WO2011020939A2 - Dispositivo separador capacitivo - Google Patents

Dispositivo separador capacitivo Download PDF

Info

Publication number
WO2011020939A2
WO2011020939A2 PCT/ES2010/070559 ES2010070559W WO2011020939A2 WO 2011020939 A2 WO2011020939 A2 WO 2011020939A2 ES 2010070559 W ES2010070559 W ES 2010070559W WO 2011020939 A2 WO2011020939 A2 WO 2011020939A2
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocarbon
water
tank
oscillator circuit
level
Prior art date
Application number
PCT/ES2010/070559
Other languages
English (en)
French (fr)
Other versions
WO2011020939A3 (es
Inventor
Consuelo Goberna Selma
José PRIETO BARRANCO
David YAÑEZ VILLARREAL
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to US13/389,245 priority Critical patent/US8800301B2/en
Priority to CN201080037079.5A priority patent/CN102483343B/zh
Priority to EP10809589.4A priority patent/EP2469246B1/en
Publication of WO2011020939A2 publication Critical patent/WO2011020939A2/es
Publication of WO2011020939A3 publication Critical patent/WO2011020939A3/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0042Thermo-electric condensing; using Peltier-effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/268Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors mounting arrangements of probes

Definitions

  • the present invention relates to a three phase capacitive separator, gases, hydrocarbons and water for very small volume systems
  • the object of the invention consists of a device based on a pair of capacitive sensors and has been designed to effect the continuous separation of gases, hydrocarbons and water obtained as a product of chemical reactions in reactors and process plants at micro-pilot scale or laboratory.
  • the device object of the invention is based on the different electrical capacitance of these three phases and its immiscibility to, from these differences, to know the existing volume of each of them, discriminating them and separating them with precision.
  • the separator system object of the invention also allows to obtain an output controlled of the gases, a considerable reduction of dead volumes of the system and work at high pressures (up to 400 bar.), aspects of great relevance for the optimal operation of the mentioned equipment.
  • a separating device that has a tank that can be made of metal, metal alloy or any conductive material, with a total volume capacity between 3 and 20 cm 3 and that has at least one entrance and three exits; in which two electrically insulated probes are introduced from the rest of the device, allowing hermetic closure of the reservoir for pressures below 400bar.
  • Said probes may have a seal with an insulating material seal.
  • One of these probes is dedicated to measuring the level of hydrocarbon while the other is dedicated to measuring the level of water; said probes constitute, together with the walls of the tank, two electrical capacitors so that the fluids contained in the tank act as a dielectric.
  • the operation of the separating device is based on the capacitance of the elements to be separated, for the measurement of said capacitance the device has two RC oscillator circuits that measure the variation of the electrical capacity of the electric capacitors formed by the measuring probes and the tank walls; whereby a first oscillator circuit
  • RC measures the electrical capacity of the electric condenser formed by the hydrocarbon level measurement probe and the tank walls, which generates a frequency signal proportional to said electrical capacity; while a second RC oscillator circuit, analogous to the previous one, measures the variation of the electric capacity of the electric capacitor formed by The water level measurement probe and the tank walls, which generates a frequency signal proportional to said electrical capacity.
  • the device object of this invention allows gases to be separated from liquids and in turn immiscible liquids, such as water and hydrocarbons. For this, it has two probes, the hydrocarbon Ia being longer than the water so that the signal it provides has a greater range, given that the hydrocarbon capacitance is less than that of water.
  • the inlet of fluid to be separated is made by the opening located below the level that the two liquid phases to separate reach in a steady state, which favors the condensation of the condensable compounds; in turn, the water probe is introduced from one side of the tank, so that the signal of this probe is not affected by the accumulation of possible solid residues, which in the case of the device object of the invention are evacuated by the bottom of the tank along with separate water.
  • This arrangement of the water probe prevents liquids, once condensed, from falling on it, affecting the signal it provides.
  • the device also has two reference RC oscillator circuits that work in parallel and at the same temperature as the aforementioned RC oscillator circuits; Therefore, we have a reference RC oscillator circuit, which works in parallel and at the same temperature as the oscillator circuit of the hydrocarbon probe and which makes it possible to compensate for errors due to variations in the temperature of the RC hydrocarbon level measurement circuit and a RC oscillator circuit of analog reference to the previous one, which works in parallel and at the same temperature as the circuit oscillator of the water probe and which makes it possible to compensate for errors due to variations in the temperature of the RC circuit of water level measurement.
  • two electronic measuring devices are available, one dedicated to the measurement of the hydrocarbon level and the other to the measurement of the water level. Each of them capable of converting two signals into frequency (one of level measurement and another of thermal compensation) into electrical signals capable of being read by typical reading devices (displays) or control (controllers) that can act on the media corresponding output, hydrocarbon output and water output.
  • the device may incorporate a cooling system, such as a Peltier cell based system.
