WO2011016401A1 - 関数暗号応用システム及び方法 - Google Patents
関数暗号応用システム及び方法 Download PDFInfo
- Publication number
- WO2011016401A1 WO2011016401A1 PCT/JP2010/062948 JP2010062948W WO2011016401A1 WO 2011016401 A1 WO2011016401 A1 WO 2011016401A1 JP 2010062948 W JP2010062948 W JP 2010062948W WO 2011016401 A1 WO2011016401 A1 WO 2011016401A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- function
- specific
- correspondence information
- protocol
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/30—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
- H04L9/3066—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy involving algebraic varieties, e.g. elliptic or hyper-elliptic curves
- H04L9/3073—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy involving algebraic varieties, e.g. elliptic or hyper-elliptic curves involving pairings, e.g. identity based encryption [IBE], bilinear mappings or bilinear pairings, e.g. Weil or Tate pairing
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09C—CIPHERING OR DECIPHERING APPARATUS FOR CRYPTOGRAPHIC OR OTHER PURPOSES INVOLVING THE NEED FOR SECRECY
- G09C1/00—Apparatus or methods whereby a given sequence of signs, e.g. an intelligible text, is transformed into an unintelligible sequence of signs by transposing the signs or groups of signs or by replacing them by others according to a predetermined system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0838—Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these
- H04L9/0847—Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these involving identity based encryption [IBE] schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/14—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using a plurality of keys or algorithms
Definitions
- the present invention relates to cryptographic technology, and in particular, to functional cryptographic technology.
- the ID-based encryption (IBE) method can generate ciphertext using public parameters and an identifier (ID), and uses key information SK ID corresponding to the identifier one-to-one.
- ID public parameters
- SK ID key information corresponding to the identifier one-to-one.
- the ciphertext can be decrypted (see, for example, Non-Patent Document 1).
- various protocols applying such ID-based encryption methods have been proposed.
- forward-secure encryption or key information is generated by performing encryption or key information generation using a value corresponding to a time interval including the current date and time and a value including a unique identifier of the recipient device as an identifier.
- -Insulated encryption can be configured (see, for example, Non-Patent Documents 2 and 3).
- an encrypted database in which ciphertext having information including a keyword corresponding to a search target as an identifier is associated with the encrypted search target is stored, and the information including the keyword is referred to as an identifier.
- a Keyword search cipher that searches an encrypted database using the key information that has been made can be configured (for example, see Non-Patent Document 4).
- a Timed-Release cipher can be realized by using a point in time when a ciphertext is to be decrypted as an identifier
- a CCA2 (Chosen Ciphertext Attack 2) cipher can be realized by using disposable information such as a random number as an identifier.
- the protocol can be switched by switching the identifier to be used. If a combination of identifiers corresponding to a plurality of protocols is used as a new identifier, a combination of a plurality of protocols, that is, a new protocol having characteristics of a plurality of protocols can be configured.
- the ID-based encryption ciphertext and identifier for one plaintext have a one-to-one correspondence. That is, a protocol applying the ID-based encryption method requires a separate ciphertext for each protocol. Therefore, when an apparatus used to generate key information is selected by the apparatus that generates the key information, and a system that switches the protocol according to the selected identifier is configured, the apparatus that generates the ciphertext can be switched. It is necessary to keep each ciphertext corresponding to each protocol separately. Such generation and management of ciphertext is complicated and undesirable.
- an apparatus used to generate key information can select an identifier used for generating key information, and the protocol can be switched according to the selected identifier.
- the apparatus selects an identifier to be used for ciphertext generation and the protocol can be switched in accordance with the selected identifier.
- the present invention has been made in view of such a point, and an object thereof is to provide a technique capable of switching a protocol according to a selected identifier without requiring complicated processing and management.
- a protocol according to a function cryptosystem that correctly decrypts a ciphertext when a truth value of a logical expression corresponding to a combination of first correspondence information and second correspondence information is true is provided.
- the information output device is configured to use a specific protocol or a specific protocol according to a function encryption method according to a rule determined for each protocol according to a function encryption method or a rule determined for each combination of protocols according to a function encryption method.
- One type of identifier or a plurality of types of identifiers corresponding to a specific protocol combination according to the function encryption method is specified, and specific first correspondence information corresponding to one type of identifier or a combination of a plurality of types of identifiers is set.
- the first information which is the ciphertext or key information of the functional encryption method corresponding to the specific first correspondence information is output.
- the information processing apparatus of the present invention inputs the first information and the second information which is the key information or ciphertext of the function encryption method corresponding to the specific second correspondence information to the decryption function of the function encryption method, and the first information
- the first information is a ciphertext corresponding to the specific first correspondence information
- the second information is key information corresponding to the specific second correspondence information
- the first information is the specific first correspondence information.
- the second information is a ciphertext corresponding to the specific second correspondence information.
- the specific first correspondence information is information determined for one type of identifier or a combination of a plurality of types of identifiers.
- the specific second correspondence information is obtained when the first information corresponding to the specific first correspondence information and the second information corresponding to the specific second correspondence information are input to the decoding function. A value from which a decoding result is obtained is taken for one type of value or a plurality of types of values taken by the information. That is, in the present invention, the same second information can be shared for one or more types of first information, and correct decoding can be performed.
- the same second information can be shared for one or more types of first information. Therefore, even when the information output device selects one type of identifier or a combination of two or more types of the identifier and switches the protocol according to the selected identifier to generate the first information, the information processing device is switched. It is not necessary to generate the second information separately for each protocol to be used. As a result, according to the present invention, the protocol can be switched according to the selected identifier without requiring complicated processing / management.
- FIG. 1 is a block diagram for explaining the overall configuration of the function encryption application system according to the first embodiment.
- FIG. 2 is a block diagram for explaining the configuration of the sender apparatus (information output apparatus) in FIG.
- FIG. 3 is a block diagram for explaining the configuration of the receiver apparatus (information processing apparatus) in FIG.
- FIG. 4 is a block diagram for explaining the configuration of the key generation apparatus of FIG.
- FIG. 5A is a diagram illustrating a correspondence relationship between the specific information PI and the protocol for specifying one or more types of protocols in the first embodiment.
- FIG. 5B is a diagram illustrating a correspondence relationship between the specific information PI and the protocol for specifying one or more types of protocols in the first embodiment.
- FIG. 5A is a diagram illustrating a correspondence relationship between the specific information PI and the protocol for specifying one or more types of protocols in the first embodiment.
- FIG. 5B is a diagram illustrating a correspondence relationship between the specific information PI and the protocol for specifying one or more types of protocols in the first
- FIG. 6A is a diagram for describing an example of a rule for specifying an identifier ID (h) defined for each protocol or each combination of protocols in the first embodiment.
- FIG. 6B is a diagram for describing an example of a rule for specifying an identifier ID (h) that is defined for each protocol or each combination of protocols in the first embodiment.
- FIG. 7 is a diagram for explaining an example of a rule for specifying the identifier ID (h) defined for each protocol or each combination of protocols in the first embodiment.
- FIG. 8A is a diagram for explaining an example of an attribute information table for specifying one attribute information ATT for one type of identifier ID (h) or a combination of two or more types of identifier ID (h).
- FIG. 8B is a diagram for explaining the data structure of the attribute information ATT determined by the attribute information table.
- FIG. 9A is a diagram for explaining an example of an attribute information table for specifying one attribute information ATT for a combination of one type of identifier ID (h) or two or more types of identifier ID (h). .
- FIG. 9B is a diagram for explaining a data configuration of attribute information ATT determined by the attribute information table.
- FIG. 10A is a diagram for describing an example of predicate information PRE corresponding to the polynomial f (x 0 ,..., X H ⁇ 1 ).
- FIG. 10B is a diagram for explaining a data configuration of the predicate information PRE.
- FIG. 10A is a diagram for describing an example of predicate information PRE corresponding to the polynomial f (x 0 ,..., X H ⁇ 1 ).
- FIG. 10B is a diagram for explaining a data configuration of the predicate information PRE.
- FIG. 11A is a diagram for describing an example of the predicate information PRE corresponding to the polynomial f (x 0 ,..., X H ⁇ 1 ).
- FIG. 11B is a diagram for explaining a data configuration of the predicate information PRE.
- FIG. 12A is a flowchart for explaining the encryption processing according to the first embodiment.
- FIG. 12B is a flowchart for explaining key information generation processing according to the first embodiment.
- FIG. 13 is a flowchart for explaining the decoding process of the first embodiment.
- FIG. 14A is a diagram for explaining an example in which a part of the attribute information ATT and the predicate information PRE is a spare area.
- FIG. 14B is a diagram for explaining an example in which a part of the attribute information ATT and the predicate information PRE is a spare area.
- FIG. 15A is a diagram for explaining an example in which a part of the attribute information ATT and the predicate information PRE is a spare area.
- FIG. 15B is a diagram for explaining an example in which a part of the attribute information ATT and the predicate information PRE is a spare area.
- FIG. 16 shows an example of setting attribute information ATT and predicate information PRE corresponding to a logical expression partially including a logical product of propositions set to be true in advance regardless of the value of the specific information PI. It is a figure for demonstrating.
- FIG. 16 shows an example of setting attribute information ATT and predicate information PRE corresponding to a logical expression partially including a logical product of propositions set to be true in advance regardless of the value of the specific information PI. It is a figure for demonstrating.
- FIG. 16 shows an example of setting attribute information ATT
- FIG. 17A shows an example of setting attribute information ATT and predicate information PRE corresponding to a logical expression partially including a logical product of propositions set to be true in advance regardless of the value of specific information PI. It is a figure for demonstrating.
- FIG. 17B shows an example of setting attribute information ATT and predicate information PRE corresponding to a logical expression partially including the logical product of propositions set to be true in advance regardless of the value of specific information PI. It is a figure for demonstrating.
- FIG. 18A shows an example of setting attribute information ATT and predicate information PRE corresponding to a logical expression partially including a logical product of propositions set to be true in advance regardless of the value of specific information PI. It is a figure for demonstrating.
- FIG. 17B shows an example of setting attribute information ATT and predicate information PRE corresponding to a logical expression partially including the logical product of propositions set to be true in advance regardless of the value of specific information PI. It is a figure for demonstrating.
- FIG. 18B shows an example in which attribute information ATT and predicate information PRE corresponding to a logical expression partially including a logical product of propositions set to be true in advance is set regardless of the value of specific information PI. It is a figure for demonstrating.
- FIG. 19 is a block diagram for explaining the overall configuration of the function encryption application system of the second embodiment.
- FIG. 20 is a block diagram for explaining the configuration of the sender device (information output device) in FIG.
- FIG. 21 is a block diagram for explaining the configuration of the receiver apparatus (information processing apparatus) in FIG.
- FIG. 22A is a diagram illustrating a correspondence relationship between the specific information PI and the protocol for specifying one or more types of protocols in the second embodiment.
- FIG. 22B is a diagram illustrating a correspondence relationship between the specific information PI and the protocol for specifying one or more types of protocols in the second embodiment.
- FIG. 23A is a diagram for describing an example of a rule for specifying an identifier ID (h) defined for each protocol or each combination of protocols in the second embodiment.
- FIG. 23B is a diagram for describing an example of a rule for specifying an identifier ID (h) defined for each protocol or each combination of protocols in the second embodiment.
- FIG. 24 is a diagram for explaining an example of a rule for specifying the identifier ID (h) defined for each protocol or each combination of protocols in the second embodiment.
- FIG. 25 is a diagram for explaining an example of the encrypted DB according to the second embodiment.
- FIG. 26A is a flowchart for explaining search request processing according to the second embodiment.
- FIG. 26B is a flowchart for explaining key information generation processing according to the second embodiment.
- FIG. 27 is a flowchart for explaining search processing according to the second embodiment.
- FIG. 28 is a block diagram for explaining the overall configuration of the function encryption application system of the third embodiment.
- FIG. 29 is a block diagram for explaining the configuration of the sender apparatus (information output apparatus) in FIG.
- FIG. 30 is a block diagram for explaining the configuration of the receiver apparatus (information processing apparatus) in FIG.
- FIG. 31A is a flowchart for explaining processing of the sender device of the third embodiment.
- FIG. 31B is a flowchart for explaining processing of the receiver device of the third embodiment.
- FIG. 32 is a diagram illustrating tree structure data expressing a standard logical expression.
- FIG. 33 is a diagram exemplifying tree structure data expressing a standard logical expression.
- FIG. 34 is a diagram for explaining a specific example of the (Dec-1) process of function encryption.
- FIG. 35 is a block diagram for explaining the overall configuration of the function encryption application system of the fourth embodiment.
- FIG. 36 is a block diagram for explaining the configuration of the sender device (information output device) of the fourth embodiment.
- FIG. 37 is a block diagram for explaining a receiver device (information processing device) field configuration of the fourth embodiment.
- FIG. 38 is a block diagram for explaining the configuration of the key generation apparatus of the fourth embodiment.
- FIG. 38 is a block diagram for explaining the configuration of the key generation apparatus of the fourth embodiment.
- FIG. 39A is a diagram illustrating a correspondence relationship between the specific information PI and the protocol for specifying one or more types of protocols in the fourth embodiment.
- FIG. 39B is a diagram illustrating a correspondence relationship between the specific information PI and the protocol for specifying one or more types of protocols in the fourth embodiment.
- FIG. 40A is a diagram for describing an example of a rule for specifying an identifier ID ( ⁇ ) that is defined for each protocol or each combination of protocols in the fourth embodiment.
- FIG. 40B is a diagram for describing an example of a rule for specifying an identifier ID ( ⁇ ) that is defined for each protocol or each combination of protocols in the fourth embodiment.
- FIG. 41 is a diagram for explaining an example of a rule for specifying an identifier ID ( ⁇ ) that is defined for each protocol or each combination of protocols in the fourth embodiment.
- FIG. 42A is a diagram for explaining the data structure of the attribute information VSET1.
- FIG. 42B is a diagram for explaining the data structure of the condition information VSET2.
- FIG. 43A is a flowchart for explaining an encryption process according to the fourth embodiment.
- FIG. 43B is a flowchart for explaining key information generation processing of the fourth embodiment.
- FIG. 44 is a flowchart for explaining a decoding process according to the fourth embodiment.
- FIG. 45A is a diagram for explaining an example in which a part of the attribute information VSET1 is a spare area.
- FIG. 45B is a diagram for explaining an example in which a part of the condition information VSET2 is a spare area.
- FIG. 46 is a block diagram for explaining the configuration of the sender device (information output device) of the fifth embodiment.
- FIG. 47 is a block diagram for explaining a configuration of a recipient apparatus (information processing apparatus) according to the fifth embodiment.
- FIG. 48A is a diagram illustrating a correspondence relationship between the specific information PI and the protocol for specifying one or more types of protocols in the fifth embodiment.
- FIG. 48B is a diagram illustrating a correspondence relationship between the specific information PI and the protocol for specifying one or more types of protocols in the fifth embodiment.
- FIG. 48A is a diagram illustrating a correspondence relationship between the specific information PI and the protocol for specifying one or more types of protocols in the fifth embodiment.
- FIG. 48B is a diagram illustrating a correspondence relationship between the specific information PI and the protocol for specifying one or more types of protocols in the fifth embodiment.
- FIG. 49A is a diagram for describing an example of a rule for specifying an identifier ID ( ⁇ ) defined for each protocol or each combination of protocols in the fifth embodiment.
- FIG. 49B is a diagram for describing an example of a rule for specifying an identifier ID ( ⁇ ) that is defined for each protocol or each combination of protocols in the fifth embodiment.
- FIG. 50 is a diagram for explaining an example of a rule for identifying an identifier ID ( ⁇ ) that is defined for each protocol or each combination of protocols in the fifth embodiment.
- FIG. 51 is a diagram for explaining an example of the encrypted DB according to the fifth embodiment.
- FIG. 52 is a flowchart for explaining search request processing according to the fifth embodiment.
- FIG. 53A is a flowchart for explaining key information generation processing according to the fifth embodiment.
- FIG. 53B is a flowchart for explaining search processing according to the fifth embodiment.
- FIG. 54 is a block diagram for explaining a configuration of a sender device (information output device) according to the sixth embodiment.
- FIG. 55 is a block diagram for explaining a configuration of a receiver apparatus (information processing apparatus) according to the sixth embodiment.
- FIG. 56A is a flowchart for explaining processing of the sender device of the sixth embodiment.
- FIG. 56B is a flowchart for explaining processing of the receiver device of the sixth embodiment.
- Matrix represents a set of elements in which operations are defined arranged in a rectangle. Not only elements with elements of the ring but also elements with elements of the group are expressed as “matrix”.
- (•) T represents a transposed matrix of (•) -1 : (•) -1 represents the inverse matrix of.
- ⁇ : ⁇ represents a logical product.
- ⁇ : ⁇ represents a logical sum.
- Z Z represents an integer set.
- k k represents a security parameter (k ⁇ Z, k> 0).
- ⁇ 0,1 ⁇ * ⁇ 0,1 ⁇ * represents a binary sequence having an arbitrary bit length.
- One example is a sequence consisting of integers 0 and 1.
- ⁇ 0,1 ⁇ * is not limited to a sequence consisting of integers 0 and 1.
- ⁇ 0,1 ⁇ * is synonymous with a finite field of order 2 or its extension.
- q: q represents an integer of 1 or more.
- Z q : Z q represents a finite ring of order q. The operation on the finite ring can be easily configured by, for example, a remainder operation modulo the order q.
- F q represents a finite field of order q.
- the order q must be a prime number or a power value of a prime number.
- An example of a finite field F q is an elementary field or an extension field based on it. Note that the operation in the case where the finite field F q is a prime field can be easily configured by, for example, a remainder operation modulo the order q. In addition, the calculation when the finite field F q is an extension field can be easily configured by, for example, a remainder calculation modulo an irreducible polynomial.
- a specific configuration method of the finite field F q is disclosed in, for example, Reference 1 “ISO / IEC 18033-2: Information technology-Security techniques-Encryption algorithms-Part 2: Asymmetric ciphers”.
- 0 F 0 F represents an additive unit element (zero element) of the finite field F q . 1 F : 1 F represents a multiplicative unit element of the finite field F q .
- ⁇ (i, j): ⁇ (i, j) represents the Kronecker delta function.
- E represents an elliptic curve defined on the finite field Fq .
- a binary operation + called ellipse addition can be defined for any two points on the elliptic curve E, and a unary operation called an elliptic inverse can be defined for any one point on the elliptic curve E.
- a finite set of rational points on the elliptic curve E group in terms of elliptic addition that an operation called elliptic scalar multiplication can be defined using elliptic addition, and elliptic operations such as elliptic addition on a computer can be defined.
- a finite set of rational points on the elliptic curve E has a subgroup of order p (p ⁇ 1). For example, if the number of elements of a finite set of rational points on the elliptic curve E is #E and p is a large prime number that divides #E, then the finite set E [p] of the p equal points of the elliptic curve E is A subgroup of a finite set of rational points on the elliptic curve E is constructed.
- G 1 , G 2 , G T represent a cyclic group of order q.
- specific examples of the cyclic group G T is a subgroup of the additive of the extension field of a finite field F q underlying body. An example is a finite set of one of the p th root of the algebraic closure of a finite field F q.
- the operations defined on the cyclic groups G 1 and G 2 are expressed additively, and the operations defined on the cyclic group G T are expressed multiplicatively. That, ⁇ ⁇ ⁇ G 1 for Kai ⁇ F q and Omega ⁇ G 1 means that applying operation defined in the cyclic group G 1 with respect ⁇ G 1 ⁇ times, Omega 1, Omega 2 ⁇ 1 + ⁇ 2 ⁇ G for ⁇ G 1 1 is meant to carry out the operation defined in the cyclic group G 1 and the Omega 1 ⁇ G 1 and Omega 2 ⁇ G 1 as operand.
- ⁇ ⁇ ⁇ G 2 for Kai ⁇ F q and Omega ⁇ G 2 means that applying operation defined in the cyclic group G 2 with respect ⁇ G 2 ⁇ times
- Omega 1, Omega 2 ⁇ G ⁇ 1 + ⁇ 2 ⁇ G 2 for 2 means that perform defined operations in the cyclic group G 2 to the Omega 1 ⁇ G 2 and Omega 2 ⁇ G 2 as operands.
- Omega chi ⁇ G T for Kai ⁇ F q and Omega ⁇ G T means that applying operation defined in the cyclic group G T against ⁇ G T ⁇ times, ⁇ 1, ⁇ 2 ⁇ ⁇ 1 ⁇ ⁇ 2 ⁇ G for G T T means to perform the operation defined in the cyclic group G T and Omega 1 ⁇ G T and Omega 2 ⁇ G T as an operand.
- G 1 n + 1 represents a direct product of n + 1 (n ⁇ 1) cyclic groups G 1 .
- G 2 n + 1 represents the direct product of n + 1 cyclic groups G 2 .
- g 1 , g 2 , and g T represent generation sources of the cyclic groups G 1 , G 2 , and G T.
- V represents a n + 1-dimensional vector space consisting of the n + 1 cyclic group G 1 Cartesian product.
- V * represents a n + 1-dimensional vector space consisting of the n + 1 of the cyclic group G 2 direct product.
- e represents the direct product G 1 n + 1 and the direct product G 2 direct product G 1 n + 1 ⁇ nondegenerate bilinear mapping which maps the G 2 n + 1 in the cyclic group G T and n + 1 (bilinear map) .
- G 1 n + 1 ⁇ G 2 n + 1 ⁇ G T (2)
- the bilinear map e satisfies the following properties.
- the following relation is satisfied for all ⁇ 1 ⁇ G 1 n + 1 and ⁇ 2 ⁇ G 2 n + 1 and ⁇ and ⁇ F q .
- e ( ⁇ ⁇ ⁇ 1 , ⁇ ⁇ ⁇ 2 ) e ( ⁇ 1 , ⁇ 2 ) ⁇ ⁇ ⁇ ... (3)
- Non degenerative] All ⁇ 1 ⁇ G 1 n + 1, ⁇ 2 ⁇ G 2 n + 1 does not copy the identity element of the cyclic group G T a.
- Bilinear map e of the first to third embodiments, n + 1 pieces of the original gamma L of cyclic groups G 1 (L 1, ...
- bilinear map Pair is intended as input a set of the one of the original cyclic group G 1 of the cyclic group G 2 and one of the original, and outputs one of the original cyclic group G T, It satisfies the following properties.
- Pair ( ⁇ ⁇ ⁇ 1 , ⁇ ⁇ ⁇ 2 ) Pair ( ⁇ 1 , ⁇ 2 ) ⁇ ⁇ ⁇ ... (6)
- All Omega 1 ⁇ G 1 does not reproduce the Omega 2 ⁇ G 2 to unity of the cyclic group G T.
- Pair ( ⁇ 1 , ⁇ 2 ) for every ⁇ 1 ⁇ G 1 and ⁇ 2 ⁇ G 2 .
- a specific example of the bilinear map Pair is a function for performing pairing operations such as Weil pairing and Tate pairing (for example, Reference 4 “Alfred. J. Menezes, ELLIPTIC CURVE PUBLIC KEY CRYPTOSYSTEMS, KLUWER ACADEMIC PUBLISHERS, ISBN0-7923-9368-6, pp. 61-81 ”).
- a modified pairing function e ( ⁇ 1 , phi ( ⁇ 2 )) ( ⁇ 1 ⁇ ) that combines a function for performing pairing operations such as Tate pairing and a predetermined function phi G 1 , ⁇ 2 ⁇ G 2 ) may be used as the bilinear map Pair (for example, see Reference 2).
- a i 1,..., n + 1): a i represents an n + 1-dimensional basis vector whose elements are n + 1 elements of the cyclic group G 1 .
- An example of the basis vector a i uses ⁇ 1 ⁇ g 1 ⁇ G 1 as the i-th element, and the remaining n elements are the unit elements of the cyclic group G 1 (additionally expressed as “0”) This is an n + 1-dimensional basis vector.
- a 1 ( ⁇ 1 ⁇ g 1 , 0,0, ..., 0)
- kappa 1 is a constant consisting of elements of the finite field F q other than additive identity 0 F
- a i * represents an n + 1-dimensional basis vector whose elements are n + 1 elements of the cyclic group G 2 .
- An example of the basis vector a i * has ⁇ 2 ⁇ g 2 ⁇ G 2 as the i-th element, and the remaining n elements are the unit elements of the cyclic group G 2 (additionally expressed as “0”). This is an n + 1-dimensional basis vector.
- a 1 * ( ⁇ 2 ⁇ g 2 , 0,0, ..., 0)
- kappa 2 is a constant consisting of elements of the finite field F q other than additive identity 0 F
- i ⁇ j, e (a i , a j * ) does not include Pair ( ⁇ 1 ⁇ g 1 , ⁇ 2 ⁇ g 2 ), and Pair ( ⁇ 1 ⁇ g 1 , 0) This is the product of Pair (0, ⁇ 2 ⁇ g 2 ) and Pair (0,0).
- e (a i , a j * ) g T ⁇ (i, j) ... (10)
- the basis vector a i and the basis vector a i * are dual orthonormal basis
- the vector space V and the vector space V * are a dual vector space [dual pairing vector space ( DPVS: Dual Paring Vector space)].
- Each element ⁇ i, j of the matrix X is referred to as a conversion coefficient.
- the matrix X * is,
- each element ⁇ i, j * of the matrix X * is referred to as a conversion coefficient.
- X ⁇ (X * ) T I is satisfied. That is, the identity matrix
- b i b i represents an n + 1-dimensional basis vector having n + 1 elements of the cyclic group G 1 as elements.
- b i * represents an n + 1-dimensional basis vector having n + 1 elements of the cyclic group G 2 as elements.
- the base vector b i and the base vector b i * are dual orthonormal bases of the dual pairing vector space (vector space V and vector space V * ).
- basis vectors a i and a i * other than those exemplified in equations (7) and (8), and those other than those exemplified in equations (20) and (22) The basis vectors b i and b i * may be used.
- the matrix B is
- w ⁇ (w 1, ..., w n ) ⁇ F q n ...
- v ⁇ : v ⁇ represents an n-dimensional vector having elements of the finite field F q as elements.
- v ⁇ (v 1, ..., v n ) ⁇ F q n ...
- Enc is a common key encryption function that indicates encryption processing of a common key cryptosystem. Specific examples of the common key cryptosystem represent Camellia (registered trademark), AES, and the like.
- Enc k (M): Enc k (M) represents a ciphertext obtained by encrypting plaintext M using a common key K and a common key encryption function Enc.
- Dec represents a common key decryption function indicating a decryption process of the common key cryptosystem.
- Dec k (C): Dec k (C) represents a decryption result obtained by decrypting the ciphertext C according to the common key decryption function Dec using the common key K.
- Inner product predicate encryption Next, a basic configuration of inner product predicate encryption, which is a kind of function encryption, will be exemplified.
- the function encryption is a method in which a ciphertext can be decrypted when a combination of information called “attribute information” and information called “predicate information” makes a truth value of a predetermined logical expression “true”. That is, in function encryption, one of “attribute information” and “predicate information” is embedded in the ciphertext, the other is embedded in the key information, and the attribute information corresponding to the first information that is the ciphertext or key information, and the key When the predicate information corresponding to the second information that is information or ciphertext is input to a predetermined function, a correct decryption result is generated when the function value becomes a predetermined value.
- the inner product predicate encryption is a predicate encryption in which vectors having the same dimension are used as attribute information and predicate information, and when the inner product is 0, the ciphertext is decrypted.
- the inner product predicate encryption the inner product is 0 and the logical expression is “true”. Note that the predicate encryption described in Reference 9 is also a kind of inner product predicate encryption.
- a logical expression composed of a logical sum or logical product can be expressed by a polynomial f (x) by using the expressions (30) and (31).
- the logical product is expressed using one indefinite element x, but the logical product can also be expressed using a plurality of indefinite elements.
- polynomial f indicating the logical expression (x 0, ..., x H -1) is undefined original x h and a constant eta the indefinite source x h by a polynomial taking the difference between h is the constant eta h
- the proposition that the proposition is express the logical sum of the propositions by the product of the polynomials that express the propositions, respectively, A product is expressed, and thereby a polynomial expressing a logical expression.
- a polynomial f (x 0 ,..., X H ⁇ 1 ) indicating a logical expression can be expressed by an inner product of two n-dimensional vectors. That is, the polynomial f (x 0 , ..., x H-1 ) is a vector v ⁇ with the indefinite element of each term of the polynomial f (x 0 , ..., x H-1 ) as each element.
- the polynomial f (x 0, ..., x H-1) showing a logical expression and whether it is 0, the polynomial f (x 0, ..., x H-1) indeterminate in terms of Whether or not the inner product of the vector v ⁇ with each component as the element and the vector w ⁇ with the coefficient component of each term of the polynomial f (x 0 , ..., x H-1 ) as each element is 0
- Predicate information PRE: w ⁇ (w 1, ..., w n )... (43) It is.
- One of the attribute information ATT and the predicate information PRE is embedded in the ciphertext, and the other is embedded in the key information.
- Basic configuration example 1 is an example in which a key encapsulation mechanism KEM (Key Encapsulation Mechanisms) is configured by inner product predicate encryption.
- KEM Key Encapsulation Mechanisms
- a ciphertext corresponding to the predicate information PRE is generated, and key information corresponding to the attribute information ATT is generated.
- Basic configuration example 1 includes Setup (1 k ), GenKey (MSK, w ⁇ ), Enc (PA, v ⁇ ), and Dec (SKw, C 1 , C 2 ).
- 1-column matrix A, n + 1-by-n + 1-column matrix A * whose elements are basis vectors a i * (i 1, ..., n + 1), and n + for coordinate transformation A 1-row, n + 1-column matrix X, X * is selected.
- GenKey (MSK, w ⁇ ): Generate key information >> -Input: Master secret information MSK, vector w ⁇ -Output: Key information D * corresponding to vector w ⁇
- an element ⁇ F q is selected from a finite field F q .
- G 2 it is difficult, it is difficult to w ⁇ ⁇ b ⁇ * and b n + 1 * component separation extracted from the key information D *.
- Enc (PA, v ⁇ ) first, a common key K and a random number ⁇ 1 that is an element of a finite field F q are generated.
- ciphertext C 1 Enc k (M) (46) Is generated, and ciphertext C 1 , ciphertext C 2, and common key K are output.
- ⁇ 2 subscript means ⁇ 2.
- Dec (SKw, C 1 , C 2 ) first, the ciphertext C 2 and the key information D 1 * are input to the bilinear map e in Expression (2). Then, from the properties of equations (3) and (24),
- a common key K is generated and output.
- the decryption result M Dec k (C 1 ) (49) Is calculated and output.
- the basic configuration example 2 is also a basic configuration example when the key encapsulation mechanism KEM is configured using the inner product predicate encryption.
- a ciphertext corresponding to the attribute information ATT is generated, and the predicate information PRE Key information corresponding to is generated.
- This configuration includes Setup (1 k ), GenKey (MSK, v ⁇ ), Enc (PA, w ⁇ ), and Dec (SKv, C 1 , C 2 ).
- the basic configuration example 2 has a configuration in which the vector v ⁇ and the vector w ⁇ in the basic configuration example 1 are reversed.
- predicate encryption is used as function encryption.
- the function encryption application system of the first to third embodiments includes a sender device (information output device) and a receiver device (information processing device), and includes attribute information ATT (first correspondence information) and predicate information PRE (second The protocol (protocol according to the function cryptosystem) that applies the predicate cryptosystem using the correspondence information) is executed.
- identification information for identifying one or more types of protocols to which the predicate encryption method to be executed is applied is input to the identifier identification unit of the sender device.
- the identifier specifying unit specifies an identifier for each protocol or each combination of protocols according to a rule defined for each protocol or each combination of protocols specified by the specifying information, and specifies one or more types of the specified identifiers Is output.
- each type of protocol that applies the predicate encryption method defines the type of attribute information ATT to be used for it (in other words, the nature of the attribute information ATT).
- the rule specifies an identifier that defines a type of attribute information ATT to be used for a protocol specified by the specific information or a combination of the protocols.
- the protocol is a Timed-Release cryptographic protocol
- the rule is a rule that uses information for identifying a time point in the future from the generation time of the first information as an identifier
- the protocol is a Forward-Secure cryptographic protocol or a Key-Insulated.
- the rule is a rule that uses as an identifier a time interval including the generation time of the first information or information specifying a time interval in the future from the generation time of the first information.
- the rule in the case of a secure encryption protocol is a rule that uses information for specifying disposable information that is newly set every time the first information is generated as an identifier
- the rule in the case that the protocol is a keyword search encryption protocol is This is a rule in which information for specifying a database search keyword is used as an identifier.
- the one or more types of identifiers specified by the identifier specifying unit are input to the attribute information setting unit of the sender device.
- the attribute information setting unit sets one attribute information ATT (specific first correspondence information) determined for one type of the identifier or a combination of two or more types of the identifier, and outputs the set attribute information ATT.
- the output unit of the sender device corresponds to the attribute information ATT obtained by inputting the attribute information ATT output from the attribute information setting unit to the encryption function or key generation function of the predicate encryption method. First information that is ciphertext or key information of the predicate encryption method is output.
- the first information and the second information read from the storage unit are input to the decryption unit of the receiver device.
- the second information is predicate encryption key information or ciphertext. If the first information is ciphertext corresponding to the attribute information ATT, the second information is predicate information PRE (specific second correspondence information). ) And the first information is key information corresponding to the attribute information ATT, the second information is a ciphertext corresponding to the predicate information PRE (specific second correspondence information).
- the predicate information PRE and any one attribute information ATT are input to a predetermined function, the predicate information PRE has a function value of the function determined in advance for one or more types of attribute information ATT. It is information that becomes the value.
- the examples of the attribute information ATT and the predicate information PRE are vectors having the same dimension
- the example of the predetermined function is a function for calculating the inner product of the attribute information ATT and the predicate information PRE.
- An example of the predetermined value is 0 (zero element).
- the decryption unit of the receiver device inputs the first information and the second information to the decryption function of the predicate encryption method, executes the decryption process, and outputs the decryption result obtained thereby.
- the decryption function of the predicate encryption method has a predetermined function value when the attribute information ATT corresponding to the first information and the predicate information PRE corresponding to the second information are input to the predetermined function. In this case, the function generates a correct decoding result. In other words, it is a function that generates a correct decoding result when the truth value of the logical expression corresponding to the combination of the attribute information ATT corresponding to the first information and the predicate information PRE corresponding to the second information is true.
- a function value when the attribute information ATT corresponding to the first information and the predicate information PRE corresponding to the second information are input to a predetermined function is a predetermined value.
- a correct decoding result is generated.
- the attribute information ATT is information determined for one type of identifier or a combination of two or more types of identifiers, and the predicate information PRE and any one of the attribute information ATT are input to a predetermined function.
- the function value of the function is a predetermined value for one or more types of attribute information ATT. That is, in the first to third embodiments, the same second information can be shared for one or more types of first information, and correct decoding can be performed.
- the receiver device is switched. It is not necessary to generate the second information separately for each protocol to be used. That is, even if only one type of second information corresponding to one type of predicate information PRE is stored in the storage unit of the receiver device, the receiver device can select one or more selected protocols or combinations of protocols. Can correspond to the first information. As a result, in the first to third embodiments, the protocol can be switched according to the selected identifier without requiring complicated processing.
- Such an effect is that, when all the predicate information PRE and the predicate information PRE and any one of the attribute information ATT are input to a predetermined function, the function information of two or more types of attribute information ATT is obtained. This is particularly large when the function value is a predetermined value.
