WO2011016583A1 - Method for producing aromatic polyether - Google Patents

Method for producing aromatic polyether Download PDF

Info

Publication number
WO2011016583A1
WO2011016583A1 PCT/JP2010/063593 JP2010063593W WO2011016583A1 WO 2011016583 A1 WO2011016583 A1 WO 2011016583A1 JP 2010063593 W JP2010063593 W JP 2010063593W WO 2011016583 A1 WO2011016583 A1 WO 2011016583A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mol
aromatic polyether
less
phenol compound
Prior art date
Application number
PCT/JP2010/063593
Other languages
French (fr)
Japanese (ja)
Inventor
大塚貴之
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2011016583A1 publication Critical patent/WO2011016583A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4093Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group characterised by the process or apparatus used

Definitions

  • the present invention relates to a method for producing an aromatic polyether. Specifically, the present invention relates to a method for reliably producing an aromatic polyether having a predetermined molecular weight.
  • Aromatic polyether is useful as a polymer compound excellent in heat resistance, impact resistance, transparency and the like.
  • Such an aromatic polyether is produced by polycondensation reaction of a dihydric phenol compound and a dihalogenodiphenyl compound in the presence of a base and a reaction solvent (for example, Japanese Patent Application Laid-Open No. 2004-315664 (Patent Document 1)). JP, 2008-248013, A (patent documents 2)). Since the molecular weight of the aromatic polyether affects the physical properties, it is required to produce an aromatic polyether having a predetermined molecular weight.
  • an aromatic polyether when produced by polycondensation reaction so as to obtain a target molecular weight, an aromatic polyether having a molecular weight lower than the target molecular weight may be obtained.
  • a method for reliably producing aromatic polyethers is desired.
  • An object of the present invention is to provide a method for more reliably producing an aromatic polyether having a target molecular weight.
  • the present invention relates to a method for producing an aromatic polyether by subjecting a dihydric phenol compound and a dihalogenodiphenyl compound to a polycondensation reaction in the presence of a reaction solvent and a base, and the monohalogenodiphenyl compound contained in the raw material
  • a method for producing an aromatic polyether in which a polycondensation reaction is carried out under the condition that the amount of the dihalogenodiphenyl compound is 0.25 mol% or less and the amount of the monohydric phenol compound is 0.25 mol% or less of the dihydric phenol compound I will provide a.
  • an aromatic polyether having a target molecular weight can be more reliably produced.
  • the aromatic polyether is produced by polycondensing a dihydric phenol compound and a dihalogenodiphenyl compound in the presence of a reaction solvent and a base.
  • the dihydric phenol compound is a phenol compound having two phenolic hydroxyl groups.
  • Lower alkoxy groups such as Atom, a bromine atom, and those which are substituted with a halogen atom such as fluorine atom.
  • a mixture of two or more thereof may be used.
  • hydroquinone, 4,4′-biphenol, 2,2-bis (4-hydroxyphenyl) propane, 4,4′-dihydroxydiphenyl ether, or 4,4′-dihydroxydiphenyl sulfone is preferably used.
  • the dihalogenodiphenyl compound is a compound having two halogenophenyl groups, and a dihalogenodiphenyl compound having a sulfone group, for example, a dihalogenodiphenylsulfone such as 4,4′-dichlorodiphenylsulfone or 4,4′-difluorodiphenylsulfone.
  • 1,4-bis (4-chlorophenylsulfonyl) benzene bis (halogenophenylsulfonyl) benzenes such as 1,4-bis (4-fluorophenylsulfonyl) benzene, and 1,4-bis (4-chlorophenylsulfonyl) ) Biphenyl, 1,4-bis (4-fluorophenylsulfonyl) biphenyl and other bis (halogenophenylsulfonyl) biphenyls, and ketone compounds having two halogenophenyl groups such as 4,4′-dichlorodiphenyl ketone, 4'-di Dihalogenodiphenyl ketones such as fluorodiphenyl ketone, bis (halogenophenylcarbonyl) benzenes such as 1,4-bis (4-chlorophenylcarbonyl) benzene, 1,4-bis (4-fluoroph
  • dihalogenodiphenyl sulfones such as 4,4′-dichlorodiphenyl sulfone and 4,4′-difluorodiphenyl sulfone are preferably used.
  • reaction solvent examples include sulfoxide solvents such as dimethyl sulfoxide and hexamethylene sulfoxide, amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and N-vinyl-2- Pyrrolidone solvents such as pyrrolidone, piperidone solvents such as N-methyl-2-piperidone, 2-imidazolinone solvents such as 1,3-dimethyl-2-imidazolidinone, diphenyl compounds such as diphenyl ether and diphenyl sulfone, ⁇ -Lactone solvents such as butyrolactone, sulfolane solvents such as sulfolane, and mixtures of two or more of these.
  • sulfoxide solvents such as dimethyl sulfoxide and hexamethylene sulfoxide
  • amide solvents such as N, N-dimethylformamide and N,
  • diphenyl compounds such as diphenylsulfone are preferably used.
  • the base is dehydrohalogenated from the phenolic hydroxyl group of the dihydric phenol compound and the halogen atom of the dihalogenodiphenyl compound, and is alkali metal carbonate, alkali metal hydroxide, alkali metal hydride, alkali metal. An alkoxide etc. are mentioned.
  • alkali metal carbonates such as potassium carbonate and sodium carbonate are preferable, and anhydrous alkali metal carbonates such as anhydrous potassium carbonate and anhydrous sodium carbonate are particularly preferably used.
  • the dihalogenodiphenyl compound is usually used in an amount of about 0.9 to 1.1 equivalents, preferably about 0.98 to 1.05 equivalents per equivalent of the dihydric phenol compound.
  • the base is used in an amount of about 1 equivalent or more, preferably 1.005 to 1.25 equivalents per equivalent of the phenolic hydroxyl group of the dihydric phenol compound.
  • the reaction solvent is used in an amount of about 0.1 to 10 parts by weight, preferably 0.5 to 3 parts by weight, based on 1 part by weight of the total of the dihydric phenol compound and the dihalogenodiphenyl compound.
  • the polycondensation reaction temperature is preferably about 140 to 340 ° C. When polycondensation is performed at a temperature higher than about 340 ° C., the decomposition reaction of the product polymer proceeds, so that there is a tendency that a high-purity aromatic polyether cannot be obtained. There is a tendency that a polymer having a molecular weight cannot be obtained.
  • the time for the polycondensation reaction varies depending on the type of dihydric phenol compound or dihalogenodiphenyl compound, the reaction temperature, etc., but is usually about 1 to 24 hours, preferably about 2 to 12 hours.
