WO2011020303A1 - 特高压交流输电线路的分闸断路器、分合闸断路器、分合闸系统以及分闸方法 - Google Patents

特高压交流输电线路的分闸断路器、分合闸断路器、分合闸系统以及分闸方法 Download PDF

Info

Publication number
WO2011020303A1
WO2011020303A1 PCT/CN2010/001258 CN2010001258W WO2011020303A1 WO 2011020303 A1 WO2011020303 A1 WO 2011020303A1 CN 2010001258 W CN2010001258 W CN 2010001258W WO 2011020303 A1 WO2011020303 A1 WO 2011020303A1
Authority
WO
WIPO (PCT)
Prior art keywords
uhv
circuit breaker
closing
opening
transmission line
Prior art date
Application number
PCT/CN2010/001258
Other languages
English (en)
French (fr)
Inventor
林集明
班连庚
王晓刚
王晓彤
项祖涛
孙岗
郑彬
韩彬
Original Assignee
中国电力科学研究院
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院, 国家电网公司 filed Critical 中国电力科学研究院
Publication of WO2011020303A1 publication Critical patent/WO2011020303A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/16Impedances connected with contacts
    • H01H33/166Impedances connected with contacts the impedance being inserted only while closing the switch

Definitions

  • the present disclosure relates to the field of UHV transmission technologies, and in particular, to a tripping circuit breaker, a switching circuit breaker, a switching system and a distracting method for an UHV AC transmission line. Background technique
  • UHV Ultra-high Voltage
  • UHV power system when the transmission line breaker performs the opening and closing operation, a variety of operating overvoltages are generated. Because the reactive power of the UHV AC transmission line is very large, taking the 1000kV UHV AC transmission system as an example, the reactive power per 100km line can reach 530Mvar or so; plus the UHV AC transmission lines are mostly long distance and large.
  • an AC transmission line opening and closing system is taken as an example to suppress overvoltage operation of the EHV AC transmission line.
  • the problem is usually to use a circuit breaker with a specific circuit configuration.
  • Fig. 1 is a schematic view showing the structure of a super-high voltage AC transmission line opening and closing system in the prior art.
  • the power-side circuit breaker 20 is taken as an example, which includes a switch-sharing resistor R1, a resistor switch K12, and a main switch K11.
  • the switch-sharing resistor R1 is connected in series with the resistor switch K12.
  • the resulting series structure is in parallel with the main switch K11.
  • FIG. 2 is a schematic view showing the specific flow of the opening and closing operation of the opening and closing system of the ultrahigh voltage AC transmission line shown in Fig. 1.
  • the resistance switch K12 and the main switch K11 are both turned on; the feeding side is ready to be transported to the power receiving side. Electric power, at this time, the closing operation is performed on the feeding side circuit breaker, as shown in Fig.
  • the resistance switch K12 is closed, and the branch formed by the switching and closing common resistor R1 and the resistance switch K12 is connected to the circuit; Then, the main switch K11 is closed, as shown in Fig. 2 (c); after the main switch K11 is closed, the branch formed by the main switch is connected to the circuit, and the branching and closing resistor R1 and the resistance switch K12 are combined. The road is shorted; finally, the resistance switch ⁇ 12 is disconnected, as shown in Fig. 2 (d), the closing operation of the circuit breaker is completed.
  • the circuit breaker 20 After completing the power transmission from the power feeding side to the power receiving side, the circuit breaker 20 performs a tripping operation; as shown in FIG. 2(e), the resistance switch K12 is closed, and the sharing and closing resistor R1 and the resistance switch K12 are combined. The branch is re-connected to the circuit; then the main switch K11 is disconnected, as shown in Figure 2 (f); finally, the resistance switch K12 is disconnected, as shown in Figure 2 (g), the circuit breaker is opened, open circuit The device 20 is restored to a state where there is no branch access.
  • the prior art uses a form in which the closing and closing resistors are shared, and benefits during the opening process. The closing resistor acts as a tripping resistor, thereby suppressing the overvoltage of the trip.
  • Fig. 3 is a schematic view showing the structure of another ultra-high voltage AC transmission line opening and closing system in the prior art.
  • the circuit breaker 20 is taken as an example, which includes a closing circuit breaker portion and a breaker circuit breaker portion; wherein the closing circuit breaker portion includes: a closing resistor R12, a resistance switch K12, and a main switch K11.
  • the closing resistor R1 is connected in series with the resistance switch K12, and the formed series structure is further connected in parallel with the main switch K11;
  • the opening circuit breaker portion includes: a tripping resistor R13, a resistance switch K13, and a main switch K11; wherein the opening resistor R13 In series with the resistor switch K13, the resulting series structure is in parallel with the main switch K11.
  • FIG. 4 is a schematic diagram showing the specific flow of the opening and closing operation of the ultra-high voltage AC transmission line opening and closing system shown in FIG.
  • Fig. 4 (a) when the power feeding side does not supply power to the power receiving side (that is, before the closing operation has been performed), the resistance switches K12, K13 and the main switch K11 are both turned on; the feeding side is ready to The power receiving side transmits power, and at this time, a closing operation is performed on the closing circuit breaker portion of the feeder side circuit breaker 20, such as Figure 4 (b), close the resistance switch K12, the branch formed by the closing resistor R12 and the resistance switch K12 is connected to the circuit; then the main switch K11 is closed, as shown in Figure 4 (c); After the switch K11 is closed, the branch formed by the main switch is connected to the circuit, and the branch formed by the closing resistor R12 and the resistance switch K12 is short-circuited; finally, the resistance switch K12 is disconnected, as shown in FIG. 4(d), Complete the closing operation of the closing circuit
  • the opening operation is performed on the opening circuit breaker portion of the circuit breaker 20; as shown in Fig. 4 (e), the resistance switch K13, the opening resistor R13 and the resistor are closed.
  • the branch formed by the switch K13 is connected to the circuit; then the main switch K11 is turned off, as shown in Fig. 4 (f); finally, the resistance switch ⁇ 13 is turned off, as shown in Fig. 4 (g), the switch breaker part is completed.
  • the opening operation of the circuit breaker 20 is restored to the state where there is no branch access.
  • This prior art uses the addition of a parallel branch having an inter-segment resistance through which the tripping overvoltage is suppressed during the tripping process.
  • the opening resistor is separately assembled to form the opening circuit breaker portion, there are not only defects such as high failure rate, high manufacturing difficulty, and high cost in the above-mentioned switching and sharing resistor; but also in the circuit breaker structure. Adding a branch makes the circuit breaker structure more complicated and takes up more space. The application scenario with limited device capacity is limited.
  • Embodiments of the present disclosure provide a tripping circuit breaker, a switching circuit breaker, a switching system, and an opening method for an UHV AC transmission line, which limit the safety of the hazardous equipment and the overvoltage problem of the system operation to a reasonable level. , to meet UHV AC transmission Electrical system requirements.
  • an embodiment of the present disclosure provides a tripping circuit breaker, a switching circuit breaker, a switching system, and an opening method for an UHV AC transmission line, which can meet the requirements of a 1000 kV UHV AC transmission system.
  • Embodiments of the present disclosure provide a trip circuit breaker for an UHV AC transmission line, the branch circuit breaker being constituted by a main switch for performing a trip operation of an UHV AC transmission line.
  • the trip breaker is used for a 1000 kV UHV AC transmission line.
  • the embodiment of the present disclosure provides a opening and closing circuit breaker of an UHV AC transmission line
  • the switching circuit breaker includes: a switching circuit breaker, the opening circuit breaker is composed of a main switch, and is used for performing UHV AC The opening operation of the transmission line; and the closing circuit breaker for performing the closing operation of the UHV AC transmission line and limiting the overvoltage of the closing operation.
