WO2011016505A1 - System for eliminating mercury from exhaust gas and method for eliminating mercury - Google Patents

System for eliminating mercury from exhaust gas and method for eliminating mercury Download PDF

Info

Publication number
WO2011016505A1
WO2011016505A1 PCT/JP2010/063248 JP2010063248W WO2011016505A1 WO 2011016505 A1 WO2011016505 A1 WO 2011016505A1 JP 2010063248 W JP2010063248 W JP 2010063248W WO 2011016505 A1 WO2011016505 A1 WO 2011016505A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonium chloride
exhaust gas
mercury
flue
coarse
Prior art date
Application number
PCT/JP2010/063248
Other languages
French (fr)
Japanese (ja)
Inventor
展行 鵜飼
盛紀 村上
進 沖野
晴治 香川
立人 長安
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2011016505A1 publication Critical patent/WO2011016505A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/108Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/60Heavy metals; Compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to treatment of combustion exhaust gas, and more particularly to a system and method for removing mercury in combustion exhaust gas.
  • mercury contained in combustion exhaust gas is converted to mercury oxide such as mercury chloride, which is easily adsorbed on activated carbon, etc. by an additive containing halogen, and adsorbed on activated carbon in fly ash to be removed (for example, see Patent Document 1).
  • a mercury removal method using an adsorbent such as activated carbon or a selenium filter has already been put into practical use for waste incineration exhaust gas, but requires a special adsorption removal apparatus.
  • the mercury chlorinating agent is added to the combustion exhaust gas, the water-insoluble metal mercury is converted to water-soluble mercury chloride on the denitration catalyst, and is absorbed and removed by the subsequent wet desulfurization apparatus.
  • the chlorinating agent added to the flue is often highly corrosive, and the chlorinating agent exceeding the required amount causes corrosion of the flue and the downstream equipment, resulting in a problem of shortening the plant life. .
  • Patent Document 3 it has been proposed to adjust the supply amount of the chlorinating agent to the exhaust gas based on the measured values of the chlorinating agent concentration and mercury concentration in the flue. According to this method, it is possible to prevent corrosion of an apparatus or the like due to an excessive amount of chlorinating agent. However, further improvements are desired, such as improved system reliability and improved mercury removal efficiency.
  • JP 2005-230810 A Japanese Patent Laid-Open No. 10-230137 JP 2007-167743 A
  • An object of the present invention is to provide an exhaust gas mercury removal system and a mercury removal method that can reduce deterioration of an exhaust gas treatment facility, have long-term reliability, and have high mercury removal efficiency.
  • an ammonium chloride pretreatment means for pretreatment of ammonium chloride, an ammonium chloride supply means for supplying pretreated ammonium chloride to exhaust gas, and nitrogen oxidation in the exhaust gas are performed.
  • the processing means includes a coarse substance removing means for removing the coarse substance from the ammonium chloride.
  • the ammonium chloride pretreatment means further includes a separate sublimation means for sublimating solid ammonium chloride, and the coarse substance removal means is a dust collector. is there. It is preferable that the supply unit further includes a dilution unit for diluting the sublimation gas of ammonium chloride.
  • the supply unit further includes a dilution unit for diluting the sublimation gas of ammonium chloride.
  • the ammonium chloride supply means supplies the ammonium chloride aqueous solution so as not to adhere to the inner wall of the flue through which the exhaust gas circulates.
  • the substance removal means includes at least one selected from the group consisting of a gravity precipitation tank, a hydrocyclone, a membrane separator, and a screen, and agitates the exhaust gas supplied with ammonium chloride before the reductive denitration means. Means are further provided.
  • the structure for supplying ammonium chloride aqueous solution so that it does not adhere to the inner wall of the flue through which exhaust gas flows is that the spraying means provided in the ammonium chloride supply means is arranged at a certain distance from the inner wall of the flue in the flue. It is preferable that it is a structure. The distance above a certain distance is a distance sufficient for vaporizing the sprayed droplets before they reach the flue wall from the spraying means.
  • the structure in which the ammonium chloride aqueous solution is supplied so as not to adhere to the inner wall of the flue through which the exhaust gas circulates means that the inner wall and the double tube are formed inside the inner wall of the flue where the droplets to be sprayed can reach.
  • the structure provided with the partition provided in may be sufficient.
  • the coarse substance removing means is one selected from the group consisting of a gravity precipitation tank, a liquid cyclone provided in a subsequent stage of the gravity precipitation tank, a membrane separation device, and a screen. It is preferable to provide the above.
  • Another aspect of the present invention is a method for removing mercury from exhaust gas, the step of removing coarse substances from ammonium chloride, the step of supplying ammonium chloride from which coarse substances have been removed to the exhaust gas, and the supply of ammonium chloride.
  • the ammonium chloride is solid ammonium chloride, and the step of sublimating the solid ammonium chloride with a separate vaporizer is performed by adding a coarse substance.
  • the ammonium chloride that is further included before the removing step and is supplied to the exhaust gas is a sublimation gas of ammonium chloride.
  • the mercury removing method according to the above embodiment preferably further includes a step of supplying a dilution gas to the sublimation gas after the step of sublimating ammonium chloride.
  • the step of supplying the ammonium chloride to the exhaust gas in which the ammonium chloride is an ammonium chloride aqueous solution is a smoke in which the exhaust gas circulates through the ammonium chloride aqueous solution. It is a step of spraying so as not to adhere to the inner wall of the road, and further includes a step of stirring the vaporized gas of the aqueous ammonium chloride solution and the exhaust gas in the flue after the step of supplying the ammonium chloride to the exhaust gas.
  • the supply of the ammonium chloride to the exhaust gas is preferably performed by an ammonium chloride supply means having a structure capable of supplying so that droplets of the ammonium chloride aqueous solution do not adhere to the inner wall of the flue.
  • an exhaust gas mercury removal system and a removal method that can reduce deterioration of an exhaust gas treatment facility, have long-term reliability, and have excellent removal efficiency. Further, according to the present invention, since coarse substances are removed from ammonium chloride, which is a mercury chlorinating agent, it is possible to prevent clogging / wearing of nozzles and the like in the mercury removal system.
  • FIG. 1 is a diagram illustrating an embodiment of the mercury removal system of the present invention.
  • FIG. 2 is a diagram illustrating a second embodiment of the mercury removal system of the present invention.
  • FIG. 3 is a graph showing the gas-solid equilibrium of NH 3 and HCl.
  • FIG. 4 is a diagram for explaining the ammonium chloride pretreatment means 2 constituting a part of the mercury removal system of the present invention.
  • FIG. 5 is a diagram for explaining a hot cyclone which is an embodiment of the coarse substance removing means of the present invention.
  • FIG. 6 is a diagram illustrating a third embodiment of the mercury removal system of the present invention.
  • FIG. 7 is an enlarged view illustrating the configuration of an embodiment of the ammonium chloride supply unit 16 of the present invention.
  • FIG. 8 is a graph in which the time taken for the droplets of the aqueous ammonium chloride solution to evaporate in the flue is predicted in relation to the droplet diameter.
  • FIG. 9 is a view for explaining an embodiment of the ammonium chloride supply means 16 of the present invention.
  • FIG. 10 is a diagram for explaining a fourth embodiment of the mercury removal system of the present invention.
  • FIG. 1 shows an exhaust gas treatment system including a first embodiment of a mercury removal system 100 of the present invention.
  • a mercury removal system 100 shown in FIG. 1 includes an ammonium chloride pretreatment unit 2, an ammonium chloride supply unit 16, a reduction denitration unit 3, an air heater 4, an electrostatic precipitator 5, a wet desulfurization unit 6, and a chimney 7 as main components. Yes.
  • the mercury removal system 100 includes reductive denitration means 3 connected to the downstream of the boiler 1 by a flue 26.
  • Ammonium chloride supply means 16 is installed in the flue 26 connecting the boiler 1 and the reductive denitration means 3.
  • the ammonium chloride supply means 16 is connected to the ammonium chloride pretreatment means 2 via a pipe line.
  • An air heater 4 connected by a flue is provided downstream of the reducing denitration means 3.
  • An electric dust collector 5 is provided downstream of the air heater 4, and the electric dust collector 5 is connected to the air heater 4 by a flue.
  • the wet desulfurization means 6 is provided in the downstream of the electric dust collector 5, and the wet desulfurization means 6 is connected to the electric dust collector 5 by a flue.
  • a chimney 7 connected by a flue is installed downstream of the wet desulfurization means 6.
  • a belt filter 8 is further installed downstream of the wet desulfurization means 6.
  • the boiler 1 is provided in the upstream of the mercury removal system 100, burns fossil fuels such as heavy oil and coal, and discharges exhaust gas.
  • the exhaust gas contains harmful substances such as nitrogen oxides, sulfur oxides, and mercury.
  • the ammonium chloride pretreatment means 2 of this embodiment pretreats ammonium chloride before being supplied into the flue gas in the flue.
  • the ammonium chloride pretreatment means 2 includes a coarse substance removal means 21.
  • the coarse substance removing means 21 separates and removes the coarse substance from ammonium chloride.
  • a cyclone, an electrostatic precipitator, a gravity sedimentation tank, a film, or the like can be used as the coarse substance removing means 21, a cyclone, an electrostatic precipitator, a gravity sedimentation tank, a film, or the like can be used.
  • a coarse substance means an impurity mixed in ammonium chloride as a raw material. Impurities include coarse dust, insects, minerals, earth and sand, vegetation, glass, metal scraps, and the like.
  • the ammonium chloride supply means 16 supplies ammonium chloride after removing coarse substances to the exhaust gas in the flue 26.
  • the ammonium chloride supply means 16 is provided downstream of the coarse substance removing means 21 and is connected to the coarse substance removing means 21 by a pipe line.
  • a spray grid having a plurality of spray nozzles and a spray grid having a plurality of spray nozzles can be used.
  • the reductive denitration means 3 is an apparatus that reduces nitrogen oxides in exhaust gas with a denitration catalyst and generates mercury chloride by HCl and metal mercury generated by decomposition of ammonium chloride.
  • a general one having a reductive denitration catalyst can be used.
  • the denitration catalyst provided in the reduction denitration means 3 is not particularly limited, but, for example, a metal oxide such as W, Sn, In, Co, Ni, Fe, Ni, Ag, or Cu supported on a support such as zeolite. Can be used.
  • the amount of the reductive denitration catalyst provided in the reductive denitration means 3 can be increased from the usual amount in order to increase the mercury oxidation efficiency.
  • the wet desulfurization means 6 is an apparatus that absorbs and removes sulfur oxides present in exhaust gas and mercury oxides such as mercury chloride.
  • a conventional one having an alkali absorbing liquid can be used as the wet desulfurization means 6, a conventional one having an alkali absorbing liquid.
  • the alkali absorbing liquid include, but are not limited to, aqueous solutions of calcium carbonate, calcium hydroxide, sodium hydroxide, sodium sulfite, ammonia, magnesium hydroxide, and the like. It is preferable that the wet desulfurization means 6 further includes a mercury re-scattering prevention device (not shown).
  • the mercury re-scattering prevention device is a device that keeps the oxidation-reduction potential of the alkaline absorbent in a certain range by supplying an oxidizing agent or air to the alkaline absorbent.
  • the mercury re-scattering prevention device prevents the mercury oxide (Hg 2+ ) in the absorption liquid from being reduced to metallic mercury (Hg 0 ) by SO 2 or the like, as shown in the following formula (1). To prevent it. Hg 2+ + 2e ⁇ ⁇ Hg 0 (1)
  • the mercury re-scattering prevention device is preferably a device capable of adjusting the redox potential of the absorbing solution to 150 to 600 mV.
  • a belt filter 8 is installed downstream of the wet desulfurization means 6.
  • the belt filter 8 is a device that dehydrates and collects the gypsum slurry generated in the absorption tower of the wet desulfurization means 6, and discharges the gypsum 9.
  • the air heater 4 is a device that adjusts the exhaust gas temperature.
  • the electric dust collector 5 removes soot in the exhaust gas.
  • the chimney 7 discharges the exhaust gas out of the system.
  • the air heater 4, the electrostatic precipitator 5, the chimney 7 and the like can be general ones.
  • the mercury removal method of the present embodiment includes a step of removing coarse substances from ammonium chloride, a step of supplying ammonium chloride from which coarse substances have been removed to exhaust gas, and a step of contacting exhaust gas supplied with ammonium chloride with a denitration catalyst. And a step of bringing the exhaust gas brought into contact with the denitration catalyst into contact with the alkali absorbing solution.
  • ammonium chloride is used to oxidize metallic mercury in the exhaust gas.
  • Ammonium chloride having a purity that is usually used for fertilizers can be used.
  • the ammonium chloride may be a solid or an aqueous solution. A coarse substance is mixed in the ammonium chloride as a raw material.
  • Exhaust gas generated by combustion of coal and heavy oil usually contains mercury in addition to harmful substances such as nitrogen oxides and sulfur oxides.
  • the exhaust gas flows out of the boiler 1 and flows in the flue 26.
  • the coarse substance removing means 21 separates and removes coarse substances mixed in ammonium chloride.
  • a step of supplying ammonium chloride from which the coarse material has been removed to the exhaust gas is performed.
  • the step of supplying ammonium chloride is performed in the flue 26 connecting the boiler 1 and the reducing denitration means 3.
  • the ammonium chloride supplied into the exhaust gas is in the form of an aqueous solution or a gas.
  • the ammonium chloride is preferably sprayed as droplets in the exhaust gas or introduced as a sublimated gas. It is preferable to supply ammonium chloride so that the concentration in the exhaust gas is in the range of 10 to 200 ppm.
  • the method according to the present embodiment may further include a step of adding HCl to the exhaust gas. This is because HCl alone generated by dissociation of ammonium chloride may be insufficient to oxidize metallic mercury.
  • the addition of HCl is preferably performed after the step of supplying ammonium chloride in the flue connecting the ammonium chloride supply unit 16 and the reductive denitration unit 3.
  • the mixture of the exhaust gas and ammonium chloride is caused to flow into the reducing denitration means 3 through the flue 26 and is brought into contact with the denitration catalyst provided in the reduction denitration means 3.
  • NH 3 produced by decomposition of ammonium chloride reacts with nitrogen oxides in the exhaust gas, and nitrogen oxides are reduced to nitrogen as shown in formula (3).
  • metal mercury in the exhaust gas is oxidized to mercury chloride by HCl generated by the decomposition of ammonium chloride, as shown in formula (4).
  • the exhaust gas that has undergone the step of contacting with the denitration catalyst mainly contains SO x , CO, CO 2 , HgCl 2 , N 2 , O 2 , and water vapor, and unreacted NH 3 , HCl, and NO also remain. .
  • the method according to the present embodiment may further include a step of adding activated carbon to the exhaust gas.
  • the step of adding the activated carbon is preferably performed after the step of bringing the exhaust gas into contact with the denitration catalyst.
  • mercury chloride in the exhaust gas can be adsorbed on the activated carbon, and there is an advantageous effect of reducing the amount of mercury flowing into the wet desulfurization means 6.
  • the temperature of the exhaust gas flowing out from the reducing denitration means 3 is adjusted by the air heater 4.
  • the dust is removed from the exhaust gas in the electric dust collector 5.
  • the exhaust gas from which the dust and the like are removed is caused to flow into the wet desulfurization means 6.
  • the step of bringing the exhaust gas into contact with the alkali absorbing liquid the exhaust gas after being brought into contact with the denitration catalyst is brought into contact with the alkali absorbing liquid.
  • SO x in the exhaust gas is absorbed into the alkali absorbing solution and removed as a precipitate of gypsum 9, and water-soluble mercury chloride is also absorbed into the alkali absorbing solution and removed.
  • the gypsum slurry precipitated in the alkali absorbing liquid is dehydrated by the belt filter 8 and collected as gypsum 9.
  • the exhaust gas flowing out from the wet desulfurization means 6 is discharged from the chimney 7.
  • the step of bringing the exhaust gas into contact with the alkali absorbing liquid supplies air to the alkali absorbing liquid. This is to keep the oxidation-reduction potential within a stable range where HgCl 2 in the alkali absorbing solution is not reduced to metallic mercury Hg 0 and to prevent re-scattering of mercury.
  • an oxidizing agent may be added to the alkali absorbing liquid.
  • the mercury removal method according to the present embodiment can remove mercury in the exhaust gas, preferably with a mercury removal rate of 90% or more.
  • the mercury removal rate is more preferably 95% or more.
  • ammonium chloride is supplied into the exhaust gas after removing the coarse substance, so that the coarse substance is supplied to the ammonium chloride supply means 16 ahead of the coarse substance removal means 21. And does not enter the flue 26. Therefore, it is possible to prevent the ammonium chloride supply means 16 such as a spray nozzle from being clogged with a coarse material, and it is possible to improve the life of the exhaust gas treatment facility.
  • FIG. 2 is a diagram showing a main part of a second embodiment of the mercury removal system of the present invention.
  • the system according to the second embodiment of the present invention includes an economizer 10, a raw material supply means 23, a sublimation means 22, a coarse substance removal means 21, an ammonium chloride supply means 16, an NH 3 supply means 11, a reductive denitration means 3, an air heater 4, A wet desulfurization means 6 and a chimney 7 are provided.
  • the wet desulfurization means 6 and the chimney 7 on the downstream side of the air heater 4 are omitted.
  • subjected the same number has the same structure and effect
  • the ammonium chloride pretreatment unit 2 includes a raw material supply unit 23 and a sublimation unit 22 in addition to the coarse substance removing unit 21.
  • the raw material supply means 23 is an apparatus for supplying ammonium chloride 101 as a raw material to the sublimation means 22.
  • the raw material supply means 23 is installed upstream of the sublimation means 22 so that ammonium chloride can be supplied to the sublimation means 22.
  • a combination of a silo and a screw feeder can be used, but is not limited to these.
  • the sublimation means 22 is a device for heating and sublimating solid ammonium chloride.
  • the sublimation means 22 is installed in the front stage of the coarse substance removal means 21 connected by a pipe line.
  • the sublimation means 22 is installed outside the flue 26 as an independent apparatus used for sublimation, not as an apparatus shared with other devices such as the raw material supply means 23 and the flue 26 in the mercury removal system.
  • the heat necessary for sublimation is supplied from the outside and does not depend only on the heat of the exhaust gas flowing in the flue.
  • by providing the sublimation means 22 independently it becomes possible to heat ammonium chloride to a high temperature that is impossible with only flue gas, for example, 400 ° C.
  • ammonium chloride can be sublimated almost completely and can be supplied in exhaust gas as gas.
  • ammonium chloride can be supplied into the flue as a gas. Therefore, unlike the method of sublimating ammonium chloride with the heat of exhaust gas flowing through the flue, the spray means such as a spray nozzle is blocked. ⁇ Abrasion can be prevented.
  • ammonium chloride is preferably sublimated by heating to 400 ° C. or higher.
  • the sublimation gas of ammonium chloride is a gas containing equimolar NH 3 and HCl.
  • a vaporizer capable of sublimating solid ammonium chloride with a large capacity can be used.
  • a vaporizer such as a kiln furnace or a fluidized bed furnace is used.
  • L (cylinder length) / F (cylinder diameter) is preferably 3 or more.
  • the solid ammonium chloride supplied to the kiln furnace preferably has a volume ratio of 15% or less in the cylinder of the kiln furnace.
  • Most of the non-volatile material remaining without sublimation remains in the sublimation means 22 as a coarse material 102. Accordingly, the sublimation means 22 of the present embodiment has a function of removing coarse substances 102 such as nonvolatile substances from the exhaust gas in addition to the function of sublimating ammonium chloride.
  • the coarse substance removing means 21 is an apparatus that can remove coarse substances contained in the sublimation gas of ammonium chloride.
  • the coarse material removed by the coarse material removing means 21 of the present embodiment is a nonvolatile substance.
  • the non-volatile substance mainly refers to a substance that does not gasify even when heated by the sublimation means 22.
  • Nonvolatile substances mixed in ammonium chloride include coarse dust, insects, minerals, earth and sand, vegetation, glass, metal scraps, and denitration catalyst inhibitors such as sodium compounds, phosphate compounds, and calcium compounds. It is done.
  • Specific examples of the denitration catalyst inhibitor include NaCl, PbSO 4 , and Ca 3 (PO 4 ) 2 .
  • the coarse substance removing means 21 can also remove fine ammonium chloride particles having a particle diameter of 10 ⁇ m or more that have flowed out of the sublimation means 22 without being completely sublimated.
  • the coarse substance removing means 21 is installed at the subsequent stage of the sublimation means 22 connected by a pipe line.
  • Ammonium chloride supply means 16 connected by a pipe line is provided downstream of the coarse substance removing means 21.
  • the coarse material removing means 21 is preferably a dust collector such as a cyclone, an electric dust collector, and a bag filter.
  • the coarse substance removing means 21 can remove fine coarse substances having a particle size of preferably 20 ⁇ m or more, more preferably a particle size of 10 ⁇ m or more.
  • the ammonium chloride pretreatment means 2 sublimates ammonium chloride to remove coarse substances.
  • the ammonium chloride supply means 16 is an apparatus for supplying the sublimation gas of ammonium chloride sublimated by the sublimation means 22 into the exhaust gas flowing in the flue 26.
  • the ammonium chloride supply means 16 is installed in a flue 26 connecting the economizer 10 and the reductive denitration means 3.
  • the ammonium chloride supply means 16 is preferably installed in a straight region of the flue 26 through which exhaust gas flows linearly.
  • the ammonium chloride supply means 16 is not particularly limited as long as the sublimation gas can be mixed with the exhaust gas.
  • the ammonium chloride supply means 16 can preferably use a spray grid or the like having a plurality of nozzles.
  • the pipe line connecting the sublimation means 22 and the ammonium chloride supply means 16 and the inside of the nozzle and the like provided in the ammonium chloride supply means 16 are periodically washed with water and passed through a sublimation gas of ammonium chloride sublimated after drying. Is preferred.
  • the economizer 10 is a device that recovers thermal energy from the exhaust gas and preheats the water supplied to the boiler 1.
  • the economizer 10 is provided downstream of the boiler 1, and ammonium chloride supply means 16 connected by a flue 26 is installed on the downstream side of the economizer 10.
  • the NH 3 supply means 11 injects NH 3 from the NH 3 tank into the exhaust gas.
  • the NH 3 supply means 11 is connected to the flue.
  • the NH 3 supply means 11 preferably sprays NH 3 gas into the flue.
  • the NH 3 supply unit 11 is connected to a flue connecting the ammonium chloride supply unit 16 and the reductive denitration unit 3.
  • the NH 3 supply unit 11 may be connected to a flue that connects the economizer 10 and the ammonium chloride supply unit 16.
  • a rectifier 12 is provided in the flue 26 connecting the economizer 10 and the ammonium chloride supply unit 16 and in the flue connecting the NH 3 supply unit 11 and the reductive denitration unit 3.
  • the rectifier 12 is an apparatus that rectifies the flow of exhaust gas and leveles the flow velocity distribution. When the rectifying device 12 is installed in a region where the flue is bent, the flow rate of the exhaust gas can be prevented from being damaged by the bending.
  • a guide vane, a tube group, or the like can be used as the rectifier 12.
  • the flow velocity distribution of the exhaust gas is leveled and the dispersion of the concentration distribution can be eliminated, so that ammonium chloride and mercury can be reacted with higher efficiency, and ammonium chloride that is not used in the reaction is generated. Can be prevented.
  • the ammonium chloride pretreatment unit 2 may further include a dilution unit (not shown in FIG. 2).
  • the dilution means mixes a gas such as high-temperature air with the sublimation gas to reduce the concentration of the sublimation gas.
  • the dilution means is preferably connected to the sublimation means 22 via a conduit.
  • the dilution means sends the dilution gas to the sublimation means 22 and mixes it with the sublimation gas in the sublimation means 22.
  • a gas for dilution in addition to air, water vapor can be used, or exhaust gas flowing in the flue may be reused.
  • the dilution means can preferably dilute the sublimation gas concentration to preferably 10,000 to 100,000 ppm.
  • the sublimation gas is a gas generated by sublimation of ammonium chloride, and is a gas containing equimolar NH 3 and HCl generated by dissociation of NH 4 Cl. Accordingly, the concentration of the sublimation gas is equal to the concentration of NH 3 and HCl.
  • the diluting means for example, a blower, an exhaust gas bypass pipe or the like can be used.
  • the method according to this embodiment includes a step of sublimating solid ammonium chloride with a separate vaporizer, a step of removing coarse substances from ammonium chloride, a step of supplying ammonium chloride to exhaust gas, and ammonium chloride is supplied.
  • a sublimation gas of ammonium chloride is supplied to the exhaust gas in the flue.
  • the solid ammonium chloride 101 is supplied to the sublimation means 22 (vaporizer) by the raw material supply means 23.
  • the solid ammonium chloride supplied to the sublimation means 22 (vaporizer) is preferably ammonium chloride particles.
  • the size of the particles is not particularly limited, but preferably the particle size is 0.1 to 3 mm, more preferably 0.1 to 1 mm. The smaller the particle size, the shorter the time required for sublimation.
  • the solid ammonium chloride is heated and sublimated with an independent vaporizer. The heating temperature is preferably 400 ° C. or higher. By this process, ammonium chloride sublimes to generate sublimation gas.
  • non-volatile material remaining without sublimation remains as a coarse substance in the sublimation means 22.
  • non-volatile substances mixed in ammonium chloride include compounds such as NaCl, PbSO 4 , and Ca 3 (PO 4 ) 2 in addition to coarse dust and earth and sand. Since these compounds have the property of inhibiting mercury oxidation in a denitration catalyst, it is preferable to remove them before supplying them into the flue. In the present embodiment, these compounds can also be removed by remaining inside the sublimation means 22 as a nonvolatile substance.
  • the coarse substance 102 such as a non-volatile substance accumulated in the sublimation means 22 is periodically extracted from the sublimation means 22 and removed.
  • the method of the present embodiment may include a step of diluting a sublimation gas of ammonium chloride after the sublimation step or at the same time as the sublimation step and before the step of removing coarse substances. This is because reducing the concentration of the sublimation gas sublimated by the sublimation means 22 is advantageous in that precipitation of ammonium chloride accompanying a temperature drop can be prevented.
  • a dilution gas is mixed with the sublimation gas. The sublimation gas dilution is preferably performed when the concentration of the sublimation gas exceeds 10,000 ppm.
  • the dilution gas is preliminarily heated to 240 ° C. or higher, more preferably 365 ° C. or higher before mixing with the sublimation gas. This is to prevent ammonium chloride from precipitating due to a decrease in the temperature of the sublimation gas.
  • FIG. 3 is a graph showing the gas-solid equilibrium of NH 3 and HCl generated by decomposition of ammonium chloride. In the graph, the concentration of the sublimation gas when the sublimation gas is not diluted with the diluting gas is shown as 1,000,000 ppm. When the gas temperature falls below 365 ° C., solid ammonium chloride may precipitate. Recognize.
  • ammonium chloride solids are deposited when the temperature of the mixed gas of the sublimation gas and the diluting gas falls below 240 ° C.
  • the gas temperature falls and solid ammonium chloride precipitates, it will cause clogging of the ammonium chloride supply means 16 such as a nozzle and cause ammonium chloride to remain without being used in the reaction.
  • the concentration of the sublimation gas after dilution is preferably 10,000 to 100,000 ppm. If the concentration of the sublimation gas supplied to the exhaust gas exceeds 100,000 ppm, precipitation of ammonium chloride due to high concentration and the amount of sublimation gas supplied to the flue will be small, and it may be difficult to level the concentration distribution. This is because if the amount is less than 000 ppm, the amount of sublimation gas supplied to the flue increases and the amount of exhaust gas may increase.
  • the coarse substance removing means 21 After the sublimation gas is diluted arbitrarily, it flows into the coarse substance removing means 21 through the pipeline. In the step of removing a coarse substance from ammonium chloride, the coarse substance mixed in the sublimation gas is removed by the coarse substance removing means 21.
  • the coarse material to be removed is a non-volatile material that has not been removed in the sublimation process, and includes coarse dust, earth and sand, and compounds such as NaCl, PbSO 4 , and Ca 3 (PO 4 ) 2 .
  • a coarse material having a size of 20 ⁇ m or more, more preferably 10 ⁇ m or more can be removed.
  • the sublimation gas after removal of coarse substances is supplied into the flue 26 by the ammonium chloride supply means 16 and mixed with the exhaust gas.
  • the supply of ammonium chloride is preferably performed by injecting a sublimation gas into the flue 26.
  • the concentration of the sublimation gas after supplying the sublimation gas is preferably 10 to 1000 ppm in the exhaust gas. More preferably, it is 10 to 200 ppm. If the concentration of sublimation gas in the exhaust gas is excessive, unreacted ammonium chloride may increase, and if it is insufficient, the oxidation of mercury and the reduction denitration of nitrogen oxides in the reduction denitration means 3 will decrease. Because there is.
