WO2011018993A1 - Resin composition for an optical molded body, and said optical molded body - Google Patents

Resin composition for an optical molded body, and said optical molded body Download PDF

Info

Publication number
WO2011018993A1
WO2011018993A1 PCT/JP2010/063366 JP2010063366W WO2011018993A1 WO 2011018993 A1 WO2011018993 A1 WO 2011018993A1 JP 2010063366 W JP2010063366 W JP 2010063366W WO 2011018993 A1 WO2011018993 A1 WO 2011018993A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
styrene
copolymer
parts
maleimide
Prior art date
Application number
PCT/JP2010/063366
Other languages
French (fr)
Japanese (ja)
Inventor
幸一 小澤
哲央 野口
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Publication of WO2011018993A1 publication Critical patent/WO2011018993A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers

Definitions

  • the present invention relates to a resin composition for an optical molded body and an optical molded body thereof.
  • Optical molded bodies with controlled optical anisotropy are used for liquid crystal display elements, electroluminescence elements, and the like.
  • optical films there are many types of molded articles for optics.
  • an optical film there is a film called a retardation film that plays a role of compensating for a phase difference of liquid crystal of a liquid crystal display or improving a viewing angle.
  • retardation film that plays a role of compensating for a phase difference of liquid crystal of a liquid crystal display or improving a viewing angle.
  • the present invention provides a novel resin composition for optical molded bodies and an optical molded body thereof.
  • the gist of the present invention is as follows. (1) (i) comprising 45 to 70% by weight of styrene monomer units, 30 to 55% by weight of maleimide monomer units, and 0 to 5% by weight of unsaturated dicarboxylic acid anhydride monomer units, and 20-50% by mass of a styrene-maleimide copolymer (A) having a residual maleimide monomer amount of 300 ppm or less, (Ii) an optical system comprising 70 to 84% by mass of a styrene monomer unit and 50 to 80% by mass of a styrene-acrylonitrile copolymer (B) containing 16 to 30% by mass of an acrylonitrile monomer unit.
  • Resin composition for molded bodies (2) An unsaturated dicarboxylic acid anhydride is added to a mixed liquid in which the styrene-maleimide copolymer (A) is mainly composed of the total amount of the styrene monomer and a part of the charged amount of the unsaturated dicarboxylic acid anhydride.
  • a styrene-unsaturated dicarboxylic acid anhydride copolymer obtained by polymerization while adding the remaining amount of the catalyst dividedly or continuously is obtained by imidizing with a primary amine.
  • the resin composition for optical molded bodies as described.
  • the optical molded body according to (7) which is a retardation film.
  • the “resin composition for an optical molded body” refers to a composition that can be used for producing a known molded body such as an injection molded body, a sheet, and a film.
  • the method for forming the film is not particularly limited, but a method of melt extrusion using a film extruder is preferred.
  • the “optical molded body” is a molded body used for optical applications such as a light guide plate, a diffusion sheet, a retardation film, an antireflection film, a polarizer protective film, etc. A film formed by extrusion.
  • the resin composition for an optical molded body of the present invention is useful for an optical molded body because of good transparency, heat resistance, thermal stability, and hue.
  • the melt-extruded film comprising the resin composition for an optical molded body of the present invention is useful for an optical film for a thin liquid crystal display element.
  • a stretched film exhibits negative orientation birefringence and exhibits retardation. It is useful for retardation films because of its excellent properties.
  • the present embodiment relates to a resin composition for an optical molded article comprising a styrene-maleimide copolymer (A) and an acrylonitrile-styrene copolymer (B).
  • a resin composition for an optical molded article comprising a styrene-maleimide copolymer (A) and an acrylonitrile-styrene copolymer (B).
  • the styrene-maleimide copolymer (A) and the acrylonitrile-styrene copolymer (B) will be described in order, and then the resin composition for optical molded products containing these and the optical molded product will be described.
  • the styrene-maleimide copolymer (A) includes a styrene monomer and a maleimide monomer, and further includes an unsaturated dicarboxylic acid anhydride monomer and other copolymerizable vinyl monomers. Can optionally be included.
  • the styrene monomer is not particularly limited, and any known styrene monomer can be used. From the viewpoint of availability, styrene, ⁇ -methylstyrene, o-methylstyrene, m Examples thereof include styrene monomers such as -methylstyrene, p-methylstyrene, t-butylstyrene and chlorostyrene. Among these, styrene is particularly preferable from the viewpoint of compatibility. These styrenic monomers may be a mixture of two or more.
  • the maleimide monomer is not particularly limited, and any known maleimide monomer can be used. However, from the viewpoint of availability, heat-resistance imparting effect, etc., for example, N-methylmaleimide, N-alkylmaleimide such as N-butylmaleimide and N-cyclohexylmaleimide, and N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-methoxyphenylmaleimide, N-tribromophenylmaleimide and the like N- Examples thereof include maleimide monomers such as arylmaleimide. Among these, N-cyclohexylmaleimide and N-phenylmaleimide are particularly preferable from the viewpoint of heat resistance. These maleimide monomers may be a mixture of two or more.
  • Unsaturated dicarboxylic acid anhydride monomer examples include anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, and particularly from the viewpoint of compatibility with the styrene-acrylonitrile copolymer (B). Maleic anhydride is preferred. These unsaturated dicarboxylic acid anhydride monomers may be a mixture of two or more.
  • the styrene-maleimide copolymer (A) includes copolymerizable vinyl monomer units such as acrylonitrile, methacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, acrylic acid 2
  • a monomer unit such as ethylhexyl, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, and 2-ethylhexyl methacrylate may be contained in the maleimide copolymer (A) if it is less than 5% by mass. Good. If these vinyl monomer units are less than 5% by mass, the effect of the present invention is not impaired.
  • the constituent ratio of the styrene-maleimide copolymer (A) is 45 to 70% by mass of styrene monomer units, 30 to 55% by mass of maleimide monomer units, 0 units of unsaturated dicarboxylic anhydride monomer units. To 5% by mass, preferably 50 to 60% by mass of styrene monomer units, 40 to 50% by mass of maleimide monomer units, and 0 to 2.5% by mass of unsaturated dicarboxylic acid anhydride monomer units. %.
  • the styrene monomer unit is 45% by mass or more or the maleimide monomer unit is 55% by mass or less, the melt viscosity does not become too high, and the styrene-acrylonitrile copolymer (B ) And the kneadability can be kept good, so that the occurrence of unmelted spots can be suppressed. If the styrene monomer unit is 70% by mass or less or the maleimide monomer unit is 30% by mass or more, transparency can be sufficiently secured.
  • the unsaturated dicarboxylic acid anhydride monomer unit is an optional compounding component.
  • an unsaturated dicarboxylic acid anhydride monomer unit By adding an unsaturated dicarboxylic acid anhydride monomer unit to the styrene-maleimide copolymer, compatibility may be improved. If the unsaturated dicarboxylic acid anhydride monomer unit is 5% by mass or less, the thermal stability can be kept good.
  • the amount of the residual maleimide monomer contained in the styrene-maleimide copolymer (A) is 300 ppm or less, preferably 250 ppm or less, more preferably 200 ppm or less. If the amount of the remaining maleimide monomer is 300 ppm or less, it is preferable because the hue can be maintained satisfactorily.
  • the amount of the remaining maleimide monomer contained in the styrene-maleimide copolymer (A) was measured under the measurement conditions described below.
  • Temperature rise analysis is performed at a column temperature of 80 ° C. (initial stage).
  • the polymerization mode of the styrene-maleimide copolymer is not particularly limited, and can be produced by a known method such as solution polymerization or bulk polymerization, but the copolymer composition is more uniform by polymerization while performing addition or the like. From the viewpoint of obtaining a desired styrene-maleimide copolymer, solution polymerization is more preferable.
  • the solvent used in the solution polymerization of the styrene-maleimide copolymer is preferably non-polymerizable from the viewpoint that by-products are difficult to be formed and that there are few adverse effects.
  • the polymerization process of the styrene-maleimide copolymer may be any of batch polymerization, semi-batch polymerization, and continuous polymerization.
  • the polymerization method of the styrene-maleimide copolymer is not particularly limited, but is preferably obtained by radical polymerization from the viewpoint that it can be produced with high productivity by a simple process. Further, the polymerization initiator used in the polymerization reaction of the styrene-maleimide copolymer is not particularly limited.
  • azobisiso Known azo compounds such as butyronitrile, azobiscyclohexanecarbonitrile, azobismethylpropionitrile, azobismethylbutyronitrile, benzoyl peroxide, t-butylperoxybenzoate, 1,1-bis (t- Butylperoxy) -3,3,5-trimethylcyclohexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexanoate, di-t-butyl peroxide, dicumyl peroxide, ethyl Known organics such as -3,3-di- (t-butylperoxy) butyrate It can be an oxide.
  • polymerization initiators Two or more of these polymerization initiators may be used in combination. Further, from the viewpoint of controlling the polymerization reaction rate and the polymerization rate, those conventionally used in the production of conventional styrene resins, such as azo compounds and organic peroxides having a 10-hour half-life temperature of 70 to 120 ° C., are used. It is preferable to use it.
  • the amount of these polymerization initiators to be used is not particularly limited, but it is preferably 0.1 to 1.5 parts by weight, more preferably 0.8 to 100 parts by weight of all monomer units. 1 to 1.0 part by mass.
  • the amount of these polymerization initiators used is preferably 0.1 parts by mass or more because a sufficient polymerization rate can be obtained.
  • the use amount of these polymerization initiators is suppressed to 1.5 parts by mass or less, the polymerization rate can be suppressed, the reaction control becomes easy, and it is easy to obtain the target molecular weight of the styrene-maleimide copolymer. Become.
  • a chain transfer agent can be used for the production of the styrene-maleimide copolymer.
  • the chain transfer agent to be used is not particularly limited. However, from the viewpoint of availability, molecular weight control, etc., for example, n-dodecyl mercaptan, t-dodecyl mercaptan, 2,4-diphenyl, and the like.
  • a known chain transfer agent such as -4-methyl-1-pentene can be used.
  • the amount of these chain transfer agents to be used is not particularly limited as long as the target molecular weight of the styrene-maleimide copolymer can be obtained, but is 0.1% with respect to 100 parts by mass of all monomer units.
  • ⁇ 0.8 parts by mass and more preferably 0.15 to 0.5 parts by mass. If the amount of these chain transfer agents used is 0.1 parts by mass or more and 0.8 parts by mass or less, the target molecular weight of the styrene-maleimide copolymer can be easily obtained.
  • the kind of the non-polymerizable solvent used in the solution polymerization of the styrene-maleimide copolymer is not particularly limited.
  • solubility of the copolymer acetone, Ketones such as methyl ethyl ketone, methyl isobutyl ketone and acetophenone, ethers such as tetrahydrofuran and 1,4-dioxane, aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene, N, N-dimethylformamide, dimethyl sulfoxide, N-
  • solvents such as methyl-2-pyrrolidone, and methyl ethyl ketone and methyl isobutyl ketone are particularly preferred because of the ease of solvent removal during the devolatilization recovery of the styrene-maleimide copolymer.
  • a method for introducing the maleimide monomer unit a method of copolymerizing a maleimide monomer and a styrene monomer (direct method), or an unsaturated dicarboxylic acid anhydride and a styrene monomer Are previously copolymerized, and further, the unsaturated dicarboxylic acid anhydride group is converted into a maleimide monomer unit by reacting the unsaturated dicarboxylic acid anhydride group with a primary amine (post-imidation method). is there.
  • the post-imidization method is preferred because the amount of residual maleimide monomer in the copolymer is reduced.
  • the primary amine used in the post-imidization method is not particularly limited, but from the viewpoint of availability, for example, methylamine, ethylamine, n-propylamine, iso-propylamine, n -Alkylamines such as butylamine, n-pentylamine, n-hexylamine, n-octylamine, cyclohexylamine, decylamine, and aromatic amines such as chloro or bromo-substituted alkylamine, aniline, toluidine, naphthylamine, etc. Of these, aniline and cyclohexylamine are particularly preferred from the viewpoints of heat resistance, reactivity, and ease of handling.
  • these primary amines may be used alone or in combination of two or more.
  • the addition amount of these primary amines is not particularly limited, but is preferably 0.7 to 1.1 molar equivalents, more preferably 0.85 to the unsaturated dicarboxylic anhydride group. 1.05 molar equivalent. If the addition amount of these primary amines is 0.7 molar equivalent or 0.85 molar equivalent or more, the unsaturated dicarboxylic acid anhydride monomer unit in the styrene-maleimide copolymer is 10% by mass or less. The thermal stability is maintained well. In addition, 1.1 molar equivalent or 1.05 molar equivalent or less is preferable because the amount of primary amine remaining in the styrene-maleimide copolymer is reduced.
  • a catalyst can be used as needed for the purpose of improving the reaction.
  • the kind of catalyst is not specifically limited,
  • a tertiary amine can be used.
  • the tertiary amine is not particularly limited, and examples thereof include trimethylamine, triethylamine, tripropylamine, tributylamine, N, N-dimethylaniline, N, N-diethylaniline and the like.
  • the addition amount of the tertiary amine is not particularly limited, but is preferably 0.01 molar equivalent or more with respect to the unsaturated dicarboxylic acid anhydride group from the viewpoint of improving productivity.
  • the temperature of the imidization reaction in this embodiment is preferably 100 to 250 ° C., more preferably 120 to 200 ° C. If the temperature of this imidation reaction is 100 ° C. or higher, the reaction rate is improved, so that it does not take a long time to complete the reaction, which is preferable from the viewpoint of productivity. On the other hand, when the temperature of the imidization reaction is suppressed to 250 ° C. or lower, it is preferable because the physical properties of the styrene-maleimide copolymer are hardly deteriorated due to thermal deterioration.
  • the unsaturated dicarboxylic acid anhydride and the styrenic monomer can be charged in the initial stage of polymerization to polymerize, but the unsaturated dicarboxylic acid anhydride and the styrenic monomer are Since the alternating copolymerization is strong, an alternating copolymer having a composition in which the molar ratio of the unsaturated dicarboxylic acid anhydride to the styrene monomer is 1: 1 is formed at the initial stage of polymerization.
  • the styrene-maleimide copolymer In order to obtain the desired structural unit of the styrene-maleimide copolymer, it is necessary to charge the styrene monomer at a higher molar ratio than the unsaturated dicarboxylic acid anhydride. In the latter stage of polymerization, a copolymer having a large amount of styrene monomer units is likely to be formed, and as a result, the composition distribution becomes large. In order to obtain a copolymer with a small composition distribution, a part of the total amount of styrene monomer and unsaturated dicarboxylic acid anhydride is charged at the beginning of polymerization, and the remainder of the unsaturated dicarboxylic acid anhydride is divided.
  • the ratio of the amount of the unsaturated dicarboxylic acid anhydride charged in the initial stage of polymerization and the amount added in portions or continuously is preferably 5/95 to 50/50, more preferably 10/90 to 25/75. If the ratio of the amount of the unsaturated dicarboxylic acid anhydride charged in the initial stage of polymerization and the amount of divided or continuously added is within these ranges, a styrene-maleimide copolymer having a small composition distribution can be obtained.
  • the polymerization reaction rate and polymerization rate can be controlled by the polymerization temperature, polymerization time, amount of polymerization initiator, monomer addition rate, and the like. Since the amount of the remaining maleimide monomer in the styrene-maleimide copolymer is 300 ppm or less, the polymerization rate of the maleimide monomer is 99.9% or more in the direct method, and in the post-imidization method, It is preferable to appropriately adjust the conditions so that the polymerization rate of the saturated dicarboxylic acid anhydride is 99.9% or more.
  • the initial polymerization temperature is preferably from 80 to 110 ° C., and preferably from 110 to 150 ° C.
  • the addition rate of the unsaturated dicarboxylic acid is preferably adjusted so that the addition is completed when the polymerization rate of the styrene monomer reaches 80 to 95%.
  • the polymerization rate of unsaturated dicarboxylic acid anhydride can be made 99.9% or more by adjusting polymerization time and the amount of polymerization initiators.
  • the method for removing volatile components such as non-polymerizable solvent and unreacted monomer used in the polymerization is not particularly limited, and a known method can be used, but a method that can be adopted on an industrial scale.
  • a method using a vent type screw extruder is preferred.
  • the devolatilization conditions when using a vent type screw type extruder are preferably devolatilization at a resin temperature of 310 to 340 ° C. and a reduced pressure of ⁇ 92 kPaG or less. By increasing the resin temperature under vacuum and reduced pressure, non-polymerizable solvents and unreacted monomers are likely to volatilize.
  • the resin temperature is kept at 340 ° C or lower, the maleimide copolymer is dissolved by thermal degradation. Achieves the objective of obtaining a styrene-maleimide copolymer that is difficult to polymerize, so that the residual amount of maleimide monomer does not increase easily, has excellent hue, has high heat resistance, and has excellent kneadability. It may not be possible.
  • the adjustment method of resin temperature it can carry out by adjusting the screw rotation speed of an extruder, or cylinder temperature.
  • radical scavenger for the purpose of suppressing the generation amount of the maleimide monomer by heat deterioration.
  • the radical scavenger is not particularly limited, and examples thereof include antioxidants such as phenol compounds, organic phosphorus compounds, organic sulfur compounds, and amine compounds. These radical scavengers may be used alone or in combination of two or more. These radical scavengers receive a significant thermal history in the process of devolatilizing the volatile components in the styrene-maleimide copolymer with a vent type screw extruder, so that the function as a radical scavenger is maintained. In particular, a compound having heat resistance and heat stability is preferred.
  • a radical scavenger having a 1% heat loss temperature exceeding 300 ° C. is even more preferable.
  • the radical scavenger used in this embodiment is preferably added to the polymerization product after polymerization. If added before or during polymerization, the polymerization rate may decrease.
  • the acrylonitrile-styrene copolymer (B) contains an acrylonitrile monomer and a styrene monomer, and can optionally contain other copolymerizable vinyl monomers.
  • the acrylonitrile-based monomer is not particularly limited, and any known acrylonitrile-based monomer can be used, but acrylonitrile, methacrylonitrile, and the like are mentioned from the viewpoint of availability, compatibility, and the like. Among these, acrylonitrile is particularly preferable from the viewpoint of compatibility. These acrylonitrile monomers may be a mixture of two or more.
  • the styrene monomer of the styrene-acrylonitrile copolymer (B) is not particularly limited, and any known styrene monomer can be used.
  • -Styrene such as styrene, ⁇ -methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, t-butyl styrene, chlorostyrene, etc. from the viewpoint of compatibility with maleimide copolymer (A) Among them, styrene is particularly preferable from the viewpoint of compatibility.
  • These styrenic monomers may be a mixture of two or more.
  • the styrene-acrylonitrile copolymer (B) includes copolymerizable vinyl monomer units such as acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methacrylic acid, If the monomer unit such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, maleic anhydride is less than 5% by mass with respect to the styrene-acrylonitrile copolymer (B) You may contain. If these vinyl monomer units are less than 5% by mass, the effect of the present invention is not impaired.
  • composition ratio of styrene-acrylonitrile copolymer (B) is 70 to 84% by mass of styrene monomer units and 16 to 30% by mass of acrylonitrile monomer units, preferably 72 to 82% by mass of styrene monomers. And 18 to 28% by mass of acrylonitrile monomer.
  • the styrene monomer unit is 70% by mass or more or the acrylonitrile monomer unit is 30% by mass or less, a sufficient hue can be secured. If the styrene monomer unit is 84% by mass or less or the acrylonitrile monomer unit is 16% by mass or more, the transparency of the optical molded article can be sufficiently secured.
  • styrene-acrylonitrile copolymer (B) As a method for producing the styrene-acrylonitrile copolymer (B), a known method can be adopted, for example, a monomer comprising a styrene monomer, an acrylonitrile monomer and a copolymerizable vinyl monomer. The method of copolymerizing a mixture is mentioned. As the polymerization mode, a known polymerization method can be used. Of these, bulk polymerization or solution polymerization is preferable from the viewpoint of transparency of the optical molded body, and bulk polymerization is more preferable.
  • the resin composition for optical moldings comprises 20-50% by mass of a styrene-maleimide copolymer (A) and 50-80% by mass of a styrene-acrylonitrile copolymer (B), preferably a styrene-maleimide copolymer.
  • A 25-45% by mass and styrene-acrylonitrile copolymer (B) 55-75% by mass, more preferably 27.5-40% by mass, styrene-maleimide copolymer (A), styrene-acrylonitrile
  • the copolymer (B) is 60 to 72.5% by mass. Good physical properties can be obtained within this range.
  • the styrene-maleimide copolymer (A) is 20% by mass or more and the styrene-acrylonitrile copolymer (B) is 80% by mass or less, sufficient heat resistance can be secured, and the styrene-maleimide system When the copolymer (A) is 50% by mass or less and the styrene-acrylonitrile copolymer (B) is 50% by mass or more, sufficient transparency can be secured.
  • the method for producing the resin composition for optical molded bodies is not particularly limited as long as the styrene-maleimide copolymer (A) and the styrene-acrylonitrile copolymer (B) are uniformly dispersed.
  • These kneading methods can be used.
  • a melt kneading method using a Banbury mixer, a kneader, a single screw or a twin screw extruder, and the like can be mentioned.
  • a melt kneading method using a twin screw extruder is preferable.
  • the extrusion method of the styrene-maleimide copolymer (A) and the styrene-acrylonitrile copolymer (B) includes a method of feeding the whole amount, a styrene-maleimide copolymer (A) and a styrene-acrylonitrile copolymer. Examples include a method in which a part of the polymer (B) is fed from the root position of the screw and the rest of the styrene-acrylonitrile copolymer (B) is side-fed from an intermediate position of the screw.
  • the resin temperature is preferably 260 to 320 ° C, more preferably 270 to 310 ° C.
  • the resin temperature can be adjusted by adjusting the cylinder temperature, screw rotation speed, and raw material feed amount.
  • a combination of a plurality of kneading discs such as a kneading disc neutral that is shifted by 90 degrees and overlapped is preferable.
  • a screen mesh, a sintered filter, a polymer filter or the like having an opening of 50 ⁇ m or less can be installed in the die portion at the tip of the extruder for removing foreign matter.
  • the resin composition for optical molded bodies has a heat resistant stabilizer such as a hindered phenol compound, a lactone compound, a phosphorus compound, a sulfur compound, a light resistant stabilizer such as a hindered amine compound, a benzotriazole compound, You may mix
  • the film When the resin composition for optical molded bodies is formed into a film, the film exhibits negative orientation birefringence when further stretched and oriented.
  • the resin composition for an optical molded body can be used in a known molded body such as an injection molded body, a sheet, and a film, and the method for molding the film is not particularly limited, but the method of melt extrusion using a film extruder is preferable.
  • An optical molded body refers to a molded body, a sheet, or a film used for optical applications
  • a melt-extruded film refers to a film formed by melt extrusion.
  • the film refers to a known optical film such as a retardation film, an antireflection film, and a polarizer protective film.
  • the film of the present invention can be stretched and oriented by a known method.
  • the film is made into a film, it is most preferable for use in a retardation film because if the film is further stretched and oriented, negative orientation birefringence occurs.
  • Example A-2 In an autoclave having a volume of about 25 liters equipped with a stirrer, 60 parts by mass of styrene, 8 parts by mass of maleic anhydride, 0.3 part by mass of 2,4-diphenyl-4-methyl-1-pentene, and 25 parts by mass of methyl ethyl ketone were charged. After replacing the system with nitrogen gas, the temperature was raised to 92 ° C., 32 parts by weight of maleic anhydride and 0.18 parts by weight of t-butylperoxy-2-ethylhexanoate were added to 100 parts by weight of methyl ethyl ketone. The solution dissolved in was continuously added over 9 hours.
  • Example A-7 In an autoclave having a volume of about 25 liters equipped with a stirrer, 65 parts by mass of styrene, 7 parts by mass of maleic anhydride, 0.2 part by mass of 2,4-diphenyl-4-methyl-1-pentene, and 25 parts by mass of methyl ethyl ketone were charged. After replacing the system with nitrogen gas, the temperature was raised to 92 ° C., 28 parts by mass of maleic anhydride and 0.18 parts by mass of t-butylperoxy-2-ethylhexanoate were added to 100 parts by mass of methyl ethyl ketone. The solution dissolved in was continuously added over 7 hours.
  • Example A-8 An autoclave having a volume of about 25 liters equipped with a stirrer was charged with 60 parts by mass of styrene, 8 parts by mass of maleic anhydride, 0.2 parts by mass of 2,4-diphenyl-4-methyl-1-pentene, and 25 parts by mass of methyl ethyl ketone. After replacing the system with nitrogen gas, the temperature was raised to 92 ° C., 32 parts by weight of maleic anhydride and 0.18 parts by weight of t-butylperoxy-2-ethylhexanoate were added to 100 parts by weight of methyl ethyl ketone. The solution dissolved in was continuously added over 7 hours.
  • Example B-1 A complete mixing type reactor having a volume of about 20 liters equipped with a stirrer and a devolatilizing tank equipped with a preheater were connected. A monomer mixture composed of 85 parts by mass of styrene, 15 parts by mass of acrylonitrile, and 15 parts by mass of ethylbenzene was prepared, and 0.015 parts by mass of t-butylperoxyisopropyl monocarbonate and 0.013 parts by mass of n-dodecyl mercaptan. Parts were mixed to obtain a raw material solution. This raw material solution was introduced into a fully mixed reactor controlled at a temperature of 120 ° C. at 5 kg / hour.
  • the stirring number of the complete mixing type reactor was 180 rpm.
  • the reaction solution was continuously withdrawn from the complete mixing reactor, and the reaction solution was introduced into a devolatilization tank controlled at a temperature of 235 ° C. and a pressure of 1.0 kPa while being heated by a preheater. And other volatiles were removed.
  • the resin liquid was extracted with a gear pump and extruded into a strand shape to obtain a pellet-shaped polymer B-1.
  • Example B-2 A complete mixing type reactor having a volume of about 20 liters equipped with a stirrer and a devolatilizing tank equipped with a preheater were connected. A monomer mixture composed of 73.6 parts by mass of styrene, 26.4 parts by mass of acrylonitrile and 20 parts by mass of ethylbenzene was prepared, and 0.015 part by mass of t-butylperoxyisopropyl monocarbonate and n-dodecyl mercaptan were further prepared. 0.013 mass part was mixed and it was set as the raw material solution. This raw material solution was introduced into a fully mixed reactor controlled at a temperature of 120 ° C. at 5 kg / hour.
  • the stirring number of the complete mixing type reactor was 180 rpm.
  • the reaction solution was continuously withdrawn from the complete mixing reactor, and the reaction solution was introduced into a devolatilization tank controlled at a temperature of 235 ° C. and a pressure of 1.0 kPa while being heated by a preheater. And other volatiles were removed.
  • the resin liquid was extracted with a gear pump and extruded into a strand shape to obtain a pellet-shaped polymer B-2.
  • Example B-3 A complete mixing type reactor having a volume of about 20 liters equipped with a stirrer and a devolatilizing tank equipped with a preheater were connected.
  • the stirring number of the complete mixing type reactor was 180 rpm.
  • the reaction solution was continuously withdrawn from the complete mixing reactor, and the reaction solution was introduced into a devolatilization tank controlled at a temperature of 235 ° C. and a pressure of 1.0 kPa while being heated by a preheater. And other volatiles were removed.
  • the resin liquid was extracted with a gear pump and extruded into a strand shape to obtain a pellet-shaped polymer B-3.
  • Example B-4 A complete mixing type reactor having a volume of about 20 liters equipped with a stirrer and a devolatilizing tank equipped with a preheater were connected. A monomer mixture composed of 56.1 parts by weight of styrene, 17.5 parts by weight of ⁇ -methylstyrene, 26.4 parts by weight of acrylonitrile, and 18 parts by weight of ethylbenzene was prepared, and t-butylperoxyisopropyl monocarbonate was further prepared. 0.015 part by mass and 0.013 part by mass of n-dodecyl mercaptan were mixed to obtain a raw material solution.
  • This raw material solution was introduced into a fully mixed reactor controlled at a temperature of 120 ° C. at 5 kg / hour.
  • the stirring number of the complete mixing type reactor was 180 rpm.
  • the reaction solution was continuously withdrawn from the complete mixing reactor, and the reaction solution was introduced into a devolatilization tank controlled at a temperature of 235 ° C. and a pressure of 1.0 kPa while being heated by a preheater. And other volatiles were removed.
  • the resin liquid was extracted with a gear pump and extruded into a strand shape to obtain a pellet-shaped polymer B-4.
  • Example B-5 A complete mixing type reactor having a volume of about 20 liters equipped with a stirrer and a devolatilizing tank equipped with a preheater were connected. A monomer mixture composed of 91.8 parts by mass of styrene, 9.2 parts by mass of acrylonitrile, and 18 parts by mass of ethylbenzene was prepared, and 0.015 parts by mass of t-butylperoxyisopropyl monocarbonate and n-dodecyl mercaptan were further prepared. 0.013 mass part was mixed and it was set as the raw material solution. This raw material solution was introduced into a fully mixed reactor controlled at a temperature of 120 ° C. at 5 kg / hour.
  • the stirring number of the complete mixing type reactor was 180 rpm.
  • the reaction solution was continuously withdrawn from the complete mixing reactor, and the reaction solution was introduced into a devolatilization tank controlled at a temperature of 235 ° C. and a pressure of 1.0 kPa while being heated by a preheater. And other volatiles were removed.
  • the resin liquid was extracted with a gear pump and extruded into a strand shape to obtain a pellet-shaped polymer B-5.
  • Example B-6 A complete mixing type reactor having a volume of about 20 liters equipped with a stirrer and a devolatilizing tank equipped with a preheater were connected. A monomer mixture composed of 60.5 parts by mass of styrene, 39.5 parts by mass of acrylonitrile, and 18 parts by mass of ethylbenzene was prepared, and 0.015 parts by mass of t-butylperoxyisopropyl monocarbonate and n-dodecyl mercaptan were further prepared. 0.013 mass part was mixed and it was set as the raw material solution. This raw material solution was introduced into a fully mixed reactor controlled at a temperature of 120 ° C. at 5 kg / hour.
  • the stirring number of the complete mixing type reactor was 180 rpm.
  • the reaction solution was continuously withdrawn from the complete mixing reactor, and the reaction solution was introduced into a devolatilization tank controlled at a temperature of 235 ° C. and a pressure of 1.0 kPa while being heated by a preheater. And other volatiles were removed.
  • the resin liquid was extracted with a gear pump and extruded into a strand shape to obtain a pellet-shaped polymer B-6.
  • Table 2 shows the analysis results of Experimental Examples B-1 to B-6.
  • the measuring method of each analytical value is as follows.
  • the structural unit of the styrene-maleimide copolymer was determined from the ratio of the integrated value of the carbonyl carbon of the product.
  • the resin composition for optical molded bodies was extruded on a roll by extruding a film having a thickness of 100 ⁇ m at a cylinder temperature of 240 ° C. and a die temperature of 240 ° C. using a film extruder equipped with a T die.
  • the obtained film was uniaxially stretched 1.8 times at Tg + 20 ° C. using a tenter transverse stretching machine to obtain a stretched optical film.
  • the measurement results of the obtained film are shown in Tables 3 to 4.
  • the measuring method of each evaluation is as follows. (1) Hue; YI value Hue; YI value was determined by molding a 2mmt plate molded at a cylinder temperature of 260 ° C and a mold temperature of 60 ° C using an injection molding machine (IS-50EP manufactured by Toshiba Machine Co., Ltd.). Based on K7105, measurement was performed using a color difference meter (Nippon Denshoku Industries Co., Ltd. SZ-II ⁇ 80). Hue: A sample having a YI value of 12.0 or less was considered acceptable.
  • melt mass flow rate (MFR) Based on JIS K7210, melt mass flow rate (MFR) was measured at a temperature of 200 ° C. and a load of 49 N. An MFR of 0.1-3 (g / 10 min) was considered acceptable for fluidity.
  • Re Retardation of retardation of the stretched film (hereinafter “Re”, unit: ⁇ m) was measured using a phase difference measuring device (KOBRA-WR manufactured by Oji Scientific Co., Ltd.), and 300 nm or more was regarded as acceptable. Moreover, by observing with a phase-contrast microscope, it confirmed that the sign of orientation birefringence was negative in all the samples in an Example and a comparative example.
  • the resin compositions for optical molded bodies of Examples 1 to 9 have a hue; small YI value and excellent hue because the amount of residual maleimide monomer in the styrene-maleimide copolymer is 300 ppm or less.
  • An optical molded body Furthermore, since it is excellent in transparency and heat resistance, has good retardation development, and exhibits negative orientation birefringence, it can be seen that the retardation film has optimum characteristics.
  • the resin composition for an optical molded body and the optical molded body of the present invention have good hue, transparency and heat resistance, and are useful for optical films for thin liquid crystal display elements, in particular, stretched and oriented films. Is negatively oriented birefringence and is useful for retardation films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a resin composition for an optical molded body, said resin composition having good transparency, heat resistance, thermal stability, and hue. Also provided is said optical molded body. The provided resin composition contains: (i) 20-50 mass% of a styrene-maleimide copolymer (A) that contains 45-70 mass% of a styrene monomer unit, 30-55 mass% of a maleimide monomer unit, and 0-5 mass% of an unsaturated dicarboxylic anhydride monomer unit; and (ii) 50-80 mass% of a styrene-acrylonitrile copolymer (B) that contains 70-84 mass% of a styrene monomer unit and 16-30 mass% of an acrylonitrile monomer unit. The amount of residual maleimide monomer in the styrene-maleimide copolymer (A) is no more than 300 ppm.