  • the opening and closing circuit breaker comprises: a closing resistor, a resistance switch, and a main switch shared with the opening circuit breaker; wherein the closing resistor and the resistor The switches are connected in series and the resulting series structure is in parallel with the main switch.
  • the UHV AC transmission line is used to transmit 1000 kV UHV AC.
  • the closing resistor has a value of 400 to 600 ohms and an access time of 8 to 11 ms.
  • the embodiment of the present disclosure provides a switching system for an UHV AC transmission line, including: a UHV transformer on the feeding side, a UHV switching circuit breaker on the feeding side, a UHV transmission line, and a UHV switching on the power receiving side.
  • the brake circuit breaker is a split-close circuit breaker as described above.
  • the UHV AC transmission line is used to transmit 1000 kV UHV AC.
  • the UHV transformer on the feeding side and the UHV transformer on the power receiving side are used to realize an ultrahigh voltage alternating current of 500 kV and an ultrahigh voltage alternating current of 1000 kV and a high voltage alternating current of HOkV. Conversion.
  • the closing resistor has a value of 400 600 ohms and an access time of 8 to 11 ms.
  • Embodiments of the present disclosure provide a method of opening a UHV AC transmission line that has only the steps of: Disconnecting a trip breaker formed by a main switch.
  • Embodiments of the present disclosure provide a tripping circuit breaker, a switching circuit breaker, a switching system, and an opening method of an UHV AC transmission line, by using only a closing resistor in a UHV circuit breaker, without utilizing
  • the closing resistor of the UHV AC transmission line must include the industry technical bias of the opening resistor, and the opening and closing circuit breaker provided by the embodiment of the present disclosure, and the switching resistor is used as a common resistor or an additional braking resistor.
  • the brake system reduces the construction cost, improves the reliability of the equipment and the operational reliability of the entire UHV AC transmission system.
  • FIG. 1 is a schematic structural view of a conventional high-voltage AC transmission line opening and closing system in the prior art
  • Figure 2) -2 (g) shows a schematic diagram of the specific flow of the opening and closing operation of the ultra-high voltage AC transmission line opening and closing system shown in Figure 1; 3 is a schematic structural view of another ultra-high voltage AC transmission line opening and closing system in the prior art;
  • Figure 4) -4 ( g ) shows a detailed flow chart of the opening and closing operation of the ultra-high voltage AC transmission line opening and closing system shown in Figure 3;
  • FIG. 6 is a schematic structural view of a switching system of an UHV AC transmission line provided by an embodiment of the present disclosure
  • Figure 7 (a) -7 (b) shows the specific flow chart of the opening and closing operation of the UHV AC transmission line opening and closing system shown in Figure 6. Detailed ways
  • the operating overvoltage occurs during the transition caused by changes in the operating state of the LC loop.
  • the recommended overvoltage limit for the UHV AC transmission system is currently 1.6 to 1.8 pu.
  • the recommended operating over-voltage limit target is: For both substation and switch station equipment at both ends of the line, it should be limited to 1.6p. U ; The middle portion of the long line is limited to less than 1.7 pu.
  • FIG. 5 shows an equivalent circuit diagram of an H UHV AC transmission line.
  • UHV transformer 10 as an example to realize the conversion between 500kV ultra-high voltage alternating current and 1000kV UHV AC and UOkV high-voltage alternating current, we will study how to design UHV circuit breaker to suppress the problem of closing overvoltage.
  • the description of the embodiment is given for the sake of example and description, and constitutes any limitation on the specific voltage value of the UHV AC transmission to which the present disclosure is applicable.
  • the UHV transmission line 30 side is connected to the feeding side system UHV transformer 10 through the feeding side UHV breaker 20, and the other end is The power receiving side UHV breaker 40 is disconnected and the end is suspended.
  • the UHV transmission line 30 is equivalently replaced with an equivalent resistor R, an equivalent inductor L, and an equivalent capacitor C.
  • one stage is that the resistance switch K12 is first closed, and the feeding side closing resistor RH1 is connected to the circuit, as shown in Fig. 5 (b); one stage is the main switch K11 When closed, the feed side closing resistor RH1 is shorted, as shown in Fig. 5 (c); the resistor switch K12 is turned on in the subsequent stage. Regardless of the feed side or the power receiving side, during the closing process, the closing circuit dampens the free component and reduces the overvoltage amplitude of the closing operation.
  • the value of the feed side closing resistor RH1 may be 400 to 600 ohms, and the access time may be 8 to 11 ms; the value of the power receiving side closing resistor RH2 may also be 400 ⁇ 600 ohms, the access time can be 8 ⁇ 11ms.
  • the values of the feed side closing resistor RH1 and the power receiving side closing resistor RH2 can be determined according to the value range (the closing of the closing resistor RH1)
  • the value can be 400 ⁇ 600 ohms, its access
  • the time can be 8 ⁇ llms) and the actual engineering conditions are set accordingly.
  • the present disclosure provides a circuit breaker and a switching system for an UHV AC transmission line, and the circuit breaker used only needs to be equipped with a closing resistor without installing a tripping resistor; not only can meet the UHV AC transmission line For the corresponding overvoltage requirements during the closing and closing, it is also possible to avoid the technical problems of the opening resistors caused by the opening resistors, the safety performance on the system reliability and the resistance energy loss.
  • the inventors conducted the following research on the opening and closing system of the UHV AC transmission line:
  • the electromagnetic transient simulation test is carried out for the over-voltage of the opening operation of the UHV AC transmission line.
  • the test results show that in most cases, the overload voltage of the substation and the switching station can be limited to less than 1.6 pu by the MOA with the rated voltage of 828 kV and the high resistance of the conventional line; It is limited to 1.7 pu or less; in addition, the multi-point grounding method of good conductor grounding can also limit the single-phase grounding fault ⁇ load operation overvoltage; and for the primary boosting power transmission system, the installed capacity of the power plant can be sent out. Line lengths are imposed to meet the requirements of overvoltage levels.
  • the TRV peak and the rising rate of the main breaker of the circuit breaker can be reduced only for small short-circuit current, and the main fault for the rated short-circuit breaking current (50kA).
  • the limitation effect of TRV is not obvious; when the breaking out-of-step fault occurs, although the TRV level of the main fracture is reduced, the peak of the TRV of the auxiliary fracture is obviously increased compared with the case without the opening resistance, even exceeding the relevant standard.
  • the specified test parameters require, and many manufacturers' equipment manufacturing capabilities and test assessment conditions can not meet the above requirements, but also increase the cost of equipment.
  • the energy problem is the biggest problem with the use of shunt resistors.
  • the decisive action of the split closing resistor energy is not to limit the energy consumption of the operating overvoltage process, but to the other switching requirements of the line breaker. This requirement is also reflected in the circuit breaker test requirements.
  • the common resistance heat capacity of the UHV circuit breaker is calculated, and the failures of the UHV AC transmission system under the current and long-term system conditions are The simulation study on the energy consumption of the shared resistors under the operation of the switch is carried out. Combining the results of these two aspects, the following recommendations are made for the energy consumption of the circuit breaker switching resistors:
  • the circuit breaker is required to be able to withstand the BTF opening + single out-of-synchronization operation.
  • the circuit breaker has a 400 ⁇ ⁇ closing and sharing resistor (combined to the shared resistor), the energy absorption capacity of the shared resistor is not required. Below 165 ⁇ 247MJ, as shown in Table 2;
  • circuit breaker If the circuit breaker is allowed to be divided twice (CO-t-CO) under the condition of out-of-step, then the circuit breaker (combined brake sharing resistor) with 600 ⁇ switching and sharing resistors It is 247.3MJ (regardless of the heat dissipation of the resistor during the two operating intervals).
  • the embodiment of the present disclosure proposes a special high-voltage AC transmission line opening and closing system, that is, a circuit breaker of a 1000 kV AC transmission line needs to be equipped with a closing resistor, and it is not necessary to install a switching resistor.
  • the resistance of the closing resistor is generally 400-600 ohms and can be selected according to different engineering specificities.
  • the access time is 8 ⁇ 11ms, and the energy consumption requirement is 45 ⁇ 30MJ.
  • the overvoltage of the circuit is operated, and the main switch is used as the opening and closing circuit breaker, that is, the main switch is used to perform the opening operation of the circuit, and the two sides of the line are used.
  • MOA and conventional line high voltage reactors limit the operating overvoltage to the allowable range.
  • the overvoltage level can be met by limiting the installed capacity of the power plant and the length of the outgoing line;
  • the probability of occurrence is extremely low, and only affects part of the self-recoverable line tower insulation, and does not endanger the substation or switch station equipment. Security, so there is no need to take more measures. Even if you want to ensure absolute safety, you can limit the overvoltage to the allowable range by adding a MOA in the middle of the line. This measure is economical and reliable compared with installing the opening resistor. .
  • the embodiments of the present disclosure overcome the technical bias of the industry, completely overturning the technical personnel in the art to install a tripping resistor when the UHV AC transmission line is opened (or use a closing resistor to act as a tripping resistor). ) the traditional concept.
  • the opening and closing system of the UHV AC transmission line provided by the embodiment of the present disclosure, the opening and closing operation is directly performed by using the main switch without adding the opening resistor or the sharing resistor of the opening and closing, thereby simplifying the system construction and operation. , reducing the risk of system damage, providing the safety of opening and closing; further reducing the difficulty and production cost of manufacturing the opening and closing circuit breaker.
  • FIG. 6 is a schematic structural diagram of a switching system of an UHV AC transmission line according to an embodiment of the present disclosure.
  • a switching system for an UHV AC 3 ⁇ electric line includes: a UHV transformer 10 on the power feeding side, a UHV switching circuit breaker on the power feeding side, an UHV transmission line 30, and a UHV substation on the power receiving side.
  • the closing circuit breaker and the power receiving side UHV transformer 50 are the closing circuit breaker and the power receiving side UHV transformer 50.
  • One end of the UHV switching circuit breaker on the feeding side is connected to the high voltage side busbar of the UHV transformer on the feeding side, and the other end is connected to one end of the UHV switching circuit breaker on the power receiving side via the UHV transmission line 30; UHV is divided on the power receiving side The other end of the brake circuit breaker is connected to the high-voltage side busbar of the UHV transformer on the power receiving side.
  • the feeding side UHV opening and closing circuit breaker comprises a circuit structure 20 of the closing circuit breaker
  • the power receiving side UHV opening and closing circuit breaker comprises a circuit breaker 40 of the closing circuit breaker.
  • the closing circuit breakers 20 and 40 are used to limit the closing operation overvoltage of the UHV AC transmission line; wherein, the closing circuit breakers 20 and 40 include: a closing resistor RH1 and RH2, resistance switches K12 and K22, and main switches K11 and K21 shared with the breaker circuit breaker; wherein the closing resistor is connected in series with the resistor switch, and the formed series structure is connected in parallel with the main switch.
  • the feeder side UHV opening circuit breaker 21 is composed only of a main switch shared with the power feeding side closing circuit breaker (ie, the opening circuit breaker does not involve a branch circuit in which the closing resistor RH1 and the resistance switch K12 are connected in series) during the opening process. Wherein, the main switch is used to perform the opening operation of the UHV AC transmission line.
  • the feeding side UHV opening circuit breaker 41 is composed of a main switch shared with the feeding side closing circuit breaker (ie, the opening circuit breaker does not involve a branch circuit in which the closing resistor RH2 and the resistance switch K22 are connected in series); Among them, the main switch is used to perform the opening operation of the UHV AC transmission line.
  • Fig. 7 is a schematic view showing the specific flow of the opening and closing operation of the UHV AC transmission line opening and closing system shown in Fig. 6.
  • Fig. 7 (a) when power is transmitted to the power receiving side on the power feeding side, the main switch K11 is in the closing state, and the closing resistor K12 is in the off state; after the power transmission to the power receiving side is completed, the passage is completed.
  • the opening and closing circuit breaker 21 is operated to perform the opening operation.
  • Fig. 7 (b) the main switch K11 is directly disconnected, the opening operation of the circuit breaker is completed, and the opening and closing circuit breaker is restored to the state where no branch is connected.
  • the opening and closing system of the UHV AC transmission line provided by the embodiment of the present disclosure is configured to limit the overvoltage problem during the system opening and closing operation; in particular, the UHV opening and closing circuit
  • the device is equipped with a closing switch and is not equipped with a sub-discharge resistor, or a shared closing resistor is used as a trip resistor.
  • the embodiment of the present disclosure provides the separation
  • the brake system in addition to the high impedance of the installation line and the lightning rod with a rated voltage of 828kV, is equipped with a closing electric switch for the UHV circuit breaker. Resistance.
  • the resistance of the closing resistor is generally 400 ⁇ 600 ohms, and the resistance value can be selected according to the specific project, the access time is 8 ⁇ 11ms, and the energy consumption requirement is 45 ⁇ 30MJ.
  • the opening and closing system according to the embodiment of the present disclosure reduces the engineering cost, improves the reliability of the equipment, and improves the operational reliability of the entire UHV AC transmission system.
  • the embodiments of the present disclosure also correct the conventional concept: installing a tripping resistor can solve the zero drift phenomenon that may occur in the UHV AC transmission system, and can effectively reduce the transient recovery when the breaker breaks severely.
  • the effect of the voltage level is one-sided or erroneous.
  • the circuit breaker is equipped with a tripping resistor, which has a relatively high damage rate, and the multi-phase fault opening operation overvoltage is much lower, and the multi-phase fault opening operation is not much damage to the substation and the switch station electrical equipment. It is uneconomical and unreasonable; and the installation of the opening resistor has certain defects in terms of heat capacity and energy consumption.
  • the circuit breaker of the opening and closing system in the embodiment of the present disclosure only installs the closing resistor and does not install the opening resistor, and can limit the overvoltage problem that jeopardizes equipment safety and system operation reliability to a reasonable cost at a reasonable cost. In the horizontal, it meets the requirements of UHV AC transmission lines.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Description

