter according to claim 13, wherein the vibration film formed on the surface of the substrate, the side surface and the bottom surface of the groove portion, and the reinforcing portion have a uniform thickness.
PCT/JP2010/004200 2009-08-20 2010-06-24 Electromechanical converter, microphone, and method for manufacturing electromechanical converter WO2011021341A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009191467A JP2011044890A (en) 2009-08-20 2009-08-20 Electromechanical transducer, microphone and method of manufacturing electromechanical transducer
JP2009-191467 2009-08-20

Publications (1)

Publication Number Publication Date
WO2011021341A1 true WO2011021341A1 (en) 2011-02-24

Family

ID=43606802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004200 WO2011021341A1 (en) 2009-08-20 2010-06-24 Electromechanical converter, microphone, and method for manufacturing electromechanical converter

Country Status (2)

Country Link
JP (1) JP2011044890A (en)
WO (1) WO2011021341A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2506171B (en) * 2012-09-24 2015-01-28 Wolfson Microelectronics Plc MEMS device and process
WO2014194062A1 (en) 2013-05-29 2014-12-04 Robert Bosch Gmbh Mesh in mesh backplate for micromechanical microphone
JP6209041B2 (en) * 2013-09-30 2017-10-04 新日本無線株式会社 MEMS device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538739A (en) * 1978-09-12 1980-03-18 Pioneer Electronic Corp Acoustic diaphragm
JPS5775099A (en) * 1980-10-28 1982-05-11 Nippon Gakki Seizo Kk Diaphragm for elecdroacoustic transducer
JP2007104641A (en) * 2005-09-09 2007-04-19 Yamaha Corp Capacitor microphone
JP2008085507A (en) * 2006-09-26 2008-04-10 Matsushita Electric Works Ltd Acoustic sensor, and sound module with acoustic sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538739A (en) * 1978-09-12 1980-03-18 Pioneer Electronic Corp Acoustic diaphragm
JPS5775099A (en) * 1980-10-28 1982-05-11 Nippon Gakki Seizo Kk Diaphragm for elecdroacoustic transducer
JP2007104641A (en) * 2005-09-09 2007-04-19 Yamaha Corp Capacitor microphone
JP2008085507A (en) * 2006-09-26 2008-04-10 Matsushita Electric Works Ltd Acoustic sensor, and sound module with acoustic sensor

Also Published As

Publication number Publication date
JP2011044890A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
KR102579503B1 (en) Mems component and production method for a mems component
US9516428B2 (en) MEMS acoustic transducer, MEMS microphone, MEMS microspeaker, array of speakers and method for manufacturing an acoustic transducer
US8509462B2 (en) Piezoelectric micro speaker including annular ring-shaped vibrating membranes and method of manufacturing the piezoelectric micro speaker
KR101578542B1 (en) Method of Manufacturing Microphone
CN101754077B (en) Piezoelectric acoustic transducer and method for fabricating the same
CN107404697B (en) MEMS acoustic transducer with comb-tooth electrodes and corresponding manufacturing method
CN108124226B (en) Integrated electro-acoustic MEMS transducer with improved sensitivity and manufacturing process thereof
US20150041930A1 (en) Acoustic transducer
US8415717B2 (en) Acoustic sensor
TWI738804B (en) Mems device and process
CN109485009B (en) Microphone and method for manufacturing the same
CN115280797A (en) MEMS transducer with improved performance
WO2018002595A1 (en) Mems device and process
KR101758017B1 (en) Piezo mems microphone and thereof manufacturing method
JP5215871B2 (en) Capacitor microphone diaphragm support device
JP4737535B2 (en) Condenser microphone
WO2018220344A1 (en) Mems devices and processes
US10623852B2 (en) MEMS devices and processes
WO2011021341A1 (en) Electromechanical converter, microphone, and method for manufacturing electromechanical converter
JP2009147798A (en) Capacitor microphone and manufacturing method thereof
CN111263282A (en) Condenser microphone and manufacturing method thereof
CN112788510B (en) Structure of micro-electromechanical system microphone
JP2008072703A (en) Acoustic transducer
GB2551796A (en) MEMS device and process
KR101893486B1 (en) Rigid Backplate Structure Microphone and Method of Manufacturing the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809689

Country of ref document: EP

Kind code of ref document: A1