Description

光学成形体用樹脂組成物及びその光学成形体Resin composition for optical molded body and optical molded body thereof
本発明は、光学成形体用樹脂組成物及びその光学成形体に関するものである。 The present invention relates to a resin composition for an optical molded body and an optical molded body thereof.
液晶ディスプレイ表示素子、エレクトロルミネッセンス素子などに、光学異方性を制御した光学成形体が用いられている。 Optical molded bodies with controlled optical anisotropy are used for liquid crystal display elements, electroluminescence elements, and the like.
光学用成形体には数多くの種類がある。例えば、光学フィルムがある。光学フィルムの1つとして、液晶ディスプレイの液晶の位相差を補償したり、視野角を向上させたりする役割を担う位相差フィルムと呼ばれるフィルムがある。
これら技術として次のようなものがある。
There are many types of molded articles for optics. For example, there is an optical film. As one of the optical films, there is a film called a retardation film that plays a role of compensating for a phase difference of liquid crystal of a liquid crystal display or improving a viewing angle.
These technologies include the following.
特開2002-040258号公報Japanese Patent Laid-Open No. 2002-040258 特開2005-292311号公報JP 2005-29211 A 特開2008-094912号公報JP 2008-094912 A
本発明は、新規な光学成形体用樹脂組成物およびその光学成形体を提供するものである。 The present invention provides a novel resin composition for optical molded bodies and an optical molded body thereof.
本発明は、以下を要旨とするものである。
(1)(i)スチレン系単量体単位45~70質量%、マレイミド系単量体単位30~55質量%、および不飽和ジカルボン酸無水物単量体単位0~5質量%を含み、かつ残存マレイミド系単量体量が300ppm以下であるスチレン-マレイミド系共重合体(A)20~50質量%と、
(ii)スチレン系単量体単位70~84質量%、アクリロニトリル系単量体単位16~30質量%を含むスチレン-アクリロニトリル系共重合体(B)50~80質量%と
を含有してなる光学成形体用樹脂組成物。
(2)スチレン-マレイミド系共重合体(A)が、スチレン系単量体全量と、不飽和ジカルボン酸無水物の仕込み量の一部とを主体とする混合液に、不飽和ジカルボン酸無水物の仕込み量の残りを分割または連続的に添加しながら重合させて得たスチレン-不飽和ジカルボン酸無水物系共重合体を、第1級アミンでイミド化することにより得られることを特徴とする(1)記載の光学成形体用樹脂組成物。
(3)スチレン-不飽和ジカルボン酸無水物系共重合体が、非重合性溶剤中で溶液重合により得られることを特徴とする(2)記載の光学成形体用樹脂組成物。
(4)スチレン-アクリロニトリル系共重合体(B)が塊状重合もしくは溶液重合により得られることを特徴とする(1)~(3)のいずれかに記載の光学成形体用樹脂組成物。
(5)(1)~(4)のいずれかに記載の光学成形体用樹脂組成物からなる光学成形体。
(6)溶融押出フィルムであることを特徴とする(5)記載の光学成形体。
(7)延伸フィルムであることを特徴とする(6)記載の光学成形体。
(8)位相差フィルムであることを特徴とする(7)記載の光学成形体。
ここで、「光学成形体用樹脂組成物」は、射出成形体、シート、フィルム等公知の成形体の製造に使用できる組成物を指す。フィルムを成形する方法は特に制限はないが、フィルム押出機を用いて溶融押出する方法が好ましい。
また、「光学成形体」とは、導光板、拡散シート、位相差フィルム、反射防止フィルム、偏光子保護フィルム等の光学用途に使用される成形体であり、「溶融押出フィルム」とは、溶融押出により成形されたフィルムをいう。
The gist of the present invention is as follows.
(1) (i) comprising 45 to 70% by weight of styrene monomer units, 30 to 55% by weight of maleimide monomer units, and 0 to 5% by weight of unsaturated dicarboxylic acid anhydride monomer units, and 20-50% by mass of a styrene-maleimide copolymer (A) having a residual maleimide monomer amount of 300 ppm or less,
(Ii) an optical system comprising 70 to 84% by mass of a styrene monomer unit and 50 to 80% by mass of a styrene-acrylonitrile copolymer (B) containing 16 to 30% by mass of an acrylonitrile monomer unit. Resin composition for molded bodies.
(2) An unsaturated dicarboxylic acid anhydride is added to a mixed liquid in which the styrene-maleimide copolymer (A) is mainly composed of the total amount of the styrene monomer and a part of the charged amount of the unsaturated dicarboxylic acid anhydride. A styrene-unsaturated dicarboxylic acid anhydride copolymer obtained by polymerization while adding the remaining amount of the catalyst dividedly or continuously is obtained by imidizing with a primary amine. (1) The resin composition for optical molded bodies as described.
(3) The resin composition for optical molded articles according to (2), wherein the styrene-unsaturated dicarboxylic acid anhydride copolymer is obtained by solution polymerization in a non-polymerizable solvent.
(4) The resin composition for optical molded bodies according to any one of (1) to (3), wherein the styrene-acrylonitrile copolymer (B) is obtained by bulk polymerization or solution polymerization.
(5) An optical molded body comprising the resin composition for optical molded bodies according to any one of (1) to (4).
(6) The optical molded body according to (5), which is a melt-extruded film.
(7) The optical molded body according to (6), which is a stretched film.
(8) The optical molded body according to (7), which is a retardation film.
Here, the “resin composition for an optical molded body” refers to a composition that can be used for producing a known molded body such as an injection molded body, a sheet, and a film. The method for forming the film is not particularly limited, but a method of melt extrusion using a film extruder is preferred.
The “optical molded body” is a molded body used for optical applications such as a light guide plate, a diffusion sheet, a retardation film, an antireflection film, a polarizer protective film, etc. A film formed by extrusion.
本発明の光学成形体用樹脂組成物は、透明性、耐熱性、熱安定性、および色相が良好なことから光学成形体に有用である。また、本発明の光学成形体用樹脂組成物からなる溶融押出フィルムは、薄型液晶表示素子用の光学フィルムに有用であり、特に延伸したフィルムは負の配向複屈折性を示し、かつ位相差発現性に優れることから位相差フィルムに有用である。 The resin composition for an optical molded body of the present invention is useful for an optical molded body because of good transparency, heat resistance, thermal stability, and hue. In addition, the melt-extruded film comprising the resin composition for an optical molded body of the present invention is useful for an optical film for a thin liquid crystal display element. Particularly, a stretched film exhibits negative orientation birefringence and exhibits retardation. It is useful for retardation films because of its excellent properties.
<用語の説明>
本願明細書において、「~」という記号は「以上」及び「以下」を意味する。例えば、「A~B」なる記載は、A以上でありB以下であることを意味する。
<Explanation of terms>
In the present specification, the symbol “˜” means “above” and “below”. For example, the description “A to B” means greater than A and less than B.
以下、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below.
<光学成形体用樹脂組成物>
本実施形態は、スチレン-マレイミド系共重合体(A)とアクリロニトリル-スチレン系共重合体(B)とを含有してなる光学成形体用樹脂組成物に関するものである。以下、スチレン-マレイミド系共重合体(A)、アクリロニトリル-スチレン系共重合体(B)について順に説明し、次いで、これらを含有する光学成形体用樹脂組成物とその光学成形体について説明する。
<Resin composition for optical molded body>
The present embodiment relates to a resin composition for an optical molded article comprising a styrene-maleimide copolymer (A) and an acrylonitrile-styrene copolymer (B). Hereinafter, the styrene-maleimide copolymer (A) and the acrylonitrile-styrene copolymer (B) will be described in order, and then the resin composition for optical molded products containing these and the optical molded product will be described.
[スチレン-マレイミド系共重合体(A)]
スチレン-マレイミド系共重合体(A)は、スチレン系単量体とマレイミド系単量体とを含み、さらに不飽和ジカルボン酸無水物単量体およびその他の共重合可能なビニル系単量体を任意に含むことができる。
[Styrene-maleimide copolymer (A)]
The styrene-maleimide copolymer (A) includes a styrene monomer and a maleimide monomer, and further includes an unsaturated dicarboxylic acid anhydride monomer and other copolymerizable vinyl monomers. Can optionally be included.
<スチレン系単量体>
スチレン系単量体としては、特に限定せず、任意の公知のスチレン系単量体を用いることができるが、入手の容易性などの観点からスチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン、クロルスチレン等のスチレン系単量体が挙げられ、これらの中でも相溶性の観点からは、特にスチレンが好ましい。また、これらのスチレン系単量体は2種以上の混合であってもよい。
<Styrene monomer>
The styrene monomer is not particularly limited, and any known styrene monomer can be used. From the viewpoint of availability, styrene, α-methylstyrene, o-methylstyrene, m Examples thereof include styrene monomers such as -methylstyrene, p-methylstyrene, t-butylstyrene and chlorostyrene. Among these, styrene is particularly preferable from the viewpoint of compatibility. These styrenic monomers may be a mixture of two or more.
<マレイミド系単量体>
マレイミド系単量体としては、特に限定せず、任意の公知のマレイミド系単量体を用いることができるが、入手の容易性、耐熱付与効果などの観点からは、例えば、N-メチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミド等のN-アルキルマレイミド、及びN-フェニルマレイミド、N-クロルフェニルマレイミド、N-メチルフェニルマレイミド、N-メトキシフェニルマレイミド、N-トリブロモフェニルマレイミド等のN-アリールマレイミド等のマレイミド系単量体が挙げられ、これらの中でも耐熱付与効果の観点から特にN-シクロヘキシルマレイミド、N-フェニルマレイミドが好ましい。また、これらのマレイミド系単量体は2種以上の混合であってもよい。
<Maleimide monomer>
The maleimide monomer is not particularly limited, and any known maleimide monomer can be used. However, from the viewpoint of availability, heat-resistance imparting effect, etc., for example, N-methylmaleimide, N-alkylmaleimide such as N-butylmaleimide and N-cyclohexylmaleimide, and N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-methoxyphenylmaleimide, N-tribromophenylmaleimide and the like N- Examples thereof include maleimide monomers such as arylmaleimide. Among these, N-cyclohexylmaleimide and N-phenylmaleimide are particularly preferable from the viewpoint of heat resistance. These maleimide monomers may be a mixture of two or more.
<不飽和ジカルボン酸無水物単量体>
不飽和ジカルボン酸無水物単量体としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の無水物が挙げられ、スチレン-アクリロニトリル系共重合体(B)との相溶性の観点から、特にマレイン酸無水物が好ましい。また、これらの不飽和ジカルボン酸無水物単量体は2種以上の混合であってもよい。
<Unsaturated dicarboxylic acid anhydride monomer>
Examples of the unsaturated dicarboxylic acid anhydride monomer include anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, and particularly from the viewpoint of compatibility with the styrene-acrylonitrile copolymer (B). Maleic anhydride is preferred. These unsaturated dicarboxylic acid anhydride monomers may be a mixture of two or more.
<その他共重合可能なビニル系単量体>
スチレン-マレイミド系共重合体(A)には、共重合可能なビニル系単量体単位、例えばアクリロニトリル、メタアクリロニトリル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2エチルヘキシル等の単量体単位をマレイミド系共重合体(A)に5質量%未満であれば含有してもよい。これらのビニル系単量体単位が5質量%未満であれば本願発明の効果を損なわない。
<Other copolymerizable vinyl monomers>
The styrene-maleimide copolymer (A) includes copolymerizable vinyl monomer units such as acrylonitrile, methacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, acrylic acid 2 A monomer unit such as ethylhexyl, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, and 2-ethylhexyl methacrylate may be contained in the maleimide copolymer (A) if it is less than 5% by mass. Good. If these vinyl monomer units are less than 5% by mass, the effect of the present invention is not impaired.
<スチレン-マレイミド系共重合体(A)の構成比率>
スチレン-マレイミド系共重合体(A)の構成比率は、スチレン系単量体単位45~70質量%、マレイミド系単量体単位30~55質量%、不飽和ジカルボン酸無水物単量体単位0~5質量%であり、好ましくは、スチレン系単量体単位50~60質量%、マレイミド系単量体単位40~50質量%、不飽和ジカルボン酸無水物単量体単位0~2.5質量%である。
<Composition ratio of styrene-maleimide copolymer (A)>
The constituent ratio of the styrene-maleimide copolymer (A) is 45 to 70% by mass of styrene monomer units, 30 to 55% by mass of maleimide monomer units, 0 units of unsaturated dicarboxylic anhydride monomer units. To 5% by mass, preferably 50 to 60% by mass of styrene monomer units, 40 to 50% by mass of maleimide monomer units, and 0 to 2.5% by mass of unsaturated dicarboxylic acid anhydride monomer units. %.
スチレン系単量体単位が45質量%以上、または、マレイミド系単量体単位が55質量%以下であれば、溶融粘度が高くなり過ぎず、本実施形態のスチレン-アクリロニトリル系共重合体(B)との混練性を良好に保つことができるため、未溶融ブツの発生を抑制することができる。
スチレン系単量体単位が70質量%以下、または、マレイミド系単量体単位が30質量%以上であれば、透明性を十分に確保することができる。
If the styrene monomer unit is 45% by mass or more or the maleimide monomer unit is 55% by mass or less, the melt viscosity does not become too high, and the styrene-acrylonitrile copolymer (B ) And the kneadability can be kept good, so that the occurrence of unmelted spots can be suppressed.
If the styrene monomer unit is 70% by mass or less or the maleimide monomer unit is 30% by mass or more, transparency can be sufficiently secured.
また、不飽和ジカルボン酸無水物単量体単位は、任意配合成分である。スチレン-マレイミド系共重合体中に不飽和ジカルボン酸無水物単量体単位を配合することにより、相溶性が向上する場合がある。不飽和ジカルボン酸無水物単量体単位が5質量%以下であれば、熱安定性を良好に保つことができる。 The unsaturated dicarboxylic acid anhydride monomer unit is an optional compounding component. By adding an unsaturated dicarboxylic acid anhydride monomer unit to the styrene-maleimide copolymer, compatibility may be improved. If the unsaturated dicarboxylic acid anhydride monomer unit is 5% by mass or less, the thermal stability can be kept good.
スチレン-マレイミド系共重合体(A)に含まれる残存マレイミド系単量体量は、300ppm以下であり、好ましくは250ppm以下、さらに好ましくは200ppm以下である。この残存マレイミド系単量体量が300ppm以下であれば、色相が良好に維持できるので好ましい。 The amount of the residual maleimide monomer contained in the styrene-maleimide copolymer (A) is 300 ppm or less, preferably 250 ppm or less, more preferably 200 ppm or less. If the amount of the remaining maleimide monomer is 300 ppm or less, it is preferable because the hue can be maintained satisfactorily.
なお、スチレン-マレイミド系共重合体(A)に含まれる残存マレイミド系単量体量は、下記記載の測定条件で測定した。
  装置名:GC-2010(島津製作所製)
  カラム:キャピラリーカラム DB-5MS(フェニルアレンポリマー)
  温度 :注入口280℃、検出器280℃
      カラム温度80℃(初期)で昇温分析を行う。
      (昇温分析条件)   80℃;ホールド12分
             80~280℃;20℃/分で昇温10分
                280℃;ホールド10分
  検出器:FID
  手順 :試料0.5gをウンデカン(内部標準物質)入り1,2-ジクロロエタン溶液(0.014g/L)5mlに溶解させる。その後、n-ヘキサン5mlを加えて振とう器で10~15分間振とうし、析出させる。ポリマーを析出・沈殿させた状態で上澄み液のみをGCに注入する。得られたマレイミド系単量体のピーク面積から、内部標準物質より求めた係数を用いて、定量値を算出する。
The amount of the remaining maleimide monomer contained in the styrene-maleimide copolymer (A) was measured under the measurement conditions described below.
Device name: GC-2010 (manufactured by Shimadzu Corporation)
Column: Capillary column DB-5MS (phenyl allene polymer)
Temperature: injection port 280 ° C, detector 280 ° C
Temperature rise analysis is performed at a column temperature of 80 ° C. (initial stage).
(Temperature analysis conditions) 80 ° C .; hold 12 minutes 80 to 280 ° C .; raise temperature at 20 ° C./minute 10 minutes 280 ° C .; hold 10 minutes Detector: FID
Procedure: 0.5 g of sample is dissolved in 5 ml of 1,2-dichloroethane solution (0.014 g / L) containing undecane (internal standard substance). Thereafter, 5 ml of n-hexane is added and shaken with a shaker for 10 to 15 minutes to precipitate. Only the supernatant liquid is injected into the GC with the polymer precipitated and precipitated. A quantitative value is calculated from the peak area of the obtained maleimide monomer using a coefficient determined from an internal standard substance.
<スチレン-マレイミド系共重合体(A)の製造方法>
スチレン-マレイミド系共重合体の重合様式においては、特に限定がなく、例えば溶液重合、塊状重合などの公知の方法で製造できるが、分添等を行いながら重合することで共重合組成がより均一な所望のスチレン-マレイミド系共重合体を得ることが出来るという観点からは溶液重合がより好ましい。また、スチレン-マレイミド系共重合体の溶液重合で用いる溶剤は、副生成物が出来難く、悪影響が少ないという観点からは非重合性であることが好ましい。さらに、スチレン-マレイミド系共重合体の重合プロセスは回分式重合法、半回分式重合法、連続重合法のいずれの方式であっても差し支えない。
<Method for producing styrene-maleimide copolymer (A)>
The polymerization mode of the styrene-maleimide copolymer is not particularly limited, and can be produced by a known method such as solution polymerization or bulk polymerization, but the copolymer composition is more uniform by polymerization while performing addition or the like. From the viewpoint of obtaining a desired styrene-maleimide copolymer, solution polymerization is more preferable. In addition, the solvent used in the solution polymerization of the styrene-maleimide copolymer is preferably non-polymerizable from the viewpoint that by-products are difficult to be formed and that there are few adverse effects. Furthermore, the polymerization process of the styrene-maleimide copolymer may be any of batch polymerization, semi-batch polymerization, and continuous polymerization.