特高压交流输电线路的分闸断路器、 分合闸断路 器、 分合闸系统以及分闸方法 技术领域
本公开涉及特高压输电技术领域, 尤其涉及一种特高压交流 输电线路的分闸断路器、 分合闸断路器、 分合闸系统以及分闹方 法。 背景技术
由于电力开发资源与电力需求分布不统一, 例如中国可开发 的水电资源近三分之二在西部, 煤炭资源的三分之二在山西、 陕 西和内蒙古, 而中国三分之二的用电负荷却分布在东部沿海和京 广铁路沿线以东的经济发达地区, 这样就需要通过远距离输电, 从而把能源地产生的电量输送至电力需求大的中东部地区。
为了减少远距离输电产生的电力损耗, 提高输电质量, 急需 开发特高压输电技术。 特高压 (UHV, Ultra-high Voltage ) 交流 输电,通常是指 1000kV及以上电压等级的交流输电工程及相关技 术。 特高压电力系统中, 当输电线路断路器进行分合闸操作时, 将产生多种操作过电压。 由于特高压交流输电线路自身的无功功 率很大, 以 1000kV特高压交流输电系统为例, 每 100km线路的 无功功率可达 530Mvar左右; 再加上特高压交流输电线路大都具 有远距离、 大容量输送电能的特点, 使得特高压交流输电线路分 合闸操作过电压等危害系统安全的过电压问题更加突出。 鉴于合 分闸操作过电压会对线路设备和系统安全带来很大的影响, 考虑 到电气设备制造工艺与成本、 远距离输电所经历的区域地形复杂 (如高海拔、 温差跨度大等方面的因素), 给特高压交流输电系统 的过电压限制提出了非常高的要求。 以超高压( EHV, Extra-high Voltage,例如:电力系统中 330kV 以上且不超过 765kV的交流电压等级) 交流输电线路分合闸系统 为例, 为了抑制超高压交流输电线路分合闸操作过电压问题, 通 常采用具有特定电路构造的断路器。
图 1 示出了现有技术中一种超高压交流输电线路分合闸系统 的结构示意图。 如图 1所示, 以馈电侧断路器 20为例进行说明, 其包括分合闸共用电阻 Rl、 电阻开关 K12, 以及主开关 K11; 其 中分合闸共用电阻 R1与电阻开关 K12 串联, 所形成的串联结构 再与主开关 K11并联。
以馈电侧(包括 UHV变压器 10、 断路器 20 )为例进行简化 描述, 对断路器 20的分合闸操作流程同样适用于受电侧的断路器 40。 图 2示出了图 1所示的超高压交流输电线路分合闸系统执行 分合闸操作的具体流程示意图。 如图 2 )所示, 馈电侧不向受 电侧输送电力时(即在尚未进行合闸操作之前), 电阻开关 K12和 主开关 K11均处于打开状态; 馈电侧准备向受电侧输送电力, 此 时对馈电侧断路器执行合闸操作, 如图 2 ( b )所示, 合上电阻开 关 K12, 由分合闸共用电阻 R1和电阻开关 K12构成的支路被接 入回路; 随后再合上主开关 Kll, 如图 2 ( c )所示; 待主开关 K11 合上之后, 由主开关构成的支路被接入回路, 分合闸共用电阻 R1 和电阻开关 K12构成的支路被短接; 最后再断开电阻开关 Κ12, 如图 2 ( d )所示, 完成断路器的合闸操作。
在完成馈电侧向受电侧的电力输送后, 对断路器 20执行分闸 操作; 如图 2 ( e )所示, 合上电阻开关 K12, 分合闸共用电阻 R1 和电阻开关 K12 构成的支路被再次接入回路; 随后断开主开关 K11, 如图 2 ( f )所示; 最后再断开电阻开关 K12, 如图 2 ( g ) 所示, 完成断路器的分闸操作, 断路器 20恢复到没有支路接入的 状态。 该现有技术釆用分合闸电阻共用的形式, 在分闸过程中利 用该合闸电阻充当分闸电阻, 从而起到抑制分闸过电压的目的。 根据目前国内外超高压交流输电电网运行经验, 发生多相短 路故障的概率很低, 而特高压交流输电线路发生两相与三相短路 故障的可能性预计更低; 相对来说, 分合闸电阻出现故障的概率 要比这个大得多,据 1994年不完全统计国内 500kV合闸电阻的损 坏相数己达 15相次左右; 分合闸电阻共用, 其损坏率还要高。
此外, 需要特别提出的是: 如果在特高压交流输电线路的分 合闸系统的分闸断路器中, 装设分闸电阻(例如采用分合闸共用 一个电阻的情形), 其关键难题在于需要考虑电阻的热容量。 基于 对特高压交流输电系统中各种可能出现的故障及操作工况的研究 表明, 目前很少有断路器制造商能够具备制造符合特高压交流输 电线 5§要求的分合闸共用电阻的制造能力, 而且造价也相当昂贵, 同时还增加了设备损坏的概率, 因此应用于实际工程的可行性较 小。
图 3 示出了现有技术中另一种超高压交流输电线路分合闸系 统的结构示意图。 如图 3所示, 以断路器 20为例进行说明, 其包 括合闸断路器部分和分闸断路器部分; 其中合闸断路器部分包括: 合闸电阻 R12、 电阻开关 K12, 以及主开关 K11; 其中合闸电阻 R1与电阻开关 K12 串联, 所形成的串联结构再与主开关 K11并 联; 分闸断路器部分包括: 分闸电阻 R13、 电阻开关 K13, 以及 主开关 K11; 其中分闸电阻 R13与电阻开关 K13串联, 所形成的 串联结构再与主开关 K11并联。
图 4示出了图 3所示的超高压交流输电线路分合闸系统执行 分合闸操作的具体流程示意图。 如图 4 ( a )所示, 馈电侧不向受 电侧输送电力时 (即在尚未进行合闸操作之前), 电阻开关 K12、 K13和主开关 K11均处于打开状态; 馈电侧准备向受电侧输送电 力, 此时对馈电侧断路器 20的合闸断路器部分执行合闸操作, 如 图 4 ( b )所示, 合上电阻开关 K12, 合闸电阻 R12和电阻开关 K12构成的支路被接入回路; 随后再合上主开关 K11, 如图 4 ( c ) 所示; 待主开关 K11合上之后, 主开关构成的支路被接入回路, 合闸电阻 R12和电阻开关 K12构成的支路被短接; 最后再断开电 阻开关 K12, 如图 4 ( d )所示, 完成合闸断路器部分的合闸操作。
在完成馈电侧向受电侧的电力输送后, 对断路器 20的分闸断 路器部分执行分闸操作; 如图 4 ( e )所示, 合上电阻开关 K13, 分闸电阻 R13和电阻开关 K13构成的支路被接入回路; 随后断开 主开关 K11, 如图 4 ( f )所示; 最后再断开电阻开关 Κ13, 如图 4 ( g )所示, 完成分闸断路器部分的分闸操作, 断路器 20恢复到 没有支路接入的状态。 该现有技术采用额外增加一个具有分间电 阻的并联支路的形式, 在分闸过程中通过该分闸电阻起到抑制分 闸过电压的目的。
对于单独装配分闸电阻以构成分闸断路器部分的实施方式, 不仅存在前述分合闸共用电阻所存在的故障率高、 制造技术难度 大、 造价昂贵等缺陷; 还由于其在断路器结构中增加一路分支, 使得断路器结构更加复杂、 占用更大的空间, 对于设备容量有限 的应用场景会受到限制。