- the above-described logical expression includes a logical sum, when the predicate information PRE and any one of the attribute information ATT are input to a predetermined function, the function of the function with respect to two or more types of attribute information ATT. The value becomes a predetermined value “0” (zero element).
- the degree of freedom in combining the protocols is high. That is, in the first to third embodiments, the function value when the attribute information ATT corresponding to the first information and the predicate information PRE corresponding to the second information are input to a predetermined function is a predetermined value. A correct decoding result is generated. A combination of two or more types of protocols corresponds to a combination of identifiers, and a combination of the identifiers corresponds to attribute information ATT. However, if the function value is a predetermined value, the combination method of the identifiers is limited. There is no.
- a hierarchical ID-based encryption method applying the ID-based encryption method for example, Reference 10 “C. Gentry, A. Silverberg,“ Hierarchical ID-based cryptography, ”Proceedings of ASIACRYPT 2002, Lecture Notes in Computer Science , Springer-Verlag, 2002. ”etc.
- the combination of protocols is limited. That is, in the hierarchical ID-based encryption method, the combination of a plurality of identifiers corresponding to a plurality of protocols is limited. That is, in the hierarchical ID-based encryption method, a new identifier generated by a combination of a plurality of identifiers needs to form a tree structure, and the new identifier must always include its parent identifier.
- ID2 of the identifier ID1 and the identifier ID2 is a new identifier
- ID3 the combination of the identifier ID1, the identifier ID2, and the identifier ID3 is set as a new identifier ID1
- the combination of identifier ID1 and identifier ID3 cannot be a new identifier ID1
- the sender device switches whether the attribute information ATT is input to the predicate encryption function or the attribute information ATT is input to the predicate encryption key generation function.
- the first switching unit is further included, and the receiver device inputs the predicate information PRE to the key generation function of the predicate encryption method according to the protocol specified by the specific information, or encrypts the predicate information PRE in the predicate encryption method You may further have the 2nd switching part which switches whether a function is input. This expands the range of protocol selection.
- some areas of the attribute information ATT and the predicate information PRE may be set as spare areas whose usage is not determined.
- the attribute information ATT and the predicate information PRE are vectors having the same dimensions, and the system can perform correct decoding when the inner product of the attribute information ATT and the predicate information PRE is 0, at least a part of the attribute information ATT Is a vector in which the values of some elements (preliminary areas) are fixed in advance, and is a vector in which the values of some elements (preliminary areas) in the predicate information PRE are fixed in advance, and the reserved areas of the attribute information ATT And the position of the spare area of the predicate information PRE are equal to each other, and the inner product of the vector consisting of the element of the spare area of the attribute information ATT and the vector of the spare area element of the predicate information PRE is the specific information It may be set to be 0 regardless of the value. As a result, even if it is necessary to increase the number of selectable protocols or increase the poly
- the first information corresponding to the attribute information ATT including the spare area is updated after some value is put in the spare area. It is upward compatible with the first information. That is, even if the attribute information ATT and the predicate information PRE are updated by giving some value to the spare area of the attribute information ATT and the predicate information PRE, if correct decoding is performed before the update, Correct decoding is performed by the first information corresponding to the attribute information ATT and the second information corresponding to the updated predicate information PRE. This is because the inner product between the spare areas of the attribute information ATT and the predicate information PRE is 0 regardless of the value put in the spare area of the updated predicate information PRE. For the same reason, when all the values of the spare area of the predicate information PRE are set to 0, the second information corresponding to the predicate information PRE including the spare area is updated after some value is put in the spare area. Has upward compatibility with the second information.
- the attribute information ATT including the reserved area is supported.
- the first information to be updated has upward compatibility with the updated first information in which some value is entered in the spare area, but the second information corresponding to the predicate information PRE including the spare area is the spare information. There is no upward compatibility with the updated second information in which some value is entered in the area.
- the predicate information PRE including the spare area is associated.
- the second information has upward compatibility with the updated second information in which some value is entered in the spare area, but the first information corresponding to the attribute information ATT including the spare area is the spare area. Is not compatible with the updated first information in which some value is entered. Thus, the upward compatibility before and after the update can be changed according to how the value of the spare area is set.
- some of the elements of the attribute information ATT and predicate information PRE are not reserved areas, but a logical expression that partially includes the logical product of propositions set to be true in advance regardless of the value of the specific information Attribute information ATT and predicate information PRE corresponding to can be set. Then, the logical expression is updated by replacing the proposition set to be true in advance regardless of the value of the specific information with a proposition that is true or false depending on the value of the specific information.
- the attribute information ATT and the predicate information PRE corresponding to the logical expression may be used as new attribute information ATT and predicate information PRE.
- the first information is ciphertext corresponding to the attribute information ATT
- the second information is key information corresponding to the predicate information PRE
- the sender device performs encryption
- the receiver device decrypts It is the form which performs.
- Such a form can be applied, for example, when the protocol to which the predicate encryption method is applied is the Timed-Release encryption protocol, the Forward Secure encryption protocol, the Key Insulated encryption protocol, the CCA2 secure encryption protocol, or a combination thereof.
- FIG. 1 is a block diagram for explaining the overall configuration of the function encryption application system 1 of the first embodiment.
- the function encryption application system 1 of this embodiment includes a sender device 110 (information output device), a receiver device 120 (information processing device), and a key generation device 130 connected to a network 140.
- a sender device 110 information output device
- a receiver device 120 information processing device
- a key generation device 130 connected to a network 140.
- FIG. 1 shows one sender device 110, one recipient device 120, and one key generation device 130, but two or more sender devices 110, recipient devices 120, and so on. There may be a key generation device 130.
- FIG. 2 is a block diagram for explaining the configuration of the sender apparatus 110 of FIG.
- the sender apparatus 110 of this embodiment includes a temporary memory 111a, storage units 111b and 111c, an input unit 112, a control unit 113, an identifier specifying unit 114a, and an attribute information setting unit 114b ( A correspondence information setting unit), an encryption unit 114c, and a communication unit 115.
- the sender device 110 is executed by a special program loaded into a known or dedicated computer having a CPU (central processing unit), RAM (random-access memory), ROM (read-only memory), and the like. It is a special device composed of That is, the control unit 113, the identifier specifying unit 114a, the attribute information setting unit 114b, and the encryption unit 114c are, for example, processing units configured by the CPU executing a predetermined program. Further, at least a part of the processing unit of the sender device 110 may be an integrated circuit.
- the temporary memory 111a and the storage units 111b and 111c are storage areas including, for example, an auxiliary storage device such as a RAM, a register, a cache memory, an element in an integrated circuit, a hard disk, or a combination of at least a part thereof.
- the input unit 112 is, for example, a keyboard, a mouse, an input port, and the like
- the communication unit 115 is a communication device, such as a modem or a LAN card.
- the sender device 110 executes each process under the control of the control unit 113.
- data output from each processing unit of the sender device 110 and data received by the communication unit 115 are stored in the temporary memory 111a one by one.
- the data stored in the temporary memory 111a is read out as necessary, is input to each processing unit of the sender device 110, and is used for the processing.
- FIG. 3 is a block diagram for explaining the configuration of the recipient device 120 of FIG.
- the recipient device 120 of this embodiment includes a temporary memory 121a, a storage unit 121b, a control unit 123, an identifier specifying unit 124a, a polynomial generation unit 124b, a predicate information generation unit 124c, A key generation processing unit 124d, a decryption unit 124e, and a communication unit 125 are included.
- a temporary memory 121a a storage unit 121b
- a control unit 123 an identifier specifying unit 124a
- a polynomial generation unit 124b a predicate information generation unit 124c
- a key generation processing unit 124d, a decryption unit 124e, and a communication unit 125 are included.
- two blocks showing the communication unit 125 are shown in FIG. 3, but this does not mean that two separate communication units 125 are required.
- the recipient device 120 is a special device configured by, for example, reading and executing a special program in a known or dedicated computer including a CPU, a RAM, a ROM, and the like. That is, the control unit 123, the identifier specifying unit 124a, the polynomial generation unit 124b, the predicate information generation unit 124c, the key generation processing unit 124d, and the decryption unit 124e are, for example, processing units configured by the CPU executing a predetermined program It is. Further, at least a part of the processing unit of the recipient device 120 may be an integrated circuit.
- the temporary memory 121a and the storage unit 121b are, for example, a RAM, a register, a cache memory, an auxiliary storage device such as an element in an integrated circuit or a hard disk, or a storage area formed by a combination of at least a part thereof.
- the communication unit 115 is a communication device such as a modem or a LAN card, for example.
- the recipient device 120 executes each process under the control of the control unit 123.
- data output from each processing unit of the recipient device 120 and data received by the communication unit 125 are stored in the temporary memory 121a one by one.
- the data stored in the temporary memory 121a is read out as necessary, is input to each processing unit of the recipient device 120, and is used for the processing.
- FIG. 4 is a block diagram for explaining the configuration of the key generation device 130 of FIG.
- the key generation device 130 includes a temporary memory 131a, a storage unit 131b, a control unit 133, a key generation unit 134, and a communication unit 135.
- the key generation device 130 is a special device configured by, for example, reading and executing a special program in a known or dedicated computer including a CPU, a RAM, a ROM, and the like. That is, the control unit 133 and the key generation unit 134 are, for example, processing units configured by the CPU executing a predetermined program. Further, at least a part of the processing unit of the key generation device 130 may be an integrated circuit.
- the temporary memory 131a and the storage unit 131b are, for example, a RAM, a register, a cache memory, an auxiliary storage device such as an element in an integrated circuit or a hard disk, or a storage area composed of a combination of at least a part thereof.
- the communication unit 135 is a communication device such as a modem or a LAN card, for example.
- the key generation device 130 executes each process under the control of the control unit 133.
- data output from each processing unit of the key generation device 130 and data received by the communication unit 135 are stored in the temporary memory 131a one by one.
- the data stored in the temporary memory 131a is read out as necessary, is input to each processing unit of the key generation device 130, and is used for the processing.
- FIG. 5A and FIG. 5B are diagrams illustrating the correspondence relationship between the specific information PI and the protocol for specifying one or more types of protocols in the first embodiment.
- one specific information PI corresponding to the selected protocol is specified, and when selecting a combination of two or more protocols, two or more types to be selected are selected. The combination of specific information PI corresponding to each protocol is specified.
- specific information PI is assigned for each protocol, and specific information PI is also assigned to a combination of two or more protocols.
- specific information PI is specified, and when selecting a combination of two or more protocols, two or more types to be selected are selected. Specific information PI corresponding to the combination of protocols is specified.
- FIG. 6A, FIG. 6B, and FIG. 7 are diagrams for explaining an example of a rule for specifying an identifier ID (h) that is defined for each protocol or each combination of protocols in the first embodiment. .
- an identifier ID (h) is assigned for each selectable protocol.
- the identifier ID (h) assigned to the selected protocol is input with a value according to the rules defined for that protocol. For example, when the Timed-Release encryption protocol is selected, information (date and time, count value, etc.) specifying a future time point is input to the identifier ID (0).
- An example of the “future time point” is a time point in the future than the generation time point of the first information.
- identifier ID (1) a unique period (e-mail address, telephone number, MAC address, etc.) of the recipient device 120 or its user and a time interval including the current time point A value (bit combination value, etc.) determined by a combination with (date time interval, count value interval, etc.) is input to identifier ID (1) and identifier ID (2).
- An example of “current time” is the generation time of the first information.
- disposable information random number
- a constant (const.) Is input to the identifier ID (h) assigned to the protocol that was not selected. For example, when only the Timed-Release encryption protocol is selected, information specifying a future time point is input to the identifier ID (0), and other identifiers ID (1), ID (2), ID (3) A constant (const.) Is input to. Examples of constants (const.) Are 0 and 1. Note that the constants (const.) Input to each identifier ID (h) may be the same value or different values.
- the value of the identifier ID (h) is determined on the assumption that a plurality of protocols constituting the combination are selected. For example, when a combination of the Forward Secure encryption protocol and the CCA2 secure encryption protocol is selected, a value determined by a combination of the unique identifier of the receiver device 120 or the user and the time interval including the current time point is an identifier ID ( 1), disposable information is input to the identifier ID (3), and a constant (const.) Is input to the other identifiers ID (0) and ID (2).
- the identifier ID (h) is assigned only to the selected protocol. For example, when only the Timed-Release encryption protocol is selected, only an identifier ID (0) indicating information specifying a future time point is assigned. In addition, for example, when a combination of the Forward Secure encryption protocol and the CCA2 secure encryption protocol is selected, a value determined by a combination of a unique identifier of the receiver device 120 or the user and a time interval including the current time point is indicated. Only an identifier ID (1) and an identifier ID (3) indicating disposable information are assigned.
- an identifier ID (h) is assigned for each selectable protocol and protocol combination.
- a value according to each rule defined for each protocol constituting the selected protocol or combination is input, and the protocol not selected
- a constant (const.) Is input to the identifier ID (h) assigned to the combination.
- the value determined by the combination of the unique identifier of the recipient device 120 or the user, the time interval including the current time point, and the disposable information is A constant (const.) Is input to the identifier ID (5) and the other identifier ID (h).
- the above-described identifier determination method is merely an example, and the identifier may be specified by other methods.
- the identifier ID (h) may be assigned only to the selected protocol and the combination of protocols.
- one identifier may be constituted by a combination (for example, bit combination) of each identifier ID (h) obtained as described above.
- Attribute information (first correspondence information)] 8A and 9A are diagrams for explaining an example of an attribute information table for specifying one attribute information ATT for one type of identifier ID (h) or a combination of two or more types of identifier ID (h). 8B and 9B are diagrams for explaining the data structure of the attribute information ATT determined by the attribute information table.
- ⁇ (v 0, ..., v n-1 ) is attribute information ATT (see equation (42), etc.).
- the dimension n of the attribute information ATT is the maximum number of terms (including constant terms) allowed for the polynomial f (x 0 ,..., X H ⁇ 1 ).
- 8A and 9A the indefinite element component of each term, the element value corresponding to each indefinite element component, and the element number corresponding to each element are associated with each other.
- each number described in FIG. 8B and FIG. 9B shows the element number of FIG. 8A and FIG. 9A, respectively, and the position of each number described in FIG. 8B and FIG. An element value corresponding to the element number is arranged.
- the polynomial f (x 0 , x 1 , x 2 , x 3 ) does not allow a term containing an indefinite power
- the maximum value of the indeterminate component is x 0 ⁇ x 1 ⁇ x 2 ⁇ x 3 , x 0 ⁇ x 1 ⁇ x 2 , x 0 ⁇ x 1 ⁇ x 3 , x 0 ⁇ x 2 x 3 , ..., ⁇ x 0 ⁇ 0 , ⁇ x 1 ⁇ 0 , ⁇ x 2 ⁇ 0 , ⁇ x 3 ⁇ 0 .
- a vector v ⁇ (v 0,... Having elements obtained by substituting identifiers ID (0),..., ID (3) for these 16 types of indefinite elements . , v n-1 ) is attribute information ATT.
- the identifier ID (h) is assigned only to the selected protocol or combination of protocols, the unassigned identifier ID (h) is set as a constant (for example, 0 or 1). What is necessary is just to substitute each identifier for a component.
- a constant for example, 0 or 1
- the identifier ID (h) is assigned to the indeterminate original x h, ID (0) ⁇ ID (1) ⁇ ID (2) ⁇ ID (3), ID (0) ⁇ ID (1) ⁇ ID (2), ID (0) ⁇ ID (1) ⁇ ID (3), ID (0) ⁇ ID (2) ⁇ ID (3), ..., ⁇ ID (0) ⁇ 0 ⁇ ⁇ ID ( 1) ⁇ 0 • ⁇ ID (2) ⁇ 0 • ⁇ ID (3) ⁇
- v ⁇ (v 0, ..., v n-1 ) with 0 as an element is attribute information ATT. Is done.
- a vector v ⁇ (v 0,..., Each element having a value obtained by assigning each identifier ID (0),. v n-1 ) is attribute information ATT.
- the identifier ID (h) is substituted for the indefinite source x h. Further, as shown in FIG.
- the unassigned identifier ID (h) is set as a constant (for example, 0 or 1). What is necessary is just to substitute each identifier for a component.
- the method for generating the attribute information ATT shown in FIGS. 8 and 9 is merely an example, and the type of the indefinite element may be other than 4, or the polynomial f (x 0 ,..., X H ⁇ 1 ). A term including a power of 3 or more of the indefinite element may be allowed. Further, the attribute information ATT has a polynomial f (x 0 ,..., X H ⁇ , such that a term including the square of a specific indefinite element is allowed but a term including the square of another indefinite element is not allowed. The configuration may not include an element corresponding to an indefinite element component that is not allowed in 1 ).
- each logical expression ( ⁇ ID (0) (ID (1) ⁇ ⁇ ID (3), etc.) of identifier ID (h) or identifier ID (h) corresponds to attribute information ATT corresponding to the logical expression.
- the attached table may be an attribute information table.
- Predicate information (second correspondence information)] 10A and 11A are diagrams for explaining an example of the predicate information PRE corresponding to the polynomial f (x 0 ,..., X H-1 ), respectively, and FIGS. It is a figure for demonstrating the data structure of the information PRE.
- a vector w ⁇ (w 0, ..., w n having the coefficient components of each term of the polynomial f (x 0 , ..., x H-1 ) representing the above-described logical expression as elements. -1 ) is predicate information PRE (see equation (43), etc.).
- the dimension n of the predicate information PRE is the maximum value of the number of terms (including constant terms) allowed for the polynomial f (x 0 ,..., X H ⁇ 1 ).
- 10A and 11A the indefinite element component of each term, the element value that is the coefficient component of each term corresponding to each indefinite element component, and the element number corresponding to each element are associated with each other.
- each number described in FIGS. 10B and 11B indicates an element number in FIGS. 10A and 11A, respectively, and the position of each number described in FIGS. 10B and 11B has FIGS. 10A and 11A.
- the element value corresponding to the element number is arranged.
- ID ′ (1), ID ′ (2), and ID ′ (3) are identifiers defined by rules corresponding to the respective protocols as described above, and the polynomial f (x 0 , ID ′ (2), and ID
- ID '(1), ID' (2), and ID '(3) are identifiers defined by rules corresponding to the Forward Secure cryptographic protocol, Key Insulated cryptographic protocol, and CCA2 secure cryptographic protocol, respectively.
- the polynomial f (x 0 , x 1 , x 2 , x 3 ) in Equation (52) is a logical expression that is true for the combination of the Forward Secure cryptographic protocol or Key Insulated cryptographic protocol and the CCA2 secure cryptographic protocol. Correspond.
- the element with element number 8 is ⁇ 0
- the element with element number 12 is - ⁇ 0 • ID '(2)
- the element with element number 13 is - ⁇ 0 • ID' (1)
- the element of number 14 is ⁇ 1
- the element of element number 15 is ⁇ 0 ⁇ ID '(1) ⁇ ID' (2) - ⁇ 1 ⁇ ID '(3)
- the other elements are 0.
- the vector w ⁇ becomes predicate information PRE.
- the inner product with ATT is 0.
- ID ′ (1) and ID ′ (3) are identifiers defined by rules corresponding to the Forward Secure cryptographic protocol and the CCA2 secure cryptographic protocol, respectively, the polynomial f (x 0 , x 1 , x 2 , x 3 ) correspond to a combination of the Forward Secure cryptographic protocol and the CCA2 secure cryptographic protocol, or a logical expression that is true for the CCA2 secure cryptographic protocol.
- the element of element number 9 is ⁇ 0
- the element of element number 12 is - ⁇ 0 • ID '(3)
- the element of element number 14 is - ⁇ 0 • ID' (1) -2 • ⁇ 1 ⁇ ID '(3)
- the element with element number 15 is ⁇ 0 ⁇ ID' (1) ⁇ ID '(3) + ⁇ 1 ⁇ ⁇ ID' (3) ⁇ 2
- the element with element number en is
- the inner product with ATT is 0.
- the generation method of the predicate information PRE in FIGS. 10 and 11 is merely an example, and the type of the indefinite element may be other than 4, and the indefinite element may be represented in the polynomial f (x 0 ,..., X H ⁇ 1 ).
- a term including a power of 3 or more of may be allowed.
- a configuration may be adopted in which some indeterminate components are not allowed, such as a term including the square of a specific indefinite element is allowed but a term including the square of another indefinite element is not allowed.
- not only one predicate information PRE in which the inner product with one attribute information ATT is 0, but even if the predicate information PRE in which the inner product with the desired attribute information ATT is 0 is set by a method other than the above. Good.
- the plaintext Mt to be encrypted is stored in the storage unit 111c of the sender device 110.
- the value of the identifier ID ′ (h) constituting the logical expression is not specified, and the predicate information PRE is determined by determining the value of the identifier ID ′ (h).
- Predicate encryption master secret information MSK is stored in the storage unit 131b of the key generation device 130 of this embodiment.
- FIG. 12A is a flowchart for explaining the encryption processing according to the first embodiment.
- FIG. 12B is a flowchart for explaining key information generation processing according to the first embodiment.
- FIG. 13 is a flowchart for explaining the decoding process of the first embodiment.
- identification information PI for identifying one or more types of protocols to which the predicate encryption method to be executed is applied is input to the input unit 112 of the sender device 110 (FIG. 2) ( Step S111). For example, if the specific information PI is determined as shown in FIG. 5A, specific information PI corresponding to one type of protocol selected by the user, or specific corresponding to two or more types of protocols selected by the user, respectively. A combination of information PI is input to the input unit 112. For example, if the specific information PI is determined as shown in FIG. 5B, the specific information PI corresponding to one type of protocol selected by the user or two or more types of protocol is input to the input unit 112.
- the specific information PI input to the input unit 112 is input to the identifier specifying unit 114a.
- the identifier specifying unit 114a uses an identifier ID for each protocol or each combination of protocols in accordance with a rule defined for each protocol or each combination of protocols specified by the specific information PI (see FIGS. 6 and 7). (h) is specified, and the specified one or more types of identifier ID (h) are output (step S112).
- the one or more types of identifier ID (h) output from the identifier specifying unit 114a are input to the attribute information setting unit 114b.
- the attribute information setting unit 114b uses an attribute information table (see FIG. 8, FIG. 9, etc.) stored in the storage unit 111b to store one type of the identifier ID (h) or two or more types of the identifier ID (h).
- One attribute information ATT determined for the combination is set, and the set attribute information ATT is output (step S113).
- the attribute information ATT output from the attribute information setting unit 114b is input to the encryption unit 114c.
- the encryption unit 114c reads the plaintext Mt from the storage unit 111c, inputs the attribute information ATT and the plaintext Mt to the encryption function of the predicate encryption method, and generates a ciphertext Ct of the plaintext Mt (step S114).
- An example of the encryption function of the predicate encryption method is the above-described equations (45) and (46).
- the generated ciphertext Ct is sent to the communication unit 115.
- the communication unit 115 (output unit) transmits the ciphertext Ct (first information) to the recipient device 120 via the network 140 (step S115).
- the communication unit 125 of the recipient device 120 receives the ciphertext Ct (first information) (step S121).
- the identifier specifying unit 124a performs a logical expression predetermined by the above-described receiver device 120 in accordance with a rule determined for each protocol or each combination of protocols according to a rule determined for each protocol or each combination of protocols.
- One or more kinds of identifiers ID ′ (h) used in the above are specified (step S122).
- This rule is the same as the rule for specifying the identifier ID (h) by the identifier specifying unit 114a of the sender device 110.
- One or more types of identifiers ID ′ (h) specified by the identifier specifying unit 124a are input to the polynomial generating unit 124b.
- the polynomial generator 124b uses the identifier ID '(h) to determine the value of the identifier ID' (h) that constitutes a logical expression predetermined by the receiver device 120 described above, and sets the logical expression determined thereby.
- a corresponding polynomial f (x 0 , ..., x H-1 ) is generated (see, for example, the equations (52) and (53)), and the generated polynomial f (x 0 , ..., x H-1 ) is generated. Is output (step 123).
- the polynomial f (x 0 ,..., X H ⁇ 1 ) output from the polynomial generation unit 124b is input to the predicate information generation unit 124c.
- ⁇ 1 is generated as predicate information PRE (see, for example, FIGS. 10 and 11), and the predicate information PRE is output (step S124).
- the predicate information PRE output from the predicate information generation unit 124c is input to the key generation processing unit 124d.
- the key generation processing unit 124d transmits the predicate information PRE from the communication unit 125 to the key generation device 130 via the network 140, and requests generation of key information SKr corresponding to the predicate information PRE (step S125).
- the communication unit 135 of the key generation device 130 receives the predicate information PRE (step S131).
- the predicate information PRE received by the communication unit 135 is input to the key generation unit 134.
- the key generation unit 134 reads the master secret information MSK from the storage unit 131b, inputs the master secret information MSK and the predicate information PRE to the key generation function of the predicate encryption method, and generates key information SKr corresponding to the predicate information PRE.
- An example of the key generation function is the function of Expression (44).
- the generated key information SKr is sent to the communication unit 135, and the communication unit 135 transmits the key information SKr to the recipient device 120 via the network 140 (step S133).
- the communication unit 125 of the recipient device 120 receives the transmitted key information SKr and sends it to the key generation processing unit 124d.
- the key generation processing unit 124d stores the key information SKr (second information) in the storage unit 121b (step S126).
- the ciphertext Ct (first information) received by the communication unit 125 in step S121 and the key information SKr (second information) read from the storage unit 121b are input to the decryption unit 124e.
- the decryption unit 124e inputs the ciphertext Ct (first information) and the key information SKr (second information) to the decryption function of the predicate encryption method, executes decryption processing, and outputs the decryption result Mr obtained thereby.
- An example of the decryption function is Expressions (47) to (49).
- the function value when the attribute information ATT corresponding to the ciphertext Ct (first information) and the predicate information PRE corresponding to the key information SKr (second information) are input to a predetermined function is determined in advance.
- a predetermined value for example, when the inner product of the attribute information ATT and the predicate information PRE is 0
- a protocol and a combination of protocols used by the sender apparatus 110 can be selected, and a ciphertext protocol and a protocol combination condition that can be decrypted by the receiver apparatus 120 are set. Can do. Then, only when the protocol or combination of protocols selected by the sender device 110 matches the conditions set in the receiver device 120, the receiver device 120 can correctly decrypt the transmitted ciphertext.
- the ciphertext protocol that can be decrypted by the recipient apparatus 120 and the condition of the protocol combination can be set by freely combining logical sums and logical products. In particular, if a condition including a logical sum is set in the receiver apparatus 120, it is not necessary for the receiver apparatus 120 to use different key information according to the protocol selected by the sender apparatus 110 or the like.
- FIG. 14A, FIG. 14B, FIG. 15A, and FIG. 15B are diagrams for explaining an example in which some areas of the attribute information ATT and the predicate information PRE are used as spare areas.
- the attribute information ATT and the predicate information PRE are vectors having the same dimensions, and correct decoding can be performed when the inner product of the attribute information ATT and the predicate information PRE is 0.
- the spare area is illustrated.
- the values of the element numbers 0, ..., 4 (spare area) of the attribute information ATT are constants const. (0), ..., const, respectively. . (4)
- the values of the element numbers 0, ..., 4 (preliminary areas) of the predicate information PRE are constants const. '(0), ..., const.' (4) It is said.
- spare areas are specified by the inner product of the vector consisting of elements with element numbers 0, ..., 4 in the attribute information ATT and the vector consisting of elements with element numbers 0, ..., 4 in the predicate information PRE. It is set to 0 regardless of the PI value.
- the constants const. (0), ..., const. (4) may all be 0, or the constants const. '(0), ..., const.' (4) are all 0 There may be, and the constants const. (0), ..., const. (4) are all 0 and some of the constants const. '(0), ..., const.' (4) are 0 , And the constants const.
- '(0), ..., const.' (4) are all 0, and one of the constants const. (0), ..., const. (4)
- 16 to 18 show a case where attribute information ATT and predicate information PRE corresponding to a logical expression partially including a logical product of propositions set to be true in advance is set regardless of the value of the specific information PI. It is a figure for demonstrating an example.
- the identifier ID (3) is the unused identifier, the logical product of the values in advance true become so configured propositions Regardless of the specific information PI "undefined original x 3 is ID (3)" Is set to attribute information ATT and predicate information PRE corresponding to a logical expression including a part thereof.
- the identifier ID (3) and the identifier ID ′ (3) are set to the same constant (const.) Regardless of the value of the specific information PI, and the attribute information ATT and the predicate as described above.
- information PRE is set.
- the proposition "undefined original x 3 is ID (3)" is true regardless of the value of the specific information PI.
- the inner product of the attribute information ATT in FIGS. 17A and 17B and the predicate information PRE in FIGS. 18A and 18B is true regardless of the value of the specific information PI.
- the attribute information ATT and the predicate information PRE are updated by inputting a value corresponding to the specific information PI into the identifier ID (3). Can do.
- the first information is key information corresponding to the attribute information ATT
- the second information is ciphertext corresponding to the predicate information PRE
- the sender apparatus outputs the key information
- the receiver apparatus This is a form in which the stored ciphertext is decrypted.
- the protocol applying the predicate encryption method is, for example, the Keyword search encryption protocol, or a combination of the Keyword search encryption protocol and the Forward Secure encryption protocol, the Key Insulated encryption protocol, or the CCA2 secure encryption protocol. Applicable in certain cases. Below, it demonstrates centering around difference with 1st Embodiment, and simplifies description about the matter which is common in 1st Embodiment.
- FIG. 19 is a block diagram for explaining the overall configuration of the function encryption application system 2 according to the second embodiment.
- the function cryptographic application system 2 of this embodiment includes a sender device 210 (information output device), a receiver device 220 (information processing device), and a key generation device 130 connected to a network 140.
- FIG. 19 shows one sender device 210, one recipient device 220, and one key generation device 130, but two or more sender devices 210, two recipient devices 220, There may be a key generation device 130.
- FIG. 20 is a block diagram for explaining the configuration of the sender apparatus 210 of FIG.
- parts common to the first embodiment are denoted by the same reference numerals as in the first embodiment, and description thereof will be omitted (the same applies hereinafter).
- the sender device 210 of this embodiment includes a temporary memory 111a, storage units 111b and 211d, an input unit 112, a control unit 113, an identifier specifying unit 114a, and an attribute information setting unit 114b.
- the key generation processing unit 214d and the communication unit 115 are included.
- the sender device 210 is a special device configured by, for example, reading and executing a special program in a known or dedicated computer including a CPU, a RAM, a ROM, and the like.
- the key generation processing unit 214d is a processing unit or an integrated circuit configured by the CPU executing a predetermined program
- the storage unit 211d is a RAM, a register, a cache memory, an element in the integrated circuit, or a hard disk Or a storage area comprising a combination of at least a part of them.
- FIG. 21 is a block diagram for explaining the configuration of the recipient device 220 of FIG.
- the recipient device 220 of this embodiment includes a temporary memory 121a, storage units 221b and 221c, a control unit 123, an identifier specifying unit 124a, a polynomial generation unit 124b, and a predicate information generation unit 124c.
- the receiver device 220 is a special device configured by, for example, reading and executing a special program in a known or dedicated computer including a CPU, a RAM, a ROM, and the like.
- the encryption unit 224d is a processing unit or an integrated circuit configured by the CPU executing a predetermined program
- the storage units 221b and 221c are RAM, registers, cache memory, elements in the integrated circuit, or It is an auxiliary storage device such as a hard disk, or a storage area composed of a combination of at least some of these.
- FIG. 22A and FIG. 22B are diagrams exemplifying the correspondence relationship between the specific information PI and the protocol for specifying one or more types of protocols in the second embodiment.
- one specific information PI corresponding to the selected protocol is specified, and when selecting a combination of two or more protocols, two or more types to be selected are selected. The combination of specific information PI corresponding to each protocol is specified.
- specific information PI is assigned for each protocol, and specific information PI is also assigned to a combination of two or more types of protocols.
- specific information PI is specified, when one of the protocols is selected alone, one specific information PI corresponding to the selected protocol is specified, and when selecting a combination of two or more protocols, two or more types to be selected are selected. Specific information PI corresponding to the combination of protocols is specified.
- FIG. 23A, FIG. 23B, and FIG. 24 are diagrams for explaining an example of a rule for specifying an identifier ID (h) that is defined for each protocol or each combination of protocols in the second embodiment. is there.
- an identifier ID (h) is assigned for each selectable protocol.
- the identifier ID (h) assigned to the selected protocol is input with a value according to the rules defined for that protocol. For example, when the Keyword search encryption protocol is selected, a search keyword is input to the identifier ID (0). On the other hand, a constant (const.) Is input to the identifier ID (h) assigned to the protocol that has not been selected.
- the value of the identifier ID (h) is determined on the assumption that a plurality of protocols constituting the combination are selected.
- the search keyword is input to the identifier ID (0)
- the disposable information is input to the identifier ID (3)
- other identifiers A constant (const.) Is input to ID (1) and ID (3).
- the identifier ID (h) is assigned only to the selected protocol. For example, when the Keyword search encryption protocol is selected, only the identifier ID (0) indicating the search keyword is assigned. Also, for example, when a combination of the Keyword search encryption protocol and the CCA2 secure encryption protocol is selected, only an identifier ID (0) indicating a search keyword and an identifier ID (3) indicating disposable information are assigned. .
- an identifier ID (h) is assigned for each selectable protocol and protocol combination.
- a value according to each rule defined for each protocol constituting the selected protocol or combination is input, and the protocol not selected
- a constant (const.) Is input to the identifier ID (h) assigned to the combination.
- a value determined by the combination of the search keyword and the disposable information is input to the identifier ID (3), and the other identifier ID (h ) Is a constant (const.).
- the above-described identifier determination method is merely an example, and the identifier may be specified by other methods.
- the identifier ID (h) may be assigned only to the selected protocol and the combination of protocols.
- one identifier may be constituted by a combination (for example, bit combination) of each identifier ID (h) obtained as described above.
- FIG. 25 is a diagram for explaining an example of the encrypted DB according to the second embodiment.
- Mr1 to Mr99 are search target information such as documents
- KWr1 to KWr9 are keywords such as words
- True is data such as “1” meaning “true”.
- C (Mr1),..., C (Mr99) are ciphertexts of the search target information Mr1 to Mr99, respectively.
- the ciphertext C (Mr1),..., C (Mr99) may be encrypted using any method such as a common key encryption method, a public key encryption method, an ID-based encryption method, and a predicate encryption method.
- Cr (KWr1, True), ..., Cr (KWr9, True) is the predicate encryption ciphertext obtained by inputting the predicate information PRE and plaintext True into the encryption function of the predicate encryption method, respectively. (Second information).
- the ciphertext Cr (KWr1, True),..., Cr (KWr9, True) can be correctly decrypted using the key information corresponding to the attribute information ATT corresponding to the keywords KWr1 to KWr9, respectively.
- the function of the function is a predetermined value (for example, the inner product of the attribute information ATT and the attribute information ATT is 0).
- the encrypted DB for the ciphertext C (Mr1),..., C (Mr99) of the search target information (collectively referred to as “Mr”), converts the ciphertext corresponding to the corresponding keyword to Cr (KWr1, True), ..., Cr (KWr9, True) are associated.
- the keywords corresponding to the search target information Mr1 are KWr1, KWr2, KWr3, and KWr4
- the ciphertext C (Mr1) of the search target information Mr1 and the ciphertext Cr ( KWr1, True), Cr (KWr2, True), Cr (KWr3, True), and Cr (KWr4, True) are associated with each other.