  • the method according to the present embodiment may include a step of supplying NH 3 into the exhaust gas by the NH 3 supply means 11.
  • NH 3 can be replenished when only NH 3 generated by decomposition of ammonium chloride is insufficient to reduce nitrogen oxides in the exhaust gas.
  • Supply of NH 3 is preferably NH 3 / NO x mole ratio in the flue takes place when less than 0.9. If the NH 3 / NO x molar ratio in the flue is lower than 0.9, nitrogen oxides are not sufficiently reduced, and the remaining nitrogen oxides may be discharged from the flue 7 without being reduced. It is.
  • the supply of NH 3 is performed in the flue 26 connecting the economizer 10 and the reducing denitration means 3.
  • NH 3 is preferably supplied after ammonium chloride is supplied into the exhaust gas. Alternatively, NH 3 may be supplied before supplying ammonium chloride into the exhaust gas. In the exhaust gas in the flue 26 after supplying NH 3 , the NH 3 / NO x molar ratio is preferably 0.9 to 1.0.
  • the subsequent step of bringing the exhaust gas into contact with the denitration catalyst and the step of bringing the exhaust gas brought into contact with the denitration catalyst into contact with the alkaline absorbent can be performed in the same manner as in the first embodiment.
  • FIG. 4 illustrates an ammonium chloride pretreatment means 2 when a kiln furnace 221 is used as the sublimation means 22 as a specific example of the second embodiment.
  • the ammonium chloride pretreatment means 2 shown in FIG. 4 includes a silo 13, a screw feeder 14, a kiln furnace 221, a burner 222, a fuel tank 223, a blower 24, and a hot cyclone 211.
  • the silo 13 and the screw feeder 14 constitute a raw material supply means 16.
  • the silo 13 accumulates ammonium chloride 101
  • the screw feeder 14 supplies the ammonium chloride 101 from the silo 13 to the kiln furnace 221.
  • a kiln furnace 221 is provided downstream of the raw material supply means 23. Inside the kiln furnace 221, a burner 222 connected to the fuel tank 223 by a pipe line is installed. The coarse material 102 is discharged from the kiln furnace 221.
  • the kiln furnace 221 is heated and sublimated while stirring and transferring the ammonium chloride 101 in the furnace while rotating.
  • a blower 24 is further connected to the kiln furnace 221.
  • the blower 24 constitutes a diluting means and dilutes the sublimation gas with air.
  • the hot cyclone 211 is provided in the rear stage of the kiln furnace 221 and is connected to the kiln furnace 221 by a pipe line.
  • the hot cyclone 211 constitutes the coarse substance removing means 21 and removes the coarse substance from the mixture of the ammonium chloride sublimation gas and the air.
  • Ammonium chloride supply means 16 (not shown) is connected to the subsequent stage of the hot cyclone 211.
  • the steps of pretreating ammonium chloride by the ammonium chloride pretreatment means 2 in FIG. 4 include a step of sublimating the solid ammonium chloride 101 in the kiln furnace 221, a step of diluting the sublimation gas of ammonium chloride with air, and ammonium chloride. And a step of removing coarse materials from the above.
  • Ammonium chloride 101 charged from the silo 13 is supplied to the kiln furnace 221 by the screw feeder 14.
  • the solid ammonium chloride 101 is heated and sublimated inside the kiln furnace 221 by the heat released by the burner 222 supplied with fuel from the fuel tank 223.
  • the inside of the kiln furnace 221 is preferably 400 ° C. or higher.
  • air 106 is supplied into the kiln furnace 221 by the blower 24 and mixed with the sublimation gas.
  • the air 106 is heated to 400 ° C.
  • the coarse substance contained in the sublimation gas 104 diluted with air is separated and removed by the hot cyclone 211.
  • the non-volatile substance which was not gasified in the kiln furnace 221 can be removed as a coarse substance.
  • a coarse product having a size of up to 10 ⁇ m can be removed by the hot cyclone 211.
  • the diluted sublimation gas 104 is sent to the ammonium chloride supply means 16 and supplied to the exhaust gas in the flue.
  • FIG. 5 shows an enlarged view of the hot cyclone 211 as a specific example of the coarse substance removing means 21.
  • FIG. 5 is a side view of a general hot cyclone 211.
  • the hot cyclone 211 can separate and remove coarse substances from the sublimation gas 104 diluted by gravity and centrifugal force.
  • the diluted sublimation gas 104 containing a coarse substance flows into the hot cyclone 211, the diluted sublimation gas 104 descends as a swirl flow B inside the cyclone.
  • the coarse substance E mixed in the diluted sublimation gas 104 is directed to the outer wall by centrifugal force and is sent to the lower part of the cyclone by the downward flow C and discharged.
  • the diluted sublimation gas 104 is inverted at the lower part of the cyclone 221 and rises as a cylindrical inverted flow D inside the cyclone 211.
  • the diluted sublimation gas 104 rising inside the cyclone 211 is discharged from the upper part of the cyclone 211. In the upper part of the cyclone 211, a secondary flow vortex A is generated.
  • the gas discharged from the cyclone 211 is, for example, a diluted sublimation gas 104 from which a fine coarse substance E having a particle size of 10 ⁇ m or more has been removed.
  • the ammonium chloride pretreatment means 2 coarse substances such as fine non-volatile substances having a particle size of 10 ⁇ m or more are removed from the sublimation gas of ammonium chloride. Further, since the sublimation gas is diluted with air, ammonium chloride is difficult to precipitate as a solid. Accordingly, since solid substances such as coarse substances and precipitated ammonium chloride do not flow out from the ammonium chloride pretreatment means 2, the nozzles provided in the ammonium chloride supply means 16 and the devices such as the flue 26 are prevented from being blocked or worn. can do.
  • the mercury removal system and the mercury removal method of the second embodiment since coarse substances are previously removed from the ammonium chloride sublimation gas, there is a problem of clogging / wearing in the ammonium chloride supply means 16 provided with a nozzle or the like. Does not occur.
  • non-volatile substances such as NaCl that inhibit mercury oxidation are removed from the sublimation gas of ammonium chloride and are not supplied into the flue, mercury oxidation in the denitration catalyst can be performed more efficiently, and the mercury removal rate is increased. There is also an effect.
  • FIG. 6 shows a main part of a third embodiment of the mercury removal system according to the present invention.
  • the system according to the third embodiment of the present invention includes an economizer 10, a gravity precipitation tank 212, a water tank 27, an ammonium chloride supply means 16, an air compressor 25, a stirring means 15, an NH 3 supply means 11, a reductive denitration means 3, An air heater 4, wet desulfurization means 6, and a chimney 7 are provided.
  • the wet desulfurization means 6 and the chimney 7 provided on the downstream side of the air heater 4 are omitted.
  • subjected the same number has the same structure and effect
  • a gravity sedimentation tank 212 is provided as a coarse material removing means.
  • the ammonium chloride supply means 16 has a structure in which droplets of the ammonium chloride aqueous solution supplied into the flue 26 do not adhere to the inner wall of the flue. Furthermore, the mercury removal system of the present embodiment includes a stirring unit 15 that stirs the vaporized gas of the supplied ammonium chloride aqueous solution and the exhaust gas.
  • the gravity precipitation tank 212 is an apparatus capable of removing a water-insoluble coarse substance from the ammonium chloride aqueous solution 107 by solid-liquid separation by gravity sedimentation.
  • the coarse substance 102 removed by the gravity sedimentation tank 212 which is the coarse substance removing means of the present embodiment is a water-insoluble substance such as coarse dust, insects, minerals, earth and sand, grass and trees, glass, and metal scraps.
  • the gravity precipitation tank 212 can remove fine coarse particles having a size of preferably 100 ⁇ m or more, more preferably up to 10 ⁇ m.
  • the gravity settling tank 212 is provided in front of the ammonium chloride supply means 16 connected by a pipe line.
  • a dissolution tank or a dilution tank (not shown) connected by a pipe line may be provided in the front stage of the gravity precipitation tank 212.
  • the dissolution tank is used to prepare solid ammonium chloride aqueous solution 107 by dissolving solid ammonium chloride in water, and the dilution tank is used to dilute ammonium chloride aqueous solution 107.
  • the mercury removal system of the present embodiment may include one or more selected from the group consisting of a hydrocyclone, a membrane separator, and a screen instead of or in addition to the gravity precipitation tank 212.
  • the hydrocyclone, the membrane separator, and the screen are generally known to be able to remove coarse substances having a size of 10 to 100 ⁇ m or more, and can be used in the same manner as the gravity precipitation tank 212.
  • the gravity precipitation tank 212 ⁇ the screen ⁇ the liquid cyclone ⁇ the membrane separation apparatus or the screen ⁇ the gravity precipitation tank 212 ⁇ the liquid cyclone ⁇ the membrane separation apparatus. It is preferable to install from the front side through a pipeline.
  • the water tank 27 is an ammonium chloride supply means 16 and a water washing mechanism for washing the pipe line from the water tank 27 to the ammonium chloride supply means 16.
  • the water tank 27 cleans spray means such as a spray nozzle provided in the ammonium chloride supply means 16 to prevent clogging.
  • the water tank 27 is connected in the middle of a pipe line connecting the gravity precipitation tank 212 and the ammonium chloride supply means 16.
  • the water tank 27 is provided with a dilution line 29 that connects the water tank 27 and the gravity sedimentation tank 212.
  • the water tank 27 can also be used to supply water to the gravity settling tank 212 through the dilution line 29 to dilute the aqueous ammonium chloride solution.
  • the dilution line 29 may not be provided as long as there is no problem in operation of the mercury removal system. Moreover, it is preferable to provide a concentration monitoring device or the like for monitoring the concentration of the ammonium chloride aqueous solution sent to the ammonium chloride supply means 16 in the dissolution tank or dilution tank.
  • the ammonium chloride supply means 16 is a device that supplies an aqueous ammonium chloride solution into the exhaust gas.
  • the ammonium chloride supply unit 16 preferably includes a plurality of spraying units.
  • the ammonium chloride supply means 16 is provided in the flue 26 on the downstream side of the economizer 10 and on the upstream side of the stirring means 15.
  • the ammonium chloride supply means 16 is preferably installed in a straight region of the flue 26 through which exhaust gas flows linearly. This is because the flow rate distribution of the exhaust gas is not uniform at the bent portion of the flue, and if the ammonium chloride supply means 16 is installed in such a portion, the concentration distribution of ammonium chloride is not uniform.
  • ammonium chloride supply means 16 for example, a spray grid provided with spray means such as a plurality of spray nozzles can be used.
  • spray means provided in the ammonium chloride supply means 16 a two-fluid nozzle, a nebulizer or the like can be preferably used.
  • the spraying means is preferably capable of setting the diameter of droplets to be sprayed to 80 ⁇ m or less, and more preferably capable of spraying with a droplet diameter of 40 ⁇ m or less.
  • the end of the header pipe such as a spray nozzle has a structure that can be opened and closed by a valve and a gate. This is because it is possible to remove deposits accumulated in the header pipe and prevent clogging of the nozzle and the like.
  • An air compressor 25 is connected to the ammonium chloride supply means 16.
  • the air compressor 25 is a device that compresses the air 108 and supplies the compressed air to the ammonium chloride supply means 16.
  • the ammonium chloride supply means 16 sprays an aqueous ammonium chloride solution as droplets into the exhaust gas by the compressed air supplied from the air compressor 25.
  • the ammonium chloride supply means 16 has a structure for supplying an aqueous ammonium chloride solution so as not to adhere to the inner wall of the flue through which exhaust gas flows.
  • the aqueous ammonium chloride solution When the aqueous ammonium chloride solution is sprayed into the exhaust gas, it is evaporated by the heat of the exhaust gas to become a vaporized gas.
  • the ammonium chloride aqueous solution further dissociates into NH 3 and HCl after evaporation, and this HCl component causes corrosion when adhering to the inner wall of the flue together with moisture in the exhaust gas.
  • the structure for supplying the ammonium chloride aqueous solution so that it does not adhere to the inner wall of the flue through which the exhaust gas flows is preferably a spray means such as a spray nozzle provided in the ammonium chloride supply means 16 in the flue 26, It is a structure arranged at a certain distance from The distance above a certain distance is a distance sufficient for vaporizing the sprayed droplets before they reach the flue wall from the spraying means.
  • the structure for supplying the ammonium chloride aqueous solution so as not to adhere to the inner wall of the flue through which exhaust gas flows is provided so that the inner wall and a double pipe are formed inside the inner wall of the flue where the sprayed droplets can reach.
  • the structure provided with the made partition may be sufficient. Below, the specific example of the structure of the ammonium chloride supply means 16 is demonstrated.
  • FIG. 7 shows an example of the configuration of the ammonium chloride supply means 16.
  • the ammonium chloride supply unit 16 includes an ammonium chloride solution introduction pipe 162 and a plurality of spraying units 161.
  • the ammonium chloride solution introduction pipe 162 is a tubular device that supplies the ammonium chloride aqueous solution from the gravity precipitation tank 212 to the spraying means 161.
  • the ammonium chloride solution introduction pipe 162 is installed so as to penetrate the flue wall 263 and is arranged so as to be substantially perpendicular to the direction of the exhaust gas flow 109.
  • the spraying means 161 is installed on the ammonium chloride solution introduction pipe 162 so that the spray outlet of the spraying means 161 faces the downstream side of the exhaust gas flow 109.
  • a plurality of spraying means 161 are provided on the ammonium chloride introduction pipe 162.
  • the ammonium chloride solution introduction pipe 162 preferably forms a lattice in the flue and forms a spray grid together with a plurality of spraying means 161 provided on the ammonium chloride solution introduction pipe 162.
  • the spray nozzle which is the spray means 161 is arranged at a certain distance or more from the flue inner wall surface 262.
  • the droplets sprayed by the spraying means 161 spread in a solid conical shape with a spray angle ⁇ .
  • the droplet moves to the wake side with the flow of the exhaust gas, and then evaporates.
  • Some droplets for example, droplets having a large spray angle and a large diameter, do not flow in the gas but collide with the flue inner wall surface 262.
  • the position of each spray means 161 is set so that the exhaust gas flow 109 from all the inner wall surfaces 262 in the flue when the exhaust gas flow velocity is about 15 m / s.
  • the distance is preferably 0.5 to 2.0 m in the direction perpendicular to the distance. More preferably, the spraying means 161 is installed at a distance of 0.5 to 1.5 m in a direction perpendicular to the exhaust gas flow 109 from all the inner wall surfaces 262 in the flue. However, in consideration of variations in sprayed droplet diameter, exhaust gas flow velocity, vortex flow, spray angle, etc., the spraying means 161 is installed at a larger distance from the flue inner wall 262, for example, 1.0 to 1.5 m. It is preferable.
  • a nozzle having a large spray angle ⁇ can be selected.
  • the spray angle ⁇ varies depending on the nozzle specifications and spray conditions, and varies depending on the pulsation, and is not limited to a specific spray angle ⁇ . If the spray angle ⁇ is too large, spray droplets having a large diameter do not get on the gas flow and may collide with the flue wall 262 before evaporating. However, if the spray angle ⁇ is small, the spray droplets become exhaust gas. And may not be mixed efficiently.
  • FIG. 8 shows a graph in which the time required for the droplets of the aqueous ammonium chloride solution to evaporate in the flue is predicted in relation to the droplet diameter.
  • the simulation of droplet evaporation was performed under the conditions of an exhaust gas temperature of 350 ° C. and an initial droplet temperature of 20 ° C. when ammonium chloride was introduced.
  • the droplet diameter is 40 ⁇ m, it takes 0.032 seconds to evaporate in the flue. Therefore, it is necessary to arrange the spraying means 161 so that it takes at least 0.032 seconds to reach the flue wall 262 after the ammonium chloride droplets are sprayed from the spraying means such as a spray nozzle. .
  • the spray droplets may come into contact with each other and actually take longer to evaporate. For this reason, it can be calculated that the spray means 161 is installed at a position where the spray droplet reaches the flue wall 262 over a time of at least 0.1 second as about three times 0.032 seconds. it can.
  • the installation position of the spray means 161 can be specifically determined as follows as an example.
  • the distance that the spray droplets fly during 0.1 seconds is 1. in the direction parallel to the exhaust gas flow 109 from the spray means 161. Calculated to be 5 m.
  • the spray angle ⁇ is 12.5 ° with respect to the direction of the exhaust gas stream 109, the spray droplets are 0.335 m at the maximum in the direction perpendicular to the exhaust gas stream 109 from the spray means 161 after 0.1 seconds of spraying. Reach far away. This value is calculated by a calculation formula of 1.5 ⁇ tan 12.5.
  • the spraying means 161 can be installed at a distance greater than 0.335 m in the direction perpendicular to the exhaust gas flow 109 from all the inner wall surfaces 262 of the flue.
  • the spray angle ⁇ is 27.5 ° with respect to the direction of the exhaust gas flow 109
  • the spray droplets are 0 in the direction perpendicular to the exhaust gas flow 109 from the spray means 161 after 0.1 second of spraying. Reach up to .78m away.
  • This value is calculated by a calculation formula of 1.5 ⁇ tan 27.5.
  • the spraying means 161 can be installed at a distance greater than 0.78 m in the direction perpendicular to the exhaust gas flow 109 from all the inner wall surfaces 262 in the flue. Even if the exhaust gas flow velocity and temperature conditions may be different, the installation position of the spray means 161 can be determined as described above.
  • the ammonium chloride supply unit 16 includes a spray unit 161, an ammonium chloride solution introduction pipe 162, and a partition wall 163.
  • FIG. 9 shows an enlarged view of the ammonium chloride supply means 16 and the flue 26 in the vicinity thereof.
  • the spraying means 161 and the ammonium chloride solution introduction pipe 162 are the same as those described with reference to FIG.
  • the partition wall 163 prevents ammonium chloride droplets from adhering to the flue wall 262.
  • the partition wall 163 is installed so as to partially form a double pipe with the flue inner wall surface 262.
  • the plurality of spraying means 161 are all located inside the double pipe portion.
  • the partition wall 163 is installed from the position of the ammonium chloride solution introduction pipe 162 to the droplet evaporation position 264.
  • a position where all the spray droplets are evaporated to become vaporized gas is set as a droplet evaporation position 264.
  • the droplet evaporation position 264 is calculated as a position of 1.5 m from the spray means 161 in a direction parallel to the exhaust gas flow 109 when the droplet diameter of the spray droplet is about 40 ⁇ m and the exhaust gas flow velocity is about 15 m / s. .
  • the droplet evaporation position 264 changes depending on the droplet diameter to be sprayed, the exhaust gas flow velocity, the vortex flow, the spray angle, and the like, the droplet evaporation position is, for example, 1.0 to 4.0 m. It is predicted. Therefore, specifically, the partition wall 163 is installed from the position of the ammonium chloride solution introduction pipe 162 to the position of 1.0 to 4.0 m, more preferably 2.0 to 2.5 m in the downstream.
  • the partition wall 163 may be fixed to the ammonium chloride solution introduction tube 161.
  • the partition wall 163 is preferably formed of a corrosion-resistant material. Examples of the corrosion-resistant material include stainless steel and nickel alloy.
  • the partition wall 163 may be deteriorated due to corrosion and can be periodically replaced. Since the ammonium chloride supply means 16 has the partition wall 163, it is possible to prevent low temperature droplets from adhering to the high temperature flue inner wall surface 262 of 320 to 380 ° C. Wall cracking and corrosion can be prevented.
  • the ammonium chloride supply unit 16 has a configuration in which the installation position of the spray unit 161 is set to a specific position and the configuration in which the partition wall 163 is provided has been described.
  • the ammonium chloride supply unit 16 has both of these configurations. Also good.
  • the stirring means 15 is a device for stirring the vaporized gas and the exhaust gas of the ammonium chloride aqueous solution.
  • the stirring means 15 is provided in a flue connecting the ammonium chloride supply means 16 and the reductive denitration device 3. It is preferable that the stirring means 15 is installed in the straight part of a flue. This is because construction and maintenance are easier compared to the bent part.
  • the installation position of the stirring means 15 is preferably on the downstream side of the position where the droplets of the ammonium chloride aqueous solution supplied by the ammonium chloride supply means 16 evaporate.
  • the concentration distribution can be made more effective than when stirring the exhaust gas in the state of droplets.
  • a mixer is preferably used.
  • the mixer may be one normally used for gas stirring.
  • the stirring means 15 may include a plurality of mixers.
  • the boiler 1, economizer 10, rectifier 12, NH 3 supply unit 11, reduction denitration unit 3, air heater 4, wet desulfurization unit 6, and chimney 7 are the same as those described in the second embodiment. Can do.
  • the method according to the present embodiment includes a step of removing coarse substances from the aqueous ammonium chloride solution by gravity sedimentation, and a step of supplying the aqueous ammonium chloride solution after removal of coarse substances to the exhaust gas in the flue so as not to adhere to the inner wall of the flue.
  • the step of stirring the gas and the exhaust gas in which the ammonium chloride aqueous solution has evaporated in the flue After the step of supplying the ammonium chloride aqueous solution, the step of stirring the gas and the exhaust gas in which the ammonium chloride aqueous solution has evaporated in the flue, the step of bringing the exhaust gas supplied with ammonium chloride into contact with the denitration catalyst, And a step of bringing the contacted exhaust gas into contact with an alkali absorbing liquid.
  • the ammonium chloride aqueous solution 107 can be prepared by dissolving solid ammonium chloride in water.
  • the ammonium chloride aqueous solution 107 may be supplied with a concentration adjusted in advance by a tank truck or the like and supplied to the gravity precipitation tank 212. Or after supplying ammonium chloride aqueous solution 107 to a dilution tank (illustration omitted), you may dilute as needed and send to gravity precipitation tank 212. In this case, the gravity precipitation tank 212 may be used also as a dilution tank.
  • an ammonium chloride aqueous solution 107 prepared by supplying ammonium chloride powder to a dissolution tank and adding water to the dissolution tank may be sent to the gravity precipitation tank 212.
  • the raw material supply means such as the silo and the supply feeder described in the second embodiment can be used.
  • the concentration of the ammonium chloride aqueous solution 107 is preferably 0.01 to 45% by mass, and more preferably 0.01 to 23% by mass.
  • the step of removing coarse substances from the aqueous ammonium chloride solution coarse substances are removed from the aqueous ammonium chloride solution 107 by gravity precipitation in the gravity precipitation tank 212. Gravity sedimentation is preferably performed for 1 second to 24 hours.
  • the coarse substance removed in the method of the present embodiment include water-insoluble impurities such as coarse dust, insects, minerals, earth and sand, vegetation, glass, and metal scraps.
  • solid substances that do not dissolve in water can be removed, and blockage and wear of devices such as ammonium chloride supply means 16 and flue 26 can be prevented.
  • the method according to the present embodiment may optionally include a step of diluting the aqueous ammonium chloride solution before the step of removing coarse substances.
  • the concentration of ammonium chloride is reduced by supplying water through the dilution line 29 from the water tank 27 to the ammonium chloride aqueous solution in the gravity precipitation tank 212.
  • water is supplied and diluted so that the concentration of the ammonium chloride aqueous solution sent to the ammonium chloride supply means 16 is 0.01 to 45% by mass. Thereby, the density
  • the ammonium chloride aqueous solution from which coarse substances have been removed is sprayed into the exhaust gas in a mist form by the spraying means provided in the ammonium chloride supply means 16.
  • the aqueous ammonium chloride solution is sprayed into the exhaust gas together with the compressed air compressed by the air compressor 25.
  • the preferable droplet diameter of the sprayed droplet is 100 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • Each spraying means 161 sprays an ammonium chloride aqueous solution in the shape of a solid cone with the spraying means 161 at the top. At this time, the aqueous ammonium chloride solution is supplied so that the aqueous ammonium chloride solution does not adhere to the inner wall surface 262 of the flue. This is to prevent the flue from corroding.
  • the supply of the ammonium chloride aqueous solution can be performed in the form described with reference to FIGS.
  • the aqueous ammonium chloride solution is preferably supplied into the exhaust gas so that the concentration of ammonium chloride in the flue 26 is 0.01 to 200 ppm with respect to the exhaust gas.
  • the droplets of the ammonium chloride aqueous solution are heated by the heat in the flue 26 and evaporated to generate gas.
  • This gas is called vaporized gas.
  • NH 3 and HCl exist as gases.
  • the stirring means 15 Preferably, NH 3 , HCl, and exhaust gas generated by dissociation of evaporated ammonium chloride are stirred by the stirring means 15.
  • the vaporization gas of the ammonium chloride aqueous solution in the flue and the concentration distribution of NH 3 and HCl generated by further dissociation of ammonium chloride can be made uniform.
  • the step of bringing the exhaust gas into contact with the denitration catalyst and the step of bringing the exhaust gas into contact with the alkali absorbing liquid can be the same as in the second embodiment.
  • the mercury removal system and mercury removal method of the present embodiment coarse substances are previously removed from the ammonium chloride aqueous solution. For this reason, it can prevent that a spray nozzle etc. obstruct
  • FIG. 10 shows a main part of a fourth embodiment of the mercury removal system for exhaust gas according to the present invention.
  • the mercury removal system according to the present embodiment includes an economizer 10, a gravity precipitation tank 212, a water tank 27, a separation unit 213, an ammonium chloride aqueous solution tank 28, an ammonium chloride supply unit 16, an air compressor 25, an agitation unit 15, and NH 3.
  • a supply unit 11, a reduction denitration unit 3, an air heater 4, a wet desulfurization device 6, and a chimney 7 are provided.
  • the wet desulfurization means 6 and the chimney 7 on the downstream side of the air heater 4 are omitted.
  • Components with the same number have the same configuration / action.
  • the mercury removal system of this embodiment further includes a separation unit 213 and an ammonium chloride aqueous solution tank 28.
  • Separation means 213 is a device for removing coarse substances that have not been removed in the gravity precipitation tank 212 from the aqueous ammonium chloride solution from which coarse substances have been removed in the gravity precipitation tank 212.
  • the separation means 213 can separate and remove finer particles than the gravity sedimentation tank 212.
  • the separation means 213 is installed in the middle of a pipe line connecting the gravity precipitation tank 212 and the ammonium chloride supply means 16.
  • the separation means 213 is installed via a pipe line from the preceding stage in the order of gravity precipitation tank 212 ⁇ screen ⁇ hydrocyclone ⁇ membrane separation device. It is preferable that the separating means 213 can remove coarse substances having a size of 100 to 1 ⁇ m.
  • the ammonium chloride aqueous solution tank 28 is a device for recovering and storing the ammonium chloride aqueous solution separated together with the coarse material by the separation means 213 and reflowing it into the separation means 213.
  • the ammonium chloride aqueous solution tank 28 is connected to the separating means 213 by a pipe line. Furthermore, the ammonium chloride aqueous solution tank 28 is connected by a pipe line in the middle of a pipe line connecting the gravity precipitation tank 212 and the separating means 213.
  • Boiler 1 economizer 10, rectifier 12, NH 3 supply means 11, gravity precipitation tank 212, water tank 27, air compressor 25, ammonium chloride supply means 16, stirring means 15, reductive denitration means 3, air heater 4, wet type
  • the desulfurization means 6 and the chimney 7 can be the same as those described in the third embodiment.
  • the method according to the present embodiment is different from the third embodiment in that after the step of removing coarse substances from the aqueous ammonium chloride solution 107 by gravity sedimentation, the step of removing coarse substances from the aqueous ammonium chloride solution by the separating means 213 is included.
  • the separating means 213 In the step of removing coarse substances from ammonium chloride by the separating means 213, coarse substances are further separated and removed from ammonium chloride from which coarse substances have been removed by gravity sedimentation.
  • One or more combinations selected from liquid cyclones, membrane separators, screens, and the like can be used to remove coarse substances. Thereby, finer particles than gravity sedimentation can also be removed.
  • the ammonium chloride aqueous solution separated together with the coarse substance by the separation means 213 may be collected and stored in the ammonium chloride aqueous solution tank 28 and reflowed into the separation means 213.
  • the step of supplying the ammonium chloride aqueous solution after removal of coarse substances to the flue gas in the flue, the step of bringing the exhaust gas into contact with the denitration catalyst, and the step of bringing the exhaust gas into contact with the alkali absorbing solution are the same as in the third embodiment. Can do.
  • the ammonium chloride aqueous solution is further removed by the separation means 213 after removing the coarse matter by the gravity precipitation tank 212.
  • the gravitational precipitation tank 212 can remove most of the coarse substances, but it is effective when the time for gravity sedimentation is insufficient or when there are fine particles having a small particle size and low density that cannot be separated and removed by gravity sedimentation.
  • coarse particles such as coarse dust, insects, minerals, earth and sand, vegetation, glass, and metal scraps are removed from the aqueous ammonium chloride solution, so that the spray nozzle is difficult to block. Play.
  • the mercury removal system and mercury removal method of the present invention can be used for mercury removal treatment of exhaust gas generated by combustion of fossil fuels such as coal and heavy oil.

Abstract

Disclosed are a method for eliminating mercury and a system for eliminating mercury from exhaust gas, said system having long-term reliability and having a high mercury elimination efficacy, as well as being able to decrease the degradation of an exhaust gas treatment facility. The system for eliminating mercury from exhaust gas is provided with an ammonium chloride pre-treatment means (2) that performs pre-treatment of ammonium chloride, an ammonium chloride supply means (16) that supplies the pre-treated ammonium chloride to the exhaust gas, a reductive denitrification means (3) that performs chlorination of mercury and reduction of nitrogen oxides in the aforementioned exhaust gas, and a wet desulfurization means (6) that eliminates the aforementioned chlorinated mercury and sulfur oxides in the aforementioned exhaust gas by means of an alkali absorption fluid; and the aforementioned ammonium chloride pre-treatment means (2) is provided with a coarse material elimination means (21) that eliminates coarse material from the aforementioned ammonium chloride.

Description

排ガスの水銀除去システム及び水銀除去方法Exhaust gas mercury removal system and mercury removal method
 本発明は、燃焼排ガスの処理に関し、特に、燃焼排ガス中の水銀を除去するシステム及び方法に関する。 The present invention relates to treatment of combustion exhaust gas, and more particularly to a system and method for removing mercury in combustion exhaust gas.
 石炭や重油等の化石燃料の燃焼によって生じる排ガス中には、微量の水銀が存在しており、環境中への放出を低減する方法の開発が必要とされてきた。燃焼排ガス中の水銀除去を目的として、これまでに様々な方法が試みられている。 There is a trace amount of mercury in the exhaust gas generated by the combustion of fossil fuels such as coal and heavy oil, and it has been necessary to develop a method for reducing the release to the environment. Various methods have been tried so far for the purpose of removing mercury from combustion exhaust gas.
 燃焼排ガスに含まれる水銀を、ハロゲンを含有する添加剤によって、活性炭等に吸着されやすい塩化水銀等の酸化水銀に転換し、フライアッシュ中の活性炭に吸着させて除去することが提案されている(例えば、特許文献1参照)。しかし、活性炭やセレンフィルター等の吸着剤による水銀除去方法は、ゴミ焼却排ガスに対し既に実用化されているが、特殊な吸着除去装置を必要とする。 It has been proposed that mercury contained in combustion exhaust gas is converted to mercury oxide such as mercury chloride, which is easily adsorbed on activated carbon, etc. by an additive containing halogen, and adsorbed on activated carbon in fly ash to be removed ( For example, see Patent Document 1). However, a mercury removal method using an adsorbent such as activated carbon or a selenium filter has already been put into practical use for waste incineration exhaust gas, but requires a special adsorption removal apparatus.
 一方、排ガス中において、水銀は、主として金属水銀、及び塩化水銀の形態で存在しており、塩化水銀等の酸化水銀は、金属水銀と比較して水への溶解度が高いことが知られている。このことから、排ガス中に塩素化剤を添加して、水銀を水溶性の形態に変えることによって、従来の還元脱硝装置、及び湿式脱硫装置を有する排ガス処理施設を変えることなく、NO、SOの処理と同時に水銀を除去する方法が提案されている(例えば、特許文献2参照)。この方法では、燃焼排ガス中に水銀塩素化剤が添加された後、脱硝触媒上で非水溶性の金属水銀が水溶性の塩化水銀に変換され、後段の湿式脱硫装置で吸収除去される。しかしながら、煙道中に添加される塩素化剤は腐食性が高い場合が多く、必要量を超える塩素化剤は、煙道や後流装置の腐食原因となり、プラント寿命の低下をもたらす問題があった。 On the other hand, in exhaust gas, mercury exists mainly in the form of metallic mercury and mercury chloride, and mercury oxide such as mercury chloride is known to have higher solubility in water than metallic mercury. . From this, by adding a chlorinating agent to the exhaust gas and changing the mercury into a water-soluble form, NO x , SO can be obtained without changing the exhaust gas treatment facility having the conventional reductive denitration device and the wet desulfurization device. A method of removing mercury simultaneously with the treatment of x has been proposed (see, for example, Patent Document 2). In this method, after the mercury chlorinating agent is added to the combustion exhaust gas, the water-insoluble metal mercury is converted to water-soluble mercury chloride on the denitration catalyst, and is absorbed and removed by the subsequent wet desulfurization apparatus. However, the chlorinating agent added to the flue is often highly corrosive, and the chlorinating agent exceeding the required amount causes corrosion of the flue and the downstream equipment, resulting in a problem of shortening the plant life. .
 そこで、煙道内の塩素化剤濃度や水銀濃度の計測値に基づいて塩素化剤の排ガスへの供給量を調節することが提案されている(例えば、特許文献3)。この方法によれば、過剰量の塩素化剤による装置等の腐食を防止することができる。しかしながら、システムの信頼性の向上や、水銀除去効率の向上など、さらなる改善が望まれている。 Therefore, it has been proposed to adjust the supply amount of the chlorinating agent to the exhaust gas based on the measured values of the chlorinating agent concentration and mercury concentration in the flue (for example, Patent Document 3). According to this method, it is possible to prevent corrosion of an apparatus or the like due to an excessive amount of chlorinating agent. However, further improvements are desired, such as improved system reliability and improved mercury removal efficiency.
特開2005-230810号公報JP 2005-230810 A 特開平10-230137号公報Japanese Patent Laid-Open No. 10-230137 特開2007-167743号公報JP 2007-167743 A
 本発明は、排ガス処理施設の劣化を低減させることができ、長期の信頼性を有すると共に、水銀除去効率が高い、排ガスの水銀除去システム及び水銀除去方法を提供することを目的とする。 An object of the present invention is to provide an exhaust gas mercury removal system and a mercury removal method that can reduce deterioration of an exhaust gas treatment facility, have long-term reliability, and have high mercury removal efficiency.
 本発明は、上記課題を解決するためになされたものである。すなわち、本発明は、一実施形態によれば、塩化アンモニウムの前処理を行う塩化アンモニウム前処理手段と、前処理された塩化アンモニウムを排ガスに供給する塩化アンモニウム供給手段と、前記排ガス中の窒素酸化物の還元と、水銀の塩素化とを行う還元脱硝手段と、前記排ガス中の硫黄酸化物と前記塩素化された水銀とをアルカリ吸収液により除去する湿式脱硫手段とを備え、前記塩化アンモニウム前処理手段が、前記塩化アンモニウムから粗大物を除去する粗大物除去手段を備えている。 The present invention has been made to solve the above problems. That is, according to one embodiment of the present invention, an ammonium chloride pretreatment means for pretreatment of ammonium chloride, an ammonium chloride supply means for supplying pretreated ammonium chloride to exhaust gas, and nitrogen oxidation in the exhaust gas are performed. Reduction denitration means for reducing substances and chlorination of mercury, and wet desulfurization means for removing sulfur oxides and chlorinated mercury in the exhaust gas with an alkali absorbing solution. The processing means includes a coarse substance removing means for removing the coarse substance from the ammonium chloride.
 上記実施形態による排ガスの水銀除去システムは、他の形態においては、前記塩化アンモニウム前処理手段が、固体状の塩化アンモニウムを昇華する別置の昇華手段をさらに備え、前記粗大物除去手段が集塵機である。前記供給手段は、塩化アンモニウムの昇華ガスを希釈するための希釈手段をさらに備えることが好ましい。本実施形態の水銀除去システムでは、塩化アンモニウムから脱硝触媒阻害物質が除去されるため、水銀の塩素化を効率的に行うことができる。 In another form of the exhaust gas mercury removal system according to the above embodiment, the ammonium chloride pretreatment means further includes a separate sublimation means for sublimating solid ammonium chloride, and the coarse substance removal means is a dust collector. is there. It is preferable that the supply unit further includes a dilution unit for diluting the sublimation gas of ammonium chloride. In the mercury removal system of this embodiment, since the denitration catalyst inhibitor is removed from ammonium chloride, mercury can be chlorinated efficiently.
 上記実施形態による排ガスの水銀除去システムは、他の形態においては、前記塩化アンモニウム供給手段が、塩化アンモニウム水溶液を排ガスが流通する煙道の内壁に付着しないように供給する構造を有し、前記粗大物除去手段が、重力沈澱槽、液体サイクロン、膜分離装置、及びスクリーンからなる群より選択される1つ以上を備え、前記還元脱硝手段の前段に、塩化アンモニウムが供給された排ガスを攪拌する攪拌手段をさらに備える。塩化アンモニウム水溶液を排ガスが流通する煙道の内壁に付着しないように供給する構造とは、塩化アンモニウム供給手段が備える噴霧手段が、煙道内において、煙道内壁面から一定以上の距離を置いて配置される構造であることが好ましい。一定以上の距離とは、噴霧される液滴が噴霧手段から煙道内壁面に到達する前に気化するのに十分な距離である。または、塩化アンモニウム水溶液を排ガスが流通する煙道の内壁に付着しないように供給する構造とは、噴霧される液滴が到達しうる煙道内壁の内側に、内壁と二重管を構成するように設けられた隔壁を備える構造であってもよい。 In another form of the exhaust gas mercury removal system according to the above embodiment, the ammonium chloride supply means supplies the ammonium chloride aqueous solution so as not to adhere to the inner wall of the flue through which the exhaust gas circulates. The substance removal means includes at least one selected from the group consisting of a gravity precipitation tank, a hydrocyclone, a membrane separator, and a screen, and agitates the exhaust gas supplied with ammonium chloride before the reductive denitration means. Means are further provided. The structure for supplying ammonium chloride aqueous solution so that it does not adhere to the inner wall of the flue through which exhaust gas flows is that the spraying means provided in the ammonium chloride supply means is arranged at a certain distance from the inner wall of the flue in the flue. It is preferable that it is a structure. The distance above a certain distance is a distance sufficient for vaporizing the sprayed droplets before they reach the flue wall from the spraying means. Alternatively, the structure in which the ammonium chloride aqueous solution is supplied so as not to adhere to the inner wall of the flue through which the exhaust gas circulates means that the inner wall and the double tube are formed inside the inner wall of the flue where the droplets to be sprayed can reach. The structure provided with the partition provided in may be sufficient.
 上記実施形態による排ガスの水銀除去システムは、前記粗大物除去手段が重力沈澱槽と、前記重力沈澱槽の後段に設けられた液体サイクロン、膜分離装置、及びスクリーンからなる群より選択される1つ以上とを備えることが好ましい。 In the exhaust gas mercury removing system according to the above embodiment, the coarse substance removing means is one selected from the group consisting of a gravity precipitation tank, a liquid cyclone provided in a subsequent stage of the gravity precipitation tank, a membrane separation device, and a screen. It is preferable to provide the above.
 本発明は、別の側面で、排ガスの水銀除去方法であって、塩化アンモニウムから粗大物を除去する工程と、粗大物が除去された塩化アンモニウムを排ガスに供給する工程と、前記塩化アンモニウムが供給された前記排ガスを脱硝触媒に接触させる工程と、前記脱硝触媒と接触させた排ガスを、アルカリ吸収液と接触させる工程とを含む。排ガスをアルカリ吸収液と接触させることにより、排ガス中の硫黄酸化物及び水銀を除去することができる。 Another aspect of the present invention is a method for removing mercury from exhaust gas, the step of removing coarse substances from ammonium chloride, the step of supplying ammonium chloride from which coarse substances have been removed to the exhaust gas, and the supply of ammonium chloride. A step of bringing the exhaust gas contacted with the denitration catalyst, and a step of bringing the exhaust gas brought into contact with the denitration catalyst into contact with an alkali absorbing solution. By bringing the exhaust gas into contact with the alkali absorbing liquid, sulfur oxides and mercury in the exhaust gas can be removed.
 上記実施形態による排ガスの水銀除去方法は、他の形態においては、前記塩化アンモニウムが固体状の塩化アンモニウムであり、前記固体状の塩化アンモニウムを別置の気化器で昇華する工程を、粗大物を除去する工程の前にさらに含み、前記排ガスに供給される塩化アンモニウムが塩化アンモニウムの昇華ガスである。上記実施形態による水銀除去方法は、塩化アンモニウムを昇華する工程の後に、前記昇華ガスに希釈用気体を供給する工程をさらに含むことが好ましい。 In another embodiment of the method for removing mercury from exhaust gas according to the above embodiment, the ammonium chloride is solid ammonium chloride, and the step of sublimating the solid ammonium chloride with a separate vaporizer is performed by adding a coarse substance. The ammonium chloride that is further included before the removing step and is supplied to the exhaust gas is a sublimation gas of ammonium chloride. The mercury removing method according to the above embodiment preferably further includes a step of supplying a dilution gas to the sublimation gas after the step of sublimating ammonium chloride.
 上記実施形態による排ガスの水銀除去方法は、他の形態においては、前記塩化アンモニウムが、塩化アンモニウム水溶液であり、前記塩化アンモニウムを排ガスに供給する工程が、前記塩化アンモニウム水溶液を前記排ガスが流通する煙道の内壁に付着しないように噴霧する工程であり、前記塩化アンモニウムを排ガスに供給する工程の後に、前記塩化アンモニウム水溶液の気化ガスと前記排ガスとを煙道内で攪拌する工程をさらに含む。前記塩化アンモニウムの排ガスへの供給は、塩化アンモニウム水溶液の液滴が煙道の内壁に付着しないように供給可能な構造を有する塩化アンモニウム供給手段により行うことが好ましい。 In another form of the method for removing mercury from exhaust gas according to the above embodiment, the step of supplying the ammonium chloride to the exhaust gas in which the ammonium chloride is an ammonium chloride aqueous solution is a smoke in which the exhaust gas circulates through the ammonium chloride aqueous solution. It is a step of spraying so as not to adhere to the inner wall of the road, and further includes a step of stirring the vaporized gas of the aqueous ammonium chloride solution and the exhaust gas in the flue after the step of supplying the ammonium chloride to the exhaust gas. The supply of the ammonium chloride to the exhaust gas is preferably performed by an ammonium chloride supply means having a structure capable of supplying so that droplets of the ammonium chloride aqueous solution do not adhere to the inner wall of the flue.
 本発明によれば、排ガス処理施設の劣化を低減させることができ、長期の信頼性を有すると共に、除去効率の優れた排ガスの水銀除去システム及び除去方法を提供することができる。また、本発明によれば、水銀塩素化剤である塩化アンモニウムから粗大物が除去されるため、水銀除去システムにおけるノズル等の閉塞・磨耗を防止することができる。 According to the present invention, it is possible to provide an exhaust gas mercury removal system and a removal method that can reduce deterioration of an exhaust gas treatment facility, have long-term reliability, and have excellent removal efficiency. Further, according to the present invention, since coarse substances are removed from ammonium chloride, which is a mercury chlorinating agent, it is possible to prevent clogging / wearing of nozzles and the like in the mercury removal system.
図1は、本発明の水銀除去システムの一実施形態を説明する図である。FIG. 1 is a diagram illustrating an embodiment of the mercury removal system of the present invention. 図2は、本発明の水銀除去システムの第二実施形態を説明する図である。FIG. 2 is a diagram illustrating a second embodiment of the mercury removal system of the present invention. 図3は、NHとHClの気固平衡を示すグラフである。FIG. 3 is a graph showing the gas-solid equilibrium of NH 3 and HCl. 図4は、本発明の水銀除去システムの一部を構成する塩化アンモニウム前処理手段2を説明する図である。FIG. 4 is a diagram for explaining the ammonium chloride pretreatment means 2 constituting a part of the mercury removal system of the present invention. 図5は、本発明の粗大物除去手段の一実施形態であるホットサイクロンを説明する図である。FIG. 5 is a diagram for explaining a hot cyclone which is an embodiment of the coarse substance removing means of the present invention. 図6は、本発明の水銀除去システムの第三実施形態を説明する図である。FIG. 6 is a diagram illustrating a third embodiment of the mercury removal system of the present invention. 図7は、本発明の塩化アンモニウム供給手段16の一実施形態の構成を拡大して説明する図である。FIG. 7 is an enlarged view illustrating the configuration of an embodiment of the ammonium chloride supply unit 16 of the present invention. 図8は、塩化アンモニウム水溶液の液滴が煙道内において蒸発するまでにかかる時間を液滴径との関係で予測したグラフである。FIG. 8 is a graph in which the time taken for the droplets of the aqueous ammonium chloride solution to evaporate in the flue is predicted in relation to the droplet diameter. 図9は、本発明の塩化アンモニウム供給手段16の一実施形態を説明する図である。FIG. 9 is a view for explaining an embodiment of the ammonium chloride supply means 16 of the present invention. 図10は、本発明の水銀除去システムの第四実施形態を説明する図である。FIG. 10 is a diagram for explaining a fourth embodiment of the mercury removal system of the present invention.
 以下に、本発明に係る排ガスの水銀除去システム、及び水銀除去方法について、その実施形態を参照しながらさらに詳細に説明する。本発明は、以下の実施の形態に限定されるものではない。 Hereinafter, the mercury removal system for exhaust gas and the mercury removal method according to the present invention will be described in more detail with reference to embodiments thereof. The present invention is not limited to the following embodiments.
 図1に、本発明の水銀除去システム100の第一実施形態を備えてなる排ガス処理システムを示す。
 図1に示す水銀除去システム100は、主たる構成要素として、塩化アンモニウム前処理手段2、塩化アンモニウム供給手段16、還元脱硝手段3、エアヒータ4、電気集塵機5、湿式脱硫手段6、煙突7を備えている。
FIG. 1 shows an exhaust gas treatment system including a first embodiment of a mercury removal system 100 of the present invention.
A mercury removal system 100 shown in FIG. 1 includes an ammonium chloride pretreatment unit 2, an ammonium chloride supply unit 16, a reduction denitration unit 3, an air heater 4, an electrostatic precipitator 5, a wet desulfurization unit 6, and a chimney 7 as main components. Yes.
 本実施形態の水銀除去システム100は、ボイラ1の後流に、煙道26により連結される還元脱硝手段3を備えている。ボイラ1と還元脱硝手段3とを連結する煙道26内には、塩化アンモニウム供給手段16が設置されている。塩化アンモニウム供給手段16は、塩化アンモニウム前処理手段2と管路を介して連結されている。還元脱硝手段3の後流には、煙道により連結されるエアヒータ4が設けられている。エアヒータ4の後流には、電気集塵機5が設けられており、電気集塵器5はエアヒータ4と煙道により連結される。湿式脱硫手段6は、電気集塵機5の後流に設けられ、湿式脱硫手段6は、電気集塵機5と煙道により接続される。湿式脱硫手段6の後流には、煙道で連結される煙突7が設置される。湿式脱硫手段6の後段には、さらに、ベルトフィルター8が設置される。 The mercury removal system 100 according to the present embodiment includes reductive denitration means 3 connected to the downstream of the boiler 1 by a flue 26. Ammonium chloride supply means 16 is installed in the flue 26 connecting the boiler 1 and the reductive denitration means 3. The ammonium chloride supply means 16 is connected to the ammonium chloride pretreatment means 2 via a pipe line. An air heater 4 connected by a flue is provided downstream of the reducing denitration means 3. An electric dust collector 5 is provided downstream of the air heater 4, and the electric dust collector 5 is connected to the air heater 4 by a flue. The wet desulfurization means 6 is provided in the downstream of the electric dust collector 5, and the wet desulfurization means 6 is connected to the electric dust collector 5 by a flue. A chimney 7 connected by a flue is installed downstream of the wet desulfurization means 6. A belt filter 8 is further installed downstream of the wet desulfurization means 6.
 ボイラ1は、水銀除去システム100の前流に設けられ、重油、石炭等の化石燃料を燃焼させ、排ガスを排出する。排ガスは、窒素酸化物、硫黄酸化物、水銀等の有害物質を含有している。 The boiler 1 is provided in the upstream of the mercury removal system 100, burns fossil fuels such as heavy oil and coal, and discharges exhaust gas. The exhaust gas contains harmful substances such as nitrogen oxides, sulfur oxides, and mercury.
 本実施形態の塩化アンモニウム前処理手段2は、煙道内の排ガス中に供給される前に、塩化アンモニウムを前処理するものである。塩化アンモニウム前処理手段2は、粗大物除去手段21を備えている。粗大物除去手段21は、塩化アンモニウムから粗大物を分離・除去するものである。粗大物除去手段21としては、サイクロン、電気集塵機、重力沈澱槽、膜等を用いることができる。粗大物とは、原料としての塩化アンモニウムに混入している不純物をいう。不純物としては、粗塵、虫、鉱物、土砂、草木、ガラ、金属屑等が挙げられる。 The ammonium chloride pretreatment means 2 of this embodiment pretreats ammonium chloride before being supplied into the flue gas in the flue. The ammonium chloride pretreatment means 2 includes a coarse substance removal means 21. The coarse substance removing means 21 separates and removes the coarse substance from ammonium chloride. As the coarse substance removing means 21, a cyclone, an electrostatic precipitator, a gravity sedimentation tank, a film, or the like can be used. A coarse substance means an impurity mixed in ammonium chloride as a raw material. Impurities include coarse dust, insects, minerals, earth and sand, vegetation, glass, metal scraps, and the like.
 塩化アンモニウム供給手段16は、粗大物を除去した後の塩化アンモニウムを煙道26内の排ガスに供給するものである。塩化アンモニウム供給手段16は、粗大物除去手段21の後流に設けられ、粗大物除去手段21と管路により接続される。塩化アンモニウム供給手段16としては、例えば複数の噴霧ノズルを備える噴霧グリッド、複数の噴射ノズルを備える噴射グリッドを用いることができる。 The ammonium chloride supply means 16 supplies ammonium chloride after removing coarse substances to the exhaust gas in the flue 26. The ammonium chloride supply means 16 is provided downstream of the coarse substance removing means 21 and is connected to the coarse substance removing means 21 by a pipe line. As the ammonium chloride supply means 16, for example, a spray grid having a plurality of spray nozzles and a spray grid having a plurality of spray nozzles can be used.
 還元脱硝手段3は、脱硝触媒により排ガス中の窒素酸化物を還元すると共に、塩化アンモニウムが分解して生じるHClと金属水銀とにより塩化水銀を生成させる装置である。還元脱硝手段3としては、還元脱硝触媒を備える一般的なものを使用することができる。還元脱硝手段3が備える脱硝触媒としては、特に限定されないが、例えば、W、Sn、In、Co、Ni、Fe、Ni、Ag、Cu等の金属酸化物をゼオライト等の担体に担持させたものを用いることができる。還元脱硝手段3が備える還元脱硝触媒の量は、水銀酸化効率を高めるために通常の量より増加させることもできる。 The reductive denitration means 3 is an apparatus that reduces nitrogen oxides in exhaust gas with a denitration catalyst and generates mercury chloride by HCl and metal mercury generated by decomposition of ammonium chloride. As the reductive denitration means 3, a general one having a reductive denitration catalyst can be used. The denitration catalyst provided in the reduction denitration means 3 is not particularly limited, but, for example, a metal oxide such as W, Sn, In, Co, Ni, Fe, Ni, Ag, or Cu supported on a support such as zeolite. Can be used. The amount of the reductive denitration catalyst provided in the reductive denitration means 3 can be increased from the usual amount in order to increase the mercury oxidation efficiency.
 湿式脱硫手段6は、排ガス中に存在する硫黄酸化物、及び塩化水銀等の水銀酸化物を吸収・除去する装置である。湿式脱硫手段6としては、アルカリ吸収液を備える従来のものを使用することができる。アルカリ吸収液としては、例えば、炭酸カルシウム、水酸化カルシウム、水酸化ナトリウム、亜硫酸ナトリウム、アンモニア、水酸化マグネシウム等の水溶液を用いることができるが、これらに限定されない。湿式脱硫手段6は、水銀再飛散防止装置(図示せず)をさらに備えていることが好ましい。水銀再飛散防止装置とは、酸化剤又は空気をアルカリ吸収液に供給することにより、アルカリ吸収液の酸化還元電位を一定の範囲に保つ装置である。水銀再飛散防止装置は、下記式(1)のように、吸収液中の酸化水銀(Hg2+)がSO等により金属水銀(Hg)に還元されるのを阻止し、水銀が再飛散するのを防止する。
  Hg2++2e ⇔ Hg0     (1)
 水銀再飛散防止装置は、好ましくは、吸収液の酸化還元電位を150~600mVに調製することができる装置である。湿式脱硫手段6の後段には、ベルトフィルター8が設置されている。ベルトフィルター8は、湿式脱硫手段6の吸収塔で生成した石膏スラリーを脱水し、回収する装置であり、石膏9を排出する。
The wet desulfurization means 6 is an apparatus that absorbs and removes sulfur oxides present in exhaust gas and mercury oxides such as mercury chloride. As the wet desulfurization means 6, a conventional one having an alkali absorbing liquid can be used. Examples of the alkali absorbing liquid include, but are not limited to, aqueous solutions of calcium carbonate, calcium hydroxide, sodium hydroxide, sodium sulfite, ammonia, magnesium hydroxide, and the like. It is preferable that the wet desulfurization means 6 further includes a mercury re-scattering prevention device (not shown). The mercury re-scattering prevention device is a device that keeps the oxidation-reduction potential of the alkaline absorbent in a certain range by supplying an oxidizing agent or air to the alkaline absorbent. The mercury re-scattering prevention device prevents the mercury oxide (Hg 2+ ) in the absorption liquid from being reduced to metallic mercury (Hg 0 ) by SO 2 or the like, as shown in the following formula (1). To prevent it.
Hg 2+ + 2e ⇔ Hg 0 (1)
The mercury re-scattering prevention device is preferably a device capable of adjusting the redox potential of the absorbing solution to 150 to 600 mV. A belt filter 8 is installed downstream of the wet desulfurization means 6. The belt filter 8 is a device that dehydrates and collects the gypsum slurry generated in the absorption tower of the wet desulfurization means 6, and discharges the gypsum 9.
 エアヒータ4は、排ガス温度を調整する装置である。電気集塵機5は、排ガス中の煤塵を除去する。煙突7は、排ガスをシステムの外へ排出する。エアヒータ4、電気集塵機5、煙突7等は、一般的なものとすることができる。 The air heater 4 is a device that adjusts the exhaust gas temperature. The electric dust collector 5 removes soot in the exhaust gas. The chimney 7 discharges the exhaust gas out of the system. The air heater 4, the electrostatic precipitator 5, the chimney 7 and the like can be general ones.
 次に、本実施の形態に係る水銀除去システムにより排ガスから水銀を除去する方法の一形態を説明する。本実施形態の水銀除去方法は、塩化アンモニウムから粗大物を除去する工程と、粗大物が除去された塩化アンモニウムを排ガスに供給する工程と、塩化アンモニウムが供給された排ガスを脱硝触媒に接触させる工程と、脱硝触媒と接触させた排ガスを、アルカリ吸収液に接触させる工程とを含む。 Next, an embodiment of a method for removing mercury from exhaust gas using the mercury removal system according to this embodiment will be described. The mercury removal method of the present embodiment includes a step of removing coarse substances from ammonium chloride, a step of supplying ammonium chloride from which coarse substances have been removed to exhaust gas, and a step of contacting exhaust gas supplied with ammonium chloride with a denitration catalyst. And a step of bringing the exhaust gas brought into contact with the denitration catalyst into contact with the alkali absorbing solution.
 本実施の形態に係る水銀除去方法では、排ガス中の金属水銀を酸化するために、塩化アンモニウムを用いる。塩化アンモニウムは、通常、肥料に用いられる程度の純度のものを用いることができる。塩化アンモニウムは、固体であってもよく、又は水溶液であってもよい。原料としての塩化アンモニウムには粗大物が混入している。 In the mercury removal method according to the present embodiment, ammonium chloride is used to oxidize metallic mercury in the exhaust gas. Ammonium chloride having a purity that is usually used for fertilizers can be used. The ammonium chloride may be a solid or an aqueous solution. A coarse substance is mixed in the ammonium chloride as a raw material.
 石炭や重質油の燃焼により生じる排ガスは、通常、窒素酸化物、硫黄酸化物等の有害物質の他に、水銀を含有する。排ガスは、ボイラ1から流出し、煙道26内を流れる。 Exhaust gas generated by combustion of coal and heavy oil usually contains mercury in addition to harmful substances such as nitrogen oxides and sulfur oxides. The exhaust gas flows out of the boiler 1 and flows in the flue 26.
 塩化アンモニウムから粗大物を除去する工程では、粗大物除去手段21により、塩化アンモニウムに混入する粗大物を分離・除去する。この工程により、肥料に用いられる程度に純度の低い塩化アンモニウムを原料として用いても、粗大物が除去された状態で塩化アンモニウム供給手段16に提供することができる。 In the step of removing coarse substances from ammonium chloride, the coarse substance removing means 21 separates and removes coarse substances mixed in ammonium chloride. By this step, even when ammonium chloride having a purity that is low enough to be used for fertilizer is used as a raw material, it can be provided to the ammonium chloride supply means 16 in a state in which coarse substances are removed.
 粗大物を除去する工程に次いで、粗大物が除去された塩化アンモニウムを排ガスに供給する工程を行う。塩化アンモニウムを供給する工程は、ボイラ1と還元脱硝手段3とを連結する煙道26内において行われる。排ガス中に供給する塩化アンモニウムは、水溶液又は気体の形態である。塩化アンモニウムは、好ましくは、排ガス中に液滴として噴霧されるか、昇華した気体として導入される。塩化アンモニウムは、排ガス中における濃度が10~200ppmの範囲になるように供給することが好ましい。 Following the step of removing coarse material, a step of supplying ammonium chloride from which the coarse material has been removed to the exhaust gas is performed. The step of supplying ammonium chloride is performed in the flue 26 connecting the boiler 1 and the reducing denitration means 3. The ammonium chloride supplied into the exhaust gas is in the form of an aqueous solution or a gas. The ammonium chloride is preferably sprayed as droplets in the exhaust gas or introduced as a sublimated gas. It is preferable to supply ammonium chloride so that the concentration in the exhaust gas is in the range of 10 to 200 ppm.
 排ガス中に供給された塩化アンモニウムの大部分は、式(2)のように、NHとHClとに解離した状態で存在する。煙道26内の排ガスは、通常350~380℃の高温であるためである。
  NHCl ⇒ NH+HCl            (2)
Most of the ammonium chloride supplied into the exhaust gas exists in a state dissociated into NH 3 and HCl as shown in the formula (2). This is because the exhaust gas in the flue 26 is usually at a high temperature of 350 to 380 ° C.
NH 4 Cl ⇒ NH 3 + HCl (2)
 本実施の形態による方法は、さらに、HClを排ガスに添加する工程を含んでいてもよい。塩化アンモニウムが解離して生じるHClのみでは金属水銀を酸化するのに不十分である場合があるためである。HClの添加は、塩化アンモニウム供給手段16と還元脱硝手段3とを結ぶ煙道内において、塩化アンモニウムを供給する工程の後に行われることが好ましい。 The method according to the present embodiment may further include a step of adding HCl to the exhaust gas. This is because HCl alone generated by dissociation of ammonium chloride may be insufficient to oxidize metallic mercury. The addition of HCl is preferably performed after the step of supplying ammonium chloride in the flue connecting the ammonium chloride supply unit 16 and the reductive denitration unit 3.
 塩化アンモニウムが供給された排ガスを脱硝触媒に接触させる工程では、排ガスと塩化アンモニウムとの混合物を、煙道26を経て還元脱硝手段3に流入させ、還元脱硝手段3が備える脱硝触媒と接触させる。脱硝触媒下では、塩化アンモニウムが分解して生じたNHと排ガス中の窒素酸化物とが反応し、式(3)のように窒素酸化物が窒素に還元される。
  4NO+4NH+O ⇒ 4N+6HO     (3)
 これと同時に、脱硝触媒下では、式(4)のように、排ガス中の金属水銀が、塩化アンモニウムの分解によって生じるHClにより塩化水銀に酸化される。
  Hg+2HCl+1/2O ⇒ HgCl+HO   (4)
 その結果、脱硝触媒に接触させる工程を経た排ガスには、主としてSO、CO、CO、HgCl、N、O、水蒸気が含まれ、未反応のNH、HCl、NOも残存する。
In the step of bringing the exhaust gas supplied with ammonium chloride into contact with the denitration catalyst, the mixture of the exhaust gas and ammonium chloride is caused to flow into the reducing denitration means 3 through the flue 26 and is brought into contact with the denitration catalyst provided in the reduction denitration means 3. Under the denitration catalyst, NH 3 produced by decomposition of ammonium chloride reacts with nitrogen oxides in the exhaust gas, and nitrogen oxides are reduced to nitrogen as shown in formula (3).
4NO + 4NH 3 + O 2 ⇒ 4N 2 + 6H 2 O (3)
At the same time, under the denitration catalyst, metal mercury in the exhaust gas is oxidized to mercury chloride by HCl generated by the decomposition of ammonium chloride, as shown in formula (4).
Hg 0 + 2HCl + 1 / 2O 2 ⇒ HgCl 2 + H 2 O (4)
As a result, the exhaust gas that has undergone the step of contacting with the denitration catalyst mainly contains SO x , CO, CO 2 , HgCl 2 , N 2 , O 2 , and water vapor, and unreacted NH 3 , HCl, and NO also remain. .
 また、本実施の形態による方法は、排ガス中に活性炭を添加する工程をさらに含んでもよい。活性炭を添加する工程は、排ガスを脱硝触媒に接触させる工程の後に行われることが好ましい。この工程により、排ガス中の塩化水銀を活性炭に吸着させることができ、湿式脱硫手段6への水銀流入量を低減するという有利な効果がある。 The method according to the present embodiment may further include a step of adding activated carbon to the exhaust gas. The step of adding the activated carbon is preferably performed after the step of bringing the exhaust gas into contact with the denitration catalyst. By this step, mercury chloride in the exhaust gas can be adsorbed on the activated carbon, and there is an advantageous effect of reducing the amount of mercury flowing into the wet desulfurization means 6.
 還元脱硝手段3から流出した排ガスの温度を、エアヒータ4により調整する。次いで、排ガスを電気集塵機5において、排ガス中に含まれる煤塵等を除去する。次いで、煤塵等を除去した排ガスを湿式脱硫手段6に流入させる。排ガスをアルカリ吸収液に接触させる工程では、脱硝触媒と接触させた後の排ガスをアルカリ吸収液に接触させる。この工程により排ガス中のSOをアルカリ吸収液に吸収させて、石膏9の沈澱として除去すると共に、水溶性の塩化水銀もアルカリ吸収液に吸収させて除去する。アルカリ吸収液中に沈澱する石膏スラリーは、ベルトフィルター8により脱水し、石膏9として回収する。湿式脱硫手段6から流出した排ガスは煙突7から排出する。図示する実施形態において、排ガスをアルカリ吸収液と接触させる工程は、アルカリ吸収液に空気を供給している。アルカリ吸収液中のHgClが金属水銀Hgに還元しない安定な範囲に酸化還元電位を保ち、水銀の再飛散を防止するためである。アルカリ吸収液には、空気以外に酸化剤を添加してもよい。 The temperature of the exhaust gas flowing out from the reducing denitration means 3 is adjusted by the air heater 4. Next, the dust is removed from the exhaust gas in the electric dust collector 5. Next, the exhaust gas from which the dust and the like are removed is caused to flow into the wet desulfurization means 6. In the step of bringing the exhaust gas into contact with the alkali absorbing liquid, the exhaust gas after being brought into contact with the denitration catalyst is brought into contact with the alkali absorbing liquid. In this step, SO x in the exhaust gas is absorbed into the alkali absorbing solution and removed as a precipitate of gypsum 9, and water-soluble mercury chloride is also absorbed into the alkali absorbing solution and removed. The gypsum slurry precipitated in the alkali absorbing liquid is dehydrated by the belt filter 8 and collected as gypsum 9. The exhaust gas flowing out from the wet desulfurization means 6 is discharged from the chimney 7. In the illustrated embodiment, the step of bringing the exhaust gas into contact with the alkali absorbing liquid supplies air to the alkali absorbing liquid. This is to keep the oxidation-reduction potential within a stable range where HgCl 2 in the alkali absorbing solution is not reduced to metallic mercury Hg 0 and to prevent re-scattering of mercury. In addition to air, an oxidizing agent may be added to the alkali absorbing liquid.
 本実施の形態による水銀除去方法は、好ましくは90%以上の水銀除去率で排ガス中の水銀を除去することができる。水銀除去率は、より好ましくは95%以上である。 The mercury removal method according to the present embodiment can remove mercury in the exhaust gas, preferably with a mercury removal rate of 90% or more. The mercury removal rate is more preferably 95% or more.
 第一実施形態の水銀除去システム及び水銀除去方法によれば、塩化アンモニウムが粗大物を除去した後に排ガス中に供給されることから、粗大物が粗大物除去手段21より先の塩化アンモニウム供給手段16及び煙道26内に入り込むことがない。従って、噴霧ノズル等の塩化アンモニウム供給手段16が粗大物により閉塞することを防止することができ、排ガス処理施設の寿命を向上することができるという効果を奏する。 According to the mercury removal system and the mercury removal method of the first embodiment, ammonium chloride is supplied into the exhaust gas after removing the coarse substance, so that the coarse substance is supplied to the ammonium chloride supply means 16 ahead of the coarse substance removal means 21. And does not enter the flue 26. Therefore, it is possible to prevent the ammonium chloride supply means 16 such as a spray nozzle from being clogged with a coarse material, and it is possible to improve the life of the exhaust gas treatment facility.
 図2は、本発明の水銀除去システムの第二実施形態の主要部を示す図である。本発明の第二実施形態によるシステムは、エコノマイザー10、原料供給手段23、昇華手段22、粗大物除去手段21、塩化アンモニウム供給手段16、NH供給手段11、還元脱硝手段3、エアヒータ4、湿式脱硫手段6、煙突7を備えている。図2では、エアヒータ4より後流側の湿式脱硫手段6、及び煙突7は省略されている。なお、同一番号を付した構成要素は、同一の構成・作用を持つ。本実施の形態では、塩化アンモニウム前処理手段2は、粗大物除去手段21に加え、原料供給手段23、昇華手段22を備えている。 FIG. 2 is a diagram showing a main part of a second embodiment of the mercury removal system of the present invention. The system according to the second embodiment of the present invention includes an economizer 10, a raw material supply means 23, a sublimation means 22, a coarse substance removal means 21, an ammonium chloride supply means 16, an NH 3 supply means 11, a reductive denitration means 3, an air heater 4, A wet desulfurization means 6 and a chimney 7 are provided. In FIG. 2, the wet desulfurization means 6 and the chimney 7 on the downstream side of the air heater 4 are omitted. In addition, the component which attached | subjected the same number has the same structure and effect | action. In the present embodiment, the ammonium chloride pretreatment unit 2 includes a raw material supply unit 23 and a sublimation unit 22 in addition to the coarse substance removing unit 21.
 原料供給手段23は、昇華手段22に原料としての塩化アンモニウム101を供給する装置である。原料供給手段23は、昇華手段22の前段に、昇華手段22に塩化アンモニウムを供給可能なように設置されている。原料供給手段23としては、サイロとスクリューフィーダーとの組み合わせ等を用いることができるが、これらには限定されない。 The raw material supply means 23 is an apparatus for supplying ammonium chloride 101 as a raw material to the sublimation means 22. The raw material supply means 23 is installed upstream of the sublimation means 22 so that ammonium chloride can be supplied to the sublimation means 22. As the raw material supply means 23, a combination of a silo and a screw feeder can be used, but is not limited to these.
 昇華手段22は、固体状の塩化アンモニウムを加熱し、昇華する装置である。昇華手段22は、管路により連結される粗大物除去手段21の前段に設置される。昇華手段22は、水銀除去システムにおける原料供給手段23、煙道26等の他の装置と兼用の装置としてではなく、昇華の用途に用いられる独立した装置として煙道26の外部に設置される。昇華手段22では、昇華に必要な熱は、外部から供給され、煙道内を流れる排ガスの熱のみに依存するものではない。本実施の形態によるシステムは、昇華手段22を独立に設けることにより、煙道ガスのみでは不可能な程度に塩化アンモニウムを高温に加熱することが可能となり、例えば400℃以上、又は500℃以上に加熱することができる。このように高温にすることにより、塩化アンモニウムをほぼ完全に昇華することができ、気体として排ガス中に供給することができる。本実施の形態によるシステムによれば、塩化アンモニウムを気体として煙道内に供給することができるため、煙道を流れる排ガスの熱で塩化アンモニウムを昇華する方法と異なり、噴霧ノズル等の噴霧手段の閉塞・磨耗を防止することができる。 The sublimation means 22 is a device for heating and sublimating solid ammonium chloride. The sublimation means 22 is installed in the front stage of the coarse substance removal means 21 connected by a pipe line. The sublimation means 22 is installed outside the flue 26 as an independent apparatus used for sublimation, not as an apparatus shared with other devices such as the raw material supply means 23 and the flue 26 in the mercury removal system. In the sublimation means 22, the heat necessary for sublimation is supplied from the outside and does not depend only on the heat of the exhaust gas flowing in the flue. In the system according to the present embodiment, by providing the sublimation means 22 independently, it becomes possible to heat ammonium chloride to a high temperature that is impossible with only flue gas, for example, 400 ° C. or higher, or 500 ° C. or higher. Can be heated. Thus, by making it high temperature, ammonium chloride can be sublimated almost completely and can be supplied in exhaust gas as gas. According to the system according to the present embodiment, ammonium chloride can be supplied into the flue as a gas. Therefore, unlike the method of sublimating ammonium chloride with the heat of exhaust gas flowing through the flue, the spray means such as a spray nozzle is blocked.・ Abrasion can be prevented.
 昇華手段22では、塩化アンモニウムを、好ましくは400℃以上に加熱して昇華させる。塩化アンモニウムは、昇華すると、分解してNHとHClを生ずる。よって、塩化アンモニウムの昇華ガスとは、等モルのNHとHClとを含有するガスである。 In the sublimation means 22, ammonium chloride is preferably sublimated by heating to 400 ° C. or higher. When ammonium chloride sublimes, it decomposes to produce NH 3 and HCl. Therefore, the sublimation gas of ammonium chloride is a gas containing equimolar NH 3 and HCl.
 昇華手段22としては、固体状の塩化アンモニウムを大容量で昇華可能な気化器を使用することができる。好ましくは、キルン炉、流動床炉といった気化器が挙げられる。昇華手段22としてキルン炉を用いる場合、L(筒長)/F(筒径)が3以上であるものが好ましい。また、キルン炉に供給される固体状の塩化アンモニウムは、キルン炉の筒内における充填量を15%以下の容積比とすることが好ましい。昇華せずに残った不揮発性物質の大部分は、粗大物102として昇華手段22に残存する。従って、本実施形態の昇華手段22は、塩化アンモニウムを昇華する機能に加え、排ガスから不揮発性物質等の粗大物102を除去する機能も有している。 As the sublimation means 22, a vaporizer capable of sublimating solid ammonium chloride with a large capacity can be used. Preferably, a vaporizer such as a kiln furnace or a fluidized bed furnace is used. When a kiln furnace is used as the sublimation means 22, L (cylinder length) / F (cylinder diameter) is preferably 3 or more. The solid ammonium chloride supplied to the kiln furnace preferably has a volume ratio of 15% or less in the cylinder of the kiln furnace. Most of the non-volatile material remaining without sublimation remains in the sublimation means 22 as a coarse material 102. Accordingly, the sublimation means 22 of the present embodiment has a function of removing coarse substances 102 such as nonvolatile substances from the exhaust gas in addition to the function of sublimating ammonium chloride.
 粗大物除去手段21は、塩化アンモニウムの昇華ガス中に含まれる粗大物を除去することができる装置である。本実施の形態の粗大物除去手段21で除去される粗大物とは、不揮発性物質である。ここで、不揮発性物質とは、昇華手段22で加熱してもガス化しない物質を主にいう。塩化アンモニウムに混入している不揮発性物質としては、粗塵、虫、鉱物、土砂、草木、ガラ、金属屑等、並びに、ナトリウム化合物、燐酸化合物、及びカルシウム化合物等の脱硝触媒の阻害物質が挙げられる。脱硝触媒の阻害物質としては、具体的には、NaCl、PbSO、Ca(PO等が挙げられる。粗大物除去手段21は、完全に昇華されないまま昇華手段22から流出した粒子径10μm以上の微細な塩化アンモニウム粒子をも除去することができる。粗大物除去手段21は、管路により連結される昇華手段22の後段に設置される。粗大物除去手段21の後段には、管路により連結される塩化アンモニウム供給手段16が設けられる。粗大物除去手段21は、好ましくは、サイクロン、電気集塵機、及びバグフィルタ等の集塵機である。粗大物除去手段21は、好ましくは、粒子径20μm以上、より好ましくは粒子径10μm以上までの大きさの微細な粗大物を除去することができる。塩化アンモニウム前処理手段2は、全体として、塩化アンモニウムを昇華し、粗大物を除去する。 The coarse substance removing means 21 is an apparatus that can remove coarse substances contained in the sublimation gas of ammonium chloride. The coarse material removed by the coarse material removing means 21 of the present embodiment is a nonvolatile substance. Here, the non-volatile substance mainly refers to a substance that does not gasify even when heated by the sublimation means 22. Nonvolatile substances mixed in ammonium chloride include coarse dust, insects, minerals, earth and sand, vegetation, glass, metal scraps, and denitration catalyst inhibitors such as sodium compounds, phosphate compounds, and calcium compounds. It is done. Specific examples of the denitration catalyst inhibitor include NaCl, PbSO 4 , and Ca 3 (PO 4 ) 2 . The coarse substance removing means 21 can also remove fine ammonium chloride particles having a particle diameter of 10 μm or more that have flowed out of the sublimation means 22 without being completely sublimated. The coarse substance removing means 21 is installed at the subsequent stage of the sublimation means 22 connected by a pipe line. Ammonium chloride supply means 16 connected by a pipe line is provided downstream of the coarse substance removing means 21. The coarse material removing means 21 is preferably a dust collector such as a cyclone, an electric dust collector, and a bag filter. The coarse substance removing means 21 can remove fine coarse substances having a particle size of preferably 20 μm or more, more preferably a particle size of 10 μm or more. As a whole, the ammonium chloride pretreatment means 2 sublimates ammonium chloride to remove coarse substances.
 塩化アンモニウム供給手段16は、昇華手段22によって昇華された塩化アンモニウムの昇華ガスを、煙道26内を流れる排ガス中に供給する装置である。塩化アンモニウム供給手段16は、エコノマイザー10と還元脱硝手段3とを連結する煙道26内において設置される。塩化アンモニウム供給手段16は、排ガスが直線的に流れる煙道26の直線領域において設置されることが好ましい。塩化アンモニウム供給手段16は、昇華ガスを排ガスに混合することができるものであれば、特に限定されない。塩化アンモニウム供給手段16は、好ましくは、複数のノズルを備える噴射グリッド等を用いることができる。昇華手段22と塩化アンモニウム供給手段16とを連結する管路、及び塩化アンモニウム供給手段16が備えるノズル等の内部は、定期的に水洗浄し、乾燥後に昇華された塩化アンモニウムの昇華ガスを通すことが好ましい。 The ammonium chloride supply means 16 is an apparatus for supplying the sublimation gas of ammonium chloride sublimated by the sublimation means 22 into the exhaust gas flowing in the flue 26. The ammonium chloride supply means 16 is installed in a flue 26 connecting the economizer 10 and the reductive denitration means 3. The ammonium chloride supply means 16 is preferably installed in a straight region of the flue 26 through which exhaust gas flows linearly. The ammonium chloride supply means 16 is not particularly limited as long as the sublimation gas can be mixed with the exhaust gas. The ammonium chloride supply means 16 can preferably use a spray grid or the like having a plurality of nozzles. The pipe line connecting the sublimation means 22 and the ammonium chloride supply means 16 and the inside of the nozzle and the like provided in the ammonium chloride supply means 16 are periodically washed with water and passed through a sublimation gas of ammonium chloride sublimated after drying. Is preferred.
 エコノマイザー10は、排ガスから熱エネルギーを回収してボイラ1への給水を予熱する装置である。エコノマイザー10は、ボイラ1の後段に設けられており、エコノマイザー10の後流側には、煙道26により連結される塩化アンモニウム供給手段16が設置される。 The economizer 10 is a device that recovers thermal energy from the exhaust gas and preheats the water supplied to the boiler 1. The economizer 10 is provided downstream of the boiler 1, and ammonium chloride supply means 16 connected by a flue 26 is installed on the downstream side of the economizer 10.
 NH供給手段11は、NHタンクからNHを排ガスに注入する。NH供給手段11は、煙道に接続される。NH供給手段11としては、アンモニア注入グリッドを使用することができる。NH供給手段11は、好ましくは、NHガスを煙道内に噴霧する。NH供給手段11は、塩化アンモニウム供給手段16と還元脱硝手段3とを連結する煙道に接続されている。NH供給手段11は、エコノマイザー10と塩化アンモニウム供給手段16とを連結する煙道に接続されていてもよい。 The NH 3 supply means 11 injects NH 3 from the NH 3 tank into the exhaust gas. The NH 3 supply means 11 is connected to the flue. As the NH 3 supply means 11, an ammonia injection grid can be used. The NH 3 supply means 11 preferably sprays NH 3 gas into the flue. The NH 3 supply unit 11 is connected to a flue connecting the ammonium chloride supply unit 16 and the reductive denitration unit 3. The NH 3 supply unit 11 may be connected to a flue that connects the economizer 10 and the ammonium chloride supply unit 16.
 エコノマイザー10と塩化アンモニウム供給手段16とを結ぶ煙道26内、及び、NH供給手段11と還元脱硝手段3とを結ぶ煙道内には、整流装置12が設けられている。整流装置12は、排ガスの流れを整流し、流速分布を平準化する装置である。整流装置12は、煙道の屈曲する領域に設置される場合は、屈曲により排ガスの流速が損なわれるのを防ぐことができる。整流装置12としては、ガイドベーン、管群等を用いることができる。これにより、排ガスの流速分布が平準化され、濃度分布のばらつきをなくすことができるため、より高効率で塩化アンモニウムと水銀と反応させることができるとともに、反応に用いられない塩化アンモニウムが生じるのを防止することができる。 A rectifier 12 is provided in the flue 26 connecting the economizer 10 and the ammonium chloride supply unit 16 and in the flue connecting the NH 3 supply unit 11 and the reductive denitration unit 3. The rectifier 12 is an apparatus that rectifies the flow of exhaust gas and leveles the flow velocity distribution. When the rectifying device 12 is installed in a region where the flue is bent, the flow rate of the exhaust gas can be prevented from being damaged by the bending. As the rectifier 12, a guide vane, a tube group, or the like can be used. As a result, the flow velocity distribution of the exhaust gas is leveled and the dispersion of the concentration distribution can be eliminated, so that ammonium chloride and mercury can be reacted with higher efficiency, and ammonium chloride that is not used in the reaction is generated. Can be prevented.
 本実施の形態による塩化アンモニウム前処理手段2は、別の例において、希釈手段(図2には示さず)をさらに備えていてもよい。希釈手段は、塩化アンモニウムの昇華ガスを希釈するため、高温の空気等の気体を昇華ガスに混合し、昇華ガスの濃度を減少させるものである。希釈手段は、好ましくは、管路を介して昇華手段22と接続される。希釈手段は、希釈用気体を昇華手段22に送り、昇華手段22内の昇華ガスと混合する。希釈用の気体としては、空気以外に、水蒸気を使用することができ、又は煙道内を流れる排ガスを再利用してもよい。再利用の排ガスを希釈用気体として使用する場合は、予めホットサイクロン等により、排ガス中の塵を除去しておくことが好ましい。希釈手段は、好ましくは、昇華ガスの濃度を、好ましくは10,000~100,000ppmに希釈することができる。ここで、昇華ガスとは、塩化アンモニウムが昇華して生成するガスであり、NHClが解離して生じた等モルのNHとHClを含有するガスである。よって、昇華ガスの濃度は、NHとHClの各々の濃度と等しくなる。希釈手段としては、例えば、ブロア、排ガスのバイパス配管等を用いることができる。 In another example, the ammonium chloride pretreatment unit 2 according to the present embodiment may further include a dilution unit (not shown in FIG. 2). In order to dilute the ammonium chloride sublimation gas, the dilution means mixes a gas such as high-temperature air with the sublimation gas to reduce the concentration of the sublimation gas. The dilution means is preferably connected to the sublimation means 22 via a conduit. The dilution means sends the dilution gas to the sublimation means 22 and mixes it with the sublimation gas in the sublimation means 22. As a gas for dilution, in addition to air, water vapor can be used, or exhaust gas flowing in the flue may be reused. When the reused exhaust gas is used as a dilution gas, it is preferable to remove dust in the exhaust gas in advance by a hot cyclone or the like. The dilution means can preferably dilute the sublimation gas concentration to preferably 10,000 to 100,000 ppm. Here, the sublimation gas is a gas generated by sublimation of ammonium chloride, and is a gas containing equimolar NH 3 and HCl generated by dissociation of NH 4 Cl. Accordingly, the concentration of the sublimation gas is equal to the concentration of NH 3 and HCl. As the diluting means, for example, a blower, an exhaust gas bypass pipe or the like can be used.
 次に、本実施の形態に係る排ガスの水銀除去システムを用いた水銀除去方法の一形態を説明する。本実施形態による方法は、固体状の塩化アンモニウムを別置の気化器で昇華する工程と、塩化アンモニウムから粗大物を除去する工程と、塩化アンモニウムを排ガスに供給する工程と、塩化アンモニウムが供給された排ガスを脱硝触媒に接触させる工程と、脱硝触媒と接触させた排ガスをアルカリ吸収液に接触させる工程とを含む。本実施形態の水銀除去システムによれば、塩化アンモニウムの昇華ガスが煙道内の排ガスに供給される。 Next, an embodiment of a mercury removal method using the exhaust gas mercury removal system according to the present embodiment will be described. The method according to this embodiment includes a step of sublimating solid ammonium chloride with a separate vaporizer, a step of removing coarse substances from ammonium chloride, a step of supplying ammonium chloride to exhaust gas, and ammonium chloride is supplied. A step of bringing the exhaust gas contacted with the denitration catalyst and a step of bringing the exhaust gas contacted with the denitration catalyst into contact with the alkaline absorbent. According to the mercury removal system of the present embodiment, a sublimation gas of ammonium chloride is supplied to the exhaust gas in the flue.
 本実施の形態においては、固体状の塩化アンモニウム101を原料供給手段23により昇華手段22(気化器)に供給する。昇華手段22(気化器)に供給される固体状の塩化アンモニウムは、好ましくは塩化アンモニウムの粒子である。粒子の大きさは特に限定されないが、好ましくは、粒径が0.1~3mmであり、より好ましくは、0.1~1mmである。粒径が小さい程、昇華に要する時間を短縮することができる。固体状の塩化アンモニウムを別置の気化器で昇華する工程では、独立の気化器により、固体状の塩化アンモニウムを加熱し、昇華する。加熱温度は、好ましくは400℃以上である。かかる工程によって塩化アンモニウムは昇華し、昇華ガスを生じる。 In the present embodiment, the solid ammonium chloride 101 is supplied to the sublimation means 22 (vaporizer) by the raw material supply means 23. The solid ammonium chloride supplied to the sublimation means 22 (vaporizer) is preferably ammonium chloride particles. The size of the particles is not particularly limited, but preferably the particle size is 0.1 to 3 mm, more preferably 0.1 to 1 mm. The smaller the particle size, the shorter the time required for sublimation. In the step of sublimating solid ammonium chloride with a separate vaporizer, the solid ammonium chloride is heated and sublimated with an independent vaporizer. The heating temperature is preferably 400 ° C. or higher. By this process, ammonium chloride sublimes to generate sublimation gas.
 昇華せずに残った不揮発性物質の大部分は、昇華手段22の内部に粗大物として残存する。塩化アンモニウムに混入している不揮発性物質の例としては、粗塵、土砂等の他に、NaCl、PbSO、Ca(PO等の化合物がある。これらの化合物は、脱硝触媒における水銀酸化を阻害する特性をもつことから、煙道内に供給する前に除去することが好ましい。本実施の形態では、これらの化合物を不揮発性物質として昇華手段22の内部に残留させることによっても除去することができる。昇華手段22に蓄積する不揮発性物質等の粗大物102は、定期的に、昇華手段22より引き抜き、除去する。 Most of the non-volatile material remaining without sublimation remains as a coarse substance in the sublimation means 22. Examples of non-volatile substances mixed in ammonium chloride include compounds such as NaCl, PbSO 4 , and Ca 3 (PO 4 ) 2 in addition to coarse dust and earth and sand. Since these compounds have the property of inhibiting mercury oxidation in a denitration catalyst, it is preferable to remove them before supplying them into the flue. In the present embodiment, these compounds can also be removed by remaining inside the sublimation means 22 as a nonvolatile substance. The coarse substance 102 such as a non-volatile substance accumulated in the sublimation means 22 is periodically extracted from the sublimation means 22 and removed.
 本実施形態の方法は、昇華する工程の後に、又は昇華する工程と同時であって、粗大物を除去する工程の前に、塩化アンモニウムの昇華ガスを希釈する工程を含んでいてもよい。昇華手段22で昇華した昇華ガスの濃度を低下させると、温度低下に伴う塩化アンモニウムの析出を防止できるという点で有利だからである。昇華ガスを希釈する工程では、昇華ガスに希釈用気体を混合する。昇華ガスの希釈は、好ましくは、昇華ガスの濃度が10,000ppmを超える場合に行われる。 The method of the present embodiment may include a step of diluting a sublimation gas of ammonium chloride after the sublimation step or at the same time as the sublimation step and before the step of removing coarse substances. This is because reducing the concentration of the sublimation gas sublimated by the sublimation means 22 is advantageous in that precipitation of ammonium chloride accompanying a temperature drop can be prevented. In the step of diluting the sublimation gas, a dilution gas is mixed with the sublimation gas. The sublimation gas dilution is preferably performed when the concentration of the sublimation gas exceeds 10,000 ppm.
 希釈用気体は、昇華ガスに混合する前に、好ましくは240℃以上、さらに好ましくは365℃以上に予め昇温しておく。昇華ガスの温度が低下して塩化アンモニウムが析出するのを防止するためである。図3に、塩化アンモニウムが分解して生じたNHとHClの気固平衡を表すグラフを示す。グラフでは、昇華ガスを希釈用気体により希釈しない場合の昇華ガスの濃度が、1,000,000ppmとして示されており、ガスの温度が365℃より低下すると、塩化アンモニウムの固体が析出することがわかる。昇華ガスを希釈用気体により希釈し、昇華ガス濃度を20,000ppmとした場合、昇華ガスと希釈用気体の混合ガスの温度が240℃より低下すると塩化アンモニウム固体が析出する。このように、ガス温度が低下して固体状の塩化アンモニウムが析出すると、ノズル等の塩化アンモニウム供給手段16の詰まりの原因となるとともに、塩化アンモニウムが反応に用いられずに残る原因となる。 The dilution gas is preliminarily heated to 240 ° C. or higher, more preferably 365 ° C. or higher before mixing with the sublimation gas. This is to prevent ammonium chloride from precipitating due to a decrease in the temperature of the sublimation gas. FIG. 3 is a graph showing the gas-solid equilibrium of NH 3 and HCl generated by decomposition of ammonium chloride. In the graph, the concentration of the sublimation gas when the sublimation gas is not diluted with the diluting gas is shown as 1,000,000 ppm. When the gas temperature falls below 365 ° C., solid ammonium chloride may precipitate. Recognize. When the sublimation gas is diluted with a diluting gas and the sublimation gas concentration is 20,000 ppm, ammonium chloride solids are deposited when the temperature of the mixed gas of the sublimation gas and the diluting gas falls below 240 ° C. Thus, when the gas temperature falls and solid ammonium chloride precipitates, it will cause clogging of the ammonium chloride supply means 16 such as a nozzle and cause ammonium chloride to remain without being used in the reaction.
 希釈後の昇華ガスの濃度は、好ましくは、10,000~100,000ppmである。排ガスに供給される昇華ガスの濃度が100,000ppmを超えると、高濃度による塩化アンモニウムの析出や、煙道への昇華ガス供給量が少なくなるため濃度分布を平準化し難い場合があり、10,000ppm未満であると煙道への昇華ガス供給量が多くなるため排ガス量が増加する場合があるからである。 The concentration of the sublimation gas after dilution is preferably 10,000 to 100,000 ppm. If the concentration of the sublimation gas supplied to the exhaust gas exceeds 100,000 ppm, precipitation of ammonium chloride due to high concentration and the amount of sublimation gas supplied to the flue will be small, and it may be difficult to level the concentration distribution. This is because if the amount is less than 000 ppm, the amount of sublimation gas supplied to the flue increases and the amount of exhaust gas may increase.
 昇華ガスを、任意に希釈した後、管路を介して粗大物除去手段21に流入させる。塩化アンモニウムから粗大物を除去する工程では、昇華ガスに混入している粗大物を粗大物除去手段21により除去する。除去される粗大物としては、昇華工程で除去されなかった不揮発性物質であって、粗塵、土砂等、及びNaCl、PbSO、Ca(PO等の化合物が挙げられる。好ましくは、20μm以上、より好ましくは10μm以上までの大きさの粗大物を除去することができる。この工程により、塩化アンモニウムに混入する粗大物が、粗大物除去手段21より後流側の、塩化アンモニウム供給手段16、煙道26等に流入するのを阻止することができ、粗大物による閉塞・磨耗を防止できる。さらに、脱硝触媒の阻害物質を除去することによって、脱硝触媒における水銀酸化を効率的に行わせることができる。 After the sublimation gas is diluted arbitrarily, it flows into the coarse substance removing means 21 through the pipeline. In the step of removing a coarse substance from ammonium chloride, the coarse substance mixed in the sublimation gas is removed by the coarse substance removing means 21. The coarse material to be removed is a non-volatile material that has not been removed in the sublimation process, and includes coarse dust, earth and sand, and compounds such as NaCl, PbSO 4 , and Ca 3 (PO 4 ) 2 . Preferably, a coarse material having a size of 20 μm or more, more preferably 10 μm or more can be removed. By this step, it is possible to prevent coarse substances mixed in the ammonium chloride from flowing into the ammonium chloride supply means 16, the flue 26, etc. on the downstream side of the coarse substance removing means 21. Wear can be prevented. Furthermore, mercury oxidation in the denitration catalyst can be efficiently performed by removing the inhibitory substance of the denitration catalyst.
 塩化アンモニウムを排ガスに供給する工程では、粗大物除去後の昇華ガスを、塩化アンモニウム供給手段16により煙道26内に供給し、排ガスと混合する。塩化アンモニウムの供給は、好ましくは、煙道26内に昇華ガスを噴射することにより行う。昇華ガスの供給後における昇華ガスの濃度は、排ガス中において10~1000ppmとなることが好ましい。より好ましくは、10~200ppmである。排ガス中の昇華ガスの濃度が過剰であると、未反応の塩化アンモニウムが増加する場合があり、不足していると還元脱硝手段3での水銀の酸化と窒素酸化物の還元脱硝が減少する場合があるためである。 In the step of supplying ammonium chloride to the exhaust gas, the sublimation gas after removal of coarse substances is supplied into the flue 26 by the ammonium chloride supply means 16 and mixed with the exhaust gas. The supply of ammonium chloride is preferably performed by injecting a sublimation gas into the flue 26. The concentration of the sublimation gas after supplying the sublimation gas is preferably 10 to 1000 ppm in the exhaust gas. More preferably, it is 10 to 200 ppm. If the concentration of sublimation gas in the exhaust gas is excessive, unreacted ammonium chloride may increase, and if it is insufficient, the oxidation of mercury and the reduction denitration of nitrogen oxides in the reduction denitration means 3 will decrease. Because there is.
 本実施形態による方法は、NHをNH供給手段11により排ガス中に供給する工程を含んでいてもよい。この工程により、塩化アンモニウムの分解によって生じるNHのみでは、排ガス中の窒素酸化物を還元するのに不十分である場合に、NHを補充することができる。NHの供給は、煙道内におけるNH/NOモル比が0.9より低いときに行われることが好ましい。煙道内におけるNH/NOモル比が0.9より低いと、窒素酸化物の還元が十分に行われず、還元されずに残った窒素酸化物が煙道7より排出される場合があるためである。NHの供給は、エコノマイザー10と還元脱硝手段3とを結ぶ煙道26内において行う。NHは塩化アンモニウムを排ガス中に供給した後に供給することが好ましい。あるいは、NHは塩化アンモニウムを排ガス中に供給する前に供給してもよい。NHを供給後の煙道26内の排ガス中では、好ましくは、NH/NOモル比が0.9~1.0である。  The method according to the present embodiment may include a step of supplying NH 3 into the exhaust gas by the NH 3 supply means 11. By this step, NH 3 can be replenished when only NH 3 generated by decomposition of ammonium chloride is insufficient to reduce nitrogen oxides in the exhaust gas. Supply of NH 3 is preferably NH 3 / NO x mole ratio in the flue takes place when less than 0.9. If the NH 3 / NO x molar ratio in the flue is lower than 0.9, nitrogen oxides are not sufficiently reduced, and the remaining nitrogen oxides may be discharged from the flue 7 without being reduced. It is. The supply of NH 3 is performed in the flue 26 connecting the economizer 10 and the reducing denitration means 3. NH 3 is preferably supplied after ammonium chloride is supplied into the exhaust gas. Alternatively, NH 3 may be supplied before supplying ammonium chloride into the exhaust gas. In the exhaust gas in the flue 26 after supplying NH 3 , the NH 3 / NO x molar ratio is preferably 0.9 to 1.0.
 その後に続く、排ガスを脱硝触媒に接触させる工程と、脱硝触媒と接触させた排ガスをアルカリ吸収液に接触させる工程は、第一の実施形態と同様にして行うことができる。 The subsequent step of bringing the exhaust gas into contact with the denitration catalyst and the step of bringing the exhaust gas brought into contact with the denitration catalyst into contact with the alkaline absorbent can be performed in the same manner as in the first embodiment.
 次に図4に、第二の実施形態の具体例として、昇華手段22としてキルン炉221を使用する場合の塩化アンモニウム前処理手段2を説明する。図4に示される塩化アンモニウム前処理手段2は、サイロ13、スクリューフィーダー14、キルン炉221、バーナー222、燃料タンク223、ブロア24、ホットサイクロン211を備える。 Next, FIG. 4 illustrates an ammonium chloride pretreatment means 2 when a kiln furnace 221 is used as the sublimation means 22 as a specific example of the second embodiment. The ammonium chloride pretreatment means 2 shown in FIG. 4 includes a silo 13, a screw feeder 14, a kiln furnace 221, a burner 222, a fuel tank 223, a blower 24, and a hot cyclone 211.
 図4において、サイロ13、及びスクリューフィーダー14は、原料供給手段16を構成する。サイロ13は、塩化アンモニウム101を蓄積し、スクリューフィーダー14はサイロ13からキルン炉221に塩化アンモニウム101を供給する。原料供給手段23の後段には、キルン炉221が設けられている。キルン炉221の内部には、燃料タンク223と管路により連結されるバーナー222が設置される。粗大物102は、キルン炉221から排出されるものである。キルン炉221は、回転しながら、炉内の塩化アンモニウム101を攪拌及び移送しながら、加熱し昇華させる。 4, the silo 13 and the screw feeder 14 constitute a raw material supply means 16. The silo 13 accumulates ammonium chloride 101, and the screw feeder 14 supplies the ammonium chloride 101 from the silo 13 to the kiln furnace 221. A kiln furnace 221 is provided downstream of the raw material supply means 23. Inside the kiln furnace 221, a burner 222 connected to the fuel tank 223 by a pipe line is installed. The coarse material 102 is discharged from the kiln furnace 221. The kiln furnace 221 is heated and sublimated while stirring and transferring the ammonium chloride 101 in the furnace while rotating.
 キルン炉221には、さらに、ブロア24が連結される。ブロア24は、希釈手段を構成し、昇華ガスを空気により希釈する。 A blower 24 is further connected to the kiln furnace 221. The blower 24 constitutes a diluting means and dilutes the sublimation gas with air.
 ホットサイクロン211は、キルン炉221の後段に設けられており、キルン炉221と管路により連結される。ホットサイクロン211は、粗大物除去手段21を構成し、塩化アンモニウムの昇華ガスと空気との混合物から粗大物を除去する。ホットサイクロン211の後段には、塩化アンモニウム供給手段16(図示せず)が接続されている。 The hot cyclone 211 is provided in the rear stage of the kiln furnace 221 and is connected to the kiln furnace 221 by a pipe line. The hot cyclone 211 constitutes the coarse substance removing means 21 and removes the coarse substance from the mixture of the ammonium chloride sublimation gas and the air. Ammonium chloride supply means 16 (not shown) is connected to the subsequent stage of the hot cyclone 211.
 図4の塩化アンモニウム前処理手段2による塩化アンモニウムを前処理する工程は、固体状の塩化アンモニウム101をキルン炉221で昇華する工程と、塩化アンモニウムの昇華ガスを空気により希釈する工程と、塩化アンモニウムから粗大物を除去する工程とを順に含む。 The steps of pretreating ammonium chloride by the ammonium chloride pretreatment means 2 in FIG. 4 include a step of sublimating the solid ammonium chloride 101 in the kiln furnace 221, a step of diluting the sublimation gas of ammonium chloride with air, and ammonium chloride. And a step of removing coarse materials from the above.
 サイロ13から投入する塩化アンモニウム101をスクリューフィーダー14によりキルン炉221に供給する。塩化アンモニウムをキルン炉221で昇華する工程では、固体状の塩化アンモニウム101を、燃料タンク223から燃料を供給されるバーナー222が放出する熱により、キルン炉221内部で加熱し昇華する。キルン炉221の炉内は、好ましくは400℃以上とする。塩化アンモニウムの昇華ガスを空気により希釈する工程では、ブロア24によりキルン炉221の炉内に空気106を供給し、昇華ガスと混合する。好ましくは、空気106は、バーナー222により400℃以上に加熱してキルン炉221の炉内に供給する。粗大物を除去する工程では、昇華ガスを空気により希釈された昇華ガス104に含まれる粗大物をホットサイクロン211により、分離・除去する。これにより、キルン炉221でガス化しなかった不揮発性物質を粗大物として除去することができる。好ましくは、10μmまでの大きさの粗大物をホットサイクロン211により除去することができる。粗大物を除去した後、希釈昇華ガス104は、塩化アンモニウム供給手段16に送り、煙道内の排ガスに供給する。 Ammonium chloride 101 charged from the silo 13 is supplied to the kiln furnace 221 by the screw feeder 14. In the step of sublimating ammonium chloride in the kiln furnace 221, the solid ammonium chloride 101 is heated and sublimated inside the kiln furnace 221 by the heat released by the burner 222 supplied with fuel from the fuel tank 223. The inside of the kiln furnace 221 is preferably 400 ° C. or higher. In the step of diluting the sublimation gas of ammonium chloride with air, air 106 is supplied into the kiln furnace 221 by the blower 24 and mixed with the sublimation gas. Preferably, the air 106 is heated to 400 ° C. or higher by the burner 222 and supplied into the kiln furnace 221. In the step of removing the coarse substance, the coarse substance contained in the sublimation gas 104 diluted with air is separated and removed by the hot cyclone 211. Thereby, the non-volatile substance which was not gasified in the kiln furnace 221 can be removed as a coarse substance. Preferably, a coarse product having a size of up to 10 μm can be removed by the hot cyclone 211. After removing the coarse substance, the diluted sublimation gas 104 is sent to the ammonium chloride supply means 16 and supplied to the exhaust gas in the flue.
 次に、図5に、粗大物除去手段21の具体例として、ホットサイクロン211の拡大図を示す。図5は、一般的なホットサイクロン211の側面図である。ホットサイクロン211は、重力と遠心力により希釈された昇華ガス104から粗大物を分離・除去することができる。粗大物を含む希釈昇華ガス104をホットサイクロン211に流入させると、サイクロン内部において、希釈昇華ガス104は旋回流Bとなって下降する。これと共に、希釈昇華ガス104に混入する粗大物Eは遠心力により外壁に向かい、下降流Cによりサイクロン下部に送られ排出される。希釈昇華ガス104はサイクロン221下部において反転し、サイクロン211内部を円柱状の反転流Dとなって上昇する。サイクロン211内部を上昇した希釈昇華ガス104は、サイクロン211上部より排出される。サイクロン211上部では、二次流れの渦Aが生じる。サイクロン211から排出されたガスは、例えば粒径10μm以上の微細な粗大物Eが除去された希釈昇華ガス104となっている。 Next, FIG. 5 shows an enlarged view of the hot cyclone 211 as a specific example of the coarse substance removing means 21. FIG. 5 is a side view of a general hot cyclone 211. The hot cyclone 211 can separate and remove coarse substances from the sublimation gas 104 diluted by gravity and centrifugal force. When the diluted sublimation gas 104 containing a coarse substance flows into the hot cyclone 211, the diluted sublimation gas 104 descends as a swirl flow B inside the cyclone. At the same time, the coarse substance E mixed in the diluted sublimation gas 104 is directed to the outer wall by centrifugal force and is sent to the lower part of the cyclone by the downward flow C and discharged. The diluted sublimation gas 104 is inverted at the lower part of the cyclone 221 and rises as a cylindrical inverted flow D inside the cyclone 211. The diluted sublimation gas 104 rising inside the cyclone 211 is discharged from the upper part of the cyclone 211. In the upper part of the cyclone 211, a secondary flow vortex A is generated. The gas discharged from the cyclone 211 is, for example, a diluted sublimation gas 104 from which a fine coarse substance E having a particle size of 10 μm or more has been removed.
 図4及び図5に説明する塩化アンモニウム前処理手段2によれば、塩化アンモニウムの昇華ガスから粒径10μm以上までの微細な不揮発性物質等の粗大物が除去される。また、昇華ガスは空気により希釈されているため、塩化アンモニウムが固体として析出しにくくなっている。従って、粗大物や析出した塩化アンモニウムといった固体状の物質が塩化アンモニウム前処理手段2から流出しないため、塩化アンモニウム供給手段16が備えるノズル、及び煙道26等の装置が閉塞・磨耗するのを防止することができる。 4 and FIG. 5, according to the ammonium chloride pretreatment means 2, coarse substances such as fine non-volatile substances having a particle size of 10 μm or more are removed from the sublimation gas of ammonium chloride. Further, since the sublimation gas is diluted with air, ammonium chloride is difficult to precipitate as a solid. Accordingly, since solid substances such as coarse substances and precipitated ammonium chloride do not flow out from the ammonium chloride pretreatment means 2, the nozzles provided in the ammonium chloride supply means 16 and the devices such as the flue 26 are prevented from being blocked or worn. can do.
 第二の実施の形態の水銀除去システム及び水銀除去方法によれば、塩化アンモニウムの昇華ガスから粗大物が予め除去されていることにより、ノズル等を備える塩化アンモニウム供給手段16において閉塞・磨耗の問題が生じない。また、塩化アンモニウムの昇華ガスから水銀酸化を阻害するNaCl等の不揮発性物質が除去され、煙道内に供給されないため、脱硝触媒における水銀酸化をより高効率で行うことができ、水銀除去率を高めるという効果も奏する。さらに、従来技術のように塩化アンモニウム水溶液を蒸発させて用いる場合は、水溶液の大部分を占める水の昇温と蒸発潜熱が必要熱量の3分の2にのぼり、蒸発に大きなエネルギーを費やす必要があったが、本実施の形態では固体状の塩化アンモニウムを昇華して用いるため、必要なエネルギーを低減させることができる。また、塩化アンモニウムが固体または水溶液として排ガスに供給されると、煙道内で濃度分布にむらができるという問題があったが、本実施の形態では昇華ガスとして排ガスに供給されるため、煙道内で濃度分布が容易に均一になり、より効率的な水銀除去を行うことができるという効果を奏する。 According to the mercury removal system and the mercury removal method of the second embodiment, since coarse substances are previously removed from the ammonium chloride sublimation gas, there is a problem of clogging / wearing in the ammonium chloride supply means 16 provided with a nozzle or the like. Does not occur. In addition, since non-volatile substances such as NaCl that inhibit mercury oxidation are removed from the sublimation gas of ammonium chloride and are not supplied into the flue, mercury oxidation in the denitration catalyst can be performed more efficiently, and the mercury removal rate is increased. There is also an effect. Furthermore, when the ammonium chloride aqueous solution is evaporated and used as in the prior art, it is necessary to spend a large amount of energy for evaporation since the temperature rise and the latent heat of evaporation of the water occupying most of the aqueous solution are two-thirds of the required amount of heat. However, in the present embodiment, since solid ammonium chloride is sublimated and used, the required energy can be reduced. In addition, when ammonium chloride is supplied to the exhaust gas as a solid or an aqueous solution, there is a problem that the concentration distribution can be uneven in the flue, but in this embodiment, since it is supplied to the exhaust gas as a sublimation gas, Concentration distribution is easily uniformed, and there is an effect that mercury can be removed more efficiently.
 図6は本発明に係る水銀除去システムの第三の実施形態の主要部を示す。本発明の第三実施形態によるシステムは、エコノマイザー10、重力沈澱槽212、水タンク27、塩化アンモニウム供給手段16、空気圧縮機25、攪拌手段15、NH供給手段11、還元脱硝手段3、エアヒータ4、湿式脱硫手段6、煙突7を備えている。図6では、エアヒータ4より後流側に設けられる湿式脱硫手段6、煙突7は省略されている。なお、同一番号を付した構成要素は、同一の構成・作用を持つ。本実施の形態では、粗大物除去手段として、重力沈澱槽212を備えている。また、塩化アンモニウム供給手段16は、煙道26内に供給された塩化アンモニウム水溶液の液滴が煙道の内壁に付着しない構造を有する。さらに、本実施の形態の水銀除去システムは、供給された塩化アンモニウム水溶液の気化ガスと、排ガスとを攪拌する攪拌手段15を備えている。 FIG. 6 shows a main part of a third embodiment of the mercury removal system according to the present invention. The system according to the third embodiment of the present invention includes an economizer 10, a gravity precipitation tank 212, a water tank 27, an ammonium chloride supply means 16, an air compressor 25, a stirring means 15, an NH 3 supply means 11, a reductive denitration means 3, An air heater 4, wet desulfurization means 6, and a chimney 7 are provided. In FIG. 6, the wet desulfurization means 6 and the chimney 7 provided on the downstream side of the air heater 4 are omitted. In addition, the component which attached | subjected the same number has the same structure and effect | action. In the present embodiment, a gravity sedimentation tank 212 is provided as a coarse material removing means. The ammonium chloride supply means 16 has a structure in which droplets of the ammonium chloride aqueous solution supplied into the flue 26 do not adhere to the inner wall of the flue. Furthermore, the mercury removal system of the present embodiment includes a stirring unit 15 that stirs the vaporized gas of the supplied ammonium chloride aqueous solution and the exhaust gas.
 重力沈澱槽212は、塩化アンモニウム水溶液107から水不溶性の粗大物を重力沈降による固液分離により除去可能な装置である。本実施形態の粗大物除去手段である重力沈澱槽212により除去される粗大物102とは、粗塵、虫、鉱物、土砂、草木、ガラ、金属屑等の水不溶性物質である。重力沈澱槽212は、好ましくは、100μm以上、より好ましくは10μmまでの大きさの微細な粗大物を除去することができる。重力沈澱槽212は、管路により連結される塩化アンモニウム供給手段16の前段に設けられる。重力沈澱槽212の前段には、管路により接続される溶解槽又は希釈槽(図示を省略)が設けられていてもよい。溶解槽は、固体状の塩化アンモニウムを水に溶解して塩化アンモニウム水溶液107を調製するために用いられるものであり、希釈槽は、塩化アンモニウム水溶液107を希釈するために用いられるものである。 The gravity precipitation tank 212 is an apparatus capable of removing a water-insoluble coarse substance from the ammonium chloride aqueous solution 107 by solid-liquid separation by gravity sedimentation. The coarse substance 102 removed by the gravity sedimentation tank 212 which is the coarse substance removing means of the present embodiment is a water-insoluble substance such as coarse dust, insects, minerals, earth and sand, grass and trees, glass, and metal scraps. The gravity precipitation tank 212 can remove fine coarse particles having a size of preferably 100 μm or more, more preferably up to 10 μm. The gravity settling tank 212 is provided in front of the ammonium chloride supply means 16 connected by a pipe line. A dissolution tank or a dilution tank (not shown) connected by a pipe line may be provided in the front stage of the gravity precipitation tank 212. The dissolution tank is used to prepare solid ammonium chloride aqueous solution 107 by dissolving solid ammonium chloride in water, and the dilution tank is used to dilute ammonium chloride aqueous solution 107.
本実施形態の水銀除去システムは、重力沈澱槽212の代わりに、又は重力沈澱槽212に加え、液体サイクロン、膜分離装置、及びスクリーンからなる群から選択される1つ以上を備えていてもよい。液体サイクロン、膜分離装置、及びスクリーンは、一般に10~100μm以上の大きさの粗大物を除去できることが知られており、重力沈澱槽212と同等に用いることができる。本実施形態の水銀除去システムがこれらの装置の全てを備える場合は、重力沈澱槽212→スクリーン→液体サイクロン→膜分離装置の順、又はスクリーン→重力沈澱槽212→液体サイクロン→膜分離装置の順に、前段側から管路を介して設置されることが好ましい。 The mercury removal system of the present embodiment may include one or more selected from the group consisting of a hydrocyclone, a membrane separator, and a screen instead of or in addition to the gravity precipitation tank 212. . The hydrocyclone, the membrane separator, and the screen are generally known to be able to remove coarse substances having a size of 10 to 100 μm or more, and can be used in the same manner as the gravity precipitation tank 212. When the mercury removal system of this embodiment includes all of these apparatuses, the gravity precipitation tank 212 → the screen → the liquid cyclone → the membrane separation apparatus or the screen → the gravity precipitation tank 212 → the liquid cyclone → the membrane separation apparatus. It is preferable to install from the front side through a pipeline.
 水タンク27は、塩化アンモニウム供給手段16と、水タンク27から塩化アンモニウム供給手段16に至る管路を洗浄する水洗浄機構である。水タンク27は、塩化アンモニウム供給手段16に備わる噴霧ノズル等の噴霧手段を洗浄し、詰りを防止する。水タンク27は、重力沈澱槽212と塩化アンモニウム供給手段16とを結ぶ管路の途中に接続されている。水タンク27には、水タンク27と重力沈澱槽212とを接続する希釈ライン29が設けられている。水タンク27は、希釈ライン29を通して重力沈澱槽212に水を供給し、塩化アンモニウム水溶液を希釈するためにも用いることができる。希釈ライン29は、水銀除去システムの運転上支障がない限り設けられていなくてもよい。また、塩化アンモニウム供給手段16に送られる塩化アンモニウム水溶液の濃度を監視する濃度監視装置等を溶解槽又は希釈槽に設けることが好ましい。 The water tank 27 is an ammonium chloride supply means 16 and a water washing mechanism for washing the pipe line from the water tank 27 to the ammonium chloride supply means 16. The water tank 27 cleans spray means such as a spray nozzle provided in the ammonium chloride supply means 16 to prevent clogging. The water tank 27 is connected in the middle of a pipe line connecting the gravity precipitation tank 212 and the ammonium chloride supply means 16. The water tank 27 is provided with a dilution line 29 that connects the water tank 27 and the gravity sedimentation tank 212. The water tank 27 can also be used to supply water to the gravity settling tank 212 through the dilution line 29 to dilute the aqueous ammonium chloride solution. The dilution line 29 may not be provided as long as there is no problem in operation of the mercury removal system. Moreover, it is preferable to provide a concentration monitoring device or the like for monitoring the concentration of the ammonium chloride aqueous solution sent to the ammonium chloride supply means 16 in the dissolution tank or dilution tank.
 塩化アンモニウム供給手段16は、塩化アンモニウム水溶液を排ガス中に供給する装置である。塩化アンモニウム供給手段16は、好ましくは、複数の噴霧手段を備えている。塩化アンモニウム供給手段16は、エコノマイザー10の後流側であって、攪拌手段15の前流側の煙道26内に設けられている。塩化アンモニウム供給手段16は、排ガスが直線的に流れる煙道26の直線領域において設置されることが好ましい。煙道の屈曲部分では、排ガスの流速分布が均一でないため、かかる部分に塩化アンモニウム供給手段16を設置すると塩化アンモニウムの濃度分布も均一でなくなるためである。塩化アンモニウム濃度が不均一である場合、濃度が高い部分では、過剰な分が水銀の酸化反応に用いられることがなく、濃度が低い部分では塩化アンモニウムが不足し、十分に水銀を酸化することができない。塩化アンモニウム供給手段16としては、例えば、複数の噴霧ノズル等の噴霧手段を備える噴霧グリッドを使用することができる。塩化アンモニウム供給手段16に備わる噴霧手段としては、好ましくは、二流体ノズル、ネブライザ等を用いることができる。噴霧手段は、噴霧される液滴の径を、80μm以下とすることができるものが好ましく、さらに好ましくは、40μm以下の液滴径で噴霧可能なものである。噴霧ノズル等のヘッダ管の端部は、バルブ、ゲートにより開閉可能な構造とすることが好ましい。ヘッダ管内に堆積する堆積物を除去可能とし、ノズル等の閉塞を防止するためである。 The ammonium chloride supply means 16 is a device that supplies an aqueous ammonium chloride solution into the exhaust gas. The ammonium chloride supply unit 16 preferably includes a plurality of spraying units. The ammonium chloride supply means 16 is provided in the flue 26 on the downstream side of the economizer 10 and on the upstream side of the stirring means 15. The ammonium chloride supply means 16 is preferably installed in a straight region of the flue 26 through which exhaust gas flows linearly. This is because the flow rate distribution of the exhaust gas is not uniform at the bent portion of the flue, and if the ammonium chloride supply means 16 is installed in such a portion, the concentration distribution of ammonium chloride is not uniform. If the ammonium chloride concentration is uneven, the excess portion is not used for the mercury oxidation reaction at the high concentration portion, and the ammonium chloride is insufficient at the low concentration portion, and the mercury can be oxidized sufficiently. Can not. As the ammonium chloride supply means 16, for example, a spray grid provided with spray means such as a plurality of spray nozzles can be used. As the spray means provided in the ammonium chloride supply means 16, a two-fluid nozzle, a nebulizer or the like can be preferably used. The spraying means is preferably capable of setting the diameter of droplets to be sprayed to 80 μm or less, and more preferably capable of spraying with a droplet diameter of 40 μm or less. It is preferable that the end of the header pipe such as a spray nozzle has a structure that can be opened and closed by a valve and a gate. This is because it is possible to remove deposits accumulated in the header pipe and prevent clogging of the nozzle and the like.
 塩化アンモニウム供給手段16には、空気圧縮機25が接続されている。空気圧縮機25は、空気108を圧縮し、圧縮空気を塩化アンモニウム供給手段16に供給する装置である。塩化アンモニウム供給手段16は、空気圧縮機25より供給された圧縮空気によって塩化アンモニウム水溶液を液滴として排ガス中に噴霧する。 An air compressor 25 is connected to the ammonium chloride supply means 16. The air compressor 25 is a device that compresses the air 108 and supplies the compressed air to the ammonium chloride supply means 16. The ammonium chloride supply means 16 sprays an aqueous ammonium chloride solution as droplets into the exhaust gas by the compressed air supplied from the air compressor 25.
 本実施形態による塩化アンモニウム供給手段16は、塩化アンモニウム水溶液を排ガスが流通する煙道の内壁に付着しないように供給する構造を有する。塩化アンモニウム水溶液は、排ガス中に噴霧されると、排ガスの熱によって蒸発して気化ガスとなる。塩化アンモニウム水溶液は、蒸発後、さらにNHとHClに解離するが、このHCl成分が排ガス中の水分と共に煙道内壁に付着すると腐食を起こすためである。塩化アンモニウム水溶液を排ガスが流通する煙道の内壁に付着しないように供給する構造とは、好ましくは、塩化アンモニウム供給手段16が備える噴霧ノズル等の噴霧手段が、煙道26内において、煙道内壁面から一定以上の距離を置いて配置される構造である。一定以上の距離とは、噴霧される液滴が噴霧手段から煙道内壁面に到達する前に気化するのに十分な距離である。あるいは、塩化アンモニウム水溶液を排ガスが流通する煙道の内壁に付着しないように供給する構造は、噴霧される液滴が到達しうる煙道内壁面の内側に内壁と二重管を構成するように設けられた隔壁を備える構造であってもよい。以下に、塩化アンモニウム供給手段16の構造の具体例を説明する。 The ammonium chloride supply means 16 according to this embodiment has a structure for supplying an aqueous ammonium chloride solution so as not to adhere to the inner wall of the flue through which exhaust gas flows. When the aqueous ammonium chloride solution is sprayed into the exhaust gas, it is evaporated by the heat of the exhaust gas to become a vaporized gas. The ammonium chloride aqueous solution further dissociates into NH 3 and HCl after evaporation, and this HCl component causes corrosion when adhering to the inner wall of the flue together with moisture in the exhaust gas. The structure for supplying the ammonium chloride aqueous solution so that it does not adhere to the inner wall of the flue through which the exhaust gas flows is preferably a spray means such as a spray nozzle provided in the ammonium chloride supply means 16 in the flue 26, It is a structure arranged at a certain distance from The distance above a certain distance is a distance sufficient for vaporizing the sprayed droplets before they reach the flue wall from the spraying means. Alternatively, the structure for supplying the ammonium chloride aqueous solution so as not to adhere to the inner wall of the flue through which exhaust gas flows is provided so that the inner wall and a double pipe are formed inside the inner wall of the flue where the sprayed droplets can reach. The structure provided with the made partition may be sufficient. Below, the specific example of the structure of the ammonium chloride supply means 16 is demonstrated.
 図7に、塩化アンモニウム供給手段16の構成の一例を示す。図7を参照すると、塩化アンモニウム供給手段16は、塩化アンモニウム溶液導入管162、及び複数の噴霧手段161により構成される。塩化アンモニウム溶液導入管162は、重力沈澱槽212からの塩化アンモニウム水溶液を噴霧手段161に供給する管状の装置である。塩化アンモニウム溶液導入管162は、煙道壁263を貫通して設置され、排ガス流109の方向と略直角を成すように配置される。また、噴霧手段161は、塩化アンモニウム溶液導入管162上に、噴霧手段161の噴出口を排ガス流109の後流側に向けて設置される。噴霧手段161は、塩化アンモニウム導入管162上に複数設けられている。塩化アンモニウム溶液導入管162は、好ましくは、煙道内において、格子を形成し、塩化アンモニウム溶液導入管162上に備わる複数の噴霧手段161と共に、噴霧グリッドを形成する。 FIG. 7 shows an example of the configuration of the ammonium chloride supply means 16. Referring to FIG. 7, the ammonium chloride supply unit 16 includes an ammonium chloride solution introduction pipe 162 and a plurality of spraying units 161. The ammonium chloride solution introduction pipe 162 is a tubular device that supplies the ammonium chloride aqueous solution from the gravity precipitation tank 212 to the spraying means 161. The ammonium chloride solution introduction pipe 162 is installed so as to penetrate the flue wall 263 and is arranged so as to be substantially perpendicular to the direction of the exhaust gas flow 109. Further, the spraying means 161 is installed on the ammonium chloride solution introduction pipe 162 so that the spray outlet of the spraying means 161 faces the downstream side of the exhaust gas flow 109. A plurality of spraying means 161 are provided on the ammonium chloride introduction pipe 162. The ammonium chloride solution introduction pipe 162 preferably forms a lattice in the flue and forms a spray grid together with a plurality of spraying means 161 provided on the ammonium chloride solution introduction pipe 162.
 噴霧手段161である噴霧ノズルは、煙道内壁面262から一定以上の距離を置いて配置される。噴霧手段161によって噴霧された液滴は、噴霧角度αを持って中実円錐状に広がる。液滴は、排ガスの流れに伴って後流側に移動し、その後蒸発する。また、一部の液滴、例えば噴霧角が大きく、径が大きい液滴は、ガス流れにのらず、煙道内壁面262に衝突する。噴霧液滴が煙道内壁面262に付着するのを防止するため、各噴霧手段161の設置位置は、排ガス流速が約15m/sの場合において、煙道内の全ての内壁面262から、排ガス流109に垂直な方向に0.5~2.0mの距離とすることが好ましい。より好ましくは、噴霧手段161は、煙道内の全ての内壁面262から排ガス流109に垂直な方向に0.5~1.5mの距離を離して設置される。但し、噴霧される液滴径、排ガスの流速、渦流、噴霧角度などのばらつきを考慮すると、噴霧手段161は煙道内壁262からより大きな距離、例えば1.0~1.5mを離して設置されることが好ましい。 The spray nozzle which is the spray means 161 is arranged at a certain distance or more from the flue inner wall surface 262. The droplets sprayed by the spraying means 161 spread in a solid conical shape with a spray angle α. The droplet moves to the wake side with the flow of the exhaust gas, and then evaporates. Some droplets, for example, droplets having a large spray angle and a large diameter, do not flow in the gas but collide with the flue inner wall surface 262. In order to prevent the spray droplets from adhering to the flue inner wall surface 262, the position of each spray means 161 is set so that the exhaust gas flow 109 from all the inner wall surfaces 262 in the flue when the exhaust gas flow velocity is about 15 m / s. The distance is preferably 0.5 to 2.0 m in the direction perpendicular to the distance. More preferably, the spraying means 161 is installed at a distance of 0.5 to 1.5 m in a direction perpendicular to the exhaust gas flow 109 from all the inner wall surfaces 262 in the flue. However, in consideration of variations in sprayed droplet diameter, exhaust gas flow velocity, vortex flow, spray angle, etc., the spraying means 161 is installed at a larger distance from the flue inner wall 262, for example, 1.0 to 1.5 m. It is preferable.
 煙道の断面積が大きく、噴霧手段161と煙道内壁面262との距離を大きくできる場合は、噴霧角度αの大きいノズルを選定することができる。煙道の断面積が小さく、噴霧手段161と煙道内壁面262との距離が短い場合は、噴霧角度αの小さいノズルを選定することが好ましい。しかし、噴霧角度αは、ノズル仕様や噴霧条件により変化するものであり、また脈動によってばらつくので特定の噴霧角度αに限定されるものではない。噴霧角度αが大き過ぎる場合は、径が大きい噴霧液滴がガス流れに乗らず、蒸発する前に煙道内壁面262に衝突する場合があるが、噴霧角度αが小さいと、噴霧液滴が排ガスと効率的に混合されない場合がある。 When the cross-sectional area of the flue is large and the distance between the spray means 161 and the flue inner wall surface 262 can be increased, a nozzle having a large spray angle α can be selected. When the cross-sectional area of the flue is small and the distance between the spraying means 161 and the flue inner wall surface 262 is short, it is preferable to select a nozzle having a small spray angle α. However, the spray angle α varies depending on the nozzle specifications and spray conditions, and varies depending on the pulsation, and is not limited to a specific spray angle α. If the spray angle α is too large, spray droplets having a large diameter do not get on the gas flow and may collide with the flue wall 262 before evaporating. However, if the spray angle α is small, the spray droplets become exhaust gas. And may not be mixed efficiently.
 ここで、図8に、塩化アンモニウム水溶液の液滴が煙道内において蒸発するまでにかかる時間を液滴径との関係で予測したグラフを示す。液滴蒸発のシミュレーション計算は、排ガス温度が350℃、塩化アンモニウム導入時の初期液滴温度が20℃の条件で行った。図8を参照すると、液滴径が40μmである場合、煙道内で蒸発するまでに0.032秒の時間を要する。従って、塩化アンモニウムの液滴が噴霧ノズル等の噴霧手段から噴霧された後、煙道内壁面262に至るまでに、少なくとも0.032秒以上の時間を要するように噴霧手段161を配置する必要がある。噴霧液滴は、互いに接触して合体する場合もあり、実際には蒸発するまでにこれより長い時間がかかる場合がある。このため、0.032秒の約3倍の時間として、少なくとも0.1秒の時間をかけて噴霧液滴が煙道内壁面262に至るような位置に噴霧手段161を設置するとして計算することができる。 Here, FIG. 8 shows a graph in which the time required for the droplets of the aqueous ammonium chloride solution to evaporate in the flue is predicted in relation to the droplet diameter. The simulation of droplet evaporation was performed under the conditions of an exhaust gas temperature of 350 ° C. and an initial droplet temperature of 20 ° C. when ammonium chloride was introduced. Referring to FIG. 8, when the droplet diameter is 40 μm, it takes 0.032 seconds to evaporate in the flue. Therefore, it is necessary to arrange the spraying means 161 so that it takes at least 0.032 seconds to reach the flue wall 262 after the ammonium chloride droplets are sprayed from the spraying means such as a spray nozzle. . The spray droplets may come into contact with each other and actually take longer to evaporate. For this reason, it can be calculated that the spray means 161 is installed at a position where the spray droplet reaches the flue wall 262 over a time of at least 0.1 second as about three times 0.032 seconds. it can.
 噴霧手段161の設置位置は、一例として、具体的には以下のように決定できる。煙道内排ガス流速が15m/sである場合、噴霧から蒸発にかかる時間である0.1秒の間に噴霧液滴が飛行する距離は、噴霧手段161から排ガス流109と平行の向きに1.5mであると計算される。噴霧角度αが排ガス流109の方向に対し12.5°である場合、噴霧液滴は、噴霧の0.1秒後には、噴霧手段161から排ガス流109に垂直な方向に最大で0.335m離れた位置まで到達する。この値は1.5×tan12.5という計算式により算出される。従って、この場合は、噴霧手段161を、煙道の全ての内壁面262から、排ガス流109に垂直な方向に0.335mより大きい距離をおいて設置することができる。また、噴霧角度αが排ガス流109の方向に対し27.5°である場合、噴霧液滴は、噴霧の0.1秒後には、噴霧手段161から排ガス流109と垂直な方向に最大で0.78m離れた位置まで到達する。この値は、1.5×tan27.5の計算式により算出される。かかる場合は、噴霧手段161を、煙道内の全ての内壁面262から、排ガス流109に垂直な方向に0.78mより大きい距離を置いて設置することができる。排ガス流速や温度条件が異なる場合があっても、上述のようにして噴霧手段161の設置位置を決定することができる。 The installation position of the spray means 161 can be specifically determined as follows as an example. When the exhaust gas flow velocity in the flue is 15 m / s, the distance that the spray droplets fly during 0.1 seconds, which is the time required for evaporation from the spray, is 1. in the direction parallel to the exhaust gas flow 109 from the spray means 161. Calculated to be 5 m. When the spray angle α is 12.5 ° with respect to the direction of the exhaust gas stream 109, the spray droplets are 0.335 m at the maximum in the direction perpendicular to the exhaust gas stream 109 from the spray means 161 after 0.1 seconds of spraying. Reach far away. This value is calculated by a calculation formula of 1.5 × tan 12.5. Therefore, in this case, the spraying means 161 can be installed at a distance greater than 0.335 m in the direction perpendicular to the exhaust gas flow 109 from all the inner wall surfaces 262 of the flue. When the spray angle α is 27.5 ° with respect to the direction of the exhaust gas flow 109, the spray droplets are 0 in the direction perpendicular to the exhaust gas flow 109 from the spray means 161 after 0.1 second of spraying. Reach up to .78m away. This value is calculated by a calculation formula of 1.5 × tan 27.5. In such a case, the spraying means 161 can be installed at a distance greater than 0.78 m in the direction perpendicular to the exhaust gas flow 109 from all the inner wall surfaces 262 in the flue. Even if the exhaust gas flow velocity and temperature conditions may be different, the installation position of the spray means 161 can be determined as described above.
 塩化アンモニウム供給手段16は、他の例において、噴霧手段161と塩化アンモニウム溶液導入管162と隔壁163とから構成される。図9は、塩化アンモニウム供給手段16と、その近傍の煙道26の拡大図を示す。噴霧手段161と塩化アンモニウム溶液導入管162は図8で説明したものと同様のものが用いられる。 In another example, the ammonium chloride supply unit 16 includes a spray unit 161, an ammonium chloride solution introduction pipe 162, and a partition wall 163. FIG. 9 shows an enlarged view of the ammonium chloride supply means 16 and the flue 26 in the vicinity thereof. The spraying means 161 and the ammonium chloride solution introduction pipe 162 are the same as those described with reference to FIG.
 隔壁163は、塩化アンモニウムの液滴が煙道内壁面262に付着するのを防ぐものである。隔壁163は、煙道内壁面262と部分的に二重管を形成するように設置される。複数の噴霧手段161は全て、二重管部分の内部に位置する。図示する形態において、隔壁163は、塩化アンモニウム溶液導入管162の位置から、液滴蒸発位置264まで設置される。ここで、噴霧液滴が全て蒸発し気化ガスとなる位置を、液滴蒸発位置264と設定する。塩化アンモニウム溶液導入管162から液滴蒸発位置264までの煙道内では、大部分の液滴が蒸発しない状態で存在し、液滴蒸発位置264より後流の煙道内ではほぼ全ての液滴が蒸発したガスとして存在する。液滴蒸発位置264は、噴霧液滴の液滴径が約40μm、排ガス流速が約15m/sである場合、噴霧手段161から排ガス流109と平行な向きに1.5mの位置と計算される。但し、液滴蒸発位置264は、噴霧される液滴径、排ガスの流速、渦流、噴霧角度などに依存して変化することを考慮すると、液滴蒸発位置は、例えば1.0~4.0mと予測される。従って、具体的には、隔壁163は、塩化アンモニウム溶液導入管162の位置から後流に1.0~4.0m、より好ましくは2.0~2.5mの位置まで設置される。隔壁163は、塩化アンモニウム溶液導入管161に固定されていてもよい。隔壁163は、耐腐食性材料で形成されていることが好ましい。耐腐食性の材料としては、ステンレス鋼、ニッケル合金等が挙げられる。 The partition wall 163 prevents ammonium chloride droplets from adhering to the flue wall 262. The partition wall 163 is installed so as to partially form a double pipe with the flue inner wall surface 262. The plurality of spraying means 161 are all located inside the double pipe portion. In the illustrated embodiment, the partition wall 163 is installed from the position of the ammonium chloride solution introduction pipe 162 to the droplet evaporation position 264. Here, a position where all the spray droplets are evaporated to become vaporized gas is set as a droplet evaporation position 264. In the flue from the ammonium chloride solution introduction pipe 162 to the droplet evaporating position 264, most of the droplets exist without evaporating, and almost all the droplets evaporate in the flue downstream from the droplet evaporating position 264. Exists as a gas. The droplet evaporation position 264 is calculated as a position of 1.5 m from the spray means 161 in a direction parallel to the exhaust gas flow 109 when the droplet diameter of the spray droplet is about 40 μm and the exhaust gas flow velocity is about 15 m / s. . However, considering that the droplet evaporation position 264 changes depending on the droplet diameter to be sprayed, the exhaust gas flow velocity, the vortex flow, the spray angle, and the like, the droplet evaporation position is, for example, 1.0 to 4.0 m. It is predicted. Therefore, specifically, the partition wall 163 is installed from the position of the ammonium chloride solution introduction pipe 162 to the position of 1.0 to 4.0 m, more preferably 2.0 to 2.5 m in the downstream. The partition wall 163 may be fixed to the ammonium chloride solution introduction tube 161. The partition wall 163 is preferably formed of a corrosion-resistant material. Examples of the corrosion-resistant material include stainless steel and nickel alloy.
 隔壁163は、腐食により劣化する場合があり、定期的に交換することができる。塩化アンモニウム供給手段16が隔壁163を有していることにより、低温度の液滴が320~380℃という高温度の煙道内壁面262に付着することを防止することができ、熱収縮による煙道壁の割れや腐食を防止することができる。 The partition wall 163 may be deteriorated due to corrosion and can be periodically replaced. Since the ammonium chloride supply means 16 has the partition wall 163, it is possible to prevent low temperature droplets from adhering to the high temperature flue inner wall surface 262 of 320 to 380 ° C. Wall cracking and corrosion can be prevented.
 ここでは一例として、塩化アンモニウム供給手段16が噴霧手段161の設置位置を特定の位置にした形態、隔壁163を備える形態を説明したが、塩化アンモニウム供給手段16がこれらの両方を備える形態であってもよい。 Here, as an example, the embodiment in which the ammonium chloride supply unit 16 has a configuration in which the installation position of the spray unit 161 is set to a specific position and the configuration in which the partition wall 163 is provided has been described. However, the ammonium chloride supply unit 16 has both of these configurations. Also good.
 図6を参照すると、攪拌手段15は、塩化アンモニウム水溶液の気化ガスと排ガスとを攪拌する装置である。攪拌手段15は、塩化アンモニウム供給手段16と還元脱硝装置3を結ぶ煙道内に設けられる。攪拌手段15は、煙道の直線部分に設置されることが好ましい。屈曲部分と比較して,施工及び保守が容易なためである。攪拌手段15の設置位置は、好ましくは、塩化アンモニウム供給手段16により供給された塩化アンモニウム水溶液の液滴が蒸発する位置よりも後流側である。噴霧液滴が蒸発して生じるガスと排ガスとを攪拌することにより、液滴の状態のまま排ガスと攪拌するよりもより効果的に濃度分布を均一にすることができるためである。攪拌手段15としては、好ましくは、ミキサーが用いられる。ミキサーはガスの攪拌に通常使用されるものとすることができる。また、攪拌手段15は、複数のミキサーを備えていてもよい。攪拌手段15により、排ガス中における塩化アンモニウム水溶液の気化ガスの濃度分布を均一化することができ、水銀の塩素化効率を上昇させることができる。 Referring to FIG. 6, the stirring means 15 is a device for stirring the vaporized gas and the exhaust gas of the ammonium chloride aqueous solution. The stirring means 15 is provided in a flue connecting the ammonium chloride supply means 16 and the reductive denitration device 3. It is preferable that the stirring means 15 is installed in the straight part of a flue. This is because construction and maintenance are easier compared to the bent part. The installation position of the stirring means 15 is preferably on the downstream side of the position where the droplets of the ammonium chloride aqueous solution supplied by the ammonium chloride supply means 16 evaporate. This is because, by stirring the gas and the exhaust gas generated by evaporation of the spray droplets, the concentration distribution can be made more effective than when stirring the exhaust gas in the state of droplets. As the stirring means 15, a mixer is preferably used. The mixer may be one normally used for gas stirring. Moreover, the stirring means 15 may include a plurality of mixers. By the stirring means 15, the concentration distribution of the vaporized gas of the ammonium chloride aqueous solution in the exhaust gas can be made uniform, and the chlorination efficiency of mercury can be increased.
 ボイラ1、エコノマイザー10、整流装置12、NH供給手段11、還元脱硝手段3、エアヒータ4、湿式脱硫手段6、煙突7は、第二の実施形態で説明したものと同様のものとすることができる。 The boiler 1, economizer 10, rectifier 12, NH 3 supply unit 11, reduction denitration unit 3, air heater 4, wet desulfurization unit 6, and chimney 7 are the same as those described in the second embodiment. Can do.
 次に、本実施の形態に係る排ガスの水銀除去システムによる水銀除去方法の一形態を説明する。本実施形態による方法は、塩化アンモニウム水溶液から重力沈降により粗大物を除去する工程と、煙道内の排ガスに粗大物除去後の塩化アンモニウム水溶液を、煙道の内壁に付着しないように供給する工程と、塩化アンモニウム水溶液を供給する工程の後に、塩化アンモニウム水溶液が蒸発したガスと排ガスとを煙道内で攪拌する工程と、塩化アンモニウムが供給された前記排ガスを脱硝触媒に接触させる工程と、脱硝触媒と接触させた排ガスを、アルカリ吸収液に接触させる工程とを含む。 Next, an embodiment of a mercury removal method using the exhaust gas mercury removal system according to the present embodiment will be described. The method according to the present embodiment includes a step of removing coarse substances from the aqueous ammonium chloride solution by gravity sedimentation, and a step of supplying the aqueous ammonium chloride solution after removal of coarse substances to the exhaust gas in the flue so as not to adhere to the inner wall of the flue. After the step of supplying the ammonium chloride aqueous solution, the step of stirring the gas and the exhaust gas in which the ammonium chloride aqueous solution has evaporated in the flue, the step of bringing the exhaust gas supplied with ammonium chloride into contact with the denitration catalyst, And a step of bringing the contacted exhaust gas into contact with an alkali absorbing liquid.
 塩化アンモニウム水溶液107は、固体状の塩化アンモニウムを水に溶解して調製することができる。塩化アンモニウム水溶液107は、予め濃度調整したものをタンクローリ等により搬入し、重力沈澱槽212に供給してもよい。または、塩化アンモニウム水溶液107を、希釈槽(図示を省略)に供給した後に、必要に応じて希釈し、重力沈澱槽212に送ってもよい。この場合、重力沈澱槽212を希釈槽と兼用に用いてもよい。あるいは、塩化アンモニウムの粉体を溶解槽に供給し、溶解槽に水を投入して調製した塩化アンモニウム水溶液107を、重力沈澱槽212に送ってもよい。塩化アンモニウム粉体を溶解槽に供給するためには、第二実施形態で説明したサイロ及び供給フィーダー等の原料供給手段を用いることができる。塩化アンモニウム水溶液107の濃度は、0.01~45質量%とすることが好ましく、0.01~23質量%がより好ましい。 The ammonium chloride aqueous solution 107 can be prepared by dissolving solid ammonium chloride in water. The ammonium chloride aqueous solution 107 may be supplied with a concentration adjusted in advance by a tank truck or the like and supplied to the gravity precipitation tank 212. Or after supplying ammonium chloride aqueous solution 107 to a dilution tank (illustration omitted), you may dilute as needed and send to gravity precipitation tank 212. In this case, the gravity precipitation tank 212 may be used also as a dilution tank. Alternatively, an ammonium chloride aqueous solution 107 prepared by supplying ammonium chloride powder to a dissolution tank and adding water to the dissolution tank may be sent to the gravity precipitation tank 212. In order to supply the ammonium chloride powder to the dissolution tank, the raw material supply means such as the silo and the supply feeder described in the second embodiment can be used. The concentration of the ammonium chloride aqueous solution 107 is preferably 0.01 to 45% by mass, and more preferably 0.01 to 23% by mass.
 塩化アンモニウム水溶液から粗大物を除去する工程では、重力沈澱槽212において、塩化アンモニウム水溶液107から、重力沈降により粗大物を除去する。重力沈降は、1秒~24時間行うことが好ましい。本実施形態の方法において除去される粗大物としては、粗塵、虫、鉱物、土砂、草木、ガラ、金属屑等の水不溶性の不純物が挙げられる。粗大物除去工程では、できるだけ微細な粗大物まで除去できることが好ましく、100μm以上の大きさの粗大物を除去することが好ましい。この工程により、水に溶解しない固体状物を除去することができ、塩化アンモニウム供給手段16や煙道26等の装置の閉塞・磨耗を防止することができる。 In the step of removing coarse substances from the aqueous ammonium chloride solution, coarse substances are removed from the aqueous ammonium chloride solution 107 by gravity precipitation in the gravity precipitation tank 212. Gravity sedimentation is preferably performed for 1 second to 24 hours. Examples of the coarse substance removed in the method of the present embodiment include water-insoluble impurities such as coarse dust, insects, minerals, earth and sand, vegetation, glass, and metal scraps. In the coarse substance removing step, it is preferable that even a coarse article as fine as possible can be removed, and it is preferable to remove a coarse article having a size of 100 μm or more. By this step, solid substances that do not dissolve in water can be removed, and blockage and wear of devices such as ammonium chloride supply means 16 and flue 26 can be prevented.
 本実施形態による方法は、粗大物を除去する工程の前に、塩化アンモニウム水溶液を希釈する工程を任意に含んでいてもよい。塩化アンモニウム水溶液を希釈する工程では、水タンク27から重力沈澱槽212中の塩化アンモニウム水溶液に、希釈ライン29を通して水を供給することによって塩化アンモニウムの濃度を低減させる。好ましくは、塩化アンモニウム供給手段16に送られる塩化アンモニウム水溶液の濃度が0.01~45質量%となるように、水を供給し、希釈する。これにより、煙道26内に供給される塩化アンモニウム水溶液の濃度を調節することができる。 The method according to the present embodiment may optionally include a step of diluting the aqueous ammonium chloride solution before the step of removing coarse substances. In the step of diluting the ammonium chloride aqueous solution, the concentration of ammonium chloride is reduced by supplying water through the dilution line 29 from the water tank 27 to the ammonium chloride aqueous solution in the gravity precipitation tank 212. Preferably, water is supplied and diluted so that the concentration of the ammonium chloride aqueous solution sent to the ammonium chloride supply means 16 is 0.01 to 45% by mass. Thereby, the density | concentration of the ammonium chloride aqueous solution supplied in the flue 26 can be adjusted.
 粗大物除去後の塩化アンモニウム水溶液を、煙道内の排ガスに供給する工程では、粗大物が除去された塩化アンモニウム水溶液を、塩化アンモニウム供給手段16が備える噴霧手段により排ガス中に霧状に噴霧する。好ましくは、塩化アンモニウム水溶液は、空気圧縮機25で圧縮した圧縮空気と共に排ガス中に噴霧する。噴霧された液滴の好ましい液滴径は、100μm以下であり、さらに好ましくは、40μm以下である。 In the step of supplying the ammonium chloride aqueous solution after removal of coarse substances to the exhaust gas in the flue, the ammonium chloride aqueous solution from which coarse substances have been removed is sprayed into the exhaust gas in a mist form by the spraying means provided in the ammonium chloride supply means 16. Preferably, the aqueous ammonium chloride solution is sprayed into the exhaust gas together with the compressed air compressed by the air compressor 25. The preferable droplet diameter of the sprayed droplet is 100 μm or less, and more preferably 40 μm or less.
 各噴霧手段161は、塩化アンモニウム水溶液を、噴霧手段161を頂点とする中実円錐の形状に噴霧する。このとき、塩化アンモニウム水溶液は、塩化アンモニウム水溶液が煙道の内壁面262に付着しないように供給する。煙道が腐食するのを防止するためである。塩化アンモニウム水溶液の供給は、図8及び図9を用いて説明した形態において行うことができる。 Each spraying means 161 sprays an ammonium chloride aqueous solution in the shape of a solid cone with the spraying means 161 at the top. At this time, the aqueous ammonium chloride solution is supplied so that the aqueous ammonium chloride solution does not adhere to the inner wall surface 262 of the flue. This is to prevent the flue from corroding. The supply of the ammonium chloride aqueous solution can be performed in the form described with reference to FIGS.
 塩化アンモニウム水溶液は、煙道26内における塩化アンモニウムの濃度が、排ガスに対し0.01~200ppmとなるように、排ガス中に供給することが好ましい。 The aqueous ammonium chloride solution is preferably supplied into the exhaust gas so that the concentration of ammonium chloride in the flue 26 is 0.01 to 200 ppm with respect to the exhaust gas.
 塩化アンモニウム水溶液の液滴は、煙道26内の熱により昇温し、蒸発してガスを生成する。このガスを気化ガスという。気化ガスには、気体としてNHとHClが存在する。塩化アンモニウム水溶液の気化ガスと排ガスとを煙道内で攪拌する工程では、煙道26内に供給された塩化アンモニウム水溶液の気化ガスと排ガスとを、攪拌手段15により攪拌する。好ましくは、蒸発した塩化アンモニウムが解離して生じるNHとHClと排ガスとを攪拌手段15により攪拌する。この工程により、煙道内における塩化アンモニウム水溶液の気化ガス、及び塩化アンモニウムがさらに解離して生じるNHとHClの濃度分布を均一にすることができる。排ガスを脱硝触媒に接触させる工程と、排ガスをアルカリ吸収液と接触させる工程は、第二の実施形態と同様とすることができる。 The droplets of the ammonium chloride aqueous solution are heated by the heat in the flue 26 and evaporated to generate gas. This gas is called vaporized gas. In the vaporized gas, NH 3 and HCl exist as gases. In the step of stirring the vaporized gas and the exhaust gas of the ammonium chloride aqueous solution in the flue, the vaporized gas and the exhaust gas of the ammonium chloride aqueous solution supplied into the flue 26 are stirred by the stirring means 15. Preferably, NH 3 , HCl, and exhaust gas generated by dissociation of evaporated ammonium chloride are stirred by the stirring means 15. By this step, the vaporization gas of the ammonium chloride aqueous solution in the flue and the concentration distribution of NH 3 and HCl generated by further dissociation of ammonium chloride can be made uniform. The step of bringing the exhaust gas into contact with the denitration catalyst and the step of bringing the exhaust gas into contact with the alkali absorbing liquid can be the same as in the second embodiment.
 本実施の形態の水銀除去システム及び水銀除去方法によれば、塩化アンモニウム水溶液から予め粗大物を除去する。このため、噴霧ノズル等が、閉塞・磨耗するのを防止することができる。塩化アンモニウム水溶液は、煙道内の排ガスにより気化されるため、外部から熱を供給する必要がなく、排ガスの処理に必要なエネルギー量を削減することができる。また、塩化アンモニウムと排ガスは、煙道内で攪拌し、濃度分布を均一化することにより高効率に排ガス中の水銀を酸化することができるという効果を有する。さらに、煙道内壁に塩化アンモニウムの液滴が付着しないため、腐食を防止し、排ガス処理施設の耐久性を高め、寿命を向上させることができる。 According to the mercury removal system and mercury removal method of the present embodiment, coarse substances are previously removed from the ammonium chloride aqueous solution. For this reason, it can prevent that a spray nozzle etc. obstruct | occlude and wear. Since the aqueous ammonium chloride solution is vaporized by the exhaust gas in the flue, it is not necessary to supply heat from the outside, and the amount of energy required for the treatment of the exhaust gas can be reduced. Ammonium chloride and exhaust gas have an effect that mercury in the exhaust gas can be oxidized with high efficiency by stirring in the flue and making the concentration distribution uniform. Furthermore, since ammonium chloride droplets do not adhere to the inner wall of the flue, corrosion can be prevented, the durability of the exhaust gas treatment facility can be improved, and the life can be improved.
 次に、図10は本発明に係る排ガスの水銀除去システムの第四の実施形態の主要部を示す。本実施の形態の水銀除去システムは、エコノマイザー10、重力沈澱槽212、水タンク27、分離手段213、塩化アンモニウム水溶液タンク28、塩化アンモニウム供給手段16、空気圧縮機25、攪拌手段15、NH供給手段11、還元脱硝手段3、エアヒータ4、湿式脱硫装置6、煙突7を備えている。図10では、エアヒータ4より後流側の湿式脱硫手段6、煙突7は省略されている。同一番号を付した構成要素は、同一の構成・作用を持つ。本実施形態の水銀除去システムは、第三実施形態のシステムに加えて、分離手段213と塩化アンモニウム水溶液タンク28とをさらに備えている。 Next, FIG. 10 shows a main part of a fourth embodiment of the mercury removal system for exhaust gas according to the present invention. The mercury removal system according to the present embodiment includes an economizer 10, a gravity precipitation tank 212, a water tank 27, a separation unit 213, an ammonium chloride aqueous solution tank 28, an ammonium chloride supply unit 16, an air compressor 25, an agitation unit 15, and NH 3. A supply unit 11, a reduction denitration unit 3, an air heater 4, a wet desulfurization device 6, and a chimney 7 are provided. In FIG. 10, the wet desulfurization means 6 and the chimney 7 on the downstream side of the air heater 4 are omitted. Components with the same number have the same configuration / action. In addition to the system of the third embodiment, the mercury removal system of this embodiment further includes a separation unit 213 and an ammonium chloride aqueous solution tank 28.
 分離手段213は、重力沈澱槽212により粗大物を除去した塩化アンモニウム水溶液から、さらに重力沈澱槽212では除去されなかった粗大物を除去する装置である。分離手段213は、重力沈澱槽212よりもさらに微細な粒子を分離・除去することができる。分離手段213は、重力沈澱槽212と塩化アンモニウム供給手段16を結ぶ管路の途中に設置される。分離手段213としては、液体サイクロン、膜分離装置、スクリーン等から選択される一以上の組み合わせを用いることができる。分離手段213として、これら全ての装置の組み合わせを用いる場合、重力沈澱槽212→スクリーン→液体サイクロン→膜分離装置の順に、前段側から管路を介して設置されることが好ましい。分離手段213は、100~1μmまでの大きさの粗大物を除去できることが好ましい。 Separation means 213 is a device for removing coarse substances that have not been removed in the gravity precipitation tank 212 from the aqueous ammonium chloride solution from which coarse substances have been removed in the gravity precipitation tank 212. The separation means 213 can separate and remove finer particles than the gravity sedimentation tank 212. The separation means 213 is installed in the middle of a pipe line connecting the gravity precipitation tank 212 and the ammonium chloride supply means 16. As the separation means 213, one or more combinations selected from a liquid cyclone, a membrane separator, a screen, and the like can be used. When a combination of all these devices is used as the separation means 213, it is preferable that the separation means 213 is installed via a pipe line from the preceding stage in the order of gravity precipitation tank 212 → screen → hydrocyclone → membrane separation device. It is preferable that the separating means 213 can remove coarse substances having a size of 100 to 1 μm.
 塩化アンモニウム水溶液タンク28は、分離手段213により粗大物と共に分離された塩化アンモニウム水溶液を回収・貯留し、分離手段213に再流入させるための装置である。塩化アンモニウム水溶液タンク28は、分離手段213と管路により連結されている。さらに、塩化アンモニウム水溶液タンク28は、重力沈澱槽212と分離手段213とを結ぶ管路の途中に管路により連結されている。 The ammonium chloride aqueous solution tank 28 is a device for recovering and storing the ammonium chloride aqueous solution separated together with the coarse material by the separation means 213 and reflowing it into the separation means 213. The ammonium chloride aqueous solution tank 28 is connected to the separating means 213 by a pipe line. Furthermore, the ammonium chloride aqueous solution tank 28 is connected by a pipe line in the middle of a pipe line connecting the gravity precipitation tank 212 and the separating means 213.
 ボイラ1、エコノマイザー10、整流装置12、NH供給手段11、重力沈澱槽212、水タンク27、空気圧縮機25、塩化アンモニウム供給手段16、攪拌手段15、還元脱硝手段3、エアヒータ4、湿式脱硫手段6、煙突7は、第三の実施形態で説明したものと同様のものとすることができる。 Boiler 1, economizer 10, rectifier 12, NH 3 supply means 11, gravity precipitation tank 212, water tank 27, air compressor 25, ammonium chloride supply means 16, stirring means 15, reductive denitration means 3, air heater 4, wet type The desulfurization means 6 and the chimney 7 can be the same as those described in the third embodiment.
 本実施の形態に係る排ガスの水銀除去システムによる水銀除去方法の一形態を説明する。本実施形態による方法は、塩化アンモニウム水溶液107から重力沈降により粗大物を除去する工程の後に、塩化アンモニウム水溶液から分離手段213により粗大物を除去する工程を含む点で第三の実施形態と異なる。 An embodiment of a mercury removal method using the exhaust gas mercury removal system according to the present embodiment will be described. The method according to the present embodiment is different from the third embodiment in that after the step of removing coarse substances from the aqueous ammonium chloride solution 107 by gravity sedimentation, the step of removing coarse substances from the aqueous ammonium chloride solution by the separating means 213 is included.
 塩化アンモニウムから分離手段213により粗大物を除去する工程では、重力沈降により粗大物が除去された塩化アンモニウムから、さらに粗大物を分離・除去する。粗大物の除去には、液体サイクロン、膜分離装置、スクリーン等の装置から選択される一以上の組み合わせを用いることができる。これにより、重力沈降よりさらに微細な粒子も除去することができる。分離手段213により粗大物と共に分離された塩化アンモニウム水溶液は、塩化アンモニウム水溶液タンク28に回収・貯留し、分離手段213に再流入させてもよい。粗大物除去後の塩化アンモニウム水溶液を煙道内の排ガスに供給する工程と、排ガスを脱硝触媒に接触させる工程と、排ガスをアルカリ吸収液に接触させる工程は、第三の実施形態と同様とすることができる。 In the step of removing coarse substances from ammonium chloride by the separating means 213, coarse substances are further separated and removed from ammonium chloride from which coarse substances have been removed by gravity sedimentation. One or more combinations selected from liquid cyclones, membrane separators, screens, and the like can be used to remove coarse substances. Thereby, finer particles than gravity sedimentation can also be removed. The ammonium chloride aqueous solution separated together with the coarse substance by the separation means 213 may be collected and stored in the ammonium chloride aqueous solution tank 28 and reflowed into the separation means 213. The step of supplying the ammonium chloride aqueous solution after removal of coarse substances to the flue gas in the flue, the step of bringing the exhaust gas into contact with the denitration catalyst, and the step of bringing the exhaust gas into contact with the alkali absorbing solution are the same as in the third embodiment. Can do.
 本実施の形態に係る排ガスの水銀除去システム及び水銀除去方法において、塩化アンモニウム水溶液は、重力沈澱槽212により粗大物を除去した後に、さらに、分離手段213により粗大物を除去する。重力沈澱槽212でも、大半の粗大物を除去可能だが、重力沈降させる時間が十分でない場合や、重力沈降では分離除去できない粒径が小さく密度の低い微粒子等が存在する場合に効果的である。本実施の形態の水銀除去システムによれば、塩化アンモニウム水溶液から粗塵、虫、鉱物、土砂、草木、ガラ、金属屑のような粗大物まで除去されるため、噴霧ノズルが閉塞し難いという効果を奏する。 In the exhaust gas mercury removal system and mercury removal method according to the present embodiment, the ammonium chloride aqueous solution is further removed by the separation means 213 after removing the coarse matter by the gravity precipitation tank 212. The gravitational precipitation tank 212 can remove most of the coarse substances, but it is effective when the time for gravity sedimentation is insufficient or when there are fine particles having a small particle size and low density that cannot be separated and removed by gravity sedimentation. According to the mercury removal system of the present embodiment, coarse particles such as coarse dust, insects, minerals, earth and sand, vegetation, glass, and metal scraps are removed from the aqueous ammonium chloride solution, so that the spray nozzle is difficult to block. Play.
 本発明の水銀除去システム及び水銀除去方法は、石炭や重油等の化石燃料の燃焼によって生じる排ガスの水銀除去処理に採用することができる。 The mercury removal system and mercury removal method of the present invention can be used for mercury removal treatment of exhaust gas generated by combustion of fossil fuels such as coal and heavy oil.
1   ボイラ
2   塩化アンモニウム前処理手段
3   還元脱硝手段
4   エアヒータ
5   電気集塵機
6   湿式脱硫手段
7   煙突
8   ベルトフィルター
9   石膏
10  エコノマイザー
11  NH供給手段
12  整流装置
13  サイロ
14  スクリューフィーダー
15  攪拌手段
16  塩化アンモニウム供給手段
21  粗大物除去手段
22  昇華手段
23  原料供給手段
24  ブロア
25  空気圧縮機
26  煙道
27  水タンク
28  塩化アンモニウム水溶液タンク
29  希釈ライン
100 水銀除去システム
101 塩化アンモニウム
102 粗大物
103 昇華ガス
104 希釈昇華ガス
105 燃料
106 空気
107 塩化アンモニウム水溶液
108 空気
109 排ガス流
110 塩化ナトリウム溶液
161 噴霧手段
162 塩化アンモニウム溶液導入管
163 隔壁
211 ホットサイクロン
212 重力沈澱槽
213 分離手段
221 キルン炉
222 バーナー
223 燃料タンク
262 煙道内壁面
263 煙道壁
264 液滴蒸発位置
A   二次流れの渦
B   旋回流
C   下降流
D   反転流
E   粗大物
α   噴霧角度
1 Boiler 2 ammonium chloride preprocessing means 3 reducing denitration unit 4 air heater 5 electric precipitator 6 wet desulfurization unit 7 chimney 8 belt filter 9 gypsum 10 economizer 11 NH 3 supplying unit 12 rectifier 13 silo 14 screw feeder 15 agitation means 16 ammonium chloride Supply means 21 Coarse substance removal means 22 Sublimation means 23 Raw material supply means 24 Blower 25 Air compressor 26 Flue 27 Water tank 28 Ammonium chloride aqueous solution tank 29 Dilution line 100 Mercury removal system 101 Ammonium chloride 102 Coarse thing 103 Sublimation gas 104 Dilution sublimation Gas 105 Fuel 106 Air 107 Ammonium chloride aqueous solution 108 Air 109 Exhaust gas flow 110 Sodium chloride solution 161 Spraying means 162 Ammonium chloride solution introduction pipe 163 Partition wall DESCRIPTION OF SYMBOLS 11 Hot cyclone 212 Gravity sedimentation tank 213 Separation means 221 Kiln furnace 222 Burner 223 Fuel tank 262 Flue wall 263 Flue wall 264 Droplet evaporation position A Secondary flow vortex B Swirl C Downflow D Reverse flow E Coarse α Spray angle

Claims (7)

  1.  塩化アンモニウムの前処理を行う塩化アンモニウム前処理手段と、
     前処理された塩化アンモニウムを排ガスに供給する塩化アンモニウム供給手段と、
     前記排ガス中の窒素酸化物の還元と、水銀の塩素化とを行う還元脱硝手段と、
     前記排ガス中の硫黄酸化物と前記塩素化された水銀とをアルカリ吸収液により除去する湿式脱硫手段と
    を備え、前記塩化アンモニウム前処理手段が、前記塩化アンモニウムから粗大物を除去する粗大物除去手段を備える排ガスの水銀除去システム。
    Ammonium chloride pretreatment means for pretreatment of ammonium chloride;
    Ammonium chloride supply means for supplying pretreated ammonium chloride to the exhaust gas;
    Reductive denitration means for reducing nitrogen oxides in the exhaust gas and chlorinating mercury;
    A wet desulfurization means for removing sulfur oxides in the exhaust gas and the chlorinated mercury with an alkali absorbing solution, and the ammonium chloride pretreatment means removes a coarse substance from the ammonium chloride. An exhaust gas mercury removal system.
  2.  前記塩化アンモニウム前処理手段が、固体状の塩化アンモニウムを昇華する別置の昇華手段をさらに備え、
     前記粗大物除去手段が集塵機である、請求項1に記載の水銀除去システム。
    The ammonium chloride pretreatment means further comprises a separate sublimation means for sublimating solid ammonium chloride,
    The mercury removal system according to claim 1, wherein the coarse substance removing means is a dust collector.
  3.  前記塩化アンモニウム供給手段が、塩化アンモニウム水溶液を排ガスが流通する煙道の内壁に付着しないように供給する構造を有し、
     前記粗大物除去手段が、重力沈澱槽、液体サイクロン、膜分離装置、及びスクリーンからなる群より選択される1つ以上を備え、
     前記還元脱硝手段の前段に、塩化アンモニウムが供給された排ガスを攪拌する攪拌手段をさらに備える、請求項1に記載の水銀除去システム。
    The ammonium chloride supply means has a structure for supplying an aqueous ammonium chloride solution so as not to adhere to the inner wall of the flue through which exhaust gas flows,
    The coarse substance removing means comprises one or more selected from the group consisting of a gravity sedimentation tank, a hydrocyclone, a membrane separator, and a screen,
    The mercury removal system according to claim 1, further comprising a stirring unit that stirs the exhaust gas supplied with ammonium chloride before the reducing denitration unit.
  4.  前記粗大物除去手段が重力沈澱槽と、前記重力沈澱槽の後段に設けられた液体サイクロン、膜分離装置、及びスクリーンからなる群より選択される1つ以上とを備える、請求項3に記載の水銀除去システム。 The said coarse substance removal means is equipped with a gravity precipitation tank, and one or more selected from the group which consists of the liquid cyclone provided in the back | latter stage of the gravity precipitation tank, a membrane separator, and a screen. Mercury removal system.
  5.  塩化アンモニウムから粗大物を除去する工程と、
     粗大物が除去された塩化アンモニウムを排ガスに供給する工程と、
     前記塩化アンモニウムが供給された前記排ガスを脱硝触媒に接触させる工程と、
     前記脱硝触媒と接触させた排ガスを、アルカリ吸収液に接触させる工程と
    を含む排ガスの水銀除去方法。
    Removing coarse material from ammonium chloride;
    Supplying ammonium chloride from which coarse substances have been removed to the exhaust gas;
    Contacting the exhaust gas supplied with the ammonium chloride with a denitration catalyst;
    A method for removing mercury from exhaust gas, comprising the step of bringing the exhaust gas brought into contact with the denitration catalyst into contact with an alkali absorbing solution.
  6.  前記塩化アンモニウムが固体状の塩化アンモニウムであり、
     前記固体状の塩化アンモニウムを別置の気化器で昇華する工程を、粗大物を除去する工程の前にさらに含み、
     前記排ガスに供給される塩化アンモニウムが塩化アンモニウムの昇華ガスである、請求項5に記載の水銀除去方法。
    The ammonium chloride is solid ammonium chloride;
    Sublimating the solid ammonium chloride in a separate vaporizer further before the step of removing coarse matter,
    The mercury removal method according to claim 5, wherein the ammonium chloride supplied to the exhaust gas is a sublimation gas of ammonium chloride.
  7.  前記塩化アンモニウムが、塩化アンモニウム水溶液であり、
     前記塩化アンモニウムを排ガスに供給する工程が、前記塩化アンモニウム水溶液を前記排ガスが流通する煙道の内壁に付着しないように噴霧する工程であり、
     前記塩化アンモニウムを排ガスに供給する工程の後に、前記塩化アンモニウム水溶液の気化ガスと前記排ガスとを煙道内で攪拌する工程をさらに含む、請求項5に記載の水銀除去方法。
    The ammonium chloride is an aqueous ammonium chloride solution;
    The step of supplying the ammonium chloride to the exhaust gas is a step of spraying the ammonium chloride aqueous solution so as not to adhere to the inner wall of the flue through which the exhaust gas flows.
    The mercury removal method according to claim 5, further comprising a step of stirring the vaporized gas of the ammonium chloride aqueous solution and the exhaust gas in a flue after the step of supplying the ammonium chloride to the exhaust gas.
PCT/JP2010/063248 2009-08-05 2010-08-05 System for eliminating mercury from exhaust gas and method for eliminating mercury WO2011016505A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-182200 2009-08-05
JP2009182200A JP2011031212A (en) 2009-08-05 2009-08-05 System and method for removing mercury in exhaust gas

Publications (1)

Publication Number Publication Date
WO2011016505A1 true WO2011016505A1 (en) 2011-02-10

Family

ID=43544400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063248 WO2011016505A1 (en) 2009-08-05 2010-08-05 System for eliminating mercury from exhaust gas and method for eliminating mercury

Country Status (2)

Country Link
JP (1) JP2011031212A (en)
WO (1) WO2011016505A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388146A (en) * 2014-10-10 2015-03-04 华北电力大学 Control method for reducing fire coal power plant flue gas mercury discharge

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2574393A1 (en) * 2011-09-30 2013-04-03 Alfa Laval Aalborg A/S Scrubber system and process
US9308518B2 (en) * 2013-02-14 2016-04-12 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277338A (en) * 1992-04-02 1993-10-26 Babcock Hitachi Kk Drier using steam air heater and dry desulfurizer
JPH10277384A (en) * 1997-02-07 1998-10-20 Okutama Kogyo Kk Preparation of high efficiency acidic gas-treating agent
JP2005230810A (en) * 2004-01-06 2005-09-02 General Electric Co <Ge> METHOD AND SYSTEM FOR REMOVAL OF NOx EMISSION AND MERCURY EMISSION FROM COAL COMBUSTION
JP2008142602A (en) * 2006-12-07 2008-06-26 Mitsubishi Heavy Ind Ltd Mercury removing method and mercury removing system
JP2008221087A (en) * 2007-03-09 2008-09-25 Mitsubishi Heavy Ind Ltd Apparatus and method for treating exhaust gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277338A (en) * 1992-04-02 1993-10-26 Babcock Hitachi Kk Drier using steam air heater and dry desulfurizer
JPH10277384A (en) * 1997-02-07 1998-10-20 Okutama Kogyo Kk Preparation of high efficiency acidic gas-treating agent
JP2005230810A (en) * 2004-01-06 2005-09-02 General Electric Co <Ge> METHOD AND SYSTEM FOR REMOVAL OF NOx EMISSION AND MERCURY EMISSION FROM COAL COMBUSTION
JP2008142602A (en) * 2006-12-07 2008-06-26 Mitsubishi Heavy Ind Ltd Mercury removing method and mercury removing system
JP2008221087A (en) * 2007-03-09 2008-09-25 Mitsubishi Heavy Ind Ltd Apparatus and method for treating exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388146A (en) * 2014-10-10 2015-03-04 华北电力大学 Control method for reducing fire coal power plant flue gas mercury discharge

Also Published As

Publication number Publication date
JP2011031212A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
EP2959959B1 (en) Exhaust gas treatment system
JP6665011B2 (en) Exhaust gas treatment method and system
JP5554162B2 (en) Mercury treatment system in exhaust gas
CN103221115B (en) Spray-drying device for dehydrated filtrate from desulfurization wastewater, exhaust gas treatment system and method
US7544338B2 (en) Mercury removal system and mercury removal process
EP2628527B1 (en) System for processing mercury in exhaust gas
US9669356B2 (en) Air pollution control system and air pollution control method
WO2011104841A1 (en) Exhaust gas treatment system, and exhaust gas treatment method
US9895658B2 (en) Air pollution control system and air pollution control method
WO2018036417A1 (en) Flue gas clean up method using a multiple system approach
JP2008532734A5 (en)
JP6095923B2 (en) Mercury treatment system in exhaust gas
EP1399695B1 (en) Flue gas purification device for an incinerator
US10005026B2 (en) Limestone supply device and air pollution control system
JP2014057913A5 (en)
WO2011016505A1 (en) System for eliminating mercury from exhaust gas and method for eliminating mercury
JP4944946B2 (en) Method and apparatus for reducing nitrogen oxides and organic compounds in an incineration plant
JP4942559B2 (en) Exhaust gas purifier and method for capturing harmful trace elements
US20200368680A1 (en) Method for Treating Exhaust Gases Containing Sulfur Oxides
JPH0693971B2 (en) Simultaneous desulfurization denitration method in furnace
KR19980079806A (en) Flue gas treatment method and facility
CA2902909C (en) Processes, apparatus, compositions and systems for reducing emissions of hci and/or sulfur oxides
Hartenstein Dioxin and furan reduction technologies for combustion and industrial thermal process facilities
WO2017022520A1 (en) Method for inhibiting degradation of denitration device
Licata et al. TECHNICAL PUBLICATION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806504

Country of ref document: EP

Kind code of ref document: A1