WO2011019164A2 - Optical waveguide device - Google Patents

Optical waveguide device Download PDF

Info

Publication number
WO2011019164A2
WO2011019164A2 PCT/KR2010/005160 KR2010005160W WO2011019164A2 WO 2011019164 A2 WO2011019164 A2 WO 2011019164A2 KR 2010005160 W KR2010005160 W KR 2010005160W WO 2011019164 A2 WO2011019164 A2 WO 2011019164A2
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical waveguide
waveguide device
splitter
optical
Prior art date
Application number
PCT/KR2010/005160
Other languages
French (fr)
Korean (ko)
Other versions
WO2011019164A3 (en
Inventor
조기호
안준원
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Publication of WO2011019164A2 publication Critical patent/WO2011019164A2/en
Publication of WO2011019164A3 publication Critical patent/WO2011019164A3/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/1215Splitter

Definitions

  • the present invention relates to an optical waveguide device, and more particularly, to a planar optical waveguide device.
  • a typical optical waveguide is an optical transmission path that traps light waves and propagates low loss in the longitudinal direction.
  • the optical waveguide is composed of a core having a high refractive index and a cladding having a low refractive index surrounding the core, and the internal reflection due to the difference in refractive index between the core and the cladding. It has a principle of transmitting the optical signal based on the basic principle.
  • the receiving end when a single optical signal traveling along the optical waveguide is to be separated and transmitted through multiple channels, the receiving end is branched into a Y shape.
  • the receiving end is branched into a Y-shape, and the branched branch of the receiving end is again branched into a Y-shape to branch until the desired number of channels is reached.
  • the Y-shaped branching system as described above has a problem that the area of the optical waveguide is enlarged.
  • the problem of area enlargement is a fatal disadvantage.
  • An object of the present invention for solving the above problems is to provide an optical waveguide device in which the output of light is constant and the area is minimized even if the number of receiving channels increases.
  • the optical waveguide device of the present invention for achieving the above object is a substrate; A core formed on the substrate, the core including a main path and a branch path; A cladding formed on the substrate with a material having a refractive index smaller than that of the core, the cladding being disposed to surround at least two outer sides of the core; A splitter is disposed on the main optical path at a branching position of the split optical path, and includes a splitter having a refractive index difference from the core.
  • the splitter portion has a directing angle to reflect a part of incident light from the main optical path in the direction of the branch optical path.
  • a plurality of branch light paths may be formed along an extension direction of the main light path, and the splitter part may be formed in the same number as the number of the branch light paths.
  • the splitter portion is formed of a material having the same refractive index as the cladding.
  • the splitter is air.
  • the plurality of splitters are formed to have a directing angle with respect to the incident light so as to reflect a part of the incident light from the main optical path in the direction of the branch optical path, and the directing angle increases along the main optical path. It is done.
  • each splitter part is characterized in that the direction angle is in the range of 40 ° to 50 °.
  • the branched light path is branched to be perpendicular to the main light path.
  • the difference in refractive index between the core and the splitter portion is 0.1 or more and 0.3 or less.
  • the core material in the optical waveguide device of the present invention comprises a nano-dispersion component, characterized in that any one or two or more of alumina, tin oxide, antimony oxide, silica, zirconia, titania is a mixed metal oxide.
  • the core and / or the splitter portion and / or the cladding are formed of a Sol-Gel material.
  • the uniformity of the light reflected from the splitter portion is 3 dB or less.
  • optical waveguide device of the present invention as described above can be used in the optical splitter for optical communication.
  • an optical waveguide device comprising: a substrate; A core in the form of a lattice grid formed on the substrate; A cladding formed on the substrate with a material having a refractive index smaller than that of the core on the substrate, the cladding being disposed to surround at least both outer sides of the core; And a splitter part disposed at each branch point of two adjacent optical paths among the outermost optical paths of the grid and having a material having a refractive index difference from the core.
  • the splitter portion is formed to have a directing angle to reflect a part of the incident light in the branching direction at the branching point of the outermost optical path of the grid.
  • the splitter portion is formed of the same material as the cladding.
  • the splitter is air.
  • each of the splitters is formed such that the directing angle increases as the distance from the intersection of the outermost optical path of the grid increases.
  • the splitter is characterized in that the direction angle is in the range of 40 ° to 50 °.
  • the grid-like grid of the core is characterized in that the crossing angle is vertical.
  • the difference in refractive index between the core and the splitter portion is 0.1 or more and 0.3 or less.
  • the core material includes a nanodispersion component, wherein the nanodispersion component is a metal mixed with any one or two or more of alumina, tin oxide, antimony oxide, silica, zirconia, and titania. It is characterized by being an oxide.
  • the core and / or splitter and / or cladding may be formed of a Sol-Gel material.
  • the uniformity of the light reflected from the splitter portion is 3 dB or less.
  • optical waveguide device of the present invention as described above can be used in the touch screen device.
  • the optical waveguide device of the present invention as described above has an advantage of receiving a uniform light output even with a large number of receiving channels.
  • the optical waveguide can be realized with a minimum area, thereby reducing the size of the product having the optical waveguide device.
  • FIG. 1 is a view schematically illustrating a touch key pad to which an optical waveguide device according to an exemplary embodiment of the present invention is applied.
  • FIG. 2 is a view for explaining a core and a splitter according to an embodiment of the present invention
  • FIG. 3 is a view for explaining in detail the splitter shown in FIG.
  • FIG. 4 is a light output distribution chart for each channel when the splitter shown in FIG. 3 is formed at the same angle.
  • FIG. 5 is a light output distribution chart for each channel when the splitters shown in FIG. 3 are formed at set angles, respectively.
  • FIG. 6 is a view for explaining the operation of the optical waveguide device according to an embodiment of the present invention.
  • FIG. 1 a brief description will be given of a touch key pad to which an optical waveguide device according to an exemplary embodiment of the present invention is applied.
  • the optical waveguide device of the present embodiment is arranged to surround the substrate 10, the core 20 formed of a core material on the upper surface of the substrate 10, and the periphery of the core 20, that is, at least in both transverse directions. It includes a cladding (30).
  • the cladding 30 will be described as an example of being disposed on both sides in both transverse directions, but is not limited thereto.
  • the pattern of the core 20 is pressed onto the substrate 10 by using a silicon stamper (not shown) in which the waveguide pattern is formed. Accordingly, the core 20 formed by the pattern is formed on the substrate 10, and a material for forming the cladding 30 is injected around the core 20 to be completed.
  • the cladding 30 is formed of a material having a refractive index difference from a material forming the core 20, and internal reflection is generated by the difference in refractive index between the two materials to transmit an optical signal.
  • the cladding 30 has a smaller refractive index than the core material as an example, but is not limited thereto.
  • FIG. 2 is a plan view of a part of the optical waveguide device 100 manufactured as described above, wherein the core 20 has a light source (not shown) installed on the left side and a main light path extending in a horizontal direction ( 21, and a branched light path 22 branched from the main light path 21 in a vertical direction, wherein the core material and the branched light path 22 branch on the main light path 21.
  • a splitter 40 is formed of a material having a difference in refractive index and reflects a part of the incident light of the main optical path 21 toward the branch optical path 22.
  • the branched light 22 is vertically branched from the main light path 21, but is not limited thereto.
  • the splitter 40 has a smaller refractive index than the core 20 as an example, but is not limited thereto.
  • the core 20, the cladding 30, and the splitter 40 are acrylic, cellulose, polyester, polyamide, polyether, vinyl, urethane, urea, alkyd, silicone, fluorine, olefin, petroleum, rosin, Selected from epoxy resin, unsaturated polyester, diaryl phthalate resin, phenol, oxetane, oxazine, bismaleimide, sol-gel process silicone resin, melamine, acrylic resin, rubber, natural polymer, glass resin and glass frit
  • a silicone resin made of Sol-Gel will be described as an example. This thermal property is superior to conventional polymer materials, which is advantageous for securing product reliability.
  • the optical waveguide according to the present embodiment is applied to a display device-related field, that is, a touch screen, it is preferable to manufacture by Sol-Gel.
  • the sol-gel (Sol-Gel) is preferable as a material for optical foam that requires a really rough processing because the shrinkage characteristics generated during the curing process is very superior to other materials.
  • the core 20, the cladding 30, and the splitter portion 40 must satisfy the refractive index conditions described above and described below, the core 20, the cladding 30, and the splitter portion 40 are identically formed of any one material.
  • the core 20, the cladding 30, and the splitter 40 may be formed of the same material formed differently.
  • the branch optical path 22 is formed in plural along the extension direction of the main optical path 21, and the splitter portion 40 is formed at each branch point of the branch optical path 22.
  • the splitter portion 40 should have a refractive index smaller than that of the core material.
  • the splitter portion 40 may be formed of the same material as the cladding 30.
  • the difference in refractive index between the core material constituting the core 20 and the splitter 40 is most preferably 0.1 or more and 0.3 or less.
  • the splitter 40 is kept in the state of injecting air, that is, nothing is injected, and the material of the core 20 is appropriately selected to exist in the refractive index difference range. It is also possible to form the core 20 from the material.
  • select the material constituting the core 20 in consideration of only the refractive index may not be easy to form during the production process, so even if the refractive index is relatively low, select a material that is easy to mold, in order to increase the refractive index nano
  • the nano-dispersion component as described above may be used by mixing one or more components such as alumina, tin oxide, antimony oxide, silica, zirconia, titania.
  • the splitter unit 40 has a direction angle ⁇ ° to reflect a part of incident light from the main optical path 21 toward the branch optical path 22.
  • the portion 40 is formed to increase the direction angle so as to be far from the light source.
  • the direction angle is defined as an angle in which the direction of the optical path forms the normal of the splitter reflecting surface as shown in FIG. 3.
  • 4 and 5 have a refractive index of 1.555 of the core 20, a refractive index of 1.422 of the cladding 30 and the splitter 40, and 50 split optical paths 22 to form the splitter 40. Is fixed or changed, and the ratio of the output light to the input light at the output side of the branched light path 22 is measured.
  • the output light ratio of the split light path 22 located on the side closest to the light source is 1.41%, while it is farthest from the light source. It can be seen that the output light ratio in the branch light path 22 located therein is 0.437%, and the light passing through the splitter unit 40 is gradually weakened. Therefore, in the case of detecting the light using the output light of each branch light path 22 as the same detector, the light output is not uniform as described above and the light output becomes weak as the light source moves away from the light source. . On the other hand, starting at an angle of 41.35 ° as shown in FIG.
  • the orientation angle of the splitter portion 40 is most preferably formed to belong to 40 ° or more and 50 ° or less. Using such a result, it can be applied to an optical communication optical splitter that supplies a uniform amount of light to a plurality of channels using only one light source.
  • FIG. 6 illustrates an example in which the core 20 of the present embodiment is formed in the form of a lattice grid.
  • the main light path and the branch light path are formed in the horizontal direction, and the main light path and the branch light path are also formed in the vertical direction, so that each of the horizontal and vertical direction light beams may be intersected to form a grid-like grid.
  • a plurality of splitters 40 are formed at each branch point except for the intersection point in two adjacent outermost grids, that is, the main light paths in the horizontal and vertical directions.
  • Light is supplied to the horizontal and vertical main light paths by light sources L1 and L2 respectively.
  • the amount of light may be measured by arranging a plurality of optical sensors along branch points of the outermost grid that face the outermost grid.
  • the optical sensors are arranged along branch points, but the present invention is not limited thereto. It is also possible to achieve with only one sensor having a switching means along each branching point and for sensing the switching of said switching means. Using this principle, the present invention can be applied to a position detection device or a touch screen using only two light sources. In the above, the use of two light sources has been described as an example, but is not limited thereto. For example, it is also possible to arrange one light source and to supply light as shown in FIG. 6 using an appropriate light distribution means.
  • the uniformity of the light reflected from the splitter unit 40 as described above is preferably 3 dB or less.
  • the uniformity of the light means a difference between the maximum output and the minimum output, which means that the difference is less than 3 dB. This is to prevent the case in which the optical sensor does not detect the output light, because when the uniformity of the light exceeds 3dB, the absorption and loss of light occurs to lower the functionality as a product.
  • the optical waveguide device of the present invention has an advantage of receiving a uniform light output even if the number of receiving channels is increased.
  • the optical waveguide can be implemented with a minimum area even if the number of channels is increased, thereby minimizing the size of a product having the optical waveguide device, which is an invention that can be usefully used in the technical field of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

The present invention relates to an optical waveguide device, and particularly, to a planar optical waveguide device. The optical waveguide device of the present invention comprises: a substrate; a core formed on the substrate, consisting of a main optical path and a branch optical path; cladding made of a material having a refractive index smaller than that of the core, formed on the substrate such that the cladding covers at least both outer transverse sides of the core; and a splitter unit arranged at the branching point of the main optical path, having a refractive index different from that of the core. The splitter unit has a mirror angle for reflecting a portion of incident light from the main optical path in the direction of the branch optical path.

Description

광 도파로 장치Optical waveguide device
본 발명은 광 도파로 장치에 관한 것으로서, 특히 평면형 광 도파로 장치에 관한 것이다.The present invention relates to an optical waveguide device, and more particularly, to a planar optical waveguide device.
최근에 광신호의 분기, 변조, 스윗칭, 신호 다중화등의 광신호 처리를 목적으로 평면 도파로 기술을 이용하여 평면 기판상에 광 도파로를 제작하는 기술에 대하여 많은 연구가 이루어 지고 있다. 이러한 광 도파로 소자를 제작하기 위하여 필요한 기술로서는 도파로의 설계, 제작 및 패키지등을 예로 들수 있다.Recently, a lot of researches have been made on a technique for fabricating an optical waveguide on a planar substrate using a planar waveguide technology for the purpose of optical signal processing such as optical signal branching, modulation, switching, and signal multiplexing. As a technique required for fabricating such an optical waveguide device, a waveguide design, fabrication, and packaging may be exemplified.
일반적인 광 도파로는 광파를 가두고 길이방향으로 손실이 적게 전파시키는 광 전송로로서, 굴절율이 큰 코어와, 코아를 둘러싸고 있는 굴절율이 낮은 클래딩으로 구성되어, 상기 코어와 클래딩의 굴절율 차에 의한 내부 반사를 기본 원리로 하여 광 신호를 전달하게 되는 원리를 갖는다. A typical optical waveguide is an optical transmission path that traps light waves and propagates low loss in the longitudinal direction. The optical waveguide is composed of a core having a high refractive index and a cladding having a low refractive index surrounding the core, and the internal reflection due to the difference in refractive index between the core and the cladding. It has a principle of transmitting the optical signal based on the basic principle.
상기와 같은 평면 광 도파로에 있어서, 광 도파로를 따라 진행하는 단일 광 신호를 분리하여 여러 채널로 송신하고자 할 때 수신측 선단을 Y 자 형으로 분기하여 이용하고 있다. 즉, 수신측 선단을 Y자 형으로 분기하고, 분기된 갈래의 수신측 선단을 또 다시 Y자 형으로 분기하는 방식으로 원하는 수의 채널이 될 때까지 분기하는 방식이다. In the planar optical waveguide as described above, when a single optical signal traveling along the optical waveguide is to be separated and transmitted through multiple channels, the receiving end is branched into a Y shape. In other words, the receiving end is branched into a Y-shape, and the branched branch of the receiving end is again branched into a Y-shape to branch until the desired number of channels is reached.
상기와 같은 Y자형 분기방식은 광도파로의 면적이 비대해지는 문제가 있다. 특히, 터치 스크린을 채용하는 이동식 디지털 디바이스들이 소형화 되는 추세에 비추어 봤을 때 상기의 면적 비대의 문제는 치명적인 단점이 아닐 수 없다.The Y-shaped branching system as described above has a problem that the area of the optical waveguide is enlarged. In particular, in view of the trend toward miniaturization of mobile digital devices employing touch screens, the problem of area enlargement is a fatal disadvantage.
상기와 같은 문제를 해결하기 위한 본 발명은 수신 채널의 수가 많아져도 광의 출력이 일정하고, 면적을 최소화 되는 광 도파로 장치를 제공하는 것을 목적으로 한다.An object of the present invention for solving the above problems is to provide an optical waveguide device in which the output of light is constant and the area is minimized even if the number of receiving channels increases.
상기와 같은 목적을 달성하기 위한 본 발명의 광도파로 장치는 기판; 상기 기판위에 형성되며, 주광로와 분기광로로 이루어진 코어; 상기 코어보다 작은 굴절율을 갖는 물질로상기 기판위에 형성되며, 상기 코어의 적어도 횡방향 양 외측을 감싸도록 배치되는 클래딩; 상기 주광로상에 분기광로의 분기위치에 배치되며, 상기 코어와 굴절율 차이를 갖는 스플리터부를 포함한다.The optical waveguide device of the present invention for achieving the above object is a substrate; A core formed on the substrate, the core including a main path and a branch path; A cladding formed on the substrate with a material having a refractive index smaller than that of the core, the cladding being disposed to surround at least two outer sides of the core; A splitter is disposed on the main optical path at a branching position of the split optical path, and includes a splitter having a refractive index difference from the core.
또한, 본 발명의 광도파로 장치에서 상기 스플리터부는 주광로로부터 분기광로 방향으로 입사광의 일부를 반사하도록 지향각을 갖는 것을 특징으로 한다.In addition, in the optical waveguide device of the present invention, the splitter portion has a directing angle to reflect a part of incident light from the main optical path in the direction of the branch optical path.
또한, 본 발명의 광도파로 장치에서 상기 분기광로는 주광로의 연장방향을 따라 복수개 형성되며, 상기 스플리터부는 상기 분기광로의 개수와 동일하게 복수개 형성된 것을 특징으로 한다.In addition, in the optical waveguide device of the present invention, a plurality of branch light paths may be formed along an extension direction of the main light path, and the splitter part may be formed in the same number as the number of the branch light paths.
또한, 본 발명의 광도파로 장치에서 상기 스플리터부는 상기 클래딩과 동일한 굴절율을 갖는 물질로 형성된 것을 특징으로 한다.In addition, in the optical waveguide device of the present invention, the splitter portion is formed of a material having the same refractive index as the cladding.
또한, 본 발명의 광도파로 장치에서 상기 스플리터부는 공기인 것을 특징으로 한다.In addition, in the optical waveguide device of the present invention, the splitter is air.
또한, 본 발명의 광도파로 장치에서 상기 복수의 스플리터부는 주광로로부터 분기광로 방향으로 입사광의 일부를 반사하도록 입사광에 대하여 지향각을 갖도록 형성되되, 주광로를 따라 지향각이 증가하도록 된 것을 특징으로 한다.In addition, in the optical waveguide device of the present invention, the plurality of splitters are formed to have a directing angle with respect to the incident light so as to reflect a part of the incident light from the main optical path in the direction of the branch optical path, and the directing angle increases along the main optical path. It is done.
또한, 본 발명의 광도파로 장치에서 상기 각각의 스플리터부는 지향각이 40°이상 50°이하의 범위인 것을 특징으로 한다.In addition, in the optical waveguide device of the present invention, each splitter part is characterized in that the direction angle is in the range of 40 ° to 50 °.
