WO2011018926A1 - Network administration device and method for setting wavelength paths - Google Patents

Network administration device and method for setting wavelength paths Download PDF

Info

Publication number
WO2011018926A1
WO2011018926A1 PCT/JP2010/061501 JP2010061501W WO2011018926A1 WO 2011018926 A1 WO2011018926 A1 WO 2011018926A1 JP 2010061501 W JP2010061501 W JP 2010061501W WO 2011018926 A1 WO2011018926 A1 WO 2011018926A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
path
route
network
information
Prior art date
Application number
PCT/JP2010/061501
Other languages
French (fr)
Japanese (ja)
Inventor
到 西岡
有造 松本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2011018926A1 publication Critical patent/WO2011018926A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13295Wavelength multiplexing, WDM

Definitions

  • the present invention relates to a network management apparatus and a wavelength path setting method for setting a wavelength path of a wavelength network, and more particularly to a wavelength division multiplexing (WDM) network that transmits an optical signal in which a plurality of wavelength signals are multiplexed.
  • WDM wavelength division multiplexing
  • the present invention relates to a network management apparatus and a wavelength path setting method for setting a wavelength path.
  • Wavelength networks that can transmit optical signals without converting optical signals into electrical signals are attracting attention.
  • a wavelength path that connects client devices that are the start and end nodes of an optical signal is set.
  • the wavelength path is defined by the path through which the optical signal is actually transmitted and the wavelength of the optical signal transmitted through the path.
  • the wavelength path is set in advance to either a clockwise route of the ring-shaped route or a counterclockwise route of the ring-shaped route.
  • a ring network when a failure such as congestion occurs at a certain location, an optical signal cannot be transmitted avoiding the occurrence location, which may affect the entire wavelength network. For this reason, the ring network has a problem of low fault tolerance.
  • a technique capable of variably setting a wavelength path has been proposed in order to improve fault tolerance.
  • a wavelength path switching device capable of switching an optical signal output path for each wavelength is used as a relay node.
  • the wavelength network a multi-ring network in which a plurality of ring networks are connected to each other, a mesh network in which wavelength path switching devices are arranged at each intersection of a mesh-like route, or the like is used.
  • Patent Document 1 A technique capable of variably setting the above wavelength path is described in Patent Document 1, for example.
  • an optical cross-connect device is used as a wavelength path switching device.
  • the optical cross-connect device includes an optical switch capable of arbitrarily switching an optical signal output path.
  • Each optical cross-connect device detects the usage status of each of a plurality of routes connected to the own device, and notifies the detection result to the other optical cross-connect devices.
  • Each optical cross-connect device switches the output path of the optical signal according to the detection result notified by the other optical cross-connect device, so that the wavelength path is set.
  • the wavelength path can be set while avoiding the congested portion on the wavelength network, so that the fault tolerance can be improved.
  • a route restriction occurs in a route that can be selected as an output route according to the configuration of the optical switch, and a wavelength constraint occurs in a wavelength that can be used in each route according to the configuration of the optical switch. Therefore, when there is a wavelength path switching device using a small-scale optical switch, in order to set the wavelength path, it is necessary to consider the route restrictions and the wavelength restrictions.
  • Non-Patent Document 1 As a technology capable of setting a wavelength path in consideration of the above-mentioned route restrictions and wavelength restrictions, there are a communication system described in Patent Document 2 and a WSON (Wavelength Switched Optical Network) described in Non-Patent Document 1. .
  • WSON Widelength Switched Optical Network
  • a multi-ring network is used as a wavelength network.
  • an IP router is used as the client device, and a ROADM (Reconfigurable Optical Add / Drop Multiplexer) device is used as the wavelength path switching device.
  • ROADM Reconfigurable Optical Add / Drop Multiplexer
  • the ROADM device has a route connected to itself as a user-network interface (UNI) that is a route between the IP router and the ROADM device, and a network-network interface that is a route between the ROADM device and another ROADM. ) And manage them in groups.
  • UNI user-network interface
  • NNI network-network interface
  • Each ROADM device notifies other ROADM devices of link information indicating the connection relation of the route in its own device.
  • Each ROADM device sets the wavelength path by switching the output route of the optical signal based on the link information notified from the other ROADM device.
  • each ROADM device can select either the clockwise route or the counter-statistic route as the wavelength path of the ring network in the multi-ring network. .
  • each ROADM device UNI and NNI are connected to each other on a one-to-one basis. Therefore, when the input route is UNI, the routes that can be selected as the output route are the clockwise route and the counterclockwise route. It will be determined by either That is, the ROADM device has a route restriction.
  • each ROADM device adds information identifying whether the route that can be selected as the output route is a clockwise route or a counterclockwise route to the link information. Notify. Thereby, it becomes possible to set a wavelength path in consideration of a route restriction.
  • each wavelength path switching device uses link connection information called Connectivity / Matrix / sub-TLV, which shows the relationship of each set in detail for each combination of routes, to the control device. Notice.
  • Each wavelength path switching device notifies the control device of wavelength information called Wavelength / Set / Sub-TLV indicating wavelengths that can be transmitted in each path. Further, the topology information indicating the connection relationship of the wavelength path switching device is input to the control device.
  • the control device obtains the route constraint and the wavelength constraint of each wavelength path switching device based on the link connection information and the wavelength information. Then, the control device calculates a wavelength path that satisfies the obtained route constraint and wavelength constraint based on the input topology information, and sets the wavelength path. Thereby, the wavelength path can be set in consideration of the route restriction and the wavelength restriction.
  • the wavelength path route is limited to two, a clockwise route and a counterclockwise route of a ring-like route, and UNI and NNI are connected to each other on a one-to-one basis. It must be.
  • the route that can be selected as the output route is the clockwise route and the counterclockwise route. It is determined by one of the routes. For this reason, the path restrictions are the same regardless of the configuration of the optical switch in the wavelength path switching device, so the wavelength path cannot be flexibly set according to the configuration of the optical switch. There's a problem.
  • each wavelength path switching device is notified of link connection information indicating the relationship of the combination in detail for each combination of routes, and the route is determined based on the link connection information. Constraints are required. When the number of routes is large, the number of combinations of routes is very large compared to the number of routes, so there is a problem that the amount of information of link connection information becomes enormous.
  • Patent Document 2 and Non-Patent Document 1 have a problem that when the number of paths is large, the amount of information for flexibly setting the wavelength path according to the configuration of the optical switch is enormous.
  • Non-Patent Document 1 since the WSON described in Non-Patent Document 1 does not have a mechanism for automatically detecting topology information, the topology information must be input manually. For this reason, there is a problem in that incorrect topology information is input, and as a result, an incorrect wavelength path may be set.
  • An object of the present invention is a network management apparatus that solves the problem that the amount of information for flexibly setting a wavelength path according to the configuration of an optical switch is large when the number of routes is large, It is to provide a wavelength path setting method.
  • a plurality of wavelength path switching devices capable of switching connections between optical signal paths for each wavelength of the optical signal using an optical switch are connected via a plurality of routes.
  • a network management device for setting the wavelength path of a wavelength network showing network configuration information indicating the connection relationship between each wavelength path switching device, and the connection relationship between the optical switch and each path of each wavelength path switching device.
  • the calculated wavelength path by means comprises a setting means for setting with each wavelength path switching apparatus.
  • the wavelength path setting method includes a plurality of wavelength path switching devices capable of switching connections between optical signal paths for each wavelength of the optical signal using an optical switch via the plurality of paths.
  • a wavelength path setting method based on a wavelength path setting method for setting a wavelength path of a connected wavelength network, the network configuration information indicating a connection relationship between each wavelength path switching device, and an optical switch of each wavelength path switching device
  • a configuration conversion step, a control step of calculating the wavelength path using the acquired network configuration information and the converted switchable route information, and the calculated wavelength path Includes a setting step of setting with each wavelength path switching apparatus.
  • the present invention even when the number of routes is large, it is possible to flexibly set the wavelength path according to the configuration of the optical switch with a relatively small amount of information.
  • FIG. 1 is a block diagram showing a wavelength network according to a first embodiment of the present invention.
  • the wavelength network includes a wavelength switching device 100, a packet switching device 200, and a wavelength network (NW: Network) operation device 300.
  • the wavelength network is a multi-ring network in which a plurality of ring networks having ring-shaped paths are connected to each other.
  • the wavelength network is not limited to the multi-ring network and can be changed as appropriate. is there.
  • wavelength switching devices 100 and packet switching devices 200 There are a plurality of wavelength switching devices 100 and packet switching devices 200, and these wavelength switching devices 100 and packet switching devices 200 are connected via a plurality of paths.
  • FIG. 1 eight wavelength switching devices 100 (100-1 to 100-8) and eight packet switching devices 200 are shown.
  • the wavelength switching device 100 is sometimes called a wavelength path switching device.
  • Each of the wavelength switching devices 100 has a plurality of paths that are routes connected to the own wavelength switching device.
  • the route there are a WDM line (Wavelength Division Multiplexing Line) that connects the wavelength switching devices 100 and a client line (Client Line) that connects the wavelength switching device 100 and the packet switching device 200. is there.
  • WDM line Widelength Division Multiplexing Line
  • Client Line Client Line
  • the WDM line is also called an NNI interface and transmits a wavelength multiplexed signal obtained by multiplexing a plurality of wavelength signals as an optical signal.
  • the WDM line is also called an NNI interface and transmits a wavelength multiplexed signal obtained by multiplexing a plurality of wavelength signals as an optical signal.
  • four WDM lines are connected to three wavelength switching devices 100-1, 100-4, and 100-8 of the eight wavelength switching devices 100, and other wavelength switching devices.
  • Two WDM lines are connected to 100.
  • the client line is also called a UNI interface and can transmit a wavelength signal as an optical signal. Note that there may be a plurality of client lines connected to each wavelength switching device 100.
  • the wavelength switching device 100 is a relay node that relays optical signals on the wavelength network. More specifically, when receiving an optical signal from a certain input route, the wavelength switching device 100 outputs the optical signal to an output route different from the input route.
  • the packet switching device 200 is a client device that can be a start point node and an end point node of a wavelength path, and is also a relay node of the packet network 400.
  • the packet switching device 200 can switch a packet route that is a route for a packet signal in the packet network 400.
  • the wavelength network operation device 300 is sometimes called a network management device.
  • the wavelength network operation device 300 sets the wavelength path of the wavelength network using the wavelength switching device 100.
  • a wavelength path is defined by a path through which an optical signal is actually transmitted and a wavelength of the optical signal on the path.
  • FIG. 2 is a block diagram showing an example of the configuration of the wavelength switching device 100.
  • a plurality of WDM lines 111 (more specifically, WDM lines 111-1 to 111-4) and a plurality of client lines 112 are connected to the wavelength switching device 100 shown in FIG.
  • the wavelength switching device 100 includes a wavelength switching unit 101 that transmits / receives an optical signal transmitted through the WDM line 111, an optical transmitter / receiver 102 that transmits / receives an optical signal transmitted through the client line 112, and a WDM line 111.
  • a demultiplexing / switching unit 103 that converts an optical signal to be transmitted and an optical signal transmitted through the client line 112, an internal interface 104 that is a path interposed between the wavelength switching unit 101 and the demultiplexing / switching unit 103, and each unit And an apparatus control unit 105 for controlling.
  • the internal interface 104 is divided into first to fourth route groups having a plurality of routes.
  • the wavelength switching unit 101 is connected with a route in the WDM line 111 and the internal interface 104 as a route for an optical signal.
  • the wavelength switching unit 101 receives an optical signal from an input route out of these routes, the wavelength switching unit 101 transmits the optical signal to an output route different from the input route.
  • the wavelength switching unit 101 uses a wavelength selective switch called WSS (Wavelength Selected Switch).
  • WSS Wavelength Selected Switch
  • the wavelength selective switch can switch the output path of the optical signal for each wavelength while suppressing deterioration in the quality of the optical signal.
  • the wavelength selective switch is a 1: N type (1-input multiple-output type) optical switch, the degree of freedom in switching the connection between routes is low. For this reason, the wavelength selective switch cannot select any route as the output route.
  • a route that can be selected as an output route is determined according to the input route.
  • the paths that can be connected to each other by the wavelength selective switch are the path restrictions of the wavelength switching device.
  • FIG. 3 is a block diagram showing an example of the configuration of the wavelength switching unit 101.
  • the wavelength switching unit 101 includes wavelength selective switches 121A, 121B, 122A, 122B, 123A, 123B, 124A, and 124B.
  • the wavelength selective switch 121A has a duplexer 121A.
  • the wavelength selective switch 121A is connected to the WDM line 111-1.
  • the wavelength selective switch 121A demultiplexes the wavelength multiplexed signal into a single wavelength wavelength signal using the demultiplexer 121A, and each of the demultiplexed wavelength signals. Is transmitted to either the wavelength selective switch 123B or the route in the first route group.
  • the wavelength selective switch 121B has a multiplexer 121B1.
  • the wavelength selective switch 121A is connected to the WDM line 111-1.
  • the wavelength selective switch 121B receives the wavelength signal from the wavelength selective switch 123A and the first path group, the wavelength selective switch 121B combines the wavelength signal using the multiplexer 121B and transmits it to the WDM line 111-1 as a wavelength multiplexed signal.
  • the wavelength selective switch 122A has a duplexer 122A.
  • the wavelength selective switch 121A is connected to the WDM line 111-2.
  • the wavelength selective switch 122A demultiplexes the wavelength multiplexed signal into a single wavelength wavelength signal using the demultiplexer 122A, and each of the demultiplexed wavelength signals. Is transmitted to either the wavelength selective switch 124B or the route in the second route group.
  • the wavelength selective switch 122B has a multiplexer 122B1.
  • the wavelength selective switch 121A is connected to the WDM line 111-2.
  • the wavelength selective switch 122B receives the wavelength signal from the wavelength selective switch 124A and the second path group, the wavelength selective switch 122B multiplexes the wavelength signal using the multiplexer 122B and transmits it to the WDM line 111-2 as a wavelength multiplexed signal.
  • the wavelength selective switch 123A has a duplexer 123A.
  • the wavelength selective switch 121A is connected to the WDM line 111-3.
  • the wavelength selective switch 123A demultiplexes the wavelength multiplexed signal into a single wavelength wavelength signal using the demultiplexer 123A, and each of the demultiplexed wavelength signals. Is transmitted to either the wavelength selective switch 121B or the route in the third route group.
  • the wavelength selective switch 123B has a multiplexer 123B1.
  • the wavelength selective switch 121A is connected to the WDM line 111-3.
  • the wavelength selective switch 123B receives the wavelength signal from the wavelength selective switch 121A and the third path group, the wavelength selective switch 123B combines the wavelength signal using the multiplexer 123B and transmits it to the WDM line 111-3 as a wavelength multiplexed signal.
  • the wavelength selective switch 124A has a duplexer 124A.
  • the wavelength selective switch 121A is connected to the WDM line 111-4.
  • the wavelength selective switch 124A demultiplexes the wavelength multiplexed signal into a single wavelength wavelength signal using the demultiplexer 124A, and each of the demultiplexed wavelength signals. Is transmitted to either the wavelength selective switch 122B or the route in the fourth route group.
  • the wavelength selective switch 124B has a multiplexer 124B1.
  • the wavelength selective switch 121A is connected to the WDM line 111-4.
  • the wavelength selective switch 124B receives the wavelength signal from the wavelength selective switch 122A and the fourth path group, the wavelength selective switch 124B multiplexes the wavelength signal using the multiplexer 124B and transmits it to the WDM line 111-4 as a wavelength multiplexed signal.
  • the WDM lines 111-1 and 111-3 can be connected to the WDM line 111-1 and the route in the first route group. It becomes a way.
  • the optical transmission / reception unit 102 is an input / output port of the client line 112. There are a plurality of optical transmission / reception units 102, each of which is connected to one of the client lines 112 on a one-to-one basis.
  • the optical transmission / reception unit 102 receives a wavelength signal of a single wavelength from the client line 112 connected to itself as an optical signal, and transmits the optical signal to the demultiplexing / switching unit 103.
  • a client line 112 and an internal interface 104 are connected to the demultiplexing switching unit 103 as optical signal paths.
  • the demultiplexing switching unit 103 is connected to the client line 112 via the optical transmission / reception unit 102.
  • the demultiplexing switching unit 103 receives an optical signal from an input route out of those routes, the demultiplexing switching unit 103 transmits the optical signal to an output route different from the input route.
  • the demultiplexing switching unit 103 uses an optical filter such as an AWG (Arrayed Waveguide Grating) and an optical switch called OXC (Optical Cross-Connect).
  • the OXC is an N: N type (multiple input multiple output) optical switch.
  • the OXC may be a space coupling type optical switch or a waveguide type optical switch.
  • FIG. 4A and 4B are block diagrams illustrating an example of the configuration of the demultiplexing switching unit 103.
  • FIG. 4A shows a configuration using only one large-scale OXC
  • FIG. 4B shows a configuration using a plurality of small-scale OXCs.
  • the demultiplexing switching unit 103 includes a plurality of optical filters 131 and one OXC 132.
  • the optical filter 131 has a first input / output port and a plurality of second input / output ports.
  • the first input / output port is connected to one of the paths in the internal interface 104 on a one-to-one basis.
  • Each of the second input / output ports is connected to the OXC 132.
  • the optical filter 131 When the optical filter 131 receives an optical signal from a route in the internal interface 104, the optical filter 131 transmits the optical signal to the OXC 132 from the second input / output port corresponding to the wavelength of the optical signal. Further, when the optical filter 131 receives an optical signal from the OXC 132, the optical filter 131 transmits the optical signal from the first input / output port to the wavelength switching unit 101 via a route in the internal interface 104.
  • the OXC 132 When the OXC 132 receives the optical signal from the optical transmission / reception unit 102, the OXC 132 transmits the optical signal to the second input / output port of the optical filter 131 corresponding to the wavelength of the optical signal. Further, when the OXC 132 receives an optical signal from the optical filter 131, the OXC 132 transmits the optical signal to the optical transmission / reception unit 102 corresponding to the wavelength of the optical signal.
  • the demultiplexing switching unit 103 includes a plurality of optical filters 133 and OXCs 134 and 135. Note that the number of OXCs is only two in FIG. 4B, but may actually be two or more.
  • the optical filter 133 has a first input / output port and a plurality of second input / output ports.
  • the first input / output port is connected to one of the paths in the internal interface 104 on a one-to-one basis.
  • Each of the second input / output ports is connected to the OXC 134 or 135.
  • the optical filter 133 When the optical filter 133 receives an optical signal from a route in the internal interface 104, the optical filter 133 transmits the optical signal to the OXC 134 or 135 from the second input / output port corresponding to the wavelength of the optical signal. Further, when the optical filter 133 receives an optical signal from the OXC 134 or 135, the optical filter 133 transmits the optical signal from the first input / output port to the wavelength switching unit 101 via a route in the internal interface 104.
  • the path restriction based on the wavelength selective switch of the wavelength switching unit 101 can be solved to some extent. For example, if there is no demultiplexing / switching unit 103 and each path in the internal interface 104 is directly connected to one of the optical transmission / reception units 102, the client line that can be connected to the WDM line of the wavelength selective switch is Only the client line of the optical transmitter / receiver 102 connected to the wavelength selective switch via the internal interface 104 is provided.
  • the connection between the path in the internal interface 104 and the optical transmission / reception unit 102 can be switched by OXC.
  • the number of client lines that can be connected increases, and route restrictions are eliminated.
  • the OXC 132 is connected to all the second input / output ports of the optical filter 131 and all the optical transceivers 102. Therefore, the output route of the optical transmission / reception unit 102 is switched to an arbitrary route in the internal interface 104 by switching the output route in the OXC 132, and the optical signal from the internal interface 104 is switched. Can be switched to any optical transceiver 102.
  • each of the OXCs 134 and 135 is connected to a part of the second input / output ports of the optical filter 131 and a part of the optical transceiver 102. For this reason, even if the output route is switched by the OXCs 134 and 135, the output route of the optical signal from the optical transceiver 102 is switched to an arbitrary route in the internal interface 104, and from the internal interface 104 The output path of the optical signal cannot be switched to any optical transmission / reception unit 102.
  • the path restriction of the wavelength switching device 100 differs depending on the configuration of the optical switch (wavelength selection switch and OXC) in the wavelength switching device 100.
  • the wavelengths of optical signals that can be input / output at the second input / output ports of the optical filters 131 and 133 are determined in advance.
  • the wavelength of the optical signal that can be input / output at the second input / output port is the wavelength of the optical signal that can be used for the wavelength path.
  • the OXC 132 is connected to all the second input / output ports and all the optical transceivers 102 of each optical filter 131, so all the client lines and all the WDMs are connected.
  • the line can use any wavelength within the wavelengths available for the wavelength path.
  • the OXCs 134 and 135 are connected to a part of the second input / output ports of each of the optical filters 131 and a part of the optical transmission / reception part 102.
  • the wavelength of the optical signal that can be transmitted through the WDM line is limited. This restriction becomes the wavelength restriction of the wavelength switching device 100.
  • wavelengths ⁇ 1 to ⁇ 3 can be used in the client line connected to the OXC 134 via the optical transmission / reception unit 102, and the wavelengths ⁇ 4 and ⁇ 5 can be used in the client line connected to the OXC 135 via the optical transmission / reception unit 102. Can only be used.
  • the path restriction and the wavelength restriction in the wavelength switching device 100 differ depending on the internal configuration of the wavelength switching device 100, specifically, the configuration of the optical switch (wavelength selection switch and OXC).