  • the polycondensation reaction is carried out by setting conditions from the above reaction conditions so as to achieve the target molecular weight. If the monohalogenodiphenyl compound and the monohydric phenol compound in the raw materials charged in the reactor are increased, the molecular weight is not lowered and the molecular weight is lowered.
  • the monohalogenodiphenyl compound is a compound having a halogenophenyl group and a phenyl group, and is contained in and mixed with the raw material dihalogenodiphenyl compound and diphenylsulfone used as a reaction solvent.
  • the monohalogenodiphenyl compound include monohalogenodiphenyl compounds having a sulfone group, for example, 4-halogenodiphenyl sulfones (the following formula) such as 4-chlorodiphenylsulfone and 4-bromodiphenylsulfone.
  • the monohydric phenol compound is a phenol compound having one phenolic hydroxyl group, and is contained and mixed in the raw material dihydric phenol compound.
  • Examples of the monohydric phenol compound include phenol and 4-hydroxydiphenyl sulfone.
  • the amount of monohalogenodiphenyl compound contained in the raw material charged into the reactor is 0.25 mol% or less, preferably 0.1 mol% or less of the dihalogenodiphenyl compound, and the amount of monohydric phenol compound is dihydric phenol compound.
  • the polycondensation reaction is carried out under the condition of 0.25 mol% or less, preferably 0.1 mol% or less, to prevent the molecular weight from being lowered, so that the target molecular weight can be almost achieved.
  • the reaction mixture obtained by the reaction contains a by-product salt that is a reaction product of a hydrogen halide eliminated by a polycondensation reaction and a base, a reaction solvent, and an aromatic polyether.
  • By-product salt is, for example, potassium chloride when hydrogen chloride is eliminated by a polycondensation reaction and potassium carbonate is used as a base.
  • the solidified reaction mixture is pulverized, and the pulverized reaction mixture is washed with water to remove by-product salts.
  • the reaction solvent is extracted by using a purified solvent having a boiling point lower than that of the reaction solvent and dissolving the reaction solvent but not the aromatic polyether to remove the reaction solvent.
  • Aromatic polyether is separated. Examples of such a purification solvent include methanol, ethanol, isopropyl alcohol, acetone, methyl ethyl ketone, and mixtures thereof.
  • the extraction solution obtained by extracting the reaction solvent with a purified solvent is distilled, the purified solvent with low boiling point and water are distilled off, and the reaction solvent is separated.
  • the separated purification solvent and reaction solvent are usually reused.
  • the reduced viscosity which is a measure of molecular weight, was measured. It shows that it is high molecular weight, so that the value of reduced viscosity is large.
  • the viscosity was measured at 25 ° C. using an Ostwald type viscosity tube.
  • the concentration of the polymer solution for measuring the viscosity was 1.0 g / 100 ml in an N, N-dimethylformamide (reagent special grade) solution.
  • the reduced viscosity (RV) is defined by the following formula (1).
  • Example 1 In a reaction vessel equipped with a stirrer, a nitrogen inlet tube, a thermometer, and a condenser with a receiver at the tip, 100.11 parts by weight of 4,4′-dihydroxydiphenylsulfone as a dihydric phenol compound, dihalogenodiphenyl compound As a reaction solvent, 119.23 parts by weight of 4,4′-dichlorodiphenylsulfone and 194.33 parts by weight of diphenylsulfone as a reaction solvent were charged.
  • the amount of monohalogenodiphenyl compound (total of 4-chlorodiphenylsulfone and 4-bromodiphenylsulfone) in the raw material is 0.05 parts by weight or less, and 0.05 mol% or less of 4,4′-dichlorodiphenylsulfone. there were.
  • the amount of the monohydric phenol compound (phenol) in the raw material was 0.02 parts by weight or less, and 0.05 mol% or less of 4,4′-dihydroxydiphenylsulfone.
  • the temperature was raised to 180 ° C. and dissolved while further circulating nitrogen in the reactor. Next, 57.5 parts by weight of anhydrous potassium carbonate was added.
  • the reaction solution was cooled to room temperature and solidified, and finely pulverized into a powder.
  • the powdery reaction mixture containing the obtained aromatic polyether, a by-product salt generated by the neutralization reaction of the base and hydrogen halide, and diphenyl sulfone was washed with warm water to remove the by-product salt.
  • the reaction mixture after removing the by-product salt was extracted with an acetone / methanol mixture. The extract was distilled and acetone, methanol and water were distilled off to obtain recovered diphenylsulfone.
  • Example 1 An aromatic polyether was produced in the same manner as in Example 1 except that diphenyl sulfone used in Example 1 was different from diphenyl sulfone having a monohalogenodiphenyl compound content.
  • the amount of monohalogenodiphenyl compound (total of 4-chlorodiphenylsulfone and 4-bromodiphenylsulfone) in the raw material was 0.39 parts by weight, and was 0.37 mol% of 4,4′-dichlorodiphenylsulfone.
  • the amount of the monohydric phenol compound (phenol) in the raw material was 0.02 parts by weight or less, and 0.05 mol% or less of 4,4′-dihydroxydiphenylsulfone.
  • the reduced viscosity of the obtained aromatic polyether was 0.400 dl / g.
  • Example 2 and Comparative Examples 2 to 4 After charging the raw materials in the same manner as in Example 1, 4-chlorodiphenyl sulfone (99.99%) was further added in 0.1 parts by weight (0.10 mol% of 4,4′-dichlorodiphenyl sulfone) (Example 2), 0.97 parts by weight (0.92 mol% of 4,4′-dichlorodiphenylsulfone) (Comparative Example 2), 1.94 parts by weight (1.85 mol% of 4,4′-dichlorodiphenylsulfone) ) (Comparative Example 3), 3.89 parts by weight (3.71 mol% of 4,4′-dichlorodiphenylsulfone) (Comparative Example 4) were added, and the aromatic polyether of Manufactured.
  • the reduced viscosity of the obtained aromatic polyether was 0.427 dl / g (Example 2), 0.351 dl / g (Comparative Example 2), 0.325 dl / g (Comparative Example 3), 0.291 dl / g, respectively. g (Comparative Example 4). Comparative Example 5 After the raw materials were charged in the same manner as in Example 1, 0.14 parts by weight of phenol (0.37 mol% of 4,4′-dihydroxydiphenyl sulfone) was further added. Ether was produced. The reduced viscosity of the obtained aromatic polyether was 0.403 dl / g.
  • an aromatic polyether having a target molecular weight can be more reliably produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

Provided is a method for producing an aromatic polyether by the polycondensation reaction of a divalent phenol compound and a dihalogenodiphenyl compound in the presence of a reaction solvent and base. The polycondensation reaction is performed under conditions such that the amount of 4-chlorodiphenylsulfone, 4-bromodiphenylsulfone, and other monohalogenodiphenyl compounds contained in the starting materials is brought to 0.25 mol% or less, preferably 0.1 mol% or less, of the dihalogenodiphenyl compound; and the amount of phenol, 4-hydroxydiphenylsulfone, and other monovalent phenol compounds is brought to 0.25 mol% or less, preferably 0.1 mol% or less, of the divalent phenol compound.

Description

芳香族ポリエーテルの製造方法Process for producing aromatic polyether
 本発明は、芳香族ポリエーテルの製造方法に関する。詳しくは所定の分子量の芳香族ポリエーテルを確実に製造する方法に関する。 The present invention relates to a method for producing an aromatic polyether. Specifically, the present invention relates to a method for reliably producing an aromatic polyether having a predetermined molecular weight.
 芳香族ポリエーテルは、耐熱性、耐衝撃性、透明性などに優れた高分子化合物として有用である。かかる芳香族ポリエーテルは、塩基および反応溶媒の共存下に、二価フェノール化合物とジハロゲノジフェニル化合物とを重縮合反応させて製造される(例えば、特開2004−315764号公報(特許文献1)、特開2008−248013号公報(特許文献2)参照。)。
 芳香族ポリエーテルの分子量は物性に影響するので、所定の分子量を有する芳香族ポリエーテルを製造することが求められる。しかしながら、目標とする分子量が得られるように重縮合反応させて芳香族ポリエーテルを製造しようとしても、目標とする分子量より低い分子量の芳香族ポリエーテルが得られることがあり、目標とする分子量の芳香族ポリエーテルを確実に製造する方法が望まれている。
Aromatic polyether is useful as a polymer compound excellent in heat resistance, impact resistance, transparency and the like. Such an aromatic polyether is produced by polycondensation reaction of a dihydric phenol compound and a dihalogenodiphenyl compound in the presence of a base and a reaction solvent (for example, Japanese Patent Application Laid-Open No. 2004-315664 (Patent Document 1)). JP, 2008-248013, A (patent documents 2)).
Since the molecular weight of the aromatic polyether affects the physical properties, it is required to produce an aromatic polyether having a predetermined molecular weight. However, when an aromatic polyether is produced by polycondensation reaction so as to obtain a target molecular weight, an aromatic polyether having a molecular weight lower than the target molecular weight may be obtained. A method for reliably producing aromatic polyethers is desired.
 本発明の目的は、目標とする分子量の芳香族ポリエーテルをより確実に製造する方法を提供することにある。
 本発明は、二価フェノール化合物とジハロゲノジフェニル化合物とを、反応溶媒および塩基の存在下に重縮合反応させて芳香族ポリエーテルを製造する方法であって、原材料中に含まれるモノハロゲノジフェニル化合物の量をジハロゲノジフェニル化合物の0.25モル%以下とし、一価フェノール化合物の量を二価フェノール化合物の0.25モル%以下とした条件下で重縮合反応する芳香族ポリエーテルの製造方法を提供する。
 本発明によって、目標とする分子量の芳香族ポリエーテルをより確実に製造することができる。
An object of the present invention is to provide a method for more reliably producing an aromatic polyether having a target molecular weight.
The present invention relates to a method for producing an aromatic polyether by subjecting a dihydric phenol compound and a dihalogenodiphenyl compound to a polycondensation reaction in the presence of a reaction solvent and a base, and the monohalogenodiphenyl compound contained in the raw material A method for producing an aromatic polyether in which a polycondensation reaction is carried out under the condition that the amount of the dihalogenodiphenyl compound is 0.25 mol% or less and the amount of the monohydric phenol compound is 0.25 mol% or less of the dihydric phenol compound I will provide a.
According to the present invention, an aromatic polyether having a target molecular weight can be more reliably produced.
 芳香族ポリエーテルは、二価フェノール化合物とジハロゲノジフェニル化合物とを、反応溶媒および塩基の存在下に重縮合させて製造する。
 二価フェノール化合物とはフェノール性水酸基を2つ有するフェノール化合物であり、ハイドロキノン、カテコール、レゾルシン、4,4’−ビフェノールの他に、2,2−ビス(4−ヒドロキシフェニル)メタン、2,2−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパンなどのビス(4−ヒドロキシフェニル)アルカン類、4,4’−ジヒドロキシジフェニルスルホンなどのジヒドロキシジフェニルスルホン類、4,4’−ジヒドロキシジフェニルエーテルなどのジヒドロキシジフェニルエーテル類が挙げられ、これらのベンゼン環の水素原子の少なくとも一つが、メチル基、エチル基、プロピル基などの低級アルキル基、メトキシ基、エトキシ基、プロピルオキシ基などの低級アルコキシ基、塩素原子、臭素原子、フッ素原子などのハロゲン原子で置換されたものが挙げられる。芳香族ポリエーテルの製造に際しては、それらの2種以上の混合物を用いてもよい。中でもハイドロキノン、4,4’−ビフェノール、2,2−ビス(4−ヒドロキシフェニル)プロパン、4,4’−ジヒドロキシジフェニルエーテル、または4,4’−ジヒドロキシジフェニルスルホンが好ましく用いられる。
 ジハロゲノジフェニル化合物とはハロゲノフェニル基を2つ有する化合物であり、スルホン基を有するジハロゲノジフェニル化合物、例えば4,4’−ジクロロジフェニルスルホン、4,4’−ジフルオロジフェニルスルホンなどのジハロゲノジフェニルスルホン類、1,4−ビス(4−クロロフェニルスルホニル)ベンゼン、1,4−ビス(4−フルオロフェニルスルホニル)ベンゼンなどのビス(ハロゲノフェニルスルホニル)ベンゼン類、および1,4−ビス(4−クロロフェニルスルホニル)ビフェニル、1,4−ビス(4−フルオロフェニルスルホニル)ビフェニルなどのビス(ハロゲノフェニルスルホニル)ビフェニル類や、ハロゲノフェニル基を2つ有するケトン化合物、例えば4,4’−ジクロロジフェニルケトン、4,4’−ジフルオロジフェニルケトンなどのジハロゲノジフェニルケトン類、1,4−ビス(4−クロロフェニルカルボニル)ベンゼン、1,4−ビス(4−フルオロフェニルカルボニル)ベンゼンなどのビス(ハロゲノフェニルカルボニル)ベンゼン類、および4,4’−ビス(4−クロロフェニルカルボニル)ビフェニル、4,4’−ビス(4−フルオロフェニルカルボニル)ビフェニルなどのビス(ハロゲノフェニルカルボニル)ビフェニル類が挙げられ、芳香族ポリエーテルの製造に際しては、これらの2種以上の混合物を用いてもよい。中でも4,4’−ジクロロジフェニルスルホン、4,4’−ジフルオロジフェニルスルホンなどのジハロゲノジフェニルスルホン類が好ましく用いられる。
 反応溶媒としては、ジメチルスルホキシド、ヘキサメチレンスルホキシドなどのスルホキシド系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド系溶媒、N−メチル−2−ピロリドン、N−ビニル−2−ピロリドンなどのピロリドン系溶媒、N−メチル−2−ピペリドンなどのピペリドン系溶媒、1,3−ジメチル−2−イミダゾリジノンなどの2−イミダゾリノン系溶媒、ジフェニルエーテル、ジフェニルスルホンなどのジフェニル化合物、γ−ブチロラクトンなどのラクトン系溶媒、スルホランなどのスルホラン系溶媒、およびこれらの二種以上の混合物などが挙げられる。中でもジフェニルスルホンなどのジフェニル化合物が好ましく用いられる。
 また、塩基は、二価フェノール化合物のフェノール性水酸基とジハロゲノジフェニル化合物のハロゲン原子とから脱ハロゲン化水素させるものであり、アルカリ金属炭酸塩、アルカリ金属水酸化物、アルカリ金属水素化物、アルカリ金属アルコキシドなどが挙げられる。中でも炭酸カリウム、炭酸ナトリウムなどのアルカリ金属炭酸塩が好ましく、特に無水炭酸カリウム、無水炭酸ナトリウムなどの無水アルカリ金属炭酸塩が好ましく用いられる。
 二価フェノール化合物の1当量に対してジハロゲノジフェニル化合物は、通常、約0.9~1.1当量、好ましくは約0.98~1.05当量の範囲で使用する。理論上、二価フェノール化合物の1当量に対するジハロゲノジフェニル化合物の使用量が1当量に近づくほど、高分子量の芳香族ポリエーテルが得られるので、目標とする分子量となるように、当該使用量を設定する。
 塩基は、二価フェノール化合物のフェノール性水酸基の1当量に対して約1当量以上、好ましくは1.005~1.25当量の範囲で使用する。
 反応溶媒は、二価フェノール化合物とジハロゲノジフェニル化合物の合計1重量部に対して約0.1~10重量部、好ましくは0.5~3重量部を使用する。
 重縮合の反応温度は、約140~340℃で実施するのが好ましい。約340℃より高い温度で重縮合させると、生成物ポリマーの分解反応が進むため、高純度の芳香族ポリエーテルが得られなくなる傾向にあり、約140℃より低い温度で重縮合させると、高分子量の重合体が得られない傾向にある。
 重縮合反応の時間は、二価フェノール化合物やジハロゲノジフェニル化合物の種類、反応温度などによって異なるが、通常、約1~24時間、好ましくは約2~12時間である。
 目標とする分子量となるように上記の反応条件から条件を設定して重縮合反応が行われる。反応器に仕込んだ原材料中のモノハロゲノジフェニル化合物および一価フェノール化合物が多くなると所定の分子量にならず、分子量が低下してしまう。
 モノハロゲノジフェニル化合物とはハロゲノフェニル基とフェニル基とを有する化合物であり、原料のジハロゲノジフェニル化合物や、反応溶媒として使用するジフェニルスルホンに含まれ、混入する。
 モノハロゲノジフェニル化合物としては、スルホン基を有するモノハロゲノジフェニル化合物、例えば4−クロロジフェニルスルホン、4−ブロモジフェニルスルホンなどの4−ハロゲノジフェニルスルホン類(下式)が挙げられる。
Figure JPOXMLDOC01-appb-I000001
 一価フェノール化合物とはフェノール性水酸基を1つ有するフェノール化合物であり、原料の二価フェノール化合物等に含まれ混入する。
 一価フェノール化合物としては、例えばフェノール、4−ヒドロキシジフェニルスルホンなどが挙げられる。
 反応器に仕込んだ原材料中に含まれるモノハロゲノジフェニル化合物の量をジハロゲノジフェニル化合物の0.25モル%以下、好ましくは0.1モル%以下とし、一価フェノール化合物の量を二価フェノール化合物の0.25モル%以下、好ましくは0.1モル%以下とした条件下で重縮合反応することによって、分子量の低下を防止し、ほぼ目標の分子量とすることができる。原材料中のモノハロゲノジフェニル化合物の量および/または一価フェノール化合物の量が多い場合は、原材料を変えるか、精製して使用する。
 反応して得られる反応混合物は、重縮合反応により脱離したハロゲン化水素と塩基との反応生成物である副生塩と、反応溶媒と、芳香族ポリエーテルとを含む。副生塩とは、例えば、重縮合反応により塩化水素が脱離し、塩基として炭酸カリウムを用いた場合には塩化カリウムである。
 重縮合して得られる反応混合物を固化させた後、芳香族ポリエーテルの分離および反応溶媒の回収を行う。先ず、固化した反応混合物を微粉砕し、微粉砕した反応混合物を水洗して、副生塩を除去する。次に、副生塩を除去した反応混合物から、反応溶媒より沸点が低く、反応溶媒を溶解するが芳香族ポリエーテルを溶解しない精製溶媒を用いて反応溶媒を抽出して反応溶媒を除去し、芳香族ポリエーテルを分離する。
 このような精製溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、アセトン、メチルエチルケトン、およびこれらの混合物などが挙げられる。
 精製溶媒で反応溶媒を抽出して得られる抽出溶液を蒸留し、低沸点の精製溶媒および水を留出除去し、反応溶媒を分離する。分離した精製溶媒および反応溶媒は、通常、それぞれ再使用する。
The aromatic polyether is produced by polycondensing a dihydric phenol compound and a dihalogenodiphenyl compound in the presence of a reaction solvent and a base.
The dihydric phenol compound is a phenol compound having two phenolic hydroxyl groups. In addition to hydroquinone, catechol, resorcin, and 4,4′-biphenol, 2,2-bis (4-hydroxyphenyl) methane, 2,2 -Bis (4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) alkanes such as 2,2-bis (4-hydroxyphenyl) propane, dihydroxydiphenyl sulfones such as 4,4'-dihydroxydiphenylsulfone, 4 Dihydroxy diphenyl ethers such as 4,4'-dihydroxydiphenyl ether, and at least one of the hydrogen atoms of these benzene rings is a lower alkyl group such as a methyl group, an ethyl group or a propyl group, a methoxy group, an ethoxy group, or a propyloxy group. Lower alkoxy groups such as Atom, a bromine atom, and those which are substituted with a halogen atom such as fluorine atom. In the production of the aromatic polyether, a mixture of two or more thereof may be used. Of these, hydroquinone, 4,4′-biphenol, 2,2-bis (4-hydroxyphenyl) propane, 4,4′-dihydroxydiphenyl ether, or 4,4′-dihydroxydiphenyl sulfone is preferably used.
The dihalogenodiphenyl compound is a compound having two halogenophenyl groups, and a dihalogenodiphenyl compound having a sulfone group, for example, a dihalogenodiphenylsulfone such as 4,4′-dichlorodiphenylsulfone or 4,4′-difluorodiphenylsulfone. , 1,4-bis (4-chlorophenylsulfonyl) benzene, bis (halogenophenylsulfonyl) benzenes such as 1,4-bis (4-fluorophenylsulfonyl) benzene, and 1,4-bis (4-chlorophenylsulfonyl) ) Biphenyl, 1,4-bis (4-fluorophenylsulfonyl) biphenyl and other bis (halogenophenylsulfonyl) biphenyls, and ketone compounds having two halogenophenyl groups such as 4,4′-dichlorodiphenyl ketone, 4'-di Dihalogenodiphenyl ketones such as fluorodiphenyl ketone, bis (halogenophenylcarbonyl) benzenes such as 1,4-bis (4-chlorophenylcarbonyl) benzene, 1,4-bis (4-fluorophenylcarbonyl) benzene, and 4 Bis (halogenophenylcarbonyl) biphenyls such as 4,4′-bis (4-chlorophenylcarbonyl) biphenyl, 4,4′-bis (4-fluorophenylcarbonyl) biphenyl, and the like. A mixture of two or more of these may be used. Of these, dihalogenodiphenyl sulfones such as 4,4′-dichlorodiphenyl sulfone and 4,4′-difluorodiphenyl sulfone are preferably used.
Examples of the reaction solvent include sulfoxide solvents such as dimethyl sulfoxide and hexamethylene sulfoxide, amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and N-vinyl-2- Pyrrolidone solvents such as pyrrolidone, piperidone solvents such as N-methyl-2-piperidone, 2-imidazolinone solvents such as 1,3-dimethyl-2-imidazolidinone, diphenyl compounds such as diphenyl ether and diphenyl sulfone, γ -Lactone solvents such as butyrolactone, sulfolane solvents such as sulfolane, and mixtures of two or more of these. Of these, diphenyl compounds such as diphenylsulfone are preferably used.
The base is dehydrohalogenated from the phenolic hydroxyl group of the dihydric phenol compound and the halogen atom of the dihalogenodiphenyl compound, and is alkali metal carbonate, alkali metal hydroxide, alkali metal hydride, alkali metal. An alkoxide etc. are mentioned. Of these, alkali metal carbonates such as potassium carbonate and sodium carbonate are preferable, and anhydrous alkali metal carbonates such as anhydrous potassium carbonate and anhydrous sodium carbonate are particularly preferably used.
The dihalogenodiphenyl compound is usually used in an amount of about 0.9 to 1.1 equivalents, preferably about 0.98 to 1.05 equivalents per equivalent of the dihydric phenol compound. Theoretically, the higher the amount of dihalogenodiphenyl compound used relative to 1 equivalent of the dihydric phenol compound is, the higher the molecular weight aromatic polyether is obtained, the higher the amount used. Set.
The base is used in an amount of about 1 equivalent or more, preferably 1.005 to 1.25 equivalents per equivalent of the phenolic hydroxyl group of the dihydric phenol compound.
The reaction solvent is used in an amount of about 0.1 to 10 parts by weight, preferably 0.5 to 3 parts by weight, based on 1 part by weight of the total of the dihydric phenol compound and the dihalogenodiphenyl compound.
The polycondensation reaction temperature is preferably about 140 to 340 ° C. When polycondensation is performed at a temperature higher than about 340 ° C., the decomposition reaction of the product polymer proceeds, so that there is a tendency that a high-purity aromatic polyether cannot be obtained. There is a tendency that a polymer having a molecular weight cannot be obtained.
The time for the polycondensation reaction varies depending on the type of dihydric phenol compound or dihalogenodiphenyl compound, the reaction temperature, etc., but is usually about 1 to 24 hours, preferably about 2 to 12 hours.
The polycondensation reaction is carried out by setting conditions from the above reaction conditions so as to achieve the target molecular weight. If the monohalogenodiphenyl compound and the monohydric phenol compound in the raw materials charged in the reactor are increased, the molecular weight is not lowered and the molecular weight is lowered.
The monohalogenodiphenyl compound is a compound having a halogenophenyl group and a phenyl group, and is contained in and mixed with the raw material dihalogenodiphenyl compound and diphenylsulfone used as a reaction solvent.
Examples of the monohalogenodiphenyl compound include monohalogenodiphenyl compounds having a sulfone group, for example, 4-halogenodiphenyl sulfones (the following formula) such as 4-chlorodiphenylsulfone and 4-bromodiphenylsulfone.
Figure JPOXMLDOC01-appb-I000001
The monohydric phenol compound is a phenol compound having one phenolic hydroxyl group, and is contained and mixed in the raw material dihydric phenol compound.
Examples of the monohydric phenol compound include phenol and 4-hydroxydiphenyl sulfone.
The amount of monohalogenodiphenyl compound contained in the raw material charged into the reactor is 0.25 mol% or less, preferably 0.1 mol% or less of the dihalogenodiphenyl compound, and the amount of monohydric phenol compound is dihydric phenol compound. The polycondensation reaction is carried out under the condition of 0.25 mol% or less, preferably 0.1 mol% or less, to prevent the molecular weight from being lowered, so that the target molecular weight can be almost achieved. When the amount of monohalogenodiphenyl compound and / or the amount of monohydric phenol compound in the raw material is large, the raw material is changed or purified before use.
The reaction mixture obtained by the reaction contains a by-product salt that is a reaction product of a hydrogen halide eliminated by a polycondensation reaction and a base, a reaction solvent, and an aromatic polyether. By-product salt is, for example, potassium chloride when hydrogen chloride is eliminated by a polycondensation reaction and potassium carbonate is used as a base.
After the reaction mixture obtained by polycondensation is solidified, the aromatic polyether is separated and the reaction solvent is recovered. First, the solidified reaction mixture is pulverized, and the pulverized reaction mixture is washed with water to remove by-product salts. Next, from the reaction mixture from which the by-product salt has been removed, the reaction solvent is extracted by using a purified solvent having a boiling point lower than that of the reaction solvent and dissolving the reaction solvent but not the aromatic polyether to remove the reaction solvent. Aromatic polyether is separated.
Examples of such a purification solvent include methanol, ethanol, isopropyl alcohol, acetone, methyl ethyl ketone, and mixtures thereof.
The extraction solution obtained by extracting the reaction solvent with a purified solvent is distilled, the purified solvent with low boiling point and water are distilled off, and the reaction solvent is separated. The separated purification solvent and reaction solvent are usually reused.
 以下、実施例および比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
(1)還元粘度の測定:
 分子量の目安となる還元粘度を測定した。還元粘度の値が大きいほど高分子量であることを示す。
 粘度の測定は、オストワルド型粘度管を使用して、25℃で行なった。
 粘度測定のための重合体溶液の濃度は、N,N−ジメチルホルムアミド(試薬特級)溶液中1.0g/100mlとした。
 還元粘度(RV)は、次式(1)により定義される。
 RV=[1/C]×[(t−t)/t]・・・・・(1)
 (式中、tは重合体溶液の流出時間(秒)、tは純溶媒の流出時間(秒)、Cは重合体の溶液の濃度(g/100ml−溶媒)を表す。)
(2)モノハロゲノジフェニル化合物および一価フェノール化合物の分析
 モノハロゲノジフェニル化合物および一価フェノール化合物の特定および量の把握はGC−MSで行った。
 原材料中のモノハロゲノジフェニル化合物の量は、4,4’−ジクロロジフェニルスルホンおよびジフェニルスルホンについて分析し、その含有量から求めた。
 原材料中の一価フェノール化合物の量は、4,4’−ジヒドロキシジフェニルスルホンについて分析し、その含有量から求めた。
実施例1
 攪拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた反応容器中に、二価フェノール化合物として4,4’−ジヒドロキシジフェニルスルホンを100.11重量部、ジハロゲノジフェニル化合物として4,4’−ジクロロジフェニルスルホンを119.23重量部、及び反応溶媒としてジフェニルスルホンを194.33重量部仕込んだ。
 原材料中のモノハロゲノジフェニル化合物(4−クロロジフェニルスルホンおよび4−ブロモジフェニルスルホンの合計)の量は0.05重量部以下であり、4,4’−ジクロロジフェニルスルホンの0.05モル%以下であった。
 原材料中の一価フェノール化合物(フェノール)の量は0.02重量部以下であり、4,4’−ジヒドロキシジフェニルスルホンの0.05モル%以下であった。
 反応器内を窒素雰囲気に置換した後、さらに窒素を反応器内に流通させながら、180℃まで昇温して溶解させた。次いで、無水炭酸カリウムを57.5重量部添加した。その後、280℃まで徐々に昇温して、同温度で4.5時間反応させた。
 反応終了後、反応液を室温まで冷却して固化させ、粉末状に細かく粉砕した。得られた芳香族ポリエーテル、塩基とハロゲン化水素の中和反応により生成した副生塩、及びジフェニルスルホンを含む粉末状反応混合物を温水で洗浄して、副生塩を除去した。次に、副生塩を除去した後の反応混合物をアセトン/メタノール混合液で抽出した。抽出液を蒸留し、アセトンとメタノール及び水分を留去して回収ジフェニルスルホンを得た。
 アセトン/メタノール混合液で抽出した後の残分を150℃に加熱して乾燥して芳香族ポリエーテルを得た。
 得られた芳香族ポリエーテルの還元粘度は0.433dl/gであった。
比較例1
 実施例1で使用したジフェニルスルホンとはモノハロゲノジフェニル化合物の含有量が異なるジフェニルスルホンを使用した以外は実施例1と同様にして芳香族ポリエーテルの製造を行った。
 原材料中のモノハロゲノジフェニル化合物(4−クロロジフェニルスルホンおよび4−ブロモジフェニルスルホンの合計)の量は0.39重量部であり、4,4’−ジクロロジフェニルスルホンの0.37モル%であった。原材料中の一価フェノール化合物(フェノール)の量は0.02重量部以下であり、4,4’−ジヒドロキシジフェニルスルホンの0.05モル%以下であった。
 得られた芳香族ポリエーテルの還元粘度は0.400dl/gであった。
実施例2および比較例2~4
 実施例1と同様に原材料を仕込んだ後、更に4−クロロジフェニルスルホン(99.99%)をそれぞれ0.1重量部(4,4’−ジクロロジフェニルスルホンの0.10モル%)(実施例2)、0.97重量部(4,4’−ジクロロジフェニルスルホンの0.92モル%)(比較例2)、1.94重量部(4,4’−ジクロロジフェニルスルホンの1.85モル%)(比較例3)、3.89重量部(4,4’−ジクロロジフェニルスルホンの3.71モル%)(比較例4)、を添加し、実施例1と同様にして芳香族ポリエーテルの製造を行った。
 得られた芳香族ポリエーテルの還元粘度は、それぞれ0.427dl/g(実施例2)、0.351dl/g(比較例2)、0.325dl/g(比較例3)、0.291dl/g(比較例4)であった。
比較例5
 実施例1と同様に原材料を仕込んだ後、更にフェノールを0.14重量部(4,4’−ジヒドロキシジフェニルスルホンの0.37モル%)を添加し、実施例1と同様にして芳香族ポリエーテルの製造を行った。
 得られた芳香族ポリエーテルの還元粘度は、0.403dl/gであった。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these.
(1) Measurement of reduced viscosity:
The reduced viscosity, which is a measure of molecular weight, was measured. It shows that it is high molecular weight, so that the value of reduced viscosity is large.
The viscosity was measured at 25 ° C. using an Ostwald type viscosity tube.
The concentration of the polymer solution for measuring the viscosity was 1.0 g / 100 ml in an N, N-dimethylformamide (reagent special grade) solution.
The reduced viscosity (RV) is defined by the following formula (1).
RV = [1 / C] × [(t−t 0 ) / t 0 ] (1)
(Wherein, t is the polymer solution efflux time (in seconds), t 0 is the efflux time of pure solvent (s), C represents the concentration of the solution of the polymer (g / 100ml- solvent).)
(2) Analysis of monohalogenodiphenyl compound and monohydric phenol compound The identification of monohalogenodiphenyl compound and monohydric phenol compound and grasping the amount thereof were performed by GC-MS.
The amount of the monohalogenodiphenyl compound in the raw material was determined by analyzing 4,4′-dichlorodiphenylsulfone and diphenylsulfone and determining their contents.
The amount of the monohydric phenol compound in the raw material was analyzed for 4,4′-dihydroxydiphenyl sulfone and obtained from its content.
Example 1
In a reaction vessel equipped with a stirrer, a nitrogen inlet tube, a thermometer, and a condenser with a receiver at the tip, 100.11 parts by weight of 4,4′-dihydroxydiphenylsulfone as a dihydric phenol compound, dihalogenodiphenyl compound As a reaction solvent, 119.23 parts by weight of 4,4′-dichlorodiphenylsulfone and 194.33 parts by weight of diphenylsulfone as a reaction solvent were charged.
The amount of monohalogenodiphenyl compound (total of 4-chlorodiphenylsulfone and 4-bromodiphenylsulfone) in the raw material is 0.05 parts by weight or less, and 0.05 mol% or less of 4,4′-dichlorodiphenylsulfone. there were.
The amount of the monohydric phenol compound (phenol) in the raw material was 0.02 parts by weight or less, and 0.05 mol% or less of 4,4′-dihydroxydiphenylsulfone.
After substituting the inside of the reactor with a nitrogen atmosphere, the temperature was raised to 180 ° C. and dissolved while further circulating nitrogen in the reactor. Next, 57.5 parts by weight of anhydrous potassium carbonate was added. Then, it heated up gradually to 280 degreeC and made it react at the same temperature for 4.5 hours.
After completion of the reaction, the reaction solution was cooled to room temperature and solidified, and finely pulverized into a powder. The powdery reaction mixture containing the obtained aromatic polyether, a by-product salt generated by the neutralization reaction of the base and hydrogen halide, and diphenyl sulfone was washed with warm water to remove the by-product salt. Next, the reaction mixture after removing the by-product salt was extracted with an acetone / methanol mixture. The extract was distilled and acetone, methanol and water were distilled off to obtain recovered diphenylsulfone.
The residue after extraction with an acetone / methanol mixture was heated to 150 ° C. and dried to obtain an aromatic polyether.
The reduced viscosity of the obtained aromatic polyether was 0.433 dl / g.
Comparative Example 1
An aromatic polyether was produced in the same manner as in Example 1 except that diphenyl sulfone used in Example 1 was different from diphenyl sulfone having a monohalogenodiphenyl compound content.
The amount of monohalogenodiphenyl compound (total of 4-chlorodiphenylsulfone and 4-bromodiphenylsulfone) in the raw material was 0.39 parts by weight, and was 0.37 mol% of 4,4′-dichlorodiphenylsulfone. . The amount of the monohydric phenol compound (phenol) in the raw material was 0.02 parts by weight or less, and 0.05 mol% or less of 4,4′-dihydroxydiphenylsulfone.
The reduced viscosity of the obtained aromatic polyether was 0.400 dl / g.
Example 2 and Comparative Examples 2 to 4
After charging the raw materials in the same manner as in Example 1, 4-chlorodiphenyl sulfone (99.99%) was further added in 0.1 parts by weight (0.10 mol% of 4,4′-dichlorodiphenyl sulfone) (Example 2), 0.97 parts by weight (0.92 mol% of 4,4′-dichlorodiphenylsulfone) (Comparative Example 2), 1.94 parts by weight (1.85 mol% of 4,4′-dichlorodiphenylsulfone) ) (Comparative Example 3), 3.89 parts by weight (3.71 mol% of 4,4′-dichlorodiphenylsulfone) (Comparative Example 4) were added, and the aromatic polyether of Manufactured.
The reduced viscosity of the obtained aromatic polyether was 0.427 dl / g (Example 2), 0.351 dl / g (Comparative Example 2), 0.325 dl / g (Comparative Example 3), 0.291 dl / g, respectively. g (Comparative Example 4).
Comparative Example 5
After the raw materials were charged in the same manner as in Example 1, 0.14 parts by weight of phenol (0.37 mol% of 4,4′-dihydroxydiphenyl sulfone) was further added. Ether was produced.
The reduced viscosity of the obtained aromatic polyether was 0.403 dl / g.
 本発明によって、目標とする分子量の芳香族ポリエーテルをより確実に製造することができる。 According to the present invention, an aromatic polyether having a target molecular weight can be more reliably produced.

Claims (6)

  1.  二価フェノール化合物とジハロゲノジフェニル化合物とを、反応溶媒および塩基の存在下に重縮合反応させて芳香族ポリエーテルを製造する方法であって、原材料中に含まれるモノハロゲノジフェニル化合物の量をジハロゲノジフェニル化合物の0.25モル%以下とし、一価フェノール化合物の量を二価フェノール化合物の0.25モル%以下とした条件下で重縮合反応する芳香族ポリエーテルの製造方法。 A method for producing an aromatic polyether by subjecting a dihydric phenol compound and a dihalogenodiphenyl compound to a polycondensation reaction in the presence of a reaction solvent and a base, wherein the amount of the monohalogenodiphenyl compound contained in the raw material is A process for producing an aromatic polyether, which undergoes a polycondensation reaction under a condition in which a halogenodiphenyl compound is 0.25 mol% or less and the amount of a monohydric phenol compound is 0.25 mol% or less of a dihydric phenol compound.
  2.  原材料中に含まれるモノハロゲノジフェニル化合物の量をジハロゲノジフェニル化合物の0.1モル%以下とし、一価フェノール化合物の量を二価フェノール化合物の0.1モル%以下とした条件下で重縮合反応する請求項1記載の方法。 Polycondensation under conditions where the amount of monohalogenodiphenyl compound contained in the raw material is 0.1 mol% or less of the dihalogenodiphenyl compound and the amount of monohydric phenol compound is 0.1 mol% or less of the dihydric phenol compound A process according to claim 1 which reacts.
  3.  前記二価フェノール化合物が4,4’−ジヒドロキシジフェニルスルホンであり、前記ジハロゲノジフェニル化合物が4,4’−ジクロロジフェニルスルホンである請求項1または2記載の方法。 The method according to claim 1 or 2, wherein the dihydric phenol compound is 4,4'-dihydroxydiphenylsulfone, and the dihalogenodiphenyl compound is 4,4'-dichlorodiphenylsulfone.
  4.  前記塩基が炭酸カリウムである請求項1~3の何れか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the base is potassium carbonate.
  5.  前記モノハロゲノジフェニル化合物が4−クロロジフェニルスルホンおよび/または4−ブロモジフェニルスルホンである請求項1~4の何れか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the monohalogenodiphenyl compound is 4-chlorodiphenylsulfone and / or 4-bromodiphenylsulfone.
  6.  前記一価フェノール化合物がフェノールおよび/または4−ヒドロキシジフェニルスルホンである請求項1~5の何れか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the monohydric phenol compound is phenol and / or 4-hydroxydiphenyl sulfone.
PCT/JP2010/063593 2009-08-06 2010-08-04 Method for producing aromatic polyether WO2011016583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-183161 2009-08-06
JP2009183161 2009-08-06

Publications (1)

Publication Number Publication Date
WO2011016583A1 true WO2011016583A1 (en) 2011-02-10

Family

ID=43544475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063593 WO2011016583A1 (en) 2009-08-06 2010-08-04 Method for producing aromatic polyether

Country Status (1)

Country Link
WO (1) WO2011016583A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632894A (en) * 1992-07-10 1994-02-08 Ube Ind Ltd Production of polyaryl ether
JPH06100689A (en) * 1992-09-22 1994-04-12 Ube Ind Ltd Production of polyaryl ether
JP2008248010A (en) * 2007-03-29 2008-10-16 Sumitomo Chemical Co Ltd Method for measuring degree of polymerization and method for preparing aromatic polyether
JP2009138149A (en) * 2007-12-10 2009-06-25 Sumitomo Chemical Co Ltd Polyethersulfone-based resin composition and molding obtained therefrom
JP2010077185A (en) * 2008-09-24 2010-04-08 Toray Ind Inc Aromatic polyethersulfone having hydroxyphenyl terminal group, and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632894A (en) * 1992-07-10 1994-02-08 Ube Ind Ltd Production of polyaryl ether
JPH06100689A (en) * 1992-09-22 1994-04-12 Ube Ind Ltd Production of polyaryl ether
JP2008248010A (en) * 2007-03-29 2008-10-16 Sumitomo Chemical Co Ltd Method for measuring degree of polymerization and method for preparing aromatic polyether
JP2009138149A (en) * 2007-12-10 2009-06-25 Sumitomo Chemical Co Ltd Polyethersulfone-based resin composition and molding obtained therefrom
JP2010077185A (en) * 2008-09-24 2010-04-08 Toray Ind Inc Aromatic polyethersulfone having hydroxyphenyl terminal group, and method for producing the same

Similar Documents

Publication Publication Date Title
US7786245B2 (en) Process for preparing polyarylene ether ketone
US8378054B2 (en) Method for producing polyaryl ethers
JP5667744B2 (en) Process for the production of polyetherketone monomers and phenolates
CN104271640A (en) Method for the production of polysulfones, and polysulfones
EP1464662B1 (en) Polyether ketone and method for production thereof
US11597801B2 (en) Method for producing aromatic polysulfone
JP2013159641A (en) Method of producing aromatic polysulfone
CN108368254B (en) Aromatic polysulfone resin and process for producing the same
EP0386542A2 (en) Process for preparation of aromatic polyetherketons
WO2011016583A1 (en) Method for producing aromatic polyether
JP2010095614A (en) Process for producing polyetheretherketone
JP2011122045A (en) Method for producing aromatic polyether
JP2012025926A (en) Method for production of aromatic polyether
JP2010235750A (en) Method for producing aromatic polyether
US8981035B2 (en) Production method of poly (phenylene ether ether ketone)
US5171821A (en) Process for producing a phenolate and process for producing an aromatic polyether ketone employing it
US11015071B2 (en) Poly—(aryl-ether-ketone) (PAEK) composition with a low content of volatile compounds and use of same in a sintering method
JP2010235749A (en) Method for producing aromatic polyether
JP2013253211A (en) Method for production of aromatic polyether
JPH02308814A (en) Production of aromatic polyether ketone
JP5891555B2 (en) Process for producing aromatic polysulfone
JPH07138360A (en) Production of crystalline polyether
JP2013001716A (en) Method of producing aromatic polyether, and aromatic polyether
WO2002048101A1 (en) Process for producing sulfonium salt
JPH0340734B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806580

Country of ref document: EP

Kind code of ref document: A1