또한, 본 발명의 광도파로 장치에서 상기 분기광로는 상기 주 광로와 수직을 이루도록 분기된 것을 특징으로 한다.In the optical waveguide device of the present invention, the branched light path is branched to be perpendicular to the main light path.
또한, 본 발명의 광도파로 장치에서 상기 코어와 스플리터부의 굴절율 차는 0.1 이상 0.3 이하 인 것을 특징으로 한다.In the optical waveguide device of the present invention, the difference in refractive index between the core and the splitter portion is 0.1 or more and 0.3 or less.
또한, 본 발명의 광도파로 장치에서 상기 코어물질은 나노분산 성분을 포함하는데, 알루미나, 산화주석, 산화 안티몬, 실리카, 지르코니아, 티타니아 중 어느 하나 또는 둘 이상이 혼합된 금속 산화물인 것을 특징으로 한다.In addition, the core material in the optical waveguide device of the present invention comprises a nano-dispersion component, characterized in that any one or two or more of alumina, tin oxide, antimony oxide, silica, zirconia, titania is a mixed metal oxide.
또한, 본 발명의 광도파로 장치에서 상기 코어 및/또는 스플리터부 및/또는 클래딩은, 솔겔(Sol-Gel) 물질로 형성된 것을 특징으로 한다.In the optical waveguide device of the present invention, the core and / or the splitter portion and / or the cladding are formed of a Sol-Gel material.
또한, 본 발명의 광도파로 장치에서 상기 스플리터부에서 반사 출광하는 광의 균일도는 3dB 이하인 것을 특징으로 한다.Further, in the optical waveguide device of the present invention, the uniformity of the light reflected from the splitter portion is 3 dB or less.
한편, 상기와 같은 본 발명의 광도파로 장치는 광 통신용 광 분배기에 사용되어 질 수 있다.On the other hand, the optical waveguide device of the present invention as described above can be used in the optical splitter for optical communication.
한편, 다른 실시예의 광 도파로 장치로서, 기판; 상기 기판위에 형성되는 격자상 그리드 형태의 코어; 상기 기판위에 상기 코어보다 작은 굴절율을 갖는 물질로 상기 기판위에 형성되며, 상기 코어의 적어도 횡방향 양 외측을 감싸도록 배치되는 클래딩; 상기 그리드의 최외각 광로 중 인접하는 2개의 광로의 각 분기지점에 배치되며, 상기 코어와 굴절율 차이를 갖는 물질로 된 스플리터부를 포함하는 것을 특징으로 한다. On the other hand, there is provided an optical waveguide device according to another embodiment, comprising: a substrate; A core in the form of a lattice grid formed on the substrate; A cladding formed on the substrate with a material having a refractive index smaller than that of the core on the substrate, the cladding being disposed to surround at least both outer sides of the core; And a splitter part disposed at each branch point of two adjacent optical paths among the outermost optical paths of the grid and having a material having a refractive index difference from the core.
또한, 본 발명의 광 도파로 장치에서 상기 스플리터부는 상기 그리드의 최외각 광로의 분기지점에서 분기방향으로 입사광의 일부를 반사하도록 지향각을 갖도록 형성된 것을 특징으로 한다.In addition, in the optical waveguide device of the present invention, the splitter portion is formed to have a directing angle to reflect a part of the incident light in the branching direction at the branching point of the outermost optical path of the grid.
또한, 본 발명의 광 도파로 장치에서 상기 스플리터부는 상기 클래딩과 동일한 물질로 형성된 것을 특징으로 한다.In addition, in the optical waveguide device of the present invention, the splitter portion is formed of the same material as the cladding.
또한, 본 발명의 광 도파로 장치에서 상기 스플리터부는 공기인 것을 특징으로 한다. In addition, in the optical waveguide device of the present invention, the splitter is air.
또한, 본 발명의 광 도파로 장치에서 상기 각각의 스플리터부는 상기 그리드의 최외각 광로의 교차지점에서 멀어질 수록 지향각이 증가하도록 형성된 것을 특징으로 한다. In addition, in the optical waveguide device of the present invention, each of the splitters is formed such that the directing angle increases as the distance from the intersection of the outermost optical path of the grid increases.
또한, 본 발명의 광 도파로 장치에서 상기 스플리터부는 지향각이 40°이상 50°이하의 범위인 것을 특징으로 한다.In addition, in the optical waveguide device of the present invention, the splitter is characterized in that the direction angle is in the range of 40 ° to 50 °.
또한, 본 발명의 광 도파로 장치에서 상기 코어의 격자상 그리드는 교차각이 수직인 것을 특징으로 한다.Further, in the optical waveguide device of the present invention, the grid-like grid of the core is characterized in that the crossing angle is vertical.
또한, 본 발명의 광 도파로 장치에서 상기 코어와 스플리터부의 굴절율 차는 0.1 이상 0.3 이하 인 것을 특징으로 한다.In the optical waveguide device of the present invention, the difference in refractive index between the core and the splitter portion is 0.1 or more and 0.3 or less.
또한, 본 발명의 광 도파로 장치에서 상기 코어물질은 나노분산 성분을 포함하하는데, 상기 나노분산 성분은, 알루미나, 산화주석, 산화 안티몬, 실리카, 지르코니아, 티타니아 중 어느 하나 또는 둘 이상이 혼합된 금속 산화물인 것을 특징으로한다. In addition, in the optical waveguide device of the present invention, the core material includes a nanodispersion component, wherein the nanodispersion component is a metal mixed with any one or two or more of alumina, tin oxide, antimony oxide, silica, zirconia, and titania. It is characterized by being an oxide.
또한, 본 발명의 광 도파로 장치에서 상기 코어 및/또는 스플리터부 및/또는 클래딩은, 솔겔(Sol-Gel) 물질로 형성된 것을 특징으로 한다.In the optical waveguide device of the present invention, the core and / or splitter and / or cladding may be formed of a Sol-Gel material.
또한, 본 발명의 광 도파로 장치에서 상기 스플리터부에서 반사 출광하는 광의 균일도는 3dB 이하인 것을 특징으로 한다.Further, in the optical waveguide device of the present invention, the uniformity of the light reflected from the splitter portion is 3 dB or less.
한편, 상기와 같은 본 발명의 광 도파로 장치는 터치 스크린 디바이스에 사용되어 질 수 있다. On the other hand, the optical waveguide device of the present invention as described above can be used in the touch screen device.
상기와 같은 본 발명의 광 도파로 장치는 수신 채널이 많아져도 균일한 광 출력을 수신할 수 있는 장점이 있다. 특히, 채널의 수가 많아져도 최소한의 면적으로 광 도파로를 구현할 수 있어 광 도파로 장치를 갖는 제품의 사이즈를 소형화 할 수 있는 장점이 있다.The optical waveguide device of the present invention as described above has an advantage of receiving a uniform light output even with a large number of receiving channels. In particular, even if the number of channels is increased, the optical waveguide can be realized with a minimum area, thereby reducing the size of the product having the optical waveguide device.
도 1은 본 발명의 실시예에 따른 광 도파로 장치가 적용된 터치 키 패드를 간략하게 도시한 도면1 is a view schematically illustrating a touch key pad to which an optical waveguide device according to an exemplary embodiment of the present invention is applied.