  • the device control unit 105 includes device identification information that identifies the own device (wavelength switching device 100), route information that includes a plurality of route identification information that identifies each of a plurality of routes of the optical signal in the device, In-device configuration information indicating the configuration of the optical switch of the device is held.
  • the in-device configuration information includes the connection relationship with the path of the optical switch, more specifically, the path configuration information indicating the path that can be connected to each other in the optical switch for each optical switch, And vacant wavelength information indicating the wavelength of an optical signal that can be transmitted in each path in the apparatus. Therefore, the in-device configuration information indicates the connection relationship between the optical switch and each path of each wavelength switching device 100 and the wavelength of the optical signal that can be transmitted in each path.
  • the path configuration information includes, for example, information indicating a path (a path in the WDM line 111 and the internal interface 104) that can be connected by the wavelength selective switch for each wavelength selective switch in the wavelength switching unit 101; For each OXC in the demultiplexing switching unit 103, information indicating a path (internal interface 104 and client line 112) connectable by the OXC is included.
  • the device control unit 105 can switch the output path of the optical signal for each wavelength by switching the optical switch in the wavelength switching unit 101 and the demultiplexing switching unit 103.
  • FIG. 5 is a block diagram showing an example of the configuration of the wavelength network operation apparatus 300.
  • the wavelength network operation apparatus 300 includes a user I / F (interface) 301, a configuration management unit 302, a configuration conversion unit 303, a path control unit 304, and a setting unit. 305.
  • the wavelength network operation device 300 can be connected to the remote terminal 500 wirelessly or by wire.
  • the remote terminal 500 accepts various information from the wavelength network operator and inputs the accepted information to the user I / F 301.
  • User I / F 301 may be referred to as accepting means.
  • the user I / F 301 receives a setting request for setting a wavelength path from the wavelength network operator via the remote terminal 500.
  • the setting request includes determination information for determining a client line used for the wavelength path.
  • the client lines used for the wavelength path are the first client line that is the input path of the optical signal in the first wavelength switching device 100 in the wavelength path and the output path of the optical signal in the last wavelength switching device 100 in the wavelength path. Is the last client line.
  • the discrimination information includes, for example, first device identification information that identifies the first wavelength switching device 100, second device identification information that identifies the last wavelength switching device 100, and the optical transceiver 102 of the first wavelength switching device 100.
  • the first port number to be identified and the second port number to identify the optical transceiver 102 of the last wavelength switching device 100 are included.
  • the configuration management unit 302 may be called an example of a management unit.
  • the configuration management unit 302 acquires network configuration information indicating a connection relationship (wavelength network topology) between the wavelength switching devices 100 and in-device configuration information of each wavelength path switching device.
  • the configuration management unit 302 includes a configuration discovery unit 311, an NW configuration information storage unit 312, and an in-device information storage unit 313, and each unit performs the following processing.
  • the configuration discovery unit 311 acquires device identification information, route information, and in-device configuration information from each of the wavelength switching devices 100.
  • the configuration discovery unit 311 may acquire these pieces of information periodically or when the user I / F 301 receives a setting request.
  • the configuration discovery unit 311 associates the device identification information and the route information acquired from each wavelength switching device 100 to generate network configuration information.
  • the configuration discovery unit 311 acquires network configuration information indicating the connection relationship of the wavelength switching device 100.
  • the configuration discovery unit 311 stores the acquired network configuration information in the NW configuration information storage unit 312.
  • the configuration discovery unit 311 stores the device identification information acquired from each wavelength switching device 100 and the in-device configuration information in the in-device information storage unit 313 in association with each other.
  • the configuration conversion unit 303 converts the path configuration information included in the in-device configuration information stored in the in-device information storage unit 313 into a path that can be connected to the path for each path of each wavelength switching device 100. Convert to the indicated switchable route information. More specifically, the switchable route information is information indicating a route connectable to the route for each route identification information for specifying the route.
  • the configuration conversion unit 303 adds the converted switchable route information and the free wavelength information included in the in-device configuration information to the network configuration information in the NW configuration information storage unit 312.
  • FIG. 6 is an explanatory diagram showing an example of network configuration information in certain device identification information.
  • FIG. 6 shows network configuration information 600 for each of the WDM lines 111-1 to 111-4 and the client lines 112-1 to 112-4.
  • Each network configuration information 600 includes route identification information 601, switchable route information 602, and free wavelength information 603.
  • the route identification information 601 is information unique to each route, and identifies each route.
  • the path identification information 601 is represented by a bit string in which each bit indicates a different path, the bit indicating the specified path is “1”, and the other bits are “0”.
  • the switchable route information 602 indicates a route that can be connected to the route specified by the route identification information 601.
  • the switchable route information 602 is represented by a bit string similar to the route identification information 601, the bit indicating a connectable route is “1”, and the other bits are “0”.
  • Vacant wavelength information 603 indicates a vacant wavelength that is a wavelength of an optical signal that can be transmitted in each path in the device itself.
  • the free wavelength information 603 is represented by a bit string in which each bit indicates a different wavelength, the bit indicating the free wavelength is “0”, and the other bits are “1”.
  • the path control unit 304 calculates the wavelength path of the minimum cost (shortest path) using the discrimination information in the setting request received by the user I / F 301 and the network configuration information in the NW configuration information storage unit 312. Since the network configuration information includes switchable route information, topology information, and free wavelength information, the path control unit 304 is based on the discrimination information, switchable route information, topology information, and free wavelength information. Thus, the wavelength path is calculated.
  • the route control unit 304 includes a constraint conversion unit 321 and a route calculation unit 322, and each unit performs the following processing.
  • Constraint conversion unit 321 is also referred to as exclusion means.
  • the constraint conversion unit 321 specifies a route that is not connectable to each of the client lines of the wavelength path determined by the determination information as an excluded route to be excluded (excluded from the calculation of the wavelength path), and indicates the excluded route Generate initial route restriction information.
  • the constraint conversion unit 321 generates initial wavelength constraint information indicating the free wavelength of the client line determined by the determination information based on the network configuration information.
  • the wavelength paths from the wavelength switching devices 100-1 to 100-8 in FIG. 1 are calculated, and the network configuration information of the wavelength switching device 100-8 has the configuration shown in FIG. Further, the client line 112-1 is assumed to be a wavelength path client line.
  • the constraint conversion unit 321 excludes each of the WDM lines 111-2 to 41-2. As specified.
  • the constraint conversion unit 321 generates initial route constraint information indicating the WDM lines 111-2 to 114-2.
  • the constraint conversion unit 321 generates initial route constraint information for the wavelength switching device 100-8.
  • the constraint conversion unit 321 since the free wavelength information 603 of the client line 112-1 is “1111... 1110” indicating the wavelength ⁇ 1, the constraint conversion unit 321 generates initial wavelength constraint information indicating the wavelength ⁇ 1. More specifically, the constraint conversion unit 321 checks whether or not the wavelength ⁇ 1 can be used in the wavelength switching device 100-8, and if the wavelength ⁇ 1 is usable in the wavelength switching device 100-8, Initial wavelength constraint information indicating ⁇ 1 is generated.
  • the empty wavelength information 603 represents the wavelengths ⁇ 1, ⁇ 2, ⁇ 3,... In order from the least significant bit.
  • the route calculation unit 322 is also called calculation means.
  • the path calculation unit 322 calculates a wavelength path using a path calculation method called CSPF (Constraint based Shortest Path First).
  • the route calculation unit 322 excludes the connection relationship of the wavelength switching devices connected via the exclusion route indicated by the route restriction information from the network configuration information stored in the NW configuration information storage unit 312. .
  • the route calculation unit 322 excludes (Excludes), from the network configuration information, route identification information that specifies a route that cannot be used as a wavelength path, which is the route restriction indicated by the route restriction information.
  • the route calculation unit 322 is based on the network configuration information excluding the connection relationship, the discrimination information in the setting request received by the user I / F 301, and the initial wavelength constraint information generated by the constraint conversion unit 321.
  • the wavelength path of the minimum cost from the first route (client line) determined by the determination information to the last route (client line) is calculated.
  • the wavelength path calculation algorithm a Dijkstra algorithm capable of calculating the wavelength path in consideration of the wavelength constraint is used.
  • the wavelength paths from the wavelength switching devices 100-1 to 100-8 in FIG. 1 are calculated, and the network configuration information of the wavelength switching device 100-8 has the configuration shown in FIG. Further, the client line 112-1 is assumed to be a wavelength path client line.
  • the route calculation unit 322 determines that only the WDM line 111-1 can be used, and the WDM line 111 ⁇ 1 is selected as a wavelength path route candidate. In addition, since the initial wavelength constraint information indicates the wavelength ⁇ 1, the path calculation unit 322 selects the wavelength ⁇ 1 as a wavelength path wavelength candidate.
  • the path calculation unit 322 pays attention to the wavelength switching device 100-2 connected to the WDM line 111-1.
  • the route calculation unit 322 selects a WDM line connectable to the WDM line 111-1 based on the switchable route information in the network configuration information. Based on the free wavelength information, the path calculation unit 322 selects a WDM line that can use the wavelength ⁇ 1 among the selected WDM lines as a wavelength path candidate.
  • the route calculation unit 322 repeats the above processing to calculate the wavelength path with the lowest cost from the first client line to the last client line.
  • the setting unit 305 sets the wavelength path calculated by the route control unit 304 using each wavelength switching device 100.
  • the configuration discovery unit 311 transmits a configuration information transmission request to each device control unit 105 of the wavelength switching device 100 in the wavelength network.
  • the device control unit 105 Upon receiving the transmission request, the device control unit 105 transmits the held device identification information, route information, and in-device configuration information to the configuration discovery unit 311 of the wavelength network operation device 300.
  • the configuration discovery unit 311 associates the device identification information with the route information and stores them in the NW configuration information storage unit 312. Moreover, whenever the information is received, the configuration discovery unit 311 associates the device identification information with the in-device configuration information and stores them in the in-device information storage unit 313.
  • the configuration discovery unit 311 transmits an operation command to the configuration conversion unit 303 when the storage of the route information and the in-device configuration information is completed for all the wavelength switching devices 100.
  • the configuration conversion unit 303 When receiving the operation command, acquires the in-device configuration information stored in the in-device information storage unit 313, and converts the in-device configuration information into route restriction information. The configuration conversion unit 303 adds the route restriction information to the network configuration information in the NW configuration information storage unit 312 and ends the operation.
  • FIG. 7 is a flowchart for explaining this operation.
  • step S701 the wavelength network operator inputs a setting request to the user I / F 301 using the remote terminal 500.
  • the user I / F 301 transmits the setting request to the route calculation unit 322.
  • the route calculation unit 322 executes Step S702.
  • step S702 the route calculation unit 322 determines the client line of the wavelength path based on the determination information in the setting request.
  • the path calculation unit 322 searches the in-device information storage unit 313 for the first device identification information in the discrimination information, and from the in-device configuration information associated with the searched first device identification information.
  • the route identification information associated with the 1-port identification information is further searched.
  • the route calculation unit 322 can determine the client line specified by the searched route identification information, and similarly, the route calculation unit 322 can determine the last client line of the wavelength path.
  • the path calculation unit 322 determines the client line of the wavelength path
  • the path calculation unit 322 transmits client line information including path identification information for specifying each of the client lines to the constraint conversion unit 321.
  • the constraint conversion unit 321 executes Step S703.
  • step S703 the constraint conversion unit 321 acquires network configuration information from the NW configuration information storage unit 312 and generates initial route constraint information and initial wavelength constraint information based on the network configuration information and client line information. .
  • the constraint conversion unit 321 transmits the network configuration information, initial route constraint information, and initial wavelength constraint information to the route calculation unit 322.
  • the route calculation unit 322 executes Step S704.
  • step S704 the route calculation unit 322 excludes, from the network configuration information, route identification information that identifies a route that cannot be used as a wavelength path, which is the route constraint indicated by the initial route constraint information.
  • the route calculation unit 322 calculates a wavelength path with the minimum cost from the first client line to the last client line determined by the determination information based on the network configuration information from which the route identification information is excluded.
  • the route calculation unit 322 transmits path information indicating the calculated wavelength path to the setting unit 305.
  • the setting unit 305 executes step S705.
  • step S705 upon receiving the path information, the setting unit 305 sets the wavelength path indicated by the path information using the wavelength switching device 100, and ends the operation.
  • the setting unit 305 generates a switching request including paths connected to each other in each wavelength switching device 100 based on the path information.
  • the setting unit 305 sets the wavelength path by transmitting the switching request to each wavelength switching device 100.
  • the device control unit 105 switches the wavelength selection switch and the OXC so that the paths indicated by the switching request are connected to each other.
  • the configuration management unit 302 includes the network configuration information indicating the connection relationship between the wavelength switching devices 100, the optical switch of each wavelength switching device 100, and the connection relationship between the paths. Get configuration information.
  • the configuration conversion unit 303 converts the in-device configuration information acquired by the configuration management unit 302 into switchable route information indicating a route connectable to the route for each route.
  • the path control unit 304 calculates the wavelength path using the network configuration information acquired by the configuration management unit 302 and the switchable route information converted by the configuration conversion unit 303.
  • the setting unit 305 sets the wavelength path calculated by the route control unit 304 using each wavelength switching device 100.
  • the in-device configuration information indicating the connection relationship between the optical switch and the route is converted into the switchable route information, and the wavelength path is calculated based on the route restriction information.
  • the wavelength path can be flexibly set according to the configuration of the optical switch. Even if the number of routes increases, the increase in the number of optical switches is usually smaller than the increase in the number of combinations of routes, so the amount of information when the number of routes increases The increase amount can be reduced. Therefore, even when the number of routes is large, the wavelength path can be flexibly set according to the configuration of the optical switch with a relatively small amount of information.
  • the in-device configuration information further indicates the wavelength of the optical signal that can be transmitted in each path.
  • the wavelength path can be set in consideration of the wavelength constraint, so that the wavelength path can be set more accurately.
  • the user I / F 301 accepts discrimination information for discriminating between the first client line of the wavelength path and the last client of the wavelength path.
  • the constraint conversion unit 321 is connected to the wavelength switching device 100 connected via the excluded route that is not connectable to the first client line and the last client line. Is excluded from the network configuration information.
  • the route calculation unit 322 calculates the wavelength path using the network configuration information from which the excluded route is excluded by the constraint conversion unit 321 and the switchable route information.
  • the wavelength path is calculated using the network configuration information from which the excluded route that is not connectable to the first client line and the last client line is excluded. Therefore, since the wavelength path can be calculated using the network configuration information that already satisfies the route restriction between the client line and the WDM line, the wavelength path can be easily calculated.
  • the user I / F 301 accepts a setting request including packet identification information indicating the packet switching device 200 that is a start node and an end node of a packet path in the packet network 400.
  • the configuration discovery unit 311 acquires topology information indicating the connection relationship between the packet switching devices 200 and the connection relationship between the wavelength switching device 100 and the packet switching device 200 as network configuration information.
  • the network configuration information further indicates the connection relationship between the packet switching device 200 and the connection relationship between the wavelength switching device 100 and the packet switching device 200.
  • the configuration discovery unit 311 acquires packet identification information for specifying the packet switching device 200 and packet path identification information for specifying the route of the packet switching device 200 from each of the packet switching devices 200. Get topology information.
  • the route control unit 304 (more specifically, the route calculation unit 322) is based on the network configuration information stored in the configuration discovery unit 311 and the packet identification information included in the setting request received by the user I / F 301. Calculate the wavelength path and packet path.
  • the route control unit 304 sets the calculated wavelength path using the wavelength switching device 100 and sets the calculated packet path using the packet switching device 200.
  • FIG. 8 is a flowchart for explaining an example of the operation of the wavelength network in the present embodiment.
  • step S801 the wavelength network operator inputs a setting request to the user I / F 301 using the remote terminal 500.
  • the user I / F 301 transmits the setting request to the route calculation unit 322.
  • the route calculation unit 322 executes Step S802.
  • step S802 the route calculation unit 322 extracts the discrimination information from the setting request and acquires the network configuration information from the NW configuration information storage unit 312.
  • the route calculation unit 322 uses the route information and topology information in the network configuration information, and the discrimination information, and uses the end-to-end minimum cost route (hereinafter referred to as an E2E route) from the start node to the end node. ).
  • the path calculation unit 322 calculates the E2E path without considering the path constraint and the wavelength constraint of the wavelength path.
  • the route calculation unit 322 executes Step S803.
  • step S803 the route calculation unit 322 checks whether or not a wavelength path is included in the E2E route by checking whether or not the WDM line in the calculated E2E route is included. . If the wavelength path is not included, the path calculation unit 322 executes Step S804, and if the wavelength path is included, the path calculation unit 322 executes Step S805.
  • step S804 since the wavelength path is not included in the E2E route, the route calculation unit 322 transmits route information indicating the E2E route to the setting unit 305. Upon receiving the route information, the setting unit 305 sets the packet path on the E2E route indicated by the route information using the packet switching device 200, and ends the operation.
  • step S805 the route calculation unit 322 determines the first route and the last route of the wavelength paths in the E2E route.
  • the route calculation unit 322 recalculates the wavelength path from the first route to the last route.
  • the route calculation unit 322 calculates a wavelength path without using the constraint conversion unit 321. That is, the route calculation unit 322 calculates the wavelength path without considering the initial route constraint information and the initial wavelength constraint information. This is because, unlike the first embodiment, the first client line and the last client line can be arbitrarily selected.
  • the route calculation unit 322 executes step S806.
  • step S806 the route calculation unit 322 transmits path information indicating the recalculated wavelength path to the setting unit 305.
  • the setting unit 305 sets the wavelength path indicated by the path information using the wavelength switching device 100.
  • the path calculation unit 322 executes Step S807.
  • step S807 the route calculation unit 322 registers the recalculated wavelength path as a virtual link, and then executes step S808.
  • step S808 the route calculation unit 322 removes the route for which the wavelength path is set from the E2E route, and executes step S809.
  • step S809 the route calculation unit 322 transmits route information indicating the E2E route from which the route for which the wavelength path is set is excluded to the setting unit 305.
  • the setting unit 305 sets the packet path on the E2E route indicated by the route information using the packet switching device 200, and ends the operation.
  • the network configuration information further indicates the connection relationship between the packet switching devices and the connection relationship between the packet switching devices and the wavelength path switching devices.
  • the user I / F 301 receives packet identification information indicating a packet switching device that is a start point and an end point of a packet path.
  • the route control unit 304 further calculates a packet path based on the network configuration information and the packet identification information.
  • the setting unit 305 sets the packet path calculated by the route control unit 304 using the packet switching device 200.
  • the wavelength network operation device 300 is separate from the wavelength switching device 100 and the packet switching device 200 in the first embodiment and the second embodiment, but in this embodiment, the wavelength switching device 100 or the packet switching is performed. It is incorporated in the device 200.
  • the wavelength network operation apparatus 300 uses a distributed protocol such as GMLS (Generalized Multi-Protocol Label Switching) to transmit the device identification information and the method to the wavelength network operation apparatus 300 in the wavelength switching apparatus 100 or the packet switching apparatus 200.
  • GMLS Generalized Multi-Protocol Label Switching
  • an input device such as a keyboard may be used as the user I / F 301 so that a wavelength network operator can directly input a setting request to the user I / F 301 without using a remote terminal.
  • the present invention can be implemented in a network operation management device that manages paths in a network management system (NMS) that manages a network, a control unit of a communication device in a network, or the like.
  • NMS network management system