因此, 设计开发应用于特高压交流输电线路的断路器以及分 合闸系统, 通过合理代价将危害设备安全及系统运行可靠性的过 电压问题限制在合理水平内, 是特高压交流输电领域技术人员亟 待解决的技术问题。 发明内容
本公开的实施例提供一种特高压交流输电线路的分闸断路 器、 分合闸断路器、 分合闸系统以及分闸方法, 将危害设备安全 及系统运行的过电压问题限制在合理水平内, 满足特高压交流输 电系统的要求。
进一步的, 本公开的实施例提供一种特高压交流输电线路的 分闸断路器、 分合闸断路器、 分合闸系统以及分闸方法, 能够满 足 1000kV特高压交流输电系统的要求。
本公开的实施例提供了一种特高压交流输电线路的分闸断路 器, 该分闹断路器由主开关构成, 用于执行特高压交流输电线路 的分闸操作。
在特高压交流输电线路的分闸断路器的一个实施例中, 分闸 断路器用于 1000kV特高压交流输电线路。
本公开的实施例提供了一种特高压交流输电线路的分合闸断 路器, 该分合闸断路器包括: 分闸断路器, 该分闸断路器由主开 关构成, 用于执行特高压交流输电线路的分闸操作; 以及合闸断 路器, 用于执行特高压交流输电线路的合闸操作并限制合闸操作 过电压。
在特高压交流输电线路的分合闸断路器的一个实施例中, 该 分合闸断路器包括: 合闸电阻、 电阻开关, 以及与分闸断路器共 用的主开关; 其中合闸电阻与电阻开关串联, 所形成的串联结构 再与主开关并联。
在特高压交流输电线路的分合闸断路器的一个实施例中, 特 高压交流输电线路用于传输 1000kV的特高压交流电。
在特高压交流输电线路的分合闸断路器的一个实施例中, 合 闸电阻的取值为 400~600欧姆, 接入时间为 8~llms。
本公开的实施例提供了一种特高压交流输电线路的分合闸系 统, 包括: 馈电侧 UHV变压器、 馈电侧 UHV分合闸断路器、 特 高压输电线路、 受电侧 UHV分合闸断路器, 以及受电侧 UHV变 压器; 其中, 馈电侧 UHV分合闸断路器的一端与馈电侧 UHV变 压器的高压侧母线相连, 另一端经特高压输电线路连接受电侧 UHV分合闸断路器的一端; 受电侧 UHV分合闸断路器的另一端 连接受电侧 UHV变压器的高压侧母线; 其中, 馈电侧 UHV分合 闸断路器和受电侧 UHV分合闸断路器为如前所述的分合闸断路 器。
在特高压交流输电线路的分合闸系统的一个实施例中, 特高 压交流输电线路用于传输 1000kV的特高压交流电。
在特高压交流输电线路的分合闸系统的一个实施例中, 馈电 侧 UHV变压器和受电侧 UHV变压器用于实现 500kV的超高压交 流电与 1000kV的特高压交流电以及 HOkV的高压交流电之间的 转化。
在特高压交流输电线路的分合闸系统的一个实施例中, 合闸 电阻的取值为 400 600欧姆, 接入时间为 8~llms。
本公开的实施例提供了一种特高压交流输电线路的分闸方 法, 该方法仅具有步驟: 断开由主开关构成的分闸断路器。
本公开的实施例提供一种特高压交流输电线路的分闸断路 器、 分合闸断路器、 分合闸系统以及分闸方法, 通过在 UHV断路 器中仅装设合闸电阻, 而不利用合闸电阻作为共用电阻或额外加 装分闸电阻, 特高压交流输电线路的分闸断路器必须包括分闸电 阻的业界技术偏见, 而且本公开的实施例提供的分合闸断路器、 分合闸系统降低了工程造价, 提高了设备的可靠性以及整个特高 压交流输电系统的运行可靠性。 附图说明
图 1 示出了现有技术中一种超高压交流输电线路分合闸系统 的结构示意图;
图 2 ) -2 ( g )示出了图 1所示的超高压交流输电线路分合 闸系统执行分合闸操作的具体流程示意图; 图 3 示出了现有技术中另一种超高压交流输电线路分合闸系 统的结构示意图;
图 4 ) -4 ( g )示出了图 3所示的超高压交流输电线路分合 闸系统执行分合闸操作的具体流程示意图;
图 5 ( a ) -5 ( c )示出特高压交流输电线路的等效电路示意图; 图 6 示出本公开的实施例提供的一种特高压交流输电线路的 分合闸系统的结构示意图;
图 7 ( a ) -7 ( b )示出了图 6所示的特高压交流输电线路分合 闸系统执行分合闸操作的具体流程示意图。 具体实施方式
为使上述目的、 特征和优点能够更加明显易懂, 下面结合附 图和具体实施方式对本公开的实施例作进一步详细的说明。
操作过电压是在 L-C回路工作状态发生变化引起的过渡过程 中出现的。 考虑到过电压问题对设备造价和系统安全的影响, 目 前, 推荐的特高压交流输电系统相对地统计操作过电压水平限制 目标为 1.6~1.8p.u。考虑到单段特高压交流输电线路的输电距离较 长、 以及跨区域的地形条件的影响, 推荐操作过电压限制目标为: 对线路两端变电站、开关站设备应限制在 1.6p.U;对于长线路的线 路中间部分限制在 1.7p.u以下。
研究结果表明, 以 1000kV特高压交流输电线路为例, 如果仅 靠输电线路两侧的 MOA (避雷器)限制合闸操作过电压, 则当其 线路长度超过 200km时, 线路中间部位相对地统计操作过电压超 过 1.8p.u; 当线路长度增加到 400~600km时, 线路中间部位相对 地统计操作过电压就增加到 1.95〜2.10p.u,相间统计过电压增加到 3.5~3.5p.U o 因此, 对大部分特高压交流输电线路仅靠 MOA限制 合闸过电压是不够的, 本公开的实施例提出的特高压交流输电线 路分合闸系统中, 其断路器必需装设合间电阻, 在此条件下, 可 将特高压交流输电线路的合闸操作过电压限制在允许范围内。
图 5示出 H 特高压交流输电线路的等效电路示意图。
以 UHV变压器 10用于实现 500kV超高压交流电与 1000kV 特高压交流电以及 UOkV高压交流电之间的转化为例, 来研究如 何设计特高压断路器, 以抑制合闸过电压的问题。 该实施例的说 明是为了示例和描述起见而给出的, 而并构成对本公开所适用的 特高压交流输电的具体电压值进行任何限制。
如图 5 ( a )所示, 在合闸空载情况下, 可以认为特高压输电 线路 30—侧通过馈电侧 UHV断路器 20接所述馈电侧系统 UHV 变压器 10,另一端与所述受电侧 UHV断路器 40断开、末端悬空。 此时, 为简化起见, 将所述特高压输电线路 30用等值电阻 R、 等 值电感 L、 以及等值电容 C等效代替。
特高压交流输电线路的分合闸系统的合闸过程中, 一个阶段 是电阻开关 K12先合上、 馈电侧合闸电阻 RH1接入回路, 如图 5 ( b );一个阶段是主开关 K11合上,馈电侧合闸电阻 RH1被短接, 如图 5 ( c ); 此后的阶段打开电阻开关 K12。 无论馈电侧还是受电 侧, 合闸过程中, 合闸电路对自由分量起到阻尼作用, 降低了合 闸操作过电压幅值。 以馈电侧为例来说, 从限制合闸操作过电压 的角度出发, 合上电阻开关 K12时希望合闸电阻大些; 而合上主 开关 K11时希望合闸电阻小些。 ^^开的实施例中, 馈电侧合闸 电阻 RH1的取值可以为 400~600欧姆,其接入时间可以为 8~llms; 所述受电侧合闸电阻 RH2的取值也可以为 400~600欧姆, 其接入 时间可以为 8~llms。
在实际应用中, 本领域技术人员根据本公开的教导, 对馈电 侧合闸电阻 RH1、以及受电侧合闸电阻 RH2的取值均可以根据所 述取值范围 (合闸电阻 RH1的取值可以为 400~600欧姆, 其接入 时间可以为 8~llms ) 以及实际工程情况据来具体设定。
根据图 1和图 3所示的输电线路分合闸系统可知, 无论釆用 分合闸共用电阻的方式, 还是分别设置分闸电阻和合闸电阻的情 况, 在分闸过程中均需要安装分闸电阻来抑制分闸操作过电压。 传统观点认为: 对于特高压交流输电线路分合闸系统来说, 为了 抑制分闸搡作过程产生的分闸过电压问题, 需要在釆用的断路器 中加设分闸电阻。 本公开提供了用于特高压交流输电线路的断路 器以及分合闸系统, 其所采用的断路器仅需装设合闸电阻, 而无 需装设分闸电阻; 不但能够满足特高压交流输电线路对于分合闸 时相应过电压的要求, 同时还能避免装设分闸电阻带来的分闸电 阻制造难题、 安全性能对系统可靠性的影响以及电阻能量损耗等 技术问题。 具体来说, 为克服业界技术偏见, 发明人对特高压交 流输电线路的分合闸系统进行如下研究:
( 1 )基于对特高压交流输电试验示范工程分闸操作过电压的 电磁暂态仿真研究结果,对 1000kV断路器仅装设合闸电阻而不装 设分闸电阻条件下分析特高压交流输电线路本身和 MOA等对分 闸过电压的限制效果, 证明不装设断路器分闸电阻是可行有效的。
针对特高压交流输电线路的分闸操作过电压进行电磁暂态仿 真试验。 试验结果表明, 大多数情况下, 仅靠额定电压为 828kV 的 MOA和常规线路高抗就可以将变电站、 开关站的甩负荷分闸 操作过电压限制在 1.6p.u 以下; 将线路杆塔部分的过电压限制在 1.7p.u以下;另外使用良导体地线多点接地的方式也可以限制单相 接地故障甩负荷操作过电压; 而对于一级升压送电系统, 则可通 过对发电厂装机容量及送出线路长度提出限制来满足过电压水平 的要求。 对于故障清除转移操作过电压, 仅靠线路两端的额定电 压为 828kV的 MOA可以将特高压交流输电线路清除单相接地故 障转移操作过电压限制在允许范围内; 清除多相故障时产生的转 移操作过电压, 由于它不会危及变电设备的安全(在线路两端仍 在 1.6p.u以下), 仅影响到线路杆塔部分绝缘, 而该绝缘为自恢复 绝缘, 加之其出现概率极低, 没有必要釆取更多的措施。 如一定 要考虑, 可采取在线路中部加装一组 MOA 的方法即可将过电压 限制在允许范围内, 该措施与装设分闸电阻相比, 既经济又比较 可靠。
( 2 )结合电网运行经验, 对过电压较严重工况的出现概率情 况、 以及分合闸电阻本身出现故障的概率情况进行分析, 提出装 设分闸电阻的经济性存在问题。
根据中国 500kV超高压交流输电电网运行情况的统计情况, 截至 2002年仅统计到一次三相短路故障。 而对于特高压交流输电 线路, 发生两相与三相短路故障的可能性估计会更低。 对于特高 压交流输电线路分闸系统的新路器, 若装设分闸电阻, 由于分闸 电阻本身出现故障的概率远大于两相或三相短路等严重短路故 障; 若采用一个电阻同时抑制合闹过电压和分闸过电压, 则其损 坏率还要更高; 由此说明, 用一种损坏率相对较高的元件去保护 一种出现概率低得多的故障, 是不经济的、 不合理的。
( 3 )对特高压交流输电试脸示范工程的断路器、 在装设分闸 电阻和不装设分闸电阻两种情况下, 分别对其进行开断失步故障 以及各种短路故障时的 TRV仿真。 才艮据仿真研究的结果, 提出可 以不必装设分闸电阻。
根据中国及 IEC高压交流断路器标准中规定的断路器考核条 件要求, 考虑特高压交流输电试验示范工程本期及远期系统条件, 对断路器开断严重失步解列故障以及端部三相短路等严重短路故 障时的 TRV情况进行仿真研究。 试验表明, 在不使用分闸电阻条 件下, 晋东南、 南阳及荆门三个特高压站内断路器 TRV的最大峰 值和上升率均可满足表一中所列的中国 llOOkV 断路器电力行业 标准和 IEC断路器标准扩展中规定的 TRV试验参数要求。
表一 UOOkV断路器恢复电压试验参数要求
Figure imgf000013_0001
而特高压断路器装设 600 欧姆分闸电阻后, 仅对小短路电流 情况下断路器主断口 TRV峰值和上升率有一定降低作用, 而对额 定短路开断电流( 50kA )条件下的主断口 TRV的限制效果不明显; 而开断失步故障时, 尽管对主断口 TRV水平有一定降低, 但辅助 断口的 TRV峰值则较无分闸电阻情况下有明显增大, 甚至超过了 相关标准中规定的试验参数要求, 而目前很多厂家的设备制造能 力及试验考核条件无法达到上述要求, 同时也提高了设备造价。
因此从限制特高压断路器 TRV的角度而言, 可以不必装设分 闸电阻。
( 4 )基于对特高压交流输电试脸示范工程断路器开断短路电 流时零点漂移问题机理和影响因素的研究分析结果, 提出特高压 短路电流零点漂移出现概率极低, 并纠正了装设分闸电阻可以消 除零点漂移的错误判断。
传统理论认为, 对断路器装设分闸电阻可以消除断路器开断 短路电流时的零点漂移问题。 但是本公开人对零点漂移问题的相 关研究结果表明, 零点漂移现象的产生主要与两个因素有关: 一 是故障时刻; 二是短路电流交流分量与负荷电流的比值及负荷电 流性质, 并认为零点漂移主要出现在小短路电流系统中。 可见断 路器装设分闸电阻与零点漂移无关, 无法消除断路器开断短路电 流时的零点漂移问题。
( 5 )对 1000kV断路器装设分闸电阻时的热容量问题进行研 究, 分析采用分合闸电阻时的热容量要求, 提出在实际工程中 1000kV断路器采用分闸电阻的可行性不大。
由于分合闸一般共用一个电阻, 因此能量问题是使用分闹电 阻的最大问题。 对分合闸电阻能量其决定作用的并不是限制操作 过电压过程的能量消耗, 而是线路断路器其它分合要求, 这个要 求也反映在断路器试验要求中。 根据断路器相关标准、 规范、 技 术条件规定的试验条件计算了特高压断路器分合闸共用电阻热容 量, 并对多个特高压交流输电系统在本期及远期系统条件下可能 出现的故障及操作下分合闸共用电阻吸收的能耗进行仿真研究。 综合这两方面计算结果, 对断路器分合闸共用电阻能耗提出以下 建议:
1 )要求断路器能够承受 BTF分闸 +单次失步合分操作, 断路 器带 400 00Ω分合闸共用电阻(合分闸共用电阻)时, 分合闸共 用电阻吸收能耗能力分别要求不低于 165~247MJ, 如表二所示;
2 )如允许断路器在失步条件下两次合分(CO-t-CO ), 则对 于带 600Ω分合闸共用电阻的断路器(合分闸共用电阻), 分合闸 共用电阻能耗为 247.3MJ (不考虑电阻在两次操作时间间隔内的 散热情况)。
目前很少有断路器生产厂家可以达到上述制造能力, 其造价 也相当昂贵, 同时还增加了设备损坏的概率, 因此应用于实际工 程的可行性不大。 断路器分合闸共用电阻热容量建议值
Figure imgf000015_0001
( 6 )根据公开人相关研究结果, 断路器装设分合闸共用电阻 时, 限制操作过电压所要求的阻值很难一致, 研究表明分合闸电 阻取值大时会降低限制操作过电压的效果,如分合闸电阻为 700Ω, 经计算无法满足特高压交流输电试验示范工程的过电压限制要 求; 而分合闸电阻阻值降低时, 其所需的能耗要求又将大大增加。 基于上述考虑, 提出不釆用分闸电阻, 可根据情况釆用 400~600Ω 合闸电阻, 其能耗要求取 45~30MJ。
综合上述各方面的研究成果, 本公开的实施例提出一种特高 压交流输电线路合分闸系统,即 1000kV交流输电线路的断路器需 装设合闸电阻, 而不必装设分闸电阻。 合闸电阻的阻值一般取 400-600 欧姆并可根据不同工程具体选择阻值, 接入时间取 8~llms, 能耗要求取 45~30MJ。
基于前述研究分析与模拟论证, 对于特高压交流输电系统的 大多数线路分闸操作过电压, 依靠主开关充当分闸断路器, 即利 用主开关进行电路的分闸操作, 利用线路两侧配置的 MOA和常 规线路高压电抗器就可以将操作过电压限制在允许范围内。 对于 可能出现较高过电压的远距离一级升压送电系统, 可通过对发电 厂装机容量及送出线路长度提出限制来满足过电压水平的要求; 对于清除多相故障时在线路中部产生的较高幅值的转移操作过电 压, 由于其出现概率极低, 且仅影响到部分可自恢复的线路杆塔 绝缘, 而不会危及变电站或开关站设备的安全, 因此没有必要采 取更多的措施。 即使为了确保绝对安全性而加以考虑, 也可采取 在线路中部加装一组 MOA 的方法即可将过电压限制在允许范围 内, 该措施与装设分闸电阻相比, 既经济又比较可靠。
综上所述, 本公开的实施例克服了业界技术偏见, 完全颠覆 了本领域技术人员在特高压交流输电线路进行分闸操作时必须加 装分闸电阻(或使用合闸电阻充当分闸电阻) 的传统观念。 本公 开的实施例提供的特高压交流输电线路的分合闸系统中, 不加装 分闸电阻或不使用分合闸共用电阻, 而利用主开关直接进行分闸 操作, 简化了系统构造及操作, 降低了系统损坏风险, 提供了分 合闸的安全性; 进一步降低了制造分合闸断路器的难度和生产成 本。
图 6 示出本公开的实施例提供的一种特高压交流输电线路的 分合闸系统的结构示意图。
如图 6所示, 一种特高压交流 3^电线路的分合闸系统包括: 馈电侧 UHV变压器 10、馈电侧 UHV分合闸断路器、 特高压输电 线路 30、受电侧 UHV分合闸断路器,以及受电侧 UHV变压器 50。 馈电侧 UHV分合闸断路器的一端与馈电侧 UHV变压器的高压侧 母线相连, 另一端经特高压输电线路 30连接受电侧 UHV分合闸 断路器的一端; 受电侧 UHV分合闸断路器的另一端连接受电侧 UHV变压器的高压侧母线。
其中,馈电侧 UHV分合闸断路器包括合闸断路器的电路结构 20, 受电侧 UHV分合闸断路器包括合闸断路器的电路结枸 40。
合闸断路器 20和 40用于限制特高压交流输电线路的合闸操 作过电压; 其中, 合闸断路器 20和 40 包括: 合闸电阻 RH1和 RH2、电阻开关 K12和 K22,以及与分闸断路器共用的主开关 Kll 和 K21; 其中合闸电阻与电阻开关串联, 所形成的串联结构再与 主开关并联。
馈电侧 UHV分闸断路器 21仅由与馈电侧合闸断路器共用的 主开关构成(即分闸过程中, 分闸断路器不涉及合闸电阻 RH1与 电阻开关 K12串联的支路); 其中, 主开关用于执行特高压交流输 电线路的分闸操作。 馈电侧 UHV分闸断路器 41由与馈电侧合闸 断路器共用的主开关构成(即分闸过程中, 分闸断路器不涉及合 闸电阻 RH2与电阻开关 K22串联的支路); 其中, 主开关用于执 行特高压交流输电线路的分闸操作。
以馈电侧 (包括 UHV变压器 10、 分合闸断路器)为例进行 简化描述, 对馈电侧断路器的分闸操作流程同样适用于受电侧的 分闸断路器。 图 7示出了图 6所示的特高压交流输电线路分合闸 系统执行分合闸操作的具体流程示意图。 如图 7 ( a )所示, 在馈 电侧向受电侧进行电力输送时, 主开关 K11处于合闸状态, 合闸 电阻 K12处于断开状态; 在完成向受电侧电力输送后, 通过操作 分闸断路器 21执行分闸操作, 如图 7 ( b )所示, 直接断开主开关 K11, 完成断路器的分闸操作, 分合闸断路器恢复到没有支路接入 的状态。
本公开的实施例提供的特高压交流输电线路的分合闸系统, 其配置的 UHV分合闸断路器用于限制系统分合闸操作过程中的 过电压问题;尤其是所述 UHV分合闸断路器装设合闸电且但不装 设分.闹电阻, 或者说不共用合闸电阻充当分闸电阻。 基于对典型 的特高压交流输电系统合闸操作过电压的电磁暂态仿真研究结 果, 为确保将 1000kV线路合闸操作过电压限制在允许的范围内, 本公开的实施例提供的所述分合闸系统, 除包括装设线路高阻抗 以及额定电压为 828kV的避雷针外, 对 UHV断路器装设合闸电 阻。 所述合闸电阻的阻值一般在 400^600 欧姆, 并可根据不用工 程具体选择阻值, 其接入时间为 8~llms, 能耗要求取 45~30MJ。 本公开的实施例所述分合闸系统降低了工程造价, 提高了设备的 可靠性以及整个特高压交流输电系统的运行可靠性。
进一步的, 本公开的实施例也纠正了传统观念认为的: 装设 分闸电阻能够解决特高压交流输电系统可能出现的零点漂移现 象、 以及可以有效降低断路器开断严重故障时的暂态恢复电压水 平的效果等片面或错误论断。 同时, 采用断路器装设分闸电阻这 种损坏率相对较高的元件去保护出现概率低得多且对变电站、 开 关站电气设备不造成太大损坏的多相故障分闸操作过电压, 是不 经济、 不合理的; 而且装设分闸电阻在热容量问题以及能耗方面 均存在一定的缺陷。
因此, 本公开的实施例中的分合闸系统的断路器仅装设合闸 电阻、 不装设分闸电阻, 能够通过合理代价将危害设备安全及系 统运行可靠性的过电压问题限制在合理水平内, 满足特高压交流 输电线路的要求。
本公开的描述是为了示例和描述起见而给出的, 而并不是无 遗漏的或者将本公开限于所公开的形式。 很多修改和变化对于本 领域的普通技术人员而言是显然的。 选择和描述实施例是为了更 好说明本公开的实施例的原理和实际应用, 并且使本领域的普通 技术人员能够理解本公开从而设计适于特定用途的带有各种修改 的各种实施例。

Claims

权 利 要 求
1、 一种特高压交流输电线路的分闸断路器, 其特征在于, 所 述分闸断路器由主开关构成, 用于执行特高压交流输电线路的分 闸操作。
2、 根据权利要求 1所述的分闸断路器, 其特征在于, 所述分 闸断路器用于 1000kV特高压交流输电线路。
3、 一种特高压交流输电线路的分合闸断路器, 包括: 分闸断路器, 所述分闹断路器由主开关构成, 用于执行特高压交 流输电线路的分闸操作; 以及
合闸断路器, 用于执行特高压交流输电线路的合闸操作并限制合 闸操作过电压。
4、 根据权利要求 3所述的分合闸断路器, 其特征在于, 所述 合闸断路器包括: 合闸电阻、 电阻开关, 以及与所述分闸断路器 共用的所述主开关; 其中所述合闸电阻与所述电阻开关串联, 所 形成的串联结构再与所述主开关并联。
5、 根据权利要求 4所述的分合闸断路器, 其特征在于, 所述 特高压交流输电线路用于传输 1000kV的特高压交流电。
6、 根据权利要求 5所述的分合闸断路器, 其特征在于, 所述 合闸电阻的取值为 400〜600欧姆, 接入时间为 8~llms。
7、 一种特高压交流输电线路的分合闸系统, 包括: 馈电侧 UHV变压器、 馈电侧 UHV分合闸断路器、 特高压输电线路、 受 电侧 UHV分合闸断路器, 以及受电侧 UHV变压器;
其中, 所述馈电侧 UHV分合闸断路器的一端与所述馈电侧 UHV 变压器的高压侧母线相连, 另一端经所述特高压输电线路连接所 述受电侧 UH V分合闸断路器的一端; 所述受电侧 UHV分合闸断 路器的另一端连接所述受电侧 UHV变压器的高压侧母线; 其中, 所述馈电侧 UHV分合闸断路器和所述受电侧 UHV分合闸 断路器为如权利要求 3所述的分合闸断路器。
8、 根据权利要求 7所述的分合闸系统, 其特征在于, 所述特 高压交流输电线路用于传输 1000kV的特高压交流电。
9、 根据权利要求 8所述的分合闸系统, 其特征在于, 所述馈 电侧 UHV变压器和受电侧 UHV变压器用于实现 500kV的超高压 交流电与 1000kV的特高压交流电以及 HOkV的高压交流电之间 的转化。
10、 根据权利要求 9所述的系统, 其特征在于, 所述合闸电 阻的取值为 400~600欧姆, 接入时间为 8~llms。
11、 一种特高压交流输电线路的分合闸系统, 包括: 馈电侧 UHV变压器、 馈电侧 UHV分合闸断路器、 特高压输电线路、 受 电侧 UHV分合闸断路器, 以及受电侧 UHV变压器;
其中, 所述馈电侧 UHV分合闸断路器的一端与所述馈电侧 UHV 变压器的高压侧母线相连, 另一端经所述特高压交流输电线路连 接所述受电侧 UHV分合闸断路器的一端; 所述受电侧 UHV分合 闸断路器的另一端连接所述受电侧 UHV变压器的高压侧母线; 其中, 所述馈电侧 UHV分合闸断路器和所述受电侧 UHV分合闸 断路器为如权利要求 4所述的分合闸断路器。
12、 根据权利要求 11所述的分合闸系统, 其特征在于, 所述特高 压交流输电线路用于传输 1000kV的交流特高压电。
13、 根据权利要求 12所述的分合闸系统, 其特征在于, 所述馈电 侧 UHV变压器和受电侧 UHV变压器用于实现 500kV的超高压交 流电与 1000kV的特高压交流电以及 HOkV的高压交流电之间的 转化。
14、 根据权利要求 13所述的系统, 其特征在于, 所述合闸电阻的 取值为 400~600欧姆, 接入时间为 8~llms。
15、 一种特高压交流输电线路的分闸方法, 其特征在于, 所述方 法仅具有步骤: 断开由主开关构成的分闸断路器。
16、 根据权利要求 15所述的分闸方法, 其特征在于, 将所述分闸 断路器应用于 1000kV特高压交流输电线路。
PCT/CN2010/001258 2009-08-20 2010-08-19 特高压交流输电线路的分闸断路器、分合闸断路器、分合闸系统以及分闸方法 WO2011020303A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910168255.8 2009-08-20
CN2009101682558A CN101640424B (zh) 2009-08-20 2009-08-20 一种1000kV交流特高压输电线路分合闸系统

Publications (1)

Publication Number Publication Date
WO2011020303A1 true WO2011020303A1 (zh) 2011-02-24

Family

ID=41615274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001258 WO2011020303A1 (zh) 2009-08-20 2010-08-19 特高压交流输电线路的分闸断路器、分合闸断路器、分合闸系统以及分闸方法

Country Status (2)

Country Link
CN (1) CN101640424B (zh)
WO (1) WO2011020303A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640424B (zh) * 2009-08-20 2011-09-28 中国电力科学研究院 一种1000kV交流特高压输电线路分合闸系统
CN102074948A (zh) * 2011-01-20 2011-05-25 清华大学 一种限制特高压交流输电系统中过电压的系统
TWI501496B (zh) * 2013-06-06 2015-09-21 Chang Chun Petrochemical Co 不斷電保護裝置及具有該裝置之電解銅箔系統
CN103441518B (zh) * 2013-08-06 2016-04-20 国家电网公司 单相负荷和相间负荷混合情况下的三相潮流分布确定方法
CN105388415B (zh) * 2015-11-10 2019-12-27 中国电力科学研究院 一种基于两段式时间尺度的断路器开断trv能力评估方法
CN111261448B (zh) * 2020-01-07 2022-07-05 平高集团有限公司 断路器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016485A (en) * 1976-03-02 1977-04-05 German Ivanovich Samorodov Arrangement for limiting dynamic overvoltages
CN1862741A (zh) * 2006-04-26 2006-11-15 王光顺 特高压断路器多级灭弧分断装置
CN101640424A (zh) * 2009-08-20 2010-02-03 中国电力科学研究院 一种1000kV交流特高压输电线路分合闸系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016485A (en) * 1976-03-02 1977-04-05 German Ivanovich Samorodov Arrangement for limiting dynamic overvoltages
CN1862741A (zh) * 2006-04-26 2006-11-15 王光顺 特高压断路器多级灭弧分断装置
CN101640424A (zh) * 2009-08-20 2010-02-03 中国电力科学研究院 一种1000kV交流特高压输电线路分合闸系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN, JIMING ET AL.: "Study on Transient Recovery Voltage of UHV Circuit Breakers", POWER SYSTEM TECHNOLOGY, vol. 31, no. 1, January 2007 (2007-01-01), pages 1 - 5 *
ZHU, JIALIU: "Discussion about Overvoltage and Insulation Level of 1100kV", POWER GRID OF CHINA ELECTRICAL EQUIPMENT, vol. 6, no. 11, November 2005 (2005-11-01), pages 22 - 23 *

Also Published As

Publication number Publication date
CN101640424A (zh) 2010-02-03
CN101640424B (zh) 2011-09-28

Similar Documents

Publication Publication Date Title
CN103208788B (zh) 智能动态配电网中性点接地方法与成套装置
WO2011020303A1 (zh) 特高压交流输电线路的分闸断路器、分合闸断路器、分合闸系统以及分闸方法
CN103368081A (zh) 一种双母线刀闸分段的电气主接线
CN104037011A (zh) 看门狗分界负荷开关
CN103337852A (zh) 一种直流电网开断装置
CN103887777A (zh) 架空线路四分段三联络结构馈线自动保护方法
CN201819973U (zh) 一种用于高压断路器关合试验的装置
RU145143U1 (ru) Приемное распределительное устройство электрической сети для однофазной сети
CN106848999B (zh) 一种直流断路器
Panasetsky et al. On the problem of shunt reactor tripping during single-and three-phase auto-reclosing
CN204905168U (zh) 一种用于超导限流式直流断路器
CN204012700U (zh) 配电网中性点接地系统
CN109546630B (zh) 一种基于智能变电站过程层组网方式的10kV母线差动保护方法
CN101635221A (zh) 特高压断路器和具有该断路器的特高压防过电系统
Gertrudes et al. Circuit breaker TRV on a no-load AC half-wavelength transmission line
CN203289089U (zh) 高效灭弧的新型避雷器脱离器
CN204258314U (zh) 用于并联电力电容器无功补偿装置的高可靠性投切电路
CN102522278A (zh) 一种熔断器
Guo et al. Study and application of switching operation of 10kV lines ring network in urban power distribution network
CN103280819A (zh) 一种变电站的并联电抗器补偿回路及其补偿方法
CN114079274B (zh) 一种基于无线差动保护的风电场集电线路重合闸方法
CN203135432U (zh) 消弧消谐选线过电压保护装置
CN102931621A (zh) 配电线路交流融冰装置
CN101764389B (zh) 一种防过电压测控系统及方法
CN204258313U (zh) 电力系统用高可靠性无功补偿装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2506/CHENP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10809437

Country of ref document: EP

Kind code of ref document: A1