도 2는 본 발명의 실시예에 따른 코어 및 스플리터를 설명하기 위한 도면2 is a view for explaining a core and a splitter according to an embodiment of the present invention;
도 3은 도 2에 도시된 스플리터를 상세히 설명하기 위한 도면3 is a view for explaining in detail the splitter shown in FIG.
도 4는 도 3에 도시된 스플리터가 동일한 각도로 형성된 경우 채널별 광 출력 분포도FIG. 4 is a light output distribution chart for each channel when the splitter shown in FIG. 3 is formed at the same angle.
도 5는 도 3에 도시된 스플리터가 각각 설정 각도로 형성된 경우 채널별 광 출력 분포도5 is a light output distribution chart for each channel when the splitters shown in FIG. 3 are formed at set angles, respectively.
도 6은 본 발명의 실시예에 따른 광 도파로 장치의 동작을 설명하기 위한 도면6 is a view for explaining the operation of the optical waveguide device according to an embodiment of the present invention;
이하에서는 첨부된 도면 1 내지 6을 참조하여 이하 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시 예를 상세히 설명한다. 도면에서 동일한 구성 요소들에 대해서는 비록 다른 도면에 표시되더라도 가능한 동일한 참조번호 및 부호로 나타내고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.Hereinafter, with reference to the accompanying drawings 1 to 6 will be described in detail a preferred embodiment according to the present invention with reference to the accompanying drawings. Note that the same components in the drawings are represented by the same reference numerals and symbols as much as possible even if shown in different drawings. In addition, in describing the embodiments of the present invention, if it is determined that the detailed description of the related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
먼저, 도 1을 참조하여 본 발명의 실시예에 따른 광 도파로 장치가 적용된 터치 키 패드를 간략하게 살펴보면 다음과 같다. First, referring to FIG. 1, a brief description will be given of a touch key pad to which an optical waveguide device according to an exemplary embodiment of the present invention is applied.
본 실시예의 광 도파로 장치는 기판(10)과, 상기 기판(10)의 상면에 코어물질로 형성된 코어(20)와, 상기 코어(20)의 주변을 감싸도록, 즉 적어도 양 횡방향 양측에 배치되는 클래딩(30)을 포함한다. 상기 클래딩(30)은 양 횡방향 양측에 배치되는 것을 예로 하여 설명하나, 이에 한정되는 것은 아니고 상부까지 감싸도록 배치됨도 가능하다. 상기와 같은 광 도파로 장치는 도파로 패턴이 형성된 실리콘 스탬퍼(미도시)를 이용하여 상기 코어(20)의 패턴을 상기 기판(10)에 프레싱 하게 된다. 따라서, 상기 기판(10)상에는 상기 패턴에 의한 코어(20)가 형성이 되어 있으며, 상기 코어(20)의 주변에 클래딩(30)을 형성하기 위한 물질을 주입하여 완성된다. The optical waveguide device of the present embodiment is arranged to surround the substrate 10, the core 20 formed of a core material on the upper surface of the substrate 10, and the periphery of the core 20, that is, at least in both transverse directions. It includes a cladding (30). The cladding 30 will be described as an example of being disposed on both sides in both transverse directions, but is not limited thereto. In the optical waveguide device as described above, the pattern of the core 20 is pressed onto the substrate 10 by using a silicon stamper (not shown) in which the waveguide pattern is formed. Accordingly, the core 20 formed by the pattern is formed on the substrate 10, and a material for forming the cladding 30 is injected around the core 20 to be completed.
상기 클래딩(30)은 상기 코어(20)를 이루는 물질과 굴절율차를 갖는 물질로 이루어 지는 것으로서, 두 물질의 굴절율 차에 의해 내부 반사가 발생하여 광신호가 전달되는 것이다. 본 실시예에서는 클래딩(30)이 코어물질보다 굴절율이 작은 것을 일예로 하여 설명하나 이에 한정되는 것은 아니다.The cladding 30 is formed of a material having a refractive index difference from a material forming the core 20, and internal reflection is generated by the difference in refractive index between the two materials to transmit an optical signal. In the present embodiment, the cladding 30 has a smaller refractive index than the core material as an example, but is not limited thereto.
도 2는 상기와 같이 제작된 광 도파로 장치(100)의 일부를 평면도로 도시한 것으로서, 상기 코어(20)는 도면상에서 광원(미도시)이 좌측에 설치되고, 수평방향으로 연장되는 주광로(21)와, 상기 주광로(21)에서 수직방향으로 분기한 분기광로(22)를 포함하며, 상기 주광로(21)상에 상기 분기광로(22)가 분기하는 지점에는 상기 코어물질과 굴절율 차를 갖는 물질로 되어 주광로(21)의 입사광의 일부를 상기 분기광로(22) 방향으로 반사하는 스플리터부(40)가 더 형성되어 있다. 본 실시예에서는 상기 분기광로(22)가 주광로(21)에서 수직으로 분기한 것을 일예로 하여 설명하나 이에 한정되는 것은 아니다. 또한, 상기 스플리터부(40)가 상기 코어(20)보다 굴절율이 작은 것을 일예로 하여 설명하나 이에 한정되는 것은 아니다.2 is a plan view of a part of the optical waveguide device 100 manufactured as described above, wherein the core 20 has a light source (not shown) installed on the left side and a main light path extending in a horizontal direction ( 21, and a branched light path 22 branched from the main light path 21 in a vertical direction, wherein the core material and the branched light path 22 branch on the main light path 21. Further, a splitter 40 is formed of a material having a difference in refractive index and reflects a part of the incident light of the main optical path 21 toward the branch optical path 22. In the present exemplary embodiment, the branched light 22 is vertically branched from the main light path 21, but is not limited thereto. In addition, the splitter 40 has a smaller refractive index than the core 20 as an example, but is not limited thereto.
상기 코어(20)와, 클래딩(30), 스플리터부(40)는 각각 아크릴, 셀룰로스, 폴리에스테르, 폴리아미드, 폴리에테르, 비닐, 우레탄, 우레아, 알키드, 실리콘, 불소, 올레핀, 석유, 로진, 에폭시, 불포화폴리에스테르, 디아릴프탈레이트수지, 페놀, 옥세탄, 옥사진, 비스말레이미드, 솔-젤 공법에 따른 실리콘계수지, 멜라민, 아크릴계수지, 고무, 천연고분자, 글라스 레진 및 글래스 프릿에서 선택되는 하나 이상의 화합물이 사용되어 질 수 있는데, 본 발명에서는 솔-젤(Sol-Gel)로 이루어진 실리콘 수지를 일예로 하여 설명한다. 이는 열적 특성이 기존의 폴리머 소재에 비해 우수하여 제품의 신뢰성 확보에 유리하며, 특히 사용중 많은 열이 발생되는 디스플레이 장치 관련 분야에서는 열적 내구성이 무엇보다 중요시 된다. 따라서, 본 실시예에 따른 광 도파로를 디스플에이 장치 관련분야, 즉 터치 스크린 등에 적용할 경우에는 솔-젤(Sol-Gel)로 제작을 하는 것이 바람직 하다. 또한, 상기 솔-젤(Sol-Gel)은 경화과정에서 발생되는 수축 특성이 다른 소재에 비해 매우 우수하므로 정말힌 가공을 요구하는 광포파용 소재로서 바람직하다. 상기 코어(20)와, 클래딩(30), 스플리터부(40)는 상기에 기재되고, 하기에 기재되는 굴절율 조건을 만족해야 하므로, 어느 한 물질로 동일하게 형성되되, 상기 굴절율 조건에 따라 굴절율이 다르게 형성된 동일한 물질로 상기 코어(20)와, 클래딩(30), 스플리터부(40)가 각각 형성되어도 무방하다.The core 20, the cladding 30, and the splitter 40 are acrylic, cellulose, polyester, polyamide, polyether, vinyl, urethane, urea, alkyd, silicone, fluorine, olefin, petroleum, rosin, Selected from epoxy resin, unsaturated polyester, diaryl phthalate resin, phenol, oxetane, oxazine, bismaleimide, sol-gel process silicone resin, melamine, acrylic resin, rubber, natural polymer, glass resin and glass frit One or more compounds may be used. In the present invention, a silicone resin made of Sol-Gel will be described as an example. This thermal property is superior to conventional polymer materials, which is advantageous for securing product reliability. Especially, in the field of display apparatuses in which a lot of heat is generated during use, thermal durability is of paramount importance. Therefore, when the optical waveguide according to the present embodiment is applied to a display device-related field, that is, a touch screen, it is preferable to manufacture by Sol-Gel. In addition, the sol-gel (Sol-Gel) is preferable as a material for optical foam that requires a really rough processing because the shrinkage characteristics generated during the curing process is very superior to other materials. Since the core 20, the cladding 30, and the splitter portion 40 must satisfy the refractive index conditions described above and described below, the core 20, the cladding 30, and the splitter portion 40 are identically formed of any one material. The core 20, the cladding 30, and the splitter 40 may be formed of the same material formed differently.
상기 분기광로(22)는 주광로(21)의 연장방향을 따라 복수개 형성되어 있으며, 상기 스플리터부(40)는 상기 분기광로(22)의 분기점 마다 형성되어 있다. 상기 스플리터부(40)는 그 굴절율이 상기 코어물질 보다 작게 되어야 한다. 상기 스플리터부(40)는 상기 클래딩(30)와 동일한 재료로 형성되어도 무방하다. 이때, 상기 코어(20)와 스플리터부(40) 간에 굴절율의 차가 너무 큰 경우에는 광 경로의 전단에 위치한 스플리터부(40)에 의해 입사광의 대부분이 반사되어 후단의 분기광로에 광량이 충분히 공급되지 못하며, 반대로 굴절율차가 너무 작은 경우에는 분기광로로의 광 공급이 너무 적게 되므로, 상기 코어(20)를 이루는 코어물질과 스플리터부(40)의 굴절율 차는 0.1 이상 0.3 이하로 되는 것이 가장 바람직 하다. 상기와 같은 굴절율 차 범위를 감안 해 보면, 상기 스플리터부(40)를 공기(Air), 즉 아무것도 주입하지 않은 상태로 유지하고 상기 코어(20)의 물질을 적절히 선정하여 상기 굴절율 차 범위에 존해는 물질로 코어(20)를 형성함도 가능하다. 상기 코어(20)를 이루는 물질을 선정함에 있어서 굴절율 만을 고려하여 선정한다면 생산과정에서 성형이 용이하지 않을 수 있으므로, 굴절율이 상대적으로 낮더라도 성형이 용이한 물질을 선정하되, 상기 굴절율을 높이기 위하여 나노분산성분을 포함하여 제조함으로서 상기 굴절율 차의 조건을 만족함도 가능하다. 상기와 같은 나노분산성분은 알루미나, 산화주석, 산화안티몬, 실리카, 지르코니아, 티타니아와 같은 성분이 하나 또는 둘 이상이 혼합되어 사용되어 질 수 있다. The branch optical path 22 is formed in plural along the extension direction of the main optical path 21, and the splitter portion 40 is formed at each branch point of the branch optical path 22. The splitter portion 40 should have a refractive index smaller than that of the core material. The splitter portion 40 may be formed of the same material as the cladding 30. At this time, when the difference in refractive index between the core 20 and the splitter portion 40 is too large, most of the incident light is reflected by the splitter portion 40 located at the front end of the optical path, so that the amount of light is not sufficiently supplied to the branch light path at the rear stage. On the contrary, when the difference in refractive index is too small, the light supply to the branched optical path is too small. Therefore, the difference in refractive index between the core material constituting the core 20 and the splitter 40 is most preferably 0.1 or more and 0.3 or less. In view of the above refractive index difference range, the splitter 40 is kept in the state of injecting air, that is, nothing is injected, and the material of the core 20 is appropriately selected to exist in the refractive index difference range. It is also possible to form the core 20 from the material. When selecting the material constituting the core 20 in consideration of only the refractive index may not be easy to form during the production process, so even if the refractive index is relatively low, select a material that is easy to mold, in order to increase the refractive index nano It is also possible to satisfy the conditions of the difference in refractive index by producing a dispersion component. The nano-dispersion component as described above may be used by mixing one or more components such as alumina, tin oxide, antimony oxide, silica, zirconia, titania.
상기와 같은 스플리터부(40)는 도 3에 도시된 바와 같이 상기 주광로(21)로부터 분기광로(22) 방향으로 입사광의 일부를 반사하도록 지향각(α°)이 형성되는데, 각각의 스플리터부(40)는 광원에서 멀어질 수도록 지향각이 증가하도록 형성되어 있다. 본 발명에서 지향각은 도 3에서와 같이 광로의 방향이 스플리터 반사면의 법선과 이루는 각도로 정의된다. As shown in FIG. 3, the splitter unit 40 has a direction angle α ° to reflect a part of incident light from the main optical path 21 toward the branch optical path 22. The portion 40 is formed to increase the direction angle so as to be far from the light source. In the present invention, the direction angle is defined as an angle in which the direction of the optical path forms the normal of the splitter reflecting surface as shown in FIG. 3.
도 4 및 도 5의 실험 결과 그래프를 참고하여 상기 스플리터부(40)의 각도에 대해 상세히 살펴보면 다음과 같다. 도 4 및 도 5의 그래프는 코어(20)의 굴절율 1.555, 클래딩(30) 및 스플리터부(40)의 굴절율 1.422로 하고, 상기 분기광로(22)를 50개 형성하며, 상기 스플리터부(40)의 각도를 고정 또는 변화하여 각각 분기광로(22)의 출력측에서의 입력광에 대한 출력광 비를 측정한 것이다. Looking at the angle of the splitter 40 in detail with reference to the experimental result graph of Figure 4 and 5 as follows. 4 and 5 have a refractive index of 1.555 of the core 20, a refractive index of 1.422 of the cladding 30 and the splitter 40, and 50 split optical paths 22 to form the splitter 40. Is fixed or changed, and the ratio of the output light to the input light at the output side of the branched light path 22 is measured.
도 4에서와 같이 50개의 스플리터부(40) 각도를 45°로 고정하여 측정하면, 광원과 가장 가까운 측에 위치한 분기광로(22)에서의 출력광비는 1.41%임에 반해, 광원과 가장 먼곳에 위치한 분기광로(22)에서의 출력광비는 0.437%로 스플리터부(40)를 거쳐온 광은 그 출력이 점점 약해지는 것을 알 수 있다. 따라서, 각 분기광로(22)의 출력광을 동일한 검출기로 사용하여 광을 검출하는 경우 상기와 같이 광출력이 불균일함과 동시에 광원과 멀어질 수록 그 광출력이 약해져 광 검출이 용이하지 않게 된다. 이와 반면에 도 5에서와 같이 41.35°의 각도로 시작하여 50개의 스플리터부(40)를 각각 0.15°씩 지향각이 증가하도록 형성하면, 광원과 가장 가까운 측에 위치한 분기광로(22)에서의 출력광비가 0.92%이고 광원과 가장 먼곳에 위치한 분기광로(22)에서의 출력광비는 0.907%로서 실질적으로 거의 동일한 광 출력을 하고 있음을 알 수 있다. 상기 실험 데이터에서도 알 수 있듯이 상기 스플리터부(40)의 지향각은 40°이상 50°이하에 속하도록 형성함이 가장 바람직 하다. 이와 같은 결과를 이용하여 1개의 광원만을 사용하여 복수의 채널에 균일한 광량을 공급하는 광 통신용 광 분배기에 응용할 수 있다.As shown in FIG. 4, when the angles of the 50 splitter parts 40 are fixed at 45 °, the output light ratio of the split light path 22 located on the side closest to the light source is 1.41%, while it is farthest from the light source. It can be seen that the output light ratio in the branch light path 22 located therein is 0.437%, and the light passing through the splitter unit 40 is gradually weakened. Therefore, in the case of detecting the light using the output light of each branch light path 22 as the same detector, the light output is not uniform as described above and the light output becomes weak as the light source moves away from the light source. . On the other hand, starting at an angle of 41.35 ° as shown in FIG. 5 and forming 50 splitters 40 so as to increase the directivity angle by 0.15 ° each, in the branch light path 22 located on the side closest to the light source. It can be seen that the output light ratio is 0.92% and the output light ratio in the branch light path 22 located farthest from the light source is 0.907%, which is substantially the same light output. As can be seen from the experimental data, the orientation angle of the splitter portion 40 is most preferably formed to belong to 40 ° or more and 50 ° or less. Using such a result, it can be applied to an optical communication optical splitter that supplies a uniform amount of light to a plurality of channels using only one light source.
도 6은 상기와 같은 본 실시예의 코어(20)가 격자상 그리드 형태로 형성된 일예가 도시되어 있다. 도면상에서 수평방향으로 주광로 및 분기광로가 형성되어 있고, 수직방향으로도 주광로 및 분기광로가 형성되어 있어 각각의 수평 및 수직방향의 분기광로가 교차하여 격자상 그리드 형태로 구현될 수 있는 것이다. 이때, 인접하는 2개의 최외각 그리드 즉 수평 및 수직방향의 주광로에는 교차지점을 제외한 각각의 분기지점에 복수의 스플리터부(40)가 형성되어 있다. 상기 수평 및 수직 방향 주광로에는 각각 에서의 광원(L1, L2)에 의하여 광공급이 이루어 진다. 한편, 상기 최외각 그리드에 대향하는 최외각 그리드의 분기점을 따라 복수의 광센서를 배치하여 광량을 측정할 수 있다. 만일 상기 그리드상에서 손가락 등에 의하여 접촉이 발생될 경우 상면에서의 전반사가 깨어져 해당 채널의 광센서에 광량 변화가 검출되므로 손가락의 접촉위치를 결정할 수 있게 된다. 본 실시예에서는 상기 복수의 광센서를 분기점을 따라 배치하는 것을 예로하여 설명하였으나, 이에 한정되는 것은 아니다. 각각의 분기점을 따라 스위칭 수단을 구비하고 상기 스위칭 수단의 스위칭을 감지하는 센서를 1개만 구비하여 달성함도 충분히 가능하다. 이러한 원리를 이용하여 2개의 광원만을 사용하는 위치검출장치 또는 터치 스크린에 응용할 수 있다. 상기에서는 2개의 광원을 사용하는 것을 일예로 하여 설명하였으나, 이에 한정되는 것은 아니다. 예를 들어, 1개의 광원을 배치하고, 상기 1개의 광원을 적절한 광분배수단을 이용하여 도 6과 같이 광을 공급되도록 함도 가능하기 때문이다.6 illustrates an example in which the core 20 of the present embodiment is formed in the form of a lattice grid. In the drawing, the main light path and the branch light path are formed in the horizontal direction, and the main light path and the branch light path are also formed in the vertical direction, so that each of the horizontal and vertical direction light beams may be intersected to form a grid-like grid. . At this time, a plurality of splitters 40 are formed at each branch point except for the intersection point in two adjacent outermost grids, that is, the main light paths in the horizontal and vertical directions. Light is supplied to the horizontal and vertical main light paths by light sources L1 and L2 respectively. The amount of light may be measured by arranging a plurality of optical sensors along branch points of the outermost grid that face the outermost grid. If a contact is generated by a finger or the like on the grid, total reflection is broken on the upper surface, so that a change in the amount of light is detected by the optical sensor of the corresponding channel, thereby determining the contact position of the finger. In the present exemplary embodiment, the optical sensors are arranged along branch points, but the present invention is not limited thereto. It is also possible to achieve with only one sensor having a switching means along each branching point and for sensing the switching of said switching means. Using this principle, the present invention can be applied to a position detection device or a touch screen using only two light sources. In the above, the use of two light sources has been described as an example, but is not limited thereto. For example, it is also possible to arrange one light source and to supply light as shown in FIG. 6 using an appropriate light distribution means.
상기와 같은 스플리터부(40)에서 반사 출광되는 광의 균일도는 3dB 이하로 되는 것이 바람직 하다. 상기 광의 균일도로 함은 최대 출력과 최소 출력의 크기 차이를 의미하는 것으로서, 상기 크기의 차이가 3dB 이하라는 의미이다. 이는 광센서에서 출력광을 감지하지 못하는 경우를 방지하기 위함으로서, 상기 광의 균일도가 3dB 초과가 될 경우, 광의 흡수 및 손실등이 발생하여 제품으로서의 기능성이 낮아지기 때문이다. The uniformity of the light reflected from the splitter unit 40 as described above is preferably 3 dB or less. The uniformity of the light means a difference between the maximum output and the minimum output, which means that the difference is less than 3 dB. This is to prevent the case in which the optical sensor does not detect the output light, because when the uniformity of the light exceeds 3dB, the absorption and loss of light occurs to lower the functionality as a product.
앞에서 설명된 본 발명의 일실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 아니된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서, 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.One embodiment of the present invention described above should not be construed as limiting the technical spirit of the present invention. The protection scope of the present invention is limited only by the matters described in the claims, and those skilled in the art can change and change the technical idea of the present invention in various forms. Therefore, such improvements and modifications will fall within the protection scope of the present invention as long as it will be apparent to those skilled in the art.
본 발명의 광 도파로 장치는 수신 채널이 많아져도 균일한 광 출력을 수신할 수 있는 장점이 있다. 특히, 채널의 수가 많아져도 최소한의 면적으로 광 도파로를 구현할 수 있어 광 도파로 장치를 갖는 제품의 사이즈를 소형화 할 수 있는 장점이 있어 본 발명의 기술분야에서 유용하게 사용될 수 있는 발명이다.The optical waveguide device of the present invention has an advantage of receiving a uniform light output even if the number of receiving channels is increased. In particular, the optical waveguide can be implemented with a minimum area even if the number of channels is increased, thereby minimizing the size of a product having the optical waveguide device, which is an invention that can be usefully used in the technical field of the present invention.

Claims (25)

  1. 기판;Board;
    상기 기판위에 형성되며, 주광로와 분기광로로 이루어진 코어;A core formed on the substrate, the core including a main path and a branch path;
    상기 코어보다 작은 굴절율을 갖는 물질로상기 기판위에 형성되며, 상기 코어의 적어도 횡방향 양 외측을 감싸도록 배치되는 클래딩;A cladding formed on the substrate with a material having a refractive index smaller than that of the core, the cladding being disposed to surround at least two outer sides of the core;
    상기 주광로상에 분기광로의 분기위치에 배치되며, 상기 코어와 굴절율 차이를 갖는 스플리터부를 포함하고,A splitter portion disposed on the main optical path at a branching position of the branch optical path and having a refractive index difference from the core;
    상기 분기광로는 주광로의 연장방향을 따라 복수개 형성되며,A plurality of branch light paths are formed along the extension direction of the main light path,
    상기 스플리터부는 상기 분기광로의 개수와 동일하게 복수개 형성되며,A plurality of splitters are formed in the same number as the number of split light paths,
    상기 복수의 스플리터부는 주광로로부터 분기광로 방향으로 입사광의 일부를 반사하도록 입사광에 대하여 지향각을 갖도록 형성되되, 주광로를 따라 지향각이 증가하도록 된 것을 특징으로 하는 광 도파로 장치The plurality of splitters are formed to have a directing angle with respect to the incident light so as to reflect a part of the incident light in the direction of the branch light from the main light path, the optical waveguide device characterized in that the directing angle increases along the main light path
  2. 제1항에 있어서,The method of claim 1,
    상기 스플리터부는 주광로로부터 분기광로 방향으로 입사광의 일부를 반사하도록 지향각을 갖는 것을 특징으로하는 광 도파로 장치.And the splitter portion has a directing angle to reflect a part of the incident light from the main optical path toward the split optical path.
  3. 제2항에 있어서,The method of claim 2,
    상기 스플리터부는 상기 클래딩과 동일한 굴절율을 갖는 물질로 형성된 것을 특징으로 하는 광 도파로 장치.And the splitter part is formed of a material having the same refractive index as that of the cladding.
  4. 제1항에 있어서,The method of claim 1,
    상기 스플리터부는 공기인 것을 특징으로 하는 광 도파로 장치.And the splitter portion is air.
  5. 제2항에 있어서,The method of claim 2,
    상기 각각의 스플리터부의 지향각이 40°이상 50°이하의 범위인 것을 특징으로 하는 광 도파로 장치.An optical waveguide device, wherein the direction angle of each splitter is in the range of 40 ° to 50 °.
  6. 제1항에 있어서,The method of claim 1,
    상기 분기광로는 상기 주 광로와 수직을 이루도록 분기된 것을 특징으로 하는 광 도파로 장치.And the branched light path is branched to be perpendicular to the main light path.
  7. 제1항에 있어서,The method of claim 1,
    상기 코어와 스플리터부의 굴절율 차는 0.1 이상 0.3 이하 인 것을 특징으로 하는 광 도파로 장치.The optical waveguide device, characterized in that the difference in refractive index between the core and the splitter portion is 0.1 or more and 0.3 or less.
  8. 제1항에 있어서,The method of claim 1,
    상기 코어물질은 나노분산 성분을 포함하여 이루어진 것을 특징으로 하는 광 도파로 장치.The core material is an optical waveguide device comprising a nano-dispersion component.
  9. 제1항에 있어서,The method of claim 1,
    상기 코어 및/또는 스플리터부 및/또는 클래딩은,The core and / or splitter portion and / or cladding,
    솔겔(Sol-Gel) 물질로 형성된 것을 특징으로 하는 광 도파로 장치.An optical waveguide device, characterized in that formed of a Sol-Gel material.
  10. 제8항에 있어서,The method of claim 8,
    상기 나노분산 성분은,The nanodispersion component,
    알루미나, 산화주석, 산화 안티몬, 실리카, 지르코니아, 티타니아 중 어느 하나 또는 둘 이상이 혼합된 금속 산화물인 것을 특징으로 하는 광 도파로 장치.An optical waveguide device, wherein any one or two or more of alumina, tin oxide, antimony oxide, silica, zirconia, and titania are mixed metal oxides.
  11. 제1항 또는 제2항 또는 제3항 또는 제4항 또는 제5항 내지 제10항 중 어느 한 항에 있어서,The method according to any one of claims 1 or 2 or 3 or 4 or 5 to 10,
    상기 스플리터부에서 반사 출광하는 광의 균일도는 3dB 이하인 것을 특징으로 하는 광 도파로 장치.The optical waveguide device, characterized in that the uniformity of the light reflected by the splitter portion is 3dB or less.
  12. 제11항의 광 도파로 장치를 포함하는 광 통신용 광 분배기.An optical splitter for optical communications comprising the optical waveguide device of claim 11.
  13. 기판;Board;
    상기 기판위에 형성되는 격자상 그리드 형태의 코어;A core in the form of a lattice grid formed on the substrate;
    상기 기판위에 상기 코어보다 작은 굴절율을 갖는 물질로 상기 기판위에 형성되며, 상기 코어의 적어도 횡방향A material having a refractive index smaller than the core on the substrate, formed on the substrate, wherein at least the transverse direction of the core
    양 외측을 감싸도록 배치되는 클래딩;A cladding disposed to surround both outer sides;
    상기 그리드의 최외각 광로 중 인접하는 2개의 광로의 각 분기지점에 배치되며, 상기 코어와 굴절율 차이를 갖는 물질로 된 스플리터부를 포함하는 광 도파로 장치.An optical waveguide device disposed at each branch point of two adjacent optical paths of the outermost optical path of the grid and comprising a splitter part made of a material having a refractive index difference from the core.
  14. 제13항에 있어서,The method of claim 13,
    상기 스플리터부는 상기 그리드의 최외각 광로의 분기지점에서 분기방향으로 입사광의 일부를 반사하도록 지향각을 갖도록 형성된 것을 특징으로 하는 광 도파로 장치.And the splitter part has a directing angle to reflect a part of the incident light in the branching direction at the branching point of the outermost optical path of the grid.
  15. 제13항에 있어서,The method of claim 13,
    상기 스플리터부는 상기 클래딩과 동일한 물질로 형성된 것을 특징으로 하는 광 도파로 장치.And the splitter portion is made of the same material as the cladding.
  16. 제13항에 있어서,The method of claim 13,
    상기 스플리터부는 공기인 것을 특징으로 하는 광 도파로 장치.And the splitter portion is air.
  17. 제14항에 있어서,The method of claim 14,
    상기 각각의 스플리터부는 상기 그리드의 최외각 광로의 교차지점에서 멀어질 수록 지향각이 증가하도록 형성된 것을 특징으로 하는 광 도파로 장치.And wherein each splitter portion is formed such that a direction angle increases as it moves away from an intersection point of the outermost optical path of the grid.
  18. 제16항에 있어서,The method of claim 16,
    상기 각각의 스플리터부의 지향각이 40°이상 50°이하의 범위인 것을 특징으로 하는 하는 광 도파로 장치.An optical waveguide device, wherein the direction angles of the splitters are in the range of 40 ° to 50 °.
  19. 제13항에 있어서,The method of claim 13,
    상기 코어의 격자상 그리드는 교차각이 수직인 것을 특징으로 하는 광 도파로 장치.And the lattice grid of the core is perpendicular to the crossing angle.
  20. 제13항에 있어서,The method of claim 13,
    상기 코어와 스플리터부의 굴절율 차는 0.1 이상 0.3 이하 인 것을 특징으로 하는 광 도파로 장치.An optical waveguide device, wherein a difference in refractive index between the core and the splitter portion is 0.1 or more and 0.3 or less.
  21. 제13항에 있어서,The method of claim 13,
    상기 코어물질은 나노분산 성분을 포함하여 이루어진 것을 특징으로 하는 광 도파로 장치.The core material is an optical waveguide device comprising a nano-dispersion component.
  22. 제13항에 있어서,The method of claim 13,
    상기 코어 및/또는 스플리터부 및/또는 클래딩은,The core and / or splitter portion and / or cladding,
    솔겔(Sol-Gel) 물질로 형성된 것을 특징으로 하는 광 도파로 장치.An optical waveguide device, characterized in that formed of a Sol-Gel material.
  23. 제22항에 있어서,The method of claim 22,
    상기 나노분산 성분은,The nanodispersion component,
    알루미나, 산화주석, 산화 안티몬, 실리카, 지르코니아, 티타니아 중 어느 하나 또는 둘 이상이 혼합된 금속 산화물인 것을 특징으로 하는 광 도파장치.An optical waveguide device comprising any one or two or more of alumina, tin oxide, antimony oxide, silica, zirconia, and titania are mixed metal oxides.
  24. 제11항 내지 제23항 중 어느 한 항에 있어서,The method according to any one of claims 11 to 23,
    상기 스플리터부에서 반사 출광되는 광의 균일도는 3dB 이하인 것을 특징으로 하는 광 도파로 장치.The optical waveguide device, characterized in that the uniformity of the light reflected from the splitter portion is 3dB or less.
  25. 제24항의 광 도파로 장치를 포함하는 터치 스크린 디바이스.A touch screen device comprising the optical waveguide device of claim 24.
PCT/KR2010/005160 2009-08-10 2010-08-06 Optical waveguide device WO2011019164A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0073496 2009-08-10
KR1020090073496A KR100954834B1 (en) 2009-08-10 2009-08-10 Optical waveguide device

Publications (2)

Publication Number Publication Date
WO2011019164A2 true WO2011019164A2 (en) 2011-02-17
WO2011019164A3 WO2011019164A3 (en) 2011-06-30

Family

ID=42220369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005160 WO2011019164A2 (en) 2009-08-10 2010-08-06 Optical waveguide device

Country Status (2)

Country Link
KR (1) KR100954834B1 (en)
WO (1) WO2011019164A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016153508A1 (en) * 2015-03-25 2016-09-29 Shasta Crystals, Inc. Sol-gel cladding for optical fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051373B1 (en) 2010-11-22 2011-07-22 주식회사 엘엠에스 Touch sensing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888785A (en) * 1988-01-19 1989-12-19 Bell Communications Research, Inc. Miniature integrated optical beam splitter
JP2002107777A (en) * 2000-09-29 2002-04-10 Furukawa Electric Co Ltd:The Dispersion compensation module
US20050152633A1 (en) * 2003-10-24 2005-07-14 University Of Alabama Planar lightwave circuit waveguide bends and beamsplitters

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977235B1 (en) * 2002-11-12 2010-08-20 호야 코포레이션 유에스에이 Optical component for free-space optical propagation between waveguides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888785A (en) * 1988-01-19 1989-12-19 Bell Communications Research, Inc. Miniature integrated optical beam splitter
JP2002107777A (en) * 2000-09-29 2002-04-10 Furukawa Electric Co Ltd:The Dispersion compensation module
US20050152633A1 (en) * 2003-10-24 2005-07-14 University Of Alabama Planar lightwave circuit waveguide bends and beamsplitters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016153508A1 (en) * 2015-03-25 2016-09-29 Shasta Crystals, Inc. Sol-gel cladding for optical fiber

Also Published As

Publication number Publication date
WO2011019164A3 (en) 2011-06-30
KR100954834B1 (en) 2010-04-27

Similar Documents

Publication Publication Date Title
KR100514156B1 (en) User input device for a computer system
KR100972932B1 (en) Touch Screen Panel
KR101115854B1 (en) Optical waveguide with light emitting device and optical touch panel
CN103189783B (en) Light control element
US20070002020A1 (en) Optical mouse
US20050201681A1 (en) Hybrid waveguide
EP3019902A1 (en) Light guide assembly for optical touch sensing, and method for detecting a touch
CN104991685A (en) Infrared touch screen and touch detection method, and display apparatus
EP1217350B1 (en) Stress sensor based on periodically inserted color-changing tactile films to detect mishandling fiber optic cables
WO2011019164A2 (en) Optical waveguide device
CN102105826B (en) Planar optical waveguide circuit
KR101233949B1 (en) Optical waveguide with light-emitting element and optical touch panel with the same
US20100142884A1 (en) Optical communication device including digital optical switch
KR20120063867A (en) Optical touch panel
CN209281421U (en) Photoelectric sensing mould group and electronic device
KR20120025379A (en) Optical waveguide and optical touch panel
CN110998387A (en) Optical waveguide, opto-electric hybrid board, and opto-electric hybrid module
KR101051373B1 (en) Touch sensing device
EP2296022B1 (en) Optical waveguide with light-emitting element and optical touch panel with the same
US7260295B2 (en) Optical waveguide and optical transmitting/receiving module
WO2012070719A1 (en) Touch sensing device having two-layered structure
WO2012070718A1 (en) Touch sensing device
KR100963206B1 (en) Apparatus for optical fiber connector
WO2018070551A1 (en) Back-light unit comprising single optical sheet that has light extraction parts formed thereon, and back-light unit for mobile phone comprising linear light source that has light extraction parts formed therein
TW201610791A (en) Location sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808313

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808313

Country of ref document: EP

Kind code of ref document: A2