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

Provided is a network administration device that solves the problem that, when there are a large number of routes, an enormous amount of information is needed in order to set wavelength paths flexibly to accommodate optical switch configurations. A configuration management unit (302) acquires network configuration information, which indicates the connection relationships between wavelength switching devices (100), and intra-device configuration information, which indicates the connection relationships between routes and optical switches in the wavelength switching devices (100). A configuration conversion unit (303) converts the intra-device configuration information acquired by the configuration management unit (302) into switchable-route information, which indicates which routes each route can be connected to. A path control unit (304) calculates wavelength paths using the network configuration information acquired by the configuration management unit (302) and the switchable-route information from the configuration conversion unit (303). A setting unit (305) uses the wavelength switching devices (100) to set the wavelength paths calculated by the path control unit (304).

Description

ネットワーク管理装置および波長パス設定方法Network management apparatus and wavelength path setting method
 本発明は、波長ネットワークの波長パスを設定するネットワーク管理装置および波長パス設定方法に関し、特には、複数の波長信号が多重された光信号を伝送する波長分割多重(WDM:Wavelength Division Multiplexing)ネットワークの波長パスを設定するネットワーク管理装置および波長パス設定方法に関する。 The present invention relates to a network management apparatus and a wavelength path setting method for setting a wavelength path of a wavelength network, and more particularly to a wavelength division multiplexing (WDM) network that transmits an optical signal in which a plurality of wavelength signals are multiplexed. The present invention relates to a network management apparatus and a wavelength path setting method for setting a wavelength path.
 光信号を電気信号に変換することなく、光信号のまま伝送可能な波長ネットワークが注目されている。波長ネットワークでは、光信号の始点ノードおよび終点ノードとなるクライアント装置間を接続する波長パスが設定される。波長パスは、光信号が実際に伝送される経路と、その経路を伝送する光信号の波長によって定義される。 Wavelength networks that can transmit optical signals without converting optical signals into electrical signals are attracting attention. In the wavelength network, a wavelength path that connects client devices that are the start and end nodes of an optical signal is set. The wavelength path is defined by the path through which the optical signal is actually transmitted and the wavelength of the optical signal transmitted through the path.
 従来の波長ネットワークでは、リング状の経路上に、比較的少ない数の中継ノードが設けられたリングネットワークが用いられていた。リングネットワークでは、波長パスは、リング状の経路の時計回りの経路と、リング状の経路の反時計回りの経路のどちらか一方に予め設定されている。 In the conventional wavelength network, a ring network in which a relatively small number of relay nodes are provided on a ring-shaped route is used. In the ring network, the wavelength path is set in advance to either a clockwise route of the ring-shaped route or a counterclockwise route of the ring-shaped route.
 したがって、リングネットワークでは、ある箇所で輻輳などの障害が発生した場合、その発生箇所を避けて光信号を伝送させることができないので、波長ネットワーク全体に影響が生じることがある。このため、リングネットワークでは、耐障害性が低いという問題があった。 Therefore, in a ring network, when a failure such as congestion occurs at a certain location, an optical signal cannot be transmitted avoiding the occurrence location, which may affect the entire wavelength network. For this reason, the ring network has a problem of low fault tolerance.
 近年、耐障害性の向上などのために、波長パスを可変に設定することが可能な技術が提案されている。このような技術では、中継ノードとして、光信号の出力方路を波長ごとに切り替えることが可能な波長パス切替装置が用いられる。また、波長ネットワークとしては、複数のリングネットワークが相互に接続されたマルチリングネットワークや、網目状の経路の各交差部に波長パス切替装置が配置されたメッシュネットワークなどが用いられる。 In recent years, a technique capable of variably setting a wavelength path has been proposed in order to improve fault tolerance. In such a technique, a wavelength path switching device capable of switching an optical signal output path for each wavelength is used as a relay node. As the wavelength network, a multi-ring network in which a plurality of ring networks are connected to each other, a mesh network in which wavelength path switching devices are arranged at each intersection of a mesh-like route, or the like is used.
 上記の波長パスを可変に設定することが可能な技術は、例えば、特許文献1に記載されている。 A technique capable of variably setting the above wavelength path is described in Patent Document 1, for example.
 特許文献1に記載の光ネットワークでは、波長パス切替装置として光クロスコネクト装置が用いられている。光クロスコネクト装置は、光信号の出力方路を任意に切り替えることが可能な光スイッチを備える。各光クロスコネクト装置は、自装置に接続された複数の経路である方路のそれぞれの使用状況を検出し、その検出結果を他の光クロスコネクト装置に通知する。各光クロスコネクト装置が、他の光クロスコネクト装置が通知された検出結果に応じて、光信号の出力方路を切り替えることで、波長パスが設定される。 In the optical network described in Patent Document 1, an optical cross-connect device is used as a wavelength path switching device. The optical cross-connect device includes an optical switch capable of arbitrarily switching an optical signal output path. Each optical cross-connect device detects the usage status of each of a plurality of routes connected to the own device, and notifies the detection result to the other optical cross-connect devices. Each optical cross-connect device switches the output path of the optical signal according to the detection result notified by the other optical cross-connect device, so that the wavelength path is set.
 これにより、波長ネットワーク上の輻輳している箇所を避けて波長パスを設定することができるので、耐障害性を向上させることが可能になる。 As a result, the wavelength path can be set while avoiding the congested portion on the wavelength network, so that the fault tolerance can be improved.
 しかしながら、特許文献1における光クロスコネクト装置のように、波長パス切替装置が光信号の出力方路を任意に切り替え可能とするためには、大規模な光スイッチが必要となるので、波長パス切替装置のコストが高くなるという問題があった。 However, in order to enable the wavelength path switching device to arbitrarily switch the optical signal output path as in the optical cross-connect device in Patent Document 1, a large-scale optical switch is required. There has been a problem that the cost of the apparatus becomes high.
 このため、一般的な波長パス切替装置では、光スイッチの規模を制限することで、波長パス切替装置のコストを下げている。この場合、光スイッチの構成に応じて出力方路として選択できる方路に方路制約が生じ、さらに、光スイッチの構成に応じて各方路で使用できる波長に波長制約が生じる。
 したがって、小規模な光スイッチを用いた波長パス切替装置があるときに、波長パスを設定するためには、方路制約や波長制約を考慮しなければならない。
For this reason, in a general wavelength path switching device, the cost of the wavelength path switching device is reduced by limiting the scale of the optical switch. In this case, a route restriction occurs in a route that can be selected as an output route according to the configuration of the optical switch, and a wavelength constraint occurs in a wavelength that can be used in each route according to the configuration of the optical switch.
Therefore, when there is a wavelength path switching device using a small-scale optical switch, in order to set the wavelength path, it is necessary to consider the route restrictions and the wavelength restrictions.
 上記の方路制約や波長制約を考慮して波長パスを設定することが可能な技術としては、特許文献2に記載の通信システムおよび非特許文献1に記載のWSON(Wavelength Switched Optical Network)がある。 As a technology capable of setting a wavelength path in consideration of the above-mentioned route restrictions and wavelength restrictions, there are a communication system described in Patent Document 2 and a WSON (Wavelength Switched Optical Network) described in Non-Patent Document 1. .
 特許文献2に記載の通信システムでは、波長ネットワークとしてマルチリングネットワークが用いられる。また、クライアント装置としてIPルータが用いられ、波長パス切替装置としてROADM(Reconfigurable Optical Add/Drop Multiplexer)装置が用いられる。 In the communication system described in Patent Document 2, a multi-ring network is used as a wavelength network. Also, an IP router is used as the client device, and a ROADM (Reconfigurable Optical Add / Drop Multiplexer) device is used as the wavelength path switching device.
 ROADM装置は、自己に接続された経路を、IPルータとROADM装置と間の経路であるUNI(User-Network Interface)と、ROADM装置と他のROADMと間の経路であるNNI(Network-Network Interface)とにグループ分けして管理する。なお、UNIおよびNNIは、互いに1対1で接続されている。 The ROADM device has a route connected to itself as a user-network interface (UNI) that is a route between the IP router and the ROADM device, and a network-network interface that is a route between the ROADM device and another ROADM. ) And manage them in groups. Note that UNI and NNI are connected to each other on a one-to-one basis.
 各ROADM装置は、自装置における方路の接続関係を示すリンク情報を他のROADM装置に通知する。各ROADM装置は、他のROADM装置から通知されたリンク情報に基づいて、光信号の出力方路を切り替えることで、波長パスを設定する。 Each ROADM device notifies other ROADM devices of link information indicating the connection relation of the route in its own device. Each ROADM device sets the wavelength path by switching the output route of the optical signal based on the link information notified from the other ROADM device.
 このとき、ROADM装置の入力方路がNNIの場合、各ROADM装置は、マルチリングネットワーク内のリングネットワークの波長パスとして、時計回りの経路および反統計回りの経路のいずれかを選択することができる。 At this time, when the input route of the ROADM device is NNI, each ROADM device can select either the clockwise route or the counter-statistic route as the wavelength path of the ring network in the multi-ring network. .
 しかしながら、各ROADM装置は、UNIおよびNNIが互いに1対1で接続されているため、入力方路がUNIの場合、出力方路として選択可能な経路が、時計回りの経路および反時計回りの経路のいずれかに定まる。つまり、ROADM装置には、方路制約がある。 However, in each ROADM device, UNI and NNI are connected to each other on a one-to-one basis. Therefore, when the input route is UNI, the routes that can be selected as the output route are the clockwise route and the counterclockwise route. It will be determined by either That is, the ROADM device has a route restriction.
 この場合、各ROADM装置は、出力方路として選択可能な経路が時計回りの経路か反時計回りの経路かを識別する情報をリンク情報に追加することで、方路制約を他のROADM装置に通知している。これにより、方路制約を考慮して波長パスを設定することが可能になる。 In this case, each ROADM device adds information identifying whether the route that can be selected as the output route is a clockwise route or a counterclockwise route to the link information. Notify. Thereby, it becomes possible to set a wavelength path in consideration of a route restriction.
 また、非特許文献1に記載のWSONでは、各波長パス切替装置は、方路の組み合わせごとにその組の関係を詳細に示したConnectivity・Matrix・sub-TLVと呼ばれるリンク接続情報を制御装置に通知する。また、各波長パス切替装置は、各方路にて伝送可能な波長を示したWavelength・Set・Sub-TLVと呼ばれる波長情報を制御装置に通知する。さらに、制御装置は、波長パス切替装置の接続関係を示すトポロジ情報が入力される。 Further, in the WSON described in Non-Patent Document 1, each wavelength path switching device uses link connection information called Connectivity / Matrix / sub-TLV, which shows the relationship of each set in detail for each combination of routes, to the control device. Notice. Each wavelength path switching device notifies the control device of wavelength information called Wavelength / Set / Sub-TLV indicating wavelengths that can be transmitted in each path. Further, the topology information indicating the connection relationship of the wavelength path switching device is input to the control device.
 制御装置は、そのリンク接続情報および波長情報に基づいて、各波長パス切替装置の方路制約および波長制約を求める。そして、制御装置は、入力されたトポロジ情報に基づいて、その求めた方路制約および波長制約を満たす波長パスを計算し、その波長パスを設定する。これにより、方路制約および波長制約を考慮して波長パスを設定することができる。 The control device obtains the route constraint and the wavelength constraint of each wavelength path switching device based on the link connection information and the wavelength information. Then, the control device calculates a wavelength path that satisfies the obtained route constraint and wavelength constraint based on the input topology information, and sets the wavelength path. Thereby, the wavelength path can be set in consideration of the route restriction and the wavelength restriction.
特開2003-209863号公報JP 2003-209863 A 特開2008-98924号公報JP 2008-98924 A
 特許文献2に記載の通信システムでは、波長パスの経路が、リング状の経路の時計回りの経路および反時計回りの経路の2つに限定され、さらに、UNIおよびNNIが互いに1対1で接続されなければならない。 In the communication system described in Patent Document 2, the wavelength path route is limited to two, a clockwise route and a counterclockwise route of a ring-like route, and UNI and NNI are connected to each other on a one-to-one basis. It must be.
 このため、波長パス切替装置内の光スイッチの構成がどのようなものであっても、入力方路がUNIの場合、出力方路として選択可能な経路が、時計回りの経路および反時計回りの経路のいずれかに定まる。このため、波長パス切替装置内の光スイッチの構成がどのようなものであっても、方路制約が同じになるので、光スイッチの構成に応じて波長パスを柔軟に設定することができないという問題がある。 Therefore, regardless of the configuration of the optical switch in the wavelength path switching device, when the input route is UNI, the route that can be selected as the output route is the clockwise route and the counterclockwise route. It is determined by one of the routes. For this reason, the path restrictions are the same regardless of the configuration of the optical switch in the wavelength path switching device, so the wavelength path cannot be flexibly set according to the configuration of the optical switch. There's a problem.
 また、非特許文献1に記載のWSONでは、各波長パス切替装置は、方路の組み合わせごとにその組み合わせの関係を詳細に示したリンク接続情報が通知され、そのリンク接続情報に基づいて方路制約が求められている。方路数が大きい場合、方路の組み合わせの数は方路数に比べて非常に大きくなるので、リンク接続情報の情報量が甚大になるという問題がある。 Further, in the WSON described in Non-Patent Document 1, each wavelength path switching device is notified of link connection information indicating the relationship of the combination in detail for each combination of routes, and the route is determined based on the link connection information. Constraints are required. When the number of routes is large, the number of combinations of routes is very large compared to the number of routes, so there is a problem that the amount of information of link connection information becomes enormous.
 したがって、特許文献2および非特許文献1に記載の技術では、方路数が大きい場合、光スイッチの構成に応じて波長パスを柔軟に設定するための情報量が甚大になるという問題がある。 Therefore, the techniques described in Patent Document 2 and Non-Patent Document 1 have a problem that when the number of paths is large, the amount of information for flexibly setting the wavelength path according to the configuration of the optical switch is enormous.
 なお、特許文献2に記載の通信システムでは、方路制約は考慮されているが、波長制約が考慮されていないため、誤った波長パスが設定されることがあるという問題もある。 In the communication system described in Patent Document 2, the path restriction is taken into consideration, but the wavelength restriction is not taken into account, so that there is a problem that an incorrect wavelength path may be set.
 また、非特許文献1に記載のWSONでは、トポロジ情報を自動的に検出する仕組みが備わっていないため、トポロジ情報は人手によって入力されなければならない。このため、誤ったトポロジ情報が入力され、その結果、誤った波長パスが設定されることがあるという問題もある。 In addition, since the WSON described in Non-Patent Document 1 does not have a mechanism for automatically detecting topology information, the topology information must be input manually. For this reason, there is a problem in that incorrect topology information is input, and as a result, an incorrect wavelength path may be set.
 本発明の目的は、上記の課題である、方路数が大きい場合、光スイッチの構成に応じて波長パスを柔軟に設定するための情報量が甚大になるという問題を解決するネットワーク管理装置および波長パス設定方法を提供することである。 An object of the present invention is a network management apparatus that solves the problem that the amount of information for flexibly setting a wavelength path according to the configuration of an optical switch is large when the number of routes is large, It is to provide a wavelength path setting method.
 本発明によるネットワーク管理装置は、光信号の方路間の接続を光スイッチを用いて前記光信号の波長ごとに切り替えることが可能な複数の波長パス切替装置が複数の方路を介して接続された波長ネットワークの波長パスを設定するネットワーク管理装置であって、各波長パス切替装置間の接続関係を示したネットワーク構成情報と、各波長パス切替装置の光スイッチおよび各方路の接続関係を示した装置内構成情報とを取得する取得手段と、前記取得手段が取得した装置内構成情報を、前記方路ごとに当該方路と接続可能な方路を示す切替可方路情報に変換する構成変換手段と、前記取得手段が取得したネットワーク構成情報と、前記構成変換手段にて変換された切替可方路情報とを用いて、前記波長パスを計算する制御手段と、前記制御手段にて計算された波長パスを、各波長パス切替装置を用いて設定する設定手段と、を有する。 In the network management device according to the present invention, a plurality of wavelength path switching devices capable of switching connections between optical signal paths for each wavelength of the optical signal using an optical switch are connected via a plurality of routes. A network management device for setting the wavelength path of a wavelength network, showing network configuration information indicating the connection relationship between each wavelength path switching device, and the connection relationship between the optical switch and each path of each wavelength path switching device. The acquisition means for acquiring the in-device configuration information, and the configuration for converting the in-device configuration information acquired by the acquisition means into switchable route information indicating a route connectable to the route for each route Using the conversion means, the network configuration information acquired by the acquisition means, and the switchable route information converted by the configuration conversion means, the control means for calculating the wavelength path, and the control The calculated wavelength path by means comprises a setting means for setting with each wavelength path switching apparatus.
 また、本発明による波長パス設定方法は、光信号の方路間の接続を光スイッチを用いて前記光信号の波長ごとに切り替えることが可能な複数の波長パス切替装置が複数の方路を介して接続された波長ネットワークの波長パスを設定する波長パス設定方法による波長パス設定方法であって、各波長パス切替装置間の接続関係を示したネットワーク構成情報と、各波長パス切替装置の光スイッチの構成を示した装置内構成情報とを取得する取得ステップと、前記取得された装置内構成情報を、前記方路ごとに当該方路と接続可能な方路を示す切替可方路情報に変換する構成変換ステップと、前記取得されたネットワーク構成情報と、前記変換された切替可方路情報とを用いて、前記波長パスを計算する制御ステップと、前記計算された波長パスを、各波長パス切替装置を用いて設定する設定ステップと、を含む。 Further, the wavelength path setting method according to the present invention includes a plurality of wavelength path switching devices capable of switching connections between optical signal paths for each wavelength of the optical signal using an optical switch via the plurality of paths. A wavelength path setting method based on a wavelength path setting method for setting a wavelength path of a connected wavelength network, the network configuration information indicating a connection relationship between each wavelength path switching device, and an optical switch of each wavelength path switching device An acquisition step of acquiring the in-device configuration information indicating the configuration of the device, and converting the acquired in-device configuration information into switchable route information indicating a route connectable to the route for each route A configuration conversion step, a control step of calculating the wavelength path using the acquired network configuration information and the converted switchable route information, and the calculated wavelength path Includes a setting step of setting with each wavelength path switching apparatus.
 本発明によれば、方路数が大きい場合でも、比較的少ない情報量で、光スイッチの構成に応じて波長パスを柔軟に設定することが可能になる。 According to the present invention, even when the number of routes is large, it is possible to flexibly set the wavelength path according to the configuration of the optical switch with a relatively small amount of information.
本発明の第1の実施形態の波長ネットワークを示したブロック図である。It is the block diagram which showed the wavelength network of the 1st Embodiment of this invention. 波長パス切替装置の構成の一例を示したブロック図である。It is the block diagram which showed an example of the structure of a wavelength path switching apparatus. 波長切替部の構成の一例を示したブロック図である。It is the block diagram which showed an example of the structure of the wavelength switch part. 多重分離切替部の構成の一例を示したブロック図である。It is the block diagram which showed an example of the structure of a demultiplexing switching part. 多重分離切替部の構成の他の例を示したブロック図である。It is the block diagram which showed the other example of the structure of the demultiplexing switching part. 波長ネットワーク運用装置の構成の一例を示したブロック図である。It is the block diagram which showed an example of the structure of a wavelength network operation apparatus. ネットワーク構成情報の一例を示した説明図である。It is explanatory drawing which showed an example of network configuration information. 波長ネットワークの動作の一例を示したフローチャートである。It is the flowchart which showed an example of operation | movement of a wavelength network. 波長ネットワークの動作の他の例を示したフローチャートである。It is the flowchart which showed the other example of operation | movement of a wavelength network.
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明では、同じ機能を有する構成には同じ符号を付け、その説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, components having the same function may be denoted by the same reference numerals and description thereof may be omitted.
 (第1の実施形態)
 図1は、本発明の第1の実施形態の波長ネットワークを示したブロック図である。図1において、波長ネットワークは、波長切替装置100と、パケット切替装置200と、波長ネットワーク(NW:Network)運用装置300とを有する。なお、波長ネットワークは、本実施形態では、リング状の経路を有する複数のリングネットワークが相互に接続されたマルチリングネットワークであるとしているが、実際には、マルチリングネットワークに限らず適宜変更可能である。
(First embodiment)
FIG. 1 is a block diagram showing a wavelength network according to a first embodiment of the present invention. In FIG. 1, the wavelength network includes a wavelength switching device 100, a packet switching device 200, and a wavelength network (NW: Network) operation device 300. In this embodiment, the wavelength network is a multi-ring network in which a plurality of ring networks having ring-shaped paths are connected to each other. However, the wavelength network is not limited to the multi-ring network and can be changed as appropriate. is there.
 なお、波長切替装置100およびパケット切替装置200のそれぞれは、複数あり、それらの波長切替装置100およびパケット切替装置200は、複数の経路を介して接続される。図1では、8台の波長切替装置100(100-1~100-8)と8台のパケット切替装置200とが示されている。 There are a plurality of wavelength switching devices 100 and packet switching devices 200, and these wavelength switching devices 100 and packet switching devices 200 are connected via a plurality of paths. In FIG. 1, eight wavelength switching devices 100 (100-1 to 100-8) and eight packet switching devices 200 are shown.
 波長切替装置100は、波長パス切替装置と呼ばれることもある。波長切替装置100のそれぞれには、自波長切替装置と接続されている経路である方路が複数ある。方路には、波長切替装置100間を接続する経路であるWDMライン(Wavelength Division Multiplexing Line)と、波長切替装置100およびパケット切替装置200間を接続する経路であるクライアントライン(Client Line)とがある。 The wavelength switching device 100 is sometimes called a wavelength path switching device. Each of the wavelength switching devices 100 has a plurality of paths that are routes connected to the own wavelength switching device. In the route, there are a WDM line (Wavelength Division Multiplexing Line) that connects the wavelength switching devices 100 and a client line (Client Line) that connects the wavelength switching device 100 and the packet switching device 200. is there.
 WDMラインは、NNIインターフェースとも呼ばれ、複数の波長信号が多重化された波長多重信号を光信号として伝送する。なお、図1では、8台の波長切替装置100のうちの3台の波長切替装置100-1、100-4および100-8には、4本のWDMラインが接続され、その他の波長切替装置100には、2本のWDMラインが接続されている。 The WDM line is also called an NNI interface and transmits a wavelength multiplexed signal obtained by multiplexing a plurality of wavelength signals as an optical signal. In FIG. 1, four WDM lines are connected to three wavelength switching devices 100-1, 100-4, and 100-8 of the eight wavelength switching devices 100, and other wavelength switching devices. Two WDM lines are connected to 100.
 クライアントラインは、UNIインターフェースとも呼ばれ、波長信号を光信号として伝送することができる。なお、各波長切替装置100に接続されるクライアントラインは、複数あってもよい。 The client line is also called a UNI interface and can transmit a wavelength signal as an optical signal. Note that there may be a plurality of client lines connected to each wavelength switching device 100.
 波長切替装置100は、波長ネットワーク上の光信号の中継を行う中継ノードである。より具体的には、波長切替装置100は、ある入力方路から光信号を受信すると、その光信号を入力方路とは別の出力方路に出力する。 The wavelength switching device 100 is a relay node that relays optical signals on the wavelength network. More specifically, when receiving an optical signal from a certain input route, the wavelength switching device 100 outputs the optical signal to an output route different from the input route.
 パケット切替装置200は、波長パスの始点ノードおよび終点ノードとなり得るクライアント装置であり、パケットネットワーク400の中継ノードでもある。パケット切替装置200は、パケットネットワーク400におけるパケット信号用の経路であるパケット経路を切り替えることが可能である。 The packet switching device 200 is a client device that can be a start point node and an end point node of a wavelength path, and is also a relay node of the packet network 400. The packet switching device 200 can switch a packet route that is a route for a packet signal in the packet network 400.
 波長ネットワーク運用装置300は、ネットワーク管理装置と呼ばれることもある。波長ネットワーク運用装置300は、波長ネットワークの波長パスを、波長切替装置100を用いて設定する。なお、波長パスは、光信号が実際に伝送される経路と、その経路上の光信号の波長とで定義される。 The wavelength network operation device 300 is sometimes called a network management device. The wavelength network operation device 300 sets the wavelength path of the wavelength network using the wavelength switching device 100. A wavelength path is defined by a path through which an optical signal is actually transmitted and a wavelength of the optical signal on the path.
 以下、各装置について具体的に説明する。 Hereinafter, each device will be described in detail.
 図2は、波長切替装置100の構成の一例を示したブロック図である。図2で示した波長切替装置100には、複数のWDMライン111(より具体的には、WDMライン111-1~4)と、複数のクライアントライン112とが接続されている。 FIG. 2 is a block diagram showing an example of the configuration of the wavelength switching device 100. A plurality of WDM lines 111 (more specifically, WDM lines 111-1 to 111-4) and a plurality of client lines 112 are connected to the wavelength switching device 100 shown in FIG.
 図2において、波長切替装置100は、WDMライン111を伝送する光信号の送受信を行う波長切替部101と、クライアントライン112を伝送する光信号の送受信を行う光送受信部102と、WDMライン111を伝送する光信号とクライアントライン112を伝送する光信号との変換を行う多重分離切替部103と、波長切替部101および多重分離切替部103の間に介在する経路である内部インターフェース104と、各部を制御する装置制御部105とを有する。なお、内部インターフェース104は、複数の方路を有する第1~第4方路群に分かれている。 In FIG. 2, the wavelength switching device 100 includes a wavelength switching unit 101 that transmits / receives an optical signal transmitted through the WDM line 111, an optical transmitter / receiver 102 that transmits / receives an optical signal transmitted through the client line 112, and a WDM line 111. A demultiplexing / switching unit 103 that converts an optical signal to be transmitted and an optical signal transmitted through the client line 112, an internal interface 104 that is a path interposed between the wavelength switching unit 101 and the demultiplexing / switching unit 103, and each unit And an apparatus control unit 105 for controlling. The internal interface 104 is divided into first to fourth route groups having a plurality of routes.
 波長切替部101には、WDMライン111および内部インターフェース104内の方路が光信号の方路として接続されている。波長切替部101は、それらの方路のうちのある入力方路から光信号を受信すると、その光信号を、入力方路とは別の出力方路に送信する。 The wavelength switching unit 101 is connected with a route in the WDM line 111 and the internal interface 104 as a route for an optical signal. When the wavelength switching unit 101 receives an optical signal from an input route out of these routes, the wavelength switching unit 101 transmits the optical signal to an output route different from the input route.
 ここで、波長切替部101では、WSS(Wavelength Selected Switch)と呼ばれる波長選択スイッチが使用されている。波長選択スイッチは、光信号の品質劣化を低く抑えながら、光信号の出力方路を波長ごとに切り替えることができる。 Here, the wavelength switching unit 101 uses a wavelength selective switch called WSS (Wavelength Selected Switch). The wavelength selective switch can switch the output path of the optical signal for each wavelength while suppressing deterioration in the quality of the optical signal.
 しかしながら、波長選択スイッチは、1:N型(1入力多出力型)の光スイッチなので、方路間の接続を切り替える切替自由度が低い。このため、波長選択スイッチは、任意の方路を出力方路として選択することができない。波長選択スイッチは、入力方路に応じて出力方路として選択可能な方路が決定される。波長選択スイッチにて互いに接続可能な方路が波長切替装置の方路制約となる。 However, since the wavelength selective switch is a 1: N type (1-input multiple-output type) optical switch, the degree of freedom in switching the connection between routes is low. For this reason, the wavelength selective switch cannot select any route as the output route. In the wavelength selective switch, a route that can be selected as an output route is determined according to the input route. The paths that can be connected to each other by the wavelength selective switch are the path restrictions of the wavelength switching device.
 図3は、波長切替部101の構成の一例を示したブロック図である。図3において、波長切替部101は、波長選択スイッチ121A、121B、122A、122B、123A、123B、124Aおよび124Bを有する。 FIG. 3 is a block diagram showing an example of the configuration of the wavelength switching unit 101. In FIG. 3, the wavelength switching unit 101 includes wavelength selective switches 121A, 121B, 122A, 122B, 123A, 123B, 124A, and 124B.
 波長選択スイッチ121Aは、分波器121Aを有する。また、波長選択スイッチ121Aは、WDMライン111-1と接続される。波長選択スイッチ121Aは、WDMライン111-1から波長多重信号を受信すると、その波長多重信号を分波器121Aを用いて単一波長の波長信号に分波し、その分波した波長信号のそれぞれを、波長選択スイッチ123Bおよび第1方路群内の方路のいずれかに送信する。 The wavelength selective switch 121A has a duplexer 121A. The wavelength selective switch 121A is connected to the WDM line 111-1. Upon receiving the wavelength multiplexed signal from the WDM line 111-1, the wavelength selective switch 121A demultiplexes the wavelength multiplexed signal into a single wavelength wavelength signal using the demultiplexer 121A, and each of the demultiplexed wavelength signals. Is transmitted to either the wavelength selective switch 123B or the route in the first route group.
 波長選択スイッチ121Bは、合波器121B1を有する。また、波長選択スイッチ121Aは、WDMライン111-1と接続される。波長選択スイッチ121Bは、波長選択スイッチ123Aおよび第1方路群から波長信号を受信すると、その波長信号を合波器121Bを用いて合波して波長多重信号としてWDMライン111-1に送信する。 The wavelength selective switch 121B has a multiplexer 121B1. The wavelength selective switch 121A is connected to the WDM line 111-1. When the wavelength selective switch 121B receives the wavelength signal from the wavelength selective switch 123A and the first path group, the wavelength selective switch 121B combines the wavelength signal using the multiplexer 121B and transmits it to the WDM line 111-1 as a wavelength multiplexed signal.
 また、波長選択スイッチ122Aは、分波器122Aを有する。また、波長選択スイッチ121Aは、WDMライン111-2と接続される。波長選択スイッチ122Aは、WDMライン111-2から波長多重信号を受信すると、その波長多重信号を分波器122Aを用いて単一波長の波長信号に分波し、その分波した波長信号のそれぞれを、波長選択スイッチ124Bおよび第2方路群内の方路のいずれかに送信する。 Also, the wavelength selective switch 122A has a duplexer 122A. The wavelength selective switch 121A is connected to the WDM line 111-2. When receiving the wavelength multiplexed signal from the WDM line 111-2, the wavelength selective switch 122A demultiplexes the wavelength multiplexed signal into a single wavelength wavelength signal using the demultiplexer 122A, and each of the demultiplexed wavelength signals. Is transmitted to either the wavelength selective switch 124B or the route in the second route group.
 波長選択スイッチ122Bは、合波器122B1を有する。また、波長選択スイッチ121Aは、WDMライン111-2接続される。波長選択スイッチ122Bは、波長選択スイッチ124Aおよび第2方路群から波長信号を受信すると、その波長信号を合波器122Bを用いて合波して波長多重信号としてWDMライン111-2に送信する。 The wavelength selective switch 122B has a multiplexer 122B1. The wavelength selective switch 121A is connected to the WDM line 111-2. When the wavelength selective switch 122B receives the wavelength signal from the wavelength selective switch 124A and the second path group, the wavelength selective switch 122B multiplexes the wavelength signal using the multiplexer 122B and transmits it to the WDM line 111-2 as a wavelength multiplexed signal.
 また、波長選択スイッチ123Aは、分波器123Aを有する。また、波長選択スイッチ121Aは、WDMライン111-3と接続される。波長選択スイッチ123Aは、WDMライン111-3から波長多重信号を受信すると、その波長多重信号を分波器123Aを用いて単一波長の波長信号に分波し、その分波した波長信号のそれぞれを、波長選択スイッチ121Bおよび第3方路群内の方路のいずれかに送信する。 Also, the wavelength selective switch 123A has a duplexer 123A. The wavelength selective switch 121A is connected to the WDM line 111-3. When receiving the wavelength multiplexed signal from the WDM line 111-3, the wavelength selective switch 123A demultiplexes the wavelength multiplexed signal into a single wavelength wavelength signal using the demultiplexer 123A, and each of the demultiplexed wavelength signals. Is transmitted to either the wavelength selective switch 121B or the route in the third route group.
 波長選択スイッチ123Bは、合波器123B1を有する。また、波長選択スイッチ121Aは、WDMライン111-3と接続される。波長選択スイッチ123Bは、波長選択スイッチ121Aおよび第3方路群から波長信号を受信すると、その波長信号を合波器123Bを用いて合波して波長多重信号としてWDMライン111-3に送信する。 The wavelength selective switch 123B has a multiplexer 123B1. The wavelength selective switch 121A is connected to the WDM line 111-3. When the wavelength selective switch 123B receives the wavelength signal from the wavelength selective switch 121A and the third path group, the wavelength selective switch 123B combines the wavelength signal using the multiplexer 123B and transmits it to the WDM line 111-3 as a wavelength multiplexed signal.
 また、波長選択スイッチ124Aは、分波器124Aを有する。また、波長選択スイッチ121Aは、WDMライン111-4と接続される。波長選択スイッチ124Aは、WDMライン111-4から波長多重信号を受信すると、その波長多重信号を分波器124Aを用いて単一波長の波長信号に分波し、その分波した波長信号のそれぞれを、波長選択スイッチ122Bおよび第4方路群内の方路のいずれかに送信する。 Also, the wavelength selective switch 124A has a duplexer 124A. The wavelength selective switch 121A is connected to the WDM line 111-4. When receiving the wavelength multiplexed signal from the WDM line 111-4, the wavelength selective switch 124A demultiplexes the wavelength multiplexed signal into a single wavelength wavelength signal using the demultiplexer 124A, and each of the demultiplexed wavelength signals. Is transmitted to either the wavelength selective switch 122B or the route in the fourth route group.
 波長選択スイッチ124Bは、合波器124B1を有する。また、波長選択スイッチ121Aは、WDMライン111-4と接続される。波長選択スイッチ124Bは、波長選択スイッチ122Aおよび第4方路群から波長信号を受信すると、その波長信号を合波器124Bを用いて合波して波長多重信号としてWDMライン111-4に送信する。 The wavelength selective switch 124B has a multiplexer 124B1. The wavelength selective switch 121A is connected to the WDM line 111-4. When the wavelength selective switch 124B receives the wavelength signal from the wavelength selective switch 122A and the fourth path group, the wavelength selective switch 124B multiplexes the wavelength signal using the multiplexer 124B and transmits it to the WDM line 111-4 as a wavelength multiplexed signal.
 図3で示した波長切替部101の場合、例えば、波長選択スイッチ121Aでは、WDMライン111-1および111-3と、WDMライン111-1および第1方路群内の方路とが互いに接続可能な方路となる。 In the case of the wavelength switching unit 101 shown in FIG. 3, for example, in the wavelength selective switch 121A, the WDM lines 111-1 and 111-3 can be connected to the WDM line 111-1 and the route in the first route group. It becomes a way.
 図2に戻る。光送受信部102は、クライアントライン112の入出力ポートである。光送受信部102は、複数あり、そのそれぞれは、クライアントライン112のいずれかと1対1で相互に接続されている。光送受信部102は、自己と接続されたクライアントライン112から単一波長の波長信号を光信号として受信し、その光信号を多重分離切替部103に送信する。 Return to Figure 2. The optical transmission / reception unit 102 is an input / output port of the client line 112. There are a plurality of optical transmission / reception units 102, each of which is connected to one of the client lines 112 on a one-to-one basis. The optical transmission / reception unit 102 receives a wavelength signal of a single wavelength from the client line 112 connected to itself as an optical signal, and transmits the optical signal to the demultiplexing / switching unit 103.
 多重分離切替部103には、クライアントライン112および内部インターフェース104が光信号の方路として接続されている。なお、多重分離切替部103は、光送受信部102を介して、クライアントライン112と接続されている。多重分離切替部103には、それらの方路のうちのある入力方路から光信号を受信すると、その光信号を、入力方路とは別の出力方路に送信する。 A client line 112 and an internal interface 104 are connected to the demultiplexing switching unit 103 as optical signal paths. The demultiplexing switching unit 103 is connected to the client line 112 via the optical transmission / reception unit 102. When the demultiplexing switching unit 103 receives an optical signal from an input route out of those routes, the demultiplexing switching unit 103 transmits the optical signal to an output route different from the input route.
 ここで、多重分離切替部103では、AWG(Arrayed Waveguide Grating)などの光フィルタと、OXC(Optical Cross-Connect)と呼ばれる光スイッチが使用されている。OXCは、N:N型(多入力多出力)の光スイッチである。なお、OXCは、空間結合型の光スイッチでもよいし、導波路型の光スイッチでもよい。 Here, the demultiplexing switching unit 103 uses an optical filter such as an AWG (Arrayed Waveguide Grating) and an optical switch called OXC (Optical Cross-Connect). The OXC is an N: N type (multiple input multiple output) optical switch. The OXC may be a space coupling type optical switch or a waveguide type optical switch.
 図4Aおよび図4Bは、多重分離切替部103の構成の一例を示したブロック図である。なお、図4Aは、大規模なOXCを一つだけ用いた構成を示し、図4Bは、小規模なOXCを複数用いた構成を示している。 4A and 4B are block diagrams illustrating an example of the configuration of the demultiplexing switching unit 103. FIG. 4A shows a configuration using only one large-scale OXC, and FIG. 4B shows a configuration using a plurality of small-scale OXCs.
 図4Aでは、多重分離切替部103は、複数の光フィルタ131と、一つのOXC132とを有する。 4A, the demultiplexing switching unit 103 includes a plurality of optical filters 131 and one OXC 132.
 光フィルタ131は、第1の入出力ポートと、複数の第2の入出力ポートとを有する。第1の入出力ポートは、内部インターフェース104内のいずれかの方路と1対1で相互に接続される。また、第2の入出力ポートのそれぞれは、OXC132と相互に接続される。 The optical filter 131 has a first input / output port and a plurality of second input / output ports. The first input / output port is connected to one of the paths in the internal interface 104 on a one-to-one basis. Each of the second input / output ports is connected to the OXC 132.
 光フィルタ131は、内部インターフェース104内の方路から光信号を受信すると、その光信号を、その光信号の波長に応じた第2の入出力ポートからOXC132に送信する。また、光フィルタ131は、OXC132から光信号を受信すると、その光信号を、第1の入出力ポートから内部インターフェース104内の方路を介して波長切替部101に送信する。 When the optical filter 131 receives an optical signal from a route in the internal interface 104, the optical filter 131 transmits the optical signal to the OXC 132 from the second input / output port corresponding to the wavelength of the optical signal. Further, when the optical filter 131 receives an optical signal from the OXC 132, the optical filter 131 transmits the optical signal from the first input / output port to the wavelength switching unit 101 via a route in the internal interface 104.
 OXC132は、光送受信部102から光信号を受信すると、その光信号を、その光信号の波長に応じた、光フィルタ131の第2の入出力ポートに送信する。また、OXC132は、光フィルタ131から光信号を受信すると、その光信号を、その光信号の波長に応じた光送受信部102に送信する。 When the OXC 132 receives the optical signal from the optical transmission / reception unit 102, the OXC 132 transmits the optical signal to the second input / output port of the optical filter 131 corresponding to the wavelength of the optical signal. Further, when the OXC 132 receives an optical signal from the optical filter 131, the OXC 132 transmits the optical signal to the optical transmission / reception unit 102 corresponding to the wavelength of the optical signal.
 図4Bでは、多重分離切替部103は、複数の光フィルタ133と、OXC134および135とを有する。なお、OXCの数は、図4Bでは、2つだけだが、実際には、2つ以上あってもよい。 4B, the demultiplexing switching unit 103 includes a plurality of optical filters 133 and OXCs 134 and 135. Note that the number of OXCs is only two in FIG. 4B, but may actually be two or more.
 光フィルタ133は、第1の入出力ポートと、複数の第2の入出力ポートとを有する。第1の入出力ポートは、内部インターフェース104内のいずれかの方路と1対1で相互に接続される。また、第2の入出力ポートのそれぞれは、OXC134または135と相互に接続される。 The optical filter 133 has a first input / output port and a plurality of second input / output ports. The first input / output port is connected to one of the paths in the internal interface 104 on a one-to-one basis. Each of the second input / output ports is connected to the OXC 134 or 135.
 光フィルタ133は、内部インターフェース104内の方路から光信号を受信すると、その光信号を、その光信号の波長に応じた第2の入出力ポートからOXC134または135に送信する。また、光フィルタ133は、OXC134または135から光信号を受信すると、その光信号を、第1の入出力ポートから内部インターフェース104内の方路を介して波長切替部101に送信する。 When the optical filter 133 receives an optical signal from a route in the internal interface 104, the optical filter 133 transmits the optical signal to the OXC 134 or 135 from the second input / output port corresponding to the wavelength of the optical signal. Further, when the optical filter 133 receives an optical signal from the OXC 134 or 135, the optical filter 133 transmits the optical signal from the first input / output port to the wavelength switching unit 101 via a route in the internal interface 104.
 OXC134および135は、光送受信部102から光信号を受信すると、その光信号を、その光信号の波長に応じた光フィルタ133の第2の入出力ポートに送信する。また、OXC134および135は、光フィルタ133から光信号を受信すると、その光信号を、その光信号の波長に応じた光送受信部102に送信する。 OXCs 134 and 135, when receiving an optical signal from optical transceiver 102, transmit the optical signal to the second input / output port of optical filter 133 corresponding to the wavelength of the optical signal. Further, when receiving the optical signal from the optical filter 133, the OXCs 134 and 135 transmit the optical signal to the optical transmission / reception unit 102 corresponding to the wavelength of the optical signal.
 図4Aまたは図4Bで示したような多重分離切替部103を用いることで、波長切替部101の波長選択スイッチに基づく方路制約をある程度解消することができる。例えば、仮に多重分離切替部103がなく、内部インターフェース104内の経路のそれぞれが、光送受信部102のいずれかに直接接続されていた場合、波長選択スイッチのWDMラインと接続可能なクライアントラインは、その波長選択スイッチと内部インターフェース104を介して接続された光送受信部102のクライアントラインだけとなる。 By using the demultiplexing / switching unit 103 as shown in FIG. 4A or 4B, the path restriction based on the wavelength selective switch of the wavelength switching unit 101 can be solved to some extent. For example, if there is no demultiplexing / switching unit 103 and each path in the internal interface 104 is directly connected to one of the optical transmission / reception units 102, the client line that can be connected to the WDM line of the wavelength selective switch is Only the client line of the optical transmitter / receiver 102 connected to the wavelength selective switch via the internal interface 104 is provided.
 図4Aまたは図4Bで示したような多重分離切替部103があると、OXCにて内部インターフェース104内の経路と光送受信部102との接続を切り替えることができるので、波長選択スイッチのWDMラインと接続可能なクライアントラインが増え、方路制約が解消される。 If there is the demultiplexing switching unit 103 as shown in FIG. 4A or 4B, the connection between the path in the internal interface 104 and the optical transmission / reception unit 102 can be switched by OXC. The number of client lines that can be connected increases, and route restrictions are eliminated.
 図4Aで示した多重分離切替部103では、OXC132は、光フィルタ131の全ての第2の入出力ポートと、全ての光送受信部102と接続されている。このため、OXC132にて出力方路が切り替えられることにより、光送受信部102からの光信号の出力方路を内部インターフェース104内の任意の方路に切り替えること、および、内部インターフェース104からの光信号の出力方路を、任意の光送受信部102に切り替えることができる。 4A, the OXC 132 is connected to all the second input / output ports of the optical filter 131 and all the optical transceivers 102. Therefore, the output route of the optical transmission / reception unit 102 is switched to an arbitrary route in the internal interface 104 by switching the output route in the OXC 132, and the optical signal from the internal interface 104 is switched. Can be switched to any optical transceiver 102.
 このため、WDMライン111およびクライアントライン112間の方路制約を全て解消することができる。なお、WDMライン111間の方路制約は解消できない。 Therefore, all the route restrictions between the WDM line 111 and the client line 112 can be eliminated. The route restriction between the WDM lines 111 cannot be solved.
 一方、図4Bで示した多重分離切替部103では、小規模な光スイッチが用いていられている。つまり、OXC134および135のそれぞれは、光フィルタ131の一部の第2の入出力ポートと、一部の光送受信部102と接続されている。このため、OXC134および135にて出力方路が切り替えられても、光送受信部102からの光信号の出力方路を内部インターフェース104内の任意の方路に切り替えること、および、内部インターフェース104からの光信号の出力方路を、任意の光送受信部102に切り替えることができない。 On the other hand, a small-scale optical switch is used in the demultiplexing / switching unit 103 shown in FIG. 4B. That is, each of the OXCs 134 and 135 is connected to a part of the second input / output ports of the optical filter 131 and a part of the optical transceiver 102. For this reason, even if the output route is switched by the OXCs 134 and 135, the output route of the optical signal from the optical transceiver 102 is switched to an arbitrary route in the internal interface 104, and from the internal interface 104 The output path of the optical signal cannot be switched to any optical transmission / reception unit 102.
 このため、WDMライン111およびクライアントライン112間の方路制約は一部残存する。 For this reason, some route restrictions between the WDM line 111 and the client line 112 remain.
 したがって、波長切替装置100内の光スイッチ(波長選択スイッチおよびOXC)の構成に応じて、波長切替装置100の方路制約が異なることになる。 Therefore, the path restriction of the wavelength switching device 100 differs depending on the configuration of the optical switch (wavelength selection switch and OXC) in the wavelength switching device 100.
 また、光フィルタ131および133の第2の入出力ポートで入出力可能な光信号の波長は、予め定められている。この第2の入出力ポートで入出力可能な光信号の波長が、波長パスに利用できる光信号の波長となる。 Further, the wavelengths of optical signals that can be input / output at the second input / output ports of the optical filters 131 and 133 are determined in advance. The wavelength of the optical signal that can be input / output at the second input / output port is the wavelength of the optical signal that can be used for the wavelength path.
 図4Aで示した多重分離切替部103では、OXC132は、各光フィルタ131の全ての第2の入出力ポートおよび全ての光送受信部102と接続されているので、全てのクライアントラインおよび全てのWDMラインで、波長パスに利用できる波長内に任意の波長を利用することができる。 In the demultiplexing / switching unit 103 shown in FIG. 4A, the OXC 132 is connected to all the second input / output ports and all the optical transceivers 102 of each optical filter 131, so all the client lines and all the WDMs are connected. The line can use any wavelength within the wavelengths available for the wavelength path.
 一方、図4Bで示した多重分離切替部103では、OXC134および135は、各光フィルタ131の一部の第2の入出力ポートおよび一部の光送受信部102と接続されているので、ライアントラインおよびWDMラインで伝送可能な光信号の波長に制約が生じる。この制約が、波長切替装置100の波長制約となる。 On the other hand, in the demultiplexing / switching unit 103 shown in FIG. 4B, the OXCs 134 and 135 are connected to a part of the second input / output ports of each of the optical filters 131 and a part of the optical transmission / reception part 102. In addition, the wavelength of the optical signal that can be transmitted through the WDM line is limited. This restriction becomes the wavelength restriction of the wavelength switching device 100.
 例えば、OXC134と光送受信部102を介して接続されたクライアントラインでは、波長λ1~λ3のみ使用でき、OXC135とに接続された光送受信部102を介して接続されたクライアントラインでは、波長λ4およびλ5のみ使用できる。 For example, only the wavelengths λ1 to λ3 can be used in the client line connected to the OXC 134 via the optical transmission / reception unit 102, and the wavelengths λ4 and λ5 can be used in the client line connected to the OXC 135 via the optical transmission / reception unit 102. Can only be used.
 以上のように、波長切替装置100の内部構成、具体的には、光スイッチ(波長選択スイッチおよびOXC)の構成に応じて、波長切替装置100における方路制約および波長制約が異なる。 As described above, the path restriction and the wavelength restriction in the wavelength switching device 100 differ depending on the internal configuration of the wavelength switching device 100, specifically, the configuration of the optical switch (wavelength selection switch and OXC).
 図2に戻る。装置制御部105は、自装置(波長切替装置100)を特定する装置識別情報と、自装置における光信号の複数の方路のそれぞれを特定する複数の経路識別情報を有する方路情報と、自装置の光スイッチの構成を示した装置内構成情報とを保持する。 Return to Figure 2. The device control unit 105 includes device identification information that identifies the own device (wavelength switching device 100), route information that includes a plurality of route identification information that identifies each of a plurality of routes of the optical signal in the device, In-device configuration information indicating the configuration of the optical switch of the device is held.
 装置内構成情報は、より具体的には、光スイッチの方路との接続関係、さらに言えば、光スイッチにて互いに接続可能な方路を光スイッチごとに示した方路構成情報と、自装置における各方路にて伝送可能な光信号の波長を示す空き波長情報とを含む。したがって、装置内構成情報は、各波長切替装置100の光スイッチおよび各方路の接続関係と、各方路にて伝送可能な光信号の波長を示すとを示すことになる。 More specifically, the in-device configuration information includes the connection relationship with the path of the optical switch, more specifically, the path configuration information indicating the path that can be connected to each other in the optical switch for each optical switch, And vacant wavelength information indicating the wavelength of an optical signal that can be transmitted in each path in the apparatus. Therefore, the in-device configuration information indicates the connection relationship between the optical switch and each path of each wavelength switching device 100 and the wavelength of the optical signal that can be transmitted in each path.
 方路構成情報は、例えば、波長切替部101内の波長選択スイッチごとに、その波長選択スイッチにて接続可能な方路(WDMライン111および内部インターフェース104内の方路)を示した情報と、多重分離切替部103内のOXCごとに、そのOXCにて接続可能な方路(内部インターフェース104およびクライアントライン112)とを示した情報を含む。 The path configuration information includes, for example, information indicating a path (a path in the WDM line 111 and the internal interface 104) that can be connected by the wavelength selective switch for each wavelength selective switch in the wavelength switching unit 101; For each OXC in the demultiplexing switching unit 103, information indicating a path (internal interface 104 and client line 112) connectable by the OXC is included.
 また、装置制御部105は、波長切替部101および多重分離切替部103内の光スイッチを切り替えることで、光信号の出力方路を波長ごとに切り替えることができる。 Also, the device control unit 105 can switch the output path of the optical signal for each wavelength by switching the optical switch in the wavelength switching unit 101 and the demultiplexing switching unit 103.
 次に、波長ネットワーク運用装置300の構成を説明する。 Next, the configuration of the wavelength network operation apparatus 300 will be described.
 図5は、波長ネットワーク運用装置300の構成の一例を示したブロック図である。図5において、波長ネットワーク運用装置300は、波長ネットワーク運用装置300は、ユーザI/F(interface:インターフェース)301と、構成管理部302と、構成変換部303と、経路制御部304と、設定部305とを有する。また、波長ネットワーク運用装置300は、リモート端末500と無線または有線にて相互に接続可能である。なお、リモート端末500は、波長ネットワークの運用者から種々の情報を受け付け、その受け付けた情報をユーザI/F301に入力する。 FIG. 5 is a block diagram showing an example of the configuration of the wavelength network operation apparatus 300. In FIG. 5, the wavelength network operation apparatus 300 includes a user I / F (interface) 301, a configuration management unit 302, a configuration conversion unit 303, a path control unit 304, and a setting unit. 305. Further, the wavelength network operation device 300 can be connected to the remote terminal 500 wirelessly or by wire. The remote terminal 500 accepts various information from the wavelength network operator and inputs the accepted information to the user I / F 301.
 ユーザI/F301は、受付手段と呼ばれることもある。ユーザI/F301は、波長ネットワークの運用者から、リモート端末500を介して、波長パスを設定する旨の設定要求を受け付ける。 User I / F 301 may be referred to as accepting means. The user I / F 301 receives a setting request for setting a wavelength path from the wavelength network operator via the remote terminal 500.
 設定要求は、本実施形態では、波長パスに用いるクライアントラインを判別するための判別情報を含む。なお、波長パスに用いるクライアントラインは、波長パスの最初の波長切替装置100における光信号の入力方路である最初のクライアントラインと、波長パスの最後の波長切替装置100における光信号の出力方路の最後のクライアントラインである。 In the present embodiment, the setting request includes determination information for determining a client line used for the wavelength path. The client lines used for the wavelength path are the first client line that is the input path of the optical signal in the first wavelength switching device 100 in the wavelength path and the output path of the optical signal in the last wavelength switching device 100 in the wavelength path. Is the last client line.
 判別情報は、例えば、最初の波長切替装置100を特定する第1装置識別情報と、最後の波長切替装置100を特定する第2装置識別情報と、最初の波長切替装置100の光送受信部102を特定する第1ポート番号と、最後の波長切替装置100の光送受信部102を特定する第2ポート番号とを含む。 The discrimination information includes, for example, first device identification information that identifies the first wavelength switching device 100, second device identification information that identifies the last wavelength switching device 100, and the optical transceiver 102 of the first wavelength switching device 100. The first port number to be identified and the second port number to identify the optical transceiver 102 of the last wavelength switching device 100 are included.
 構成管理部302は、管理手段の一例と呼ばれることもある。構成管理部302は、波長切替装置100間の接続関係(波長ネットワークのトポロジ)を示したネットワーク構成情報と、各波長パス切替装置の装置内構成情報とを取得する。 The configuration management unit 302 may be called an example of a management unit. The configuration management unit 302 acquires network configuration information indicating a connection relationship (wavelength network topology) between the wavelength switching devices 100 and in-device configuration information of each wavelength path switching device.
 より具体的には、構成管理部302は、構成発見部311と、NW構成情報記憶部312と、装置内情報記憶部313とを有し、各部が以下の処理を行う。 More specifically, the configuration management unit 302 includes a configuration discovery unit 311, an NW configuration information storage unit 312, and an in-device information storage unit 313, and each unit performs the following processing.
 構成発見部311は、波長切替装置100のそれぞれから、装置識別情報、方路情報および装置内構成情報を取得する。なお、構成発見部311は、これらの情報を、定期的に取得してもよいし、ユーザI/F301が設定要求を受け付けたときに取得してもよい。 The configuration discovery unit 311 acquires device identification information, route information, and in-device configuration information from each of the wavelength switching devices 100. The configuration discovery unit 311 may acquire these pieces of information periodically or when the user I / F 301 receives a setting request.
 構成発見部311は、各波長切替装置100から取得した装置識別情報および方路情報を対応付けてネットワーク構成情報として生成する。 The configuration discovery unit 311 associates the device identification information and the route information acquired from each wavelength switching device 100 to generate network configuration information.
 ネットワーク構成情報において、互いに異なる装置識別情報に対応付けられた方路情報の中に同じ経路識別情報が含まれると、それらの装置識別情報にて特定される波長切替装置100がその経路識別情報にて特定される経路を介して相互に接続されていることを示す。したがって、構成発見部311は、波長切替装置100の接続関係を示すネットワーク構成情報を取得することになる。 In the network configuration information, if the same path identification information is included in the route information associated with different apparatus identification information, the wavelength switching device 100 specified by the apparatus identification information is included in the path identification information. It indicates that they are connected to each other through a specified path. Therefore, the configuration discovery unit 311 acquires network configuration information indicating the connection relationship of the wavelength switching device 100.
 構成発見部311は、その取得したネットワーク構成情報をNW構成情報記憶部312に記憶する。 The configuration discovery unit 311 stores the acquired network configuration information in the NW configuration information storage unit 312.
 また、構成発見部311は、各波長切替装置100から取得した装置識別情報および装置内構成情報を対応付けて装置内情報記憶部313に記憶する。 Further, the configuration discovery unit 311 stores the device identification information acquired from each wavelength switching device 100 and the in-device configuration information in the in-device information storage unit 313 in association with each other.
 構成変換部303は、装置内情報記憶部313に記憶された装置内構成情報に含まれる方路構成情報を、各波長切替装置100の方路ごとに、その方路と接続可能な方路を示した切替可方路情報に変換する。切替可方路情報は、より具体的には、方路を特定する方路識別情報ごとに、その経路と接続可能な経路を示した情報である。 The configuration conversion unit 303 converts the path configuration information included in the in-device configuration information stored in the in-device information storage unit 313 into a path that can be connected to the path for each path of each wavelength switching device 100. Convert to the indicated switchable route information. More specifically, the switchable route information is information indicating a route connectable to the route for each route identification information for specifying the route.
 構成変換部303は、その変換した切替可方路情報と、装置内構成情報に含まれる空き波長情報とを、NW構成情報記憶部312内のネットワーク構成情報に追加する。 The configuration conversion unit 303 adds the converted switchable route information and the free wavelength information included in the in-device configuration information to the network configuration information in the NW configuration information storage unit 312.
 図6は、ある装置識別情報におけるネットワーク構成情報の一例を示した説明図である。図6では、WDMライン111-1~4およびクライアントライン112-1~4のそれぞれのネットワーク構成情報600が示されている。 FIG. 6 is an explanatory diagram showing an example of network configuration information in certain device identification information. FIG. 6 shows network configuration information 600 for each of the WDM lines 111-1 to 111-4 and the client lines 112-1 to 112-4.
 各ネットワーク構成情報600は、経路識別情報601と、切替可方路情報602と、空き波長情報603とを有する。 Each network configuration information 600 includes route identification information 601, switchable route information 602, and free wavelength information 603.
 経路識別情報601は、各経路に固有の情報であり、各経路を特定する。経路識別情報601は、各ビットがそれぞれ異なる経路を示すビット列で表わされ、特定される経路を示すビットが“1”となり、それ以外のビットが“0”となる。 The route identification information 601 is information unique to each route, and identifies each route. The path identification information 601 is represented by a bit string in which each bit indicates a different path, the bit indicating the specified path is “1”, and the other bits are “0”.
 切替可方路情報602は、経路識別情報601にて特定される経路と接続可能な経路を示す。切替可方路情報602は、経路識別情報601と同様なビット列で表わされ、接続可能な経路を示すビットが“1”となり、それ以外のビットが“0”となる。 The switchable route information 602 indicates a route that can be connected to the route specified by the route identification information 601. The switchable route information 602 is represented by a bit string similar to the route identification information 601, the bit indicating a connectable route is “1”, and the other bits are “0”.
 空き波長情報603は、自装置における各方路にて伝送可能な光信号の波長である空き波長を示す。空き波長情報603は、各ビットがそれぞれ異なる波長を示すビット列で表わされ、空き波長を示すビットが“0”となり、それ以外のビットが“1”となる。 Vacant wavelength information 603 indicates a vacant wavelength that is a wavelength of an optical signal that can be transmitted in each path in the device itself. The free wavelength information 603 is represented by a bit string in which each bit indicates a different wavelength, the bit indicating the free wavelength is “0”, and the other bits are “1”.
 図5に戻る。経路制御部304は、ユーザI/F301が受け付けた設定要求内の判別情報、および、NW構成情報記憶部312内のネットワーク構成情報を用いて、最小コスト(最短経路)の波長パスを計算する。なお、ネットワーク構成情報には、切替可方路情報、トポロジ情報および空き波長情報が含まれているので、経路制御部304は、判別情報、切替可方路情報、トポロジ情報および空き波長情報に基づいて、波長パスを計算することになる。 Return to FIG. The path control unit 304 calculates the wavelength path of the minimum cost (shortest path) using the discrimination information in the setting request received by the user I / F 301 and the network configuration information in the NW configuration information storage unit 312. Since the network configuration information includes switchable route information, topology information, and free wavelength information, the path control unit 304 is based on the discrimination information, switchable route information, topology information, and free wavelength information. Thus, the wavelength path is calculated.
 具体的には、経路制御部304は、制約変換部321と、経路計算部322とを有し、各部が以下の処理を行う。 Specifically, the route control unit 304 includes a constraint conversion unit 321 and a route calculation unit 322, and each unit performs the following processing.
 制約変換部321は、除外手段とも呼ばれる。制約変換部321は、判別情報にて判別される波長パスのクライアントラインのそれぞれと接続可能でない経路を、Excude(波長パスの計算から除外)する除外方路として特定し、当該除外方路を示す初期方路制約情報を生成する。 Constraint conversion unit 321 is also referred to as exclusion means. The constraint conversion unit 321 specifies a route that is not connectable to each of the client lines of the wavelength path determined by the determination information as an excluded route to be excluded (excluded from the calculation of the wavelength path), and indicates the excluded route Generate initial route restriction information.
 また、制約変換部321は、ネットワーク構成情報に基づいて、判別情報にて判別されるクライアントラインの空き波長を示す初期波長制約情報を生成する。 Also, the constraint conversion unit 321 generates initial wavelength constraint information indicating the free wavelength of the client line determined by the determination information based on the network configuration information.
 例えば、図1における波長切替装置100-1から100-8までの波長パスを計算するものとし、波長切替装置100-8のネットワーク構成情報が図6で示した構成であるとする。また、クライアントライン112-1が波長パスのクライアントラインであるとする。 For example, assume that the wavelength paths from the wavelength switching devices 100-1 to 100-8 in FIG. 1 are calculated, and the network configuration information of the wavelength switching device 100-8 has the configuration shown in FIG. Further, the client line 112-1 is assumed to be a wavelength path client line.
 この場合、クライアントライン112-1の切替可方路情報602が、WDMライン111-1を示す“00000001”であるため、制約変換部321は、WDMライン111-2~4のそれぞれを除外方路として特定する。制約変換部321は、WDMライン111-2~4を示す初期方路制約情報を生成する。 In this case, since the switchable route information 602 of the client line 112-1 is “00000001” indicating the WDM line 111-1, the constraint conversion unit 321 excludes each of the WDM lines 111-2 to 41-2. As specified. The constraint conversion unit 321 generates initial route constraint information indicating the WDM lines 111-2 to 114-2.
 同様にして、制約変換部321は、波長切替装置100-8に対する初期方路制約情報を生成する。 Similarly, the constraint conversion unit 321 generates initial route constraint information for the wavelength switching device 100-8.
 また、クライアントライン112-1の空き波長情報603は、波長λ1を示す“1111…1110”であるため、制約変換部321は、波長λ1を示す初期波長制約情報を生成する。より具体的には、制約変換部321は、波長λ1が波長切替装置100-8にて使用可能か否かを検査し、波長λ1が波長切替装置100-8にて使用可能であると、波長λ1を示す初期波長制約情報を生成する。なお、空き波長情報603では、最下位ビットから順に、波長λ1、λ2、λ3…を表すものとしている。 Further, since the free wavelength information 603 of the client line 112-1 is “1111... 1110” indicating the wavelength λ1, the constraint conversion unit 321 generates initial wavelength constraint information indicating the wavelength λ1. More specifically, the constraint conversion unit 321 checks whether or not the wavelength λ1 can be used in the wavelength switching device 100-8, and if the wavelength λ1 is usable in the wavelength switching device 100-8, Initial wavelength constraint information indicating λ1 is generated. The empty wavelength information 603 represents the wavelengths λ1, λ2, λ3,... In order from the least significant bit.
 経路計算部322は、計算手段とも呼ばれる。経路計算部322は、CSPF(Constraint based Shortest Path First)と呼ばれる経路計算手法を用いて、波長パスを計算する。 The route calculation unit 322 is also called calculation means. The path calculation unit 322 calculates a wavelength path using a path calculation method called CSPF (Constraint based Shortest Path First).
 具体的には、経路計算部322は、方路制約情報が示す除外方路を介して接続された波長切替装置の接続関係を、NW構成情報記憶部312に記憶されたネットワーク構成情報から除外する。例えば、経路計算部322は、方路制約情報が示す方路制約である、波長パスとして使用できない経路を特定する経路識別情報を、ネットワーク構成情報から除外(Excude)する。 Specifically, the route calculation unit 322 excludes the connection relationship of the wavelength switching devices connected via the exclusion route indicated by the route restriction information from the network configuration information stored in the NW configuration information storage unit 312. . For example, the route calculation unit 322 excludes (Excludes), from the network configuration information, route identification information that specifies a route that cannot be used as a wavelength path, which is the route restriction indicated by the route restriction information.
 経路計算部322は、その接続関係を除外したネットワーク構成情報と、ユーザI/F301が受け付けた設定要求内の判別情報と、制約変換部321にて生成された初期波長制約情報とに基づいて、判別情報にて判別される最初の経路(クライアントライン)から最後の経路(クライアントライン)までの、最小コストの波長パスを計算する。ここで、波長パスの計算アルゴリズムは、波長制約を考慮して波長パスの計算が可能なダイクストラアルゴリズムを使用するものとする。 The route calculation unit 322 is based on the network configuration information excluding the connection relationship, the discrimination information in the setting request received by the user I / F 301, and the initial wavelength constraint information generated by the constraint conversion unit 321. The wavelength path of the minimum cost from the first route (client line) determined by the determination information to the last route (client line) is calculated. Here, as the wavelength path calculation algorithm, a Dijkstra algorithm capable of calculating the wavelength path in consideration of the wavelength constraint is used.
 例えば、図1における波長切替装置100-1から100-8までの波長パスを計算するものとし、波長切替装置100-8のネットワーク構成情報が図6で示した構成であるとする。また、クライアントライン112-1が波長パスのクライアントラインであるとする。 For example, assume that the wavelength paths from the wavelength switching devices 100-1 to 100-8 in FIG. 1 are calculated, and the network configuration information of the wavelength switching device 100-8 has the configuration shown in FIG. Further, the client line 112-1 is assumed to be a wavelength path client line.
 この場合、初期方路制約情報がWDMライン111-2~4のそれぞれを除外方路として示すので、経路計算部322は、WDMライン111-1のみが使用可能であると判断し、WDMライン111-1を波長パスの経路の候補として選択する。また、経路計算部322は、初期波長制約情報が波長λ1を示すので、波長λ1を波長パスの波長の候補として選択する。 In this case, since the initial route restriction information indicates each of the WDM lines 111-2 to 11-4 as the excluded route, the route calculation unit 322 determines that only the WDM line 111-1 can be used, and the WDM line 111 −1 is selected as a wavelength path route candidate. In addition, since the initial wavelength constraint information indicates the wavelength λ1, the path calculation unit 322 selects the wavelength λ1 as a wavelength path wavelength candidate.
 続いて、経路計算部322は、WDMライン111-1と接続された波長切替装置100-2に注目する。経路計算部322は、WDMライン111-1と接続可能なWDMラインを、ネットワーク構成情報の切替可方路情報に基づいて選択する。経路計算部322は、空き波長情報に基づいて、その選択したWDMラインの中で波長λ1を使用可能なWDMラインを、波長パスの候補として選択する。 Subsequently, the path calculation unit 322 pays attention to the wavelength switching device 100-2 connected to the WDM line 111-1. The route calculation unit 322 selects a WDM line connectable to the WDM line 111-1 based on the switchable route information in the network configuration information. Based on the free wavelength information, the path calculation unit 322 selects a WDM line that can use the wavelength λ1 among the selected WDM lines as a wavelength path candidate.
 経路計算部322は、上記の処理を繰り返して、最初のクライアントラインから最後のクライアントラインまでの、最小コストの波長パスを計算する。 The route calculation unit 322 repeats the above processing to calculate the wavelength path with the lowest cost from the first client line to the last client line.
 設定部305は、経路制御部304が計算した波長パスを、各波長切替装置100を用いて設定する。 The setting unit 305 sets the wavelength path calculated by the route control unit 304 using each wavelength switching device 100.
 次に動作を説明する。 Next, the operation will be described.
 初めに、波長ネットワークの構成情報を取得する際の動作について説明する。 First, the operation when acquiring wavelength network configuration information will be described.
 構成発見部311は、先ず、構成情報の送信要求を波長ネットワーク内の波長切替装置100のそれぞれの装置制御部105に送信する。装置制御部105は、送信要求を受信すると、保持している装置識別情報、方路情報および装置内構成情報を波長ネットワーク運用装置300の構成発見部311に送信する。 First, the configuration discovery unit 311 transmits a configuration information transmission request to each device control unit 105 of the wavelength switching device 100 in the wavelength network. Upon receiving the transmission request, the device control unit 105 transmits the held device identification information, route information, and in-device configuration information to the configuration discovery unit 311 of the wavelength network operation device 300.
 続いて、構成発見部311は、装置識別情報、方路情報および装置内構成情報を受信するたびに、その装置識別情報および方路情報を対応付けてNW構成情報記憶部312に記憶していく。さらに、構成発見部311は、それらの情報を受信するたびに、装置識別情報および装置内構成情報を対応付けて装置内情報記憶部313に記憶していく。 Subsequently, every time device identification information, route information, and in-device configuration information are received, the configuration discovery unit 311 associates the device identification information with the route information and stores them in the NW configuration information storage unit 312. . Furthermore, whenever the information is received, the configuration discovery unit 311 associates the device identification information with the in-device configuration information and stores them in the in-device information storage unit 313.
 その後、構成発見部311は、全ての波長切替装置100に対して、方路情報および装置内構成情報の記憶が終了すると、構成変換部303に動作命令を送信する。 After that, the configuration discovery unit 311 transmits an operation command to the configuration conversion unit 303 when the storage of the route information and the in-device configuration information is completed for all the wavelength switching devices 100.
 構成変換部303は、動作命令を受信すると、装置内情報記憶部313に記憶されている装置内構成情報を取得し、その装置内構成情報を方路制約情報に変換する。構成変換部303は、その方路制約情報をNW構成情報記憶部312内のネットワーク構成情報に追加して、動作を終了する。 When receiving the operation command, the configuration conversion unit 303 acquires the in-device configuration information stored in the in-device information storage unit 313, and converts the in-device configuration information into route restriction information. The configuration conversion unit 303 adds the route restriction information to the network configuration information in the NW configuration information storage unit 312 and ends the operation.
 次に、波長パスを設定する際の動作について説明する。図7は、本動作を説明するためのフローチャートである。 Next, the operation when setting the wavelength path will be described. FIG. 7 is a flowchart for explaining this operation.
 ステップS701では、波長ネットワークの運用者がリモート端末500を用いて設定要求をユーザI/F301に入力する。ユーザI/F301は、設定要求を受け付けると、その設定要求を経路計算部322に送信する。経路計算部322は、設定要求を受信すると、ステップS702を実行する。 In step S701, the wavelength network operator inputs a setting request to the user I / F 301 using the remote terminal 500. When receiving the setting request, the user I / F 301 transmits the setting request to the route calculation unit 322. When the route calculation unit 322 receives the setting request, the route calculation unit 322 executes Step S702.
 ステップS702では、経路計算部322は、設定要求内の判別情報に基づいて、波長パスのクライアントラインを判別する。 In step S702, the route calculation unit 322 determines the client line of the wavelength path based on the determination information in the setting request.
 例えば、経路計算部322は、装置内情報記憶部313から、判別情報内の第1装置識別情報を検索し、その検索された第1装置識別情報と対応付けられた装置内構成情報から、第1ポート識別情報と対応付けられた経路識別情報をさらに検索する。経路計算部322は、その検索された経路識別情報にて特定されるクライアントラインを、なお、同様にして、経路計算部322は、波長パスの最後のクライアントラインを判別することができる。 For example, the path calculation unit 322 searches the in-device information storage unit 313 for the first device identification information in the discrimination information, and from the in-device configuration information associated with the searched first device identification information. The route identification information associated with the 1-port identification information is further searched. The route calculation unit 322 can determine the client line specified by the searched route identification information, and similarly, the route calculation unit 322 can determine the last client line of the wavelength path.
 経路計算部322は、波長パスのクライアントラインを判別すると、そのクライアントラインのそれぞれを特定する経路識別情報を含むクライアントライン情報を制約変換部321に送信する。制約変換部321は、クライアントライン情報を受信すると、ステップS703を実行する。 When the path calculation unit 322 determines the client line of the wavelength path, the path calculation unit 322 transmits client line information including path identification information for specifying each of the client lines to the constraint conversion unit 321. When receiving the client line information, the constraint conversion unit 321 executes Step S703.
 ステップS703では、制約変換部321は、NW構成情報記憶部312からネットワーク構成情報を取得し、そのネットワーク構成情報とクライアントライン情報とに基づいて、初期方路制約情報および初期波長制約情報を生成する。制約変換部321は、そのネットワーク構成情報、初期方路制約情報および初期波長制約情報を経路計算部322に送信する。経路計算部322は、ネットワーク構成情報、初期方路制約情報および初期波長制約情報を受信すると、ステップS704を実行する。 In step S703, the constraint conversion unit 321 acquires network configuration information from the NW configuration information storage unit 312 and generates initial route constraint information and initial wavelength constraint information based on the network configuration information and client line information. . The constraint conversion unit 321 transmits the network configuration information, initial route constraint information, and initial wavelength constraint information to the route calculation unit 322. When receiving the network configuration information, the initial route restriction information, and the initial wavelength restriction information, the route calculation unit 322 executes Step S704.
 ステップS704では、経路計算部322は、初期方路制約情報が示す方路制約である、波長パスとして使用できない経路を特定する経路識別情報を、ネットワーク構成情報から除外する。経路計算部322は、その経路識別情報が除外されたネットワーク構成情報に基づいて、判別情報にて判別される最初のクライアントラインから最後のクライアントラインまでの、最小コストの波長パスを計算する。経路計算部322は、その計算した波長パスを示すパス情報を設定部305に送信する。設定部305は、パス情報を受信すると、ステップS705を実行する。 In step S704, the route calculation unit 322 excludes, from the network configuration information, route identification information that identifies a route that cannot be used as a wavelength path, which is the route constraint indicated by the initial route constraint information. The route calculation unit 322 calculates a wavelength path with the minimum cost from the first client line to the last client line determined by the determination information based on the network configuration information from which the route identification information is excluded. The route calculation unit 322 transmits path information indicating the calculated wavelength path to the setting unit 305. When receiving the path information, the setting unit 305 executes step S705.
 ステップS705では、設定部305は、パス情報を受信すると、そのパス情報が示す波長パスを波長切替装置100を用いて設定して、動作を終了する。 In step S705, upon receiving the path information, the setting unit 305 sets the wavelength path indicated by the path information using the wavelength switching device 100, and ends the operation.
 より具体的には、設定部305は、パス情報に基づいて、各波長切替装置100にて相互に接続する経路を含む切替要求を生成する。設定部305は、その切替要求を各波長切替装置100に送信することで、波長パスを設定する。 More specifically, the setting unit 305 generates a switching request including paths connected to each other in each wavelength switching device 100 based on the path information. The setting unit 305 sets the wavelength path by transmitting the switching request to each wavelength switching device 100.
 なお、波長切替装置100のそれぞれの装置制御部105は、切替要求を受信すると、その切替要求が示す経路が相互に接続されるように、波長選択スイッチおよびOXCを切り替える。 In addition, when each device control unit 105 of the wavelength switching device 100 receives the switching request, the device control unit 105 switches the wavelength selection switch and the OXC so that the paths indicated by the switching request are connected to each other.
 以上のように動作することにより、方路制約と波長制約を考慮して、単一レイヤ(波長ネットワークレイヤ)にて最小コストの波長パスを設定することができる。 By operating as described above, it is possible to set a wavelength path with a minimum cost in a single layer (wavelength network layer) in consideration of route restrictions and wavelength restrictions.
 本実施形態によれば、構成管理部302は、各波長切替装置100間の接続関係を示したネットワーク構成情報と、各波長切替装置100の光スイッチおよび各方路の接続関係を示した装置内構成情報とを取得する。構成変換部303は、構成管理部302が取得した装置内構成情報を、方路ごとにその方路と接続可能な方路を示す切替可方路情報に変換する。経路制御部304は、構成管理部302が取得したネットワーク構成情報と、構成変換部303にて変換された切替可方路情報とを用いて、波長パスを計算する。設定部305は、経路制御部304にて計算された波長パスを、各波長切替装置100を用いて設定する。 According to the present embodiment, the configuration management unit 302 includes the network configuration information indicating the connection relationship between the wavelength switching devices 100, the optical switch of each wavelength switching device 100, and the connection relationship between the paths. Get configuration information. The configuration conversion unit 303 converts the in-device configuration information acquired by the configuration management unit 302 into switchable route information indicating a route connectable to the route for each route. The path control unit 304 calculates the wavelength path using the network configuration information acquired by the configuration management unit 302 and the switchable route information converted by the configuration conversion unit 303. The setting unit 305 sets the wavelength path calculated by the route control unit 304 using each wavelength switching device 100.
 この場合、光スイッチおよび方路の接続関係を示した装置内構成情報が切替可方路情報に変換され、その方路制約情報に基づいて波長パスが計算される。 In this case, the in-device configuration information indicating the connection relationship between the optical switch and the route is converted into the switchable route information, and the wavelength path is calculated based on the route restriction information.
 したがって、光スイッチの構成に応じて波長パスを柔軟に設定することが可能になる。また、方路数の数が増加しても、通常、光スイッチの数の増加量は、方路の組み合わせの数の増加量に比べて小さいので、方路数が増加した場合における情報量の増加量を軽減することが可能になる。よって、方路数が大きい場合でも、比較的少ない情報量で、光スイッチの構成に応じて波長パスを柔軟に設定することが可能になる。 Therefore, the wavelength path can be flexibly set according to the configuration of the optical switch. Even if the number of routes increases, the increase in the number of optical switches is usually smaller than the increase in the number of combinations of routes, so the amount of information when the number of routes increases The increase amount can be reduced. Therefore, even when the number of routes is large, the wavelength path can be flexibly set according to the configuration of the optical switch with a relatively small amount of information.
 また、本実施形態では、装置内構成情報は、各方路にて伝送可能な光信号の波長をさらに示す。この場合、波長制約を考慮して波長パスを設定することが可能になるので、より正確に波長パスを設定することが可能になる。 In the present embodiment, the in-device configuration information further indicates the wavelength of the optical signal that can be transmitted in each path. In this case, the wavelength path can be set in consideration of the wavelength constraint, so that the wavelength path can be set more accurately.
 また、本実施形態では、ユーザI/F301は、波長パスの最初のクライアントラインと、波長パスの最後のクライアントとを判別するための判別情報を受け付ける。制約変換部321は、判別情報および切替可方路情報に基づいて、最初のクライアントラインおよび最後のクライアントラインと接続可能でない経路である除外方路を介して接続された波長切替装置100の接続関係をネットワーク構成情報から除外する。経路計算部322は、制約変換部321にて除外方路が除外されたネットワーク構成情報と、切替可方路情報とを用いて波長パスを計算する。 In the present embodiment, the user I / F 301 accepts discrimination information for discriminating between the first client line of the wavelength path and the last client of the wavelength path. Based on the discrimination information and the switchable route information, the constraint conversion unit 321 is connected to the wavelength switching device 100 connected via the excluded route that is not connectable to the first client line and the last client line. Is excluded from the network configuration information. The route calculation unit 322 calculates the wavelength path using the network configuration information from which the excluded route is excluded by the constraint conversion unit 321 and the switchable route information.
 この場合、最初のクライアントラインおよび最後のクライアントラインと接続可能でない経路である除外方路が除外されたたネットワーク構成情報が用いられて、波長パスが計算される。したがって、クライアントラインとWDMラインとの間の方路制約を既に満たしたネットワーク構成情報を用いて波長パスが計算できるので、波長パスの計算が容易になる。 In this case, the wavelength path is calculated using the network configuration information from which the excluded route that is not connectable to the first client line and the last client line is excluded. Therefore, since the wavelength path can be calculated using the network configuration information that already satisfies the route restriction between the client line and the WDM line, the wavelength path can be easily calculated.
 (第2の実施形態)
 本実施形態では、パケットネットワークと波長ネットワークからなるマルチレイヤネットワークにおいて、パケットパスと波長パスを連動して設定する波長運用装置について説明する。
(Second Embodiment)
In the present embodiment, a wavelength operation apparatus that sets a packet path and a wavelength path in association with each other in a multilayer network including a packet network and a wavelength network will be described.
 ユーザI/F301は、パケットネットワーク400におけるパケットパスの始点ノードおよび終点ノードとなるパケット切替装置200を示すパケット識別情報を含む設定要求を受け付ける。 The user I / F 301 accepts a setting request including packet identification information indicating the packet switching device 200 that is a start node and an end node of a packet path in the packet network 400.
 構成発見部311は、パケット切替装置200間の接続関係と、波長切替装置100およびパケット切替装置200間の接続関係とを示すトポロジ情報を、ネットワーク構成情報として取得する。これにより、ネットワーク構成情報は、パケット切替装置200間の接続関係と、波長切替装置100およびパケット切替装置200間の接続関係とをさらに示すことになる。 The configuration discovery unit 311 acquires topology information indicating the connection relationship between the packet switching devices 200 and the connection relationship between the wavelength switching device 100 and the packet switching device 200 as network configuration information. As a result, the network configuration information further indicates the connection relationship between the packet switching device 200 and the connection relationship between the wavelength switching device 100 and the packet switching device 200.
 例えば、構成発見部311は、パケット切替装置200のそれぞれから、そのパケット切替装置200を特定するパケット識別情報と、そのパケット切替装置200の方路を特定するパケット経路識別情報とを取得することで、トポロジ情報を取得する。 For example, the configuration discovery unit 311 acquires packet identification information for specifying the packet switching device 200 and packet path identification information for specifying the route of the packet switching device 200 from each of the packet switching devices 200. Get topology information.
 経路制御部304(より具体的には、経路計算部322)は、構成発見部311に記憶されたネットワーク構成情報と、ユーザI/F301が受け付けた設定要求に含まれるパケット識別情報とに基づいて、波長パスおよびパケットパスを計算する。 The route control unit 304 (more specifically, the route calculation unit 322) is based on the network configuration information stored in the configuration discovery unit 311 and the packet identification information included in the setting request received by the user I / F 301. Calculate the wavelength path and packet path.
 経路制御部304は、その計算した波長パスを波長切替装置100を用いて設定すると共に、その計算したパケットパスをパケット切替装置200を用いて設定する。 The route control unit 304 sets the calculated wavelength path using the wavelength switching device 100 and sets the calculated packet path using the packet switching device 200.
 次に動作を説明する。 Next, the operation will be described.
 図8は、本実施形態における波長ネットワークの動作の一例を説明するためのフローチャートである。 FIG. 8 is a flowchart for explaining an example of the operation of the wavelength network in the present embodiment.
 ステップS801では、波長ネットワークの運用者がリモート端末500を用いて設定要求をユーザI/F301に入力する。ユーザI/F301は、設定要求を受け付けると、その設定要求を経路計算部322に送信する。経路計算部322は、設定要求を受信すると、ステップS802を実行する。 In step S801, the wavelength network operator inputs a setting request to the user I / F 301 using the remote terminal 500. When receiving the setting request, the user I / F 301 transmits the setting request to the route calculation unit 322. When receiving the setting request, the route calculation unit 322 executes Step S802.
 ステップS802では、経路計算部322は、設定要求から判別情報を抽出すると共に、NW構成情報記憶部312からネットワーク構成情報を取得する。経路計算部322は、そのネットワーク構成情報内の方路情報およびトポロジ情報と、その判別情報とを用いて、始点ノードから終点ノードまでのエンドツーエンドで最小コストの経路(以下、E2E経路と称する)を計算する。このとき、経路計算部322は、波長パスの方路制約および波長制約を考慮せずに、E2Eの経路を計算する。経路計算部322は、そのエンドツーエンド経路を計算すると、ステップS803を実行する。 In step S802, the route calculation unit 322 extracts the discrimination information from the setting request and acquires the network configuration information from the NW configuration information storage unit 312. The route calculation unit 322 uses the route information and topology information in the network configuration information, and the discrimination information, and uses the end-to-end minimum cost route (hereinafter referred to as an E2E route) from the start node to the end node. ). At this time, the path calculation unit 322 calculates the E2E path without considering the path constraint and the wavelength constraint of the wavelength path. When calculating the end-to-end route, the route calculation unit 322 executes Step S803.
 ステップS803では、経路計算部322は、その計算したE2Eの経路内のWDMラインが含まれているか否かを検査することで、E2Eの経路内に波長パスが含まれているか否かを検査する。経路計算部322は、波長パスが含まれてないと、ステップS804を実行し、波長パスが含まれていると、ステップS805を実行する。 In step S803, the route calculation unit 322 checks whether or not a wavelength path is included in the E2E route by checking whether or not the WDM line in the calculated E2E route is included. . If the wavelength path is not included, the path calculation unit 322 executes Step S804, and if the wavelength path is included, the path calculation unit 322 executes Step S805.
 ステップS804では、経路計算部322は、E2E経路の中に波長パスが含まれないので、そのE2E経路を示す経路情報を設定部305に送信する。設定部305は、経路情報を受信すると、パケット切替装置200を用いて、その経路情報が示すE2E経路上にパケットパスを設定して、動作を終了する。 In step S804, since the wavelength path is not included in the E2E route, the route calculation unit 322 transmits route information indicating the E2E route to the setting unit 305. Upon receiving the route information, the setting unit 305 sets the packet path on the E2E route indicated by the route information using the packet switching device 200, and ends the operation.
 一方、ステップS805では、経路計算部322は、E2E経路内の波長パスの最初の経路および最後の経路を判別する。経路計算部322は、その最初の経路から最後の経路までの波長パスを再計算する。 On the other hand, in step S805, the route calculation unit 322 determines the first route and the last route of the wavelength paths in the E2E route. The route calculation unit 322 recalculates the wavelength path from the first route to the last route.
 本実施形態では、経路計算部322は、第一の実施形態と異なり、制約変換部321を用いずに波長パスを計算する。つまり、経路計算部322は、初期方路制約情報および初期波長制約情報を考慮せずに、波長パスを計算する。これは、第一の実施形態と異なり、最初のクライアントラインおよび最後のクライアントラインを任意に選択することができるためである。 In this embodiment, unlike the first embodiment, the route calculation unit 322 calculates a wavelength path without using the constraint conversion unit 321. That is, the route calculation unit 322 calculates the wavelength path without considering the initial route constraint information and the initial wavelength constraint information. This is because, unlike the first embodiment, the first client line and the last client line can be arbitrarily selected.
 経路計算部322は、波長パスを計算すると、ステップS806を実行する。 When calculating the wavelength path, the route calculation unit 322 executes step S806.
 ステップS806では、経路計算部322は、その再計算した波長パスを示すパス情報を設定部305に送信する。設定部305は、パス情報を受信すると、そのパス情報が示す波長パスを波長切替装置100を用いて設定する。 In step S806, the route calculation unit 322 transmits path information indicating the recalculated wavelength path to the setting unit 305. When receiving the path information, the setting unit 305 sets the wavelength path indicated by the path information using the wavelength switching device 100.
 また、経路計算部322は、パス情報を送信すると、ステップS807を実行する。 In addition, when the path calculation unit 322 transmits the path information, the path calculation unit 322 executes Step S807.
 ステップS807では、経路計算部322は、その再計算した波長パスを仮想リンクとして登録し、その後、ステップS808を実行する。 In step S807, the route calculation unit 322 registers the recalculated wavelength path as a virtual link, and then executes step S808.
 なお、この登録された仮想リンクは、ステップS801におけるE2E経路の計算で使用される。 Note that this registered virtual link is used in the calculation of the E2E route in step S801.
 ステップS808では、経路計算部322は、その波長パスを設定した経路をE2Eの経路から除いて、ステップS809を実行する。 In step S808, the route calculation unit 322 removes the route for which the wavelength path is set from the E2E route, and executes step S809.
 ステップS809では、経路計算部322は、その波長パスが設定された経路が除外されたE2E経路を示す経路情報を設定部305に送信する。設定部305は、経路情報を受信すると、パケット切替装置200を用いて、その経路情報が示すE2E経路上にパケットパスを設定して、動作を終了する。 In step S809, the route calculation unit 322 transmits route information indicating the E2E route from which the route for which the wavelength path is set is excluded to the setting unit 305. Upon receiving the route information, the setting unit 305 sets the packet path on the E2E route indicated by the route information using the packet switching device 200, and ends the operation.
 以上のように動作することにより、波長パスの方路制約と波長制約を考慮しながら、マルチレイヤにて最短コストの波長パスおよびパケットパスを設定することが可能になる。 By operating as described above, it becomes possible to set the wavelength path and the packet path with the shortest cost in the multi-layer while considering the path restrictions and the wavelength restrictions of the wavelength path.
 本実施形態によれば、ネットワーク構成情報は、各パケット切替装置間の接続関係と、各パケット切替装置および各波長パス切替装置間の接続関係とをさらに示す。また、ユーザI/F301は、パケットパスの始点および終点となるパケット切替装置を示すパケット識別情報を受け付ける。経路制御部304は、ネットワーク構成情報およびパケット識別情報に基づいてパケットパスをさらに計算する。設定部305は、経路制御部304にて計算されたパケットパスを、パケット切替装置200を用いて設定する。 According to this embodiment, the network configuration information further indicates the connection relationship between the packet switching devices and the connection relationship between the packet switching devices and the wavelength path switching devices. In addition, the user I / F 301 receives packet identification information indicating a packet switching device that is a start point and an end point of a packet path. The route control unit 304 further calculates a packet path based on the network configuration information and the packet identification information. The setting unit 305 sets the packet path calculated by the route control unit 304 using the packet switching device 200.
 この場合、波長パスの方路制約と波長制約を考慮しながら、波長パスおよびパケットパスを設定することが可能になる。 In this case, it is possible to set the wavelength path and the packet path while taking into consideration the path restrictions and wavelength restrictions of the wavelength path.
 (第三の実施形態)
 波長ネットワーク運用装置300は、第1の実施形態および第2の実施形態では、波長切替装置100およびパケット切替装置200と別体になっていたが、本実施形態では、波長切替装置100またはパケット切替装置200に組み込まれている。この場合、波長ネットワーク運用装置300は、GMLS(Generalized Multi-Protocol Label Switching)などの分散プロトコルを使用して、波長切替装置100またはパケット切替装置200内の波長ネットワーク運用装置300に装置識別情報、方路情報および装置内構成情報を通知することで、波長パスおよびパケットパスの設定が可能になる。
(Third embodiment)
The wavelength network operation device 300 is separate from the wavelength switching device 100 and the packet switching device 200 in the first embodiment and the second embodiment, but in this embodiment, the wavelength switching device 100 or the packet switching is performed. It is incorporated in the device 200. In this case, the wavelength network operation apparatus 300 uses a distributed protocol such as GMLS (Generalized Multi-Protocol Label Switching) to transmit the device identification information and the method to the wavelength network operation apparatus 300 in the wavelength switching apparatus 100 or the packet switching apparatus 200. By notifying the path information and the in-device configuration information, the wavelength path and the packet path can be set.
 以上、実施形態を参照して本願発明を説明したが、本願発明は、上記実施形態に限定されたものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更を行うことができる。 As described above, the present invention has been described with reference to the embodiment, but the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 例えば、ユーザI/F301としてキーボードなどの入力装置が用いられ、波長ネットワークの運用者がリモート端末を用いずに直接ユーザI/F301に設定要求を入力できるようにしてもよい。 For example, an input device such as a keyboard may be used as the user I / F 301 so that a wavelength network operator can directly input a setting request to the user I / F 301 without using a remote terminal.
 本発明は、ネットワークの管理を行うNMS(Network Management System)における、パスを管理するネットワーク運用管理装置や、ネットワーク内の通信装置の制御部などに実装することができる。 The present invention can be implemented in a network operation management device that manages paths in a network management system (NMS) that manages a network, a control unit of a communication device in a network, or the like.
 この出願は、2009年8月12日に出願された日本出願特願2009-187211号公報を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2009-187211, filed on Aug. 12, 2009, the entire disclosure of which is incorporated herein.

Claims (10)

  1.  光信号の方路間の接続を光スイッチを用いて前記光信号の波長ごとに切り替えることが可能な複数の波長パス切替装置が複数の方路を介して接続された波長ネットワークの波長パスを設定するネットワーク管理装置であって、
     各波長パス切替装置間の接続関係を示したネットワーク構成情報と、各波長パス切替装置の光スイッチおよび各方路の接続関係を示した装置内構成情報とを取得する取得手段と、
     前記取得手段が取得した装置内構成情報を、前記方路ごとに当該方路と接続可能な方路を示す切替可方路情報に変換する構成変換手段と、
     前記取得手段が取得したネットワーク構成情報と、前記構成変換手段にて変換された切替可方路情報とを用いて、前記波長パスを計算する制御手段と、
     前記制御手段にて計算された波長パスを、各波長パス切替装置を用いて設定する設定手段と、を有するネットワーク管理装置。
    A plurality of wavelength path switching devices capable of switching the connection between the optical signal paths for each wavelength of the optical signal using an optical switch set the wavelength path of the wavelength network connected through the plurality of paths. A network management device that
    An acquisition means for acquiring network configuration information indicating a connection relationship between each wavelength path switching device, and intra-device configuration information indicating a connection relationship between each optical path of each wavelength path switching device and each path;
    Configuration conversion means for converting in-device configuration information acquired by the acquisition means into switchable route information indicating a path connectable to the path for each path;
    Control means for calculating the wavelength path using the network configuration information acquired by the acquisition means and the switchable route information converted by the configuration conversion means,
    A network management device comprising: setting means for setting the wavelength path calculated by the control means using each wavelength path switching device.
  2.  請求項1に記載のネットワーク管理装置において、
     前記装置内構成情報は、各方路にて伝送可能な光信号の波長をさらに示す、ネットワーク管理装置。
    The network management device according to claim 1,
    The in-device configuration information is a network management device that further indicates a wavelength of an optical signal that can be transmitted in each path.
  3.  請求項1または2に記載のネットワーク管理装置において、
     前記波長パスの最初の波長パス切替装置における前記光信号の入力方路と、前記波長パスの最後の波長パス切替装置における前記光信号の出力方路とを判別するための判別情報を受け付ける受付手段をさらに有し、
     前記制御手段は、
     前記判別情報および前記切替可方路情報に基づいて、前記入力方路および前記出力方路と接続可能でない方路である除外方路を介して接続された波長パス切替装置の接続関係を前記ネットワーク構成情報から除外する除外手段と、
     前記除外手段にて前記除外方路が除外されたネットワーク構成情報と、前記切替可方路情報とを用いて、前記波長パスを計算する計算手段と、を有する、ネットワーク管理装置。
    The network management device according to claim 1 or 2,
    Accepting means for receiving discrimination information for discriminating between the input path of the optical signal in the first wavelength path switching device of the wavelength path and the output path of the optical signal in the last wavelength path switching device of the wavelength path Further comprising
    The control means includes
    Based on the discrimination information and the switchable route information, the connection relationship of the wavelength path switching devices connected via the excluded route that is not connectable to the input route and the output route is represented by the network. Exclusion means to exclude from the configuration information;
    A network management apparatus comprising: network configuration information from which the excluded route is excluded by the exclusion unit; and a calculation unit that calculates the wavelength path using the switchable route information.
  4.  請求項1または2に記載のネットワーク管理装置において、
     各波長パス切替装置は、パケットパスを切り替えることが可能な複数のパケット切替装置を有するパケットネットワークと接続され、
     前記ネットワーク構成情報は、各パケット切替装置間の接続関係と、各パケット切替装置および各波長パス切替装置間の接続関係とをさらに示し、
     前記パケットパスの始点および終点となるパケット切替装置を示すパケット識別情報を受け付ける受付手段をさらに含み、
     前記制御手段は、前記ネットワーク構成情報および前記パケット識別情報に基づいて、前記パケットパスをさらに計算し、
     前記設定手段は、前記制御手段にて計算されたパケットパスを、前記パケット切替装置を用いて設定する、ネットワーク管理装置。
    The network management device according to claim 1 or 2,
    Each wavelength path switching device is connected to a packet network having a plurality of packet switching devices capable of switching packet paths,
    The network configuration information further indicates a connection relationship between each packet switching device and a connection relationship between each packet switching device and each wavelength path switching device,
    Receiving means for receiving packet identification information indicating a packet switching device as a starting point and an ending point of the packet path;
    The control means further calculates the packet path based on the network configuration information and the packet identification information,
    The network management device, wherein the setting unit sets the packet path calculated by the control unit using the packet switching device.
  5.  請求項1ないし4のいずれか1項に記載のネットワーク管理装置において、
     前記波長ネットワークは、リング状の経路を有する複数のリングネットワークが互いに接続されたマルチリングネットワークである、ネットワーク管理装置。
    In the network management device according to any one of claims 1 to 4,
    The wavelength management network is a multi-ring network in which a plurality of ring networks having ring-shaped paths are connected to each other.
  6.  請求項1ないし5のいずれか1項に記載のネットワーク管理装置において、
     前記ネットワーク管理装置は、前記波長パス切替装置に内蔵される、ネットワーク管理装置。
    In the network management device according to any one of claims 1 to 5,
    The network management device is a network management device built in the wavelength path switching device.
  7.  光信号の方路間の接続を光スイッチを用いて前記光信号の波長ごとに切り替えることが可能な複数の波長パス切替装置が複数の方路を介して接続された波長ネットワークの波長パスを設定する波長パス設定方法による波長パス設定方法であって、
     各波長パス切替装置間の接続関係を示したネットワーク構成情報と、各波長パス切替装置の光スイッチの構成を示した装置内構成情報とを取得する取得ステップと、
     前記取得された装置内構成情報を、前記方路ごとに当該方路と接続可能な方路を示す切替可方路情報に変換する構成変換ステップと、
     前記取得されたネットワーク構成情報と、前記変換された切替可方路情報とを用いて、前記波長パスを計算する制御ステップと、
     前記計算された波長パスを、各波長パス切替装置を用いて設定する設定ステップと、を含む波長パス設定方法。
    A plurality of wavelength path switching devices capable of switching the connection between the optical signal paths for each wavelength of the optical signal using an optical switch set the wavelength path of the wavelength network connected through the plurality of paths. A wavelength path setting method by a wavelength path setting method to
    An acquisition step of acquiring network configuration information indicating a connection relationship between each wavelength path switching device and in-device configuration information indicating the configuration of the optical switch of each wavelength path switching device;
    A configuration conversion step of converting the acquired in-device configuration information into switchable route information indicating a route connectable to the route for each route;
    A control step of calculating the wavelength path using the acquired network configuration information and the converted switchable route information;
    A setting step of setting the calculated wavelength path using each wavelength path switching device.
  8.  請求項7に記載の波長パス設定方法において、
     前記装置内構成情報は、各方路にて伝送可能な光信号の波長をさらに示す、波長パス設定方法。
    In the wavelength path setting method according to claim 7,
    The in-device configuration information is a wavelength path setting method further indicating a wavelength of an optical signal that can be transmitted in each path.
  9.  請求項7または8に記載の波長パス設定方法において、
     前記波長パスの最初の波長パス切替装置における前記光信号の入力方路と、前記波長パスの最後の波長パス切替装置における前記光信号の出力方路とを判別するための判別情報を受け付ける受付ステップをさらに含み、
     前記制御ステップは、
     前記判別情報および前記切替可方路情報に基づいて、前記入力方路および前記出力方路と接続可能でない方路である除外方路を介して接続された波長パス切替装置の接続関係を前記ネットワーク構成情報から除外する除外ステップと、
     前記除外方路が除外されたネットワーク構成情報と、前記切替可方路情報とを用いて、前記波長パスを計算する計算ステップと、を含む、波長パス設定方法。
    The wavelength path setting method according to claim 7 or 8,
    Accepting step for receiving discrimination information for discriminating between the input path of the optical signal in the first wavelength path switching device of the wavelength path and the output path of the optical signal in the last wavelength path switching device of the wavelength path Further including
    The control step includes
    Based on the discrimination information and the switchable route information, the connection relationship of the wavelength path switching devices connected via the excluded route that is not connectable to the input route and the output route is represented by the network. An exclusion step to exclude from the configuration information;
    A wavelength path setting method comprising: calculating the wavelength path using the network configuration information from which the excluded route is excluded and the switchable route information.
  10.  請求項7または8に記載の波長パス設定方法において、
     各波長パス切替装置は、パケットパスを切り替えることが可能な複数のパケット切替装置を有するパケットネットワークと接続され、
     前記ネットワーク構成情報は、各パケット切替装置間の接続関係と、各パケット切替装置および各波長パス切替装置間の接続関係とをさらに示し、
     前記パケットパスの始点および終点となるパケット切替装置を示すパケット識別情報を受け付ける受付ステップをさらに含み、
     前記制御ステップでは、前記ネットワーク構成情報および前記パケット識別情報に基づいて、前記パケットパスをさらに計算し、
     前記設定ステップでは、前記計算されたパケットパスを、前記パケット切替装置を用いて設定する、波長パス設定方法。
    The wavelength path setting method according to claim 7 or 8,
    Each wavelength path switching device is connected to a packet network having a plurality of packet switching devices capable of switching packet paths,
    The network configuration information further indicates a connection relationship between each packet switching device and a connection relationship between each packet switching device and each wavelength path switching device,
    A reception step of receiving packet identification information indicating a packet switching device as a start point and an end point of the packet path;
    In the control step, the packet path is further calculated based on the network configuration information and the packet identification information,
    A wavelength path setting method in which, in the setting step, the calculated packet path is set using the packet switching device.
PCT/JP2010/061501 2009-08-12 2010-07-07 Network administration device and method for setting wavelength paths WO2011018926A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-187211 2009-08-12
JP2009187211 2009-08-12

Publications (1)

Publication Number Publication Date
WO2011018926A1 true WO2011018926A1 (en) 2011-02-17

Family

ID=43586106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061501 WO2011018926A1 (en) 2009-08-12 2010-07-07 Network administration device and method for setting wavelength paths

Country Status (1)

Country Link
WO (1) WO2011018926A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209821A (en) * 2011-03-30 2012-10-25 Nec Corp Wavelength division multiplexing transmission apparatus, wavelength setting method for the same, and wavelength division multiplexing transmission system
JP2012222629A (en) * 2011-04-08 2012-11-12 Fujitsu Ltd Communication apparatus and path determination method
JP2012244464A (en) * 2011-05-20 2012-12-10 Nec Corp Node
JP2013070198A (en) * 2011-09-22 2013-04-18 Hitachi Ltd Optical transmission system
WO2024057490A1 (en) * 2022-09-15 2024-03-21 日本電信電話株式会社 Transmission system and transmission method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026822A (en) * 2000-07-12 2002-01-25 Oki Electric Ind Co Ltd Wavelength multiplex transmission system
JP2007258786A (en) * 2006-03-20 2007-10-04 Fujitsu Ltd Setting system for path routing in transmission network
JP2008098934A (en) * 2006-10-11 2008-04-24 Nippon Telegr & Teleph Corp <Ntt> Communication device and communication system
JP2008136011A (en) * 2006-11-29 2008-06-12 Hitachi Communication Technologies Ltd Optical switch and optical crossconnect device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026822A (en) * 2000-07-12 2002-01-25 Oki Electric Ind Co Ltd Wavelength multiplex transmission system
JP2007258786A (en) * 2006-03-20 2007-10-04 Fujitsu Ltd Setting system for path routing in transmission network
JP2008098934A (en) * 2006-10-11 2008-04-24 Nippon Telegr & Teleph Corp <Ntt> Communication device and communication system
JP2008136011A (en) * 2006-11-29 2008-06-12 Hitachi Communication Technologies Ltd Optical switch and optical crossconnect device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209821A (en) * 2011-03-30 2012-10-25 Nec Corp Wavelength division multiplexing transmission apparatus, wavelength setting method for the same, and wavelength division multiplexing transmission system
JP2012222629A (en) * 2011-04-08 2012-11-12 Fujitsu Ltd Communication apparatus and path determination method
JP2012244464A (en) * 2011-05-20 2012-12-10 Nec Corp Node
JP2013070198A (en) * 2011-09-22 2013-04-18 Hitachi Ltd Optical transmission system
WO2024057490A1 (en) * 2022-09-15 2024-03-21 日本電信電話株式会社 Transmission system and transmission method

Similar Documents

Publication Publication Date Title
US8693880B2 (en) Wavelength path communication node apparatus, wavelength path communication control method, and recording medium
EP1152631B1 (en) Supervisory control plane over wavelenght routed networks
JP4494357B2 (en) Path route calculation method and optical communication network to which this method is applied
US8249451B2 (en) Methods for characterizing optical switches and multiplexers/demultiplexers
JP5287993B2 (en) Optical signal transmitter, optical signal receiver, wavelength division multiplexing optical communication device, and wavelength path system
WO1999041868A1 (en) Optical telecommunications networks
JP2007243567A (en) Communication path calculation method and apparatus
Lee et al. Routing and wavelength assignment information model for wavelength switched optical networks
US20080069123A1 (en) Signal relay apparatus, node apparatus, network system, virtual-link generating method, path calculating method, and computer product
JP5527716B2 (en) Wavelength path demultiplexing optical transmission equipment
WO2011018926A1 (en) Network administration device and method for setting wavelength paths
JP4662267B2 (en) Wavelength service provider in all-optical network
EP1055298A2 (en) Optical telecommunications network
JP4878536B2 (en) Communication apparatus and communication system
EP1551125B1 (en) System and method for discovering wavelengths in network elements having an optical architecture
JP2003169027A (en) Wavelength multiplex system, multiplex transmission device, wavelength multiplexing method, and route selection system
JP2000078176A (en) Communication network and communication network node device
Bernstein et al. Extending GMPLS/PCE for use in wavelength switched optical networks
JP2005323185A (en) Optical network and its controller
JP3788263B2 (en) Communication network, communication network node device, and failure recovery method
JP5486562B2 (en) Network automatic construction apparatus, network automatic construction method, and network automatic construction program
JP4888966B2 (en) Node equipment
Velasco et al. Introducing OMS protection in GMPLS-based optical ring networks
JP5455783B2 (en) Optical communication network, communication path setting method, optical communication network management system, and operation system
JP3939641B2 (en) Wavelength path switching node device and wavelength path allocation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP