WO2011020229A1 - 在中继链路上处理数据的方法和相关设备 - Google Patents
在中继链路上处理数据的方法和相关设备 Download PDFInfo
- Publication number
- WO2011020229A1 WO2011020229A1 PCT/CN2009/073289 CN2009073289W WO2011020229A1 WO 2011020229 A1 WO2011020229 A1 WO 2011020229A1 CN 2009073289 W CN2009073289 W CN 2009073289W WO 2011020229 A1 WO2011020229 A1 WO 2011020229A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- node
- data
- donor
- relay node
- relay
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000012545 processing Methods 0.000 title claims abstract description 8
- 238000001514 detection method Methods 0.000 claims abstract description 45
- 238000004891 communication Methods 0.000 claims abstract description 15
- 230000008569 process Effects 0.000 claims abstract description 5
- 238000012546 transfer Methods 0.000 claims description 19
- 239000000872 buffer Substances 0.000 claims description 13
- 238000012544 monitoring process Methods 0.000 claims description 5
- 230000003139 buffering effect Effects 0.000 claims description 3
- 239000003550 marker Substances 0.000 claims description 3
- 230000011664 signaling Effects 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 description 16
- 230000007246 mechanism Effects 0.000 description 8
- 238000012790 confirmation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 101150069124 RAN1 gene Proteins 0.000 description 1
- 101100355633 Salmo salar ran gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/155—Ground-based stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/02—Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
- H04W36/023—Buffering or recovering information during reselection
- H04W36/0235—Buffering or recovering information during reselection by transmitting sequence numbers, e.g. SN status transfer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
- H04W84/047—Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
Definitions
- the present invention relates to a data processing mechanism on a relay link of a communication network, and more particularly to how to process user downlink data on a relay link when a handover occurs.
- multi-hop relay As an effective method of extending the service area and improving user throughput (especially user throughput of cell edge users), multi-hop relay has been adopted as a key technology for next generation mobile networks.
- the IEEE 802.16j standard has been almost completed.
- the IEEE 802.16m standard and 3GPP enhanced LTE for multi-hop relay are in development.
- RN coordination is necessary because undelivered data will be buffered in the RN and the buffered data must be on the trunk link from the RN to the eNB. Was forwarded.
- the sequential DL (downlink) data transfer is guaranteed by the PDCP layer.
- a tunnel is constructed from the source eNB to the destination eNB.
- the source eNB will forward all downlink PDCP SDUs/PDUs (Service Data Units/Protocol Data Units) and their sequence that has been acknowledged by the UE to the destination eNB in sequence.
- SDUs/PDUs Service Data Units/Protocol Data Units
- SN Number
- the source eNB continuously forwards the data that has just arrived via interface S1 to the destination eNB until the path conversion succeeds.
- the destination eNB will have the DL PDCP SN state when the handover occurs, and will not lose any DL traffic data, because the handover does not occur until the service gateway (S-GW) directly transmits data to the destination eNB.
- S-GW service gateway
- the situation is different when the UE is connected to the relay node instead of the eNB.
- Different relay mechanisms have been considered, in which the Layer 3 relay mechanism, which has been accepted as a "Class 1 Relay" by RAN1, is forwarded above the PDCP layer.
- the natural extension of the original mechanism may cause unwanted data transmissions in the wireless relay link and thus increase handover latency.
- the relay node For the layer 3 relay node, for the UE, the relay node becomes the source node; and the original source eNB becomes the "donor" eNB (governor eNB) of the relay node, and the relay node performs between the UE and the donor eNB.
- Data forwarding responsible for the sequential DL data transfer at the time of handover is the PDCP entity accessing the RN. Therefore, the Access RN should be the starting point for forwarding the tunnel to the destination station for which the PDCP SDU is not delivered. However, the DL data buffered on the Access RN is forwarded from the donor eNB, and the tunnel from the Access RN to the destination eNB/RN must also pass through the donor eNB.
- the present invention provides a mechanism for eliminating unnecessary data transmissions on a backhaul link (eNB to RN), thereby saving previous radio resources and reducing handover time.
- a new message (tunnel establishment command) between the eNB and the access RN is defined to promptly notify the donor eNB to stop forwarding UE DL data to the access RN.
- UE DL data after the message is in the donor
- the eNB buffers and will forward directly to the destination eNB. Therefore, the forwarding tunnel segment from the access RN to the donor eNB and the route from the donor eNB to the access RN are omitted.
- This mechanism saves two transmissions of these UE DL data (from the donor eNB to the access RN and from the access RN to the donor eNB).
- An aspect of the present invention provides a method of processing user downlink data on a relay link in a communication system, in which the user equipment communicates with the donor node through the relay node and will pass the handover process and the destination node Communication, the method includes:
- the relay node After receiving the destination node handover request acknowledgement forwarded by the donor node, the relay node notifies the donor node to switch UE information by sending a tunnel establishment command to the donor node; when receiving the tunnel establishment command, the donor The node inserts the detection data in the downlink data of the UE to be switched, and sends the detection data to the relay node;
- the donor node After transmitting the detection data, the donor node stops sending downlink data of the to-be-switched UE to the relay node, buffers the downlink data, and establishes a data forwarding tunnel to the destination node;
- the relay node After the user equipment is disconnected from the relay node, the relay node sequentially transmits a sequence number status transfer message and downlink data of the user equipment buffered by the relay node to the donor node, and Transmitting the sequence number status transfer message and the buffered data of the relay node to the destination node via the data forwarding tunnel until the detected data is transmitted back to the donor node.
- the detection data indicates that the donor node no longer forwards downlink data of the user equipment to the relay node.
- the donor node receives the detection data returned by the relay node, it is learned that the data buffered by the relay node has been forwarded, so the detection data may be discarded, and the data cached by the donor node is started. Forwarding.
- the relay node sends a tunnel establishment command to the donor node after receiving the handover request acknowledgement of the destination node.
- a tunnel establishment life after the relay node sends a handover command to the user equipment, or other suitable timing.
- the detection data indicates that the donor node no longer forwards downlink data of the user equipment to the relay node.
- the present invention also provides a relay node and a donor node that perform the above method.
- the donor node monitors the handover request from the relay node, inserting a start marker packet into the downlink data of the user equipment to be switched, and after sending the start marker packet to the relay node, the donor node cache Downlink data of the user equipment;
- the donor node monitors the handover request acknowledgement from the destination node, inserts detection data into the downlink data of the user equipment to be switched, and sends the detection data to the relay node;
- the donor node stops sending downlink data of the user equipment to the relay node, and establishes a data forwarding tunnel from the donor node to the destination node;
- the relay node transmits a sequence number status transfer message and a subsequent status report message to the donor node, the status report message including which downlink data has been successfully acknowledged and which downlink data has not been successfully acknowledged;
- the donor node forwards the message and the status report message according to the sequence number status, and directly forwards the downlink data that has not been successfully acknowledged to the destination node.