- the ciphertext Cr (KWr1, True) can be correctly decrypted using the key information corresponding to the attribute information ATT corresponding to the keyword KWr1, the ciphertext C (Mr1) of the search target information Mr1 is decrypted. Without knowing, it is possible to know that the keyword KWr1 corresponds to the search target information Mr1.
- such an encrypted DB is stored in the storage unit 221c of the recipient device 220, and each keyword (collectively referred to as “KWr”) and plain text True are stored in the storage unit 221c. Further, each ciphertext Cr (KWr, True) corresponding to each keyword KWr constituting the encrypted DB is sequentially updated as described later.
- Predicate encryption master secret information MSK is stored in the storage unit 131b of the key generation device 130 of this embodiment.
- FIG. 26A is a flowchart for explaining search request processing according to the second embodiment.
- FIG. 26B is a flowchart for explaining key information generation processing according to the second embodiment.
- FIG. 27 is a flowchart for explaining search processing according to the second embodiment.
- identification information PI for identifying one or more types of protocols to which the predicate encryption method to be executed is applied and the search keyword KWt are input to the sender apparatus 210 (FIG. 20).
- the data is input to the unit 112 (step S211).
- the specific information PI is determined as shown in FIG. 22A, specific information PI corresponding to one type of protocol selected by the user, or specific corresponding to two or more types of protocols selected by the user, respectively.
- a combination of information PI is input to the input unit 112.
- the specific information PI is determined as shown in FIG. 22B, the specific information PI corresponding to one type of protocol selected by the user or two or more types of protocol is input to the input unit 112.
- the keyword search encryption protocol is included in the selected protocol or combination of protocols.
- the specific information PI and the search keyword KWt input to the input unit 112 are input to the identifier specifying unit 114a.
- the identifier specifying unit 114a searches for each protocol or each combination of protocols according to a rule defined for each protocol or each combination of protocols specified by the specific information PI (see FIGS. 23 and 24).
- the identifier ID (h) corresponding to the keyword KWt is specified, and one or more types of the specified identifier ID (h) are output (step S212).
- the one or more types of identifier ID (h) output from the identifier specifying unit 114a are input to the attribute information setting unit 114b.
- the attribute information setting unit 114b uses an attribute information table (see FIG. 8, FIG. 9, etc.) stored in the storage unit 111b to store one type of the identifier ID (h) or two or more types of the identifier ID (h).
- One attribute information ATT determined for the combination is set, and the set attribute information ATT is output (step S213).
- the attribute information ATT output from the attribute information setting unit 114b is input to the key generation processing unit 214d.
- the key generation processing unit 214d transmits the attribute information ATT from the communication unit 115 to the key generation device 130 via the network 140, and requests generation of key information SKt corresponding to the attribute information ATT (step S214).
- the communication unit 135 of the key generation device 130 receives the attribute information ATT (step S231).
- the attribute information ATT received by the communication unit 135 is input to the key generation unit 134.
- the key generation unit 134 reads the master secret information MSK from the storage unit 131b, inputs the master secret information MSK and the attribute information ATT to the predicate encryption key generation function, and generates key information SKt corresponding to the attribute information ATT. And output (step S232).
- An example of the key generation function is the function of Expression (50).
- the generated key information SKt is sent to the communication unit 135, and the communication unit 135 transmits the key information SKr to the sender device 210 via the network 140 (step S233).
- the communication unit 115 of the sender device 210 receives the key information SKt and sends it to the key generation processing unit 214d.
- the key generation processing unit 214d stores the key information SKt in the storage unit 211d (step S215).
- the key information SKt (first information) corresponding to the search keyword KWt read from the storage unit 211d is sent to the communication unit 115 and then sent to the recipient device 220 via the network 140 ( Step S216).
- the communication unit 125 of the recipient device 220 receives key information SKt (first information) corresponding to the transmitted search keyword KWt and stores it in the storage unit 221b. (Step S221).
- the identifier specifying unit 124a is determined for each protocol or each combination of protocols corresponding to each protocol or each combination of protocols corresponding to the logical expression predetermined in the receiver device 220 described above.
- one or more types of identifier ID ′ (h) corresponding to each keyword KWr corresponding to each search target information Mr are specified (step S222).
- This rule is the same as the rule for specifying the identifier ID (h) by the identifier specifying unit 114a of the sender device 210.
- One or more types of identifiers ID ′ (h) specified for each keyword KWr by the identifier specifying unit 124a are input to the polynomial generating unit 124b.
- the polynomial generator 124b uses the corresponding identifier ID ′ (h) for each keyword KWr, and the value of the identifier ID ′ (h) constituting the logical expression predetermined by the receiver device 220 described above.
- the set, polynomial f (x 0, ..., x H-1) corresponding to the logical expression determined by it and outputs the generated polynomial f (x 0, ..., x H-1) outputs the (Step S223).
- Each polynomial f (x 0 ,..., X H ⁇ 1 ) output from the polynomial generation unit 124b is input to the predicate information generation unit 124c.
- Each predicate information PRE for each keyword KWr output from the predicate information generation unit 124c is input to the encryption unit 224d.
- the encryption unit 224d reads the plaintext True from the storage unit 111c, inputs each predicate information PRE and plaintext True for each keyword KWr to the encryption function of the predicate encryption method, and plaintext True for each keyword KWr.
- the ciphertext corresponding to each keyword of the encrypted DB is updated by these, and the encrypted DB is updated (step S225).
- An example of the encryption function of the predicate encryption method is the above formulas (51) and (46).
- step S221 the key information SKt (first information) corresponding to the search keyword KWt received by the communication unit 125, and any ciphertext Cr (KWr, K) of the encrypted DB read from the storage unit 221c. True) (second information) is input to the decoding unit 124e.
- the decryption unit 124e inputs the key information SKt (first information) and the ciphertext Cr (KWr, True) (second information) to the decryption function of the predicate encryption method, executes decryption processing, and decryption obtained thereby
- An example of the decryption function is Expressions (47) to (49).
- attribute information ATT corresponding to information SKt (first information) and predicate information PRE corresponding to ciphertext Cr (KWr, True) (second information) are input to a predetermined function.
- the function value is a predetermined value (for example, when the inner product of the attribute information ATT and the predicate information PRE is 0)
- step S226 is executed for all ciphertexts Cr (KWr, True) constituting the encrypted DB.
- the key information SKt (first information) corresponding to the search keyword KWt matches the protocol and / or a combination of the protocols and / or a keyword defined in advance by the recipient device 220 Then, the ciphertext C (Mr) of the search target information Mr corresponding to the same keyword KW as the search keyword KWt is extracted as a search result.
- the protocol of the key information SKt (first information) that can select the protocol used by the sender apparatus 210, the combination of protocols, and the keyword and can search the encrypted DB in the receiver apparatus 220.
- a spare area as described in the first and second modifications of the first embodiment may be provided for the attribute information ATT and the predicate information PRE.
- the present invention is not limited to this.
- the sender device switches whether the attribute information ATT is input to the encryption function of the predicate encryption method or the key generation function according to the protocol specified by the specific information PI, and the receiver device According to the protocol specified by the PI, the predicate information is switched between being input to the predicate encryption key generation function or the encryption function.
- the predicate information is switched between being input to the predicate encryption key generation function or the encryption function.
- FIG. 28 is a block diagram for explaining the overall configuration of the function encryption application system 3 according to the third embodiment.
- the function cryptographic application system 3 of this embodiment includes a sender device 310 (information output device), a receiver device 320 (information processing device), and a key generation device 130 connected to a network 140.
- FIG. 28 shows one sender device 310, one recipient device 320, and one key generation device 130, but two or more sender devices 310, receiver devices 320, There may be a key generation device 130.
- FIG. 29 is a block diagram for explaining the configuration of the sender apparatus 310 of FIG.
- portions common to the first and second embodiments are denoted by the same reference numerals as those in the first and second embodiments, and description thereof is omitted (the same applies hereinafter).
- the sender apparatus 310 of this embodiment includes a temporary memory 111a, storage units 111b, 111c, and 211d, an input unit 112, a control unit 113, an identifier specifying unit 114a, and an attribute information setting unit. 114b, an encryption unit 114c, a key generation processing unit 214d, a switching unit 314, and a communication unit 115.
- the sender device 310 is a special device configured by, for example, reading and executing a special program in a known or dedicated computer including a CPU, a RAM, a ROM, and the like.
- the switching unit 314 is a processing unit or an integrated circuit configured by the CPU executing a predetermined program.
- FIG. 30 is a block diagram for explaining the configuration of the recipient device 320 of FIG.
- the recipient device 320 of this embodiment includes a temporary memory 121a, storage units 121b and 221c, a control unit 123, an identifier specifying unit 124a, a polynomial generation unit 124b, and a predicate information generation unit 124c.
- FIG. 30 shows two blocks indicating the communication unit 125, but this does not mean that two separate communication units 125 are required.
- the receiver device 320 is a special device configured by, for example, reading and executing a special program in a known or dedicated computer including a CPU, a RAM, a ROM, and the like.
- the switching units 324a and 324b are a processing unit or an integrated circuit configured by the CPU executing a predetermined program.
- FIG. 31A is a flowchart for explaining processing of the sender device 310 of the third embodiment.
- FIG. 31B is a flowchart for explaining processing of the recipient device 320 according to the third embodiment.
- the processing of this embodiment will be described with reference to these drawings.
- identification information PI for specifying one or more types of protocols to which the predicate encryption method to be executed is applied is input to the input unit 112 of the sender device 310 (FIG. 29). (Step S311).
- the protocol or combination of protocols specified by the specific information PI is encryption processing for generating ciphertext by inputting the attribute information ATT to the encryption function of the predicate encryption method as in the first embodiment.
- the encryption process in steps S111 to S115 of the first embodiment is executed under the control of the switching unit 314.
- the sender apparatus 310 of this embodiment transmits the specific information PI together with the ciphertext Ct to the receiver apparatus 320.
- the protocol or the combination of protocols specified by the specific information PI causes the key information to be generated by inputting the attribute information ATT as in the second embodiment to the key generation function of the predicate encryption method and the key information generation. If it is a process, the search request process and the key information generation process of steps S211 to S216 and S231 to S233 of the second embodiment are executed under the control of the switching unit 314. However, the sender device 310 of this embodiment transmits the specific information PI together with the key information SKt to the receiver device 320.
- the communication unit 125 of the receiver device 320 sets the ciphertext Ct transmitted from the sender device 310 and the specific information PI, or key information.
- a set of SKt and specific information PI is received (step S311).
- the protocol or combination of protocols specified by the specific information PI is a decryption process for generating key information by inputting the predicate information PRE as in the first embodiment to the key generation function of the predicate encryption method, and key information generation If it is a process, the decryption process and the key information generation process of steps S121 to S127 and S131 to S133 of the first embodiment are executed under the control of the switching units 324a and 324b.
- the protocol or the combination of protocols specified by the specific information PI is search processing for generating ciphertext by inputting the predicate information PRE into the encryption function of the predicate encryption method as in the second embodiment.
- the search processing in steps S221 to S226 of the second embodiment is executed under the control of the switching units 324a and 324b.
- the present invention is not limited to the first to third embodiments described above.
- the ciphertext C 2 illustrated in the basic configuration examples 1 and 2 is configured using n + 1-dimensional basis vectors (Equations (45) and (51)), but n + 2 dimensions or more orthogonal to each other.
- the ciphertext C 2 may be configured using basis vectors b 1 ,... B n + ⁇ of.
- the ciphertext C 2 of the following formulas (54) and (55) may be generated.
- ⁇ is an integer equal to or greater than 2
- ⁇ ⁇ + 1 is a constant or variable (such as a random number).
- ⁇ ⁇ is a constant or variable (random number etc.).
- Each ⁇ ⁇ may be selected at random so that
- each operation defined on the finite field F q may be replaced with an operation defined on the finite ring Z q of order q .
- An example of a method of replacing each operation defined on the finite field F q with an operation defined on the finite ring Z q is a method of allowing q other than a prime number or a power value thereof.
- a method of directly encrypting the plaintext M by the inner product predicate encryption such as the inner product predicate encryption in Reference 9 may be used.
- the specific configuration of the inner product predicate encryption method of Reference 9 is disclosed in P24-25 of Reference 9 and the like is omitted here, but the inner product predicate encryption method of Reference 9 is also dimensional with each other. This is a method in which decoding is correctly performed when the inner product of predicate information and attribute information that are equal vectors is zero.
- any predicate encryption method may be used.
- the key generation device is provided outside the sender device or the receiver device.
- the sender device or the receiver device may have the function of the key generation device. .
- Such a sender device or receiver device can generate key information itself without requesting the key generation device to generate key information.
- the predicate information PRE is determined by the receiver device after the receiver device receives the ciphertext or key information transmitted from the transmitter device.
- the receiver device may be able to define the predicate information PRE before the receiver device receives the ciphertext or key information transmitted from the sender device.
- the receiver device may determine the predicate information PRE before receiving the ciphertext or key information transmitted from the sender device, and generate the key information or ciphertext corresponding to the predicate information PRE. Good.
- predicate information PRE may be used instead of attribute information ATT, and attribute information ATT may be used instead of predicate information PRE. That is, the predicate information PRE may correspond to the first correspondence information, and the attribute information ATT may correspond to the second correspondence information.
- each device exchanges information through the network.
- each device may exchange information through a portable recording medium such as a USB memory.
- Matrix represents a set of elements in which operations are defined arranged in a rectangle. Not only elements with elements of the ring but also elements with elements of the group are expressed as “matrix”.
- (•) T represents a transposed matrix of (•) -1 : (•) -1 represents the inverse matrix of.
- ⁇ : ⁇ is a logical symbol representing a logical product (AND).
- ⁇ : ⁇ is a logical symbol representing a logical sum (OR).
- ⁇ : ⁇ is a logical symbol representing negation (NOT).
- Propositional variable A propositional variable is a variable on the set ⁇ true, false ⁇ whose elements are “true” and “false” (“false”, “true”) of the proposition. Propositional variables and negation of propositional variables are collectively referred to as literals.
- Logical expression means an expression having a formal grammar representing a proposition in mathematical logic. Specifically, “true” and “false” are logical expressions, propositional variables are logical expressions, negation of logical expressions is logical expressions, and logical products of logical expressions and logical expressions are logical expressions, A logical sum of a logical expression and a logical expression is a logical expression.
- Z Z represents an integer set.
- sec represents a security parameter (sec ⁇ Z, sec> 0).
- 0 * : 0 * represents a sequence of * 0's.
- 1 * : 1 * represents a sequence of * 1's.
- F q represents a finite field of order q.
- the order q is an integer of 1 or more.
- a prime number or a power value of a prime number is assumed to be the order q.
- examples of the finite field F q are an elementary field and an extension field based on it.
- the operation in the case where the finite field F q is a prime field can be easily configured by, for example, a remainder operation modulo the order q.
- the calculation when the finite field F q is an extension field can be easily configured by, for example, a remainder calculation modulo an irreducible polynomial.
- a specific configuration method of the finite field F q is disclosed in, for example, Reference 1 “ISO / IEC 18033-2: Information technology-Security techniques-Encryption algorithms-Part 2: Asymmetric ciphers”.
- 0 F 0 F represents an additive unit of the finite field F q .
- 1 F 1 F represents a multiplicative unit element of the finite field F q .
- ⁇ (i, j): ⁇ (i, j) the Kronecker delta function.
- E E represents an elliptic curve defined on the finite field Fq .
- a binary operation + called ellipse addition can be defined for any two points on the elliptic curve E, and a unary operation called an elliptic inverse can be defined for any one point on the elliptic curve E.
- a finite set of rational points on the elliptic curve E group in terms of elliptic addition that an operation called elliptic scalar multiplication can be defined using elliptic addition, and elliptic operations such as elliptic addition on a computer can be defined.
- a finite set of rational points on the elliptic curve E has a subgroup of order p (p ⁇ 1). For example, if the number of elements of a finite set of rational points on the elliptic curve E is #E and p is a large prime number that divides #E, then the finite set E [p] of the p equal points of the elliptic curve E is A subgroup of a finite set of rational points on the elliptic curve E is constructed.
- G 1 , G 2 , G T represent a cyclic group of order q.
- specific examples of the cyclic group G T is a finite set constituting the extension field of a finite field F q underlying body. An example is a finite set of one of the p th root of the algebraic closure of a finite field F q. Safety is improved by making the order of the cyclic groups G 1 , G 2 , and G T the same as the order of the finite field F q .
- operations defined on the cyclic groups G 1 and G 2 are expressed additively, and operations defined on the cyclic groups G T are expressed multiplicatively. That, ⁇ ⁇ ⁇ G 1 for Kai ⁇ F q and Omega ⁇ G 1 means that applying operation defined in the cyclic group G 1 with respect ⁇ G 1 ⁇ times, Omega 1, Omega 2 ⁇ 1 + ⁇ 2 ⁇ G for ⁇ G 1 1 is meant to carry out the operation defined in the cyclic group G 1 and the Omega 1 ⁇ G 1 and Omega 2 ⁇ G 1 as operand.
- ⁇ ⁇ ⁇ G 2 for Kai ⁇ F q and Omega ⁇ G 2 means that applying operation defined in the cyclic group G 2 with respect ⁇ G 2 ⁇ times
- Omega 1, Omega 2 ⁇ G ⁇ 1 + ⁇ 2 ⁇ G 2 for 2 means that perform defined operations in the cyclic group G 2 to the Omega 1 ⁇ G 2 and Omega 2 ⁇ G 2 as operands.
- Omega chi ⁇ G T for Kai ⁇ F q and Omega ⁇ G T means that applying operation defined in the cyclic group G T against ⁇ G T ⁇ times, ⁇ 1, ⁇ 2 ⁇ ⁇ 1 ⁇ ⁇ 2 ⁇ G for G T T means to perform the operation defined in the cyclic group G T and Omega 1 ⁇ G T and Omega 2 ⁇ G T as an operand.
- ⁇ ⁇ represents an integer of 1 or more.
- n ( ⁇ ): n ( ⁇ ) represents an integer of 1 or more.
- ⁇ ( ⁇ ): ⁇ ( ⁇ ) represents an integer of 0 or more.
- G 1 n ( ⁇ ) + ⁇ ( ⁇ ) : G 1 n ( ⁇ ) + ⁇ ( ⁇ ) represents the direct product of n ( ⁇ ) + ⁇ ( ⁇ ) cyclic groups G 1 .
- G 2 n ( ⁇ ) + ⁇ ( ⁇ ) : G 2 n ( ⁇ ) + ⁇ ( ⁇ ) represents the direct product of n ( ⁇ ) + ⁇ ( ⁇ ) cyclic groups G 2 .
- e ⁇ is the direct product G 1 n ( ⁇ ) + ⁇ ( ⁇ ) ⁇ G 2 n ( ) of the direct product G 1 n ( ⁇ ) + ⁇ ( ⁇ ) and the direct product G 2 n ( ⁇ ) + ⁇ ( ⁇ ).
- ⁇ ) + ⁇ ( ⁇ ) nondegenerate bilinear mapping which maps the cyclic group G T a represents a (bilinear map).
- the bilinear map e ⁇ satisfies the following properties.
- the following relations are satisfied for all ⁇ 1 ⁇ G 1 n ( ⁇ ) + ⁇ ( ⁇ ) , ⁇ 2 ⁇ G 2 n ( ⁇ ) + ⁇ ( ⁇ ), and ⁇ , ⁇ F q .
- e ⁇ ( ⁇ ⁇ ⁇ 1 , ⁇ ⁇ ⁇ 2 ) e ⁇ ( ⁇ 1 , ⁇ 2 ) ⁇ ⁇ ⁇ ... (62)
- All ⁇ 1 ⁇ G 1 n ( ⁇ ) + ⁇ ( ⁇ ), ⁇ 2 ⁇ G 2 n ( ⁇ ) + ⁇ ( ⁇ ) is not a mapping which maps the identity element of the cyclic group G T a.
- a non-degenerate bilinear map Pair G 1 ⁇ G 2 ⁇ G T (64) that maps the direct product G 1 ⁇ G 2 of the cyclic group G 1 and the cyclic group G 2 to the cyclic group G T Is used to construct a bilinear map e ⁇ .
- e ⁇ 1 n ( ⁇ ) + ⁇ ( ⁇ ) Pair ( ⁇ ⁇ , ⁇ ⁇ * )... (65)
- bilinear map Pair is a set of one original cyclic group G 1 and the one of the original cyclic group G 2 as input, and outputs one of the original cyclic group G T.
- the bilinear map Pair satisfies the following properties. [Bilinearity] For all ⁇ 1 ⁇ G 1 , ⁇ 2 ⁇ G 2 and ⁇ , ⁇ F q , the following relation is satisfied.
- Pair ( ⁇ ⁇ ⁇ 1 , ⁇ ⁇ ⁇ 2 ) Pair ( ⁇ 1 , ⁇ 2 ) ⁇ ⁇ ⁇ ... (66)
- All ⁇ 1 ⁇ G 1 , ⁇ 2 ⁇ G 2 (67) Not a mapping which maps the identity element of the cyclic group G T a.
- Pair ( ⁇ 1 , ⁇ 2 ) for every ⁇ 1 ⁇ G 1 and ⁇ 2 ⁇ G 2 .
- bilinear map Pair is a function for performing pairing operations such as Weil pairing and Tate pairing (for example, Reference 4 “Alfred. J. Menezes, ELLIPTIC CURVE PUBLIC KEY CRYPTOSYSTEMS, KLUWER ACADEMIC PUBLISHERS , ISBN0-7923-9368-6, pp. 61-81 etc.).
- a modified pairing function e ( ⁇ 1 , phi ( ⁇ 2 )) ( ⁇ 1 ⁇ ) that combines a function for performing pairing operations such as Tate pairing and a predetermined function phi G 1 , ⁇ 2 ⁇ G 2 ) may be used as the bilinear map Pair (for example, see Reference 2).
- the well-known Miller algorithm reference document 5 “VS Miller,“ Short Programs for functions on Curves, ”1986, Internet ⁇ http: //crypto.stanford. edu / miller / miller.pdf> ”and the like.
- a i ( ⁇ ) is an element of n ( ⁇ ) + ⁇ ( ⁇ ) elements of the cyclic group G 1 Represents an n ( ⁇ ) + ⁇ ( ⁇ ) -dimensional basis vector.
- An example of the basis vector a i ( ⁇ ) is the unit of the cyclic group G 1 with ⁇ 1 ⁇ g 1 ⁇ G 1 as the i-th element and the remaining n ( ⁇ ) + ⁇ ( ⁇ ) -1 elements This is an n ( ⁇ ) + ⁇ ( ⁇ ) -dimensional basis vector that is an element (additively expressed as “0”).
- a 1 ( ⁇ ) ( ⁇ 1 ⁇ g 1 , 0,0, ..., 0)
- kappa 1 is a constant consisting of elements of the finite field F q other than additive identity 0 F
- a i * ( ⁇ ) (i 1, ..., n ( ⁇ ) + ⁇ ( ⁇ )): n ( ⁇ ) with n ( ⁇ ) + ⁇ ( ⁇ ) elements of cyclic group G 2 as elements ) + ⁇ ( ⁇ ) -dimensional basis vector.
- An example of the basis vector a i * ( ⁇ ) is ⁇ 2 ⁇ g 2 ⁇ G 2 as the i-th element, and the remaining n ( ⁇ ) + ⁇ ( ⁇ ) -1 elements of the cyclic group G 2 This is an n ( ⁇ ) + ⁇ ( ⁇ ) -dimensional basis vector as a unit element (additionally expressed as “0”).
- kappa 2 is a constant consisting of elements of the finite field F q other than additive identity 0 F
- the superscripts ⁇ 1 and ⁇ 2 represent ⁇ 1 and ⁇ 2 , respectively.
- e (a i ( ⁇ ), a j * ( ⁇ )) g T ⁇ (i, j) ... (71)
- the basis vector a i ( ⁇ ) and the basis vector a i * ( ⁇ ) are dual orthonormal basis
- the vector space V ( ⁇ ) and the vector space V * ( ⁇ ) constitute a bilinear map. This is a possible dual vector space (dual paring vector space (DPVS)).
- DPVS dual paring vector space
- a ( ⁇ ): n ( ⁇ ) + ⁇ ( ⁇ ) row n ( ⁇ ) + with the basis vectors a i ( ⁇ ) (i 1, ..., n ( ⁇ ) + ⁇ ( ⁇ )) as elements
- the matrix A ( ⁇ ) is
- X ( ⁇ ) represents a matrix of n ( ⁇ ) + ⁇ ( ⁇ ) rows n ( ⁇ ) + ⁇ ( ⁇ ) columns having elements of the finite field F q as elements.
- the matrix X ( ⁇ ) is used for coordinate transformation of the basis vector a i ( ⁇ ).
- each element ⁇ i, j ( ⁇ ) of the matrix X ( ⁇ ) is called a transformation coefficient.
- X * ( ⁇ ): X * ( ⁇ ) and the matrix X ( ⁇ ) satisfy the relationship X * ( ⁇ ) ⁇ ′ ⁇ (X ( ⁇ ) ⁇ 1 ) T.
- X * ( ⁇ ) is used for coordinate transformation of the basis vector a i * ( ⁇ ). If the element of i row j column of the matrix X * ( ⁇ ) is ⁇ i, j * ( ⁇ ) ⁇ F q , the matrix X * ( ⁇ ) is
- each element ⁇ i, j * ( ⁇ ) of the matrix X * ( ⁇ ) is called a transformation coefficient.
- the unit matrix of n ( ⁇ ) + ⁇ ( ⁇ ) row n ( ⁇ ) + ⁇ ( ⁇ ) column is I ( ⁇ )
- X ( ⁇ ) ⁇ (X * ( ⁇ )) T ⁇ ' ⁇ I ( ⁇ ) is satisfied. That is, the identity matrix
- b i ( ⁇ ) represents an n ( ⁇ ) + ⁇ ( ⁇ ) -dimensional basis vector having n ( ⁇ ) + ⁇ ( ⁇ ) elements of the cyclic group G 1 as elements.
- b i ( ⁇ ) ( ⁇ i, 1 ( ⁇ ) ⁇ ⁇ 1 ⁇ g 1 , ⁇ i, 2 ( ⁇ ) ⁇ ⁇ 1 ⁇ g 1 , ..., ⁇ i, n ( ⁇ ) + ⁇ ( ⁇ ) ( ⁇ ) ⁇ ⁇ 1 ⁇ g 1 )... (82)
- b i * ( ⁇ ) represents an n ( ⁇ ) + ⁇ ( ⁇ ) -dimensional basis vector whose elements are n ( ⁇ ) + ⁇ ( ⁇ ) elements of the cyclic group G 2 .
- the basis vector b i ( ⁇ ) and the basis vector b i * ( ⁇ ) are the dual orthonormal basis of the dual pairing vector space (vector space V ( ⁇ ) and vector space V * ( ⁇ )). .
- ⁇ ) represents a matrix of rows n ( ⁇ ) + ⁇ ( ⁇ ) columns.
- v ( ⁇ ) ⁇ : v ( ⁇ ) ⁇ represents an n ( ⁇ ) -dimensional vector having elements of the finite field F q as elements.
- v ( ⁇ ) ⁇ (v 1 ( ⁇ ) , ..., v n ( ⁇ ) ( ⁇ )) ⁇ F q n ( ⁇ ) ... (89)
- w ( ⁇ ) ⁇ : w ( ⁇ ) ⁇ represents an n ( ⁇ ) -dimensional vector having elements of the finite field F q as elements.
- w ( ⁇ ) ⁇ (w 1 ( ⁇ ) , ..., w n ( ⁇ ) ( ⁇ )) ⁇ F q n ( ⁇ ) ... (90)
- w ⁇ ( ⁇ ): w ⁇ ( ⁇ ) represents the ⁇ ( ⁇ 1,..., n ( ⁇ ))-th element of the n ( ⁇ ) -dimensional vector w ( ⁇ ) ⁇ .
- Enc K (M): Enc K (M) represents a ciphertext obtained by encrypting plaintext M using a common key K according to a common key encryption function Enc.
- Dec represents a common key decryption function indicating a decryption process of the common key cryptosystem.
- Dec K (C) represents a decryption result obtained by decrypting the ciphertext C using the common key K according to the common key decryption function Dec.
- the function encryption method is a method in which a ciphertext is decrypted when a truth value of a logical expression determined by a combination of condition information and attribute information is “true”.
- condition information and “attribute information” is embedded in the ciphertext, and the other is embedded in the key information.
- a value corresponding to secret information is secretly distributed hierarchically in a manner corresponding to a predetermined logical expression.
- the predetermined logical expression includes a propositional variable whose truth value is determined by a combination of condition information and attribute information, and further includes any or all of logical symbols ⁇ , ⁇ , and ⁇ as necessary. Then, when the truth value of the predetermined logical expression determined by specifying the truth value of each propositional variable is “true”, the value corresponding to the secret information is restored, and the ciphertext is decrypted based on the value. .
- Secret sharing refers to N (N ⁇ 2) pieces of shared information so that the secret information is restored only when threshold Kt (K t ⁇ 1) pieces of shared information is obtained. Is to be distributed.
- the N-out-of-N distribution method can restore the secret information SE if all share information share (1), ..., share (N) is given, but any N-1 share information shares Even if ( ⁇ 1 ), ..., share ( ⁇ N-1 ) is given, no secret information SE information can be obtained.
- An example is shown below.
- ⁇ SH 1 , ..., SH N-1 are selected at random.
- SH N SE- (SH 1 + ... + SH N-1 ).
- -Let SH 1 , ..., SH N be share information (share (1), ..., share (N)).
- SE share (1) + ... + share (N)... (91)
- the secret information SE can be restored by the restoration process.
- the K t -out-of-N distribution method can restore the secret information SE if K t pieces of different share information share ( ⁇ 1 ), ..., share ( ⁇ Kt ) are given.
- the secret information SE is not obtained at all even if K t -1 pieces of share information share ( ⁇ 1 ), ..., share ( ⁇ Kt-1 ) are given.
- Kt of the subscript represents the K t.
- An example of the K t -out-of-N distribution method is shown below.
- the Lagrange interpolation formula can be used to restore the secret information SE by the following restoration process.
- the denominator of equation (93) is ( ⁇ ⁇ - ⁇ 1 ) ⁇ ⁇ ⁇ ⁇ ⁇ ( ⁇ ⁇ - ⁇ ⁇ -1 ) ⁇ ( ⁇ ⁇ - ⁇ ⁇ + 1 ) ⁇ ... ⁇ ( ⁇ ⁇ - ⁇ Kt )
- the numerator of formula (93) is (x- ⁇ 1 ) ⁇ ... ⁇ (x- ⁇ ⁇ -1 ) ⁇ (x- ⁇ ⁇ + 1 ) ⁇ ... ⁇ (x- ⁇ Kt ) It is.
- Each secret sharing described above can also be performed on the body. Also, these values can be extended to secretly distribute values corresponding to the secret information SE to the share information share.
- the value corresponding to the secret information SE is the secret information SE itself or the function value of the secret information SE
- the value corresponding to the share information share is the share information share itself or the function value of the share information.
- finite field F q original a is secret information SE ⁇ F element g of q cyclic group G T corresponding to T SE ⁇ G T each share information share the secret information SE (1) of, according to share (2) original g T share (1) of the cyclic group G T, it may be a secret distributed g T share (2) ⁇ G T .
- the secret information SE described above is a linear combination of the share information share (Equations (91) and (92)).
- a secret sharing scheme in which the secret information SE is a linear combination of the share information share is called a linear secret sharing scheme.
- the predetermined logical expression described above can be expressed by tree structure data obtained by secretly sharing secret information in a hierarchical manner. That is, according to De Morgan's law, the above-mentioned predetermined logical expression is a logical expression composed of literals, or a logical expression composed of at least part of the logical symbols ⁇ and ⁇ and literals (these are referred to as “standard logical expressions”). This standard logical expression can be expressed by tree structure data obtained by secretly sharing secret information in a hierarchical manner.
- the tree structure data representing the standard logical expression includes a plurality of nodes, at least some of the nodes are parent nodes of one or more child nodes, one of the parent nodes is a root node, and at least of the child nodes Some are leaf nodes. There is no parent node of the root node or a child node of the leaf node.
- the value corresponding to the secret information corresponds to the root node, and the value corresponding to the share information obtained by secretly sharing the value corresponding to the parent node corresponds to the child node of each parent node.
- the secret sharing mode secret sharing scheme and threshold
- Each leaf node corresponds to each literal constituting the standard logical expression, and the truth value of each literal is determined by a combination of condition information and attribute information.
- a value corresponding to the share information corresponding to the leaf node corresponding to the literal whose truth value is true is obtained, but according to the share information corresponding to the leaf node corresponding to the literal whose truth value is false.
- the obtained value is not obtained.
- the value corresponding to the share information corresponding to the parent node depends on the share information corresponding to the child node. It is restored only when the number of values obtained is equal to or greater than the threshold value corresponding to the parent node.
- the secret information finally corresponding to the root node depends on which literal value corresponding to which leaf node is true and the structure of the tree structure data (including the form of secret sharing at each node). It is determined whether or not the value corresponding to can be restored.
- the tree structure data is such that the value corresponding to the secret information corresponding to the root node can be finally restored only when the truth value of each literal corresponding to each leaf node makes the truth value of the standard form logical expression true. Is configured, such tree structure data represents a standard logical expression. Tree structure data expressing such a standard logical expression can be easily set. Specific examples are shown below.
- FIG. 32 shows a standard logical expression PRO (1) ⁇ PRO (2 including the propositional variables PRO (1), PRO (2) and the negation ⁇ PRO (3) of the propositional variable PRO (3) and logical symbols ⁇ , ⁇ . ) Is a diagram illustrating tree structure data expressing ⁇ PRO (3).
- 32 includes a plurality of nodes N 1 ,..., N 5 .
- Node N 1 is a parent node of nodes N 2 and N 5
- node N 2 is a parent node of nodes N 3 and N 4
- one of the parent nodes is node N 1 , and one of the child nodes.
- Nodes N 3 , N 4 , and N 5 that are parts are set as leaf nodes.
- the child nodes N 3 and N 4 of the node N 2 have values corresponding to the share information SE-SH 1 and SH 1 in which the value corresponding to the share information SE is secretly distributed by the 2-out-of-2 distribution method. Correspond to each.
- the leaf nodes N 3 , N 4 , and N 5 include the literals PRO (1), PRO (2), and ⁇ PRO that constitute the standard logical expressions PRO (1) ⁇ PRO (2) ⁇ PRO (3). (3) correspond to each other, and the truth values of the literals PRO (1), PRO (2), and ⁇ PRO (3) are determined by a combination of condition information and attribute information.
- FIG. 33 shows the propositional variables PRO (1), PRO (2), PRO (3), PRO (6), PRO (7) and the negation of the propositional variables PRO (4), PRO (5) ⁇ PRO (4), ⁇ PRO (5), standard form formula including logical symbols ⁇ , PRO PRO (1) ⁇ PRO (2) ⁇ PRO (2) ⁇ PRO (3) ⁇ PRO (1) ⁇ PRO (3) ⁇ PRO (4) It is a diagram illustrating tree structure data expressing ⁇ ( ⁇ PRO (5) ⁇ PRO (6)) ⁇ PRO (7).
- Node N 1 is a parent node of nodes N 2 , N 6 and N 7
- Node N 2 is a parent node of nodes N 3 , N 4 and N 5
- Node N 7 is a parent node of nodes N 8 and N 11
- the node N 8 is a parent node of the nodes N 9 and N 10
- the node N 1 which is one of the parent nodes is a root node
- the nodes N 3 , N 4 , N 5 , N 6 , N 9 , N 10 , and N 11 are leaf nodes.
- the values corresponding to the share information SE, SE, and SE that are secretly shared with each other correspond to each other.
- the child nodes N 3 , N 4 , and N 5 of the node N 2 each share information (1, f (1)) in which the value corresponding to the share information SE is secretly distributed by the 2-out-of-3 distribution method , (2, f (2)), (3, f (3)) correspond to values.
- the child nodes N 8 and N 11 of the node N 7 have values corresponding to the share information SH 4 and SE-SH 4 in which the value corresponding to the share information SE is secretly distributed by the 2-out-of-2 distribution method.
- the child node N 9, N 10 of the node N 8 is the value corresponding to the share information each share information value corresponding to the SH 4 is secret sharing in 1-out-of-2 balancing method SH 4, SH 4 Each corresponds.
- the corresponding value corresponds
- the leaf nodes N 3 , N 4 , N 5 , N 6 , N 9 , N 10 , and N 11 have standard logical expressions PRO (1) ⁇ PRO (2) ⁇ PRO (2) ⁇ PRO ( 3) ⁇ PRO (1) ⁇ PRO (3) ⁇ PRO (4) ⁇ ( ⁇ PRO (5) ⁇ PRO (6)) ⁇
- Each literal PRO (1), PRO (2) that constitutes PRO (7) , PRO (2), PRO (3), PRO (1), PRO (3), ⁇ PRO (4), ⁇ PRO (5), PRO (6), PRO (7) correspond to each literal PRO (1), PRO (2), PRO (2), PRO (3), PRO (1), PRO (3), ⁇ PRO (4), ⁇ PRO (5), PRO (6), PRO (7)
- the truth value of is determined by a combination of condition information and attribute information.
- the combination of condition information and attribute information is the standard logical expression PRO (1) ⁇ PRO (2) ⁇ PRO (2) ⁇ PRO (3) ⁇ PRO (1) ⁇ PRO (3) ⁇ PRO (4 ) ⁇ ( ⁇ PRO (5) ⁇ PRO (6)) ⁇ The value corresponding to the secret information SE is restored only when the truth value of PRO (7) is made true.
- ⁇ Access structure> When a predetermined logical expression is expressed by tree structure data obtained by secretly distributing secret information in a hierarchical manner as described above, according to the share information at the leaf node obtained for the combination of condition information and attribute information Whether the truth value of the logical expression determined by the combination of the condition information and the attribute information is “true” or “false” can be determined depending on whether the value corresponding to the secret information can be restored from the obtained value.
- the truth value of the logical expression determined by the combination of the condition information and the attribute information is “true”
- the combination of the condition information and the attribute information is accepted, and when it is “false”, the condition information and the attribute information are A mechanism for rejecting the combination is called an access structure.
- the total number of leaf nodes of the tree structure data expressing a predetermined logical expression is ⁇
- the labeled matrix LMT (MT, LAB) is a matrix with ⁇ rows and COL columns (COL ⁇ 1).
- a value corresponding to the secret information SE ⁇ F q corresponds to the root node of the tree structure data expressing a predetermined logical expression as described above
- an element of a predetermined finite field F q is defined as an element.
- COL dimension vector GV ⁇ (gv 1 , ..., gv COL ) ⁇ F q COL ... (95)
- COL dimension vector CV ⁇ (cv 1 , ..., cv COL ) ⁇ F q COL ... (96) with elements of finite field F q corresponding to secret information SE as elements
- SE GV ⁇ ⁇ (CV ⁇ ) T ... (97) Is established.
- the tree structure data expressing a predetermined logical expression is determined as described above, it is easy to select a matrix MT that satisfies these two requirements. Even if the secret information SE and the share information share ( ⁇ ) are variables, it is easy to select a matrix MT that satisfies these two requirements. That is, after the matrix MT is determined, the values of the secret information SE and the share information share ( ⁇ ) may be determined.
- ⁇ 1, ..., ⁇ contains w ( ⁇ ) ⁇ and the inner product v ( ⁇ ) ⁇ ⁇ w ( ⁇ ) ⁇ that is 0 And the truth value of the propositional variable PRO ( ⁇ ) is “false” and the inner product v ( ⁇ ) ⁇ ⁇ w ( ⁇ ) ⁇ is not equal to 0.
- a label LAB ( ⁇ ) corresponding to PRO ( ⁇ ) represents v ( ⁇ ) ⁇
- a label LAB ( ⁇ ) corresponding to ⁇ PRO ( ⁇ ) represents ⁇ v ( ⁇ ) ⁇
- ⁇ v ( ⁇ ) ⁇ is a logical expression that represents the v ( ⁇ ) ⁇ negative, it is possible ⁇ v ( ⁇ ) ⁇ from v ( ⁇ ) ⁇ the identified.
- ⁇ -dimensional vector TFV ⁇ (tfv (1), ..., tfv ( ⁇ ))... (100)
- tfv ( ⁇ ) 0 (PRO ( ⁇ ) is false) if v ( ⁇ ) ⁇ ⁇ w ( ⁇ ) ⁇ ⁇ 0... (102)
- a value corresponding to the secret information SE can be restored from a value corresponding to the share information share ( ⁇ ) corresponding to the identifier ⁇ , and a row vector mt corresponding to the identifier ⁇
- the COL dimension vector GV ⁇ belongs to the vector space spanned by ⁇ ⁇ . That is, by determining whether or not the COL dimension vector GV ⁇ belongs to the vector space spanned by the row vector mt ⁇ ⁇ corresponding to the identifier ⁇ , from the value corresponding to the share information share ( ⁇ ) corresponding to the identifier ⁇ It can be determined whether or not the value corresponding to the secret information SE can be restored.
- the row vectors mt lambda ⁇ vector space spanned by means vector space can be represented by a row vector mt lambda ⁇ linear combination of.
- the access structure accepts the attribute information
- the access structure rejects the attribute information
- N ( ⁇ ) + ⁇ ( ⁇ ) rows n ( ⁇ ) + ⁇ ( ⁇ ) columns with basis vectors b i ( ⁇ ) (i 1, ..., n ( ⁇ ) + ⁇ ( ⁇ ))
- Matrix B ( ⁇ ) is generated.
- B * ( ⁇ ) ⁇ is a matrix B * ( ⁇ ) or a submatrix thereof
- B ( ⁇ ) ⁇ is a matrix B ( ⁇ ) or a submatrix thereof.
- coef ( ⁇ ) and coef ⁇ ( ⁇ ) ⁇ F q are constants or random numbers.
- ⁇ ' is any one of ⁇ 2 (0), ..., ⁇ I (0).
- the common key encryption method Enc may be, for example, Camellia (registered trademark) configured to be encrypted using the common key K, AES, exclusive OR of the common key and plain text, etc.
- Ciphertext C (VSET1, C (0), ⁇ C ( ⁇ ) ⁇ ( ⁇ , w ( ⁇ ) ⁇ ) ⁇ VSET1 , C ( ⁇ + 1))... (121) Is generated. However, the subscript “w ( ⁇ ) ⁇ ” represents “w ( ⁇ ) ⁇ ”. [Dec (PK, SKS, C): Decryption] -Input: Public parameter PK, key information SKS, ciphertext C -Output: Plaintext M '
- ⁇ 1, ..., ⁇ and the label LAB ( ⁇ ) of LMT (MT, LAB) included in the statement C 1 ′
- the submatrix MT TFV shown in (101)-(104) is generated.
- MT TFV is expressed as follows.
- MT TFV in equation (130) is a matrix of ⁇ rows and COL columns
- ⁇ is an integer greater than or equal to 1
- the MT TFV row vector mt ⁇ ' ⁇ to calculate the upper triangular matrix of ⁇ ⁇ ⁇ with the diagonal component as the unit of multiplication 1 F from 1 row 1 column to ⁇ row ⁇ column and until submatrix, on triangulation with the additive identity 0 F all elements ⁇ 'of row vectors mt lambda is Omega + 1 row after when ⁇ exists' Omega + 1 row after row vector mt lambda Generate the matrix MT TFV '.
- ⁇ is an integer equal to or greater than 1 and equal to or less than the number of rows and columns of the submatrix MT TFV .
- MT TFV ' is as follows.
- each element after ⁇ + 1 row does not exist
- submatrix MT TFV in the second row of the row vectors mt 2 ⁇ (mt 2,1, ..., mt 2, COL) mt 2,1 times a row vector of the first row of MT TFV 'from
- the row vector (0 F , mt 2,2 '', ..., mt 2, COL '') obtained by subtracting the calculated row vector and divided by mt 2,2 '' is the second row of MT TFV ' A row vector.
- the upper triangulation matrix MT TFV ' can be generated by processing each row vector of the already generated MT TFV ' and processing a row vector having a larger row number.
- the operation for generating the upper triangulation matrix MT TFV ′ is an operation in units of row vectors and an operation between row vectors, and different operations cannot be performed on different elements of the same row vector. Further, when the division method becomes the additive unit element 0 F , the row vector to be processed is selected again. Further, when the submatrix MT TFV includes a plurality of row vectors that are not linearly independent from each other (that is, a plurality of row vectors that are linearly dependent), one row vector representing such a row vector is an upper triangular matrix of ⁇ ⁇ ⁇ . The row vector includes an element, and the other row vectors are row vectors having only the additive unit element 0 F as an element (step S402).
- Decoding unit (mt 1,1 '... mt 1, COL') - (mt 1, ⁇ '- 1 F) ⁇ (mt ⁇ ', 1 '... mt ⁇ ', COL ') ... (132 )
- the row vector (mt 1,1 '... mt 1, COL ') of the first row of the upper triangulation matrix MT TFV ' Update. Note that (mt ⁇ ′, 1 ′...
- Mt ⁇ ′, COL ′ represents a row vector of the ⁇ ′ row of the upper triangulation matrix MT TFV ′.
- the coefficient of the element in the first row obtained by applying to the matrix with the element as an indefinite element can be a coefficient const (ind) that satisfies the expression (105). That is, the indefinite element corresponding to the row vector of the submatrix MT TFV corresponding to the row vector of the ind row of the matrix MT obtained by performing these operations on the matrix having each element of the submatrix MT TFV as an indefinite element is obtained.
- the coefficient of the first row vector as an element can be set as a coefficient const (ind) (see the relations of equations (97) and (99)).
- g T tau and g T tau 'and g T ⁇ ⁇ ⁇ ' may be handled as generator of G T instead of a g T a generator of G T.
- a combination of C ( ⁇ ) and D * ( ⁇ ) is specified using a mapping that specifies the correspondence between ⁇ of key information SKS and ⁇ of ciphertext, and [Dec (PK, SKS, C): The process of “decryption” may be executed.
- the attribute information VSET1 ⁇ , w ( ⁇ ) ⁇
- elements w 1 ( ⁇ ) is may be used w ( ⁇ ) ⁇ / w 1 ( ⁇ ) instead of w ( ⁇ ) ⁇
- element v n ( ⁇ ) ( ⁇ ) is 1 if not F is v ( ⁇ ) ⁇ the place of v ( ⁇ ) ⁇ / v n ( ⁇ ) may be used (lambda).
- the method in which the attribute information VSET1 corresponds to the ciphertext and the condition information VSET2 corresponds to the key information is referred to as a key policy (KP) method.
- KP key policy
- a cipher text (CP) method in which the attribute information VSET1 corresponds to the key information and the condition information VSET2 corresponds to the ciphertext may be used.
- condition information VSET2 ⁇ , v ( ⁇ ) ⁇
- ⁇ 1, ..., ⁇
- the attribute information VSET1 ⁇ , w ( ⁇ ) ⁇
- ⁇ 1, ..., ⁇ ⁇
- attribute information VSET1 ⁇ , w ( ⁇ ) ⁇
- ⁇ 1, ..., ⁇
- condition information VSET2 ⁇ , v ( ⁇ ) ⁇
- ⁇ 1, .. ., ⁇
- the first element v 1 ( ⁇ ) of the condition information VSET2 ⁇ , v ( ⁇ ) ⁇
- the corresponding label LAB ( ⁇ ) represents w ( ⁇ ) ⁇ , and the label LAB ( ⁇ ) corresponding to ⁇ PRO ( ⁇ ) represents ⁇ w ( ⁇ ) ⁇ .
- the function encryption application system of the fourth to sixth embodiments includes a sender device (information output device) and a receiver device (information processing device), and includes attribute information VSET1 (first correspondence information) and condition information VSET2 (second When the truth value of the logical expression corresponding to the combination with the correspondence information) is true, a protocol (protocol according to the function cryptosystem) applying the functional cryptosystem that decrypts the ciphertext correctly is executed.
- the identifier specifying unit specifies an identifier for each protocol or each combination of protocols according to a rule defined for each protocol or each combination of protocols specified by the specifying information, and specifies one or more types of the specified identifiers Is output.
- the identifier in the fourth to sixth embodiments is a vector.
- each type of protocol using the functional encryption method defines the type of attribute information VSET1 to be used for it (in other words, the nature of the attribute information VSET1).
- the rule specifies an identifier that defines the type of attribute information VSET1 to be used for the protocol specified by the specifying information or a combination of the protocols.
- the protocol is a Timed-Release cryptographic protocol
- the rule is a rule that uses information for identifying a time point in the future from the generation time of the first information as an identifier
- the protocol is a Forward-Secure cryptographic protocol or a Key-Insulated.
- the rule is a rule that uses as an identifier a time interval including the generation time of the first information or information specifying a time interval in the future from the generation time of the first information.
- the rule in the case of a secure encryption protocol is a rule that uses information for specifying disposable information that is newly set every time the first information is generated as an identifier
- the rule in the case that the protocol is a keyword search encryption protocol is This is a rule in which information for specifying a database search keyword is used as an identifier.
- the one or more types of identifiers specified by the identifier specifying unit are input to the attribute information setting unit of the sender device.
- the attribute information setting unit sets one attribute information VSET1 (specific first correspondence information) determined for one type of the identifier or a combination of two or more types of the identifier, and outputs the set attribute information VSET1. .
- the output unit of the sender device outputs first information that is ciphertext or key information of the function encryption method corresponding to the attribute information VSET1 output from the attribute information setting unit.
- the first information and the second information read from the storage unit are input to the decryption unit of the receiver device.
- the second information is function encryption key information or ciphertext. If the first information is ciphertext corresponding to the attribute information VSET1, the second information is condition information VSET2 (specific second correspondence information). If the first information is key information corresponding to the attribute information VSET1, the second information is ciphertext corresponding to the condition information VSET2 (specific second correspondence information).
- the attribute information VSET1 (first correspondence information) includes one or more vectors w ( ⁇ ) ⁇ (first partial correspondence information), and the condition information VSET2 (second correspondence information) is one or more vectors.
- v ( ⁇ ) ⁇ (second partial correspondence information) is included.
- the decryption unit of the receiver device inputs the first information and the second information to the decryption function of the functional encryption method, executes the decryption process, and outputs the decryption result obtained thereby.
- the decryption function of the functional encryption method using the access structure is obtained when the set of combinations of the vector w ( ⁇ ) ⁇ and the vector v ( ⁇ ) ⁇ that is true satisfies a predetermined condition. This function generates a correct decryption result.
- the ciphertext is correctly decrypted when the truth value of the logical expression corresponding to the combination of the attribute information VSET1 and the condition information VSET2 is true.
- the attribute information VSET1 is information determined for one type of identifier or a combination of two or more types of identifiers.
- the attribute information VSET1 Each of the plurality of types of values taken by the information VSET1 takes a value for obtaining a correct decoding result. That is, in the fourth to sixth embodiments, the same second information can be shared for one or more types of first information, and correct decoding can be performed. Therefore, even when the sender device selects one type of identifier or a combination of two or more types of identifiers and switches the protocol according to the selected identifier to generate the first information, the receiver device is switched.
- the receiver device can select one or more selected protocols or combinations of protocols. Can correspond to the first information.
- the protocol can be switched according to the selected identifier without requiring complicated processing.
- the degree of freedom in combining the protocols is high. That is, in the fourth to sixth embodiments, a correct decoding result is generated when the combination of the attribute information VSET1 corresponding to the first information and the condition information VSET2 corresponding to the second information makes the truth value of the logical expression true.
- the A combination of two or more protocols corresponds to a combination of identifiers, and the combination of identifiers corresponds to attribute information VSET1, but if the truth value of the logical expression is true, there are no restrictions on the combination method of the identifiers Absent.
- a hierarchical ID-based encryption method applying the ID-based encryption method for example, Reference 10 “C. Gentry, A. Silverberg,“ Hierarchical ID-based cryptography, ”Proceedings of ASIACRYPT 2002, Lecture Notes in Computer Science , Springer-Verlag, 2002. ”etc.
- the combination of protocols is limited. That is, in the hierarchical ID-based encryption method, the combination of a plurality of identifiers corresponding to a plurality of protocols is limited. That is, in the hierarchical ID-based encryption method, a new identifier generated by a combination of a plurality of identifiers needs to form a tree structure, and the new identifier must always include its parent identifier.
- ID2 of the identifier ID1 and the identifier ID2 is a new identifier
- ID3 the combination of the identifier ID1, the identifier ID2, and the identifier ID3 is set as a new identifier ID1
- the combination of identifier ID1 and identifier ID3 cannot be a new identifier ID1
- the sender device switches whether the attribute information VSET1 corresponds to the function encryption encryption function or the attribute information VSET1 corresponds to the function encryption key generation function.
- the receiver device further includes a first switching unit, and the receiver device associates the condition information VSET2 with a function encryption method key generation function or encrypts the condition information VSET2 with a function encryption method according to the protocol specified by the specified information. You may further have the 2nd switching part which switches whether it makes it respond
- some areas of the attribute information VSET1 and the condition information VSET2 may be reserved areas for which usage is not determined.
- the value of at least a part of the vector w ( ⁇ ) ⁇ (first partial correspondence information) included in the attribute information VSET1 is fixed in advance
- at least a part of the vector v included in the condition information VSET2 (second correspondence information)
- the value of ( ⁇ ) ⁇ (second partial correspondence information) may be fixed in advance, and a vector in which these values are fixed may be a spare area.
- the inner product of the first partial correspondence information with a vector w ( ⁇ ) ⁇ whose value is fixed in advance and the second partial correspondence information with a vector v ( ⁇ ) ⁇ whose value is fixed in advance is one type of identifier or It may be 0 (zero element) regardless of the combination of plural types of identifiers.
- the vector w ( ⁇ ) ⁇ (first partial correspondence information) set as the spare area is a vector whose elements are all zero elements (zero vector)
- the first corresponding to the attribute information VSET1 including the spare area The information has upward compatibility with the updated first information in which some value is entered in the spare area.
- the attribute information VSET1 and the condition information VSET2 are updated by giving some value to the spare area of the attribute information VSET1 and the condition information VSET2
- Correct decoding is performed by the first information corresponding to the attribute information VSET1 and the second information corresponding to the updated condition information VSET2.
- the vector w ( ⁇ ) ⁇ set as the spare area of the attribute information VSET1 is set as a zero vector
- the vector v ( ⁇ ) ⁇ set as the reserved area of the condition information VSET2 is set as a vector including elements other than zero elements.
- the first information corresponding to the attribute information VSET1 including the spare area has upward compatibility with the updated first information in which some value is entered in the spare area, but the condition including the spare area is included.
- the second information corresponding to the information VSET2 does not have upward compatibility with the updated second information in which some value is entered in the spare area.
- the vector v ( ⁇ ) ⁇ used as the spare area for the condition information VSET2 is set as a zero vector
- the vector w ( ⁇ ) ⁇ used as the spare area for the attribute information VSET1 is a vector including elements other than the zero element.
- the second information corresponding to the condition information VSET2 including the spare area has upward compatibility with the updated second information in which some value is entered in the spare area.
- the first information corresponding to the attribute information VSET1 including is not upward compatible with the updated first information in which some value is entered in the spare area.
- the upward compatibility before and after the update can be changed according to how the value of the spare area is set.
- the first information is ciphertext corresponding to the attribute information VSET1
- the second information is key information corresponding to the condition information VSET2
- the sender device performs encryption
- the receiver device decrypts the information. It is the form which performs.
- Such a form can be applied, for example, when the protocol applying the functional encryption method is a Timed-Release encryption protocol, a Forward Secure encryption protocol, a Key Insulated encryption protocol, a CCA2 secure encryption protocol, or a combination thereof.
- the KP method is used.
- FIG. 35 is a block diagram for explaining the overall configuration of the function encryption application system 4 according to the fourth embodiment.
- the function encryption application system 4 of this embodiment includes a sender device 410 (information output device), a receiver device 420 (information processing device), and a key generation device 430 connected to a network 140.
- a sender device 410 information output device
- a receiver device 420 information processing device
- a key generation device 430 connected to a network 140.
- FIG. 35 shows one sender device 410, one receiver device 420, and one key generation device 430, but two or more sender devices 410, receiver devices 420, and so on.
- FIG. 36 is a block diagram for explaining the configuration of the sender apparatus 410 of FIG.
- the sender device 410 of this embodiment includes a temporary memory 111a, a storage unit 111c, an input unit 112, a control unit 113, an identifier specifying unit 414a, an attribute information setting unit 414b (corresponding information).
- a setting unit an encryption unit 414c, and a communication unit 115.
- the sender device 410 is read and executed by a special program loaded into a known or dedicated computer having a CPU (central processing unit), RAM (random-access memory), ROM (read-only memory), etc. It is a special device composed of That is, the control unit 113, the identifier specifying unit 414a, the attribute information setting unit 414b, and the encryption unit 414c are, for example, processing units configured by the CPU executing a predetermined program. Further, at least a part of the processing unit of the sender device 410 may be an integrated circuit.
- the temporary memory 111a and the storage unit 111c are, for example, a RAM, a register, a cache memory, an auxiliary storage device such as an element in an integrated circuit or a hard disk, or a storage area formed by combining at least a part of these.
- the input unit 112 is, for example, a keyboard, a mouse, an input port, and the like, and the communication unit 115 is a communication device, such as a modem or a LAN card.
- the sender device 410 executes each process under the control of the control unit 113.
- data output from each processing unit of the sender device 410 and data received by the communication unit 115 are stored in the temporary memory 111a one by one.
- the data stored in the temporary memory 111a is read out as necessary, is input to each processing unit of the sender device 410, and is used for the processing.
- FIG. 37 is a block diagram for explaining the configuration of the recipient device 420 of FIG.
- the recipient device 420 of this embodiment includes a temporary memory 121a, a storage unit 421b, a control unit 123, an identifier specifying unit 424a, a condition information generation unit 424c, and a key generation processing unit 424d. And a decoding unit 424e and a communication unit 125.
- FIG. 37 shows two blocks indicating the communication unit 125, but this does not mean that two separate communication units 125 are required.
- the receiver device 420 is a special device configured by, for example, reading and executing a special program in a known or dedicated computer including a CPU, a RAM, a ROM, and the like. That is, the control unit 123, the identifier specifying unit 424a, the condition information generation unit 424c, the key generation processing unit 424d, and the decryption unit 424e are, for example, processing units configured by the CPU executing a predetermined program. Further, at least a part of the processing unit of the recipient device 420 may be an integrated circuit.
- the temporary memory 121a and the storage unit 421b are storage areas including, for example, a RAM, a register, a cache memory, an auxiliary storage device such as an element in an integrated circuit or a hard disk, or a combination of at least a part thereof.
- the communication unit 115 is a communication device such as a modem or a LAN card, for example.
- the receiver device 420 executes each process under the control of the control unit 123.
- data output from each processing unit of the recipient device 420 and data received by the communication unit 125 are stored in the temporary memory 121a one by one.
- the data stored in the temporary memory 121a is read out as necessary, is input to each processing unit of the recipient device 420, and is used for the processing.
- FIG. 38 is a block diagram for explaining the configuration of the key generation device 430 of FIG.
- the key generation device 430 of this embodiment includes a temporary memory 131a, a storage unit 431b, a control unit 133, a key generation unit 434, and a communication unit 135.
- the key generation device 430 is a special device configured by, for example, reading and executing a special program in a known or dedicated computer including a CPU, a RAM, a ROM, and the like. That is, the control unit 133 and the key generation unit 434 are, for example, processing units configured by the CPU executing a predetermined program. Further, at least a part of the processing unit of the key generation device 430 may be an integrated circuit.
- the temporary memory 131a and the storage unit 431b are, for example, a RAM, a register, a cache memory, an auxiliary storage device such as an element in an integrated circuit or a hard disk, or a storage area formed by a combination of at least a part thereof.
- the communication unit 135 is a communication device such as a modem or a LAN card, for example.
- the key generation device 430 executes each process under the control of the control unit 133.
- data output from each processing unit of the key generation device 430 and data received by the communication unit 135 are stored in the temporary memory 131a one by one.
- the data stored in the temporary memory 131a is read out as necessary, is input to each processing unit of the key generation device 430, and is used for the processing.
- FIG. 39A and FIG. 39B are diagrams exemplifying the correspondence relationship between the specific information PI and the protocol for specifying one or more types of protocols in the fourth embodiment.
- one specific information PI corresponding to the selected protocol is specified, and when selecting a combination of two or more protocols, two or more types to be selected are selected. The combination of specific information PI corresponding to each protocol is specified.
- specific information PI is assigned for each protocol, and specific information PI is also assigned to a combination of two or more types of protocols.
- specific information PI is specified, when one of the protocols is selected alone, one specific information PI corresponding to the selected protocol is specified, and when selecting a combination of two or more protocols, two or more types to be selected are selected. Specific information PI corresponding to the combination of protocols is specified.
- FIG. 40A, FIG. 40B, and FIG. 41 are diagrams for explaining an example of a rule for specifying an identifier ID ( ⁇ ) that is defined for each protocol or each combination of protocols in the fourth embodiment.
- the identifier ID ( ⁇ ) in this embodiment is an n ( ⁇ ) -dimensional vector whose elements are elements of the finite field Fq .
- an identifier ID ( ⁇ ) is assigned for each selectable protocol.
- the identifier ID ( ⁇ ) assigned to the selected protocol is entered according to the rules defined for that protocol. For example, when the Timed-Release encryption protocol is selected, information (n ( ⁇ ) dimensional vector corresponding to the date / time, count value, etc.) specifying the future time point is input to the identifier ID (1).
- An example of the “future time point” is a time point in the future than the generation time point of the first information.
- a time interval including the receiver device 420 and its user's unique identifier (e-mail address, telephone number, MAC address, etc.) and the current time point A value (n ( ⁇ ) dimension vector) determined by a combination with (a date / time interval or a count value interval) is input to the identifier ID (2) or the identifier ID (3).
- An example of “current time” is the generation time of the first information.
- disposable information random vector having a random value as an element
- n ( ⁇ ) -dimensional vector is input to the identifier ID (4).
- a constant (const.) That is an n ( ⁇ ) dimension vector is input to the identifier ID ( ⁇ ) assigned to the protocol that was not selected. For example, when only the Timed-Release encryption protocol is selected, information specifying a future time point is input to the identifier ID (1), and other identifiers ID (2), ID (3), ID (4) A constant (const.) Is input to.
- An example of a constant (const.) Is an n ( ⁇ ) -dimensional zero vector. Note that the constant (const.) Input to each identifier ID ( ⁇ ) may be the same value or a different value.
- the value of the identifier ID ( ⁇ ) is determined on the assumption that a plurality of protocols constituting the combination are selected. For example, when a combination of the Forward Secure encryption protocol and the CCA2 secure encryption protocol is selected, a value determined by a combination of the unique identifier of the receiver device 420 or the user and the time interval including the current time point is an identifier ID ( 2), disposable information is input to the identifier ID (4), and constants (const.) Are input to the other identifiers ID (1) and ID (3).
- the identifier ID ( ⁇ ) is assigned only to the selected protocol. For example, when only the Timed-Release encryption protocol is selected, only an identifier ID (1) indicating information for specifying a future time point is assigned. Also, for example, when a combination of the Forward Secure encryption protocol and the CCA2 secure encryption protocol is selected, a value determined by a combination of the unique identifier of the receiver device 420 or the user and the time interval including the current time point is indicated. Only the identifier ID (2) and the identifier ID (4) indicating disposable information are assigned.
- an identifier ID ( ⁇ ) is assigned for each selectable protocol and protocol combination.
- the identifier ID ( ⁇ ) assigned to the selected protocol and protocol combination is input with a value according to each rule defined for each protocol constituting the selected protocol or combination, and the protocol not selected
- a constant (const.) Is input to the identifier ID ( ⁇ ) assigned to the combination. For example, when the combination of the Forward Secure encryption protocol and the CCA2 secure encryption protocol is selected, the value determined by the combination of the unique identifier of the receiver device 420 or its user, the time interval including the current time point, and the disposable information is A constant (const.) Is input to the identifier ID (6) and the other identifier ID ( ⁇ ).
- the above-described identifier determination method is merely an example, and the identifier may be specified by other methods.
- the identifier ID ( ⁇ ) may be assigned only to the selected protocol and the combination of protocols.
- one identifier may be constituted by a combination (for example, bit combination) of each identifier ID ( ⁇ ) obtained as described above.
- FIG. 42A is a diagram for explaining the data structure of the attribute information VSET1.
- FIG. 42B is a diagram for explaining the data structure of the condition information VSET2.
- the identifier ID ′ ( ⁇ ) is an n ( ⁇ ) -dimensional vector corresponding to a predetermined identifier ID ( ⁇ ) assumed on the receiver device 420 side. That is, the value of the identifier ID ′ ( ⁇ ) is determined so that the inner product of the identifier ID ′ ( ⁇ ) and the predetermined identifier ID ( ⁇ ) is zero.
- the identifier ID ( ⁇ ) is set according to the example of FIG. 40A
- the identifiers ID (1), ID (2), ID (3), ID of the predetermined predetermined values determined according to the rule of FIG. 40A.
- the “assumed predetermined value” corresponds to a condition composed of a protocol assumed on the receiver device 420 side and / or a combination of the protocols. Specifically, the “assumed predetermined value” corresponds to a literal of a standard logical expression assumed on the receiver device 420 side.
- Identifier ID ′ (1) is set to be 0.
- Such a rule for specifying each identifier ID ′ ( ⁇ ) is determined in advance and set in the identifier specifying unit 424a of the recipient device 420.
- the key generation processing unit 424d and the decryption unit 424e of the recipient device 420 have a standard logical expression (for example, PRO (1) ⁇ PRO) corresponding to a condition including several protocols and / or combinations of the protocols. (2) ⁇ PRO (3)) is preset. In other words, a labeled matrix LMT (MT, LAB) corresponding to the standard logical expression is determined in advance in the key generation processing unit 424d and the decryption unit 424e.
- a standard logical expression for example, PRO (1) ⁇ PRO
- ⁇ PRO (3) is preset.
- LMT labeled matrix LMT (MT, LAB) corresponding to the standard logical expression is determined in advance in the key generation processing unit 424d and the decryption unit 424e.
- n (lambda) dimensional vector v ( ⁇ ) ⁇ specifying the PRO (lambda) and labels LAB (lambda) by is determined n (lambda) dimensional vector v ( ⁇ ) ⁇ the The value is determined, and the standard form formula and the labeled matrix LMT (MT, LAB) can be specified.
- the plaintext Mt to be encrypted is stored in the storage unit 111c of the sender device 410.
- the master secret information MSK [Setup (1 sec , ( ⁇ ; n (1),..., N ( ⁇ )): setup] of the functional encryption method is stored. Reference) is stored.
- FIG. 43A is a flowchart for explaining an encryption process according to the fourth embodiment.
- FIG. 43B is a flowchart for explaining key information generation processing of the fourth embodiment.
- FIG. 44 is a flowchart for explaining the decoding processing of the fourth embodiment.
- identification information PI for identifying one or more types of protocols to which the function encryption method to be executed is applied is input to the input unit 112 of the sender device 410 (FIG. 36) ( Step S411).
- the specific information PI is determined as shown in FIG. 39A, specific information PI corresponding to one type of protocol selected by the user, or specific corresponding to two or more types of protocols selected by the user, respectively.
- a combination of information PI is input to the input unit 112.
- the specific information PI is determined as shown in FIG. 39B, the specific information PI corresponding to one type of protocol or two or more types of protocols selected by the user is input to the input unit 112.
- the specific information PI input to the input unit 112 is input to the identifier specifying unit 414a.
- the identifier specifying unit 414a performs each protocol or each combination of protocols in accordance with a rule determined for each protocol specified by the specific information PI or each protocol combination (see FIGS. 40A, 40B, and 41).
- the identifier ID ( ⁇ ) is specified for the ID, and one or more types of the specified identifier ID ( ⁇ ) are output (step S412).
- the attribute information VSET1 output from the attribute information setting unit 414b is input to the encryption unit 414c.
- the encryption unit 414c reads the plaintext Mt from the storage unit 111c, inputs the attribute information VSET1 and the plaintext Mt to the encryption function of the functional encryption method, and generates the ciphertext Ct of the plaintext Mt (step S414).
- the generated ciphertext Ct is sent to the communication unit 115.
- the communication unit 115 (output unit) transmits the ciphertext Ct (first information) to the recipient device 420 via the network 140 (step S415).
- the communication unit 125 of the recipient device 420 receives the ciphertext Ct (first information) (step S421).
- the identifier specifying unit 424a uses the standard form predetermined by the receiver device 420 described above in accordance with the rules determined for each protocol or each combination of protocols for each protocol or each combination of protocols.
- One or more types of identifiers ID ′ ( ⁇ ) used in the logical expression are specified (step S422).
- condition information generating unit 424c One or more kinds of identifiers ID ′ ( ⁇ ) specified by the identifier specifying unit 424a are input to the condition information generating unit 424c.
- the condition information generation unit 424c v ( ⁇ ) ⁇ ID '( ⁇ )... (138)
- the condition information VSET2 output from the condition information generation unit 424c is input to the key generation processing unit 424d.
- the key generation processing unit 424d identifies the label LAB ( ⁇ ) using the n ( ⁇ ) -dimensional vector v ( ⁇ ) ⁇ included in the condition information VSET2, and determines a labeled matrix LMT (MT, LAB) (step S424). .
- the labeled matrix LMT (MT, LAB) in which the label LAB ( ⁇ ) is specified is sent to the communication unit 125.
- the communication unit 125 transmits the labeled matrix LMT (MT, LAB) to the key generation device 430 via the network 140, and requests generation of key information SKS corresponding to the labeled matrix LMT (MT, LAB) ( Step S425).
- the communication unit 135 of the key generation device 430 receives the labeled matrix LMT (MT, LAB) corresponding to the condition information VSET2 (step S431).
- the labeled matrix LMT (MT, LAB) received by the communication unit 135 is input to the key generation unit 434.
- the key generation unit 434 reads out the master secret information MSK from the storage unit 431b, and uses the master secret information MSK and the labeled matrix LMT (MT, LAB), and the key information SKS corresponding to the labeled matrix LMT (MT, LAB). Is generated and output (step S432).
- the key generation unit 434 generates and outputs the key information SKS of the equation (112) specified by the equations (95)-(99) (106) (108) (109).
- the generated key information SKS is sent to the communication unit 135, and the communication unit 135 transmits the key information SKS to the recipient device 420 via the network 140 (step S433).
- the communication unit 125 of the receiver device 420 receives the transmitted key information SKS and sends it to the key generation processing unit 424d.
- the key generation processing unit 424d stores the key information SKS (second information) in the storage unit 421b (step S426).
- the ciphertext Ct (first information) received by the communication unit 125 in step S421 and the key information SKS (second information) read from the storage unit 421b are input to the decryption unit 424e.
- the decryption unit 424e inputs the ciphertext Ct (first information) and the key information SKS (second information) to the decryption function of the function encryption method, executes the decryption process, and outputs the decryption result Mr obtained thereby. (Step S427).
- the truth value of the standard form logical expression set in the key generation processing unit 424d is false, the attribute information VSET1 and the condition information VSET2 are not GV ⁇ ⁇ span ⁇ MT TFV > and are correct.
- the decryption result cannot be obtained. This means that only the ciphertext Ct that matches the condition defined by the protocol and / or a combination of the protocols predetermined by the receiver device 420 is correctly decrypted.
- the protocol and the combination of protocols used by the sender apparatus 410 can be selected, and the conditions of the ciphertext protocol and the protocol combination that can be decrypted by the receiver apparatus 420 are set. Can do. Then, only when the protocol or the combination of protocols selected by the sender apparatus 410 matches the conditions set in the receiver apparatus 420, the receiver apparatus 420 can correctly decrypt the transmitted ciphertext.
- the ciphertext protocol that can be decrypted by the receiver device 420 and the condition of the protocol combination can be set by freely combining logical sum, logical product, and negation. In particular, if a condition including a logical sum is set in the receiver device 420, it is not necessary for the receiver device 420 to use different key information according to the protocol selected by the sender device 410 or the like.
- some areas of the attribute information VSET1 and the condition information VSET2 may be reserved areas. That is, at least a part of the vector (first partial correspondence information) included in the attribute information VSET1 and the vector (second partial correspondence information) included in the condition information VSET2 may be set as a spare area.
- the system settings can be made. These increases can be made without change.
- 45A and 45B are diagrams for explaining an example in which some areas of the attribute information VSET1 and the condition information VSET2 are reserved areas.
- the vector v ( ⁇ -s) ⁇ , ..., v ( ⁇ ) ⁇ included in the attribute information VSET and the vector w ( ⁇ -s) ⁇ , ..., w included in the condition information VSET2 ( ⁇ ) ⁇ is a reserved area.
- s is an integer constant of 1 or more and less than ⁇ .
- the vector v ( ⁇ -s) ⁇ , ..., v ( ⁇ ) ⁇ is a constant vector const. ( ⁇ -s), ... , const. ( ⁇ )
- the vector w ( ⁇ -s) ⁇ , ..., w ( ⁇ ) ⁇ is a constant vector const. '( ⁇ -s), ..., const. '( ⁇ ).
- spare areas are set so that the inner product of the spare area vector w ( ⁇ ) ⁇ and the spare area vector v ( ⁇ ) ⁇ becomes 0 regardless of the value of the specific information PI.
- the constant vectors const. ( ⁇ -s), ..., const. ( ⁇ ) may be all zero vectors, or the constant vectors const. '( ⁇ -s), ..., const.' ( ⁇ ) may be all zero vectors.
- the constant vectors const. ( ⁇ -s), ..., const. ( ⁇ ) are all zero vectors, and the constant vectors const. '( ⁇ -s), ..., const.' ( A part of ( ⁇ ) may be other than the zero vector.
- '( ⁇ -s), ..., const.' ( ⁇ ) are all zero vectors, and the constant vectors const. ( ⁇ -s), ..., const. At least a part of ( ⁇ ) may be other than the zero vector.
- the constant vector const. ( ⁇ -s), ..., const. ( ⁇ ) is at least partly non-zero, and the constant vector const. '( ⁇ -s), ..., const.
- a part of '( ⁇ ) may be other than the zero vector, and the inner product of the vector w ( ⁇ ) ⁇ of the spare area and the vector v ( ⁇ ) ⁇ of the spare area may be zero.
- the first information is key information corresponding to the attribute information VSET1
- the second information is ciphertext corresponding to the condition information VSET2
- the sender device outputs the key information to the receiver device.
- This is a form in which the stored ciphertext is decrypted.
- the protocol applying the functional encryption method is, for example, the Keyword search encryption protocol, or a combination of the Keyword search encryption protocol and the Forward Secure encryption protocol, the Key Insulated encryption protocol, or the CCA2 secure encryption protocol. Applicable in certain cases.
- the CP method is used. Below, it demonstrates centering around difference with 4th Embodiment, and simplifies description about the matter which is common in 4th Embodiment.
- the function encryption application system 5 of this embodiment includes a sender device 510 (information output device), a receiver device 520 (information processing device), and a key generation device 430 connected to a network 140.
- a sender device 510 information output device
- a receiver device 520 information processing device
- a key generation device 430 connected to a network 140.
- FIG. 35 shows one sender device 510, one recipient device 520, and one key generation device 430, but two or more sender devices 510, recipient devices 520, There may be a key generation device 430.
- FIG. 46 is a block diagram for explaining the configuration of the sender apparatus 510 of this embodiment.
- parts common to the fourth embodiment are denoted by the same reference numerals as in the fourth embodiment, and description thereof is omitted (the same applies hereinafter).
- the sender apparatus 510 of this embodiment includes a temporary memory 111a, a storage unit 511d, an input unit 112, a control unit 113, an identifier specifying unit 414a, an attribute information setting unit 414b, a key A generation processing unit 514d and a communication unit 115 are included.
- the sender device 510 is a special device configured by, for example, reading and executing a special program in a known or dedicated computer including a CPU, a RAM, a ROM, and the like.
- the key generation processing unit 514d is a processing unit or an integrated circuit configured by the CPU executing a predetermined program
- the storage unit 511d is a RAM, a register, a cache memory, an element in the integrated circuit, or a hard disk Or a storage area comprising a combination of at least a part of them.
- FIG. 47 is a block diagram for explaining the configuration of the recipient apparatus 520 of the present embodiment.
- the recipient device 520 of this embodiment includes a temporary memory 121a, storage units 421b and 521c, a control unit 123, an identifier specifying unit 524a, a condition information generation unit 524c, and an encryption unit 524d. And a decoding unit 524e and a communication unit 125.
- the recipient device 520 is a special device configured by, for example, reading and executing a special program in a known or dedicated computer including a CPU, a RAM, a ROM, and the like.
- the encryption unit 524d is a processing unit or an integrated circuit configured by the CPU executing a predetermined program
- the storage units 421b and 521c are RAM, registers, cache memory, elements in the integrated circuit, or It is an auxiliary storage device such as a hard disk, or a storage area composed of a combination of at least some of these.
- Specific information 48A and 48B are diagrams exemplifying the correspondence relationship between the specification information PI and the protocol for specifying one or more types of protocols in the fifth embodiment.
- one specific information PI corresponding to the selected protocol is specified, and when selecting a combination of two or more protocols, two or more types to be selected are selected. The combination of specific information PI corresponding to each protocol is specified.
- specific information PI is assigned for each protocol, and specific information PI is also assigned to a combination of two or more protocols.
- specific information PI is specified, and when selecting a combination of two or more protocols, two or more types to be selected are selected. Specific information PI corresponding to the combination of protocols is specified.
- [identifier] 49A, 49B, and 50 are diagrams for explaining an example of a rule for specifying an identifier ID ( ⁇ ) that is defined for each protocol or each combination of protocols in the fifth embodiment. is there.
- the identifier ID ( ⁇ ) in this embodiment is an n ( ⁇ ) -dimensional vector whose elements are elements of the finite field Fq .
- an identifier ID ( ⁇ ) is assigned for each selectable protocol.
- the identifier ID ( ⁇ ) assigned to the selected protocol is input with a value according to the rule defined for that protocol. For example, when the Keyword search encryption protocol is selected, an n ( ⁇ ) -dimensional vector corresponding to the search keyword is input to the identifier ID (1). On the other hand, a constant (const.) That is an n ( ⁇ ) -dimensional vector is input to the identifier ID ( ⁇ ) assigned to the protocol that has not been selected. Further, when a combination of a plurality of protocols is selected, the value of the identifier ID ( ⁇ ) is determined on the assumption that a plurality of protocols constituting the combination are selected.
- the n ( ⁇ ) dimension vector corresponding to the search keyword is input to the identifier ID (1)
- the n ( ⁇ ) dimension vector Disposable information is input to the identifier ID (4)
- a constant (const.) That is an n ( ⁇ ) -dimensional vector is input to the other identifiers ID (2) and ID (3).
- the identifier ID ( ⁇ ) is assigned only to the selected protocol. For example, when the Keyword search encryption protocol is selected, only an identifier ID (1) that is an n ( ⁇ ) -dimensional vector indicating a search keyword is assigned. Also, for example, when a combination of the Keyword search encryption protocol and the CCA2 secure encryption protocol is selected, an identifier ID (1) that is an n ( ⁇ ) dimension vector indicating a search keyword and an n ( ⁇ ) dimension vector Only the identifier ID (3) indicating the disposable information is assigned.
- an identifier ID ( ⁇ ) is assigned for each selectable protocol and protocol combination.
- the identifier ID ( ⁇ ) assigned to the selected protocol and protocol combination is input with a value according to each rule defined for each protocol constituting the selected protocol or combination, and the protocol not selected A constant (const.) That is an n ( ⁇ ) -dimensional vector is input to the identifier ID ( ⁇ ) assigned to the combination.
- the n ( ⁇ ) dimension vector determined by the combination of the search keyword and the disposable information is input to the identifier ID (3), and others A constant (const.), Which is an n ( ⁇ ) dimensional vector, is input to the identifier ID ( ⁇ ).
- the above-described identifier determination method is merely an example, and the identifier may be specified by other methods.
- the identifier ID ( ⁇ ) may be assigned only to the selected protocol and the combination of protocols.
- the identifier ID ′ ( ⁇ ) is an n ( ⁇ ) -dimensional vector corresponding to an assumed identifier ID ( ⁇ ) having a predetermined value. That is, the value of the identifier ID ′ ( ⁇ ) is determined so that the inner product of the identifier ID ′ ( ⁇ ) and the predetermined identifier ID ( ⁇ ) is zero.
- the identifier ID ( ⁇ ) is set according to the example of FIG. 49A
- the “assumed predetermined value” corresponds to a protocol and / or a combination of the protocol and / or a keyword assumed on the receiver device 520 side.
- An identifier ID ′ (1) in which inner product ID (1) ⁇ ID ′ (1) 0 is set for the identifier ID (1) to be performed.
- Such a rule for specifying each identifier ID ′ ( ⁇ ) is determined in advance and set in the identifier specifying unit 524a of the recipient device 520.
- FIG. 51 is a diagram for explaining an example of the encrypted DB according to the fifth embodiment.
- Mr1 to Mr99 are search target information such as documents
- KWr1 to KWr9 are keywords such as words
- True is data such as “1” meaning “true”.
- C (Mr1),..., C (Mr99) are ciphertexts of the search target information Mr1 to Mr99, respectively.
- the ciphertext C (Mr1),..., C (Mr99) encryption method may be any method such as a common key encryption method, a public key encryption method, an ID-based encryption method, and a function encryption method.
- Cr (KWr1, True), ..., Cr (KWr9, True) are the ciphertexts of the function cryptosystem obtained by inputting the condition information VSET2 and plaintext True into the encryption function of the functional cryptosystem, respectively. (Second information).
- the ciphertext Cr (KWr1, True),..., Cr (KWr9, True) can be correctly decrypted using the key information corresponding to the attribute information VSET1 corresponding to the keywords KWr1 to KWr9, respectively. That is, for example, the attribute information VSET1 corresponding to the keyword KWr1 and the condition information VSET2 used to encrypt the ciphertext Cr (KWr1, True) make the ethical value of the logical expression true.
- the encrypted DB for the ciphertext C (Mr1),..., C (Mr99) of the search target information (collectively referred to as “Mr”), converts the ciphertext corresponding to the corresponding keyword to Cr (KWr1, True), ..., Cr (KWr9, True) are associated.
- the keywords corresponding to the search target information Mr1 are KWr1, KWr2, KWr3, and KWr4
- the ciphertext C (Mr1) of the search target information Mr1 and the ciphertext Cr ( KWr1, True), Cr (KWr2, True), Cr (KWr3, True), and Cr (KWr4, True) are associated with each other.
- the ciphertext Cr (KWr1, True) can be correctly decrypted using the key information corresponding to the attribute information VSET1 corresponding to the keyword KWr1, and the ciphertext C (Mr1) of the search target information Mr1 is decrypted. Without knowing, it is possible to know that the keyword KWr1 corresponds to the search target information Mr1.
- such an encrypted DB is stored in the storage unit 521c of the recipient device 520, and each keyword (collectively referred to as “KWr”) and plain text True are stored in the storage unit 521c. Further, each ciphertext Cr (KWr, True) corresponding to each keyword KWr constituting the encrypted DB is sequentially updated as described later.
- PRO (1) ⁇ PRO (2) ⁇ PRO (3) is preset.
- a labeled matrix LMT (MT, LAB) corresponding to the standard logical expression is determined in advance in the key generation processing unit 514d and the decryption unit 524e.
- the master secret information MSK [Setup (1 sec , ( ⁇ ; n (1),..., N ( ⁇ )): setup] of the functional encryption method is stored. Reference) is stored.
- FIG. 52 is a flowchart for explaining search request processing according to the fifth embodiment.
- FIG. 53A is a flowchart for explaining key information generation processing according to the fifth embodiment.
- FIG. 53B is a flowchart for explaining search processing according to the fifth embodiment.
- identification information PI for identifying one or more types of protocols to which the function encryption method to be executed is applied and the search keyword KWt are input to the sender device 510 (FIG. 46).
- the data is input to the unit 112 (step S511).
- the specific information PI is determined as shown in FIG. 48A, specific information PI corresponding to one type of protocol selected by the user, or specific corresponding to two or more types of protocols selected by the user, respectively.
- a combination of information PI is input to the input unit 112.
- the specific information PI is determined as shown in FIG. 48B, the specific information PI corresponding to one type of protocol selected by the user or two or more types of protocol is input to the input unit 112.
- the keyword search encryption protocol is included in the selected protocol or combination of protocols.
- the specific information PI and the search keyword KWt input to the input unit 112 are input to the identifier specifying unit 414a.
- the identifier specifying unit 414a performs each protocol or each combination of protocols according to a rule determined for each protocol specified by the specific information PI or each protocol combination (see FIG. 49A, FIG. 49B, and FIG. 50). Then, the identifier ID ( ⁇ ) corresponding to the search keyword KWt is specified, and the specified one or more types of the identifier ID ( ⁇ ) are output (step S512).
- One or more types of identifier ID ( ⁇ ) output from the identifier specifying unit 414a are input to the attribute information setting unit 414b.
- the attribute information VSET1 output from the attribute information setting unit 414b is input to the key generation processing unit 514d.
- the key generation processing unit 514d identifies the label LAB ( ⁇ ) using the n ( ⁇ ) -dimensional vector w ( ⁇ ) ⁇ included in the attribute information VSET1, and determines a labeled matrix LMT (MT, LAB) (step S514). .
- the labeled matrix LMT (MT, LAB) in which the label LAB ( ⁇ ) is specified is sent to the communication unit 115.
- the communication unit 115 transmits the labeled matrix LMT (MT, LAB) to the key generation device 430 via the network 140, and the key information SKS (to the search keyword KWt) corresponding to the labeled matrix LMT (MT, LAB).
- the generation of the corresponding key information SKS) is requested (step S515).
- the communication unit 135 of the key generation device 430 receives the labeled matrix LMT (MT, LAB) corresponding to the attribute information VSET1 (step S531).
- the labeled matrix LMT (MT, LAB) received by the communication unit 135 is input to the key generation unit 434.
- the key generation unit 434 reads out the master secret information MSK from the storage unit 431b, and uses the master secret information MSK and the labeled matrix LMT (MT, LAB), and the key information SKS corresponding to the labeled matrix LMT (MT, LAB). Is generated and output (step S532).
- a specific generation procedure may be the same as that of the fourth embodiment except that, for example, w ( ⁇ ) ⁇ is used instead of v ( ⁇ ) ⁇ .
- the generated key information SKS is sent to the communication unit 135, and the communication unit 135 transmits the key information SKS to the sender device 520 via the network 140 (step S533).
- the communication unit 115 of the sender device 510 receives the key information SKS and sends it to the key generation processing unit 514d.
- the key generation processing unit 514d stores the key information SKS in the storage unit 511d (step S516).
- the key information SKS (first information) corresponding to the search keyword KWt read from the storage unit 511d is sent to the communication unit 115, and then sent to the recipient device 520 via the network 140 ( Step S517).
- the communication unit 125 of the recipient device 520 receives key information SKS (first information) corresponding to the transmitted search keyword KWt and stores it in the storage unit 421b. (Step S521).
- the identifier specifying unit 524a performs one or more types of identifier ID ′ ( ⁇ corresponding to each keyword KWr corresponding to each search target information Mr according to a rule defined for each protocol or each combination of protocols. ) Is specified (step S522).
- One or more types of identifier ID ′ ( ⁇ ) specified for each keyword KWr by the identifier specifying unit 524a are input to the condition information generating unit 524c.
- Each condition information VSET2 for each keyword KWr output from the condition information generation unit 524c is input to the encryption unit 524d.
- the encryption unit 524d reads the plaintext True from the storage unit 111c, inputs each condition information VSET2 and plaintext True for each keyword KWr to the encryption function of the function encryption method, and plaintext True for each keyword KWr.
- Ciphertext Cr (KWr, True) (second information) is generated, and the ciphertext corresponding to each keyword of the encrypted DB is updated by these to update the encrypted DB (step S524).
- the key information SKS (first information) corresponding to the search keyword KWt received by the communication unit 125 in step S521, and any ciphertext Cr (KWr, True) (second information) is input to the decoding unit 524e.
- the decryption unit 524e inputs the key information SKS (first information) and the ciphertext Cr (KWr, True) (second information) to the decryption function of the function encryption method, executes the decryption process, and the decryption obtained thereby
- the result Mr "True” or Not is output (step S525).
- Condition information VSET2 ⁇ , v ( ⁇ ) ⁇
- ⁇ 1, ... , ⁇ is performed (Equations (122) and (128)).
- the attribute information VSET1 corresponding to the key information SKS (first information) and the condition information VSET2 corresponding to the ciphertext Cr (KWr, True) (second information) are stored in the key generation processing unit 514d and the decryption unit 524e.
- the key information SKS first information
- the ciphertext C (Mr) of the search target information Mr corresponding to the same keyword KW as the search keyword KWt is extracted as a search result.
- the protocol of the key information SKS (first information) that can select the protocol used by the sender apparatus 510, the combination of protocols, and the keyword and can search the encrypted DB in the receiver apparatus 520.
- the receiver device 520 can store the encrypted DB in the encrypted DB only when the protocol, the combination of protocols, and the keyword selected by the sender device 510 match the conditions set in the receiver device 520. A search will be performed.
- a spare area as described in the first modification of the fourth embodiment may be provided for the attribute information VSET1 and the condition information VSET2.
- the first information is key information corresponding to the attribute information VSET1 and the second information is ciphertext corresponding to the condition information VSET2
- a protocol based on the Keyword search encryption protocol is used as an example of the case where the first information is key information corresponding to the attribute information VSET1 and the second information is ciphertext corresponding to the condition information VSET2
- a protocol based on the Keyword search encryption protocol is used. The case where it is executed is illustrated.
- the present invention is not limited to this.
- the sender apparatus switches between generating ciphertext corresponding to the attribute information VSET1 or generating key information corresponding to the attribute information VSET1 according to the protocol specified by the specific information PI.
- the receiver apparatus switches between generating key information corresponding to the condition information or generating a ciphertext corresponding to the condition information according to the protocol specified by the specific information PI.
- the function encryption application system 6 of this embodiment includes a sender device 610 (information output device), a receiver device 620 (information processing device), and a key generation device 430 connected to a network 140.
- a sender device 610 information output device
- a receiver device 620 information processing device
- a key generation device 430 connected to a network 140.
- FIG. 35 shows one sender device 610, one recipient device 620, and one key generation device 430, but two or more sender devices 610, recipient devices 620, There may be a key generation device 430.
- FIG. 54 is a block diagram for explaining the configuration of the sender apparatus 610 of this embodiment. Note that in this embodiment, portions that are the same as in the above-described embodiment are denoted by the same reference numerals as those in the above-described embodiment, and description thereof is omitted (the same applies hereinafter).
- the sender device 610 of this embodiment includes a temporary memory 111a, storage units 111c and 511d, an input unit 112, a control unit 113, an identifier specifying unit 414a, and an attribute information setting unit 414b.
- the sender device 610 is a special device configured by, for example, reading and executing a special program in a known or dedicated computer including a CPU, a RAM, a ROM, and the like.
- the switching unit 614 is a processing unit or an integrated circuit configured by the CPU executing a predetermined program.
- FIG. 55 is a block diagram for explaining the configuration of the recipient device 620 of this embodiment.
- the recipient device 620 of this embodiment includes a temporary memory 121a, storage units 421b and 521c, a control unit 123, an identifier specifying unit 624a, a condition information generation unit 624c, and a key generation processing unit. 424d, encryption unit 524d, decryption unit 624e, switching units 624a and 624b, and communication unit 125.
- the identifier specifying unit 624a has the functions of both the identifier specifying units 424a and 524a.
- the condition information generation unit 624c has the functions of both the condition information generation units 424c and 524c described above.
- the decoding unit 624e has the functions of both the decoding units 424e and 524e described above.
- FIG. 55 shows two blocks indicating the communication unit 125, but this does not mean that two separate communication units 125 are required.
- the receiver device 620 is a special device configured by, for example, reading and executing a special program in a known or dedicated computer including a CPU, a RAM, a ROM, and the like.
- the switching units 624a and 624b are a processing unit or an integrated circuit configured by the CPU executing a predetermined program.
- FIG. 56A is a flowchart for explaining processing of the sender device 610 of the sixth embodiment.
- FIG. 56B is a flowchart for explaining processing of the receiver device 620 of the sixth embodiment.
- the processing of this embodiment will be described with reference to these drawings.
- identification information PI for identifying one or more types of protocols to which the function encryption method to be executed is applied is input to the input unit 112 of the sender apparatus 610 (FIG. 54). (Step S611).
- the control of the switching unit 614 is performed. Therefore, the encryption processing in steps S411 to S415 of the fourth embodiment is executed.
- the sender apparatus 610 of this embodiment transmits the specific information PI together with the ciphertext Ct to the receiver apparatus 620.
- the protocol or the combination of protocols specified by the specific information PI is the search request process and the key information generation process for generating the key information corresponding to the attribute information VSET1 as in the fifth embodiment
- switching is performed.
- the search request processing and key information generation processing of steps S511 to S517 and S531 to S533 of the fifth embodiment are executed.
- the sender apparatus 610 of this embodiment transmits the specific information PI together with the key information SKS to the receiver apparatus 620.
- the communication unit 125 of the receiver device 620 sets the ciphertext Ct and the specific information PI transmitted from the sender device 610 or key information.
- a set of SKS and specific information PI is received (step S621).
- the protocol or the combination of protocols specified by the specific information PI is the decryption process and the key information generation process for generating the key information corresponding to the condition information VSET2 as in the fourth embodiment, switching is performed. Under the control of the units 624a and 624b, the decryption process and the key information generation process of steps S421 to S427 and S431 to S433 of the fourth embodiment are executed.
- the protocol or combination of protocols specified by the specific information PI is a search process for generating a ciphertext corresponding to the condition information VSET2 as in the fifth embodiment
- the control of the switching units 624a and 624b Therefore, the search processing of steps S521 to S525 of the fifth embodiment is executed.
- each operation defined on the finite field F q described above may be replaced with an operation defined on the finite ring Z q of order q .
- An example of a method of replacing each operation defined on the finite field F q with an operation defined on the finite ring Z q is a method of allowing q other than a prime number or a power value thereof.
- the key generation device is provided outside the sender device or the receiver device.
- the sender device or the receiver device may have the function of the key generation device. .
- Such a sender device or receiver device can generate key information itself without requesting the key generation device to generate key information.
- the condition information VSET2 is determined by the receiver device.
- the receiver apparatus may be able to determine the condition information VSET2 before the receiver apparatus receives the ciphertext or key information transmitted from the transmitter apparatus.
- the receiver device may determine the condition information VSET2 before receiving the ciphertext or key information transmitted from the sender device, and generate the key information or ciphertext corresponding to the condition information VSET2. Good.
- condition information VSET2 may be used instead of the attribute information VSET1, and the attribute information VSET1 may be used instead of the condition information VSET2. That is, the condition information VSET2 may correspond to the first correspondence information, and the attribute information VSET1 may correspond to the second correspondence information.
- each device exchanges information through the network.
- each device may exchange information through a portable recording medium such as a USB memory.
- this program is distributed by selling, transferring, or lending a portable recording medium such as a DVD or CD-ROM in which the program is recorded. Furthermore, the program may be distributed by storing the program in a storage device of the server computer and transferring the program from the server computer to another computer via a network.
- a computer that executes such a program first stores a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device.
- the computer reads a program stored in its own recording medium and executes a process according to the read program.
- the computer may directly read the program from a portable recording medium and execute processing according to the program, and the program is transferred from the server computer to the computer.
- the processing according to the received program may be executed sequentially.
- the program is not transferred from the server computer to the computer, and the above-described processing is executed by a so-called ASP (Application Service Provider) type service that realizes a processing function only by an execution instruction and result acquisition. It is good.
- the program in this embodiment includes information that is used for processing by an electronic computer and that conforms to the program (data that is not a direct command to the computer but has a property that defines the processing of the computer).
- the present apparatus is configured by executing a predetermined program on a computer.
- a predetermined program on a computer.
- at least a part of these processing contents may be realized by hardware.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Computing Systems (AREA)
- Storage Device Security (AREA)
Abstract
Description
〔第1~3実施形態での定義〕
まず、第1~3実施形態で使用する用語や記号を定義する。
(・)T:(・)Tは・の転置行列を表す。
(・)-1:(・)-1は・の逆行列を表す。
∧:∧は論理積を表す。
∨:∨は論理和を表す。
Z:Zは整数集合を表す。
k:kはセキュリティパラメータ(k∈Z, k>0)を表す。
q:qは1以上の整数を表す。
Zq:Zqは位数qの有限環を表す。有限環上の演算は、例えば、位数qを法とする剰余演算によって容易に構成できる。
1F:1Fは有限体Fqの乗法単位元を表す。
δ(i,j):δ(i,j)はクロネッカーのデルタ関数を表す。i=jの場合にδ(i,j)=1Fを満たし、i≠jの場合にδ(i,j)=0 Fを満たす。
y2+a1・x・y+a3・y=x3+a2・x2+a4・x+a6 …(1)
(ただし、a1,a2,a3,a4,a6∈Fq)を満たすx,y∈Fqからなる点(x,y)の集合に無限遠点と呼ばれる特別な点Oを付加したもので定義される。楕円曲線E上の任意の2点に対して楕円加算と呼ばれる二項演算+及び楕円曲線E上の任意の1点に対して楕円逆元と呼ばれる単項演算-がそれぞれ定義できる。また、楕円曲線E上の有理点からなる有限集合が楕円加算に関して群をなすこと、楕円加算を用いて楕円スカラー倍算と呼ばれる演算が定義できること、及びコンピュータ上での楕円加算などの楕円演算の具体的な演算方法はよく知られている(例えば、参考文献1、参考文献2「RFC 5091: Identity-Based Cryptography Standard (IBCS) #1: Supersingular Curve Implementations of the BF and BB1 Cryptosystems」、参考文献3「イアン・F・ブラケ、ガディエル・セロッシ、ナイジェル・P・スマート=著、「楕円曲線暗号」、出版=ピアソン・エデュケーション、ISBN4-89471-431-0」等参照)。
G2 n+1:n+1個の巡回群G2の直積を表す。
g1, g2,gT:g1, g2, gTは巡回群G1, G2,GTの生成元を表す。
V:Vはn+1個の巡回群G1の直積からなるn+1次元のベクトル空間を表す。
V*:V*はn+1個の巡回群G2の直積からなるn+1次元のベクトル空間を表す。
e:eは直積G1 n+1と直積G2 n+1との直積G1 n+1×G2 n+1を巡回群GTに写す非退化な双線形写像(bilinear map)を表す。双線形写像eは、巡回群G1のn+1個の元γL(L=1,...,n+1)(n≧1)と巡回群G2のn+1個の元γL *(L=1,...,n+1)とを入力とし、巡回群GTの1個の元を出力する。
e:G1 n+1×G2 n+1→GT …(2)
[双線形性]すべてのΓ1∈G1 n+1,Γ2∈G2 n+1及びν,κ∈Fqについて以下の関係を満たす。
e(ν・Γ1,κ・Γ2)=e(Γ1,Γ2)ν・κ …(3)
[非退化性]すべてのΓ1∈G1 n+1,Γ2∈G2 n+1を巡回群GTの単位元に写すものではない。
[計算可能性]あらゆるΓ1∈G1 n+1,Γ2∈G2 n+1についてe(Γ1,Γ2)を効率的に計算するアルゴリズムが存在する。
Pair:G1×G2→GT …(4)
を用いて双線形写像eを構成する。第1~3実施形態の双線形写像eは、巡回群G1のn+1個の元γL(L=1,...,n+1)からなるn+1次元ベクトル(γ1,...,γn+1)と、巡回群G2のn+1個の元γL *(i=1,...,n+1)からなるn+1次元ベクトル(γ1 *,...,γn+1 *)との入力に対し、巡回群GTの1個の元
e=ΠL=1 n+1Pair(γL, γL *) …(5)
を出力する。
[双線形性]すべてのΩ1∈G1,Ω2∈G2及びν,κ∈Fqについて以下の関係を満たす。
Pair(ν・Ω1,κ・Ω2)=Pair(Ω1,Ω2)ν・κ …(6)
[非退化性]すべてのΩ1∈G1,Ω2∈G2を巡回群GTの単位元に写すものではない。
[計算可能性]あらゆるΩ1∈G1,Ω2∈G2についてPair(Ω1,Ω2)を効率的に計算するアルゴリズムが存在する。
a1=(κ1・g1,0,0,...,0)
a2=(0,κ1・g1,0,...,0) …(7)
...
an+1=(0,0,0,...,κ1・g1)
a1 *=(κ2・g2,0,0,...,0)
a2 *=(0,κ2・g2,0,...,0) …(8)
...
an+1 *=(0,0,0,...,κ2・g2)
e(ai, aj *)=gT τ・δ(i,j) …(9)
を満たす。すなわち、i=jの場合には、式(5)(6)の関係から、
e(ai, aj *)= Pair(κ1・g1,κ2・g2)・Pair(0, 0)・...・Pair(0, 0)
= Pair(g1, g2)κ1・κ2・Pair(g1, g2)0・0・...・Pair(g1, g2)0・0
= Pair(g1, g2)κ1・κ2=gT τ
を満たす。一方、i≠jの場合には、e(ai, aj *)は、Pair(κ1・g1,κ2・g2)を含まず、Pair(κ1・g1,0)と Pair(0,κ2・g2)とPair(0,0)との積になる。さらに、式(6)の関係からPair(g1, 0)=Pair(0, g2)=Pair(g1, g2)0を満たす。そのため、i≠jの場合には、
e(ai, aj *)=e(g1, g2)0=gT 0
を満たす。
e(ai, aj *)=gT δ(i,j) …(10)
を満たす。ここで、gT 0=1は巡回群GTの単位元であり、gT 1= gTは巡回群GTの生成元である。この場合、基底ベクトルaiと基底ベクトルai *とは双対正規直交基底であり、ベクトル空間Vとベクトル空間V*とは、双線形写像を構成可能な双対ベクトル空間〔双対ペアリングベクトル空間(DPVS:Dual Paring Vector space)〕である。
A*:A*は基底ベクトルai *(i=1,...,n+1)を要素とするn+1行n+1列の行列を表す。例えば、基底ベクトルai *(i=1,...,n+1)が式(8)によって表現される場合、行列A*は、
X:Xは有限体Fqの元を要素とするn+1行n+1列の行列を表す。基底ベクトルaiの座標変換に用いられる。行列Xのi行j列(i=1,...,n+1,j=1,...,n+1)の要素をχi,j∈Fqとすると、行列Xは、
X *:X *は行列Xの逆行列の転置行列X*=(X-1)Tを表す。基底ベクトルai *の座標変換に用いられる。行列X*のi行j列の要素をχi,j *∈Fqとすると、行列X*は、
この場合、n+1行n+1列の単位行列をIとするとX・(X*)T=Iを満たす。すなわち、単位行列
χi →=(χi,1,...,χi,n+1) …(17)
χj →*=(χj,1 *,...,χj,n+1 *) …(18)
を定義する。すると、式(16)の関係から、n+1次元ベクトルχi →とχj →*との内積は、
χi →・χj →*=δ(i,j) …(19)
となる。
bi=Σj=1 n+1χi,j・aj …(20)
の演算によって得られる。例えば、基底ベクトルaj(j=1,...,n+1)が式(7)によって表現される場合、基底ベクトルbiの各要素をそれぞれ列挙して表現すると、以下のようになる。
bi=(χi,1・κ1・g1 ,χi,2・κ1・g1 ,...,χi,n+1・κ1・g1) …(21)
bi *=Σj=1 n+1χi,j *・aj * …(22)
の演算によって得られる。例えば、基底ベクトルaj *(j=1,...,n+1)が式(8)によって表現される場合、基底ベクトルbi *の各要素をそれぞれ列挙して表現すると、以下のようになる。
bi *=(χi,1 *・κ2・g2 ,χi,2 *・κ2・g2 ,...,χi,n+1 *・κ2・g2) …(23)
e(bi, bj *)=gT τ・δ(i,j) …(24)
を満たす。すなわち、式(5)(19)(21)(23)の関係から、
e(bi, bj *)=gT δ(i,j) …(25)
を満たす。この場合、基底ベクトルbiと基底ベクトルbi *とは、双対ペアリングベクトル空間(ベクトル空間Vとベクトル空間V*)の双対正規直交基底である。
なお、式(24)の関係を満たすのであれば、式(7)(8)で例示したもの以外の基底ベクトルai及びai *や、式(20)(22)で例示したもの以外の基底ベクトルbi及びbi *を用いてもよい。
B*:B*は基底ベクトルbi *(i=1,...,n+1)を要素とするn+1行n+1列の行列を表す。B*=X*・A*を満たす。例えば、基底ベクトルbi *(i=1,...,n+1)が式(23)によって表現される場合、行列B*は、
w→=(w1,...,wn)∈Fq n …(28)
wμ:wμはn次元ベクトルのμ(μ=1,...,n)番目の要素を表す。
v→:v→は有限体Fqの元を要素とするn次元ベクトルを表す。
v→=(v1,...,vn)∈Fq n …(29)
vμ:vμはn次元ベクトルのμ(μ=1,...,n)番目の要素を表す。
Enc:Encは共通鍵暗号方式の暗号化処理を示す共通鍵暗号関数。共通鍵暗号方式の具体例は、カメリア(Camellia)(登録商標)やAESなどを表す。
Enck(M):Enck(M)は共通鍵Kを用い、共通鍵暗号関数Encに従って平文Mを暗号化して得られた暗号文を表す。
Dec:Decは共通鍵暗号方式の復号処理を示す共通鍵復号関数を表す。
Deck(C):Deck(C)は共通鍵Kを用い、共通鍵復号関数Decに従って暗号文Cを復号して得られた復号結果を表す。
次に、関数暗号の一種である内積述語暗号の基本的な構成を例示する。
関数暗号とは、「属性情報」と呼ばれる情報と「述語情報」と呼ばれる情報との組み合わせが所定の論理式の真理値を「真」にする場合に暗号文が復号できる方式である。すなわち、関数暗号では、「属性情報」と「述語情報」の一方が暗号文に埋め込まれ、他方が鍵情報に埋め込まれ、暗号文又は鍵情報である第1情報に対応する属性情報と、鍵情報又は暗号文である第2情報に対応する述語情報とが予め定められた関数に入力された場合の当該関数値が予め定められた値となる場合に、正しい復号結果を生成する。例えば、参考文献9「"Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products," with Amit Sahai and Brent Waters One of 4 papers from Eurocrypt 2008 invited to the Journal of Cryptology」等に開示された述語暗号は関数暗号の一種である。
内積述語暗号は、属性情報や述語情報として互いに次元が等しいベクトルを用い、それらの内積が0となる場合に暗号文が復号される述語暗号である。内積述語暗号では、内積が0となることと論理式が「真」となることとが等価である。なお、参考文献9に記載された述語暗号も内積述語暗号の一種である。
内積述語暗号では、論理和や論理積からなる論理式を多項式で表現する。
まず、「xがη0である」という命題1と「xがη1である」という命題2との論理和 (x=η0)∨(x=η1)を
(x-η0)・(x-η1) …(30)
という多項式で表現する。すると、各真理値と式(30)の関数値との関係は以下のようになる。
ι0・(x-η0)+ι1・(x-η1) …(31)
という多項式で表現する。ただし、ι0及びι1は乱数である(その他の添え字が付いたιも同様)。すると、真理値と式(31)の関数値とは以下の関係となる。
f(x)=ι0・{(x-η0)・(x-η1)・(x-η2)}+ι1・(x=η3)+ι2・(x=η4) …(32)
で表現できる。
(x0-η0)・(x1-η1) …(33)
という多項式で表現することも可能であり、3つ以上の不定元を用い、論理和を多項式で表現することも可能である。
ι0・(x0-η0)+ι1・(x1-η1) …(34)
という多項式で表現することも可能であり、3つ以上の不定元を用い、論理積を多項式で表現することも可能である。
f(x0,...,x4)=ι0・{(x0-η0)・(x1-η1)・(x2-η2)}+ι1・(x3=η3)+ι2・(x4=η4)
となる。
論理式を示す多項式f(x0,...,xH-1)は、2つのn次元ベクトルの内積で表現できる。すなわち、多項式f(x0,...,xH-1)は、当該多項式f(x0,...,xH-1)の各項の不定元成分を各要素とするベクトル
v→=(v1,...,vn) …(35)
と、当該多項式f(x0,...,xH-1)の各項の係数成分を各要素とするベクトル
w→=(w1,...,wn) …(36)
との内積
f(x0,...,xH-1)=w→・v→ …(37)
に等しい。例えば、1つの不定元xで表現された多項式f(x)=θ0・x0+θ1・x+...+θn-1・xn-1は、2つのn次元ベクトル
v→=(v1,...,vn)=(x0 ,...,xn-1) …(38)
w→=(w1,...,wn)=(θ0,...,θn-1) …(39)
の内積
f(x)= w→・v→ …(40)
に等しい。
f(x0,...,xH-1)=0 ←→ w→・v→=0 …(41)
属性情報ATT:v→=(v1,...,vn) …(42)
述語情報PRE:w→=(w1,...,wn) …(43)
である。そして、属性情報ATTと述語情報PREの一方が暗号文に埋め込まれ、他方が鍵情報に埋め込まれる。
次に、内積述語暗号の具体例を示す。基本構成例1は、内積述語暗号によって鍵カプセル化メカニズムKEM (Key Encapsulation Mechanisms)を構成する例である。基本構成例1では、述語情報PREに対応する暗号文が生成され、属性情報ATTに対応する鍵情報が生成される。基本構成例1は、Setup(1k),GenKey(MSK,w→),Enc(PA,v→),Dec(SKw,C1,C2)を含む。
-入力:セキュリティパラメータk
-出力:マスター秘密情報MSK,公開パラメータPK
Setup(1k)の一例では、まず、セキュリティパラメータkをnとして、n+1次元の基底ベクトルai(i=1,...,n+1)を要素とするn+1行n+1列の行列Aと、基底ベクトルai *(i=1,...,n+1)を要素とするn+1行n+1列の行列A*と、座標変換のためのn+1行n+1列の行列X,X*とが選択される。次に、式(20)に従って座標変換されたn+1次元の基底ベクトルbi(i=1,...,n+1)が算出され、式(22)に従って座標変換されたn+1次元の基底ベクトルbi *(i=1,...,n+1)が算出される。そして、基底ベクトルbi *(i=1,...,n+1)を要素とするn+1行n+1列の行列B*がマスター秘密情報MSKとして出力され、ベクトル空間V, V*、基底ベクトルbi(i=1,...,n+1)を要素とするn+1行n+1列の行列B、セキュリティパラメータk、有限体Fq、楕円曲線E、巡回群G1, G2,GT、生成元g1, g2, gT、双線形写像eなどが公開パラメータPKとして出力される。
-入力:マスター秘密情報MSK,ベクトルw→
-出力:ベクトルw→に対応する鍵情報D*
GenKey(MSK,w→)の一例では、まず、有限体Fqから元α∈Fqが選択される。そして、マスター秘密情報MSKである行列B*を用い、ベクトルw→に対応する鍵情報
D*=α・(Σμ=1 nwμ・bμ *)+bn+1 *∈G2 n+1 …(44)
が生成され、出力される。なお、巡回群G2上での離散対数問題の求解が困難である場合、鍵情報D*からwμ・bμ *やbn+1 *の成分を分離抽出することは困難である。
-入力:公開パラメータPK,ベクトルv→,平文M
-出力:暗号文C1,C2,共通鍵K
Enc(PA,v→)の一例では、まず、共通鍵Kと有限体Fqの元である乱数υ1とが生成される。そして、行列Bなどの公開パラメータPKと、共通鍵Kを含む値に対応する有限体Fqの元υ2と、ベクトルv→と、乱数υ1とを用い、暗号文
C2=υ1・(Σμ=1 nvμ・bμ)+υ2・bn+1∈G1 n+1 …(45)
が生成される。
C1=Enck(M) …(46)
が生成され、暗号文C1と暗号文C2と共通鍵Kとが出力される。共通鍵Kの一例はK=gT τ・υ2∈GTである。ここで、添え字のυ2はυ2を意味する。また、前述のようにτの一例はτ=1Fである。なお、巡回群G1上での離散対数問題の求解が困難である場合、暗号文C2からvμ・bμやυ2・bn+1の成分を分離抽出することは困難である。
-入力:ベクトルw→に対応する鍵情報D1 *,暗号文C1,C2
-出力:共通鍵K,平文M
Dec(SKw,C1,C2)の一例では、まず、暗号文C2と鍵情報D1 *とが式(2)の双線形写像eに入力される。すると、式(3)(24)の性質から、
ここで、内積w→・v→=0であれば、式(47)は、
次に、当該共通鍵Kと暗号文C1とを用い、復号結果
M=Deck(C1) …(49)
が算出され出力される。
基本構成例2も、内積述語暗号を用いて鍵カプセル化メカニズムKEMを構成する場合の基本構成例であるが、基本構成例2では、属性情報ATTに対応する暗号文が生成され、述語情報PREに対応する鍵情報が生成される。この構成は、Setup(1k),GenKey(MSK,v→),Enc(PA,w→),Dec(SKv,C1,C2)を含む。基本構成例2は、基本構成例1のベクトルv→とベクトルw→とを逆にした構成となる。
D*=α・(Σμ=1 nvμ・bμ *)+bn+1 *∈G2 n+1 …(50)
が生成され、出力される。また、Enc(PA,w→)では、式(45)の代わりに、暗号文
C2=υ1・(Σμ=1 nwμ・bμ)+υ2・bn+1∈G1 n+1 …(51)
が生成される。また、Dec(SKv,C1,C2)では、式(44)で生成された鍵情報の代わりに式(50)で生成された鍵情報が用いられる。その他は、基本構成例1と同様である。
次に、第1~3実施形態の原理を説明する。
第1~3実施形態では関数暗号として述語暗号が用いられる。第1~3実施形態の関数暗号応用システムは、送信者装置(情報出力装置)と受信者装置(情報処理装置)とを含み、属性情報ATT(第1対応情報)と述語情報PRE(第2対応情報)とを用いる述語暗号方式を応用したプロトコル(関数暗号方式に従ったプロトコル)を実行する。
次に、本発明の第1実施形態を説明する。第1実施形態は、第1情報が属性情報ATTに対応する暗号文であり、第2情報が述語情報PREに対応する鍵情報であり、送信者装置が暗号化を行い、受信者装置が復号を行う形態である。このような形態は、例えば、述語暗号方式を応用したプロトコルが、Timed-Release暗号プロトコル、Forward Secure暗号プロトコル、Key Insulated暗号プロトコル若しくはCCA2安全暗号プロトコル、又は、その組み合わせである場合などに適用できる。
図1は、第1実施形態の関数暗号応用システム1の全体構成を説明するためのブロック図である。図1に示すように、本形態の関数暗号応用システム1は、ネットワーク140に接続された、送信者装置110(情報出力装置)と受信者装置120(情報処理装置)と鍵生成装置130とを有する。なお、説明の便宜上、図1には、送信者装置110と受信者装置120と鍵生成装置130とが1個ずつ表記されているが、2個以上の送信者装置110や受信者装置120や鍵生成装置130が存在してもよい。
図2は、図1の送信者装置110の構成を説明するためのブロック図である。
図2に示すように、本形態の送信者装置110は、一時メモリ111aと、記憶部111b,111cと、入力部112と、制御部113と、識別子特定部114aと、属性情報設定部114b(対応情報設定部)と、暗号化部114cと、通信部115とを有する。
図3は、図1の受信者装置120の構成を説明するためのブロック図である。
図3に示すように、本形態の受信者装置120は、一時メモリ121aと、記憶部121bと、制御部123と、識別子特定部124aと、多項式生成部124bと、述語情報生成部124cと、鍵生成処理部124dと、復号部124eと、通信部125とを有する。なお、図面表記の便宜上、図3には、通信部125を示すブロックが2つ表記されているが、これは別個の通信部125が2つ必要なことを意味しない。
図4は、図1の鍵生成装置130の構成を説明するためのブロック図である。
図4に示すように、本形態の鍵生成装置130は、一時メモリ131aと、記憶部131bと、制御部133と、鍵生成部134と、通信部135とを有する。
次に、本形態の関数暗号応用システム1の事前設定を説明する。
図5A及び図5Bは、第1実施形態における1種類以上のプロトコルを特定するための特定情報PIとプロトコルとの対応関係を例示した図である。
図6A,図6B及び図7は、第1実施形態において、プロトコルごと又は当該プロトコルの組み合わせごとに定められた、識別子ID(h)を特定するための規則の一例を説明するための図である。
図6Aの例では、選択可能なプロトコルごとに識別子ID(h)が割り当てられる。
図8A及び図9Aは、1種類の識別子ID(h)又は2種類以上の識別子ID(h)の組み合わせに対して1つの属性情報ATTを特定するための属性情報テーブルの一例を説明するための図であり、図8B及び図9Bは、当該属性情報テーブルによって定まる属性情報ATTのデータ構成を説明するための図である。
図10A及び図11Aは、それぞれ、多項式f(x0,...,xH-1)に対応する述語情報PREの一例を説明するための図であり、図10B及び図11Bは、当該述語情報PREのデータ構成を説明するための図である。
f(x0,x1,x2,x3)=ι0・(x1-ID'(1))・(x2-ID'(2))+ι1・(x3-ID'(3))
=ι0・x1・x2-ι0・ID'(2)・x1-ι0・ID'(1)・x2+ι1・x3 …(52)
+(ι0・ID'(1)・ID'(2)-ι1・ID'(3))
に対応する。なお、ID'(1),ID'(2)及びID'(3)は、それぞれ、前述したように各プロトコルに対応する規則で定められた識別子であり、この例の多項式f(x0,x1,x2,x3)は、論理式{(x1=ID'(1))∨(x2=ID'(2))}∧(x3=ID'(3))に対応する。例えば、ID'(1),ID'(2)及びID'(3)が、それぞれ、Forward Secure暗号プロトコル、Key Insulated暗号プロトコル及びCCA2安全暗号プロトコルに対応する規則で定められた識別子であるとすると、式(52)の多項式f(x0,x1,x2,x3)は、Forward Secure暗号プロトコル又はKey Insulated暗号プロトコルと、CCA2安全暗号プロトコルとの組み合わせに対して真となる論理式に対応する。この例の場合、要素番号8の要素をι0とし、要素番号12の要素を-ι0・ID'(2)とし、要素番号13の要素を-ι0・ID'(1)とし、要素番号14の要素をι1とし、要素番号15の要素をι0・ID'(1)・ID'(2)-ι1・ID'(3)とし、その他の要素を0とした16次元のベクトルw→が述語情報PREとなる。この例の述語情報PREと、{(x1=ID(1))∨(x2=ID(2))}∧(x3=ID(3))の場合に図8に従って生成された属性情報ATTとの内積は0となる。
f(x0,x1,x2,x3)={ι0・(x1-ID'(1))+ι1・(x3-ID'(3))}・(x3-ID'(3))
=ι1・(x3)2+{-ι0・ID'(1)-2・ι1・ID'(3)}・x3+ι0・x1・x3
-ι0・ID'(3)・x1+{ι0・ID'(1)・ID'(3) +ι1・{ID'(3)}2}
…(53)
に対応する。なお、ID'(1),ID'(2)及びID'(3)は、それぞれ、前述したように各プロトコルに対応する規則で定められた識別子であり、この例の多項式f(x0,x1,x2,x3)は、論理式{(x1=ID'(1))∧(x2=ID'(3))}∨(x3=ID'(3))に対応する。例えば、ID'(1)及びID'(3)がそれぞれ、Forward Secure暗号プロトコル及びCCA2安全暗号プロトコルに対応する規則で定められた識別子であるとすると、式(52)の多項式f(x0,x1,x2,x3)は、Forward Secure暗号プロトコルとCCA2安全暗号プロトコルとの組み合わせ、又は、CCA2安全暗号プロトコルに対して真となる論理式に対応する。この例の場合、要素番号9の要素をι0とし、要素番号12の要素を-ι0・ID'(3)とし、要素番号14の要素を-ι0・ID'(1)-2・ι1・ID'(3)とし、要素番号15の要素をι0・ID'(1)・ID'(3)+ι1・{ID'(3)}2とし、要素番号enの要素をι1とし、その他の要素を0とした16次元のベクトルw→が述語情報PREとなる。この例の述語情報PREと、{(x1=ID(1))∧(x2=ID(3))}∨(x3=ID(3))の場合に図9に従って生成された属性情報ATTとの内積は0となる。
本形態では、送信者装置110の記憶部111cに暗号化対象の平文Mtが格納される。
本形態では、受信者装置120おいて、いくつかのプロトコル及び/又は当該プロトコルの組み合わせからなる条件に対応する論理式の構成(例えば、{(x1=ID'(1))∨(x2=ID'(2))}∧(x3=ID'(3)))が予め定められている。ただし、当該論理式を構成する識別子ID'(h)の値は特定されておらず、当該識別子ID'(h)の値が定まることで述語情報PREが定まる。
本形態の鍵生成装置130の記憶部131bには、述語暗号方式のマスター秘密情報MSKが格納される。マスター秘密情報MSKの一例は、前述した基底ベクトルbi *(i=1,...,n+1)を要素とするn+1行n+1列の行列B*である。
図12Aは、第1実施形態の暗号化処理を説明するためのフローチャートである。図12Bは、第1実施形態の鍵情報生成処理を説明するためのフローチャートである。また、図13は、第1実施形態の復号処理を説明するためのフローチャートである。以下、これらの図を用いて本形態の処理を説明する。
本形態の暗号化処理では、まず、実行する述語暗号方式を応用した1種類以上のプロトコルを特定するための特定情報PIが、送信者装置110(図2)の入力部112に入力される(ステップS111)。例えば、特定情報PIが図5Aように定まるのであれば、利用者に選択された1種類のプロトコルに対応する特定情報PI、又は、利用者に選択された2種類以上のプロトコルにそれぞれ対応する特定情報PIの組み合わせが入力部112に入力される。また、例えば、特定情報PIが図5Bように定まるのであれば、利用者に選択された1種類のプロトコル又は2種類以上のプロトコルに対応する特定情報PIが入力部112に入力される。
本形態の復号処理では、まず、受信者装置120(図3)の通信部125が暗号文Ct(第1情報)を受信する(ステップS121)。
前述のように、属性情報ATT及び述語情報PREの一部の領域を予備領域としておいてもよい。これにより、後に、選択可能なプロトコルを増加させたり、論理式を示す多項式の項を増加させたりする必要が生じた場合であっても、予備領域にそれらの増加分を割り当てればシステムの設定を変更することなく、これらの増加を行うことができる。
また、前述のように、属性情報ATTや述語情報PREの一部の要素を予備領域にするのではなく、特定情報PIの値にかかわらず予め真となるように設定された命題の論理積を一部に含む論理式に対応する属性情報ATT及び述語情報PREを設定してもよい。これにより、後に、選択可能なプロトコルを増加させたり、論理式を示す多項式の項を増加させたりする必要が生じた場合であっても、予備領域にそれらの増加分を割り当てればシステムの設定を変更することなく、これらの増加を行うことができる。
次に、本発明の第2実施形態を説明する。
図19は、第2実施形態の関数暗号応用システム2の全体構成を説明するためのブロック図である。図19に示すように、本形態の関数暗号応用システム2は、ネットワーク140に接続された、送信者装置210(情報出力装置)と受信者装置220(情報処理装置)と鍵生成装置130とを有する。なお、説明の便宜上、図19には、送信者装置210と受信者装置220と鍵生成装置130とが1個ずつ表記されているが、2個以上の送信者装置210や受信者装置220や鍵生成装置130が存在してもよい。
図20は、図19の送信者装置210の構成を説明するためのブロック図である。なお、本形態において、第1実施形態と共通する部分については第1実施形態と同じ符号を付して説明を省略する(以下、同様)。
図21は、図19の受信者装置220の構成を説明するためのブロック図である。
次に、本形態の関数暗号応用システム2の事前設定を説明する。
図22A及び図22Bは、第2実施形態における1種類以上のプロトコルを特定するための特定情報PIとプロトコルとの対応関係を例示した図である。
図23A及び図23B及び図24は、第2実施形態おいて、プロトコルごと又は当該プロトコルの組み合わせごとに定められた、識別子ID(h)を特定するための規則の一例を説明するための図である。
第1実施形態と同様であるため説明を省略する。
図25は、第2実施形態の暗号化DBの一例を説明するための図である。
本形態でも、受信者装置220おいて、いくつかのプロトコル及び/又は当該プロトコルの組み合わせからなる条件に対応する論理式が予め定められている。ただし、当該論理式を構成する識別子ID'(h)の値は特定されておらず、当該識別子ID'(h)の値が定まることで述語情報PREが定まる。
本形態の鍵生成装置130の記憶部131bには、述語暗号方式のマスター秘密情報MSKが格納される。マスター秘密情報MSKの一例は、前述した基底ベクトルbi *(i=1,...,n+1)を要素とするn+1行n+1列の行列B*である。
図26Aは、第2実施形態の検索依頼処理を説明するためのフローチャートである。図26Bは、第2実施形態の鍵情報生成処理を説明するためのフローチャートである。また、図27は、第2実施形態の検索処理を説明するためのフローチャートである。以下、これらの図を用いて本形態の処理を説明する。
本形態の暗号化処理では、まず、実行する述語暗号方式を応用した1種類以上のプロトコルを特定するための特定情報PIと、検索用キーワードKWtとが、送信者装置210(図20)の入力部112に入力される(ステップS211)。例えば、特定情報PIが図22Aように定まるのであれば、利用者に選択された1種類のプロトコルに対応する特定情報PI、又は、利用者に選択された2種類以上のプロトコルにそれぞれ対応する特定情報PIの組み合わせが入力部112に入力される。また、例えば、特定情報PIが図22Bように定まるのであれば、利用者に選択された1種類のプロトコル又は2種類以上のプロトコルに対応する特定情報PIが入力部112に入力される。なお、本形態では、選択されるプロトコル又はプロトコルの組み合わせにKeyword検索暗号プロトコルが含まれるものとする。
本形態の検索処理では、まず、受信者装置220(図21)の通信部125が、送信された検索用キーワードKWtに対応する鍵情報SKt(第1情報)を受信し、記憶部221bに格納する(ステップS221)。
を生成し、これらによって暗号化DBの各キーワードに対応する各暗号文を更新し、暗号化DBを更新する(ステップS225)。なお、述語暗号方式の暗号化関数の一例は前述の式(51)(46)である。
第2実施形態においても、属性情報ATT及び述語情報PREに対し、第1実施形態の変形例1,2で説明したような予備領域を設けてもよい。
第3実施形態は、第1実施形態と第2実施形態との切り替えが可能な形態である。すなわち、送信者装置が、特定情報PIによって特定されるプロトコルに応じ、属性情報ATTを述語暗号方式の暗号化関数に入力させるか鍵生成関数に入力させるかを切り替え、受信者装置が、特定情報PIによって特定されるプロトコルに応じ、述語情報を述語暗号方式の鍵生成関数に入力させるか暗号化関数に入力させるかを切り替える形態である。以下では、第1実施形態との相違点を中心に説明し、第1実施形態と共通する部分については説明を省略する。
図28は、第3実施形態の関数暗号応用システム3の全体構成を説明するためのブロック図である。図28に示すように、本形態の関数暗号応用システム3は、ネットワーク140に接続された、送信者装置310(情報出力装置)と受信者装置320(情報処理装置)と鍵生成装置130とを有する。なお、説明の便宜上、図28には、送信者装置310と受信者装置320と鍵生成装置130とが1個ずつ表記されているが、2個以上の送信者装置310や受信者装置320や鍵生成装置130が存在してもよい。
図29は、図28の送信者装置310の構成を説明するためのブロック図である。なお、本形態において、第1,2実施形態と共通する部分については第1,2実施形態と同じ符号を付して説明を省略する(以下、同様)。
図30は、図28の受信者装置320の構成を説明するためのブロック図である。
図30に示すように、本形態の受信者装置320は、一時メモリ121aと、記憶部121b,221cと、制御部123と、識別子特定部124aと、多項式生成部124bと、述語情報生成部124cと、鍵生成処理部124dと、暗号化部224dと、復号部124eと、切り替え部324a,324bと、通信部125とを有する。なお、説明の便宜上、図30には、通信部125を示すブロックが2つ表記されているが、これは別個の通信部125が2つ必要なことを意味しない。
第1,2実施形態と同様であるため説明を省略する。
図31Aは、第3実施形態の送信者装置310の処理を説明するためのフローチャートである。図31Bは、第3実施形態の受信者装置320の処理を説明するためのフローチャートである。以下、これらの図を用いて本形態の処理を説明する。
なお、本発明は上述の第1~3の実施形態に限定されるものではない。例えば、前述の基本構成例1,2で例示した暗号文C2はn+1次元の基底ベクトルを用いて構成されたが(式(45)(51))、互いに直交するn+2次元以上の基底ベクトルb1,...bn+ξを用いて暗号文C2が構成されてもよい。例えば、以下の式(54)(55)の暗号文C2が生成されてもよい。なお、ξは2以上の整数であり、υξ+1は定数や変数(乱数など)などである。
C2=υ1・(Σμ=1 nvμ・bμ)+υ2・bn+1+…+υξ+1・bn+ξ∈G1 n+ξ …(54)
C2=υ1・(Σμ=1 nwμ・bμ)+υ2・bn+1+…+υξ+1・bn+ξ∈G1 n+ξ …(55)
D*=α・(Σμ=1 nwμ・bμ *)+υn+1・bn+1 *∈G2 n+1 …(56)
又は
D*=α・(Σμ=1 nwμ・bμ *)+Σι=n+1 n+ξυι・bι *∈G2 n+ξ …(57)
を用いてもよい。
D*=α・(Σμ=1 nvμ・bμ *)+υn+1・bn+1 *∈G2 n+1 …(58)
又は
D*=α・(Σμ=1 nvμ・bμ *)+Σι=n+1 n+ξυι・bι *∈G2 n+ξ …(59)
を用いてもよい。ただし、υιは定数や変数(乱数など)などである。また、式(57)(59)の場合には、Σι=n+1 n+ξυιが定数となるように各υιが選択されてもよい。例えば、
Σι=n+1 n+ξυι=0F …(60)
となるように各υιがランダムに選択されてもよい。
次に、第4~6実施形態で使用する用語や記号を定義する。
(・)T:(・)Tは・の転置行列を表す。
(・)-1:(・)-1は・の逆行列を表す。
∧:∧は論理積(AND)を表す論理記号である。
∨:∨は論理和(OR)を表す論理記号である。
¬:¬は否定(NOT)を表す論理記号である。
命題変数:命題変数は命題の「真」,「偽」("false","true")を要素とする集合{真,偽}上の変数である。命題変数及び命題変数の否定を総称してリテラル(literal)と呼ぶ。
Z:Zは整数集合を表す。
sec:secはセキュリティパラメータ(sec∈Z, sec>0)を表す。
0*:0*は*個の0からなる列を表す。
1*:1*は*個の1からなる列を表す。
1F:1Fは有限体Fqの乗法単位元を表す。
δ(i,j):δ(i,j)はクロネッカーのデルタ関数を表す。i=jの場合にδ(i,j)=1Fを満たし、i≠jの場合にδ(i,j)=0 Fを満たす。
E:Eは有限体Fq上で定義された楕円曲線を表す。Eはアフィン(affine)座標版のWeierstrass方程式
y2+a1・x・y+a3・y=x3+a2・x2+a4・x+a6
(ただし、a1,a2,a3,a4,a6∈Fq)を満たすx,y∈Fqからなる点(x,y)の集合に無限遠点と呼ばれる特別な点Oを付加したもので定義される。楕円曲線E上の任意の2点に対して楕円加算と呼ばれる二項演算+及び楕円曲線E上の任意の1点に対して楕円逆元と呼ばれる単項演算-がそれぞれ定義できる。また、楕円曲線E上の有理点からなる有限集合が楕円加算に関して群をなすこと、楕円加算を用いて楕円スカラー倍算と呼ばれる演算が定義できること、及びコンピュータ上での楕円加算などの楕円演算の具体的な演算方法はよく知られている(例えば、参考文献1、参考文献2「RFC 5091: Identity-Based Cryptography Standard (IBCS) #1: Supersingular Curve Implementations of the BF and BB1 Cryptosystems」、参考文献3「イアン・F・ブラケ、ガディエル・セロッシ、ナイジェル・P・スマート=著、「楕円曲線暗号」、出版=ピアソン・エデュケーション、ISBN4-89471-431-0」等参照)。
ψ:ψは0以上Ψ以下の整数ψ=0,...,Ψを表す。
λ:λは1以上Ψ以下の整数λ=1,...,Ψを表す。
n(ψ):n(ψ)は1以上の整数を表す。
ζ(ψ):ζ(ψ)は0以上の整数を表す。
G1 n(ψ)+ζ(ψ):G1 n(ψ)+ζ(ψ)はn(ψ)+ζ(ψ)個の巡回群G1の直積を表す。
G2 n(ψ)+ζ(ψ):G2 n(ψ)+ζ(ψ)はn(ψ)+ζ(ψ)個の巡回群G2の直積を表す。
g1, g2,gT:g1, g2, gTは巡回群G, G1, G2, GTの生成元を表す。
V(ψ):V(ψ)はn(ψ)+ζ(ψ)個の巡回群G1の直積からなるn(ψ)+ζ(ψ)次元のベクトル空間を表す。
V*(ψ):V*(ψ)はn(ψ)+ζ(ψ)個の巡回群G2の直積からなるn(ψ)+ζ(ψ)次元のベクトル空間を表す。
eψ:G1 n(ψ)+ζ(ψ)×G2 n(ψ)+ζ(ψ)→GT …(61)
[双線形性]すべてのΓ1∈G1 n(ψ)+ζ(ψ),Γ2∈G2 n(ψ)+ζ(ψ)及びν,κ∈Fqについて以下の関係を満たす。
eψ(ν・Γ1,κ・Γ2)=eψ(Γ1,Γ2)ν・κ …(62)
[非退化性]すべてのΓ1∈G1 n(ψ)+ζ(ψ),Γ2∈G2 n(ψ)+ζ(ψ)を巡回群GTの単位元に写す写像ではない。
[計算可能性]あらゆる
Γ1∈G1 n(ψ)+ζ(ψ),Γ2∈G2 n(ψ)+ζ(ψ) …(63)
についてeψ(Γ1,Γ2)を効率的に計算するアルゴリズムが存在する。
Pair:G1×G2→GT …(64)
を用いて双線形写像eψを構成する。本形態の双線形写像eψは、巡回群G1のn(ψ)+ζ(ψ)個の元γβ(β=1,...,n(ψ)+ζ(ψ))からなるn(ψ)+ζ(ψ)次元ベクトル(γ1,...,γn(ψ)+ζ(ψ))と、巡回群G2のn(ψ)+ζ(ψ)個の元γβ *(β=1,...,n(ψ)+ζ(ψ))からなるn(ψ)+ζ(ψ)次元ベクトル(γ1 *,...,γn(ψ)+ζ(ψ) *)との入力に対し、巡回群GTの1個の元を出力する。
eψ:Πβ=1 n(ψ)+ζ(ψ)Pair(γβ, γβ *) …(65)
[双線形性]すべてのΩ1∈G1,Ω2∈G2及びν,κ∈Fqについて以下の関係を満たす。
Pair(ν・Ω1,κ・Ω2)=Pair(Ω1,Ω2)ν・κ …(66)
[非退化性]すべての
Ω1∈G1,Ω2∈G2 …(67)
を巡回群GTの単位元に写す写像ではない。
[計算可能性]あらゆるΩ1∈G1,Ω2∈G2についてPair(Ω1,Ω2)を効率的に計算するアルゴリズムが存在する。
a2(ψ)=(0,κ1・g1,0,...,0) …(68)
...
an(ψ)+ζ(ψ)(ψ)=(0,0,0,...,κ1・g1)
a2 *(ψ)=(0,κ2・g2,0,...,0) …(69)
...
an(ψ)+ζ(ψ) *(ψ)=(0,0,0,...,κ2・g2)
eψ(ai(ψ), aj *(ψ))=gT τ・δ(i,j) …(70)
を満たす。すなわち、i=jの場合には、式(65)(66)の関係から、
eψ(ai(ψ), aj *(ψ))
= Pair(κ1・g1,κ2・g2)・Pair(0, 0)・...・Pair(0, 0)
= Pair(g1, g2)κ1・κ2・Pair(g1, g2)0・0・...・Pair(g1, g2)0・0
= Pair(g1, g2)κ1・κ2=gT τ
を満たす。なお、上付き添え字κ1,κ2はそれぞれκ1,κ2を表す。一方、i≠jの場合には、eψ(ai(ψ), aj *(ψ))=Πi=1 n(ψ)+ζ(ψ) Pair(ai(ψ), aj *(ψ))の右辺は、Pair(κ1・g1,κ2・g2)を含まず、Pair(κ1・g1,0)と Pair(0,κ2・g2)とPair(0,0)との積になる。さらに、式(66)の関係からPair(g1, 0)=Pair(0, g2)=Pair(g1, g2)0を満たす。そのため、i≠jの場合には、
eψ(ai(ψ), aj *(ψ))=eψ(g1, g2)0=gT 0
を満たす。
e(ai(ψ), aj *(ψ))=gT δ(i,j) …(71)
を満たす。ここで、gT 0=1は巡回群GTの単位元であり、gT 1=gTは巡回群GTの生成元である。この場合、基底ベクトルai(ψ)と基底ベクトルai *(ψ)とは双対正規直交基底であり、ベクトル空間V(ψ)とベクトル空間V*(ψ)とは、双線形写像を構成可能な双対ベクトル空間〔双対ペアリングベクトル空間(DPVS:Dual Paring Vector space)〕である。
A*(ψ):基底ベクトルai *(ψ)(i=1,...,n(ψ)+ζ(ψ))を要素とするn(ψ)+ζ(ψ)行n(ψ)+ζ(ψ)列の行列を表す。例えば、基底ベクトルai *(ψ)(i=1,...,n(ψ)+ζ(ψ))が式(69)によって表現される場合、行列A*(ψ)は、
X(ψ):X(ψ)は有限体Fqの元を要素とするn(ψ)+ζ(ψ)行n(ψ)+ζ(ψ)列の行列を表す。行列X(ψ)は基底ベクトルai(ψ)の座標変換に用いられる。行列X(ψ)のi行j列(i=1,...,n(ψ)+ζ(ψ),j=1,...,n(ψ)+ζ(ψ))の要素をχi,j(ψ)∈Fqとすると、行列X(ψ)は、
X *(ψ):X*(ψ)と行列X(ψ)とはX*(ψ)=τ'・(X(ψ)-1)Tの関係を満たす。ただし、τ'∈Fqは有限体Fqに属する任意の定数であり、例えば、τ'=1Fである。X*(ψ)は基底ベクトルai *(ψ)の座標変換に用いられる。行列X*(ψ)のi行j列の要素をχi,j *(ψ)∈Fqとすると、行列X*(ψ)は、
この場合、n(ψ)+ζ(ψ)行n(ψ)+ζ(ψ)列の単位行列をI(ψ)とするとX(ψ)・(X*(ψ))T=τ'・I(ψ)を満たす。すなわち、単位行列
χi →(ψ)=(χi,1(ψ),...,χi,n(ψ)+ζ(ψ)(ψ)) …(78)
χj →*(ψ)=(χj,1 *(ψ),...,χj,n(ψ)+ζ(ψ) *(ψ)) …(79)
を定義する。すると、式(77)の関係から、n(ψ)+ζ(ψ)次元ベクトルχi →(ψ)とχj →*(ψ)との内積は、
χi →(ψ)・χj →*(ψ)=τ'・δ(i,j) …(80)
となる。
bi(ψ)=Σj=1 n(ψ)+ζ(ψ)χi,j(ψ)・aj(ψ) …(81)
の演算によって得られる。例えば、基底ベクトルaj(ψ)(j=1,...,n(ψ)+ζ(ψ))が式(68)によって表現される場合、基底ベクトルbi(ψ)の各要素をそれぞれ列挙して表現すると、以下のようになる。
bi(ψ)=(χi,1(ψ)・κ1・g1,χi,2(ψ)・κ1・g1,
...,χi,n(ψ)+ζ(ψ)(ψ)・κ1・g1) …(82)
bi *(ψ)=Σj=1 n(ψ)+ζ(ψ)χi,j *(ψ)・aj *(ψ) …(83)
の演算によって得られる。例えば、基底ベクトルaj *(ψ) (j=1,...,n(ψ)+ζ(ψ))が式(69)によって表現される場合、基底ベクトルbi *(ψ)の各要素をそれぞれ列挙して表現すると、以下のようになる。
bi *(ψ)=(χi,1 *(ψ)・κ2・g2 ,χi,2 *(ψ)・κ2・g2,
...,χi,n(ψ)+ζ(ψ) *(ψ)・κ2・g2) …(84)
となる。巡回群G2のn(ψ)+ζ(ψ)個の元を要素とするすべてのn(ψ)+ζ(ψ)次元ベクトルは、n(ψ)+ζ(ψ)次元の基底ベクトルbi *(ψ)(i=1,...,n(ψ)+ζ(ψ))の線形和によって表される。すなわち、n(ψ)+ζ(ψ)次元の基底ベクトルbi *(ψ)は前述のベクトル空間V*(ψ)を張る。
eψ(bi(ψ), bj *(ψ))=gT τ・τ'・δ(i,j) …(85)
を満たす。すなわち、式(65)(80)(82)(84)の関係から、
eψ(bi(ψ), bj *(ψ))=gT δ(i,j) …(86)
を満たす。この場合、基底ベクトルbi(ψ)と基底ベクトルbi *(ψ)とは、双対ペアリングベクトル空間(ベクトル空間V(ψ)とベクトル空間V*(ψ))の双対正規直交基底である。
なお、式(85)の関係を満たすのであれば、式(68)(69)で例示したもの以外の基底ベクトルai(ψ)及びai *(ψ)や、式(81)(83)で例示したもの以外の基底ベクトルbi(ψ)及びbi *(ψ)を用いてもよい。
B*(ψ):B*(ψ)は基底ベクトルbi *(ψ) (i=1,...,n(ψ)+ζ(ψ))を要素とするn(ψ)+ζ(ψ)行n(ψ)+ζ(ψ)列の行列を表す。B*(ψ)=X*(ψ)・A*(ψ)を満たす。例えば、基底ベクトルbi *(ψ) (i=1,...,n(ψ)+ζ(ψ))が式(84)によって表現される場合、行列B*(ψ)は、
v(λ)→=(v1(λ),...,vn(λ)(λ))∈Fq n(λ) …(89)
vμ(λ):vμ(λ)はn(λ)次元ベクトルv(λ)→のμ(μ=1,...,n(λ))番目の要素を表す。
w(λ)→:w(λ)→は有限体Fqの元を要素とするn(λ)次元ベクトルを表す。
w(λ)→=(w1(λ),...,wn(λ)(λ))∈Fq n(λ) …(90)
wμ(λ):wμ(λ)はn(λ)次元ベクトルw(λ)→のμ(μ=1,...,n(λ))番目の要素を表す。
Enc:Encは共通鍵暗号方式の暗号化処理を示す共通鍵暗号関数を表す。
EncK(M):EncK(M)は、共通鍵Kを用い、共通鍵暗号関数Encに従って平文Mを暗号化して得られた暗号文を表す。
Dec:Decは、共通鍵暗号方式の復号処理を示す共通鍵復号関数を表す。
DecK(C):DecK(C)は、共通鍵Kを用い、共通鍵復号関数Decに従って暗号文Cを復号して得られた復号結果を表す。
次に、第4~6実施形態での関数暗号方式の基本的な構成について説明する。
関数暗号方式とは、条件情報と属性情報との組み合わせによって定まる論理式の真理値が「真」となる場合に暗号文が復号される方式である。「条件情報」と「属性情報」の一方が暗号文に埋め込まれ、他方が鍵情報に埋め込まれる。例えば、「"Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products," with Amit Sahai and Brent Waters One of 4 papers from Eurocrypt 2008 invited to the Journal of Cryptology」(参考文献9)に開示された述語暗号方式は関数暗号方式の一種である。
上述した所定の論理式と階層的な秘密分散との関係を説明する。
・SH1,...,SHN-1をランダムに選択する。
・SHN=SE-(SH1+...+SHN-1)の計算を行う。
・SH1,...,SHNを各シェア情報share(1),...,share(N)とする。
・すべてのシェア情報share(1),...,share(N)が与えられれば、
SE=share(1)+...+share(N) …(91)
の復元処理によって秘密情報SEの復元が可能である。
・f(0)=SEを満たすKt-1次の多項式f(x)=ξ0+ξ1・x+ξ2・x2+...+ξKt-1・xKt-1をランダムに選ぶ。すなわち、ξ0=SEとし、ξ1,..., ξKt-1をランダムに選ぶ。シェア情報をshare(ρ)=(ρ, f(ρ))(ρ=1,...,N)とする。なお、(ρ, f(ρ))はρ及びf(ρ)の値をそれぞれ抽出可能な情報であり、例えばρとf(ρ)とのビット結合値である。
・任意の相違なるKt個のシェア情報share(φ1),...,share(φKt)((φ1,...,φKt)⊂(1,...,N))が得られた場合、例えば、ラグランジェ(Lagrange)の補間公式を用い、以下のような復元処理によって秘密情報SEの復元が可能である。
SE=f(0)=LA1・f(φ1)+...+ LAKt・f(φKt) …(92)
(φρ-φ1)・...・(φρ-φρ-1)・(φρ-φρ+1)・...・(φρ-φKt)
であり、式(93)の分子は、
(x-φ1)・...・(x-φρ-1)・(x-φρ+1)・...・(x-φKt)
である。
上述のように秘密情報を階層的に秘密分散して得られる木構造データによって所定の論理式を表現した場合、条件情報と属性情報との組み合わせに対して得られる葉ノードでのシェア情報に応じた値から秘密情報に応じた値を復元できるか否かによって、条件情報と属性情報との組み合わせによって定まる論理式の真理値が「真」となるか「偽」となるかを判定できる。以下、条件情報と属性情報との組み合わせによって定まる論理式の真理値が「真」となる場合に条件情報と属性情報との組み合わせを受け入れ、「偽」となる場合に条件情報と属性情報との組み合わせを拒絶する仕組みをアクセス構造と呼ぶ。
GV→=(gv1,...,gvCOL)∈Fq COL …(95)
と、秘密情報SEに応じた有限体Fqの元を要素とするCOL次元ベクトル
CV→=(cv1,...,cvCOL)∈Fq COL …(96)
とに対して
SE=GV→・(CV→)T …(97)
が成立する。COL次元ベクトルGV→の具体例は、
GV→=(1F,...,1F)∈Fq COL …(98)
であるが、GV→=(1F,0F,...,0F)∈Fq COLなどのその他のCOL次元ベクトルであってもよい。第2に、識別子λに対応する葉ノードにシェア情報share(λ)∈Fqに応じた値が対応する場合、
(share(1),...,share(Ψ))T=MT・(CV→)T …(99)
が成立する。上述のように所定の論理式を表現した木構造データが定まれば、これら2つの要件を満たす行列MTを選択することは容易である。また、秘密情報SEやシェア情報share(λ)が変数であったとしても、これら2つの要件を満たす行列MTを選択することは容易である。すなわち、行列MTを定めた後で秘密情報SEやシェア情報share(λ)の値が定められてもよい。
TFV→=(tfv(1),...,tfv(Ψ)) …(100)
を定義する。要素tfv(λ)は、内積v(λ)→・w(λ)→が0のときにtfv(λ)=1となり、0以外のときにtfv(λ)=0となる。
tfv(λ)=1 (PRO(λ)が真) if v(λ)→・w(λ)→=0 …(101)
tfv(λ)=0 (PRO(λ)が偽) if v(λ)→・w(λ)→≠0 …(102)
{(LAB(λ)=v(λ)→)∧(tfv(λ)=1)}∨{(LAB(λ)=¬v(λ)→)∧(tfv(λ)=0)} …(103)
の真理値が「真」になるときLIT(λ)=1と表記し「偽」になるときLIT(λ)=0と表記する。すなわち、識別子λに対応する葉ノードに対応するリテラルの真理値が「真」になるときLIT(λ)=1と表記し「偽」になるときLIT(λ)=0と表記する。すると、行列MTが含む行ベクトルのうちLIT(λ)=1となる行ベクトルmtλ →=(mtλ,1,...,mtλ,COL)のみからなる部分行列MTTFVは以下のように表記できる。
MTTFV=(MT)LIT(λ)=1 …(104)
受け入れ if GV→∈span<MTTFV>
拒絶 if ¬(GV→∈span<MTTFV>)
また、GV→∈span<MTTFV>の場合、
SE=Σμ∈SETconst(μ)・share(μ) …(105)
{const(μ)∈Fq|μ∈SET},SET⊆{1,...,λ|LIT(λ)=1}
を満たす係数const(μ)が存在し、このような係数const(μ)は行列MTのサイズの多項式時間で求めることができる。
以下では、アクセス構造を用いた関数暗号方式によって鍵カプセル化メカニズムKEM (Key Encapsulation Mechanisms)を構成する場合の基本構成を例示する。この構成はSetup(1sec,(Ψ;n(1),...,n(Ψ))),GenKey(PK,MSK,LMT(MT,LAB)),Enc(PK,M,{λ,v(λ)→|λ=1,...,Ψ})(v1(λ)=1F),Dec(PK,SKS,C)を含む。また、属性情報VSET1={λ,w(λ)→|λ=1,...,Ψ}の1番目の要素w1(λ)が1Fとされる。
-入力:1sec,(Ψ;n(1),...,n(Ψ))
-出力:マスター秘密情報MSK,公開パラメータPK
Setupでは各ψ=0,...,Ψについて以下の処理が実行される。
(Setup-2) τ'∈Fqが選択され、X*(ψ)=τ'・(X(ψ)-1)Tを満たす行列X(ψ),X*(ψ)が選択される。
・n(0)+ζ(0)≧5, ζ(λ)=3・n(λ)
・B(0)^=(b1(0) b3(0) b5(0))T
・B(λ)^=(b1(λ) … bn(λ)(λ) b3・n(λ)+1(λ) … b4・n(λ)(λ))T
(λ=1,...,Ψ)
・B*(0)^=(b1 *(0) b3 *(0) b4 *(0))T
・B*(λ)^=(b1 *(λ) … bn(λ) *(λ) b2・n(λ)+1 *(λ) … b3・n(λ) *(λ))T
(λ=1,...,Ψ)
-入力:公開パラメータPK,マスター秘密情報MSK,条件情報VSET2={λ,v(λ)→|λ=1,...,Ψ}に対応するラベル付き行列LMT(MT,LAB)
-出力:鍵情報SKS
D*(0)=-SE・b1 *(0)+Σι=2 Icoefι(0)・bι *(0) …(106)
ただし、Iは2以上n(0)+ζ(0)以下の定数である。coefι(0)∈Fqは定数又は乱数である。「乱数」とは真性乱数や擬似乱数を意味する。以下にD*(0)の一例を示す。なお、式(107)のcoef4(0)は乱数である。
D*(0)=-SE・b1 *(0)+b3 *(0)+coef4(0)・b4 *(0) …(107)
LAB(λ)=v(λ)→となるλに対して
D*(λ)=(share(λ)+coef(λ)・v1(λ))・b1 *(λ)
+Σι=2 n(λ)coef(λ)・vι(λ)・bι *(λ)
+Σι=n(λ)+1 n(λ)+ζ(λ)coefι(λ)・bι *(λ) …(108)
が生成され、
LAB(λ)=¬v(λ)→となるλに対して
D*(λ)=share(λ)・Σι=1 n(λ)vι(λ)・bι *(λ)
+Σι=n(λ)+1 n(λ)+ζ(λ)coefι(λ)・bι *(λ) …(109)
が生成される。ただしcoef(λ),coefι(λ)∈Fqは定数又は乱数である。以下に一例を示す。
LAB(λ)=v(λ)→となるλに対して
D*(λ)=(share(λ)+coef(λ)・v1(λ))・b1 *(λ)
+Σι=2 n(λ)coef(λ)・vι(λ)・bι *(λ)
+Σι=2・n(λ)+1 3・n(λ)coefι(λ)・bι *(λ) …(110)
が生成され、
LAB(λ)=¬v(λ)→となるλに対して
D*(λ)=share(λ)・Σι=1 n(λ)vι(λ)・bι *(λ)
+Σι=2・n(λ)+1 3・n(λ)coefι(λ)・bι *(λ) …(111)
が生成される。なお、式(110)(111)のcoef(λ)及びcoefι(λ)は乱数である。
SKS=(LMT(MT,LAB),D*(0),D*(1),...,D(Ψ)) …(112)
生成される。
-入力:公開パラメータPK,平文M,属性情報VSET1={λ,w(λ)→|λ=1,...,Ψ}(w1(λ)=1F)
-出力:暗号文C
(Enc-1) 以下の処理によって共通鍵Kの暗号文C(ψ)(ψ=0,...,Ψ)が生成される。
C(λ)=υ・Σι=1 n(λ)wι(λ)・bι(λ)+Σι=n(λ)+1 n(λ)+ζ(λ)υι(λ)・bι(λ) …(114)
ただし、υ,υι(ψ)∈Fq(ψ=0,...,Ψ)は定数又は乱数であり、
(coef2(0),...,coefI(0))・(υ2(0),...,υI(0))=υ' …(115)
coefι(λ)・υι(λ)=0F (ι=n(λ)+1,...,n(λ)+ζ(λ)) …(116)
を満たす。υ'の例はυ2(0),...,υI(0)の何れか1個である。例えば、υ,υ3(0),υ5(0),υ3・n(λ)+1(λ),...,υ4・n(λ)(λ)が乱数であり、ζ(λ)=3・n(λ)、I=5であり、
(υ2(0),...,υI(0))=(0F,υ3(0),0F,υ5(0))
υ'=υ3(0)
(υn(λ)+1(λ),...,υ3・n(λ)(λ))=(0F,...,0F)
である。
K=gT τ・τ'・υ'∈GT …(117)
が生成される。例えば、τ=τ'=1Fの場合、
K=gT υ'∈GT …(118)
である。
C(Ψ+1)=EncK(M) …(119)
が生成される。なお、共通鍵暗号方式Encは、例えば共通鍵Kを用いて暗号化可能に構成されたカメリア(Camellia)(登録商標)やAESや共通鍵と平文との排他的論理和などでよいが、その他の簡単な例として以下のようにEncK(M)を生成してもよい。ただし、式(120)の例ではM∈GTとされる。
C(Ψ+1)=gT υ'・M …(120)
C=(VSET1,C(0),{C(λ)}(λ,w(λ)→)∈VSET1,C(Ψ+1)) …(121)
が生成される。ただし、下付き添え字の「w(λ)→」は「w(λ)→」を表す。
[Dec(PK,SKS,C):復号]
-入力:公開パラメータPK,鍵情報SKS,暗号文C
-出力:平文M'
(Dec-3) 共通鍵
K=gT υ'∈GT …(127)
を満たす。
(Dec-4) 共通鍵Kを用いて平文
M'=DecK(C(Ψ+1))=DecK(C(Ψ+1)) …(128)
が生成される。例えば、式(120)に例示した共通鍵暗号方式の場合、
M'=C(Ψ+1)/K …(129)
によって平文M'が生成される。
以下に(Dec-1)の処理の具体例を説明する。なお、以下では説明の簡略化のため、式(98)のCOL次元ベクトルGV→が用いられる場合を例示する。ただし、これは本発明を限定するものではなく、式(96)のように一般化されたCOL次元ベクトルGV→が用いられる場合に以下の処理を拡張して適用してもよい。
(mt1,1' ... mt1,COL')-(mt1,λ' - 1F)・(mtλ',1' ... mtλ',COL') …(132)
を新たな(mt1,1' ... mt1,COL')として、上三角化行列MTTFV'の1行目の行ベクトル(mt1,1' ... mt1,COL')を更新する。なお、(mtλ',1' ... mtλ',COL')は上三角化行列MTTFV'のλ'行目の行ベクトルを表す。復号部はλ'=Ωであるか否かを判定し(ステップS405)、λ'=Ωでなければλ'+1を新たなλ'とし(ステップS406)、ステップS434の処理に戻る。一方、λ'=Ωであれば復号部は
(mt1,1' ... mt1,COL')=(1F,...,1F) …(133)
を満たすか否かを判定し(ステップS407)、これを満たすならばK'の復号が可能であるとし(ステップS408)、これを満たさないならばK'の復号が不可能であるとする(ステップS409)。
なお、gTをGTの生成元とする代わりにgT τやgT τ'やgT τ・τ'をGTの生成元と扱ってもよい。また、鍵情報SKSのλと暗号文のλとを対応関係を特定する写像を用いてC(λ)とD*(λ)との組み合わせを特定し、[Dec(PK,SKS,C):復号]の処理が実行されてもよい。また、属性情報VSET1={λ,w(λ)→|λ=1,...,Ψ}の1番目の要素w1(λ)が1Fとされるだけではなく、条件情報VSET2={λ,v(λ)→|λ=1,...,Ψ}のn(λ)番目の要素vn(λ)(λ)が1Fとされてもよい。また、要素w1(λ)が1Fでない場合にはw(λ)→の代わりにw(λ)→/w1(λ)を用いてもよく、要素vn(λ)(λ)が1Fでない場合にはv(λ)→の代わりにv(λ)→/vn(λ)(λ)を用いてもよい。
LAB(λ)=w(λ)→となるλに対して
D*(λ)=(share(λ)+coef(λ)・w1(λ))・b1 *(λ)
+Σι=2 n(λ)coef(λ)・wι(λ)・bι *(λ)
+Σι=n(λ)+1 n(λ)+ζ(λ)coefι(λ)・bι *(λ) …(134)
が生成され、
LAB(λ)=¬w(λ)→となるλに対して
D*(λ)=share(λ)・Σι=1 n(λ)wι(λ)・bι *(λ)
+Σι=n(λ)+1 n(λ)+ζ(λ)coefι(λ)・bι *(λ) …(135)
が生成される。また、CP方式の場合には、式(114)の代わりに、
C(λ)=υ・Σι=1 n(λ)vι(λ)・bι(λ)+Σι=n(λ)+1 n(λ)+ζ(λ)υι(λ)・bι(λ)
…(136)
が生成され、式(121)の代わりに、
C=(VSET2,C(0),{C(λ)}(λ,v(λ)→)∈VSET2,C(Ψ+1)) …(137)
ただし、下付き添え字の「v(λ)→」は「v(λ)→」を表す。
〔第4~6実施形態の原理〕
次に、第4~6実施形態の原理を説明する。
次に、本発明の第4実施形態を説明する。第4実施形態は、第1情報が属性情報VSET1に対応する暗号文であり、第2情報が条件情報VSET2に対応する鍵情報であり、送信者装置が暗号化を行い、受信者装置が復号を行う形態である。このような形態は、例えば、関数暗号方式を応用したプロトコルが、Timed-Release暗号プロトコル、Forward Secure暗号プロトコル、Key Insulated暗号プロトコル若しくはCCA2安全暗号プロトコル、又は、その組み合わせである場合などに適用できる。また、本形態ではKP方式を用いる。
図35は、第4実施形態の関数暗号応用システム4の全体構成を説明するためのブロック図である。図35に示すように、本形態の関数暗号応用システム4は、ネットワーク140に接続された、送信者装置410(情報出力装置)と受信者装置420(情報処理装置)と鍵生成装置430とを有する。なお、説明の便宜上、図35には、送信者装置410と受信者装置420と鍵生成装置430とが1個ずつ表記されているが、2個以上の送信者装置410や受信者装置420や鍵生成装置430が存在してもよい。
図36は、図35の送信者装置410の構成を説明するためのブロック図である。
図36に示すように、本形態の送信者装置410は、一時メモリ111aと、記憶部111cと、入力部112と、制御部113と、識別子特定部414aと、属性情報設定部414b(対応情報設定部)と、暗号化部414cと、通信部115とを有する。
図37は、図35の受信者装置420の構成を説明するためのブロック図である。
図37に示すように、本形態の受信者装置420は、一時メモリ121aと、記憶部421bと、制御部123と、識別子特定部424aと、条件情報生成部424cと、鍵生成処理部424dと、復号部424eと、通信部125とを有する。なお、図面表記の便宜上、図37には、通信部125を示すブロックが2つ表記されているが、これは別個の通信部125が2つ必要なことを意味しない。
図38は、図35の鍵生成装置430の構成を説明するためのブロック図である。
図38に示すように、本形態の鍵生成装置430は、一時メモリ131aと、記憶部431bと、制御部133と、鍵生成部434と、通信部135とを有する。
次に、本形態の関数暗号応用システム4の事前設定を説明する。
図39A及び図39Bは、第4実施形態における1種類以上のプロトコルを特定するための特定情報PIとプロトコルとの対応関係を例示した図である。
図40A,図40B及び図41は、第4実施形態において、プロトコルごと又は当該プロトコルの組み合わせごとに定められた、識別子ID(λ)を特定するための規則の一例を説明するための図である。なお、本形態の識別子ID(λ)は有限体Fqの元を要素とするn(λ)次元ベクトルである。
図40Aの例では、選択可能なプロトコルごとに識別子ID(λ)が割り当てられる。
図42Aは、属性情報VSET1のデータ構成を説明するための図である。
本形態では、各識別子ID(λ)をn(λ)次元ベクトルw(λ)→(第1部分対応情報)とし(w(λ)→=ID(λ))、n(λ)次元ベクトルw(λ)→(λ=1,...,Ψ)の集合{w(λ)→}λ=1,...,Ψを属性情報VSET1とする。
図42Bは、条件情報VSET2のデータ構成を説明するための図である。
本形態では、各識別子ID’(λ)をn(λ)次元ベクトルv(λ)→(第2部分対応情報)とし(v(λ)→=ID’(λ))、n(λ)次元ベクトルv(λ)→(λ=1,...,Ψ)の集合{v(λ)→}λ=1,...,Ψを条件情報VSET2とする。
本形態では、受信者装置420の鍵生成処理部424d及び復号部424eに、いくつかのプロトコル及び/又は当該プロトコルの組み合わせからなる条件に対応する標準形論理式(例えば、PRO(1)∧PRO(2)∨¬PRO(3))が予め設定されている。言い換えると、当該標準形論理式に対応するラベル付き行列LMT(MT,LAB)が予め鍵生成処理部424d及び復号部424eに定められている。ただし、標準形論理式のリテラルであるPRO(λ)や¬PRO(λ)を特定するPRO(λ)やラベルLAB(λ)を特定するn(λ)次元ベクトルv(λ)→の値は定められていない。すなわち、予めラベルがLAB(λ)=v(λ)→であるかLAB(λ)=¬v(λ)→であるかは定められているが、n(λ)次元ベクトルv(λ)→の値は定められていない。識別子ID’(λ)に対応するn(λ)次元ベクトルv(λ)→が定められることでPRO(λ)やラベルLAB(λ)を特定するn(λ)次元ベクトルv(λ)→の値が定まり、標準形論理式やラベル付き行列LMT(MT,LAB)が特定できる。
本形態では、送信者装置410の記憶部111cに暗号化対象の平文Mtが格納される。
本形態の鍵生成装置430の記憶部431bには、関数暗号方式のマスター秘密情報MSK([Setup(1sec,(Ψ;n(1),...,n(Ψ))):セットアップ]参照)が格納される。
図43Aは、第4実施形態の暗号化処理を説明するためのフローチャートである。図43Bは、第4実施形態の鍵情報生成処理を説明するためのフローチャートである。また、図44は、第4実施形態の復号処理を説明するためのフローチャートである。以下、これらの図を用いて本形態の処理を説明する。
本形態の暗号化処理では、まず、実行する関数暗号方式を応用した1種類以上のプロトコルを特定するための特定情報PIが、送信者装置410(図36)の入力部112に入力される(ステップS411)。例えば、特定情報PIが図39Aように定まるのであれば、利用者に選択された1種類のプロトコルに対応する特定情報PI、又は、利用者に選択された2種類以上のプロトコルにそれぞれ対応する特定情報PIの組み合わせが入力部112に入力される。また、例えば、特定情報PIが図39Bように定まるのであれば、利用者に選択された1種類のプロトコル又は2種類以上のプロトコルに対応する特定情報PIが入力部112に入力される。
本形態の復号処理では、まず、受信者装置420(図37)の通信部125が暗号文Ct(第1情報)を受信する(ステップS421)。
v(λ)→=ID’(λ) …(138)
とし、n(λ)次元ベクトルv(λ)→(λ=1,...,Ψ)の集合{v(λ)→}λ=1,...,Ψを条件情報VSET2(特定の第2対応情報)とし、当該条件情報VSET2を出力する(ステップS423)。
前述のように、属性情報VSET1及び条件情報VSET2の一部の領域を予備領域としておいてもよい。すなわち、属性情報VSET1が含むベクトル(第1部分対応情報)及び条件情報VSET2が含むベクトル(第2部分対応情報)の少なくとも一部を予備領域としておいてもよい。これにより、後に、選択可能なプロトコルを増加させたり、論理式を示す多項式の項を増加させたりする必要が生じた場合であっても、予備領域にそれらの増加分を割り当てればシステムの設定を変更することなく、これらの増加を行うことができる。
次に、本発明の第5実施形態を説明する。
第5実施形態は、第1情報が属性情報VSET1に対応する鍵情報であり、第2情報が条件情報VSET2に対応する暗号文であり、送信者装置が鍵情報を出力し、受信者装置に格納された暗号文が復号される形態である。このような形態は、関数暗号方式を応用したプロトコルが、例えば、Keyword検索暗号プロトコルである場合、又は、Keyword検索暗号プロトコルとForward Secure暗号プロトコル、Key Insulated暗号プロトコル若しくはCCA2安全暗号プロトコルとの組み合わせである場合などに適用できる。また、本形態ではCP方式を用いる。以下では、第4実施形態との相違点を中心に説明し、第4実施形態と共通する事項については説明を簡略化する。
図35に示すように、本形態の関数暗号応用システム5は、ネットワーク140に接続された、送信者装置510(情報出力装置)と受信者装置520(情報処理装置)と鍵生成装置430とを有する。なお、説明の便宜上、図35には、送信者装置510と受信者装置520と鍵生成装置430とが1個ずつ表記されているが、2個以上の送信者装置510や受信者装置520や鍵生成装置430が存在してもよい。
図46は、本形態の送信者装置510の構成を説明するためのブロック図である。なお、本形態において、第4実施形態と共通する部分については第4実施形態と同じ符号を付して説明を省略する(以下、同様)。
図47は、本形態の受信者装置520の構成を説明するためのブロック図である。
図47に示すように、本形態の受信者装置520は、一時メモリ121aと、記憶部421b,521cと、制御部123と、識別子特定部524aと、条件情報生成部524cと、暗号化部524dと、復号部524eと、通信部125とを有する。
次に、本形態の関数暗号応用システム5の事前設定を説明する。
図48A及び図48Bは、第5実施形態における1種類以上のプロトコルを特定するための特定情報PIとプロトコルとの対応関係を例示した図である。
図49A及び図49B及び図50は、第5実施形態おいて、プロトコルごと又は当該プロトコルの組み合わせごとに定められた、識別子ID(λ)を特定するための規則の一例を説明するための図である。なお、本形態の識別子ID(λ)は有限体Fqの元を要素とするn(λ)次元ベクトルである。
第4実施形態と同様であるため説明を省略する。
本形態でも、各識別子ID’(λ)をn(λ)次元ベクトルv(λ)→(第2部分対応情報)とし(v(λ)→=ID’(λ))、n(λ)次元ベクトルv(λ)→(λ=1,...,Ψ)の集合{v(λ)→}λ=1,...,Ψを条件情報VSET2とする。
図51は、第5実施形態の暗号化DBの一例を説明するための図である。
図51におけるMr1~Mr99は、それぞれ、ドキュメントなどの検索対象情報であり、KWr1~KWr9は、それぞれ単語などのキーワードであり、Trueは「真」を意味する「1」などのデータである。また、C(Mr1),...,C(Mr99)は、それぞれ、検索対象情報Mr1~Mr99の暗号文である。暗号文C(Mr1),...,C(Mr99)の暗号化方式は、共通鍵暗号方式、公開鍵暗号方式、IDベース暗号方式、関数暗号方式などどのようなものであってもよい。また、Cr(KWr1,True),...,Cr(KWr9,True)は、それぞれ、条件情報VSET2と平文Trueとを関数暗号方式の暗号化関数に入力して得られる関数暗号方式の暗号文(第2情報)である。暗号文Cr(KWr1,True),...,Cr(KWr9,True)は、それぞれ、キーワードKWr1~KWr9にそれぞれ対応する各属性情報VSET1に対応する鍵情報を用いて正しく復号可能である。すなわち、例えば、キーワードKWr1に対応する属性情報VSET1と、暗号文Cr(KWr1,True)を暗号化するために用いた条件情報VSET2とは論理式の倫理値を真にする。
本形態では、送信者装置510の鍵生成処理部514d及び受信者装置520の復号部524eに、いくつかのプロトコル及び/又は当該プロトコルの組み合わせ及び/又はキーワードからなる条件に対応する標準形論理式(例えば、PRO(1)∧PRO(2)∨¬PRO(3))が予め設定されている。言い換えると、当該標準形論理式に対応するラベル付き行列LMT(MT,LAB)が予め鍵生成処理部514d及び復号部524eに定められている。ただし、標準形論理式のリテラルであるPRO(λ)や¬PRO(λ)を特定するPRO(λ)やラベルLAB(λ)を特定するn(λ)次元ベクトルw(λ)→の値は定められていない。すなわち、予めラベルがLAB(λ)=w(λ)→であるかLAB(λ)=¬w(λ)→であるかは定められているが、n(λ)次元ベクトルw(λ)→の値は定められていない。なお、検索用キーワードに対応するn(λ)次元ベクトルw(λ)→に対応するラベル(図49Aの例ではλ=1のラベル)はLAB(λ)=w(λ)→である。識別子ID(λ)に対応するn(λ)次元ベクトルw(λ)→が定められることでPRO(λ)やラベルLAB(λ)を特定するn(λ)次元ベクトルw(λ)→の値が定まり、標準形論理式やラベル付き行列LMT(MT,LAB)が特定できる。
本形態の鍵生成装置430の記憶部431bには、関数暗号方式のマスター秘密情報MSK([Setup(1sec,(Ψ;n(1),...,n(Ψ))):セットアップ]参照)が格納される。
図52は、第5実施形態の検索依頼処理を説明するためのフローチャートである。図53Aは、第5実施形態の鍵情報生成処理を説明するためのフローチャートである。また、図53Bは、第5実施形態の検索処理を説明するためのフローチャートである。以下、これらの図を用いて本形態の処理を説明する。
本形態の暗号化処理では、まず、実行する関数暗号方式を応用した1種類以上のプロトコルを特定するための特定情報PIと、検索用キーワードKWtとが、送信者装置510(図46)の入力部112に入力される(ステップS511)。例えば、特定情報PIが図48Aように定まるのであれば、利用者に選択された1種類のプロトコルに対応する特定情報PI、又は、利用者に選択された2種類以上のプロトコルにそれぞれ対応する特定情報PIの組み合わせが入力部112に入力される。また、例えば、特定情報PIが図48Bように定まるのであれば、利用者に選択された1種類のプロトコル又は2種類以上のプロトコルに対応する特定情報PIが入力部112に入力される。なお、本形態では、選択されるプロトコル又はプロトコルの組み合わせにKeyword検索暗号プロトコルが含まれるものとする。
w(λ)→=ID(λ) …(139)
とし、n(λ)次元ベクトルw(λ)→(λ=1,...,Ψ)の集合{w(λ)→}λ=1,...,Ψを属性情報VSET1(特定の第1対応情報)とし、当該属性情報VSET1を出力する(ステップS513)。
本形態の検索処理では、まず、受信者装置520(図47)の通信部125が、送信された検索用キーワードKWtに対応する鍵情報SKS(第1情報)を受信し、記憶部421bに格納する(ステップS521)。
v(λ)→=ID’(λ) …(140)
とし、n(λ)次元ベクトルv(λ)→(λ=1,...,Ψ)の集合{v(λ)→}λ=1,...,Ψを条件情報VSET2(特定の第2対応情報)とし、各キーワードKWrにそれぞれ対応する各条件情報VSET2を出力する(ステップS523)。
第5実施形態においても、属性情報VSET1及び条件情報VSET2に対し、第4実施形態の変形例1で説明したような予備領域を設けてもよい。
また、本形態では、第1情報が属性情報VSET1に対応する鍵情報であり、第2情報が条件情報VSET2に対応する暗号文である場合の一例として、Keyword検索暗号プロトコルを基本としたプロトコルが実行される場合を例示した。しかし、本発明はこれに限定されない。
第6実施形態は、第4実施形態と第5実施形態との切り替えが可能な形態である。すなわち、本形態の送信者装置は、特定情報PIによって特定されるプロトコルに応じ、属性情報VSET1に対応する暗号文を生成するか属性情報VSET1に対応する鍵情報を生成するかを切り替える。また、本形態の受信者装置は、特定情報PIによって特定されるプロトコルに応じ、条件情報に対応する鍵情報を生成するか条件情報に対応する暗号文を生成するかを切り替える。以下では、第4実施形態との相違点を中心に説明し、第4実施形態と共通する部分については説明を省略する。
図35に示すように、本形態の関数暗号応用システム6は、ネットワーク140に接続された、送信者装置610(情報出力装置)と受信者装置620(情報処理装置)と鍵生成装置430とを有する。なお、説明の便宜上、図35には、送信者装置610と受信者装置620と鍵生成装置430とが1個ずつ表記されているが、2個以上の送信者装置610や受信者装置620や鍵生成装置430が存在してもよい。
図54は、本形態の送信者装置610の構成を説明するためのブロック図である。なお、本形態において、前述の実施形態と共通する部分については前述の実施形態と同じ符号を付して説明を省略する(以下、同様)。
図55は、本形態の受信者装置620の構成を説明するためのブロック図である。
図55に示すように、本形態の受信者装置620は、一時メモリ121aと、記憶部421b,521cと、制御部123と、識別子特定部624aと、条件情報生成部624cと、鍵生成処理部424dと、暗号化部524dと、復号部624eと、切り替え部624a,624bと、通信部125とを有する。識別子特定部624aは前述の識別子特定部424a及び524aの両方の機能を備える。条件情報生成部624cは前述の条件情報生成部424c及び524cの両方の機能を備える。復号部624eは前述の復号部424e及び524eの両方の機能を備える。なお、説明の便宜上、図55には、通信部125を示すブロックが2つ表記されているが、これは別個の通信部125が2つ必要なことを意味しない。
第4,5実施形態と同様であるため説明を省略する。
図56Aは、第6実施形態の送信者装置610の処理を説明するためのフローチャートである。図56Bは、第6実施形態の受信者装置620の処理を説明するためのフローチャートである。以下、これらの図を用いて本形態の処理を説明する。
なお、本発明は上述の第4~6の実施形態に限定されるものではない。例えば、上述の有限体Fq上で定義された各演算を位数qの有限環Zq上で定義された演算に置き換えてもよい。有限体Fq上で定義された各演算を有限環Zq上で定義された演算に置き換える方法の一例は、素数やそのべき乗値以外のqを許容する方法である。
また、上述の第1~6実施形態の構成をコンピュータによって実現する場合、各装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、上記処理機能がコンピュータ上で実現される。
この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。
110,210,310 送信者装置(情報出力装置)
120,220,320 受信者装置(情報処理装置)
130 鍵生成装置
Claims (47)
- 第1対応情報及び第2対応情報の組み合わせに対応する論理式の真理値が真の場合に暗号文が正しく復号される関数暗号方式に従ったプロトコルごとに定められた規則、又は前記関数暗号方式に従ったプロトコルの組み合わせごとに定められた規則に従い、前記関数暗号方式に従った特定のプロトコル又は前記関数暗号方式に従った特定のプロトコルの組み合わせに対応する1種類の識別子又は複数種類の識別子を特定する識別子特定部と、
前記1種類の識別子又は前記複数種類の識別子の組み合わせに対応する特定の第1対応情報を設定する対応情報設定部と、
前記特定の第1対応情報に対応する関数暗号方式の暗号文又は鍵情報である第1情報を出力する出力部と、を含む情報出力装置と、
前記第1情報、及び特定の第2対応情報に対応する関数暗号方式の鍵情報又は暗号文である第2情報を関数暗号方式の復号関数に入力し、前記第1情報に対応する前記特定の第1対応情報及び前記第2情報に対応する前記特定の第2対応情報の組み合わせに対応する論理式の真理値が真の場合に復号結果を生成する復号部と、を含む情報処理装置と、を有し、
前記特定の第2対応情報は、前記特定の第1対応情報に対応する前記第1情報、及び前記特定の第2対応情報に対応する前記第2情報が前記復号関数に入力された場合、前記特定の第1対応情報がとる1種類の値又は複数種類の値に対してそれぞれ復号結果が得られる値をとり、
前記第1情報が前記特定の第1対応情報に対応する暗号文である場合には前記第2情報は前記特定の第2対応情報に対応する鍵情報であり、前記第1情報が前記特定の第1対応情報に対応する鍵情報である場合には前記第2情報は前記特定の第2対応情報に対応する暗号文である、関数暗号応用システム。 - 請求項1の関数暗号応用システムであって、
前記特定の第2対応情報は、前記特定の第1対応情報に対応する前記第1情報、及び前記特定の第2対応情報に対応する前記第2情報が前記復号関数に入力された場合、前記特定の第1対応情報がとる複数種類の値に対してそれぞれ復号結果が得られる値をとる、関数暗号応用システム。 - 請求項1又は2の関数暗号応用システムであって、
前記識別子特定部は、前記特定のプロトコルの組み合わせに対応する前記1種類の識別子又は複数種類の識別子を特定し、
前記特定のプロトコルの組み合わせは、前記関数暗号方式に従った複数種類のプロトコルからなる組み合わせである、関数暗号応用システム。 - 請求項3の関数暗号応用システムであって、
前記情報出力装置は、前記特定のプロトコルに応じ、前記第1情報が暗号文であるか鍵情報であるかを切り替える第1切り替え部をさらに有し、
前記情報処理装置は、前記特定のプロトコルに応じ、前記第2情報が鍵情報であるか暗号文であるかを切り替える第2切り替え部をさらに有する、関数暗号応用システム。 - 請求項1又は2の関数暗号応用システムであって、
前記情報出力装置は、前記特定のプロトコルに応じ、前記第1情報が暗号文であるか鍵情報であるかを切り替える第1切り替え部をさらに有し、
前記情報処理装置は、前記特定のプロトコルに応じ、前記第2情報が鍵情報であるか暗号文であるかを切り替える第2切り替え部をさらに有する、関数暗号応用システム。 - 請求項1の関数暗号応用システムであって、
前記第2対応情報は、当該第2対応情報と前記第1対応情報とが予め定められた関数に入力された場合に、前記第1対応情報がとる1種類又は複数種類の値に対して当該関数の関数値を予め定められた値にし、
前記復号関数は、前記第1情報に対応する前記特定の第1対応情報と前記第2情報に対応する前記特定の第2対応情報とが前記予め定められた関数に入力された場合の関数値が前記予め定められた値となる場合に、正しい復号結果を生成する関数である、関数暗号応用システム。 - 請求項6の関数暗号応用システムであって、
前記第2対応情報は、当該第2対応情報と前記第1対応情報とが予め定められた関数に入力された場合に、前記第1対応情報がとる複数種類の値に対して当該関数の関数値を前記予め定められた値にする、関数暗号応用システム。 - 請求項7の関数暗号応用システムであって、
前記第1対応情報及び前記第2対応情報はベクトルであり、
前記予め定められた関数は、前記第1対応情報と前記第2対応情報との内積を算出する関数であり、前記予め定められた値は0である、関数暗号応用システム。 - 請求項8の関数暗号応用システムであって、
少なくとも一部の前記第1対応情報は、一部の要素である第1予備領域の値が予め固定されたベクトルであり、
少なくとも一部の前記第2対応情報は、一部の要素である第2予備領域の値が予め固定されたベクトルであり、
前記第1予備領域を含む前記第1対応情報の当該第1予備領域の位置と、前記第2対応情報の前記第2予備領域の位置とは、互いに等しく、
前記第1予備領域を含む前記第1対応情報の当該第1予備領域をなすベクトルと前記第2対応情報の前記第2予備領域をなすベクトルとの内積は、前記1種類の識別子又は前記複数種類の識別子の組み合わせにかかわらず0である、関数暗号応用システム。 - 請求項9の関数暗号応用システムであって、
前記第1予備領域の値はすべて0である、関数暗号応用システム。 - 請求項9の関数暗号応用システムであって、
前記第2予備領域の値はすべて0である、関数暗号応用システム。 - 請求項10の関数暗号応用システムであって、
前記第2予備領域の少なくとも一部の値は0以外である、関数暗号応用システム。 - 請求項11の関数暗号応用システムであって、
前記第1予備領域の少なくとも一部の値は0以外である、関数暗号応用システム。 - 請求項8から13の何れかの関数暗号応用システムであって、
前記第1対応情報は、論理和及び/又は論理積を含む論理式を示す多項式の各項の不定元成分に前記識別子が代入された値を各要素とするベクトルであり、
前記第2対応情報は、前記論理式を示す多項式の各項の係数成分を各要素とするベクトルであり、
前記論理式を示す多項式は、不定元と定数との差をとる多項式によって当該不定元が当該定数であるという命題を表現し、命題をそれぞれ表現する多項式の積によって当該命題の論理和を表現し、命題又は命題の論理和をそれぞれ表現する多項式の線形和によって当該命題又は命題の論理和の論理積を表現し、それによって前記論理式を表現した多項式であり、
前記論理式を示す多項式は、前記第1対応情報と前記第2対応情報との内積に等しく、前記論理式が真であることと前記論理式を示す多項式が0であることとが等価である、関数暗号応用システム。 - 請求項14の関数暗号応用システムであって、
前記第1対応情報及び前記第2対応情報は、前記1種類の識別子又は前記複数種類の識別子の組み合わせにかかわらず予め真となるように設定された命題の論理積を一部に含む前記論理式に対応する、関数暗号応用システム。 - 請求項1の関数暗号応用システムであって、
前記第1対応情報は1又は複数の第1部分対応情報を含み、前記第2対応情報は1又は複数の第2部分対応情報を含み、
前記第1部分対応情報及び前記第2部分対応情報が予め定められた関数に入力された場合に、前記第1部分対応情報の値及び前記第2部分対応情報の値の組み合わせに応じて当該関数の関数値が予め定められた値となるか、又は、当該予め定められた値以外の値となり、
前記第1部分対応情報及び前記第2部分対応情報の組み合わせごとに、前記関数の関数値が前記予め定められた値となる場合を前記第1部分対応情報及び前記第2部分対応情報の組み合わせが真であるとするか、又は、前記関数の関数値が前記予め定められた値とならない場合を前記第1部分対応情報及び前記第2部分対応情報の組み合わせが真であるとするかが定められており、
前記復号関数は、真となる前記第1部分対応情報及び前記第2部分対応情報の組み合わせの集合が予め定められた条件を満たした場合に、正しい復号結果を生成する関数である、関数暗号応用システム。 - 請求項16の関数暗号応用システムであって、
前記第1部分対応情報のそれぞれ又は前記第2部分対応情報のそれぞれにベクトルが対応付けられており、
前記復号関数は、真となる前記第1部分対応情報及び前記第2部分対応情報の組み合わせがそれぞれ含む、前記第1部分対応情報又は前記第2部分対応情報に対応付けられたベクトルで張られるベクトル空間内に特定のベクトルが存在する場合に、正しい復号結果を生成する関数である、関数暗号応用システム。 - 請求項16又は17の関数暗号応用システムであって、
前記第1部分対応情報及び前記第2部分対応情報はベクトルであり、
前記予め定められた関数は、前記第1部分対応情報と前記第2部分対応情報との内積を算出する関数であり、前記予め定められた値は0である、関数暗号応用システム。 - 請求項18の関数暗号応用システムであって、
少なくとも一部の前記第1部分対応情報は値が予め固定されたベクトルであり、
少なくとも一部の前記第2部分対応情報は値が予め固定されたベクトルであり、
値が予め固定されたベクトルである前記第1部分対応情報と値が予め固定されたベクトルである前記第2部分対応情報との内積は、前記1種類の識別子又は前記複数種類の識別子の組み合わせにかかわらず0である、関数暗号応用システム。 - 請求項19の関数暗号応用システムであって、
値が予め固定されたベクトルである前記第1部分対応情報はすべての要素が0のベクトルである、関数暗号応用システム。 - 請求項19の関数暗号応用システムであって、
値が予め固定されたベクトルである前記第2部分対応情報はすべての要素が0のベクトルである、関数暗号応用システム。 - 請求項20の関数暗号応用システムであって、
値が予め固定されたベクトルである前記第2部分対応情報は0以外の要素を含むベクトルである、関数暗号応用システム。 - 請求項21の関数暗号応用システムであって、
値が予め固定されたベクトルである前記第1部分対応情報は0以外の要素を含むベクトルである、関数暗号応用システム。 - 請求項1の関数暗号応用システムであって、
前記情報処理装置は、1種類の前記特定の第2対応情報に対応する1種類の前記第2情報を格納する、関数暗号応用システム。 - 請求項1の関数暗号応用システムであって、
前記関数暗号方式に従ったプロトコル又は前記関数暗号方式に従ったプロトコルの組み合わせに対して使用すべき第1対応情報の種別が定められており、前記規則は、前記特定のプロトコル又は前記特定のプロトコルの組み合わせに使用すべき種別の前記特定の第1対応情報を定める前記1種類の識別子又は前記複数種類の識別子の組み合わせを特定するものである、関数暗号応用システム。 - 請求項1又は25の関数暗号応用システムであって、
前記プロトコルは、Timed-Release暗号プロトコル、Forward Secure暗号プロトコル、Key Insulated暗号プロトコル、CCA2安全暗号プロトコル、Keyword検索暗号プロトコルの少なくとも1つを含む集合から選択されたものであり、
前記プロトコルがTimed-Release暗号プロトコルである場合の前記規則は、前記第1情報の生成時点より未来の時点を特定する情報を前記識別子とする規則であり、
前記プロトコルがForward Secure暗号プロトコル又はKey Insulated暗号プロトコルである場合の前記規則は、それぞれ、前記第1情報の生成時点を含む時間区間又は前記第1情報の生成時点より未来の時間区間を特定する情報を前記識別子とする規則であり、
前記プロトコルがCCA2安全暗号プロトコルである場合の前記規則は、前記第1情報の生成ごとに新たに設定される使い捨て情報を特定する情報を前記識別子とする規則であり、
前記プロトコルがKeyword検索暗号プロトコルである場合の前記規則は、データベースの検索用キーワードを特定する情報を前記識別子とする規則である、関数暗号応用システム。 - 第1対応情報及び第2対応情報の組み合わせに対応する論理式の真理値が真の場合に暗号文が正しく復号される関数暗号方式に従ったプロトコルごとに定められた規則、又は前記関数暗号方式に従ったプロトコルの組み合わせごとに定められた規則に従い、前記関数暗号方式に従った特定のプロトコル又は前記関数暗号方式に従った特定のプロトコルの組み合わせに対応する1種類の識別子又は複数種類の識別子を特定する識別子特定部と、
前記1種類の識別子又は前記複数種類の識別子の組み合わせに対応する特定の第1対応情報を設定する対応情報設定部と、
前記特定の第1対応情報に対応する関数暗号方式の暗号文又は鍵情報である第1情報を出力する出力部と、を有する情報出力装置。 - 請求項27の情報出力装置であって、
前記識別子特定部は、前記特定のプロトコルの組み合わせに対応する前記1種類の識別子又は複数種類の識別子を特定し、
前記特定のプロトコルの組み合わせは、前記関数暗号方式に従った複数種類のプロトコルからなる組み合わせである、情報出力装置。 - 請求項27又は28の情報出力装置であって、
前記特定のプロトコルに応じ、前記第1情報が暗号文であるか鍵情報であるかを切り替える第1切り替え部をさらに有する、情報出力装置。 - 第1対応情報及び第2対応情報の組み合わせに対応する論理式の真理値が真の場合に暗号文が正しく復号される関数暗号方式に従ったプロトコルごとに定められた規則、又は前記関数暗号方式に従ったプロトコルの組み合わせごとに定められた規則に従って定まる1種類の識別子又は複数種類の識別子の組み合わせに対応する特定の第1対応情報に対応する関数暗号方式の暗号文又は鍵情報である第1情報、及び特定の第2対応情報に対応する前記関数暗号方式の鍵情報又は暗号文である第2情報を関数暗号方式の復号関数に入力し、前記第1情報に対応する特定の第1対応情報及び前記第2情報に対応する前記特定の第2対応情報の組み合わせに対応する論理式の真理値が真の場合に復号結果を生成する復号部を有し、
前記特定の第2対応情報は、前記特定の第1対応情報に対応する前記第1情報、及び前記特定の第2対応情報に対応する前記第2情報が前記復号関数に入力された場合、前記特定の第1対応情報がとる1種類の値又は複数種類の値に対してそれぞれ復号結果が得られる値をとり、
前記第1情報が前記特定の第1対応情報に対応する暗号文である場合には前記第2情報は前記特定の第2対応情報に対応する鍵情報であり、前記第1情報が前記特定の第1対応情報に対応する鍵情報である場合には前記第2情報は前記特定の第2対応情報に対応する暗号文である、情報処理装置。 - 請求項30の情報処理装置であって、
前記特定の第2対応情報は、前記特定の第1対応情報に対応する前記第1情報、及び前記特定の第2対応情報に対応する前記第2情報が前記復号関数に入力された場合、前記特定の第1対応情報がとる複数種類の値に対してそれぞれ復号結果が得られる値をとる、情報処理装置。 - 請求項30又は31の情報処理装置であって、
前記識別子特定部は、前記特定のプロトコルの組み合わせに対応する前記1種類の識別子又は複数種類の識別子を特定し、
前記特定のプロトコルの組み合わせは、前記関数暗号方式に従った複数種類のプロトコルからなる組み合わせである、情報処理装置。 - 請求項32の情報処理装置であって、
前記特定のプロトコルに応じ、前記第2情報が鍵情報又は暗号文であるかを切り替える第2切り替え部をさらに有する、情報処理装置。 - 請求項30又は31の情報処理装置であって、
前記特定のプロトコルに応じ、前記第2情報が鍵情報又は暗号文であるかを切り替える第2切り替え部をさらに有する、情報処理装置。 - 情報出力装置が、第1対応情報及び第2対応情報の組み合わせに対応する論理式の真理値が真の場合に暗号文が正しく復号される関数暗号方式に従ったプロトコルごとに定められた規則、又は前記関数暗号方式に従ったプロトコルの組み合わせごとに定められた規則に従い、前記関数暗号方式に従った特定のプロトコル又は前記関数暗号方式に従った特定のプロトコルの組み合わせに対応する1種類の識別子又は複数種類の識別子を特定する識別子特定ステップと、
前記情報出力装置が、前記1種類の識別子又は前記複数種類の識別子の組み合わせに対応する特定の第1対応情報を設定する対応情報設定ステップと、
前記情報出力装置が、前記特定の第1対応情報に対応する関数暗号方式の暗号文又は鍵情報である第1情報を出力する出力ステップと、
情報処理装置が、前記第1情報、及び特定の第2対応情報に対応する関数暗号方式の鍵情報又は暗号文である第2情報を関数暗号方式の復号関数に入力し、前記第1情報に対応する前記特定の第1対応情報及び前記第2情報に対応する前記特定の第2対応情報の組み合わせに対応する論理式の真理値が真の場合に復号結果を生成する復号ステップと、を有し、
前記特定の第2対応情報は、前記特定の第1対応情報に対応する前記第1情報、及び前記特定の第2対応情報に対応する前記第2情報が前記復号関数に入力された場合、前記特定の第1対応情報がとる1種類の値又は複数種類の値に対してそれぞれ復号結果が得られる値をとり、
前記第1情報が前記特定の第1対応情報に対応する暗号文である場合には前記第2情報は前記特定の第2対応情報に対応する鍵情報であり、前記第1情報が前記特定の第1対応情報に対応する鍵情報である場合には前記第2情報は前記特定の第2対応情報に対応する暗号文である、暗号プロトコル実行方法。 - 識別子特定部が、第1対応情報及び第2対応情報の組み合わせに対応する論理式の真理値が真の場合に暗号文が正しく復号される関数暗号方式に従ったプロトコルごとに定められた規則、又は前記関数暗号方式に従ったプロトコルの組み合わせごとに定められた規則に従い、前記関数暗号方式に従った特定のプロトコル又は前記関数暗号方式に従った特定のプロトコルの組み合わせに対応する1種類の識別子又は複数種類の識別子を特定する識別子特定ステップと、
対応情報設定部が、前記1種類の識別子又は前記複数種類の識別子の組み合わせに対応する特定の第1対応情報を設定する対応情報設定ステップと、
出力部が、前記特定の第1対応情報に対応する関数暗号方式の暗号文又は鍵情報である第1情報を出力する出力ステップと、を有する情報出力方法。 - 請求項36の情報出力方法であって、
前記識別子特定ステップは、前記特定のプロトコルの組み合わせに対応する前記1種類の識別子又は複数種類の識別子を特定するステップであり、
前記特定のプロトコルの組み合わせは、前記関数暗号方式に従った複数種類のプロトコルからなる組み合わせである、情報出力方法。 - 請求項36又は37の情報出力方法であって、
切り替え部が、前記特定のプロトコルに応じ、前記第1情報が暗号文であるか鍵情報であるかを切り替えるステップをさらに有する、情報出力方法。 - 復号部が、第1対応情報及び第2対応情報の組み合わせに対応する論理式の真理値が真の場合に暗号文が正しく復号される関数暗号方式に従ったプロトコルごとに定められた規則、又は前記関数暗号方式に従ったプロトコルの組み合わせごとに定められた規則に従って定まる1種類の識別子又は複数種類の識別子の組み合わせに対応する特定の第1対応情報に対応する関数暗号方式の暗号文又は鍵情報である第1情報、及び特定の第2対応情報に対応する前記関数暗号方式の鍵情報又は暗号文である第2情報を関数暗号方式の復号関数に入力し、前記第1情報に対応する特定の第1対応情報及び前記第2情報に対応する前記特定の第2対応情報の組み合わせに対応する論理式の真理値が真の場合に復号結果を生成する復号ステップを有し、
前記特定の第2対応情報は、前記特定の第1対応情報に対応する前記第1情報、及び前記特定の第2対応情報に対応する前記第2情報が前記復号関数に入力された場合、前記特定の第1対応情報がとる1種類の値又は複数種類の値に対してそれぞれ復号結果が得られる値をとり、
前記第1情報が前記特定の第1対応情報に対応する暗号文である場合には前記第2情報は前記特定の第2対応情報に対応する鍵情報であり、前記第1情報が前記特定の第1対応情報に対応する鍵情報である場合には前記第2情報は前記特定の第2対応情報に対応する暗号文である、情報処理方法。 - 請求項39の情報処理方法であって、
前記特定の第2対応情報は、前記特定の第1対応情報に対応する前記第1情報、及び前記特定の第2対応情報に対応する前記第2情報が前記復号関数に入力された場合、前記特定の第1対応情報がとる複数種類の値に対してそれぞれ復号結果が得られる値をとる、情報処理方法。 - 請求項39又は40の情報処理方法であって、
前記1種類の識別子又は複数種類の識別子は、前記特定のプロトコルの組み合わせに対応し、前記特定のプロトコルの組み合わせは、前記関数暗号方式に従った複数種類のプロトコルからなる組み合わせである、情報処理方法。 - 請求項41の情報処理方法であって、
切り替え部が、前記特定のプロトコルに応じ、前記第2情報が鍵情報又は暗号文であるかを切り替えるステップをさらに有する、情報処理方法。 - 請求項39又は40の情報処理方法であって、
切り替え部が、前記特定のプロトコルに応じ、前記第2情報が鍵情報又は暗号文であるかを切り替えるステップをさらに有する、情報処理方法。 - 請求項27の情報出力装置としてコンピュータを機能させるためのプログラム。
- 請求項30の情報処理装置としてコンピュータを機能させるためのプログラム。
- 請求項27の情報出力装置としてコンピュータを機能させるためのプログラムを格納したコンピュータ読み取り可能な記録媒体。
- 請求項30の情報処理装置としてコンピュータを機能させるためのプログラムを格納したコンピュータ読み取り可能な記録媒体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011525871A JP5285778B2 (ja) | 2009-08-03 | 2010-07-30 | 関数暗号応用システム及び方法 |
US13/387,764 US8938068B2 (en) | 2009-08-03 | 2010-07-30 | Functional encryption applied system, information output apparatus, information processing apparatus, encryption protocol execution method, information output method, information processing method, program and recording medium |
CN201080033976.9A CN102484586B (zh) | 2009-08-03 | 2010-07-30 | 函数密码应用系统及方法 |
KR1020127002779A KR101362443B1 (ko) | 2009-08-03 | 2010-07-30 | 함수 암호 응용 시스템, 정보 출력 장치, 정보 처리 장치, 암호 프로토콜 실행 방법, 정보 출력 방법, 정보 처리 방법, 프로그램, 및 기록 매체 |
EP10806400.7A EP2464051B1 (en) | 2009-08-03 | 2010-07-30 | Function cipher application system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-180493 | 2009-08-03 | ||
JP2009180493 | 2009-08-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011016401A1 true WO2011016401A1 (ja) | 2011-02-10 |
Family
ID=43544296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/062948 WO2011016401A1 (ja) | 2009-08-03 | 2010-07-30 | 関数暗号応用システム及び方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8938068B2 (ja) |
EP (1) | EP2464051B1 (ja) |
JP (1) | JP5285778B2 (ja) |
KR (1) | KR101362443B1 (ja) |
CN (1) | CN102484586B (ja) |
WO (1) | WO2011016401A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014095847A (ja) * | 2012-11-12 | 2014-05-22 | Nippon Telegr & Teleph Corp <Ntt> | 関数型暗号システム、鍵生成装置、暗号化装置、復号装置、関数型暗号方法、およびプログラム |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1775880A1 (en) * | 2005-10-11 | 2007-04-18 | STMicroelectronics S.r.l. | Method of processing information to be confidentially transmitted |
CN103004129B (zh) * | 2010-07-23 | 2015-04-08 | 日本电信电话株式会社 | 加密装置、解密装置、加密方法、解密方法、程序及记录介质 |
US9237013B2 (en) * | 2011-12-20 | 2016-01-12 | Mitsubishi Electric Corporation | Encrypted data management device, encrypted data management method, and encrypted data management program |
US8566601B1 (en) | 2012-09-12 | 2013-10-22 | Zeutro Llc | Systems and methods for functional encryption using a string of arbitrary length |
WO2014092105A1 (ja) * | 2012-12-12 | 2014-06-19 | 日本電気株式会社 | データベース検索装置、データベース検索方法及びプログラム |
CA2906232C (en) * | 2013-03-15 | 2023-09-19 | Locus Analytics, Llc | Domain-specific syntax tagging in a functional information system |
JP6244728B2 (ja) * | 2013-08-07 | 2017-12-13 | 富士通株式会社 | 情報処理方法及びプログラム |
JP6144992B2 (ja) * | 2013-08-08 | 2017-06-07 | 株式会社日立製作所 | 検索可能暗号処理システム及び方法 |
WO2015194117A1 (ja) * | 2014-06-16 | 2015-12-23 | 日本電気株式会社 | 条件生成装置、条件生成方法、条件生成プログラムが格納された記録媒体、データベース検索システム、及び、データベース検索プログラムが格納された記録媒体 |
JP6104469B2 (ja) * | 2014-07-02 | 2017-03-29 | 三菱電機株式会社 | 行列生成装置及び行列生成方法及び行列生成プログラム |
CN107251479B (zh) * | 2015-02-20 | 2020-08-11 | 三菱电机株式会社 | 数据保管装置和数据处理方法 |
US9209974B1 (en) * | 2015-05-03 | 2015-12-08 | Zeutro, Llc | Functional encryption key management |
CN106452770B (zh) * | 2015-08-12 | 2020-10-13 | 深圳市腾讯计算机系统有限公司 | 一种数据加密方法、解密方法、装置和系统 |
WO2018070932A1 (en) * | 2016-10-14 | 2018-04-19 | Huawei International Pte. Ltd. | System and method for querying an encrypted database for documents satisfying an expressive keyword access structure |
US11818254B2 (en) * | 2017-08-22 | 2023-11-14 | Nippon Telegraph And Telephone Corporation | Share generating device, reconstructing device, secure computation system, share generation method, reconstruction method, program, and recording medium |
CN108733802B (zh) * | 2018-05-17 | 2023-03-24 | 腾讯科技(深圳)有限公司 | 识别码生成及解析方法、装置、存储介质和电子设备 |
US11228432B2 (en) * | 2019-03-04 | 2022-01-18 | Siavash Bayat-Sarmadi | Quantum-resistant cryptoprocessing |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008066671A2 (en) * | 2006-11-08 | 2008-06-05 | Voltage Security, Inc. | Indentity-based-encryption extensions formed using multiple instances of an identity based encryption scheme |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL113259A (en) * | 1995-04-05 | 2001-03-19 | Diversinet Corp | A device and method for a secure interface for secure communication and data transfer |
US5751811A (en) * | 1995-08-30 | 1998-05-12 | Magnotti; Joseph C. | 32N +D bit key encryption-decryption system using chaos |
US6259789B1 (en) * | 1997-12-12 | 2001-07-10 | Safecourier Software, Inc. | Computer implemented secret object key block cipher encryption and digital signature device and method |
US7194092B1 (en) * | 1998-10-26 | 2007-03-20 | Microsoft Corporation | Key-based secure storage |
US6937728B1 (en) * | 1999-05-19 | 2005-08-30 | Nippon Telegraph And Telephone Corporation | Verifiable anonymous channel |
US7184549B2 (en) * | 2000-01-14 | 2007-02-27 | Mitsubishi Denki Kabushiki Kaisha | Method and apparatus for encryption, method and apparatus for decryption, and computer-readable medium storing program |
EP1278331A4 (en) * | 2000-03-30 | 2006-06-07 | Sanyo Electric Co | CONTENTS DATA STORAGE |
US20040073790A1 (en) * | 2001-07-13 | 2004-04-15 | Giuseppe Ateniese | Intermediated delivery scheme for asymmetric fair exchange of electronic items |
US20030053625A1 (en) * | 2001-09-10 | 2003-03-20 | The Titan Corporation | Self-synchronizing, stream-oriented data encryption technique |
US7139918B2 (en) * | 2002-01-31 | 2006-11-21 | International Business Machines Corporation | Multiple secure socket layer keyfiles for client login support |
US7349538B2 (en) * | 2002-03-21 | 2008-03-25 | Ntt Docomo Inc. | Hierarchical identity-based encryption and signature schemes |
US7549147B2 (en) * | 2002-04-15 | 2009-06-16 | Core Sdi, Incorporated | Security framework for protecting rights in computer software |
EP1520369B1 (en) * | 2002-05-31 | 2006-10-18 | Scientific Generics Limited | Biometric authentication system |
JP2004015667A (ja) * | 2002-06-10 | 2004-01-15 | Takeshi Sakamura | Icカード間暗号通信方法、電子チケット流通システムにおけるicカード間暗号通信方法およびicカード |
KR100886551B1 (ko) * | 2003-02-21 | 2009-03-02 | 삼성전자주식회사 | 이동통신시스템에서 인터넷 프로토콜 버전에 따른 트래픽플로우 탬플릿 패킷 필터링 장치 및 방법 |
KR20060069452A (ko) * | 2003-08-08 | 2006-06-21 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | 데이터 처리 시스템 및 처리 방법 |
US7200226B2 (en) * | 2003-09-04 | 2007-04-03 | Intel Corporation | Cipher block chaining decryption |
GB0321335D0 (en) * | 2003-09-11 | 2003-10-15 | Rogers Paul J | Method and apparatus for use in security |
ATE552709T1 (de) * | 2003-09-26 | 2012-04-15 | Ericsson Telefon Ab L M | Verbesserter sicherheitsentwurf für die kryptographie in mobilkommunikationssystemen |
US8086536B2 (en) * | 2004-09-16 | 2011-12-27 | Microsoft Corporation | Location based licensing |
US20060075220A1 (en) * | 2004-10-01 | 2006-04-06 | Baugher Mark J | System and method to authorize a device to receive a content work based on device capabilities and content-work permissions |
US20060126841A1 (en) * | 2004-12-14 | 2006-06-15 | Tata Consultancy Services Ltd. | Method and apparatus for a security system for wireless networks |
US7634085B1 (en) * | 2005-03-25 | 2009-12-15 | Voltage Security, Inc. | Identity-based-encryption system with partial attribute matching |
US7546460B2 (en) * | 2005-03-30 | 2009-06-09 | Oracle International Corporation | Secure communications across multiple protocols |
JP2006333095A (ja) * | 2005-05-26 | 2006-12-07 | Hiromi Fukaya | 暗号通信方法、暗号通信システム、暗号通信装置及び暗号通信プログラム |
JP2007036364A (ja) * | 2005-07-22 | 2007-02-08 | Nec Corp | タイム装置、暗号化装置、復号化装置、暗号化/復号化システム |
EP1758337B1 (fr) * | 2005-08-23 | 2012-08-01 | Alcatel Lucent | Procédé de transmission securisée de données, via des reseaux, par échange d'informations d'encryptage, et dispositif d'encryptage/decryptage correspondant |
US20070223703A1 (en) * | 2005-10-07 | 2007-09-27 | Sanjeev Verma | Method and apparatus for providing service keys within multiple broadcast networks |
EP1855223A1 (en) * | 2006-05-12 | 2007-11-14 | Telefonaktiebolaget LM Ericsson (publ) | Extending the DRM realm to external devices |
JP4358239B2 (ja) * | 2007-01-10 | 2009-11-04 | 株式会社東芝 | コンテンツ提供システム、追跡システム、コンテンツ提供方法及び不正ユーザ特定方法 |
US8958562B2 (en) * | 2007-01-16 | 2015-02-17 | Voltage Security, Inc. | Format-preserving cryptographic systems |
EP2120227B1 (en) * | 2007-01-19 | 2015-04-15 | Mitsubishi Electric Corporation | Cryptogram generating device, cryptogram communication system, and group parameter generating device |
US20080304664A1 (en) * | 2007-06-07 | 2008-12-11 | Shanmugathasan Suthaharan | System and a method for securing information |
US8291231B2 (en) * | 2007-11-07 | 2012-10-16 | Nippon Telegraph And Telephone Corporation | Common key setting method, relay apparatus, and program |
US20090132423A1 (en) * | 2007-11-15 | 2009-05-21 | Ebay Inc. | Send money plug in for web mails |
US8964982B2 (en) * | 2009-04-24 | 2015-02-24 | Nippon Telegraph And Telephone Corporation | Cryptographic system, cryptographic communication method, encryption apparatus, key generation apparatus, decryption apparatus, content server, program, and storage medium |
KR101246241B1 (ko) * | 2009-04-24 | 2013-03-22 | 니뽄 덴신 덴와 가부시키가이샤 | 암호화 장치, 복호장치, 암호화 방법, 복호방법, 세큐러티 방법, 프로그램 및 기록매체 |
JP5454673B2 (ja) * | 2010-03-17 | 2014-03-26 | 富士通株式会社 | 通信装置、プログラムおよび方法 |
-
2010
- 2010-07-30 JP JP2011525871A patent/JP5285778B2/ja active Active
- 2010-07-30 EP EP10806400.7A patent/EP2464051B1/en active Active
- 2010-07-30 US US13/387,764 patent/US8938068B2/en active Active
- 2010-07-30 CN CN201080033976.9A patent/CN102484586B/zh active Active
- 2010-07-30 WO PCT/JP2010/062948 patent/WO2011016401A1/ja active Application Filing
- 2010-07-30 KR KR1020127002779A patent/KR101362443B1/ko active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008066671A2 (en) * | 2006-11-08 | 2008-06-05 | Voltage Security, Inc. | Indentity-based-encryption extensions formed using multiple instances of an identity based encryption scheme |
Non-Patent Citations (2)
Title |
---|
KATZ, J. ET AL.: "Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products", CRYPTOLOGY EPRINT ARCHIVE, REPORT 2007/404, 7 July 2008 (2008-07-07), pages 1 - 29, XP008149983 * |
See also references of EP2464051A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014095847A (ja) * | 2012-11-12 | 2014-05-22 | Nippon Telegr & Teleph Corp <Ntt> | 関数型暗号システム、鍵生成装置、暗号化装置、復号装置、関数型暗号方法、およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
EP2464051B1 (en) | 2015-05-27 |
KR101362443B1 (ko) | 2014-02-11 |
JP5285778B2 (ja) | 2013-09-11 |
EP2464051A4 (en) | 2013-05-22 |
CN102484586B (zh) | 2014-12-03 |
CN102484586A (zh) | 2012-05-30 |
EP2464051A1 (en) | 2012-06-13 |
US20120163588A1 (en) | 2012-06-28 |
KR20120042901A (ko) | 2012-05-03 |
JPWO2011016401A1 (ja) | 2013-01-10 |
US8938068B2 (en) | 2015-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5285778B2 (ja) | 関数暗号応用システム及び方法 | |
JP5379914B2 (ja) | 秘密分散システム、分散装置、分散管理装置、取得装置、秘密分散方法、プログラム、及び記録媒体 | |
JP5466763B2 (ja) | 暗号化装置、復号装置、暗号化方法、復号方法、プログラム、及び記録媒体 | |
JP5618881B2 (ja) | 暗号処理システム、鍵生成装置、暗号化装置、復号装置、暗号処理方法及び暗号処理プログラム | |
CN102396012B (zh) | 秘密分散系统、分散装置、分散管理装置、取得装置、其处理方法、秘密分散方法 | |
KR101588992B1 (ko) | 암호 시스템, 암호 방법 및 암호 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체 | |
WO2012011575A1 (ja) | 暗号システム、暗号通信方法、暗号化装置、鍵生成装置、復号装置、コンテンツサーバ装置、プログラム、記憶媒体 | |
KR20110135962A (ko) | 암호화 장치, 복호장치, 암호화 방법, 복호방법, 세큐러티 방법, 프로그램 및 기록매체 | |
Seo et al. | Revocable hierarchical identity-based encryption | |
Lee et al. | Anonymous HIBE with short ciphertexts: full security in prime order groups | |
Lee et al. | Functional encryption for set intersection in the multi-client setting | |
Kim et al. | Collusion resistant trace-and-revoke for arbitrary identities from standard assumptions | |
JP2010160235A (ja) | 検索システム、端末装置、データベース装置、検索方法及びプログラム | |
JP5612494B2 (ja) | 関数暗号を用いた時限暗号システム、時限暗号方法、装置、プログラム | |
Mandal et al. | Efficient identity-based outsider anonymous public-key trace and revoke with constant ciphertext-size and fast decryption | |
Ding et al. | Ciphertext retrieval via attribute-based FHE in cloud computing | |
Su | Pairing-based constructions: efficient revocation, compact ciphertexts and generic transformation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080033976.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10806400 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011525871 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127002779 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010806400 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13387764 Country of ref document: US |