スチレン-マレイミド系共重合体の重合方法は、特に限定されないが、簡潔なプロセスによって生産性よく製造することが可能であるという観点からは、ラジカル重合により得られることが好ましい。また、スチレン-マレイミド系共重合体の重合反応に用いられる重合開始剤としては、特に限定されるものではないが、入手容易性、反応制御のし易さなどの観点からは、例えばアゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスメチルプロピオニトリル、アゾビスメチルブチロニトリル等の公知のアゾ化合物や、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、エチル-3,3-ジ-(t-ブチルパーオキシ)ブチレート等の公知の有機化酸化物を用いることができる。これらの重合開始剤は2種以上を併用しても差し支えない。また、重合の反応速度や重合率制御の観点からは、従来のスチレン系樹脂の製造において常用されているもの、例えば10時間半減期温度が70~120℃であるアゾ化合物や有機過酸化物を用いるのが好ましい。 The polymerization method of the styrene-maleimide copolymer is not particularly limited, but is preferably obtained by radical polymerization from the viewpoint that it can be produced with high productivity by a simple process. Further, the polymerization initiator used in the polymerization reaction of the styrene-maleimide copolymer is not particularly limited. However, from the viewpoint of availability, ease of reaction control, etc., for example, azobisiso Known azo compounds such as butyronitrile, azobiscyclohexanecarbonitrile, azobismethylpropionitrile, azobismethylbutyronitrile, benzoyl peroxide, t-butylperoxybenzoate, 1,1-bis (t- Butylperoxy) -3,3,5-trimethylcyclohexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexanoate, di-t-butyl peroxide, dicumyl peroxide, ethyl Known organics such as -3,3-di- (t-butylperoxy) butyrate It can be an oxide. Two or more of these polymerization initiators may be used in combination. Further, from the viewpoint of controlling the polymerization reaction rate and the polymerization rate, those conventionally used in the production of conventional styrene resins, such as azo compounds and organic peroxides having a 10-hour half-life temperature of 70 to 120 ° C., are used. It is preferable to use it.
これらの重合開始剤の使用量は、特に限定されるものではないが、全単量体単位100質量部に対して0.1~1.5質量部使用する事が好ましく、さらに好ましくは0.1~1.0質量部である。これらの重合開始剤の使用量が0.1質量部以上であれば、十分な重合速度が得られるため好ましい。一方、これらの重合開始剤の使用量が1.5質量部以下に抑えられれば重合速度が抑制できるため反応制御が容易になり、スチレン-マレイミド系共重合体の目標分子量を得ることが簡単になる。 The amount of these polymerization initiators to be used is not particularly limited, but it is preferably 0.1 to 1.5 parts by weight, more preferably 0.8 to 100 parts by weight of all monomer units. 1 to 1.0 part by mass. The amount of these polymerization initiators used is preferably 0.1 parts by mass or more because a sufficient polymerization rate can be obtained. On the other hand, if the use amount of these polymerization initiators is suppressed to 1.5 parts by mass or less, the polymerization rate can be suppressed, the reaction control becomes easy, and it is easy to obtain the target molecular weight of the styrene-maleimide copolymer. Become.
スチレン-マレイミド系共重合体の製造には、連鎖移動剤を使用することが出来る。使用される連鎖移動剤としては、特に限定されるものではないが、入手容易性、分子量制御のし易さなどの観点からは、例えばn-ドデシルメルカプタン、t-ドデシルメルカプタンや2,4-ジフェニル-4-メチル-1-ペンテン等の公知の連鎖移動剤を用いることが出来る。これらの連鎖移動剤の使用量は、スチレン-マレイミド系共重合体の目標分子量が得られる範囲であれば、特に限定されるものではないが、全単量体単位100質量部に対し0.1~0.8質量部使用することが好ましく、更に好ましくは0.15~0.5質量部である。これらの連鎖移動剤の使用量が0.1質量部以上かつ0.8質量部以下であれば、スチレン-マレイミド系共重合体の目標分子量を容易に得ることができる。 A chain transfer agent can be used for the production of the styrene-maleimide copolymer. The chain transfer agent to be used is not particularly limited. However, from the viewpoint of availability, molecular weight control, etc., for example, n-dodecyl mercaptan, t-dodecyl mercaptan, 2,4-diphenyl, and the like. A known chain transfer agent such as -4-methyl-1-pentene can be used. The amount of these chain transfer agents to be used is not particularly limited as long as the target molecular weight of the styrene-maleimide copolymer can be obtained, but is 0.1% with respect to 100 parts by mass of all monomer units. It is preferable to use ˜0.8 parts by mass, and more preferably 0.15 to 0.5 parts by mass. If the amount of these chain transfer agents used is 0.1 parts by mass or more and 0.8 parts by mass or less, the target molecular weight of the styrene-maleimide copolymer can be easily obtained.
スチレン-マレイミド系共重合体の溶液重合で用いる非重合性溶剤の種類としては、特に限定されるものではないが、例えば、入手容易性、共重合体の溶解性などの観点からは、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン等のケトン類、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン等の溶剤があり、スチレン-マレイミド系共重合体の脱揮回収時における溶剤除去の容易性からメチルエチルケトン、メチルイソブチルケトンが特に好ましい。 The kind of the non-polymerizable solvent used in the solution polymerization of the styrene-maleimide copolymer is not particularly limited. For example, from the viewpoint of availability, solubility of the copolymer, acetone, Ketones such as methyl ethyl ketone, methyl isobutyl ketone and acetophenone, ethers such as tetrahydrofuran and 1,4-dioxane, aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene, N, N-dimethylformamide, dimethyl sulfoxide, N- There are solvents such as methyl-2-pyrrolidone, and methyl ethyl ketone and methyl isobutyl ketone are particularly preferred because of the ease of solvent removal during the devolatilization recovery of the styrene-maleimide copolymer.
ここで、マレイミド単量体単位の導入方法としては、マレイミド系単量体とスチレン系単量体とを共重合する方法(直接法)、或いは不飽和ジカルボン酸無水物とスチレン系単量体とを予め共重合しておき、更に第1級アミンで不飽和ジカルボン酸無水物基を反応させる事により不飽和ジカルボン酸無水物基をマレイミド単量体単位に変換する方法(後イミド化法)がある。後イミド化法の方が、共重合体中の残存マレイミド系単量体量が少なくなるので好ましい。 Here, as a method for introducing the maleimide monomer unit, a method of copolymerizing a maleimide monomer and a styrene monomer (direct method), or an unsaturated dicarboxylic acid anhydride and a styrene monomer Are previously copolymerized, and further, the unsaturated dicarboxylic acid anhydride group is converted into a maleimide monomer unit by reacting the unsaturated dicarboxylic acid anhydride group with a primary amine (post-imidation method). is there. The post-imidization method is preferred because the amount of residual maleimide monomer in the copolymer is reduced.
後イミド化法に使用される第1級アミンとしては、特に限定されるものではないが、入手容易性の観点からは、例えば、メチルアミン、エチルアミン、n-プロピルアミン、iso-プロピルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-オクチルアミン、シクロヘキシルアミン、デシルアミン等のアルキルアミン類及びクロル又はブロム置換アルキルアミン、アニリン、トルイジン、ナフチルアミン等の芳香族アミンが挙げられるが、耐熱付与性、反応性、取り扱い易さなどの観点からは、これらの中でアニリン、シクロヘキシルアミンが特に好ましい。また、これらの第1級アミンは単独で用いても良いし、2種類以上を併用しても差し支えない。なお、これらの第1級アミンの添加量は特に限定されるものではないが、不飽和ジカルボン酸無水物基に対して好ましくは0.7~1.1モル当量、さらに好ましくは0.85~1.05モル当量である。これらの第1級アミンの添加量が0.7モル当量または0.85モル当量以上であれば、スチレン-マレイミド系共重合体中の不飽和ジカルボン酸無水物単量体単位が10質量%以下に抑制でき、熱安定性が良好に維持される。また、1.1モル当量または1.05モル当量以下であれば、スチレン-マレイミド系共重合体中に残存する第1級アミン量が少なくなるので好ましい。 The primary amine used in the post-imidization method is not particularly limited, but from the viewpoint of availability, for example, methylamine, ethylamine, n-propylamine, iso-propylamine, n -Alkylamines such as butylamine, n-pentylamine, n-hexylamine, n-octylamine, cyclohexylamine, decylamine, and aromatic amines such as chloro or bromo-substituted alkylamine, aniline, toluidine, naphthylamine, etc. Of these, aniline and cyclohexylamine are particularly preferred from the viewpoints of heat resistance, reactivity, and ease of handling. In addition, these primary amines may be used alone or in combination of two or more. The addition amount of these primary amines is not particularly limited, but is preferably 0.7 to 1.1 molar equivalents, more preferably 0.85 to the unsaturated dicarboxylic anhydride group. 1.05 molar equivalent. If the addition amount of these primary amines is 0.7 molar equivalent or 0.85 molar equivalent or more, the unsaturated dicarboxylic acid anhydride monomer unit in the styrene-maleimide copolymer is 10% by mass or less. The thermal stability is maintained well. In addition, 1.1 molar equivalent or 1.05 molar equivalent or less is preferable because the amount of primary amine remaining in the styrene-maleimide copolymer is reduced.
マレイミド単量体単位を後イミド化法で導入する際、第1級アミンと不飽和ジカルボン酸無水物基との反応、特に不飽和ジカルボン酸無水物基からマレイミド基に変換する反応において、脱水閉環反応を向上させる目的で必要に応じて触媒を使用する事ができる。触媒の種類は特に限定されるものではないが、例えば第3級アミンを使用する事ができる。第3級アミンとしては、特に限定されるものではないが、例えばトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N、N-ジメチルアニリン、N、N-ジエチルアニリン等が挙げられる。 When introducing a maleimide monomer unit by a post-imidation method, in the reaction between a primary amine and an unsaturated dicarboxylic acid anhydride group, particularly in the reaction for converting an unsaturated dicarboxylic acid anhydride group to a maleimide group, A catalyst can be used as needed for the purpose of improving the reaction. Although the kind of catalyst is not specifically limited, For example, a tertiary amine can be used. The tertiary amine is not particularly limited, and examples thereof include trimethylamine, triethylamine, tripropylamine, tributylamine, N, N-dimethylaniline, N, N-diethylaniline and the like.
第3級アミンの添加量は、特に限定されるものではないが、生産性向上の観点からは、不飽和ジカルボン酸無水物基に対し、0.01モル当量以上が好ましい。 The addition amount of the tertiary amine is not particularly limited, but is preferably 0.01 molar equivalent or more with respect to the unsaturated dicarboxylic acid anhydride group from the viewpoint of improving productivity.
本実施形態におけるイミド化反応の温度は、好ましくは100~250℃であり、さらに好ましくは120~200℃である。このイミド化反応の温度が100℃以上であれば反応速度が向上するので反応完結までに長時間を要さず生産性の面から好ましい。一方、このイミド化反応の温度が250℃以下に抑えられる場合には、スチレン-マレイミド系共重合体の熱劣化による物性低下をきたしにくいので好ましい。 The temperature of the imidization reaction in this embodiment is preferably 100 to 250 ° C., more preferably 120 to 200 ° C. If the temperature of this imidation reaction is 100 ° C. or higher, the reaction rate is improved, so that it does not take a long time to complete the reaction, which is preferable from the viewpoint of productivity. On the other hand, when the temperature of the imidization reaction is suppressed to 250 ° C. or lower, it is preferable because the physical properties of the styrene-maleimide copolymer are hardly deteriorated due to thermal deterioration.
後イミド化法で重合する場合、不飽和ジカルボン酸無水物とスチレン系単量体とを重合初期に全量仕込んで重合することも出来るが、不飽和ジカルボン酸無水物とスチレン系単量体とは交互共重合性が強いため、重合初期には不飽和ジカルボン酸無水物とスチレン系単量体のモル比が1:1の組成をもつ交互共重合体が生成する。所望のスチレン-マレイミド系共重合体の構成単位を得るには、スチレン系単量体を不飽和ジカルボン酸無水物より高いモル比に仕込む必要があることから、初期に全量仕込んで重合した場合、重合後期にはスチレン系単量体単位の多い共重合体が生成し易くなり、その結果組成分布が大きくなる。組成分布が小さい共重合体を得るには、スチレン系単量体全量と不飽和ジカルボン酸無水物の仕込み量の一部を重合初期に仕込み、不飽和ジカルボン酸無水物の仕込み量の残りを分割または連続的に添加しながら重合させることが好ましい。不飽和ジカルボン酸無水物の重合初期に仕込む量と分割または連続添加する量との比率は5/95~50/50が好ましく、更に好ましくは10/90~25/75である。不飽和ジカルボン酸無水物の重合初期に仕込む量と分割または連続添加する量との比率がこれらの範囲内にあれば、組成分布が小さなスチレン-マレイミド系共重合体が得られる。 When polymerizing by the post-imidization method, the unsaturated dicarboxylic acid anhydride and the styrenic monomer can be charged in the initial stage of polymerization to polymerize, but the unsaturated dicarboxylic acid anhydride and the styrenic monomer are Since the alternating copolymerization is strong, an alternating copolymer having a composition in which the molar ratio of the unsaturated dicarboxylic acid anhydride to the styrene monomer is 1: 1 is formed at the initial stage of polymerization. In order to obtain the desired structural unit of the styrene-maleimide copolymer, it is necessary to charge the styrene monomer at a higher molar ratio than the unsaturated dicarboxylic acid anhydride. In the latter stage of polymerization, a copolymer having a large amount of styrene monomer units is likely to be formed, and as a result, the composition distribution becomes large. In order to obtain a copolymer with a small composition distribution, a part of the total amount of styrene monomer and unsaturated dicarboxylic acid anhydride is charged at the beginning of polymerization, and the remainder of the unsaturated dicarboxylic acid anhydride is divided. Alternatively, it is preferable to perform polymerization while continuously adding. The ratio of the amount of the unsaturated dicarboxylic acid anhydride charged in the initial stage of polymerization and the amount added in portions or continuously is preferably 5/95 to 50/50, more preferably 10/90 to 25/75. If the ratio of the amount of the unsaturated dicarboxylic acid anhydride charged in the initial stage of polymerization and the amount of divided or continuously added is within these ranges, a styrene-maleimide copolymer having a small composition distribution can be obtained.
重合の反応速度と重合率の制御は、重合温度、重合時間、重合開始剤量、単量体の添加速度等により制御することが出来る。スチレン-マレイミド系共重合体の残存マレイミド系単量体量は300ppm以下であることから、直接法においてはマレイミド系単量体の重合率が99.9%以上、後イミド化法においては、不飽和ジカルボン酸無水物の重合率が99.9%以上となるように適宜条件を調整することが好ましい。例えば、後イミド化法の場合であれば、初期の重合温度は80~110℃が好ましく、重合後期には重合率を向上させるため110℃~150℃とすることが好ましい。また、不飽和ジカルボン酸の添加速度は、スチレン系単量体の重合率が80~95%となる時点で添加が終了するように調整することが好ましい。さらに重合時間、重合開始剤量を調整することで不飽和ジカルボン酸無水物の重合率を99.9%以上にすることが出来る。そして、スチレン-マレイミド系共重合体中の残存マレイミド系単量体量が300ppm以下(重合率99.9%以上に相当)の場合には、色相に優れたマレイミド系共重合体が得られ、また、これを使用して得られる光学成形体用樹脂組成物においても色相が良好なものが得られる。 The polymerization reaction rate and polymerization rate can be controlled by the polymerization temperature, polymerization time, amount of polymerization initiator, monomer addition rate, and the like. Since the amount of the remaining maleimide monomer in the styrene-maleimide copolymer is 300 ppm or less, the polymerization rate of the maleimide monomer is 99.9% or more in the direct method, and in the post-imidization method, It is preferable to appropriately adjust the conditions so that the polymerization rate of the saturated dicarboxylic acid anhydride is 99.9% or more. For example, in the case of the post-imidization method, the initial polymerization temperature is preferably from 80 to 110 ° C., and preferably from 110 to 150 ° C. in the latter stage of polymerization in order to improve the polymerization rate. The addition rate of the unsaturated dicarboxylic acid is preferably adjusted so that the addition is completed when the polymerization rate of the styrene monomer reaches 80 to 95%. Furthermore, the polymerization rate of unsaturated dicarboxylic acid anhydride can be made 99.9% or more by adjusting polymerization time and the amount of polymerization initiators. When the amount of residual maleimide monomer in the styrene-maleimide copolymer is 300 ppm or less (corresponding to a polymerization rate of 99.9% or more), a maleimide copolymer excellent in hue is obtained. Moreover, what has a favorable hue is obtained also in the resin composition for optical molded objects obtained by using this.
そして、重合に用いた非重合性の溶剤や未反応の単量体などの揮発成分を取り除く方法については、特に限定はなく公知の方法を用いることが出来るが、工業的な規模で採用できる方法としてベントタイプスクリュー式押出機を用いる方法が好ましい。ベントタイプスクリュー式押出機を用いる場合の脱揮条件としては、樹脂温度を310~340℃とし、かつ-92kPaG以下の減圧下で脱揮することが好ましい。真空減圧下で樹脂温度を高くする事により非重合性の溶剤や未反応の単量体は揮発しやすくなるが、樹脂温度が340℃以下に抑えられればマレイミド系共重合体が熱劣化による解重合をしにくいため、マレイミド系単量体量の残存量が増加しにくく、色相に優れ、耐熱性付与効果が高く、さらに混練性に優れたスチレン-マレイミド系共重合体を得るという目的を達成できなくなる場合がある。なお、樹脂温度の調整方法については、押出機のスクリュー回転数やシリンダー温度の調整により行うことが出来る。 The method for removing volatile components such as non-polymerizable solvent and unreacted monomer used in the polymerization is not particularly limited, and a known method can be used, but a method that can be adopted on an industrial scale. A method using a vent type screw extruder is preferred. The devolatilization conditions when using a vent type screw type extruder are preferably devolatilization at a resin temperature of 310 to 340 ° C. and a reduced pressure of −92 kPaG or less. By increasing the resin temperature under vacuum and reduced pressure, non-polymerizable solvents and unreacted monomers are likely to volatilize. However, if the resin temperature is kept at 340 ° C or lower, the maleimide copolymer is dissolved by thermal degradation. Achieves the objective of obtaining a styrene-maleimide copolymer that is difficult to polymerize, so that the residual amount of maleimide monomer does not increase easily, has excellent hue, has high heat resistance, and has excellent kneadability. It may not be possible. In addition, about the adjustment method of resin temperature, it can carry out by adjusting the screw rotation speed of an extruder, or cylinder temperature.