  • a cooling system such as a Peltier cell based system.
  • the described device allows working with a reduced dead volume in systems where high pressure is worked.
  • Figure 1. Shows a schematic representation of a section of the elevation corresponding to the separating device object of the invention.
  • Figure 2. Shows a schematic representation of a section of the elevation of the separating device object of the invention once assembled.
  • Figure 3. Shows a schematic representation of the signals and control elements of the system.
  • a series of machining is performed on a body (1) preferably metal to generate inside a tank (2) of complex geometry and a capacity of about 10cm 3 , as seen in Figure 1, preferably stainless steel, whose geometry corresponds to a rectangular parallelepiped with a lateral recess that facilitates the accommodation of a water probe (10).
  • the deposit (2) obtained consists of a longitudinally perforated part and an oblique part. Both have a diameter of 9mm and converge at the height where a fluid inlet (7) is located.
  • the tank (2) acts as a thermal condenser to separate three phases, two liquid phases (hydrocarbons and water) and a gas phase. On both sides of the tank there are two probes (9) and (10).
  • the tank (2) is perforated in a solid piece (1), whose geometry corresponds to a rectangular parallelepiped, observing in this scheme the upper threaded opening (3) through which a hydrocarbon probe (9) dedicated to the measurement of the hydrocarbon level, and a lateral opening threaded (4) through which a water probe (10), a fluid inlet (7) is introduced, through which the fluid stream to be separated is introduced, and three outlet means (5), (6) and (8 ), where gases, hydrocarbons and water respectively leave.
  • the special parallelepiped configuration of the body (1) allows its cooling to act as a thermal condenser, so that the tank (2) operates as a liquid-gas separator, condensing on its internal walls the compounds with a higher dew point, which are introduced into said tank (2) by the fluid inlet (7) and the liquid being collected in its lower part.
  • the liquid mixture immiscible compounds of different density By having the liquid mixture immiscible compounds of different density, the lighter ones formed by a mixture of hydrocarbons (16), remain floating on the heaviest, in this case water (15).
  • the cooling of the tank (2) is carried out by means of a Peltier cell (not shown) by contacting the cold face of said cell with one of the faces with the greatest surface area of the solid part (1) in which the deposit (2).
  • a potential difference is applied between the plates of the Peltier cell, which generates a temperature difference between said plates of approximately 3O 0 C (Peltier effect).
  • one of the plates (the one that is not in contact with the body (1)) could increase its temperature, heat that must be removed using a forced convection heat sink to evacuate the extracted calories.
  • the temperature of the cold plate (in contact with the body (1)) will then drop to -5 0 C, thus achieving a temperature in said body (1) close to O 0 C and thanks to this the condensation of the knitted compounds of condensation equal to or greater than this temperature.
  • the water probe (10) and the hydrocarbon probe (9) are constructed starting from two solid pieces of 3 mm stainless steel. in diameter and 175 mm. and 140 mm. in length respectively.
  • Teflon insulating pieces are coupled a first insulating piece (11) and a second insulating piece (12) obtained with a precision lathe from solid cylinders of this material, as well as the necessary fittings, a first fitting ( 13) and a second fitting (14) to achieve the closure of the tank (2) once the probes (9,10) have been introduced into it.
  • the lower part of the hydrocarbon probe (9) is introduced into the tank (2) by the upper part of the latter (3) and the lower part of the water probe (10) is introduced into the area of the recess through the hole (4). Both probes are electrically isolated from the walls of the tank (2) by means of the pieces of insulating material (11) and (12) which also reduce the dead volume of the tank (2).
  • the probes (9,10) have a threaded closure system and an elastomeric seal, compatible with a large number of chemical substances, which makes it possible to close the tank (2), and its insulation from the outside when required, even when the pressure inside it reaches 400bar.
  • each of them respectively has: a water measuring condenser (33), a hydrocarbon measuring condenser (34), a reference condenser of water (24) and a hydrocarbon reference condenser (23) with which four frequency signals will be obtained.
  • One is proportional to the water level and is a water level signal (28), another is a reference signal of the water level (27) that is used to compensate for the drift caused by the temperature variation in the oscillator circuit of The water probe, a third is proportional to the hydrocarbon level, a signal of level of hydrocarbons (25) and the fourth and last is a reference signal of the level of hydrocarbons (26) that will be used to compensate for the drift caused by the temperature variation in the oscillating circuit of the hydrocarbon probe.
  • a hydrocarbon level measurement module (29) the two signals (25) and (26) generated to measure the hydrocarbon level are introduced and this provides a 4-2OmA electrical signal capable of being read by a control module of hydrocarbon outlet (31), which regulates the output of the condensed hydrocarbon in the tank.
  • a water level measurement module (30) receives the two signals (27) and (28) generated to measure the water level and this provides a 4-2OmA electrical signal capable of being read by a module water outlet control (32) that regulates the condensate water outlet in the tank.
  • each of the probes (9,10) will make electrical contact of each of the conductors (21, 22) of each electrical capacitor (23,24).
  • the body (1) is common to both probes (9,10) and acts as a common conductor (19).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

Se describe un dispositivo para separar agua, de hidrocarburos y gases, basado en las características eléctricas de los materiales, el dispositivo hace uso de la diferente capacitancia del agua y los hidrocarburos.

Description

DISPOSITIVO SEPARADOR CAPACITIVO D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un separador capacitivo de tres fases, gases, hidrocarburos y agua para sistemas de volumen muy reducido
El objeto de Ia invención consiste en un dispositivo basado en una pareja de sensores capacitivos y ha sido diseñado para efectuar Ia separación en continuo de gases, hidrocarburos y agua obtenidos como producto de reacciones químicas en reactores y plantas de proceso a escala micro-piloto o laboratorio.
ANTECEDENTES DE LA INVENCIÓN
A día de hoy existen sistemas industriales capaces de realizar Ia separación de hidrocarburos y agua. La aparición de estos dos compuestos en depósitos de combustible en vehículos marítimos, durante su almacenamiento en tierra, su transporte en viaductos o como resultado de procesos químicos es muy habitual y su detección ha sido objeto de estudio desde hace décadas. La necesidad de su separación por medio de dispositivos electromecánicos es menos común, pero a pesar de ello es un problema que ha motivado Ia implementación de diferentes sistemas y métodos apoyados en múltiples principios físicos. Todos suelen estar vinculados a su inmiscibilidad, flotabilidad y diferencia de densidad por Io que hacen uso de principios gravitatorios o centrífugos. En algunos casos, para conocer el nivel de cada componente se miden magnitudes asociadas a Ia capacidad y Ia permitividad eléctrica, etc.
El tamaño de los instrumentos, Ia precisión de los mismos y el rango de presiones de trabajo a los que trabajan suponen limitaciones críticas a Ia hora de utilizar estos sistemas en plantas de proceso a escala micro-piloto o laboratorio; donde se detectan grandes volúmenes muertos del sistema y se hace necesario trabajar a presiones elevadas. En Ia patente de invención española ES2249139 se describe un dispositivo sensor de nivel capacitivo para separar dos fases, una fase líquida y una gaseosa; este dispositivo presenta el inconveniente de que sólo dispone de una sonda aislada y sólo separa una fase líquida de una gaseosa con una precisión de nivel de medida de hasta 100μm.
Centrando Ia situación actual de Ia tecnología disponible en su aplicación al tipo de sistemas que nos ocupa, con un volumen total de unos pocos cm3, se puede afirmar que no existe en el mercado ningún sistema separador de gases, hidrocarburos y agua que pueda resolver con satisfacción esta problemática dadas Ia especificaciones de tamaño que requiere Ia misma en un equipo o reactor de laboratorio micro-escala operando en continuo.
DESCRIPCIÓN DE LA INVENCIÓN
El dispositivo objeto de Ia invención está basado en Ia diferente capacitancia eléctrica de estas tres fases y en su inmiscibilidad para, a partir de estas diferencias, poder conocer el volumen existente de cada uno de ellos, discriminándolos y separándolos con precisión. El sistema separador objeto de Ia invención permite, además obtener una salida controlada de los gases, una reducción considerable de volúmenes muertos del sistema y trabajar a presiones elevadas (hasta 400 bar.), aspectos de gran relevancia para Ia óptima operación de los equipos mencionados.
Para ello se desarrolla un dispositivo separador que tiene un depósito que puede ser de metal, aleación metálica o de cualquier material conductor, con una capacidad de volumen total entre 3 y 20 cm3 y que cuenta, al menos con una entrada y tres salidas; en el cual se introducen dos sondas aisladas eléctricamente del resto del dispositivo, permitiendo el cierre hermético del depósito para presiones inferiores a 400bar. Dichas sondas pueden tener un cierre con junta de material aislante.
Una de estas sondas está dedicada a medir el nivel de hidrocarburo mientras que Ia otra está dedicada a medir el nivel de agua; dichas sondas constituyen, junto con las paredes del depósito, dos condensadores eléctricos de forma que los fluidos contenidos en el depósito actúan como dieléctrico. Tal y como se ha descrito anteriormente, el funcionamiento del dispositivo separador está basado en Ia capacitancia de los elementos a separar, para Ia medida de dicha capacitancia el dispositivo cuenta con dos circuitos osciladores RC que miden Ia variación de Ia capacidad eléctrica de los condensadores eléctricos formados por las sondas de medida y las paredes del depósito; por Io cual un primer circuito oscilador
RC mide Ia capacidad eléctrica del condensador eléctrico formado por Ia sonda de medida de nivel de hidrocarburo y las paredes del depósito, que genera una señal en frecuencia proporcional a dicha capacidad eléctrica; mientras que un segundo circuito oscilador RC, análogo al anterior, mide Ia variación de Ia capacidad eléctrica del condensador eléctrico formado por Ia sonda de medida de nivel de agua y las paredes del depósito, que genera una señal en frecuencia proporcional a dicha capacidad eléctrica.
A diferencia del dispositivo sensor descrito en ES2249139, el dispositivo objeto de esta invención permite separar gases de líquidos y a su vez líquidos inmiscibles entre sí, como agua e hidrocarburos. Para ello dispone de dos sondas, siendo Ia de hidrocarburo de mayor longitud que Ia del agua para que Ia señal que proporcione tenga un mayor rango, dado que Ia capacitancia de los hidrocarburos es menor que Ia del agua.
Otras características diferenciadores sobre el dispositivo citado vienen dadas por el hecho de que en el dispositivo objeto de Ia invención Ia entrada de fluido a separar se realiza por Ia abertura ubicada por debajo del nivel que alcanzan en estado estacionario las dos fases líquidas a separar, Io cual favorece Ia condensación de los compuestos condensables; a su vez Ia sonda de agua se introduce por un lateral del depósito por Io que Ia señal de esta sonda no se ve afectada por Ia acumulación de posibles residuos sólidos, que en el caso del dispositivo objeto de Ia invención son evacuados por el fondo del depósito junto con el agua separada. Esta disposición de Ia sonda de agua evita que los líquidos, una vez condensados, caigan sobre Ia misma afectando a Ia señal que proporciona.
Asimismo el dispositivo dispone de dos circuitos osciladores RC de referencia que trabajan en paralelo y a Ia misma temperatura que los circuitos osciladores RC citados; por tanto tenemos un circuito oscilador RC de referencia, que trabaja en paralelo y a Ia misma temperatura que el circuito oscilador de Ia sonda de hidrocarburo y que permite compensar los errores debidos a variaciones de Ia temperatura del circuito RC de medida de nivel de hidrocarburo y un circuito oscilador RC de referencia análogo al anterior, que trabaja en paralelo y a Ia misma temperatura que el circuito oscilador de Ia sonda de agua y que permite compensar los errores debidos a variaciones de Ia temperatura del circuito RC de medida de nivel de agua. Para que el dispositivo separador realice las medidas necesarias se dispone de dos dispositivos electrónicos de medida, uno dedicado a Ia medida del nivel de hidrocarburo y el otro a Ia medida del nivel de agua. Cada uno de ellos capaces de convertir dos señales en frecuencia (una de medida de nivel y otra de compensación térmica) en señales eléctricas capaces de ser leídas por dispositivos típicos de lectura (displays) o de control (controladores) que pueden actuar sobre los medios de salida correspondientes, los de salida de hidrocarburos y los de salida de agua.
Como disposición adicional, y si se hiciera necesario, el dispositivo puede incorporar un sistema de refrigeración, como por ejemplo un sistema basado en células Peltier.
El dispositivo descrito permite trabajar con un reducido volumen muerto en sistemas donde se trabaja a altas presiones.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de Ia invención, de acuerdo con un ejemplo preferente de realización práctica de Ia misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente: Figura 1.- Muestra una representación esquemática de una sección del alzado correspondiente al dispositivo separador objeto de Ia invención.
Figura 2.- Muestra una representación esquemática de una sección del alzado del dispositivo separador objeto de Ia invención una vez montado.
Figura 3.- Muestra una representación esquemática de las señales y elementos de control del sistema.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A Ia vista de las figuras se describe a continuación un modo de realización preferente del dispositivo separador objeto de esta invención.
Se realiza una serie de mecanizados en un cuerpo (1 ) preferiblemente metálico para generar en su interior un depósito (2) de geometría compleja y una capacidad de unos 10cm3, tal y como se observa en Ia figura 1 , preferentemente de acero inoxidable, cuya geometría corresponde a un paralelepípedo rectangular con un rebaje lateral que facilita el alojamiento de una sonda de agua (10). El depósito (2) obtenido consta de una parte horadada longitudinalmente y otra oblicuamente. Ambas poseen un diámetro de 9mm y confluyen a Ia altura donde se encuentra una entrada de fluido (7). El depósito (2) actúa como condensador térmico para separar tres fases, dos fases líquidas (hidrocarburos y agua) y una fase gaseosa. A ambos lados del depósito se encuentran dos sondas (9) y (10). El depósito (2) está horadado en una pieza maciza (1 ), cuya geometría corresponde a un paralelepípedo rectangular, observándose en este esquema Ia apertura superior roscada (3) por donde se introduce una sonda de hidrocarburo (9) dedicada a Ia medición del nivel de hidrocarburo, y una apertura lateral roscada (4) por donde se introduce una sonda de agua (10), una entrada de fluido (7), por donde se introduce Ia corriente de fluido a separar, y tres medios de salida (5), (6) y (8), por donde salen respectivamente los gases, los hidrocarburos y el agua.
A Ia vista de Ia figura 2, Ia especial configuración paralelepípeda del cuerpo (1 ), posibilita su refrigeración para que actúe como condensador térmico, de manera que el depósito (2) opera como un separador líquido-gas, condensando en sus paredes internas los compuestos de mayor punto de condensación, que son introducidos en dicho depósito (2) por Ia entrada de fluido (7) y recogiéndose el líquido en su parte inferior. Al tener Ia mezcla líquida compuestos inmiscibles de diferente densidad, los más ligeros formados por una mezcla de hidrocarburos (16), quedan flotando sobre el más pesado, en este caso agua (15).
La refrigeración del depósito (2) se lleva a cabo mediante una célula Peltier (no mostrada) poniendo en contacto Ia cara fría de dicha célula con una de las caras de mayor superficie de Ia pieza maciza (1 ) en Ia que se ha horadado el depósito (2). Para conseguir Ia disminución de temperatura en este cuerpo (1 ), y como consecuencia en el depósito (2), se aplica una diferencia de potencial entre las placas de Ia célula Peltier, Io que genera una diferencia de temperatura entre dichas placas de aproximadamente 3O0C (efecto Peltier). De esta forma, una de las placas (Ia que no se encuentra en contacto con el cuerpo (1 )) podría incrementar su temperatura, calor que deberá eliminarse utilizando un disipador de calor por convección forzada para evacuar las calorías extraídas. La temperatura de Ia placa fría (en contacto con Ie cuerpo (1 )) bajará entonces hasta -50C consiguiendo así una temperatura en dicho cuerpo (1 ) próxima a los O0C y gracias a ello Ia condensación de los compuestos de punto de condensación igual o superior a esta tem peratu ra . Seguidamente se construyen Ia sonda de agua (10) y Ia sonda de hidrocarburo (9) partiendo de dos piezas macizas de acero inoxidable de 3 mm. de diámetro y 175 mm. y 140 mm. de longitud respectivamente. Sobre estas piezas se acoplan piezas aislantes de teflón una primera pieza aislante (11 ) y una segunda pieza aislante (12) obtenidas con un torno de precisión a partir de cilindros macizos de de este material, así como los racores necesarios, un primer racor (13) y un segundo racor (14) para lograr el cierre del depósito (2) una vez que las sondas (9,10) han sido introducidas en él. La parte inferior de Ia sonda de hidrocarburos (9) se introduce en el depósito (2) por Ia parte superior de éste (3) y Ia parte inferior de Ia sonda de agua (10) se introduce en Ia zona del rebaje por el orificio (4). Ambas sondas quedan aisladas eléctricamente de las paredes del depósito (2) mediante las piezas de material aislante (11 ) y (12) que además reducen el volumen muerto del depósito (2).
Las sondas (9,10) cuentan con un sistema de cierre roscado y con una junta elastomérica, compatible con un amplio número de sustancias químicas, Io que posibilita el cierre del depósito (2), y su aislamiento del exterior cuando así se requiere, aún cuando Ia presión en el interior del mismo alcanza los 400bar.
A continuación se montan cuatro circuitos osciladores según el esquema reflejado en Ia figura 3, donde cada uno de ellos dispone respectivamente de: un condensador de medida de agua (33), un condensador de medida de hidrocarburos (34), un condensador de referencia de agua (24) y un condensador de referencia de hidrocarburos (23) con los que se obtendrán cuatro señales en frecuencia. Una es proporcional al nivel de agua y es una señal de nivel de agua (28), otra es una señal de referencia del nivel de agua (27) que se utiliza para compensar Ia deriva originada por Ia variación de temperatura en el circuito oscilador de Ia sonda de agua, una tercera es proporcional al nivel de hidrocarburo, una señal de nivel de hidrocarburos (25) y Ia cuarta y última es una señal de referencia del nivel de hidrocarburos (26) que se utilizará para compensar Ia deriva originada por Ia variación de temperatura en el circuito oscilador de Ia sonda de hidrocarburo. En un módulo de medida de nivel de hidrocarburo (29) se introducen las dos señales (25) y (26) generadas para medir el nivel de hidrocarburo y éste proporciona una señal eléctrica 4-2OmA capaz de ser leída por un módulo de control de salida de hidrocarburos (31 ), que regula Ia salida del hidrocarburo condensado en el depósito. Análogamente para el agua, un módulo de medida de nivel de agua (30) recibe las dos señales (27) y (28) generadas para medir el nivel de agua y éste proporciona una señal eléctrica 4-2OmA capaz de ser leída por un módulo de control de salida de agua (32) que regula Ia salida del agua condensada en el depósito.
La parte superior de cada una de las sondas (9,10) harán de contacto eléctrico de cada uno de los conductores (21 ,22) de cada condensador eléctrico (23,24). El cuerpo (1 ) es común a ambas sondas (9,10) y actúa como un conductor (19) común.

Claims

R E I V I N D I C A C I O N E S
1. Dispositivo separador capacitivo caracterizado porque comprende:
- un cuerpo (1 ) que tiene practicados una apertura superior roscada (3), una apertura lateral roscada (4), una entrada de fluido (7) adaptada para permitir Ia introducción de un fluido a separar y al menos tres medios de salida (5,6,8) adaptados para dar salida respectivamente a gases, hidrocarburo y agua,
- un depósito (2) definido en el cuerpo (1 ),
- un primer circuito oscilador que comprende al menos un condensador de medida de hidrocarburos (34) que comprende las paredes del depósito (2) a modo de un conductor (19), hidrocarburo (18) a modo de dieléctrico, y una sonda de hidrocarburo (9) fijada en Ia apertura superior roscada (3) que llega al interior del depósito (2) a modo de conductor de medida de hidrocarburos (21 ), adaptado para generar una señal de nivel de hidrocarburos (25),
- un segundo circuito oscilador que comprende al menos un condensador de medida de nivel de agua (33) que comprende las paredes del depósito (2) a modo de conductor (19), agua
(20) a modo de dieléctrico, y una sonda de agua (10) fijada en Ia apertura lateral roscada (4) que llega al interior del depósito (2) a modo de segundo conductor de medida de agua (22), adaptado para generar una señal de nivel de agua (28), - un primer circuito oscilador de referencia en paralelo al segundo circuito oscilador y que a su vez comprende un condensador de referencia de hidrocarburos (23) adaptado para generar una señal de referencia del nivel de hidrocarburos (26),
- un segundo circuito oscilador de referencia en paralelo al primer circuito oscilador y que a su vez comprende un condensador de referencia de agua (24) adaptado para generar una señal de referencia del nivel de agua (27),
- un módulo de medida de nivel de agua (30) encargado de recibir las señales de agua (27,28) conectado a un módulo de control de salida de agua (32) que actúa sobre los medios de salida de agua (8), y
- un módulo de medida de nivel de hidrocarburo (29) encargado de recibir las señales de hidrocarburos (25,26) conectado a un módulo de control de salida de hidrocarburos (31 ) que actúa sobre los medios de salida de hidrocarburo (6).
2. Dispositivo según reivindicación 1 caracterizado porque adicionalmente comprende un sistema de refrigeración destinado a refrigerar Ia pieza maciza (1 ) y el depósito (2).
3. Dispositivo según reivindicación 2 caracterizado porque el sistema de refrigeración comprende al menos una célula Peltier cuya cara fría está en contacto con Ia pieza maciza (1 ).
4. Dispositivo según reivindicación 1 caracterizado por que Ia pieza maciza (1 ) y las sondas (9, 10) son de un material seleccionado entre: un metal, una aleación metálica y un material conductor.
5. Dispositivo según reivindicación 4 caracterizado porque las piezas de metal de las sondas (9,10) son de acero inoxidable.
6. Dispositivo según reivindicación 5 caracterizado porque las sondas (9,10) comprenden un cierre con una junta de material aislante.
7. Uso del dispositivo descrito en una cualquiera de las reivindicaciones anteriores como dispositivo separador de hidrocarburos y agua en plantas a escala micropiloto o laboratorios operando en continuo.
PCT/ES2010/070559 2009-08-17 2010-08-17 Dispositivo separador capacitivo WO2011020939A2 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/389,245 US8800301B2 (en) 2009-08-17 2010-08-17 Capacitive separator device
CN201080037079.5A CN102483343B (zh) 2009-08-17 2010-08-17 电容式分离器装置
EP10809589.4A EP2469246B1 (en) 2009-08-17 2010-08-17 Capacitive separator device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200930603A ES2353288B1 (es) 2009-08-17 2009-08-17 Dispositivo separador capacitivo.
ESP200930603 2009-08-17

Publications (2)

Publication Number Publication Date
WO2011020939A2 true WO2011020939A2 (es) 2011-02-24
WO2011020939A3 WO2011020939A3 (es) 2011-07-14

Family

ID=43587004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070559 WO2011020939A2 (es) 2009-08-17 2010-08-17 Dispositivo separador capacitivo

Country Status (5)

Country Link
US (1) US8800301B2 (es)
EP (1) EP2469246B1 (es)
CN (1) CN102483343B (es)
ES (1) ES2353288B1 (es)
WO (1) WO2011020939A2 (es)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8943895B2 (en) 2012-09-07 2015-02-03 Dynisco Instruments Llc Capacitive pressure sensor
US8984952B2 (en) 2012-09-07 2015-03-24 Dynisco Instruments Llc Capacitive pressure sensor
US9103738B2 (en) * 2012-09-07 2015-08-11 Dynisco Instruments Llc Capacitive pressure sensor with intrinsic temperature compensation
EP3521778B1 (de) * 2018-02-06 2021-11-17 VEGA Grieshaber KG Impedanzsensor und verfahren zu dessen betrieb

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2249139A1 (es) 2004-06-03 2006-03-16 Consejo Sup. Investig. Cientificas Sensor de nivel capacitivo para sistemas de volumen reducido.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3182502A (en) * 1962-01-24 1965-05-11 Sun Oil Co Tank gauge apparatus
US3974695A (en) * 1975-08-18 1976-08-17 Sun Oil Company Of Pennsylvania Double level gauge
FR2692161B1 (fr) * 1992-06-10 1994-09-23 Total Sa Procédé et dispositif pour la séparation et le dosage en continu d'un mélange multiphasique.
NO301562B1 (no) * 1994-12-21 1997-11-10 Exxon Production Research Co Anordning for måling
FR2782804B1 (fr) * 1998-09-01 2000-09-29 Inst Francais Du Petrole Dispositif de separation et de mesure du volume des differentes phases d'un melange de fluides
NO326208B1 (no) * 1999-07-12 2008-10-20 Epsis As Fremgangsmate og anordning til maling av interfaseniva, samt anvendelse derav
CN2574019Y (zh) * 2002-09-30 2003-09-17 刘宝和 油气水自动计量仪
WO2007008793A2 (en) * 2005-07-11 2007-01-18 Phase Dynamics Multiphase fluid characterization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2249139A1 (es) 2004-06-03 2006-03-16 Consejo Sup. Investig. Cientificas Sensor de nivel capacitivo para sistemas de volumen reducido.

Also Published As

Publication number Publication date
US20120131931A1 (en) 2012-05-31
EP2469246B1 (en) 2018-11-28
ES2353288B1 (es) 2012-01-09
ES2353288A1 (es) 2011-03-01
US8800301B2 (en) 2014-08-12
CN102483343A (zh) 2012-05-30
EP2469246A2 (en) 2012-06-27
CN102483343B (zh) 2014-09-10
EP2469246A4 (en) 2017-04-05
WO2011020939A3 (es) 2011-07-14

Similar Documents

Publication Publication Date Title
WO2011020939A2 (es) Dispositivo separador capacitivo
US9354099B2 (en) Aircraft fuel level measurement apparatus and method
Evans et al. Theory of condensation in narrow capillaries
RU2606256C2 (ru) Устройство и способ установления фазового равновесия со считыванием показаний на месте
JP6905908B2 (ja) マイクロ流体プレート内部の流体の状態を検出するセンサ、流体を含む試料の調製を制御するシステム、およびマイクロ流体プレート内部の流体の状態を検出する方法
CN101657727B (zh) 识别移液针进液口内堵塞物、凝结物或凝块的方法
CN105299462A (zh) 一种高精度液氮液位测量系统
ES2249139B1 (es) Sensor de nivel capacitivo valido para sistemas de volumen muy reducido.
KR20080098562A (ko) 수평기
CN108240851B (zh) 液面状态检测装置及燃料电池系统
US10107669B2 (en) Liquid level sensor with insulating region over the probe foot
CN110337326A (zh) 气化装置和气化系统
RU2545085C1 (ru) Конструкция бипланарного емкостного датчика перепада давления
US11747186B2 (en) Device for capacitive measurements in a multi-phase medium
Ko et al. Advanced thermophysical properties measurements using heater-integrated fluidic resonators
Ramos et al. Beyond the standard tunneling model: The soft-potential model
RU2000130450A (ru) Устройство для измерения плотности
RU2137109C1 (ru) Устройство для измерения плотности
RU2518855C1 (ru) Анализатор газожидкостного потока
KR200278654Y1 (ko) 비중계를 이용한 액체의 오염 감지 장치
RU1793351C (ru) Диэлькометрический датчик пара
RU2502957C2 (ru) Уровнемер-расходомер жидкости в баке
CN116529568A (zh) 使用其电容式测量区分燃料与水
SU259439A1 (ru) Измеритель давления агрессивных высокотемпературных жид-костей
Ionete et al. Two-phase cryogenic flow measurement

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037079.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13389245

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010809589

Country of ref document: EP