- the downlink data buffered by the relay node and the donor node is synchronized by setting the packet after the start tag grouping to the first packet.
- the sending time of the start tag group is selected, so as to start All or most of the downstream data prior to the initial marking of the packet is successfully passed to the user equipment before the user equipment disconnects from the relay node. If the downlink data before the partial start flag packet is still not successfully received by the user equipment before the user equipment disconnects from the relay node, the unacknowledged success is determined by the relay node before the start flag is grouped. The received data is sent to the donor node and forwarded to the destination node via the data forwarding tunnel until the detected data is transmitted back to the source node.
- the invention also relates to a relay node and a donor node for performing the above method.
- the mechanism of the present invention by avoiding DL data transmission when the UE is disconnected from the RN, the radio resources on the relay link are effectively saved, and the handover waiting time is reduced. In addition, since there is no change in the user equipment side, only a small amount of modification is made to the existing message on the relay link. Therefore, the mechanism of the present invention also has good backward compatibility with 3GPP. DRAWINGS
- FIG. 1 is a diagram showing redundant wireless transmission and waiting time generated when a UE connected to an RN is handed over in the prior art
- Figure 2 shows a flow chart of a method in accordance with one embodiment of the present invention
- FIG. 3 illustrates a method flow diagram in accordance with another embodiment of the present invention. detailed description
- FIG. 2 is a flow chart of a method in accordance with one embodiment of the present invention.
- the user equipment UE is connected to the donor eNB through the access relay node RN.
- the UE's access node will transition from the RN to the destination node eNB.
- the RN when the RN makes a handover decision, it is forwarded by the donor eNB to send a handover (HO) request to the destination node eNB.
- the RN after receiving the HO request confirmation of the destination node eNB forwarded by the donor eNB or sending the RN to the UE
- the RN sends a tunnel establishment command to the donor eNB.
- the tunnel establishment command is sent after the HO command, such that the time when the donor eNB stops forwarding the UE DL data to the RN is not earlier than the time when the UE disconnects from the access RN.
- the tunnel establishment command is a new Radio Resource Control (RRC) message.
- RRC Radio Resource Control
- the donor eNB upon receiving the tunnel establishment command, sends one or more detection data to the access RN.
- the purpose of the detection data is to inform the RN that the donor eNB will stop transmitting downlink data to the user equipment (hereinafter referred to as UE DL data for simplicity of presentation).
- UE DL data the user equipment
- the access RN receives the detected data, it knows that the eNB no longer forwards the DL data of the UE to it.
- step 203 the eNB will stop transmitting the UE DL data of the user equipment to the RN instead of caching the data. Subsequently, a data forwarding tunnel is established from the donor eNB to the destination eNB, as shown in step 204.
- step 205 after the UE disconnects from the RN, the sequence number status transmits a message, i.e., the SN STATUS TRANSFER message is sent from the RN to the donor eNB.
- the message carries the uplink PDCP SN receiver status and the downlink PDCP SN transmitter status of the SAE bearer to which the PDCP status reservation (eg, for RLC AM) is applied.
- the RN buffers the data of the RN. Forwarding to the donor eNB, as shown in steps 205 and 205. These data can be given higher priority to reduce handover latency.
- the received SN status and RN buffered data are forwarded to the target eNB in sequence via the tunnel established in step 204.
- the detected data transmitted by the eNB to the RN in step 202 will be transmitted back to the donor eNB.
- the detection data sent by the eNB as "downlink data" to the RN at the time of handover will be transmitted back to the donor eNB by the RN. It is worth noting that although in Figure 2, the forwarding of the detected data and the data of the RN buffer are shown in different steps to highlight the action, it should be understood that the forwarding of the detected data is The forwarding of RN cache data is no different.
- step 208 when the donor eNB receives the detection data returned by the RN, it knows that the forwarding of the RN cache data has ended, so the detection data is discarded, and the forwarding of the data buffered by the eNB is started.
- the data buffered by the RN after stopping the forwarding of the UE DL data to the RN is referred to as data buffered by the eNB, and the data that has been forwarded to the RN before the UE is disconnected from the RN but not successfully acknowledged by the UE is referred to as RN-cached data.
- the data buffered by the eNB does not occupy radio resources, and as mentioned earlier, the data buffered by the RN forms a loopback on the wireless relay link to occupy radio resources.
- the invention also relates to a relay node (RN) and a donor node (donor eNB) within a communication system.
- RN relay node
- donor eNB donor node
- the improvements to the RN and the donor eNB in the present invention do not depend on hardware modifications, but can be implemented by a computer program. Therefore, the description of the corresponding entity is limited to the functional aspect, and the structure of the entity itself need not be further described.
- the relay node (RN) should include: a tunnel establishment command transmitting means for transmitting a tunnel establishment command to the donor eNB after receiving the destination node handover request acknowledgement forwarded by the donor node; and detecting data receiving means for And receiving, by the donor eNB, the detection data that is sent to the relay node when receiving the tunnel establishment command; and the forwarding device, when the UE disconnects from the RN, is configured to sequentially send a sequence number status transmission message to the donor eNB, and Downstream data buffered at the RN.
- the donor eNB includes: a tunnel establishment command receiving device, configured to receive a tunnel establishment command from the RN, where the tunnel establishment command is after receiving the destination node handover request acknowledgement forwarded by the donor eNB, The RN point is sent to the donor eNB; the detection data transmitting device is configured to send the detection data to the RN when receiving the tunnel establishment command from the RN; and the forwarding control device is configured to stop after transmitting the detection data Transmitting, by the RN, downlink data buffered by the donor node, but buffering the downlink data, and establishing a data forwarding tunnel to the destination node; and a message and data forwarding device, configured to receive a serial number status transmission message from the RN, and Decoding the data buffered by the relay node, and forwarding the sequence number status transfer message and the RN buffered data to the destination eNB via the data forwarding tunnel, and when the donor eNB receives the RN return detection data, the
- FIG. 3 illustrates a method flow diagram in accordance with another embodiment of the present invention.
- the data buffered by the RN still occupies some of the previous radio resources.
- the amount of data buffered by the RN can be simply reduced by appropriately advancing the time at which the RN sends the tunnel setup command.
- the RN-cached data cannot be eliminated as required to maintain normal UE DL data transmission before the UE disconnects.
- the estimation of the lead time may be difficult because the UE may disconnect from the RN at any time after receiving the HO command.
- the Applicant proposes an alternative embodiment.
- the flowchart of Fig. 3 briefly shows this embodiment.
- the donor eNB monitors the signaling exchanged between the relay node RN and the destination eNB.
- a specific message is sent to the RN when the donor eNB detects the handover request from the RN to minimize the transmission of the RN buffer data from the RN to the eNB.
- a start tag packet for relay is inserted in the UE DL data, and the start tag is grouped with SM_IM as follows. The insertion time of the SM_R packet should be selected so that all or most of the UE DL data before the SM_R packet can be successfully delivered to the UE before the UE is disconnected.
- the donor eNB buffers all UE DL data, as shown in step 302. It should be noted that after the eNB starts to buffer the UE DL data, some downlink data will still be sent to the RN. This is because the donor eNB has not received the HO request confirmation from the destination eNB, and the downlink data is still being delivered.
- next few steps 303-306 are related to 202, 203, 204 given with reference to FIG. 205, 206 are similar. A brief description of similar next steps is provided below:
- step 304 after the donor eNB detects the HO request confirmation from the destination eNB, one or more detected data is transmitted to the access RN.
- the purpose of the detection data is to inform the RN that the donor eNB will stop transmitting UE DL data thereto.
- the access RN receives the detected data, it knows that the eNB no longer forwards the DL data of the UE to it.
- the donor eNB will stop transmitting UE DL data of the user equipment to the RN. Then, a data forwarding tunnel to the destination eNB is established from the donor eNB, as shown in step 305.
- step 306 after the UE disconnects from the RN, the sequence number status transmits a message, i.e., the SN STATUS TRANSFER message is sent from the RN to the donor eNB.
- a message i.e., the SN STATUS TRANSFER message is sent from the RN to the donor eNB.
- the RN sends a relay HO status report message to the donor eNB. (referred to as status report message).
- the donor eNB and the RN may synchronize the UE DL data packet (i.e., PDCP SDU) by setting the packet after SM R to the first packet.
- the RN will send a Relay HO Status Report message to the donor eNB to inform the eNB which UE DL data has been successfully acknowledged and which UE DL data has not been successfully acknowledged.
- Those unacknowledged packets will be directly selected from the donor eNB buffer and forwarded to the destination eNB.
- the transmission of these RN buffer data from the RN to the donor eNB on the relay link is no longer required.
- the relay HO status report message is a new RRC message.
- this is not required, and one skilled in the art can envision using other protocols to design the command, depending on the particular embodiment and application scenario.
- the relay HO status report message shall include the following information: 1) N1 - the sequence number of the particular SDU, all SDUs after the particular SDU are not acknowledged 2) bitmap of the SDU not acknowledged before N1; 3) indication Where there is a bit of the SDU that remains unconfirmed before SM_R. Those SDUs that were not previously acknowledged should be forwarded from the RN to the donor eNB in order after the status report message.
- the donor eNB will sequentially forward the RN cache data and the eNB buffer data to the target eNB via the tunnel. Therefore, in step 307, the donor eNB will determine which UE DL data is not acknowledged by the UE and forward the SN status and data to the destination eNB based on the status report message received from the RN.
- the forwarding of RN cache data from the RN to the donor eNB can be completely or substantially eliminated, and the radio resources on the relay link are greatly saved.
- the optional embodiment actually considers an ideal situation, that is, in step 301, the insertion time of the SM_R packet is selected such that all UE DL data before the SM R packet is disconnected before the UE is disconnected. Can be successfully delivered to the UE.
- the insertion time of the SM_R packet is selected such that all UE DL data before the SM R packet is disconnected before the UE is disconnected. Can be successfully delivered to the UE.
- a small amount or a small amount of UE DL data before the SM_R packet may not be successfully received by the UE before the UE disconnects, then after step 308, the application with reference to FIG. 2 may continue to be applied.
- Steps 205, and 207 that is, the RN forwards the data before the SM_R packet buffered by the RN to the donor eNB, and the detection data sent by the eNB to the RN in step 303 is finally transmitted back to the donor eNB, so that the donor eNB learns the RN.
- the data before the buffered SM_R packet has been forwarded, so that the detection data can be discarded and the data buffered by the eNB is forwarded to the target eNB.
- the corresponding relay node RN includes the following functional modules: a start tag packet receiving apparatus, configured to receive a start tag packet sent by the donor eNB to the RN when monitoring the handover request from the RN; a receiving device, configured to receive the detection data that is sent by the donor eNB to the relay node when receiving the tunnel establishment command; and a forwarding device, when the user equipment is disconnected from the relay node,
- the sequence number status transfer message SN STATUS TRANSFER and subsequent status report messages are reported to the donor eNB, the status report message including which downlink data has been successfully acknowledged and which downlink data has not been successfully acknowledged.
- the donor eNB interacting with the RN includes a corresponding function module, for example: a start tag packet sending device, configured to send a start tag packet to the RN when monitoring the handover request from the RN; the data cache device, at the sending station After the start tag grouping, the UE DL data for buffering the user equipment; the detecting data transmitting device, after receiving the RN from the RN And the forwarding control device is configured to: after transmitting the detection data, stop sending downlink data buffered by the donor node to the RN, and establish data forwarding to the target eNB.
- a start tag packet sending device configured to send a start tag packet to the RN when monitoring the handover request from the RN
- the data cache device at the sending station After the start tag grouping, the UE DL data for buffering the user equipment
- the detecting data transmitting device after receiving the RN from the RN
- the forwarding control device is configured to: after transmitting the detection data, stop sending downlink data buffered by the donor no
- a message and data forwarding device configured to receive a sequence number status transfer message and a status report message from the RN, the status report message including which downlink data has been successfully acknowledged and which downlink data has not been successfully acknowledged, and according to the The sequence number status transfer message and the status report message, the sequence number status transfer message and the UE DL data that has not been successfully acknowledged are directly forwarded to the target eNB via the data forwarding tunnel.
- the transmission time of the start tag packet is selected such that all or most of the UE DL data before the start tag packet is successfully transmitted before the user equipment disconnects from the relay node To the user equipment;
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Description
在中继链路上处理数据的方法和相关设备 技术领域
本发明涉及通信网络的中继链路上的数据处理机制, 尤其涉及在 发生切换时如何处理中继链路上的用户下行数据。 背景技术
作为扩展服务区域和提高用户吞吐量 (特别是小区边缘用户的用 户吞吐量) 的有效方法, 多跳中继已经被采纳为用于下一代移动网络 的关键技术。 关于相应的标准化工作, IEEE 802.16j标准已几乎完成。 为了满足增强的 ITU要求, IEEE 802.16m标准和关于多跳中继的 3GPP 增强型 LTE正处于发展中。
无缝和低等待时间切换是确保服务等级的关键因素。 当新的网络 单元-中继节点 (RN ) -被引入无线接入网时, 如何实施切换是一个 重要的问题。 从用户平面协议栈的观点来看, 该问题还涉及 RN工作 在哪一层。 当切换发生时, 用户设备(UE )仍需要按序的数据传输(例 如, 3GPP中的确认模式), 在源 RN处緩存的未传递数据应当被转发 到目的 RN或 eNB (即 Evolved Node B, 演进的或增强的节点 B )。 在 单跳系统中, 切换时的按序数据传输由 eNB上的 PDCP层充分保障, 在无线网络中从源 eNB向目的 eNB执行转发。 但是, 在多跳系统中, 为了进行有效和低等待时间切换, RN的协作是必需的, 因为未传递的 数据将在 RN中緩存并且緩存的数据必须在从 RN到 eNB的中继链路 上被转发。
以 3GPP标准为例, 并且考虑单跳的情况, 按序 DL (下行链路) 数据传递由 PDCP层来保证。在切换准备期间,将从源 eNB到目的 eNB 构建隧道。切换时,源 eNB按顺序将转发所有下行链路 PDCP SDU/PDU (服务数据单元 /协议数据单元)及其已由 UE向目的 eNB确认的序列
号 ( SN )。 具体内容可参考 3GPP TS 36.300 标准, 相应标准从 http://www.3gpp.org/ftp/Specs/html-info/36300.htm可得 j。
此外, 源 eNB向目的 eNB持续转发刚刚经接口 S1到达的数据, 直到路径转换成功。 通过该方法, 目的 eNB在切换发生时将拥有 DL PDCP SN状态, 并且不会丢失任何 DL业务量数据, 因为直到服务网 关 ( S-GW ) 直接向目的 eNB发送数据时切换才发生。
然而, 当 UE联接到中继节点而不是 eNB时情况就不一样了。 人 们考虑了不同的中继机制, 其中已经被 RAN1接受作为" 1 类中继 "的 第三层中继机制在 PDCP层以上转发。 遗憾的是, 对于这种情况, 原 始机制的自然扩展可能引起该无线中继链路中的多余数据传输并且因 而增加切换等待时间。
对于第三层中继节点, 对于 UE而言, 中继节点成为源节点; 而 原来的源 eNB成为中继节点的 "施主" eNB ( donor eNB ), 中继节点 在 UE和施主 eNB之间进行数据转发。 在切换时负责按序 DL数据传 递的是接入 RN上的 PDCP实体。 因此, 接入 RN应当是向目的站转 发未传递 PDCP SDU的隧道的起始点。 然而,在接入 RN上緩存的 DL 数据从施主 eNB转发, 而从接入 RN到目的 eNB/RN的隧道也必须通 过该施主 eNB。 因此产生 UE DL数据的传输环路。 UE DL数据首先从 施主 eNB传送到接入 RN然后从接入 RN回传到 eNB。 图 1示出了现 有技术中存在的这一缺陷。 这样浪费了中继链路上先前的无线资源并 且不必要地延长了切换等待时间。 发明内容
本发明提供了一种用于消除回程链路 ( eNB到 RN )上不必要的数 据传输的机制,因而节约先前的无线资源并减少切换时间。定义了 eNB 和接入 RN之间的新消息 (隧道建立命令), 用于及时通知施主 eNB 停止向接入 RN转发 UE DL数据。在该消息之后的 UE DL数据在施主
eNB中緩存并且稍后将直接转发给目的 eNB。 因此,省去了从接入 RN 到施主 eNB的转发隧道分段与从施主 eNB到接入 RN的路由。该机制 节省了这些 UE DL数据的两次传输(从施主 eNB到接入 RN以及从接 入 RN到施主 eNB )。
本发明一方面提供了一种在通信系统中处理中继链路上的用户下 行数据的方法, 在所述通信系统中, 用户设备通过中继节点与施主节 点通信并且将通过切换过程与目的节点通信, 该方法包括:
在收到施主节点转发的目的节点切换请求确认后, 所述中继节点 通过向所述施主节点发送隧道建立命令告知施主节点待切换 UE信息; 在收到所述隧道建立命令时, 所述施主节点在待切换 UE下行数 据中插入检测数据, 发送检测数据至所述中继节点;
发送检测数据后, 所述施主节点停止向所述中继节点发送所述待 切换 UE的下行数据并緩存所述下行数据, 并建立到所述目的节点的 数据转发隧道; 以及
当所述用户设备从所述中继节点断开后, 所述中继节点按顺序向 所述施主节点发送序列号状态传送消息以及在所述中继节点緩存的所 述用户设备下行数据, 并且经由所述数据转发隧道将所述序列号状态 传送消息以及所述中继节点緩存的数据转发到所述目的节点, 直到所 述检测数据被回传给所述施主节点。
在本发明的实施例中, 所述检测数据表明所述施主节点不再向所 述中继节点转发所述用户设备的下行数据。 当所述施主节点接收到所 述中继节点回传的所述检测数据时, 得知所述中继节点緩存的数据已 转发完毕, 因此可以丢弃所述检测数据, 并且开始施主节点緩存的数 据的转发。
在才艮据本发明的实施例中, 所述中继节点在收到目的节点的切换 请求确认后向所述施主节点发送隧道建立命令。 当然, 也可以在中继 节点向用户设备发送切换命令后, 或其他合适的时机发送隧道建立命
令。
根据本发明的实施例, 所述检测数据表明所述施主节点不再向所 述中继节点转发所述用户设备的下行数据。
与以上的方法相对应, 本发明还提供了执行上述方法的中继节点 和施主节点。
根据本发明的另一方面, 提出了一种在通信系统中处理中继链路 上的用户下行数据的方法, 在所述通信系统中, 用户设备通过中继节 点与施主节点通信并且将通过切换过程与目的节点通信,该方法包括: 所述施主节点监视所述中继节点和所述目的节点之间交换的信 令;
当所述施主节点监视到来自所述中继节点的切换请求时, 在待切 换用户设备下行数据中插入起始标记分组, 向所述中继节点发送起始 标记分组之后, 所述施主节点緩存用户设备的下行数据;
当所述施主节点监视到来自目的节点的切换请求确认时, 在待切 换用户设备下行数据中插入检测数据, 并发送检测数据至所述中继节 点;
所述施主节点停止向所述中继节点发送用户设备的下行数据, 并 建立从所述施主节点到所述目的节点的数据转发隧道;
所述中继节点向所述施主节点发送序列号状态传送消息以及随后 的状态报告消息, 所述状态报告消息包括哪个下行数据已经被成功确 认以及哪个下行数据还没有被成功确认; 以及
所述施主节点根据所述序列号状态传送消息以及所述状态报告消 息, 将其所緩存的所述还没有被成功确认的下行数据直接转发给所述 目的节点。
优选地, 通过将所述起始标记分组之后的分组设置为第一分组来 同步所述中继节点和所述施主节点緩存的下行数据。
优选地, 对所述起始标记分组的发送时间进行选择, 以便所述起
始标记分组之前的所有或绝大部分下行数据在所述用户设备从所述中 继节点断开之前成功地传递到所述用户设备。 如果在所述用户设备从 所述中继节点断开之前仍有部分起始标记分组之前的下行数据未被用 户设备确认成功接收, 则由中继节点将起始标记分组之前所述未确认 成功接收的数据发送至施主节点再经由所述数据转发隧道转发到所述 目的节点, 直到所述检测数据被回传给所述源节点。
本发明还涉及用于执行上述方法的中继节点和施主节点。
才艮据本发明的机制, 通过避免 UE从 RN断开时的 DL数据传输, 有效节约了中继链路上的无线资源, 同时减少了切换等待时间。 另夕卜, 由于用户设备侧没有变化,只对中继链路上的现有消息进行少量修改, 因此, 本发明的机制还具有对 3GPP的良好后向兼容性。 附图说明
通过参考以下结合附图的说明, 本发明的其他目的及优点将变得 更加清楚和易于理解, 在附图中:
图 1示出了现有技术中,在联接到 RN的 UE发生切换时,产生的 多余的无线传输和等待时间;
图 2示出根据本发明的一个实施例的方法流程图;
图 3示出根据本发明的另一个实施例的方法流程图。 具体实施方式
图 2是根据本发明的一个实施例的方法流程图。 在该图示出的场 景中, 用户设备 UE通过接入中继节点 RN连接到施主 eNB。 当切换 发生时, UE的接入节点将从 RN转换到目的节点 eNB。
如图所示, 当 RN作出切换决定时, 通过施主 eNB转发, 向目的 节点 eNB发送切换(HO )请求。 如步骤 201所示出的, 在收到施主 eNB转发的目的节点 eNB的 HO请求确认后或者在 RN向 UE发送切
换命令后, RN向施主 eNB发送隧道建立命令。 优选地, 隧道建立命 令在 HO命令之后发送,以使得施主 eNB停止向 RN转发 UE DL数据 的时间不早于 UE从接入 RN断开的时间。在本发明的该实施例中, 隧 道建立命令是新的无线资源控制 (RRC ) 消息。 但这并不是必须的, 才艮据特定实施例和应用场景, 本领域技术人员可以设想利用其他协议 来设计该消息。
接着, 在步骤 202, 在接收到隧道建立命令时, 施主 eNB发送一 个或多个检测数据至接入 RN。该检测数据的目的是通知 RN施主 eNB 将停止向其发送用户设备的下行数据(下文中为了表述简洁,用 UE DL 数据表示)。 当接入 RN接收到该检测数据时, 它知道 eNB 不再向它 转发 UE 的 DL数据。
在步骤 203中, eNB将停止向 RN发送用户设备的 UE DL数据 而是緩存数据。 随后, 从施主 eNB建立到目的 eNB的数据转发隧道, 如步骤 204所示。
在步骤 205中, 当 UE从 RN断开后, 序列号状态传送消息, 即 SN STATUS TRANSFER消息将从 RN发送到 施主 eNB。 该消息携带 了 PDCP状态预留 (例如针对 RLC AM)所应用到的 SAE承载的上行链 路 PDCP SN接收机状态和下行链路 PDCP SN发送机状态,在该消息 之后, RN将 RN緩存的数据转发到施主 eNB,如步骤 205和 205,所示。 可以给予这些数据较高优先级以减少切换等待时间。
在供方 eNB处,如步骤 206所示, 经由步骤 204中建立的隧道, 接收的 SN状态和 RN緩存的数据被按顺序转发到目的 eNB。 在步骤 207中,由 eNB在步骤 202中发送给 RN的检测数据将回传给施主 eNB。 本领域技术人员能够理解, 按照 3GPP TS 36.300标准, 切换时由 eNB 作为"下行数据"发送给 RN的该检测数据将由 RN回传给施主 eNB。 值得注意的是, 虽然在图 2中, 检测数据的转发与 RN緩存的数据用 不同步骤示出以突出该动作, 但是应当理解, 检测数据的转发与其他
RN緩存数据的转发并无不同。
在步骤 208中, 当施主 eNB接收到 RN回传的检测数据时, 它得 知 RN緩存数据的转发已经结束, 因此丢弃该检测数据, 并开始 eNB 緩存的数据的转发。
在以上针对图 2的描述中, 出现了两个术语, 即 RN緩存的数据 以及 eNB緩存的数据。 我们把 eNB停止向 RN转发 UE DL数据后緩 存的数据称为 eNB緩存的数据, 把 UE从 RN断开前已经转发给 RN 但是未经 UE成功确认的数据称为 RN緩存的数据。 eNB緩存的数据 并不占用无线资源, 而如前面所提到的, RN緩存的数据会在无线中继 链路上形成环回从而占用无线资源。通过以上实施例, 能极大减少 RN 緩存的数据的数量, 同时不打扰正常的 UE DL数据传输。
与参考图 2描述的方法实施例相对应, 本发明还涉及通信系统内 的中继节点 (RN )和施主节点 (施主 eNB )。 对于本领域技术人员来 说, 本发明中对 RN和施主 eNB的改进并不依赖于对硬件的修改, 而 是可以通过计算机程序来实现。 因此, 对相应实体的描述仅限于功能 方面, 而不必对实体本身的结构作进一步的描述。
根据本发明的中继节点( RN )应当包括: 隧道建立命令发送装置, 用于在收到施主节点转发的目的节点切换请求确认后, 向施主 eNB发 送隧道建立命令; 检测数据接收装置, 用于接收施主 eNB在收到所述 隧道建立命令时发送至所述中继节点的所述检测数据; 转发装置, 当 UE从 RN断开后, 用于按顺序向施主 eNB发送序列号状态传送消息 以及在 RN緩存的下行数据。
与以上中继节点 RN相对应, 所述施主 eNB包括: 隧道建立命令 接收装置, 用于从 RN接收隧道建立命令, 所述隧道建立命令是在收 到施主 eNB转发的目的节点切换请求确认后, RN点向施主 eNB发送 的; 检测数据发送装置, 在收到来自 RN的所述隧道建立命令时, 用 于发送检测数据至 RN; 转发控制装置, 用于在发送检测数据后, 停止
向 RN发送所述施主节点緩存的下行数据而是緩存所述下行数据, 并 建立到所述目的节点的数据转发隧道; 消息和数据转发装置, 用于从 RN接收序列号状态传送消息以及在所述中继节点緩存的数据,并且经 由所述数据转发隧道将所述序列号状态传送消息以及 RN緩存的数据 转发到目的 eNB, 当施主 eNB接收 RN回传的检测数据时, 得知 RN 中緩存的数据已经转发完毕, 可以开始向目标 eNB发送其自身緩存的 UE DL数据。
图 3示出根据本发明的另一个实施例的方法流程图。
在本发明的上述实施例中 , RN緩存的数据依然会占用一些先前的 的无线资源。 通过适当地提前 RN发送隧道建立命令的时间, 可以简 单地减少 RN緩存的数据的数量。 但是, 通过这种简单方式, 并不能 按照在 UE断开前维持正常 UE DL数据传输的要求消除 RN緩存的数 据。 另外, 提前时间的估计会比较困难, 因为 UE可能在接收到 HO 命令后的任何时间从 RN断开。为了进一步减少 RN緩存数据从 RN到 eNB的传输, 申请人提出了一种可选实施例。 图 3的流程图简要地示 出该实施例。
在步骤 301中,施主 eNB监视中继节点 RN和目的 eNB之间交换 的信令。 如步骤 301,所示, 在施主 eNB监测到来自 RN的切换请求时 就向 RN发送一个特定消息, 以尽可能地减少 RN緩存数据从 RN到 eNB的传输。 例如在 UE DL数据中插入用于中继的起始标记分组, 下 文中用 SM_IM 替该起始标记分组。 应当对 SM_R分组的插入时间进 行选择, 以便 SM_R分组之前的所有或绝大部分 UE DL数据在 UE断 开之前可以成功地传递到 UE。 在该 SM_R之后, 施主 eNB緩存所有 的 UE DL数据, 如步骤 302所示。 需要说明的是, 当 eNB开始緩存 UE DL数据后,依然会有一些下行数据向 RN发送。这是因为施主 eNB 尚未收到来自目的 eNB的 HO请求确认, 下行数据依然在传递。
接下来的几个步骤 303 - 306与参照图 2给出的 202、 203、 204、
205、 206相类似。 以下将对类似的后续步骤进行简单描述:
如步骤 304所示,在施主 eNB监测到来自目的 eNB的 HO请求确 认后,发送一个或多个检测数据至接入 RN。该检测数据的目的是通知 RN施主 eNB将停止向其发送 UE DL数据。 当接入 RN接收到该检测 数据时,它知道 eNB 不再向它转发 UE 的 DL数据。 在步骤 304中, 施主 eNB将停止向 RN发送用户设备的 UE DL数据。 随后, 从施主 eNB建立到目的 eNB的数据转发隧道, 如步骤 305所示。
在步骤 306中, 当 UE从 RN断开后, 序列号状态传送消息, 即 SN STATUS TRANSFER消息将从 RN发送到施主 eNB。 不过与参照 图 2描述的实施例不同, 理想状况下, 在该消息之后, 并没有 RN緩 存的数据转发到施主 eNB, 而是在步骤 307中, 由 RN向施主 eNB发 送中继 HO状态报告消息 (简称为状态报告消息)。
回到步骤 301 , 施主 eNB和 RN可以通过将 SM R之后的分组设 置为第一分组来同步 UE DL数据分组(即 PDCP SDU )。 一旦 UE断 开, RN将发送中继 HO状态报告消息给施主 eNB, 以通知 eNB哪 个 UE DL数据已经被成功确认以及哪个 UE DL数据还没有被成功确 认。 那些未确认的分组将从施主 eNB緩存器中直接选择并转发给目的 eNB。 这里, 不再需要这些 RN緩存数据从 RN到施主 eNB在中继链 路上的传输。 在该可选实施例中, 中继 HO状态报告消息是新的 RRC 消息。 但这并不是必须的, 根据特定实施例和应用场景, 本领域技术 人员可以设想利用其他协议来设计该命令。
中继 HO状态报告消息应当包括下列信息: 1 ) N1 -特定 SDU的 序列号, 在该特定 SDU之后的所有 SDU都未被确认 2)在 N1之前未 被确认的 SDU的位图; 3)指示在 SM_R之前哪里存在依然未被确认 的 SDU的位。 那些在先未被确认的 SDU应当在状态报告消息之后按 顺序从 RN转发到施主 eNB。接下来, 施主 eNB将经由隧道按序转发 RN緩存数据和 eNB緩存数据到目的 eNB。
因此, 在步骤 307中, 施主 eNB将根据从 RN接收的状态报告消 息确定哪些 UE DL数据未被 UE确认并将 SN状态和数据转发到目的 eNB。
这样, 根据本发明的实施例。 可以完全或者基本排除 RN緩存数 据从 RN到施主 eNB的转发,中继链路上的无线资源得到极大的节约。
需要说明的是,该可选实施例实际上考虑了一种比较理想的情况, 即在步骤 301中, 对 SM_R分组的插入时间的选择使得 SM R分组之 前的所有 UE DL数据在 UE断开之前可以成功地传递到 UE。 对于本 领域技术人员而言, 可以想到, 在 SM_R分组之前的可能有少量或极 少量的 UE DL数据在 UE断开之前未被 UE成功接收,那么在步骤 308 之后, 可以继续应用参照图 2的步骤 205,和 207, 即 RN将 RN緩存的 SM_R分组之前的数据转发到施主 eNB, 由 eNB在步骤 303中发送给 RN的检测数据将最后回传给施主 eNB, 从而使得施主 eNB得知 RN 中緩存的 SM_R分组之前的数据已经转发完毕, 从而可以丢弃该检测 数据并将 eNB緩存的数据转发到目的 eNB。
与以上实施例相对应, 相应的中继节点 RN包括以下功能模块: 起始标记分组接收装置, 用于接收施主 eNB在监视到来自 RN的切换 请求时向 RN发送的起始标记分组; 检测数据接收装置, 用于接收施 主 eNB在收到所述隧道建立命令时发送至所述中继节点的所述检测数 据; 以及转发装置, 当所述用户设备从所述中继节点断开后, 用于向 施主 eNB报告序列号状态传送消息 SN STATUS TRANSFER以及随后 的状态报告消息, 所述状态报告消息包括哪个下行数据已经被成功确 认以及哪个下行数据还没有被成功确认。
与 RN进行交互的施主 eNB包括相对应的功能模块, 例如: 起始 标记分组发送装置, 用于在监视到来自 RN的切换请求时, 向 RN发 送起始标记分组; 数据緩存装置, 在发送所述起始标记分组后, 用于 緩存用户设备的 UE DL数据; 检测数据发送装置, 在收到来自 RN的
所述隧道建立命令时, 用于发送检测数据至 RN; 转发控制装置, 用于 在发送检测数据后, 停止向 RN发送所述施主节点緩存的下行数据, 并建立到所述目的 eNB 的数据转发隧道; 消息和数据转发装置, 用 于从 RN接收序列号状态传送消息以及状态报告消息, 所述状态报告 消息包括哪个下行数据已经被成功确认以及哪个下行数据还没有被成 功确认, 并且根据所述序列号状态传送消息以及所述状态报告消息, 经由所述数据转发隧道将所述序列号状态传送消息以及所述还没有被 成功确认的 UE DL数据直接转发给目的 eNB。 优选地, 对所述起始标 记分组的发送时间进行选择, 以便所述起始标记分组之前的所有或绝 大部分 UE DL数据在所述用户设备从所述中继节点断开之前成功地传 递到所述用户设备;
需要说明的是, 本发明的技术方案本身并不涉及硬件设备本身的 改进, 因此, 以上以功能模块进行描述的中继节点和施主节点的实现 对于本领域技术人员而言, 并不存在特别的困难。
尽管结合了实施例来描述本发明, 但是本发明并不局限于任何实 施例。 本发明的范围由权利要求书限定, 并且包括各种可选方式、 修 改和等效替换。 因此, 本发明的保护范围应当由所附的权利要求书的 内容确定。
Claims
1. 一种在通信系统中处理中继链路上的用户下行数据的方法, 在 所述通信系统中, 用户设备通过中继节点与施主节点通信并且将通过 切换过程与目的节点通信, 该方法包括:
在收到施主节点转发的目的节点切换请求确认后, 所述中继节点 向所述施主节点发送隧道建立命令, 以告知施主节点待切换用户设备 的信息;
在收到所述隧道建立命令时, 所述施主节点在待切换用户设备下 行数据中插入检测数据, 发送检测数据至所述中继节点;
在发送检测数据后, 所述施主节点停止向所述中继节点发送所述 待切换用户设备的下行数据并緩存所述下行数据, 并建立到所述目的 节点的数据转发隧道; 以及
当所述用户设备从所述中继节点断开后, 所述中继节点按顺序向 所述施主节点发送序列号状态传送消息以及在所述中继节点緩存的所 述用户设备下行数据, 并且经由所述数据转发隧道将所述序列号状态 传送消息以及所述中继节点緩存的数据转发到所述目的节点, 直到所 述检测数据被回传给所述施主节点。
2. 根据权利要求 1所述的方法, 其中所述检测数据表明所述施主 节点不再向所述中继节点转发所述用户设备的下行数据。
3. 根据权利要求 1或 2所述的方法, 其中, 当所述施主节点接收 到所述中继节点回传的所述检测数据时, 得知所述中继节点緩存的数 据已转发完毕, 随后丢弃所述检测数据并开始施主节点緩存的数据的 转发。
4. 一种通信系统内的中继节点, 在所述通信系统中, 用户设备通 过中继节点与施主节点通信并且将通过切换过程与目的节点通信, 所 述中继节点包括:
隧道建立命令发送装置, 用于在收到施主节点转发的目的节点切 换请求确认后, 向所述施主节点发送隧道建立命令;
检测数据接收装置, 用于接收所述施主节点在收到所述隧道建立 命令时发送至所述中继节点的所述检测数据, 所述检测数据表明所述 施主节点不再向所述中继节点转发所述用户设备的下行数据;
转发装置, 当所述用户设备从所述中继节点断开后, 用于按顺序 向所述施主节点发送序列号状态传送消息以及在所述中继节点緩存的 下行数据, 直到将所述检测数据被回传给所述施主节点。
5. —种在通信系统内的施主节点, 在所述通信系统中, 用户设备 通过中继节点与施主节点通信并且将通过切换过程与目的节点通信, 所述施主节点包括:
隧道建立命令接收装置,用于从所述中继节点接收隧道建立命令, 所述隧道建立命令是在收到施主节点转发的目的节点切换请求确认 后, 所述中继节点向所述施主节点发送的;
检测数据发送装置, 在收到来自所述中继节点的所述隧道建立命 令时, 用于发送检测数据至所述中继节点;
转发控制装置, 用于在发送检测数据后, 停止向所述中继节点发 送所述施主节点緩存的下行数据而是緩存所述下行数据, 并建立到所 述目的节点的数据转发隧道; 以及
消息和数据转发装置, 用于从所述中继节点接收序列号状态传送 消息以及在所述中继节点緩存的数据, 并且经由所述数据转发隧道将 所述序列号状态传送消息以及所述中继节点緩存的数据转发到所述目 的节点, 直到接收所述中继节点回传的所述检测数据。
6. 根据权利要求 5所述的施主节点, 其中所述消息和数据转发装 置进一步被配置为当接收到所述中继节点回传的所述检测数据时, 得 知所述中继节点緩存的数据已转发完毕, 并开始施主节点緩存的数据 的转发。
7. —种在通信系统中处理中继链路上的用户下行数据的方法, 在 所述通信系统中, 用户设备通过中继节点与施主节点通信并且将通过 切换过程与目的节点通信, 该方法包括:
所述施主节点监视中继节点和所述目的节点之间交换的信令; 当所述施主节点监视到来自所述中继节点的切换请求时, 在待切 换用户设备下行数据中插入起始标记分组, 向所述中继节点发送起始 标记分组之后, 所述施主节点緩存用户设备的下行数据;
当所述施主节点监视到来自目的节点的切换请求确认时, 在待切 换用户设备下行数据中插入检测数据, 并发送检测数据至所述中继节 点;
所述施主节点停止向所述中继节点发送用户设备的下行数据, 并 建立从所述施主节点到所述目的节点的数据转发隧道;
所述中继节点向所述施主节点发送序列号状态传送消息以及随后 的状态报告消息, 所述状态报告消息包括哪个下行数据已经被成功确 认以及哪个下行数据还没有被成功确认; 以及
所述施主节点根据所述序列号状态传送消息以及所述状态报告消 息, 将其所緩存的所述还没有被成功确认的下行数据直接转发给所述 目的节点。
8. 根据权利要求 7所述的方法, 其中通过将所述起始标记分组之 后的分组设置为第一分组来同步所述中继节点和所述施主节点中的下 行数据。
9. 根据权利要求 7或 8所述的方法, 其中, 对所述起始标记分组 的发送时间进行选择, 以便所述起始标记分组之前的所有或绝大部分 下行数据在所述用户设备从所述中继节点断开之前成功地传递到所述 用户设备。
10. 根据权利要求 9所述的方法, 如果在所述用户设备从所述中 继节点断开之前还存在未成功地传递到所述用户设备的所述起始标记 分组之前的下行数据, 则所述中继节点将起始标记分组之前所述未确 认成功接收的数据发送至施主节点再经由所述数据转发隧道转发到所 述目的节点, 直到所述检测数据被回传给所述施主节点。
11. 一种通信系统内的中继节点, 在所述通信系统中, 用户设备 通过中继节点与施主节点通信并且将通过切换过程与目的节点通信, 所述中继节点包括:
起始标记分组接收装置, 用于接收所述施主节点在监视到来自所 述中继节点的切换请求时向所述中继节点发送的起始标记分组;
检测数据接收装置, 用于接收所述施主节点在收到所述隧道建立 命令时发送至所述中继节点的所述检测数据; 以及
转发装置, 当所述用户设备从所述中继节点断开后, 用于向所述 序列号状态传送消息以及随后的状态报告消息, 所述状态报告消息包 括哪个下行数据已经被成功确认以及哪个下行数据还没有被成功确 认。
12. 一种通信系统内的施主节点, 在所述通信系统中, 用户设备 通过中继节点与施主节点通信并且将通过切换过程与目的节点通信, 所述施主节点包括:
起始标记分组发送装置, 用于在监视到来自所述中继节点的切换 请求时, 向所述中继节点发送起始标记分组,
数据緩存装置, 在发送所述起始标记分组后, 用于緩存用户设备 的下行数据;
检测数据发送装置, 在收到来自所述中继节点的所述隧道建立命 令时, 用于发送检测数据至所述中继节点;
转发控制装置, 用于在发送检测数据后, 停止向所述中继节点发 送所述施主节点緩存的下行数据, 并建立到所述目的节点的数据转发 隧道; 以及
消息和数据转发装置, 用于从所述中继节点接收序列号状态传送 消息以及状态报告消息, 所述状态报告消息包括哪个下行数据已经被 成功确认以及哪个下行数据还没有被成功确认, 并且根据所述序列号 状态传送消息以及所述状态报告消息, 经由所述数据转发隧道将所述 序列号状态传送消息以及所述还没有被成功确认的下行数据直接转发 给所述目的节点。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2009/073289 WO2011020229A1 (zh) | 2009-08-17 | 2009-08-17 | 在中继链路上处理数据的方法和相关设备 |
CN200980161010.0A CN102474337B (zh) | 2009-08-17 | 2009-08-17 | 在中继链路上处理数据的方法和相关设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2009/073289 WO2011020229A1 (zh) | 2009-08-17 | 2009-08-17 | 在中继链路上处理数据的方法和相关设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011020229A1 true WO2011020229A1 (zh) | 2011-02-24 |
Family
ID=43606531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/073289 WO2011020229A1 (zh) | 2009-08-17 | 2009-08-17 | 在中继链路上处理数据的方法和相关设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102474337B (zh) |
WO (1) | WO2011020229A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105228237A (zh) * | 2015-10-08 | 2016-01-06 | 西安电子科技大学 | 协作下行链路中基于链路不平衡的中继激励方法 |
WO2020078448A1 (zh) * | 2018-10-19 | 2020-04-23 | 华为技术有限公司 | 一种报文处理方法和装置 |
CN111148163A (zh) * | 2018-11-02 | 2020-05-12 | 华为技术有限公司 | 通信方法及装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108600040B (zh) * | 2018-03-16 | 2022-03-15 | 国电南瑞科技股份有限公司 | 一种基于高可用检测节点的分布式系统节点故障检测方法 |
CN110662248B (zh) * | 2018-06-29 | 2022-07-08 | 成都鼎桥通信技术有限公司 | 信号测量方法和设备 |
WO2021033546A1 (ja) * | 2019-08-21 | 2021-02-25 | 京セラ株式会社 | ハンドオーバ制御方法、中継装置、及びドナー装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101043720A (zh) * | 2006-03-22 | 2007-09-26 | 华为技术有限公司 | 长期演进网络中用户设备切换方法及其系统 |
WO2008099719A1 (en) * | 2007-02-05 | 2008-08-21 | Nec Corporation | Resource allocation in target cell after handover |
CN101287268A (zh) * | 2007-04-13 | 2008-10-15 | 中兴通讯股份有限公司 | 一种无线中继站连接关系更新的方法 |
CN101374351A (zh) * | 2007-08-14 | 2009-02-25 | 卢森特技术有限公司 | 无线电信网络中的切换方法和装置 |
-
2009
- 2009-08-17 CN CN200980161010.0A patent/CN102474337B/zh active Active
- 2009-08-17 WO PCT/CN2009/073289 patent/WO2011020229A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101043720A (zh) * | 2006-03-22 | 2007-09-26 | 华为技术有限公司 | 长期演进网络中用户设备切换方法及其系统 |
WO2008099719A1 (en) * | 2007-02-05 | 2008-08-21 | Nec Corporation | Resource allocation in target cell after handover |
CN101287268A (zh) * | 2007-04-13 | 2008-10-15 | 中兴通讯股份有限公司 | 一种无线中继站连接关系更新的方法 |
CN101374351A (zh) * | 2007-08-14 | 2009-02-25 | 卢森特技术有限公司 | 无线电信网络中的切换方法和装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105228237A (zh) * | 2015-10-08 | 2016-01-06 | 西安电子科技大学 | 协作下行链路中基于链路不平衡的中继激励方法 |
CN105228237B (zh) * | 2015-10-08 | 2018-11-20 | 西安电子科技大学 | 协作下行链路中基于链路不平衡的中继激励方法 |
WO2020078448A1 (zh) * | 2018-10-19 | 2020-04-23 | 华为技术有限公司 | 一种报文处理方法和装置 |
CN111082898A (zh) * | 2018-10-19 | 2020-04-28 | 华为技术有限公司 | 一种报文处理方法和装置 |
CN111082898B (zh) * | 2018-10-19 | 2022-08-26 | 华为技术有限公司 | 一种报文处理方法和装置 |
US11888960B2 (en) | 2018-10-19 | 2024-01-30 | Huawei Technologies Co., Ltd. | Packet processing method and apparatus |
CN111148163A (zh) * | 2018-11-02 | 2020-05-12 | 华为技术有限公司 | 通信方法及装置 |
CN111148163B (zh) * | 2018-11-02 | 2021-09-14 | 华为技术有限公司 | 通信方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102474337A (zh) | 2012-05-23 |
CN102474337B (zh) | 2014-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11582650B2 (en) | Methods and system for performing handover in a wireless communication system | |
US10129795B2 (en) | Data transfer management in a radio communications network | |
EP1946460B1 (en) | Data transfer management in a radio communications network | |
JP5541469B2 (ja) | ハンドオーバ処理 | |
JP5355788B2 (ja) | 中継ノードとのハンドオーバを実施するための方法および装置 | |
KR101387475B1 (ko) | 복수의 네트워크 엔터티를 포함하는 이동 통신시스템에서의 데이터 처리 방법 | |
EP2225902B1 (en) | Mobile communication system and method for processing handover procedure thereof | |
JP2013513988A (ja) | 中継ハンドオーバ制御 | |
WO2010130135A1 (zh) | 一种长期演进系统中跨基站切换方法及系统 | |
JP2009278637A (ja) | Mac層リセット後にノードbバッファデータを効率的に回復するためのシステム | |
WO2011000306A1 (zh) | 无线自回程传输的切换处理方法及装置 | |
WO2010105411A1 (zh) | 数据包的发送方法、装置和系统 | |
WO2011020229A1 (zh) | 在中继链路上处理数据的方法和相关设备 | |
CN102246555B (zh) | 切换处理方法、基站及中继节点 | |
TW202226879A (zh) | 降低多分支傳輸中封包延遲的方法和裝置 | |
US20090046662A1 (en) | Handover Method and apparatus in a wireless telecommunications network | |
WO2012155447A1 (zh) | 跨基站切换过程中数据的反传方法及基站 | |
WO2010096947A1 (zh) | 在基于中继的系统中执行arq过程的方法、基站和中继站 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980161010.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09848370 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09848370 Country of ref document: EP Kind code of ref document: A1 |