また、熱劣化によるマレイミド系単量体の発生量を抑える目的で、ラジカル捕捉剤を用いてもよい。ラジカル捕捉剤は特に限定されるものではないが、フェノール系化合物、有機リン系化合物、有機硫黄系化合物、アミン系化合物等の酸化防止剤が挙げられる。これらのラジカル捕捉剤は単独で用いても良く、2種類以上を併用して用いても良い。これらのラジカル捕捉剤は、ベントタイプスクリュー式押出機でスチレン-マレイミド系共重合体中の揮発性成分を脱揮する工程で著しい熱履歴を受ける事から、ラジカル捕捉剤としての機能を維持するためには耐熱性や熱安定性を有する化合物が特に好ましい。例えば、1%加熱減量温度が300℃を超えるラジカル捕捉剤がさらにいっそう好ましい。本実施形態で使用されるラジカル捕捉剤は、重合後の重合生成物に対して添加する事が好ましい。重合前あるいは重合中に添加すると、重合速度が低下する場合がある。 Moreover, you may use a radical scavenger for the purpose of suppressing the generation amount of the maleimide monomer by heat deterioration. The radical scavenger is not particularly limited, and examples thereof include antioxidants such as phenol compounds, organic phosphorus compounds, organic sulfur compounds, and amine compounds. These radical scavengers may be used alone or in combination of two or more. These radical scavengers receive a significant thermal history in the process of devolatilizing the volatile components in the styrene-maleimide copolymer with a vent type screw extruder, so that the function as a radical scavenger is maintained. In particular, a compound having heat resistance and heat stability is preferred. For example, a radical scavenger having a 1% heat loss temperature exceeding 300 ° C. is even more preferable. The radical scavenger used in this embodiment is preferably added to the polymerization product after polymerization. If added before or during polymerization, the polymerization rate may decrease.
[アクリロニトリル-スチレン系共重合体(B)]
アクリロニトリル-スチレン系共重合体(B)は、アクリロニトリル系単量体とスチレン系単量体とを含み、さらにその他の共重合可能なビニル系単量体を任意に含むことができる。
[Acrylonitrile-styrene copolymer (B)]
The acrylonitrile-styrene copolymer (B) contains an acrylonitrile monomer and a styrene monomer, and can optionally contain other copolymerizable vinyl monomers.
<アクリロニトリル系単量体>
アクリロニトリル系単量体としては、特に限定せず、任意の公知のアクリロニトリル系単量体を用いることができるが、入手の容易性、相溶性などの観点からアクリロニトリル、メタクリロニトリル等が挙げられ、これらの中では特に相溶性の観点からアクリロニトリルが好ましい。また、これらのアクリロニトリル系単量体は2種以上の混合であってもよい。
<Acrylonitrile monomer>
The acrylonitrile-based monomer is not particularly limited, and any known acrylonitrile-based monomer can be used, but acrylonitrile, methacrylonitrile, and the like are mentioned from the viewpoint of availability, compatibility, and the like. Among these, acrylonitrile is particularly preferable from the viewpoint of compatibility. These acrylonitrile monomers may be a mixture of two or more.
<スチレン系単量体>
スチレン-アクリロニトリル系共重合体(B)のスチレン系単量体としては、特に限定せず、任意の公知のスチレン系単量体を用いることができるが、入手の容易性、本実施形態のスチレン-マレイミド系共重合体(A)との相溶性などの観点からスチレン、α-メチルスチレン、ο-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン、クロルスチレン等のスチレン系単量体が挙げられ、これらの中でも特に相溶性の観点からスチレンが好ましい。また、これらのスチレン系単量体は2種以上の混合であってもよい。
<Styrene monomer>
The styrene monomer of the styrene-acrylonitrile copolymer (B) is not particularly limited, and any known styrene monomer can be used. -Styrene such as styrene, α-methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, t-butyl styrene, chlorostyrene, etc. from the viewpoint of compatibility with maleimide copolymer (A) Among them, styrene is particularly preferable from the viewpoint of compatibility. These styrenic monomers may be a mixture of two or more.
<その他共重合可能なビニル系単量体>
スチレン-アクリロニトリル系共重合体(B)には、共重合可能なビニル系単量体単位、例えばアクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2エチルヘキシル、マレイン酸無水物等の単量体単位をスチレン-アクリロニトリル系共重合体(B)に対して5質量%未満であれば含有してもよい。これらのビニル系単量体単位が5質量%未満であれば本願発明の効果を損なわない。
<Other copolymerizable vinyl monomers>
The styrene-acrylonitrile copolymer (B) includes copolymerizable vinyl monomer units such as acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methacrylic acid, If the monomer unit such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, maleic anhydride is less than 5% by mass with respect to the styrene-acrylonitrile copolymer (B) You may contain. If these vinyl monomer units are less than 5% by mass, the effect of the present invention is not impaired.
<スチレン-アクリロニトリル系共重合体(B)の構成比率>
スチレン-アクリロニトリル系共重合体(B)の構成比率は、スチレン系単量体単位70~84質量%とアクリロニトリル系単量体単位16~30質量%、好ましくはスチレン系単量体72~82質量%とアクリロニトリル系単量体18~28質量%である。
<Composition ratio of styrene-acrylonitrile copolymer (B)>
The composition ratio of the styrene-acrylonitrile copolymer (B) is 70 to 84% by mass of styrene monomer units and 16 to 30% by mass of acrylonitrile monomer units, preferably 72 to 82% by mass of styrene monomers. And 18 to 28% by mass of acrylonitrile monomer.
スチレン系単量体単位が70質量%以上、または、アクリロニトリル系単量体単位が30質量%以下であれば、十分な色相を確保することができる。
スチレン系単量体単位が84質量%以下、または、アクリロニトリル系単量体単位が16質量%以上であれば、光学成形体の透明性を十分に確保することができる。
If the styrene monomer unit is 70% by mass or more or the acrylonitrile monomer unit is 30% by mass or less, a sufficient hue can be secured.
If the styrene monomer unit is 84% by mass or less or the acrylonitrile monomer unit is 16% by mass or more, the transparency of the optical molded article can be sufficiently secured.
<スチレン-アクリロニトリル系共重合体(B)の製造法>
スチレン-アクリロニトリル系共重合体(B)の製造法としては、公知の手法が採用でき、例えば、スチレン系単量体、アクリロニトリル系単量体および共重合可能なビニル単量体からなる単量体混合物を共重合させる方法が挙げられる。また、重合の様式は、公知の重合方法が利用できる。その中でも光学成形体の透明性の観点から塊状重合または溶液重合であることが好ましく、さらに好ましくは塊状重合である。
<Method for producing styrene-acrylonitrile copolymer (B)>
As a method for producing the styrene-acrylonitrile copolymer (B), a known method can be adopted, for example, a monomer comprising a styrene monomer, an acrylonitrile monomer and a copolymerizable vinyl monomer. The method of copolymerizing a mixture is mentioned. As the polymerization mode, a known polymerization method can be used. Of these, bulk polymerization or solution polymerization is preferable from the viewpoint of transparency of the optical molded body, and bulk polymerization is more preferable.
[光学成形体用樹脂組成物]
光学成形体用樹脂組成物は、スチレン-マレイミド系共重合体(A)20~50質量%とスチレン-アクリロニトリル系共重合体(B)50~80質量%、好ましくはスチレン-マレイミド系共重合体(A)25~45質量%とスチレン-アクリロニトリル系共重合体(B)55~75質量%、さらに好ましくは、スチレン-マレイミド系共重合体(A)27.5~40質量%、スチレン-アクリロニトリル系共重合体(B)60~72.5質量%とからなる。この範囲で良好な物性が得られる。
スチレン-マレイミド系共重合体(A)が20質量%以上、スチレン-アクリロニトリル系共重合体(B)が80質量%以下であれば、十分な耐熱性を確保することができ、スチレン-マレイミド系共重合体(A)50質量%以下、スチレン-アクリロニトリル系共重合体(B)が50質量%以上であれば、十分な透明性を確保することができる。
[Resin composition for optical molded body]
The resin composition for optical moldings comprises 20-50% by mass of a styrene-maleimide copolymer (A) and 50-80% by mass of a styrene-acrylonitrile copolymer (B), preferably a styrene-maleimide copolymer. (A) 25-45% by mass and styrene-acrylonitrile copolymer (B) 55-75% by mass, more preferably 27.5-40% by mass, styrene-maleimide copolymer (A), styrene-acrylonitrile The copolymer (B) is 60 to 72.5% by mass. Good physical properties can be obtained within this range.
If the styrene-maleimide copolymer (A) is 20% by mass or more and the styrene-acrylonitrile copolymer (B) is 80% by mass or less, sufficient heat resistance can be secured, and the styrene-maleimide system When the copolymer (A) is 50% by mass or less and the styrene-acrylonitrile copolymer (B) is 50% by mass or more, sufficient transparency can be secured.
光学成形体用樹脂組成物の製造方法としては、スチレン-マレイミド系共重合体(A)とスチレン-アクリロニトリル系共重合体(B)とが均一に分散する方法であれば特に制限はなく、公知の混練方法を用いることができる。例えばバンバリーミキサー、ニーダー、単軸もしくは二軸押出機等を用いて溶融混練する方法が挙げられるが、特に美麗なフィルムを得るためには二軸押出機を用いて溶融混練する方法が好ましい。 The method for producing the resin composition for optical molded bodies is not particularly limited as long as the styrene-maleimide copolymer (A) and the styrene-acrylonitrile copolymer (B) are uniformly dispersed. These kneading methods can be used. For example, a melt kneading method using a Banbury mixer, a kneader, a single screw or a twin screw extruder, and the like can be mentioned. In order to obtain a particularly beautiful film, a melt kneading method using a twin screw extruder is preferable.
スチレン-マレイミド系共重合体(A)とスチレン-アクリロニトリル系共重合体(B)の押出方法としては、全量一括フィードする方法や、スチレン-マレイミド系共重合体(A)とスチレン-アクリロニトリル系共重合体(B)の一部をスクリューの根元位置からフィードし、スチレン-アクリロニトリル系共重合体(B)の残りをスクリューの中間位置からサイドフィードする方法等が挙げられる。 The extrusion method of the styrene-maleimide copolymer (A) and the styrene-acrylonitrile copolymer (B) includes a method of feeding the whole amount, a styrene-maleimide copolymer (A) and a styrene-acrylonitrile copolymer. Examples include a method in which a part of the polymer (B) is fed from the root position of the screw and the rest of the styrene-acrylonitrile copolymer (B) is side-fed from an intermediate position of the screw.
二軸押出機を用いて溶融混練する際の押出条件としては、樹脂温度が260~320℃であることが好ましく、さらに好ましくは270~310℃である。シリンダー温度、スクリュー回転数、および原料フィード量を調整することで樹脂温度は調整することができる。 As extrusion conditions for melt kneading using a twin-screw extruder, the resin temperature is preferably 260 to 320 ° C, more preferably 270 to 310 ° C. The resin temperature can be adjusted by adjusting the cylinder temperature, screw rotation speed, and raw material feed amount.
二軸押出機のスクリュー長さ/シリンダー径(=L/D)は21~48の範囲である。スクリュー構成については特に制限はないが、複数のパドル型円盤が右方向にずれて重なったニーディングディスクライト、複数のパドル型円盤が左方向にずれて重なったニーディングディスクレフト、パドル型円盤が90度ずつずれて重なったニーディングディスクニュートラル等のニーディングディスクを複数個組み合わせたものが好ましい。 The screw length / cylinder diameter (= L / D) of the twin screw extruder is in the range of 21 to 48. There are no particular restrictions on the screw configuration, but there are kneading disc lights in which multiple paddle type discs are displaced in the right direction and overlapped, kneading disc lefts in which multiple paddle type discs are displaced in the left direction, and paddle type discs. A combination of a plurality of kneading discs such as a kneading disc neutral that is shifted by 90 degrees and overlapped is preferable.
異物除去のため目開きが50μm以下のスクリーンメッシュや焼結フィルター、ポリマーフィルター等を押出機先端のダイス部に設置することができる。 A screen mesh, a sintered filter, a polymer filter or the like having an opening of 50 μm or less can be installed in the die portion at the tip of the extruder for removing foreign matter.
光学成形体用樹脂組成物には必要に応じてヒンダードフェノール系化合物、ラクトン系化合物、リン系化合物、イオウ系化合物などの耐熱安定剤、ヒンダードアミン系化合物、ベンゾトリアゾール系化合物等の耐光安定剤、滑剤や可塑剤、着色剤、帯電防止剤、鉱油等の添加剤を配合してもかまわない。その配合量は光学成形体用樹脂組成物100質量部に対して1質量部未満であることが好ましい。 If necessary, the resin composition for optical molded bodies has a heat resistant stabilizer such as a hindered phenol compound, a lactone compound, a phosphorus compound, a sulfur compound, a light resistant stabilizer such as a hindered amine compound, a benzotriazole compound, You may mix | blend additives, such as a lubricant, a plasticizer, a coloring agent, an antistatic agent, and mineral oil. It is preferable that the compounding quantity is less than 1 mass part with respect to 100 mass parts of resin compositions for optical molded objects.
光学成形体用樹脂組成物は、フィルムにした時、さらに延伸して配向させるとフィルムが負の配向複屈折性を示すものである。 When the resin composition for optical molded bodies is formed into a film, the film exhibits negative orientation birefringence when further stretched and oriented.
光学成形体用樹脂組成物は、射出成形体、シート、フィルム等公知の成形体で使用でき、フィルムを成形する方法は特に制限はないが、フィルム押出機を用いて溶融押出する方法が好ましい。 The resin composition for an optical molded body can be used in a known molded body such as an injection molded body, a sheet, and a film, and the method for molding the film is not particularly limited, but the method of melt extrusion using a film extruder is preferable.
[光学成形体]
光学成形体とは、光学用途に使用される成形体、シート、フィルムをいい、溶融押出フィルムとは、溶融押出により形成されたフィルムをいう。
フィルムは、位相差フィルム、反射防止フィルム、偏光子保護フィルム等、公知の光学フィルムをいう。
[Optical molded product]
An optical molded body refers to a molded body, a sheet, or a film used for optical applications, and a melt-extruded film refers to a film formed by melt extrusion.
The film refers to a known optical film such as a retardation film, an antireflection film, and a polarizer protective film.
本発明のフィルムは、公知の手法で延伸して配向させることができる。フィルムにした時、さらに延伸して配向させるとフィルムが負の配向複屈折性が発生するため、位相差フィルム用途に最も好ましい。 The film of the present invention can be stretched and oriented by a known method. When the film is made into a film, it is most preferable for use in a retardation film because if the film is further stretched and oriented, negative orientation birefringence occurs.
以上、本発明の実施形態について述べてきたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and can also employ | adopt various structures other than the above.
以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to these.
[実験例A-1]
攪拌機を備えた容積約25リットルのオートクレーブ中にスチレン65質量部、無水マレイン酸7質量部、2,4-ジフェニル-4-メチル-1-ペンテン0.2質量部、メチルエチルケトン25質量部を仕込み、系内を窒素ガスで置換した後、温度を92度に昇温し、マレイン酸無水物を28質量部とt-ブチルパーオキシ-2-エチルヘキサノエート0.18質量部をメチルエチルケトン100質量部に溶解した溶液を7時間かけて連続的に添加した。添加後、さらにt-ブチルパーオキシ-2-エチルヘキサノエート0.03質量部を添加して120℃に昇温し、更に1時間反応させてスチレン-無水マレイン酸共重合体を得た。その後、粘稠な樹脂液にアニリン32質量部、トリエチルアミン0.6質量部を加え140℃で7時間反応させた。反応終了後のイミド化反応液をベントタイプスクリュー式押出機に投入し、揮発分を除去してペレット状のスチレン-マレイミド系共重合体A-1を得た。
[Experiment A-1]
In an autoclave having a volume of about 25 liters equipped with a stirrer, 65 parts by mass of styrene, 7 parts by mass of maleic anhydride, 0.2 part by mass of 2,4-diphenyl-4-methyl-1-pentene, and 25 parts by mass of methyl ethyl ketone were charged. After replacing the system with nitrogen gas, the temperature was raised to 92 ° C., 28 parts by mass of maleic anhydride and 0.18 parts by mass of t-butylperoxy-2-ethylhexanoate were added to 100 parts by mass of methyl ethyl ketone. The solution dissolved in was continuously added over 7 hours. After the addition, 0.03 part by mass of t-butylperoxy-2-ethylhexanoate was further added, the temperature was raised to 120 ° C., and the mixture was further reacted for 1 hour to obtain a styrene-maleic anhydride copolymer. Thereafter, 32 parts by mass of aniline and 0.6 parts by mass of triethylamine were added to the viscous resin solution and reacted at 140 ° C. for 7 hours. After the completion of the reaction, the imidization reaction solution was charged into a vent type screw extruder to remove volatile components, thereby obtaining a pellet-shaped styrene-maleimide copolymer A-1.
[実験例A-2]
攪拌機を備えた容積約25リットルのオートクレーブ中にスチレン60質量部、無水マレイン酸8質量部、2,4-ジフェニル-4-メチル-1-ペンテン0.3質量部、メチルエチルケトン25質量部を仕込み、系内を窒素ガスで置換した後、温度を92度に昇温し、マレイン酸無水物を32質量部とt-ブチルパーオキシ-2-エチルヘキサノエート0.18質量部をメチルエチルケトン100質量部に溶解した溶液を9時間かけて連続的に添加した。添加後、さらにt-ブチルパーオキシ-2-エチルヘキサノエート0.03質量部を添加して120℃に昇温し、更に1.5時間反応させてスチレン-無水マレイン酸共重合体を得た。その後、粘稠な樹脂液にアニリン37質量部、トリエチルアミン0.6質量部を加え140℃で7時間反応させた。反応終了後のイミド化反応液をベントタイプスクリュー式押出機に投入し、揮発分を除去してペレット状のスチレン-マレイミド系共重合体A-2を得た。
[Experiment A-2]
In an autoclave having a volume of about 25 liters equipped with a stirrer, 60 parts by mass of styrene, 8 parts by mass of maleic anhydride, 0.3 part by mass of 2,4-diphenyl-4-methyl-1-pentene, and 25 parts by mass of methyl ethyl ketone were charged. After replacing the system with nitrogen gas, the temperature was raised to 92 ° C., 32 parts by weight of maleic anhydride and 0.18 parts by weight of t-butylperoxy-2-ethylhexanoate were added to 100 parts by weight of methyl ethyl ketone. The solution dissolved in was continuously added over 9 hours. After the addition, 0.03 parts by mass of t-butylperoxy-2-ethylhexanoate was further added, the temperature was raised to 120 ° C., and the mixture was further reacted for 1.5 hours to obtain a styrene-maleic anhydride copolymer. It was. Thereafter, 37 parts by mass of aniline and 0.6 parts by mass of triethylamine were added to the viscous resin solution and reacted at 140 ° C. for 7 hours. After the completion of the reaction, the imidization reaction liquid was charged into a vent type screw type extruder to remove volatile components, thereby obtaining a pellet-shaped styrene-maleimide copolymer A-2.
[実験例A-3]
攪拌機を備えた容積約25リットルのオートクレーブ中にスチレン85質量部、マレイン酸無水物3質量部、2,4-ジフェニル-4-メチル-1-ペンテン0.3質量部、メチルエチルケトン25質量部を仕込み、系内を窒素ガスで置換した後、温度を92度に昇温し、マレイン酸無水物を12質量部とt-ブチルパーオキシ-2-エチルヘキサノエート0.18質量部をメチルエチルケトン100質量部に溶解した溶液を7時間かけて連続的に添加した。添加後、さらにt-ブチルパーオキシ-2-エチルヘキサノエート0.03質量部を添加して120℃に昇温し、更に1時間反応させてスチレン-無水マレイン酸共重合体を得た。その後、粘稠な樹脂液にアニリン13.5質量部、トリエチルアミン0.23質量部を加え140℃で7時間反応させた。反応終了後のイミド化反応液をベントタイプスクリュー式押出機に投入し、揮発分を除去してペレット状のスチレン-マレイミド系共重合体A-3を得た。
[Experiment A-3]
An autoclave having a volume of about 25 liters equipped with a stirrer was charged with 85 parts by mass of styrene, 3 parts by mass of maleic anhydride, 0.3 part by mass of 2,4-diphenyl-4-methyl-1-pentene, and 25 parts by mass of methyl ethyl ketone. After replacing the system with nitrogen gas, the temperature was raised to 92 ° C., 12 parts by weight of maleic anhydride and 0.18 parts by weight of t-butylperoxy-2-ethylhexanoate were added to 100 parts by weight of methyl ethyl ketone. The solution dissolved in the part was continuously added over 7 hours. After the addition, 0.03 part by mass of t-butylperoxy-2-ethylhexanoate was further added, the temperature was raised to 120 ° C., and the mixture was further reacted for 1 hour to obtain a styrene-maleic anhydride copolymer. Thereafter, 13.5 parts by mass of aniline and 0.23 parts by mass of triethylamine were added to the viscous resin solution and reacted at 140 ° C. for 7 hours. After the completion of the reaction, the imidization reaction liquid was charged into a vent type screw type extruder to remove volatile matter, thereby obtaining a pellet-shaped styrene-maleimide copolymer A-3.
[実験例A-4]
攪拌機を備えた容積約25リットルのオートクレーブ中にスチレン76質量部、マレイン酸無水物6質量部、2,4-ジフェニル-4-メチル-1-ペンテン0.3質量部、メチルエチルケトン25質量部を仕込み、系内を窒素ガスで置換した後、温度を92度に昇温し、マレイン酸無水物を14質量部とt-ブチルパーオキシ-2-エチルヘキサノエート0.18質量部をメチルエチルケトン100質量部に溶解した溶液を7時間かけて連続的に添加した。添加後、さらにt-ブチルパーオキシ-2-エチルヘキサノエート0.03質量部を添加して120℃に昇温し、更に1時間反応させてスチレン-無水マレイン酸共重合体を得た。その後、粘稠な樹脂液にアニリン21.6質量部、トリエチルアミン0.36質量部を加え140℃で7時間反応させた。反応終了後のイミド化反応液をベントタイプスクリュー式押出機に投入し、揮発分を除去してペレット状のスチレン-マレイミド系共重合体A-4を得た。
[Experiment A-4]
In a 25 liter autoclave equipped with a stirrer, 76 parts by mass of styrene, 6 parts by mass of maleic anhydride, 0.3 part by mass of 2,4-diphenyl-4-methyl-1-pentene and 25 parts by mass of methyl ethyl ketone were charged. After replacing the system with nitrogen gas, the temperature was raised to 92 ° C., 14 parts by weight of maleic anhydride and 0.18 parts by weight of t-butylperoxy-2-ethylhexanoate were added to 100 parts by weight of methyl ethyl ketone. The solution dissolved in the part was continuously added over 7 hours. After the addition, 0.03 part by mass of t-butylperoxy-2-ethylhexanoate was further added, the temperature was raised to 120 ° C., and the mixture was further reacted for 1 hour to obtain a styrene-maleic anhydride copolymer. Thereafter, 21.6 parts by mass of aniline and 0.36 parts by mass of triethylamine were added to the viscous resin liquid and reacted at 140 ° C. for 7 hours. After the completion of the reaction, the imidization reaction liquid was put into a vent type screw type extruder to remove volatile components to obtain a pellet-shaped styrene-maleimide copolymer A-4.
[実験例A-5]
攪拌機を備えた容積約25リットルのオートクレーブ中にスチレン37質量部、2,4-ジフェニル-4-メチル-1-ペンテン0.2質量部、メチルエチルケトン25質量部を仕込み、系内を窒素ガスで置換した後、温度を92℃に昇温し、N-フェニルマレイミド63質量部とt-ブチルパーオキシ-2-エチルヘキサノエート0.18質量部をメチルエチルケトン100部に溶解した溶液を10時間かけて連続的に添加した。添加後、さらに、t-ブチルパーオキシ-2-エチルへキサノエート0.03質量部を添加して110℃に昇温し、更に4時間反応させた。反応終了後の樹脂液をベントタイプスクリュー式押出機に投入し、揮発分を除去してペレット状のスチレン-マレイミド系共重合体A-5を得た。
[Experiment A-5]
In a 25 liter autoclave equipped with a stirrer, 37 parts by mass of styrene, 0.2 part by mass of 2,4-diphenyl-4-methyl-1-pentene, and 25 parts by mass of methyl ethyl ketone were charged, and the system was replaced with nitrogen gas. Then, the temperature was raised to 92 ° C., and a solution obtained by dissolving 63 parts by mass of N-phenylmaleimide and 0.18 parts by mass of t-butylperoxy-2-ethylhexanoate in 100 parts of methyl ethyl ketone was added over 10 hours. Added continuously. After the addition, 0.03 part by mass of t-butylperoxy-2-ethylhexanoate was further added, the temperature was raised to 110 ° C., and the reaction was further continued for 4 hours. The resin solution after completion of the reaction was charged into a vent type screw type extruder to remove volatile components, thereby obtaining pellet-shaped styrene-maleimide copolymer A-5.
[実験例A-6]
攪拌機を備えた容積約25リットルのオートクレーブ中にスチレン51質量部、アクリロニトリル9質量部、2,4-ジフェニル-4-メチル-1-ペンテン0.2質量部、メチルエチルケトン25質量部を仕込み、系内を窒素ガスで置換した後、温度を92℃に昇温し、N-フェニルマレイミド40質量部とt-ブチルパーオキシ-2-エチルヘキサノエート0.18質量部をメチルエチルケトン100質量部に溶解した溶液を7時間かけて連続的に添加した。添加後、さらにt-ブチルパーオキシ-2-エチルヘキサノエート0.03質量部を添加して120℃に昇温し、更に1時間反応させた。反応終了後の樹脂液をベントタイプスクリュー式押出機に投入し、揮発分を除去してペレット状のスチレン-マレイミド系共重合体A-6を得た。
[Experiment A-6]
An autoclave having a volume of about 25 liters equipped with a stirrer was charged with 51 parts by mass of styrene, 9 parts by mass of acrylonitrile, 0.2 parts by mass of 2,4-diphenyl-4-methyl-1-pentene, and 25 parts by mass of methyl ethyl ketone. Was replaced with nitrogen gas, the temperature was raised to 92 ° C., and 40 parts by mass of N-phenylmaleimide and 0.18 parts by mass of t-butylperoxy-2-ethylhexanoate were dissolved in 100 parts by mass of methyl ethyl ketone. The solution was added continuously over 7 hours. After the addition, 0.03 part by mass of t-butylperoxy-2-ethylhexanoate was further added, the temperature was raised to 120 ° C., and the mixture was further reacted for 1 hour. The resin solution after completion of the reaction was charged into a vent type screw type extruder to remove volatile components, thereby obtaining pellet-shaped styrene-maleimide copolymer A-6.
[実験例A-7]
攪拌機を備えた容積約25リットルのオートクレーブ中にスチレン65質量部、無水マレイン酸7質量部、2,4-ジフェニル-4-メチル-1-ペンテン0.2質量部、メチルエチルケトン25質量部を仕込み、系内を窒素ガスで置換した後、温度を92度に昇温し、マレイン酸無水物を28質量部とt-ブチルパーオキシ-2-エチルヘキサノエート0.18質量部をメチルエチルケトン100質量部に溶解した溶液を7時間かけて連続的に添加した。添加後、さらにt-ブチルパーオキシ-2-エチルヘキサノエート0.03質量部を添加して120℃に昇温し、更に1時間反応させてスチレン-無水マレイン酸共重合体を得た。その後、粘稠な樹脂液にシクロヘキシルアミン32質量部、トリエチルアミン0.6質量部を加え140℃で7時間反応させた。反応終了後のイミド化反応液をベントタイプスクリュー式押出機に投入し、揮発分を除去してペレット状のスチレン-マレイミド系共重合体A-7を得た。
[Experiment A-7]
In an autoclave having a volume of about 25 liters equipped with a stirrer, 65 parts by mass of styrene, 7 parts by mass of maleic anhydride, 0.2 part by mass of 2,4-diphenyl-4-methyl-1-pentene, and 25 parts by mass of methyl ethyl ketone were charged. After replacing the system with nitrogen gas, the temperature was raised to 92 ° C., 28 parts by mass of maleic anhydride and 0.18 parts by mass of t-butylperoxy-2-ethylhexanoate were added to 100 parts by mass of methyl ethyl ketone. The solution dissolved in was continuously added over 7 hours. After the addition, 0.03 part by mass of t-butylperoxy-2-ethylhexanoate was further added, the temperature was raised to 120 ° C., and the mixture was further reacted for 1 hour to obtain a styrene-maleic anhydride copolymer. Thereafter, 32 parts by mass of cyclohexylamine and 0.6 part by mass of triethylamine were added to the viscous resin solution and reacted at 140 ° C. for 7 hours. After the completion of the reaction, the imidization reaction liquid was charged into a vent type screw type extruder to remove volatile matter, thereby obtaining pellet-shaped styrene-maleimide copolymer A-7.
[実験例A-8]
攪拌機を備えた容積約25リットルのオートクレーブ中にスチレン60質量部、無水マレイン酸8質量部、2,4-ジフェニル-4-メチル-1-ペンテン0.2質量部、メチルエチルケトン25質量部を仕込み、系内を窒素ガスで置換した後、温度を92度に昇温し、マレイン酸無水物を32質量部とt-ブチルパーオキシ-2-エチルヘキサノエート0.18質量部をメチルエチルケトン100質量部に溶解した溶液を7時間かけて連続的に添加した。添加後、さらにt-ブチルパーオキシ-2-エチルヘキサノエート0.03質量部を添加して120℃に昇温し、更に1時間反応させてスチレン-無水マレイン酸共重合体を得た。その後、粘稠な樹脂液にアニリン37質量部、トリエチルアミン0.6質量部を加え140℃で7時間反応させた。反応終了後のイミド化反応液をベントタイプスクリュー式押出機に投入し、揮発分を除去してペレット状のスチレン-マレイミド系共重合体A-8を得た。
[Experiment A-8]
An autoclave having a volume of about 25 liters equipped with a stirrer was charged with 60 parts by mass of styrene, 8 parts by mass of maleic anhydride, 0.2 parts by mass of 2,4-diphenyl-4-methyl-1-pentene, and 25 parts by mass of methyl ethyl ketone. After replacing the system with nitrogen gas, the temperature was raised to 92 ° C., 32 parts by weight of maleic anhydride and 0.18 parts by weight of t-butylperoxy-2-ethylhexanoate were added to 100 parts by weight of methyl ethyl ketone. The solution dissolved in was continuously added over 7 hours. After the addition, 0.03 part by mass of t-butylperoxy-2-ethylhexanoate was further added, the temperature was raised to 120 ° C., and the mixture was further reacted for 1 hour to obtain a styrene-maleic anhydride copolymer. Thereafter, 37 parts by mass of aniline and 0.6 parts by mass of triethylamine were added to the viscous resin solution and reacted at 140 ° C. for 7 hours. After the completion of the reaction, the imidization reaction liquid was put into a vent type screw type extruder to remove volatile matter, thereby obtaining pellet-shaped styrene-maleimide copolymer A-8.
[実験例A-9]
攪拌機を備えた容積約25リットルのオートクレーブ中にスチレン65質量部、2、4-ジフェニル-4-メチル-1-ペンテン0.3質量部、メチルエチルケトン25質量部を仕込み、系内を窒素ガスで置換した後、温度を92℃に昇温し、マレイン酸無水物35質量部とt-ブチルパーオキシ-2-エチルヘキサノエート0.18質量部をメチルエチルケトン100部に溶解した溶液を8時間かけて連続的に添加した。添加後、さらにt-ブチルパーオキシ-2-エチルヘキサノエート0.03質量部を添加して120℃に昇温し、更に1時間反応させてスチレン-無水マレイン酸共重合体を得た。その後、粘稠な樹脂液にアニリン32質量部、トリエチルアミン0.6質量部を加え140℃で7時間反応させた。反応終了後のイミド化反応液をベントタイプスクリュー式押出機に投入し、揮発分を除去してペレット状のスチレン-マレイミド系共重合体A-9を得た。
上記実験例A-1~A-9の分析結果を表1に示す。
[Experiment A-9]
65 parts by mass of styrene, 0.3 part by mass of 2,4-diphenyl-4-methyl-1-pentene and 25 parts by mass of methyl ethyl ketone are charged into an autoclave having a volume of about 25 liters equipped with a stirrer, and the inside of the system is replaced with nitrogen gas. Then, the temperature was raised to 92 ° C., and a solution of 35 parts by weight of maleic anhydride and 0.18 parts by weight of t-butylperoxy-2-ethylhexanoate in 100 parts of methyl ethyl ketone was added over 8 hours. Added continuously. After the addition, 0.03 part by mass of t-butylperoxy-2-ethylhexanoate was further added, the temperature was raised to 120 ° C., and the mixture was further reacted for 1 hour to obtain a styrene-maleic anhydride copolymer. Thereafter, 32 parts by mass of aniline and 0.6 parts by mass of triethylamine were added to the viscous resin solution and reacted at 140 ° C. for 7 hours. After the completion of the reaction, the imidization reaction liquid was put into a vent type screw type extruder, and volatile components were removed to obtain a pellet-shaped styrene-maleimide copolymer A-9.
The analysis results of Experimental Examples A-1 to A-9 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実験例B-1]
撹拌機を付した容積約20リットルの完全混合型反応器、予熱器を付した脱揮槽を接続して構成した。スチレン85質量部、アクリロニトリル15質量部、エチルベンゼン15質量部で構成される単量体混合液を調整し、さらにt-ブチルパーオキシイソプロピルモノカーボネート0.015質量部とn-ドデシルメルカプタン0.013質量部を混合し原料溶液とした。この原料溶液を毎時5kgで温度120℃に制御した完全混合型反応器に導入した。なお、完全混合型反応器の撹拌数は180rpmで実施した。次いで完全混合型反応器より反応液を連続的に抜き出し、この反応液を予熱器で加温しながら、温度235℃で圧力1.0kPaに制御した脱揮槽に導入し、未反応単量体等の揮発分を除去した。この樹脂液をギアポンプで抜き出し、ストランド状に押出し切断することによりペレット形状の重合体B-1を得た。
[Experiment B-1]
A complete mixing type reactor having a volume of about 20 liters equipped with a stirrer and a devolatilizing tank equipped with a preheater were connected. A monomer mixture composed of 85 parts by mass of styrene, 15 parts by mass of acrylonitrile, and 15 parts by mass of ethylbenzene was prepared, and 0.015 parts by mass of t-butylperoxyisopropyl monocarbonate and 0.013 parts by mass of n-dodecyl mercaptan. Parts were mixed to obtain a raw material solution. This raw material solution was introduced into a fully mixed reactor controlled at a temperature of 120 ° C. at 5 kg / hour. In addition, the stirring number of the complete mixing type reactor was 180 rpm. Next, the reaction solution was continuously withdrawn from the complete mixing reactor, and the reaction solution was introduced into a devolatilization tank controlled at a temperature of 235 ° C. and a pressure of 1.0 kPa while being heated by a preheater. And other volatiles were removed. The resin liquid was extracted with a gear pump and extruded into a strand shape to obtain a pellet-shaped polymer B-1.
[実験例B-2]
撹拌機を付した容積約20リットルの完全混合型反応器、予熱器を付した脱揮槽を接続して構成した。スチレン73.6質量部、アクリロニトリル26.4質量部、エチルベンゼン20質量部で構成される単量体混合液を調整し、さらにt-ブチルパーオキシイソプロピルモノカーボネート0.015質量部とn-ドデシルメルカプタン0.013質量部を混合し原料溶液とした。この原料溶液を毎時5kgで温度120℃に制御した完全混合型反応器に導入した。なお、完全混合型反応器の撹拌数は180rpmで実施した。次いで完全混合型反応器より反応液を連続的に抜き出し、この反応液を予熱器で加温しながら、温度235℃で圧力1.0kPaに制御した脱揮槽に導入し、未反応単量体等の揮発分を除去した。この樹脂液をギアポンプで抜き出し、ストランド状に押出し切断することによりペレット形状の重合体B-2を得た。
[Experiment B-2]
A complete mixing type reactor having a volume of about 20 liters equipped with a stirrer and a devolatilizing tank equipped with a preheater were connected. A monomer mixture composed of 73.6 parts by mass of styrene, 26.4 parts by mass of acrylonitrile and 20 parts by mass of ethylbenzene was prepared, and 0.015 part by mass of t-butylperoxyisopropyl monocarbonate and n-dodecyl mercaptan were further prepared. 0.013 mass part was mixed and it was set as the raw material solution. This raw material solution was introduced into a fully mixed reactor controlled at a temperature of 120 ° C. at 5 kg / hour. In addition, the stirring number of the complete mixing type reactor was 180 rpm. Next, the reaction solution was continuously withdrawn from the complete mixing reactor, and the reaction solution was introduced into a devolatilization tank controlled at a temperature of 235 ° C. and a pressure of 1.0 kPa while being heated by a preheater. And other volatiles were removed. The resin liquid was extracted with a gear pump and extruded into a strand shape to obtain a pellet-shaped polymer B-2.
[実験例B-3]
撹拌機を付した容積約20リットルの完全混合型反応器、予熱器を付した脱揮槽を接続して構成した。スチレン69質量部、アクリロニトリル31質量部、エチルベンゼン18質量部で構成される単量体混合液を調整し、さらにt-ブチルパーオキシイソプロピルモノカーボネート0.015質量部とn-ドデシルメルカプタン0.013質量部を混合し原料溶液とした。この原料溶液を毎時5kgで温度120℃に制御した完全混合型反応器に導入した。なお、完全混合型反応器の撹拌数は180rpmで実施した。次いで完全混合型反応器より反応液を連続的に抜き出し、この反応液を予熱器で加温しながら、温度235℃で圧力1.0kPaに制御した脱揮槽に導入し、未反応単量体等の揮発分を除去した。この樹脂液をギアポンプで抜き出し、ストランド状に押出し切断することによりペレット形状の重合体B-3を得た。
[Experiment B-3]
A complete mixing type reactor having a volume of about 20 liters equipped with a stirrer and a devolatilizing tank equipped with a preheater were connected. A monomer mixed solution composed of 69 parts by mass of styrene, 31 parts by mass of acrylonitrile and 18 parts by mass of ethylbenzene was prepared, and 0.015 parts by mass of t-butylperoxyisopropyl monocarbonate and 0.013 parts by mass of n-dodecyl mercaptan. Parts were mixed to obtain a raw material solution. This raw material solution was introduced into a fully mixed reactor controlled at a temperature of 120 ° C. at 5 kg / hour. In addition, the stirring number of the complete mixing type reactor was 180 rpm. Next, the reaction solution was continuously withdrawn from the complete mixing reactor, and the reaction solution was introduced into a devolatilization tank controlled at a temperature of 235 ° C. and a pressure of 1.0 kPa while being heated by a preheater. And other volatiles were removed. The resin liquid was extracted with a gear pump and extruded into a strand shape to obtain a pellet-shaped polymer B-3.
[実験例B-4]
撹拌機を付した容積約20リットルの完全混合型反応器、予熱器を付した脱揮槽を接続して構成した。スチレン56.1質量部、α-メチルスチレン17.5質量部、アクリロニトリル26.4質量部、エチルベンゼン18質量部で構成される単量体混合液を調整し、さらにt-ブチルパーオキシイソプロピルモノカーボネート0.015質量部とn-ドデシルメルカプタン0.013質量部を混合し原料溶液とした。この原料溶液を毎時5kgで温度120℃に制御した完全混合型反応器に導入した。なお、完全混合型反応器の撹拌数は180rpmで実施した。次いで完全混合型反応器より反応液を連続的に抜き出し、この反応液を予熱器で加温しながら、温度235℃で圧力1.0kPaに制御した脱揮槽に導入し、未反応単量体等の揮発分を除去した。この樹脂液をギアポンプで抜き出し、ストランド状に押出し切断することによりペレット形状の重合体B-4を得た。
[Experiment B-4]
A complete mixing type reactor having a volume of about 20 liters equipped with a stirrer and a devolatilizing tank equipped with a preheater were connected. A monomer mixture composed of 56.1 parts by weight of styrene, 17.5 parts by weight of α-methylstyrene, 26.4 parts by weight of acrylonitrile, and 18 parts by weight of ethylbenzene was prepared, and t-butylperoxyisopropyl monocarbonate was further prepared. 0.015 part by mass and 0.013 part by mass of n-dodecyl mercaptan were mixed to obtain a raw material solution. This raw material solution was introduced into a fully mixed reactor controlled at a temperature of 120 ° C. at 5 kg / hour. In addition, the stirring number of the complete mixing type reactor was 180 rpm. Next, the reaction solution was continuously withdrawn from the complete mixing reactor, and the reaction solution was introduced into a devolatilization tank controlled at a temperature of 235 ° C. and a pressure of 1.0 kPa while being heated by a preheater. And other volatiles were removed. The resin liquid was extracted with a gear pump and extruded into a strand shape to obtain a pellet-shaped polymer B-4.
[実験例B-5]
撹拌機を付した容積約20リットルの完全混合型反応器、予熱器を付した脱揮槽を接続して構成した。スチレン91.8質量部、アクリロニトリル9.2質量部、エチルベンゼン18質量部で構成される単量体混合液を調整し、さらにt-ブチルパーオキシイソプロピルモノカーボネート0.015質量部とn-ドデシルメルカプタン0.013質量部を混合し原料溶液とした。この原料溶液を毎時5kgで温度120℃に制御した完全混合型反応器に導入した。なお、完全混合型反応器の撹拌数は180rpmで実施した。次いで完全混合型反応器より反応液を連続的に抜き出し、この反応液を予熱器で加温しながら、温度235℃で圧力1.0kPaに制御した脱揮槽に導入し、未反応単量体等の揮発分を除去した。この樹脂液をギアポンプで抜き出し、ストランド状に押出し切断することによりペレット形状の重合体B-5を得た。
[Experiment B-5]
A complete mixing type reactor having a volume of about 20 liters equipped with a stirrer and a devolatilizing tank equipped with a preheater were connected. A monomer mixture composed of 91.8 parts by mass of styrene, 9.2 parts by mass of acrylonitrile, and 18 parts by mass of ethylbenzene was prepared, and 0.015 parts by mass of t-butylperoxyisopropyl monocarbonate and n-dodecyl mercaptan were further prepared. 0.013 mass part was mixed and it was set as the raw material solution. This raw material solution was introduced into a fully mixed reactor controlled at a temperature of 120 ° C. at 5 kg / hour. In addition, the stirring number of the complete mixing type reactor was 180 rpm. Next, the reaction solution was continuously withdrawn from the complete mixing reactor, and the reaction solution was introduced into a devolatilization tank controlled at a temperature of 235 ° C. and a pressure of 1.0 kPa while being heated by a preheater. And other volatiles were removed. The resin liquid was extracted with a gear pump and extruded into a strand shape to obtain a pellet-shaped polymer B-5.
[実験例B-6]
撹拌機を付した容積約20リットルの完全混合型反応器、予熱器を付した脱揮槽を接続して構成した。スチレン60.5質量部、アクリロニトリル39.5質量部、エチルベンゼン18質量部で構成される単量体混合液を調整し、さらにt-ブチルパーオキシイソプロピルモノカーボネート0.015質量部とn-ドデシルメルカプタン0.013質量部を混合し原料溶液とした。この原料溶液を毎時5kgで温度120℃に制御した完全混合型反応器に導入した。なお、完全混合型反応器の撹拌数は180rpmで実施した。次いで完全混合型反応器より反応液を連続的に抜き出し、この反応液を予熱器で加温しながら、温度235℃で圧力1.0kPaに制御した脱揮槽に導入し、未反応単量体等の揮発分を除去した。この樹脂液をギアポンプで抜き出し、ストランド状に押出し切断することによりペレット形状の重合体B-6を得た。
上記実験例B-1~B-6の分析結果を表2に示す。
[Experiment B-6]
A complete mixing type reactor having a volume of about 20 liters equipped with a stirrer and a devolatilizing tank equipped with a preheater were connected. A monomer mixture composed of 60.5 parts by mass of styrene, 39.5 parts by mass of acrylonitrile, and 18 parts by mass of ethylbenzene was prepared, and 0.015 parts by mass of t-butylperoxyisopropyl monocarbonate and n-dodecyl mercaptan were further prepared. 0.013 mass part was mixed and it was set as the raw material solution. This raw material solution was introduced into a fully mixed reactor controlled at a temperature of 120 ° C. at 5 kg / hour. In addition, the stirring number of the complete mixing type reactor was 180 rpm. Next, the reaction solution was continuously withdrawn from the complete mixing reactor, and the reaction solution was introduced into a devolatilization tank controlled at a temperature of 235 ° C. and a pressure of 1.0 kPa while being heated by a preheater. And other volatiles were removed. The resin liquid was extracted with a gear pump and extruded into a strand shape to obtain a pellet-shaped polymer B-6.
Table 2 shows the analysis results of Experimental Examples B-1 to B-6.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
各分析値の測定方法は以下の通りである。
(1)スチレン-マレイミド系共重合体の構成単位
下記記載の測定条件でNMRを測定し、イミド基のカルボニル炭素の積分値と未反応ジカルボン酸無水物基及びイミド化反応中間体のマレアミド酸中間体のカルボニル炭素の積分値の比等からスチレン-マレイミド系共重合体の構成単位を求めた。
  装置名 :AVANCE-300(BRUKER社製)
  測定核種:C13
  温度  :110℃
  濃度  :10質量%
  溶媒  :DMSO-d6
  積算回数:1万回
The measuring method of each analytical value is as follows.
(1) Constituent unit of styrene-maleimide copolymer NMR was measured under the following measurement conditions, and the integrated value of carbonyl carbon of imide group, unreacted dicarboxylic anhydride group, and maleamic acid intermediate of imidation reaction intermediate The structural unit of the styrene-maleimide copolymer was determined from the ratio of the integrated value of the carbonyl carbon of the product.
Device name: AVANCE-300 (manufactured by BRUKER)
Measurement nuclide: C13
Temperature: 110 ° C
Concentration: 10% by mass
Solvent: DMSO-d6
Integration count: 10,000 times
(2)残存マレイミド系単量体量
  装置名:GC-2010(島津製作所製)
  カラム:キャピラリーカラム DB-5MS(フェニルアレンポリマー)
  温度 :注入口280℃、検出器280℃
      カラム温度80℃(初期)で昇温分析を行う。
      (昇温分析条件)   80℃;ホールド12分
             80~280℃;20℃/分で昇温10分
                280℃;ホールド10分
  検出器:FID
  手順 :試料0.5gをウンデカン(内部標準物質)入り1,2-ジクロロエタン溶液(0.014g/L)5mlに溶解させる。その後、n-ヘキサン5mlを加えて振とう器で10~15分間振とうし、析出させる。ポリマーを析出・沈殿させた状態で上澄み液のみをGCに注入する。得られたマレイミド系単量体のピーク面積から、内部標準物質より求めた係数を用いて、定量値を算出する。
(2) Residual maleimide monomer content Device name: GC-2010 (manufactured by Shimadzu Corporation)
Column: Capillary column DB-5MS (phenyl allene polymer)
Temperature: injection port 280 ° C, detector 280 ° C
Temperature rise analysis is performed at a column temperature of 80 ° C. (initial stage).
(Temperature analysis conditions) 80 ° C .; hold 12 minutes 80 to 280 ° C .; raise temperature at 20 ° C./minute 10 minutes 280 ° C .; hold 10 minutes Detector: FID
Procedure: 0.5 g of sample is dissolved in 5 ml of 1,2-dichloroethane solution (0.014 g / L) containing undecane (internal standard substance). Thereafter, 5 ml of n-hexane is added and shaken with a shaker for 10 to 15 minutes to precipitate. Only the supernatant liquid is injected into the GC with the polymer precipitated and precipitated. A quantitative value is calculated from the peak area of the obtained maleimide monomer using a coefficient determined from an internal standard substance.
(3)黄色度
  装置名:SZ-IIΣ80 測色色差計(日本電色社製)
  手順 :試料1gを25mlのテトラヒドロフランに溶解させる。溶解後、測定用の角セルに移す。透過法によりテトラヒドロフラン溶液の角セルをブランクとして色差を求め、その値を黄色度とした。
(3) Yellowness Device name: SZ-IIΣ80 Colorimetric color difference meter (Nippon Denshoku Co., Ltd.)
Procedure: 1 g of sample is dissolved in 25 ml of tetrahydrofuran. After dissolution, transfer to a square cell for measurement. The color difference was determined by the permeation method using a square cell of the tetrahydrofuran solution as a blank, and the value was defined as yellowness.
(4)スチレン-アクリロニトリル系共重合体の構成単位
下記記載のケルダール法により、アクリロニトリル系共重合体の構成単位を求めた。
  手順 :試料0.3gを硫酸20mlに溶解させ、硫酸カリウム、硫酸銅をそれぞれ4.5g、0.5gを加え350~400℃で加熱分解させる。室温まで冷却した後、40%水酸化ナトリウムを加え、1/10N硫酸溶液にて滴定を実施し、窒素分を算出しスチレン-アクリロニトリル共重合体の構成単位を求めた。
(4) Constituent Unit of Styrene-Acrylonitrile Copolymer A constituent unit of acrylonitrile copolymer was determined by the Kjeldahl method described below.
Procedure: Dissolve 0.3 g of sample in 20 ml of sulfuric acid, add 4.5 g and 0.5 g of potassium sulfate and copper sulfate, respectively, and heat decompose at 350-400 ° C. After cooling to room temperature, 40% sodium hydroxide was added, titration was performed with a 1 / 10N sulfuric acid solution, the nitrogen content was calculated, and the structural unit of the styrene-acrylonitrile copolymer was determined.
[実施例1~9及び比較例1~8]
実験例で製造したスチレン-マレイミド系共重合体(A)とスチレン-アクリロニトリル系共重合体(B)を、表3~表4で示した割合(質量%)でヘンシェルミキサーを用いて混合した後、二軸押出機(東芝機械(株)社製 TEM-35B、L/D=32)を用い、シリンダー温度260℃、フィード量20kg/時、スクリュー回転数250rpmの条件にて溶融混練してペレット化し、光学成形体用樹脂組成物を得た。なお、樹脂温度はどれも270~310℃の範囲であった。
[Examples 1 to 9 and Comparative Examples 1 to 8]
After mixing the styrene-maleimide copolymer (A) and the styrene-acrylonitrile copolymer (B) produced in the experimental example at a ratio (mass%) shown in Tables 3 to 4, using a Henschel mixer. Using a twin screw extruder (TEM-35B, manufactured by Toshiba Machine Co., Ltd., L / D = 32), the mixture was melt-kneaded and pelletized under the conditions of a cylinder temperature of 260 ° C., a feed rate of 20 kg / hour, and a screw rotation speed of 250 rpm. To obtain a resin composition for optical molded bodies. The resin temperature was in the range of 270 to 310 ° C.
光学成形体用樹脂組成物を、Tダイを付したフィルム押出成形機を用いシリンダー温度240℃、ダイ温度240℃で、厚さ100μmのフィルムを押し出し、ロールに巻き取った。
得られたフィルムを、テンター横延伸機を用い、Tg+20℃で1.8倍に一軸延伸し、延伸された光学フィルムを得た。得られたフィルムの測定結果を表3~表4に示した。
The resin composition for optical molded bodies was extruded on a roll by extruding a film having a thickness of 100 μm at a cylinder temperature of 240 ° C. and a die temperature of 240 ° C. using a film extruder equipped with a T die.
The obtained film was uniaxially stretched 1.8 times at Tg + 20 ° C. using a tenter transverse stretching machine to obtain a stretched optical film. The measurement results of the obtained film are shown in Tables 3 to 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
各評価の測定方法は下記の通りである。
(1)色相;YI値
色相;YI値は、射出成形機(東芝機械社製IS-50EP)を用いて、シリンダー温度260℃、金型温度60℃にて成形した2mmtプレートを成形し、JIS K7105に基づき、色差計(日本電色工業社製SZ-IIΣ80)を用いて測定した。色相;YI値が12.0以下であるものを色相について合格とした。
(2)ヘーズ
ASTM D1003に基づき、ヘーズメーター(日本電色工業社製NDH-1001DP型)を用いて厚み100μmの未延伸フィルムのヘーズ(単位:%)を測定した。ヘーズの値が1.0%以下であるものを未延伸フィルムの透明性について合格とした。
(3)ガラス転移温度
ガラス転移温度は、下記の測定条件で示差走査熱量測定(DSC)にて測定した。
  測定機 :Robot DSC6200(セイコーインスツルメンツ社製)
  昇温速度:10℃/分
ガラス転移温度が110℃以上であるものを耐熱性について合格とした。
(4)メルトマスフローレイト(MFR)
JIS K7210に基づき、温度200℃、荷重49Nでメルトマスフローレイト(MFR)を測定した。MFRが0.1~3(g/10分)を流動性について合格とした。
(5)位相差発現性
位相差測定装置(王子計測社製KOBRA-WR)を用いて延伸フィルムのリタデーション(以下「Re」,単位:μm)を測定し、300nm以上を合格とした。また、位相差顕微鏡で観察することで、配向複屈折の符号は、実施例と比較例中の全てのサンプルが負であることを確認した。
The measuring method of each evaluation is as follows.
(1) Hue; YI value Hue; YI value was determined by molding a 2mmt plate molded at a cylinder temperature of 260 ° C and a mold temperature of 60 ° C using an injection molding machine (IS-50EP manufactured by Toshiba Machine Co., Ltd.). Based on K7105, measurement was performed using a color difference meter (Nippon Denshoku Industries Co., Ltd. SZ-IIΣ80). Hue: A sample having a YI value of 12.0 or less was considered acceptable.
(2) Haze (unit:%) of an unstretched film having a thickness of 100 μm was measured using a haze meter (NDH-1001DP type, manufactured by Nippon Denshoku Industries Co., Ltd.) based on haze ASTM D1003. A film having a haze value of 1.0% or less was regarded as acceptable for the transparency of the unstretched film.
(3) Glass transition temperature The glass transition temperature was measured by differential scanning calorimetry (DSC) under the following measurement conditions.
Measuring instrument: Robot DSC6200 (manufactured by Seiko Instruments Inc.)
Rate of temperature increase: 10 ° C./min A glass transition temperature of 110 ° C. or higher was regarded as acceptable for heat resistance.
(4) Melt mass flow rate (MFR)
Based on JIS K7210, melt mass flow rate (MFR) was measured at a temperature of 200 ° C. and a load of 49 N. An MFR of 0.1-3 (g / 10 min) was considered acceptable for fluidity.
(5) Retardation of retardation of the stretched film (hereinafter “Re”, unit: μm) was measured using a phase difference measuring device (KOBRA-WR manufactured by Oji Scientific Co., Ltd.), and 300 nm or more was regarded as acceptable. Moreover, by observing with a phase-contrast microscope, it confirmed that the sign of orientation birefringence was negative in all the samples in an Example and a comparative example.
<結果の考察>
上記の表3、4の結果から、以下のことがわかる。
すなわち、実施例1~9の光学成形体用樹脂組成物は、スチレン-マレイミド系共重合体中の残存マレイミド単量体量が300ppm以下であることから色相;YI値が小さく、色相の優れた光学成形体である。
さらに、透明性、耐熱性に優れ、位相差発現性も良好で負の配向複屈折性を示すため、位相差フィルムに最適な特性を備えていることがわかる。
<Consideration of results>
From the results of Tables 3 and 4 above, the following can be understood.
That is, the resin compositions for optical molded bodies of Examples 1 to 9 have a hue; small YI value and excellent hue because the amount of residual maleimide monomer in the styrene-maleimide copolymer is 300 ppm or less. An optical molded body.
Furthermore, since it is excellent in transparency and heat resistance, has good retardation development, and exhibits negative orientation birefringence, it can be seen that the retardation film has optimum characteristics.
一方、比較例1~8の光学成形体用樹脂組成物は、色相、透明性、耐熱性のいずれかにおいて、光学フィルムとして良好な値を示さなかった。 On the other hand, the resin compositions for optical molded bodies of Comparative Examples 1 to 8 did not show good values as optical films in any of hue, transparency and heat resistance.
以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲内にあることは当業者に理解されるところである。 In the above, this invention was demonstrated based on the Example. It should be understood by those skilled in the art that this embodiment is merely an example, and that various modifications are possible and that such modifications are also within the scope of the present invention.
本発明の光学成形体用樹脂組成物および光学成形体は、色相、透明性、耐熱性が良好であり、薄型液晶表示素子用の光学フィルムに有用であり、特に、延伸して配向させたフィルムが負の配向複屈折性を示すため、位相差フィルムに有用である。 The resin composition for an optical molded body and the optical molded body of the present invention have good hue, transparency and heat resistance, and are useful for optical films for thin liquid crystal display elements, in particular, stretched and oriented films. Is negatively oriented birefringence and is useful for retardation films.

Claims (8)

  1. (i)スチレン系単量体単位45~70質量%、マレイミド系単量体単位30~55質量%、および不飽和ジカルボン酸無水物単量体単位0~5質量%を含み、かつ残存マレイミド系単量体量が300ppm以下であるスチレン-マレイミド系共重合体(A)20~50質量%と、
    (ii)スチレン系単量体単位70~84質量%、アクリロニトリル系単量体単位16~30質量%を含むスチレン-アクリロニトリル系共重合体(B)50~80質量%と
    を含有してなる光学成形体用樹脂組成物。
    (I) 45 to 70% by mass of a styrene monomer unit, 30 to 55% by mass of a maleimide monomer unit, and 0 to 5% by mass of an unsaturated dicarboxylic acid anhydride monomer unit, and a residual maleimide system 20 to 50% by mass of a styrene-maleimide copolymer (A) having a monomer amount of 300 ppm or less,
    (Ii) an optical system comprising 70 to 84% by mass of a styrene monomer unit and 50 to 80% by mass of a styrene-acrylonitrile copolymer (B) containing 16 to 30% by mass of an acrylonitrile monomer unit. Resin composition for molded bodies.
  2. スチレン-マレイミド系共重合体(A)が、スチレン系単量体全量と、不飽和ジカルボン酸無水物の仕込み量の一部とを主体とする混合液に、不飽和ジカルボン酸無水物の仕込み量の残りを分割または連続的に添加しながら重合させて得たスチレン-不飽和ジカルボン酸無水物系共重合体を、第1級アミンでイミド化することにより得られることを特徴とする請求項1記載の光学成形体用樹脂組成物。 Charge amount of unsaturated dicarboxylic acid anhydride to a mixed liquid mainly composed of styrene-maleimide copolymer (A) and a part of the charged amount of unsaturated dicarboxylic acid anhydride. 2. A styrene-unsaturated dicarboxylic acid anhydride copolymer obtained by polymerization while adding the remainder of the monomer separately or continuously, and obtained by imidizing with a primary amine. The resin composition for optical molded bodies as described.
  3. スチレン-不飽和ジカルボン酸無水物系共重合体が、非重合性溶剤中で溶液重合により得られることを特徴とする請求項2記載の光学成形体用樹脂組成物。 3. The resin composition for an optical molded article according to claim 2, wherein the styrene-unsaturated dicarboxylic acid anhydride copolymer is obtained by solution polymerization in a non-polymerizable solvent.
  4. スチレン-アクリロニトリル系共重合体(B)が塊状重合もしくは溶液重合により得られることを特徴とする請求項1~3のいずれか1項に記載の光学成形体用樹脂組成物。 The resin composition for an optical molded article according to any one of claims 1 to 3, wherein the styrene-acrylonitrile copolymer (B) is obtained by bulk polymerization or solution polymerization.
  5. 請求項1~4のいずれか1項に記載の光学成形体用樹脂組成物からなる光学成形体。 An optical molded body comprising the resin composition for optical molded bodies according to any one of claims 1 to 4.
  6. 溶融押出フィルムであることを特徴とする請求項5記載の光学成形体。 6. The optical molded body according to claim 5, which is a melt-extruded film.
  7. 延伸フィルムであることを特徴とする請求項6記載の光学成形体。 It is a stretched film, The optical molded object of Claim 6 characterized by the above-mentioned.
  8. 位相差フィルムであることを特徴とする請求項7記載の光学成形体。 The optical molded body according to claim 7, which is a retardation film.
PCT/JP2010/063366 2009-08-12 2010-08-06 Resin composition for an optical molded body, and said optical molded body WO2011018993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009186945A JP2012208136A (en) 2009-08-12 2009-08-12 Resin composition for optical molded article and optical molded article thereof
JP2009-186945 2009-08-12

Publications (1)

Publication Number Publication Date
WO2011018993A1 true WO2011018993A1 (en) 2011-02-17

Family

ID=43586170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063366 WO2011018993A1 (en) 2009-08-12 2010-08-06 Resin composition for an optical molded body, and said optical molded body

Country Status (3)

Country Link
JP (1) JP2012208136A (en)
TW (1) TW201120121A (en)
WO (1) WO2011018993A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883169A (en) * 2011-07-11 2013-01-16 晨星软件研发(深圳)有限公司 Passive stereo image system and image processing method thereof
WO2015141340A1 (en) * 2014-03-18 2015-09-24 コニカミノルタ株式会社 Polarizing plate protective film, method for producing same, polarizing plate and liquid crystal display device
JPWO2019138996A1 (en) * 2018-01-09 2020-12-24 デンカ株式会社 Maleimide-based copolymer, method for producing the same, and resin composition using the same
CN113614129A (en) * 2019-07-10 2021-11-05 电化株式会社 Maleimide copolymer, method for producing same, resin composition, and injection molded article

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033556A1 (en) * 2013-09-04 2015-03-12 コニカミノルタ株式会社 Polarizing plate protective film, production method therefor, polarizing plate, and liquid crystal display device
WO2019235055A1 (en) 2018-06-07 2019-12-12 デンカ株式会社 Fiber for artificial hair and hair decorating product
JP2024051547A (en) * 2022-09-30 2024-04-11 日本化薬株式会社 CURABLE RESIN COMPOSITION, RESIN SHEET, AND CURED PRODUCT

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094912A (en) * 2006-10-10 2008-04-24 Denki Kagaku Kogyo Kk Resin composition and optical molded article
JP2009092847A (en) * 2007-10-05 2009-04-30 Nitto Denko Corp Liquid crystal panel and liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094912A (en) * 2006-10-10 2008-04-24 Denki Kagaku Kogyo Kk Resin composition and optical molded article
JP2009092847A (en) * 2007-10-05 2009-04-30 Nitto Denko Corp Liquid crystal panel and liquid crystal display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883169A (en) * 2011-07-11 2013-01-16 晨星软件研发(深圳)有限公司 Passive stereo image system and image processing method thereof
CN102883169B (en) * 2011-07-11 2016-01-20 晨星软件研发(深圳)有限公司 Passive type stereo image system and image treatment method thereof
WO2015141340A1 (en) * 2014-03-18 2015-09-24 コニカミノルタ株式会社 Polarizing plate protective film, method for producing same, polarizing plate and liquid crystal display device
JPWO2019138996A1 (en) * 2018-01-09 2020-12-24 デンカ株式会社 Maleimide-based copolymer, method for producing the same, and resin composition using the same
EP3738985A4 (en) * 2018-01-09 2021-02-17 Denka Company Limited Maleimide-based copolymer, method for producing same, and resin composition obtained using same
JP7191858B2 (en) 2018-01-09 2022-12-19 デンカ株式会社 Maleimide-based copolymer, method for producing the same, and resin composition using the same
US11584809B2 (en) 2018-01-09 2023-02-21 Denka Company Limited Maleimide-based copolymer, method for producing same, and resin composition obtained using same
CN113614129A (en) * 2019-07-10 2021-11-05 电化株式会社 Maleimide copolymer, method for producing same, resin composition, and injection molded article

Also Published As

Publication number Publication date
JP2012208136A (en) 2012-10-25
TW201120121A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP6055832B2 (en) Copolymer for improving heat resistance of methacrylic resin
JP5190564B2 (en) Acrylic thermoplastic resin composition and molded article thereof
JP5639480B2 (en) Maleimide copolymer, process for producing the same, and heat resistant resin composition using the same
WO2011018993A1 (en) Resin composition for an optical molded body, and said optical molded body
JP2008262182A (en) Retardation film
JP6228126B2 (en) Aromatic vinyl-vinyl cyanide resin Copolymer for improving heat resistance
JP6114459B1 (en) Methacrylic resin
JP2008094912A (en) Resin composition and optical molded article
JPWO2019138996A1 (en) Maleimide-based copolymer, method for producing the same, and resin composition using the same
TW202219155A (en) Maleimide copolymer, and chlorine-containing polymer resin composition including maleimide copolymer and chlorine-containing polymer
JP2008050536A (en) Resin composition and optical molded product
JP2018035331A (en) Methacrylic resin composition, optical film, and optical component
JPWO2016024553A1 (en) Copolymer suitable for improving heat resistance of methacrylic resin
WO2010058723A1 (en) Resin composition for optical film and optical film thereof
JP2018035225A (en) Methacrylic resin
WO2017094748A1 (en) Transparent highly heat-resistant styrene copolymer
JP6058420B2 (en) Light guide plate
JP2008268929A (en) Resin composition for optical element
JP6890126B2 (en) A resin composition and a film composed of the resin composition.
CN107960084B (en) Resin composition, resin composition for transparent parts of automobile, transparent cover for instrument panel, and hemispherical lens
JP2011169921A (en) Resin composition for optical molded article and optical molded article of the same
WO2016186121A1 (en) Transparent resin composition, and manufacturing method for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP