WO2011016379A1 - Light-source laser utilizing laser compton-scattering - Google Patents
Light-source laser utilizing laser compton-scattering Download PDFInfo
- Publication number
- WO2011016379A1 WO2011016379A1 PCT/JP2010/062750 JP2010062750W WO2011016379A1 WO 2011016379 A1 WO2011016379 A1 WO 2011016379A1 JP 2010062750 W JP2010062750 W JP 2010062750W WO 2011016379 A1 WO2011016379 A1 WO 2011016379A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- optical
- laser light
- optical resonator
- resonator
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
- H01S3/1106—Mode locking
- H01S3/1112—Passive mode locking
- H01S3/1115—Passive mode locking using intracavity saturable absorbers
- H01S3/1118—Semiconductor saturable absorbers, e.g. semiconductor saturable absorber mirrors [SESAMs]; Solid-state saturable absorbers, e.g. carbon nanotube [CNT] based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/081—Construction or shape of optical resonators or components thereof comprising three or more reflectors
- H01S3/082—Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/105—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/105—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
- H01S3/1053—Control by pressure or deformation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
- H01S3/109—Frequency multiplication, e.g. harmonic generation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1618—Solid materials characterised by an active (lasing) ion rare earth ytterbium
Definitions
- the present invention relates to a laser device that generates strong laser light, and more particularly, to a laser for light source using laser Compton scattering that can oscillate stably even when the finesse of an optical resonator is increased.
- a light source device As a light source depends on the intensity of the laser target that can be realized.
- a pulsed linear accelerator is used as a base
- a high-intensity pulse laser is used as the laser beam, or a method of temporarily amplifying the burst is used.
- the average intensity of the laser is to be increased by a continuous operation system based on a storage ring type device using a Compton scattering as shown in FIG. 7 or a superconducting accelerator, a continuous high intensity laser target is required. It becomes.
- a known high-intensity mode-locked oscillator for example, 500 W
- a strong laser beam is generated by using a laser generator having a high-intensity mode-locked oscillator having a performance of 10 psec / pulse, wavelength “1064 nm”, and repetition frequency “150 MHz” and an optical storage resonator.
- the optical storage resonator is a resonator that confines the laser light in a space in which the optical path is closed by a plurality of mirrors, effectively increasing the intensity of light from a relatively low-power laser light source, and continuously increasing the intensity. This is a promising technology that can realize intense laser light.
- FIG. 8 shows a configuration example of a conventional laser storage device.
- the output from the laser oscillator is stored in an external resonator prepared independently.
- the condition that a standing wave occurs in the resonator, that is, the mirror interval matches an integral multiple of a half wavelength must be satisfied.
- the resonance width is determined by the reflectivity of the resonator mirror, and becomes narrower as a higher reflectivity mirror is used to obtain a higher increase rate.
- the resonance width becomes sub-nanometer in terms of the position accuracy of the resonator mirror, and the resonance state is easily lost due to environmental disturbances such as vibration.
- the technical limit for stably maintaining resonance is an increase rate of about 1000.
- the conventional laser oscillation device when the laser pulse generated by the high-intensity mode-locked oscillator is guided to the optical storage resonator and stored, unless the feedback control accuracy is considerably high, the laser pulse can be stored stably. There was a problem that I could not.
- the conventional laser oscillation apparatus has a problem that it can only store and amplify about 1000 times, and the laser pulse energy in the optical storage resonator is only about 100 ⁇ J / pulse.
- the present invention can stabilize the resonance even if the finesse (accumulation amplification factor) of the optical resonator is increased, and is stronger than the conventional one by accumulating laser light in the optical resonator.
- An object of the present invention is to provide a laser oscillation device capable of generating laser light.
- a laser oscillation device that generates laser light by using an optical resonator to resonate laser light generated by a rare earth fiber.
- An excitation laser light source that generates excitation laser light and a rare earth fiber that generates laser light of a desired wavelength when supplied with the laser light generated by the excitation laser light source are disposed opposite to each other.
- An optical resonator configured to include two concave mirrors or a group of plane mirrors including a plurality of plane mirrors, and stores the laser light generated by the rare earth fiber, and is interposed between the optical resonator and the rare earth fiber.
- An optical isolator for guiding laser light from the rare earth fiber to one of the optical resonators and blocking laser light in the reverse direction; and from the other of the optical resonators.
- a laser oscillation device comprising: a circulating optical path that takes in the emitted laser light, returns the optical resonator to the optical resonator via the rare earth fiber and the optical isolator, and promotes resonance. .
- the second aspect of the present invention is a laser oscillation apparatus that generates strong laser light by using an optical resonator to resonate laser light generated by a rare earth fiber, which is used for excitation.
- An excitation laser light source that generates laser light, and a rare earth fiber that generates laser light of a desired wavelength when supplied with the laser light generated by the excitation laser light source, and two concave mirrors arranged opposite to each other, or
- An optical resonator that is configured by a group of plane mirrors including a plurality of plane mirrors, stores the laser light generated by the rare earth fiber, and is emitted from the optical resonator and supplied via the rare earth fiber.
- a reflector that reflects laser light and returns the optical resonator to the optical resonator via the rare earth fiber and promotes resonance, and is emitted from the optical resonator. And, there is provided a laser oscillating apparatus characterized by emitting the other laser light to the outside.
- the rare earth fiber has a core doped with Yb.
- the laser light emitted from the other of the optical resonators is captured, a part of the captured laser light is emitted to the outside, and most of the laser light is passed through the rare earth fiber and the optical isolator, The resonance is promoted by returning to the resonator.
- optical resonator is a Fox Smith interferometer type composed of two concave mirrors and one plane mirror.
- the laser oscillation device can stabilize the resonance even if the finesse of the optical resonator is increased, and can generate a strong laser beam by accumulating the laser beam in the optical resonator. Is made possible.
- this device enables stable resonance even when a concave mirror having a reflectivity of “99.99%” or a high finesse optical resonator using a group of plane mirrors is used, and laser light is contained in the optical resonator. This makes it possible to generate strong laser light.
- FIG. 1 shows a configuration of a laser oscillation device based on circular oscillation type light accumulation according to a first embodiment of the present invention.
- 3 shows a configuration of a laser oscillation device using a folding oscillation type optical storage according to a second embodiment of the present invention.
- the current and oscillation intensity of the excitation LD in this apparatus are shown.
- variation of the light intensity in this apparatus is shown.
- An application of the present invention to an electron gun driving laser will be described. It is a figure for demonstrating the concept of a Compton light source. It is a figure explaining the structure of the conventional laser storage apparatus.
- FIG. 1 is a diagram for explaining the concept of a circular oscillation type optical storage device
- FIG. 2 is a laser using a circular oscillation type optical storage according to a first embodiment of the present invention. The structure of an oscillation apparatus is shown.
- the laser beam that has resonated and passed is re-input as a seed light to the laser amplification unit and amplified by stimulated emission. After that, it reenters the resonator.
- the system enters an oscillation state, and the laser light automatically continues to circulate in the optical path. Oscillation begins with the spontaneous emission light noise of the amplifier. Spectral components of the noise light that happen to be accepted by the resonance width of the resonator pass through the resonator, become the seed light after that, and are amplified in the circulation. Finally, the total energy that excites the amplifier is All are concentrated in this component, and the system is in a steady state where the amplifier is saturated.
- the resonator unit and the amplifier unit form a laser oscillator as a whole.
- the resonance condition is canceled due to vibration or the like by using high-speed and high-accuracy feedback technology, whereas in the new method, the oscillation circuit itself automatically follows the resonance condition.
- the advantage is that the resonance state continues even if not.
- the basic idea of the optical storage resonator and the high-efficiency fiber laser amplification method has led to the idea of a closed optical system (circular oscillation) that caused self-oscillation.
- the high finesse type optical resonator according to the present invention only the resonating laser beam is accumulated, so that the laser beam transmitted through the optical resonator is returned to the high-efficiency fiber laser amplifier, so that stable laser beam amplification is possible. At the same time, laser light accumulation was realized.
- the laser beam resonated with the optical resonator can be amplified by the high efficiency fiber laser amplifier, and the laser beam obtained by the stable amplification can be accumulated in the optical resonator.
- an optical resonator is arranged in the exit path of the accelerator that accelerates the electron beam, the electron beam sufficiently accelerated by the accelerator is guided to the exit path, and directly collides with the laser light in the optical resonator, It was confirmed that a soft X-ray to a gamma ray beam can be generated.
- the laser oscillation apparatus includes a laser diode, an optical isolator, a demultiplexer / multiplexer (WDM), a Yb fiber, an optical isolator, and a first optical system. And an optical resonator, a second optical system, and an output coupler.
- the laser beam obtained by exciting the Yb fiber is circulated and accumulated in the optical resonator to resonate. A strong laser beam is generated in the resonator.
- the laser diode is composed of a semiconductor laser element or the like that generates laser light having a wavelength necessary for exciting the Yb fiber.
- a driving voltage When a driving voltage is applied, the laser diode generates laser light, and laser diode ⁇ optical fiber.
- the optical isolator is configured so that the laser beam supplied to the terminal passes through and is emitted from the terminal, and the laser beam supplied to the terminal is blocked and does not exit from the terminal. When supplied, this is taken in through the optical fiber connected to the terminal, passes through, and exits from the terminal, and passes through the path of terminal ⁇ optical fiber ⁇ demultiplexer / multiplexer to demultiplex / multiplex. Supply to the waver. Further, when the laser beam is emitted from the demultiplexer / multiplexer and supplied to the terminal via the optical fiber, it is blocked to protect the laser diode.
- the demultiplexer / multiplexer When a laser beam having a first wavelength and a laser beam having a second wavelength are incident from one of the terminals, the demultiplexer / multiplexer synthesizes and emits the light from the other terminal.
- the laser beam combined from the terminal is incident, it is demultiplexed, and the demultiplexed laser beam is emitted from the terminal and emitted from the terminal.
- the laser beam is emitted from the optical isolator. Is output and supplied to the terminal connected to the optical fiber, the laser light is taken in and supplied to the Yb fiber connected to the terminal.
- the laser light is demultiplexed, and laser light having a divided wavelength is emitted from the terminal, and the demultiplexer / multiplexer terminal ⁇ light
- the optical fiber is supplied to the optical isolator through a path from the fiber to the optical isolator.
- the Yb fiber is a double clad type fiber having a core doped with Yb.
- the optical isolator is configured to capture the laser beam supplied to the terminal, pass it through and emit it from the terminal, and block the laser beam supplied to the terminal so that it does not exit from the terminal.
- the laser beam emitted from the demultiplexer / multiplexer is supplied through the path of the multiplexer / terminal ⁇ optical fiber ⁇ terminal
- the laser beam is passed through the path of terminal ⁇ optical fiber ⁇ first optical system. , Supplied to the first optical system.
- laser light is supplied from the first optical system through the path of the first optical system ⁇ the optical fiber ⁇ the terminal, this is blocked to prevent the laser light from returning to the demultiplexer / multiplexer.
- the first optical system includes a terminal connected to an optical isolator through an optical fiber, four mirrors that reflect laser light, a concave lens that adjusts the diameter of the laser light, and a convex lens. While the laser beam supplied to is taken in and reflected, the diameter, the deflection direction, and the like are adjusted, and the laser beam is made incident on an optical resonator arranged in the emission path of the accelerator that accelerates the electron beam.
- the optical resonator includes a resonator structure (not shown) disposed in an emission path of an accelerator that accelerates an electron beam, a reflectance of 90% or more, a curvature radius of 250 mm, and a resonator structure.
- the concave mirror is attached to the resonator structure so that the reflectance is 90% or more, the radius of curvature is 250 mm, the distance from the concave mirror is the distance corresponding to the wavelength of the laser beam, and the concave side is opposed.
- a piezo element which is disposed between the back surface of the concave mirror and the resonator structure, and deforms according to the applied voltage to adjust the position of the concave mirror, the mounting angle, and the like.
- each concave mirror When laser light is supplied from the optical system and the second optical system to the back surface of each concave mirror, the phase is adjusted while transmitting through each concave mirror and confining and accumulating it between the concave mirrors. In parallel with this operation, part of strong laser light accumulated between the concave mirrors is emitted from the concave mirrors and supplied to the first optical system and the second optical system.
- the second optical system includes four mirrors that reflect laser light, a concave lens and a convex lens that adjust the diameter of the laser light, and a terminal that is connected to the optical isolator via an optical fiber. While the supplied laser beam is captured and reflected, the diameter, the deflection direction, and the like are adjusted and incident on the optical resonator. Further, the laser light emitted from the optical resonator is captured and reflected, and the diameter, the deflection direction, and the like are adjusted, emitted from the terminal, and supplied to the terminal of the output coupler via the optical fiber.
- the output coupler captures this, distributes it to “9: 1”, emits it from each of the other terminals, and supplies the laser light to each of the other terminals.
- the laser beam emitted from the Yb fiber is supplied to the terminal, it is configured to take out this, distribute it to “9: 1”, and emit from each terminal.
- “9: 1” is distributed, and “90%” is emitted from the terminal, and is supplied to the second optical system through a path of terminal ⁇ optical fiber ⁇ terminal of the second optical system. 10% "is emitted and supplied to an external measuring instrument for oscillation monitoring.
- the laser light generated by the Yb fiber is converted into the path Yb fiber ⁇ demultiplexer / multiplexer ⁇ optical isolator ⁇ first optical system ⁇ optical resonator, and Yb fiber ⁇
- the optical resonator guides, accumulates, and resonates, and the laser beam transmitted through one concave mirror constituting the optical resonator is the optical resonator ⁇ Since the second optical system-> output coupler-> Yb fiber-> demultiplexer / multiplexer-> optical isolator-> first optical system-> optical resonator, return to the optical resonator and maintain oscillation. Strong laser light can be accumulated in the optical resonator.
- a soft X-ray to a gamma ray beam can be generated by guiding the electron beam sufficiently accelerated by the accelerator to the emission path and directly colliding with the laser beam in the optical resonator.
- the laser energy emitted from the optical resonator is that the laser light emitted from the optical resonator is optical resonator ⁇ second optical system ⁇ optical fiber ⁇ output coupler ⁇ Yb fiber ⁇ terminal of demultiplexer / multiplexer ⁇ light Fiber ⁇ optical isolator ⁇ first optical system ⁇ optical resonator path, which is determined by the circular optical path gain when returning to the optical resonator and the finesse of the optical resonator, so that the two concave mirrors constituting the optical resonator , A strong laser beam can be accumulated only by using a high finesse type that uses a reflectance of “99.99%”.
- the optical resonator can be used to maintain stable resonance even when the optical resonator has a high finesse, and a strong laser. Light can be emitted.
- self-oscillation enables stable accumulation of laser light, and the selection of laser light with the required specifications by installing a polarization selector, intensity converter, etc. outside the optical resonator And can be accumulated in the optical resonator.
- an optical resonator is disposed in the exit path of the accelerator that accelerates the electron beam, and the electron beam sufficiently accelerated by the accelerator is guided to the exit path to directly collide with the laser beam in the optical resonator.
- a soft X-ray to a gamma ray beam can be generated.
- FIG. 3 shows a configuration of a laser oscillation apparatus using folded oscillation type optical storage according to a second embodiment of the present invention.
- a laser diode, an optical isolator, a demultiplexer / multiplexer (WDM), a Yb fiber, a reflector, an optical system, and an optical resonator are provided.
- a strong laser beam is generated by resonating the laser beam obtained by excitation while accumulating it in the optical resonator.
- the laser diode is composed of a semiconductor laser element or the like that generates laser light having a wavelength necessary for exciting the Yb fiber.
- a driving voltage When a driving voltage is applied, the laser diode generates laser light, and laser diode ⁇ optical fiber.
- the optical isolator is configured so that the laser beam supplied to the terminal passes through and is emitted from the terminal, and the laser beam supplied to the terminal is blocked so as not to be emitted from the terminal.
- a laser beam is supplied from a laser diode through a fiber, it passes through and is emitted from a terminal.
- a demultiplexer / multiplexer is a path of terminal ⁇ optical fiber ⁇ demultiplexer / multiplexer. To supply. Further, when the laser beam is emitted from the demultiplexer / multiplexer and supplied to the terminal via the optical fiber, it is blocked to protect the laser diode.
- the demultiplexer / multiplexer When a laser beam having a first wavelength and a laser beam having a second wavelength are incident from one of the terminals, the demultiplexer / multiplexer synthesizes and emits the light from the other terminal.
- the laser light combined from the terminal is incident, it is demultiplexed, and the split laser light is emitted from the terminal and emitted from the terminal, via an optical fiber connected to the terminal.
- laser light having a predetermined wavelength is supplied from the optical isolator, it is captured and supplied to the Yb fiber connected to the terminal.
- the laser beam is supplied from the Yb fiber connected to the terminal, the laser beam is demultiplexed, and the demultiplexed wavelength laser beam is emitted from the terminal and supplied to the reflector.
- the terminal of the demultiplexer / multiplexer is processed by processing the end face, and when the laser beam is emitted from the demultiplexer / multiplexer terminal, this is reflected, Return to the demultiplexer / multiplexer terminal.
- a Yb fiber is a double-clad type fiber whose core is doped with Yb, and is excited when a laser beam of a predetermined wavelength (excitation laser beam) is supplied from a demultiplexer / multiplexer and excited.
- the laser beam is generated and supplied to the demultiplexer / multiplexer terminal and also to the optical system terminal.
- the optical system includes a terminal connected to the Yb fiber, four mirrors that reflect the laser beam, and two convex lenses that have a focal length of “+150 m”, collimate the laser beam, and adjust the diameter. While reflecting the laser beam supplied to the terminal, the diameter, the deflection direction, and the like are adjusted, and the laser beam is incident on the optical resonator.
- the optical resonator has a reflectivity of 90% or more and a plane mirror disposed at an angle of 45 degrees with respect to the optical axis of the laser beam supplied from the optical system, and a reflectivity of 90% or more and is transmitted through the plane mirror.
- a piezo element that adjusts the mounting angle, etc., when laser light is supplied from the optical system to the back surface of the plane mirror, it is transmitted through the plane mirror and is not confined and accumulated between the plane mirrors. Et al., To adjust the phase.
- the oscillation when considering application as a laser target for a Compton light source, if the oscillation can be made a mode-lock pulse, a higher peak intensity can be obtained even with the same average power, which is attractive.
- it is considered to be multi-longitudinal mode oscillation in which multiple resonance conditions of the resonator oscillate simultaneously, and after inserting a saturable absorber mirror in a part of the peripheral circuit, the optical path length of the entire system is changed to the optical path of the resonator section If adjusted to an integral multiple of the length, the phases of a number of longitudinal modes can be made uniform, and harmonic mode locking can be achieved.
- a SHG crystal is installed in the resonator part after making it a mode-locked pulse, there is a possibility that a high-efficiency high-repetition double-wave laser can be constructed.
- the loss of the resonator is mainly determined by wavelength conversion, the pumping light power is all shifted to the second harmonic, and thus the efficiency is high.
- the optical path length of the resonator section is matched to the number of accelerators and the entire circumference is adjusted to an integral multiple of that, it can be applied as a drive laser for a photocathode electron gun.
- the fiber input / output efficiency is 60% or more, which does not cause a large loss.
- a 9: 1 coupler was installed in the middle of the fiber optical path, and a part of the circulating light was monitored. The light circulation direction is limited by an isolator installed in the middle of the fiber optical path.
- FIG. 4 shows the result of changing the output of the excitation LD while measuring the power from the monitor port in the apparatus of the present invention.
- the resonator used in the above measurement is a finesse 30000 (increase rate 20000) composed of a resonator mirror having a reflectivity of 99.99%. It is shown that the oscillation starts when the LD current exceeds 350 mA, and the circulating light increases in proportion to the excitation power. From the light intensity measured at the monitor port, the light intensity realized in the resonator was estimated to be 440 W. When the resonator is observed with an IR viewer, it can be seen that high-intensity light is certainly accumulated as shown in FIG. It was shown that a 440 W laser beam can be realized without any control with a low power excitation laser of only about 500 mW.
- FIG. 5 shows the result of examining the stability of oscillation on a short time scale by observing output light with a photodiode in the apparatus of the present invention.
- FIG. 5 shows a state in which a resonator mirror having a reflectivity of 90% (increase rate of 20) is used and a resonator mirror having a reflectivity of 99.99% (increase rate of 20000) is used.
- a resonator mirror having a reflectivity of 90% increase rate of 20
- a resonator mirror having a reflectivity of 99.99% increase rate of 20000
- the oscillation can be mode-locked, higher peak intensity can be obtained even with the same average power, which is attractive.
- it is considered to be multi-longitudinal mode oscillation in which multiple resonance conditions of the resonator oscillate simultaneously, and after inserting a saturable absorber mirror in a part of the peripheral circuit, the optical path length of the entire system is changed to the optical path of the resonator section If it is adjusted to an integral multiple of the length, the phases of a number of longitudinal modes can be aligned, and it is determined that harmonic mode locking is possible.
- FIG. 6 shows an application example of the present invention to an electron gun driving laser.
- FIG. 6 shows the possibility that a high-efficiency, high-repetition double-wave laser can be configured by forming a mode-locked pulse and then installing an SHG crystal in the resonator section. If the loss of the resonator is mainly determined by wavelength conversion, the pumping light power is all shifted to the second harmonic, and thus the efficiency is high. If the optical path length of the resonator section is adjusted to the number of accelerators and the entire circumference is adjusted to an integral multiple of it, it can be applied as a drive laser for a photocathode electron gun.
- the present invention relates to a laser device that generates strong laser light, and more particularly, to a laser for a light source using laser Compton scattering that can oscillate stably even when the finesse of an optical resonator is increased, Has industrial applicability.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Lasers (AREA)
Abstract
Provided is a laser oscillation device that can stabilize resonation even when the finesse of an optical resonator is made to be high, and which can generate laser rays stronger than conventional devices by accumulating laser rays within the optical resonator. The laser oscillation device is provided with: an excitation laser light-source that generates laser rays for excitation; a rare-earth fiber that generates laser rays having the desired wavelength, when a laser ray generated by the excitation laser light-source is supplied thereto; an optical resonator that is composed of two concave mirrors arranged facing each other, or composed of a group of mirrors including multiple plane mirrors, and that accumulates laser rays generated by the rare-earth fiber; an optical isolator that is inserted between the optical resonator and the rare-earth fiber, guides laser rays coming out from the rare-earth fiber to one end of the optical resonator, and shuts off laser rays going in the opposite direction; and a circling optical path that takes in laser rays eradiated out from the other end of the optical resonator, returns the laser rays to the optical resonator via the rare-earth fiber and the optical isolator, and promotes the resonation.
Description
本発明は、強いレーザー光を発生させるレーザー装置に関し、特に、光共振器のフィネスを高めた時でも、安定して発振させ得るようにしたレーザーコンプトン散乱を利用した光源用レーザーに関する。
The present invention relates to a laser device that generates strong laser light, and more particularly, to a laser for light source using laser Compton scattering that can oscillate stably even when the finesse of an optical resonator is increased.
近年、レーザーコンプトン散乱を利用した小型光源装置の開発が行われている。このような光源装置の光源としての強度は、実現可能なレーザー標的の強度に依存する。パルス運転する線形加速器をベースにする場合、レーザー光も高強度のパルスレーザーを用いるか、一時的にバースト増幅して用いる手法がとられる。
In recent years, small light source devices using laser Compton scattering have been developed. The intensity of such a light source device as a light source depends on the intensity of the laser target that can be realized. When a pulsed linear accelerator is used as a base, a high-intensity pulse laser is used as the laser beam, or a method of temporarily amplifying the burst is used.
一方、図7に示すようなコンプトン散乱を利用した蓄積リング型装置や超伝導加速器をベースにした連続運転のシステムによってレーザーの平均強度を高めようとすると、連続的に高強度のレーザー標的が必要となる。
On the other hand, if the average intensity of the laser is to be increased by a continuous operation system based on a storage ring type device using a Compton scattering as shown in FIG. 7 or a superconducting accelerator, a continuous high intensity laser target is required. It becomes.
このため、レーザー光と電子を衝突させたときのレーザー逆コンプトン散乱でX線を発生させる従来のX線発生装置(例えば、特許文献1を参照)では、公知の大強度モードロック発振器、例えば500W、10psec/パルス、波長“1064nm”、繰り返し周波数“150MHz”の性能を持つ大強度モードロック発振器と、光蓄積共振器とを持つレーザー発生装置を使用し、強いレーザー光を発生させている。
For this reason, in a conventional X-ray generator (see, for example, Patent Document 1) that generates X-rays by laser inverse Compton scattering when a laser beam and electrons collide, a known high-intensity mode-locked oscillator, for example, 500 W A strong laser beam is generated by using a laser generator having a high-intensity mode-locked oscillator having a performance of 10 psec / pulse, wavelength “1064 nm”, and repetition frequency “150 MHz” and an optical storage resonator.
ここで、光蓄積共振器とは、複数の鏡で光路を閉じた空間にレーザー光を閉じ込める共振器で、比較的低出力のレーザー光源からの光を実効的に強度増大し、連続的に高強度レーザー光を実現できる有望な技術である。
Here, the optical storage resonator is a resonator that confines the laser light in a space in which the optical path is closed by a plurality of mirrors, effectively increasing the intensity of light from a relatively low-power laser light source, and continuously increasing the intensity. This is a promising technology that can realize intense laser light.
図8は、従来型のレーザー蓄積装置の構成例を示す。レーザー発振器からの出力は独立に用意された外部共振器に蓄積される。共振器に光が蓄積されるには、共振器内に定在波が起こる、即ち鏡間隔が半波長の整数倍に合致する条件が満たされなければならない。その共鳴幅は共振器鏡の反射率で決まり、高増大率を得ようと高反射率の鏡を使用する程、狭くなっていく。増大率1000の共振器では、共鳴幅は共振器鏡の位置精度にしてサブナノメートルになり、振動などの環境の擾乱で簡単に共鳴状態が失われてしまう。共鳴条件を機械的に制御し、レーザー蓄積状態を維持させるため、共振器鏡をピエゾ駆動にし、高度なフィードバック制御を行うことが必要とされる。現状では、安定に共鳴を維持できる技術的限界は増大率1000程度となっている。
FIG. 8 shows a configuration example of a conventional laser storage device. The output from the laser oscillator is stored in an external resonator prepared independently. In order for light to accumulate in the resonator, the condition that a standing wave occurs in the resonator, that is, the mirror interval matches an integral multiple of a half wavelength must be satisfied. The resonance width is determined by the reflectivity of the resonator mirror, and becomes narrower as a higher reflectivity mirror is used to obtain a higher increase rate. In a resonator having an increase rate of 1000, the resonance width becomes sub-nanometer in terms of the position accuracy of the resonator mirror, and the resonance state is easily lost due to environmental disturbances such as vibration. In order to control the resonance conditions mechanically and maintain the laser accumulation state, it is necessary to perform advanced feedback control by piezo driving the resonator mirror. At present, the technical limit for stably maintaining resonance is an increase rate of about 1000.
しかしながら、このような従来のレーザー発振装置で使用される大強度モードロック発振器は、非常に高価であることから、レーザー発振装置自体も、高価になってしまうという問題があった。また、従来のレーザー発振装置においては、光共振器の共鳴状態を高精度で制御する高度な技術を必要とするのが難点であり、このことが増大率の技術的な限界を決めることとなる。
However, since the high-strength mode-locked oscillator used in such a conventional laser oscillation apparatus is very expensive, the laser oscillation apparatus itself is also expensive. In addition, in the conventional laser oscillation device, it is difficult to require an advanced technique for controlling the resonance state of the optical resonator with high accuracy, which determines the technical limit of the increase rate. .
さらに、従来のレーザー発振装置では、大強度モードロック発振器で生成されたレーザーパルスを光蓄積共振器に導いて、蓄積させる際、フィードバック制御の精度をかなり高くしないと、安定的に蓄積させることができないという問題があった。また、従来のレーザー発振装置では、1000倍程度の蓄積増幅しかできず、光蓄積共振器内のレーザーパルスエネルギーも100μJ/パルス程度にしかならないという問題があった。
Furthermore, in the conventional laser oscillation device, when the laser pulse generated by the high-intensity mode-locked oscillator is guided to the optical storage resonator and stored, unless the feedback control accuracy is considerably high, the laser pulse can be stored stably. There was a problem that I could not. In addition, the conventional laser oscillation apparatus has a problem that it can only store and amplify about 1000 times, and the laser pulse energy in the optical storage resonator is only about 100 μJ / pulse.
このため、本発明は、光共振器のフィネス(蓄積増幅度)を高くしても、共振を安定させることができると共に、光共振機内にレーザー光を蓄積させることにより従来と比較してより強いレーザー光を発生可能なレーザー発振装置を提供することを目的とする。
Therefore, the present invention can stabilize the resonance even if the finesse (accumulation amplification factor) of the optical resonator is increased, and is stronger than the conventional one by accumulating laser light in the optical resonator. An object of the present invention is to provide a laser oscillation device capable of generating laser light.
上記の目的を達成するために、本発明は、その第1の形態として、光共振器を使用して、希土類ファイバで生成されたレーザー光を共振させることによりレーザー光を生成するレーザー発振装置であって、励起用のレーザー光を発生する励起用レーザー光源と、前記励起用レーザー光源で生成されたレーザー光が供給されたとき、所望波長のレーザー光を生成する希土類ファイバと、対向配置された2枚の凹面鏡、または複数枚の平面鏡を含む面鏡群によって構成され、前記希土類ファイバで生成されたレーザー光を蓄積する光共振器と、前記光共振器と前記希土類ファイバとの間に介挿され、前記希土類ファイバからのレーザー光を前記光共振器の一方に導き、逆方向のレーザー光を遮断する光アイソレータと、前記光共振器の他方から出射されるレーザー光を取り込み、前記希土類ファイバ、前記光アイソレータを介し、前記光共振器に戻し、共振を促進させる周回光路と、を備えたことを特徴とするレーザー発振装置を提供するものである。
In order to achieve the above object, according to a first aspect of the present invention, there is provided a laser oscillation device that generates laser light by using an optical resonator to resonate laser light generated by a rare earth fiber. An excitation laser light source that generates excitation laser light and a rare earth fiber that generates laser light of a desired wavelength when supplied with the laser light generated by the excitation laser light source are disposed opposite to each other. An optical resonator configured to include two concave mirrors or a group of plane mirrors including a plurality of plane mirrors, and stores the laser light generated by the rare earth fiber, and is interposed between the optical resonator and the rare earth fiber. An optical isolator for guiding laser light from the rare earth fiber to one of the optical resonators and blocking laser light in the reverse direction; and from the other of the optical resonators. A laser oscillation device comprising: a circulating optical path that takes in the emitted laser light, returns the optical resonator to the optical resonator via the rare earth fiber and the optical isolator, and promotes resonance. .
さらに、本発明は、その第2の形態として、光共振器を使用して、希土類ファイバで生成されたレーザー光を共振させることにより強いレーザー光を生成するレーザー発振装置であって、励起用のレーザー光を発生する励起用レーザー光源と、前記励起用レーザー光源で生成されたレーザー光が供給されたとき、所望波長のレーザー光を生成する希土類ファイバと、対向配置された2枚の凹面鏡、または複数枚の平面鏡を含む面鏡群によって構成され、前記希土類ファイバで生成されたレーザー光を蓄積する光共振器と、前記光共振器から出射され、前記希土類ファイバを介して供給された、一方のレーザー光を反射させ、前記希土類ファイバを介して、前記光共振器に戻し、共振を促進させる反射器と、を備え、前記光共振器から出射された、他方のレーザー光を外部に出射することを特徴とするレーザー発振装置を提供するものである。
Furthermore, the second aspect of the present invention is a laser oscillation apparatus that generates strong laser light by using an optical resonator to resonate laser light generated by a rare earth fiber, which is used for excitation. An excitation laser light source that generates laser light, and a rare earth fiber that generates laser light of a desired wavelength when supplied with the laser light generated by the excitation laser light source, and two concave mirrors arranged opposite to each other, or An optical resonator that is configured by a group of plane mirrors including a plurality of plane mirrors, stores the laser light generated by the rare earth fiber, and is emitted from the optical resonator and supplied via the rare earth fiber. A reflector that reflects laser light and returns the optical resonator to the optical resonator via the rare earth fiber and promotes resonance, and is emitted from the optical resonator. And, there is provided a laser oscillating apparatus characterized by emitting the other laser light to the outside.
ここで、前記希土類ファイバは、Ybがドープされたコアを持つ、ことを特徴とする。また、前記光共振器の他方から出射されるレーザー光を取り込み、当該取り込んだレーザー光の一部を外部に出射するとともに、前記レーザー光の大半を前記希土類ファイバ、前記光アイソレータを介し、前記光共振器に戻すことにより共振を促進させるようにしている。
Here, the rare earth fiber has a core doped with Yb. In addition, the laser light emitted from the other of the optical resonators is captured, a part of the captured laser light is emitted to the outside, and most of the laser light is passed through the rare earth fiber and the optical isolator, The resonance is promoted by returning to the resonator.
さらに、前記光共振器は、2枚の凹面鏡及び1枚の平面鏡によって構成されるフォックス・スミス干渉計タイプであることを特徴とする。
Furthermore, the optical resonator is a Fox Smith interferometer type composed of two concave mirrors and one plane mirror.
これにより、本発明に係るレーザー発振装置は、光共振器のフィネスを高くしても、共振を安定させることができると共に、光共振機内にレーザー光を蓄積させて、強いレーザー光を発生させることを可能としたのである。
As a result, the laser oscillation device according to the present invention can stabilize the resonance even if the finesse of the optical resonator is increased, and can generate a strong laser beam by accumulating the laser beam in the optical resonator. Is made possible.
さらに、本装置は、反射率が“99.99%”の凹面鏡、または平面鏡群を使用した高フィネスの光共振器を使用した場合でも、安定的な共振を可能とし、光共振機内にレーザー光を蓄積させて、強いレーザー光を発生させることを可能としたのである。
Furthermore, this device enables stable resonance even when a concave mirror having a reflectivity of “99.99%” or a high finesse optical resonator using a group of plane mirrors is used, and laser light is contained in the optical resonator. This makes it possible to generate strong laser light.
1.本発明の第1の実施形態の説明
図1は、周回発振型光蓄積装置の概念を説明する図であり、図2は、本発明の第1の実施例である周回発振型光蓄積によるレーザー発振装置の構成を示す。 1. DESCRIPTION OF THE FIRST EMBODIMENT OF THE INVENTION FIG. 1 is a diagram for explaining the concept of a circular oscillation type optical storage device, and FIG. 2 is a laser using a circular oscillation type optical storage according to a first embodiment of the present invention. The structure of an oscillation apparatus is shown.
図1は、周回発振型光蓄積装置の概念を説明する図であり、図2は、本発明の第1の実施例である周回発振型光蓄積によるレーザー発振装置の構成を示す。 1. DESCRIPTION OF THE FIRST EMBODIMENT OF THE INVENTION FIG. 1 is a diagram for explaining the concept of a circular oscillation type optical storage device, and FIG. 2 is a laser using a circular oscillation type optical storage according to a first embodiment of the present invention. The structure of an oscillation apparatus is shown.
図1及び図2に示すように、本発明の第1の実施例であるレーザー発振装置外部共振器において、共鳴、通過したレーザー光を種光としてレーザー増幅部に再入力し誘導放出により増幅した後、共振器に再入射する。
As shown in FIGS. 1 and 2, in the external resonator of the laser oscillation apparatus according to the first embodiment of the present invention, the laser beam that has resonated and passed is re-input as a seed light to the laser amplification unit and amplified by stimulated emission. After that, it reenters the resonator.
増幅部でのゲインが共振器部を含め周回のロスを上回れば、系は発振状態になり、自動的にレーザー光が光路を周回し続けることになる。発振は増幅器の自然放出光ノイズから始まる。ノイズ光のうちたまたま共振器の共鳴幅に受け入れられたスペクトル成分が共振器を通過し、以降の種光となって周回の中で増幅されていき、最終的には増幅器を励起する全エネルギーは全てこの成分に集約され、増幅部が飽和するところで系は定常状態になる。
If the gain in the amplification unit exceeds the circulation loss including the resonator unit, the system enters an oscillation state, and the laser light automatically continues to circulate in the optical path. Oscillation begins with the spontaneous emission light noise of the amplifier. Spectral components of the noise light that happen to be accepted by the resonance width of the resonator pass through the resonator, become the seed light after that, and are amplified in the circulation. Finally, the total energy that excites the amplifier is All are concentrated in this component, and the system is in a steady state where the amplifier is saturated.
共振器部と増幅部が全体で一体となってレーザー発振器を構成する点が従来方式と異なる。従来方式では振動等によって共鳴条件が外れるのを高速高精度フィードバック技術によって無理矢理に維持していたのに対し、新方式では発振回路そのものが自動的に共鳴条件を追従することになるので、制御をせずとも共鳴状態が続く点が利点である。
The difference from the conventional method is that the resonator unit and the amplifier unit form a laser oscillator as a whole. In the conventional method, the resonance condition is canceled due to vibration or the like by using high-speed and high-accuracy feedback technology, whereas in the new method, the oscillation circuit itself automatically follows the resonance condition. The advantage is that the resonance state continues even if not.
共振器を透過した複雑な光路のロスを補う為には高ゲインの増幅部が必要であり、単一パスで高ゲインの得られるファイバ増幅器がこのシステム開発の要になる。そこで、本発明においては、光蓄積共振器と、高効率ファイバレーザー増幅法との基礎研究によって、自己発振を生じさせた閉光学系(周回発振)の着想に至った。本発明の高フィネス(finesse)タイプの光共振器においては、共振するレーザー光のみを蓄積するので、光共振器を透過したレーザー光を高効率ファイバレーザー増幅器に戻すことにより、安定なレーザー光増幅と共に、レーザー光蓄積とを実現したのである。
In order to compensate for the loss of the complicated optical path that has passed through the resonator, a high gain amplifying unit is required, and a fiber amplifier capable of obtaining a high gain with a single path becomes the key to the development of this system. Therefore, in the present invention, the basic idea of the optical storage resonator and the high-efficiency fiber laser amplification method has led to the idea of a closed optical system (circular oscillation) that caused self-oscillation. In the high finesse type optical resonator according to the present invention, only the resonating laser beam is accumulated, so that the laser beam transmitted through the optical resonator is returned to the high-efficiency fiber laser amplifier, so that stable laser beam amplification is possible. At the same time, laser light accumulation was realized.
そして、高効率ファイバレーザー増幅器によって、光共振器に共鳴したレーザー光を増幅させることができるとともに、安定した増幅で得られたレーザー光を光共振器に蓄積させることができることを確認した。
And it was confirmed that the laser beam resonated with the optical resonator can be amplified by the high efficiency fiber laser amplifier, and the laser beam obtained by the stable amplification can be accumulated in the optical resonator.
この際、光共振器に入射するレーザー光のエネルギーの1万倍以上のエネルギーを持つレーザー光が光共振器内に存在しているのを確認した。
At this time, it was confirmed that laser light having energy more than 10,000 times the energy of laser light incident on the optical resonator was present in the optical resonator.
そして、電子ビームを加速させる加速器の出射路内に、光共振器を配置させ、加速器で十分に加速された電子ビームを出射路に導いて、光共振器内のレーザー光に直接、衝突させ、軟X線からガンマ線ビームまで生成させることができることを確認した。
Then, an optical resonator is arranged in the exit path of the accelerator that accelerates the electron beam, the electron beam sufficiently accelerated by the accelerator is guided to the exit path, and directly collides with the laser light in the optical resonator, It was confirmed that a soft X-ray to a gamma ray beam can be generated.
図2に示す本発明の第1の実施例に係るレーザー発振装置は、レーザーダイオードと、光アイソレータと、分波/合波器(WDM)と、Ybファイバと、光アイソレータと、第1光学系と、光共振器と、第2光学系と、出力カプラとを備えており、Ybファイバを励起させ得られたレーザー光を周回させながら、光共振器に蓄積させて、共振させることにより、光共振器内に強いレーザー光を発生させる。
The laser oscillation apparatus according to the first embodiment of the present invention shown in FIG. 2 includes a laser diode, an optical isolator, a demultiplexer / multiplexer (WDM), a Yb fiber, an optical isolator, and a first optical system. And an optical resonator, a second optical system, and an output coupler. The laser beam obtained by exciting the Yb fiber is circulated and accumulated in the optical resonator to resonate. A strong laser beam is generated in the resonator.
レーザーダイオードは、Ybファイバを励起させるのに必要な波長のレーザー光を発生する半導体レーザー素子などによって構成されており、駆動電圧が印加されているとき、レーザー光を発生し、レーザーダイオード→光ファイバ→光アイソレータの端子なる経路で、光アイソレータに供給する。
The laser diode is composed of a semiconductor laser element or the like that generates laser light having a wavelength necessary for exciting the Yb fiber. When a driving voltage is applied, the laser diode generates laser light, and laser diode → optical fiber. → Supply to the optical isolator through the path of the optical isolator terminal.
光アイソレータは、端子に供給されたレーザー光を通過させて端子から出射させ、また端子に供給されたレーザー光を遮断して、端子から出射しないように構成されており、レーザーダイオードからレーザー光が供給されたとき、端子に接続された光ファイバを介して、これを取り込み、通過させて、端子から出射し、端子→光ファイバ→分波/合波器の端子なる経路で、分波/合波器に供給する。また、分波/合波器からレーザー光が出射され、これが光ファイバを介して、端子に供給されたとき、これを遮断させて、レーザーダイオードを保護する。
The optical isolator is configured so that the laser beam supplied to the terminal passes through and is emitted from the terminal, and the laser beam supplied to the terminal is blocked and does not exit from the terminal. When supplied, this is taken in through the optical fiber connected to the terminal, passes through, and exits from the terminal, and passes through the path of terminal → optical fiber → demultiplexer / multiplexer to demultiplex / multiplex. Supply to the waver. Further, when the laser beam is emitted from the demultiplexer / multiplexer and supplied to the terminal via the optical fiber, it is blocked to protect the laser diode.
分波/合波器は、一方の各端子から第1の波長のレーザー光、第2の波長のレーザー光が入射されたとき、これを合波して、他方の端子から出射し、またこの端子から合波されたレーザー光が入射したとき、これを分波して、当該分波したレーザー光を端子から出射し、これを端子から出射するように構成されており、光アイソレータからレーザー光が出力され、これが光ファイバに接続された端子に供給されたとき、このレーザー光を取り込み、端子に接続されたYbファイバに供給する。また、Ybファイバからレーザー光が出射され、これが端子に供給されたとき、このレーザー光を分波して、分派した波長のレーザー光を端子から出射し、分波/合波器の端子→光ファイバ→光アイソレータの端子なる経路で、光アイソレータに供給する。
When a laser beam having a first wavelength and a laser beam having a second wavelength are incident from one of the terminals, the demultiplexer / multiplexer synthesizes and emits the light from the other terminal. When the laser beam combined from the terminal is incident, it is demultiplexed, and the demultiplexed laser beam is emitted from the terminal and emitted from the terminal. The laser beam is emitted from the optical isolator. Is output and supplied to the terminal connected to the optical fiber, the laser light is taken in and supplied to the Yb fiber connected to the terminal. Further, when laser light is emitted from the Yb fiber and supplied to the terminal, the laser light is demultiplexed, and laser light having a divided wavelength is emitted from the terminal, and the demultiplexer / multiplexer terminal → light The optical fiber is supplied to the optical isolator through a path from the fiber to the optical isolator.
Ybファイバは、コアにYbがドープされたダブルクラッドタイプのファイバであり、分波/合波器から所定の波長のレーザー光(励起用のレーザー光)が供給されて励起されたとき、これとは異なる波長のレーザー光を発生し、これを分波/合波器の端子に供給するとともに、出力カプラの端子に供給する。
The Yb fiber is a double clad type fiber having a core doped with Yb. When a laser beam of a predetermined wavelength (excitation laser beam) is supplied from a demultiplexer / multiplexer and excited, Generates laser beams of different wavelengths and supplies them to the demultiplexer / multiplexer terminals and to the output coupler terminals.
また、光アイソレータは、端子に供給されたレーザー光を取り込み、通過させて端子から出射させ、また端子に供給されたレーザー光を遮断して、端子から出射しないように構成されており、分波/合波器の端子→光ファイバ→端子なる経路で、分波/合波器から出射されたレーザー光が供給されたとき、これを通過させ、端子→光ファイバ→第1光学系なる経路で、第1光学系に供給する。また、第1光学系→光ファイバ→端子なる経路で、第1光学系からレーザー光が供給されたとき、これを遮断して、レーザー光が分波/合波器に戻らないようにする。
In addition, the optical isolator is configured to capture the laser beam supplied to the terminal, pass it through and emit it from the terminal, and block the laser beam supplied to the terminal so that it does not exit from the terminal. / When the laser beam emitted from the demultiplexer / multiplexer is supplied through the path of the multiplexer / terminal → optical fiber → terminal, the laser beam is passed through the path of terminal → optical fiber → first optical system. , Supplied to the first optical system. Further, when laser light is supplied from the first optical system through the path of the first optical system → the optical fiber → the terminal, this is blocked to prevent the laser light from returning to the demultiplexer / multiplexer.
第1光学系は、光ファイバを介して、光アイソレータに接続される端子と、レーザー光を反射する4枚のミラーと、レーザー光の径などを調整する凹レンズ、凸レンズとを備えており、端子に供給されたレーザー光を取り込み、反射させながら、径、偏向方向などを調整し、電子ビームを加速させる加速器の出射路内に配置された光共振器に入射させる。
The first optical system includes a terminal connected to an optical isolator through an optical fiber, four mirrors that reflect laser light, a concave lens that adjusts the diameter of the laser light, and a convex lens. While the laser beam supplied to is taken in and reflected, the diameter, the deflection direction, and the like are adjusted, and the laser beam is made incident on an optical resonator arranged in the emission path of the accelerator that accelerates the electron beam.
光共振器は、電子ビームを加速させる加速器の出射路内に配置される共振器構造体(図示は省略する)と、反射率90%以上にされ、曲率半径が250mmにされ、共振器構造体に取り付けられる凹面鏡と、反射率90%以上にされ、曲率半径が250mmにされ、レーザー光の波長と対応する距離だけ、凹面鏡と離間され、かつ凹面側が対向するように、共振器構造体に取り付けられる凹面鏡と、凹面鏡の裏面と共振器構造体との間に配置され、印加された電圧に応じて、変形し、凹面鏡の位置、取り付け角度などを調整するピエゾ素子とを備えており、第1光学系、第2光学系から各凹面鏡の裏面にレーザー光が供給されたとき、各凹面鏡を透過させて、各凹面鏡の間に、これを閉じ込め、蓄積しながら、位相を調整する。また、この動作と並行し、各凹面鏡の間に蓄積している強いレーザー光の一部を各凹面鏡から出射させ、第1光学系、第2光学系に供給する。
The optical resonator includes a resonator structure (not shown) disposed in an emission path of an accelerator that accelerates an electron beam, a reflectance of 90% or more, a curvature radius of 250 mm, and a resonator structure. The concave mirror is attached to the resonator structure so that the reflectance is 90% or more, the radius of curvature is 250 mm, the distance from the concave mirror is the distance corresponding to the wavelength of the laser beam, and the concave side is opposed. And a piezo element which is disposed between the back surface of the concave mirror and the resonator structure, and deforms according to the applied voltage to adjust the position of the concave mirror, the mounting angle, and the like. When laser light is supplied from the optical system and the second optical system to the back surface of each concave mirror, the phase is adjusted while transmitting through each concave mirror and confining and accumulating it between the concave mirrors. In parallel with this operation, part of strong laser light accumulated between the concave mirrors is emitted from the concave mirrors and supplied to the first optical system and the second optical system.
第2光学系は、レーザー光を反射する4枚のミラーと、レーザー光の径を調整する凹レンズ、凸レンズと、光ファイバを介して、光アイソレータに接続される端子とを備えており、端子に供給されたレーザー光を取り込み、反射させながら、径、偏向方向などを調整し、光共振器に入射させる。また、光共振器から出射されるレーザー光を取り込み、反射させながら、径、偏向方向などを調整し、端子から出射し、光ファイバを介して、出力カプラの端子に供給する。
The second optical system includes four mirrors that reflect laser light, a concave lens and a convex lens that adjust the diameter of the laser light, and a terminal that is connected to the optical isolator via an optical fiber. While the supplied laser beam is captured and reflected, the diameter, the deflection direction, and the like are adjusted and incident on the optical resonator. Further, the laser light emitted from the optical resonator is captured and reflected, and the diameter, the deflection direction, and the like are adjusted, emitted from the terminal, and supplied to the terminal of the output coupler via the optical fiber.
出力カプラは、一方の各端子にレーザー光が供給されたとき、これを取り込み、“9:1”に分配して、他方の各端子から出射し、他方の各端子にレーザー光が供給されたとき、これを取り込み、“9:1”に分配して、一方の各端子から出射するように構成されており、Ybファイバから出射されたレーザー光が端子に供給されたとき、これを取り込み、“9:1”に分配して、端子から“90%”分を出射し、端子→光ファイバ→第2光学系の端子なる経路で、第2光学系に供給すると共に、端子から他方の“10%”分を出射し、外部にある発振監視用の測定器などに供給する。また、第2光学系の端子から波長のレーザー光が出射され、第2光学系の端子→光ファイバ→端子なる経路で供給されたとき、これを取り込み、“9:1”に分配して、端子から“90%”分を出射し、端子→Ybファイバ→分波/合波器→光アイソレータ→第1光学系→光共振器なる周回経路で、光共振器に戻し、発振を維持させるとともに、端子から“10%”分を出射し、外部にある発振監視用の測定器などに供給する。
When the laser beam is supplied to one of the terminals, the output coupler captures this, distributes it to “9: 1”, emits it from each of the other terminals, and supplies the laser light to each of the other terminals. When the laser beam emitted from the Yb fiber is supplied to the terminal, it is configured to take out this, distribute it to “9: 1”, and emit from each terminal. “9: 1” is distributed, and “90%” is emitted from the terminal, and is supplied to the second optical system through a path of terminal → optical fiber → terminal of the second optical system. 10% "is emitted and supplied to an external measuring instrument for oscillation monitoring. Further, when a laser beam having a wavelength is emitted from the terminal of the second optical system and supplied through a route of the terminal of the second optical system → the optical fiber → the terminal, this is captured and distributed to “9: 1” “90%” is emitted from the terminal, and returns to the optical resonator through the loop path of terminal → Yb fiber → demultiplexer / multiplexer → optical isolator → first optical system → optical resonator, and oscillation is maintained. , "10%" is emitted from the terminal and supplied to an external measuring instrument for oscillation monitoring.
このように、この本発明の第1形態では、Ybファイバで生成させたレーザー光をYbファイバ→分波/合波器→光アイソレータ→第1光学系→光共振器なる経路と、Ybファイバ→出力カプラ→第2光学系→光共振器なる経路とを使用して、光共振器に導き、蓄積、共振させるとともに、光共振器を構成する一方の凹面鏡を透過したレーザー光を光共振器→第2光学系→出力カプラ→Ybファイバ→分波/合波器→光アイソレータ→第1光学系→光共振器なる周回経路で、光共振器に戻し、発振を維持させるようにしているので、光共振器内に強いレーザー光を蓄積させることができる。
As described above, in the first embodiment of the present invention, the laser light generated by the Yb fiber is converted into the path Yb fiber → demultiplexer / multiplexer → optical isolator → first optical system → optical resonator, and Yb fiber → Using the output coupler → second optical system → optical resonator path, the optical resonator guides, accumulates, and resonates, and the laser beam transmitted through one concave mirror constituting the optical resonator is the optical resonator → Since the second optical system-> output coupler-> Yb fiber-> demultiplexer / multiplexer-> optical isolator-> first optical system-> optical resonator, return to the optical resonator and maintain oscillation. Strong laser light can be accumulated in the optical resonator.
これにより、加速器で十分に加速された電子ビームを出射路に導いて、光共振器内のレーザー光に直接、衝突させることにより、軟X線からガンマ線ビームまで生成させることができる。
Thus, a soft X-ray to a gamma ray beam can be generated by guiding the electron beam sufficiently accelerated by the accelerator to the emission path and directly colliding with the laser beam in the optical resonator.
この際、光共振器内のレーザーエネルギーは、光共振器から出射されたレーザー光が光共振器→第2光学系→光ファイバ→出力カプラ→Ybファイバ→分波/合波器の端子→光ファイバ→光アイソレータ→第1光学系→光共振器なる経路で、光共振器に戻るときの周回光路利得と、光共振器のフィネスで決まることから、光共振器を構成する2枚の凹面鏡として、“99.99%”の反射率を持つものを使用した高フィネスタイプのものにするだけで、強いレーザー光を蓄積させることができる。
At this time, the laser energy emitted from the optical resonator is that the laser light emitted from the optical resonator is optical resonator → second optical system → optical fiber → output coupler → Yb fiber → terminal of demultiplexer / multiplexer → light Fiber → optical isolator → first optical system → optical resonator path, which is determined by the circular optical path gain when returning to the optical resonator and the finesse of the optical resonator, so that the two concave mirrors constituting the optical resonator , A strong laser beam can be accumulated only by using a high finesse type that uses a reflectance of “99.99%”.
また、光共振器の使い方として、光共振器内にYbファイバなど、種々の部材、機器などが無いことから、光共振器のフィネスを高くしても、安定して共振を維持させ、強いレーザー光を出射させることができる。
In addition, since there are no various members and equipment such as Yb fiber in the optical resonator, the optical resonator can be used to maintain stable resonance even when the optical resonator has a high finesse, and a strong laser. Light can be emitted.
また、自己発振により、レーザー光を安定的に蓄積させることができるとともに、光共振器の外部に、偏光選択装置、強度変換器などを設置させることにより、必要な特定を持ったレーザー光を選択させて、光共振器内に蓄積させることができる。
In addition, self-oscillation enables stable accumulation of laser light, and the selection of laser light with the required specifications by installing a polarization selector, intensity converter, etc. outside the optical resonator And can be accumulated in the optical resonator.
さらに、電子ビームを加速させる加速器の出射路内に、光共振器を配置させ、加速器で十分に加速された電子ビームを出射路に導いて、光共振器内のレーザー光に直接、衝突させることにより、軟X線からガンマ線ビームまで生成させることができる。
Furthermore, an optical resonator is disposed in the exit path of the accelerator that accelerates the electron beam, and the electron beam sufficiently accelerated by the accelerator is guided to the exit path to directly collide with the laser beam in the optical resonator. Thus, a soft X-ray to a gamma ray beam can be generated.
この際、光共振器内のレーザー光のレーザーエネルギーを上げることにより、小型の加速器であっても、軟X線からガンマ線ビームまで、高輝度化を達成させることができ、これによって生体分子から応用上、重要な材料の特性を詳細に調べることが可能になる。
At this time, by increasing the laser energy of the laser light in the optical resonator, even a small accelerator can achieve high brightness from soft X-rays to gamma-ray beams. In addition, it becomes possible to examine the characteristics of important materials in detail.
2.本発明の第2の実施形態の説明
図3は、本発明の第2の実施例に係る折り返し発振型光蓄積によるレーザー発振装置の構成を示す。
図3に示すように、レーザーダイオードと、光アイソレータと、分波/合波器(WDM)と、Ybファイバと、反射器と、光学系と、光共振器とを備えており、Ybファイバを励起させ得られたレーザー光を光共振器に蓄積させながら、共振させることにより、強いレーザー光を発生させる。 2. Description of Second Embodiment of the Present Invention FIG. 3 shows a configuration of a laser oscillation apparatus using folded oscillation type optical storage according to a second embodiment of the present invention.
As shown in FIG. 3, a laser diode, an optical isolator, a demultiplexer / multiplexer (WDM), a Yb fiber, a reflector, an optical system, and an optical resonator are provided. A strong laser beam is generated by resonating the laser beam obtained by excitation while accumulating it in the optical resonator.
図3は、本発明の第2の実施例に係る折り返し発振型光蓄積によるレーザー発振装置の構成を示す。
図3に示すように、レーザーダイオードと、光アイソレータと、分波/合波器(WDM)と、Ybファイバと、反射器と、光学系と、光共振器とを備えており、Ybファイバを励起させ得られたレーザー光を光共振器に蓄積させながら、共振させることにより、強いレーザー光を発生させる。 2. Description of Second Embodiment of the Present Invention FIG. 3 shows a configuration of a laser oscillation apparatus using folded oscillation type optical storage according to a second embodiment of the present invention.
As shown in FIG. 3, a laser diode, an optical isolator, a demultiplexer / multiplexer (WDM), a Yb fiber, a reflector, an optical system, and an optical resonator are provided. A strong laser beam is generated by resonating the laser beam obtained by excitation while accumulating it in the optical resonator.
レーザーダイオードは、Ybファイバを励起させるのに必要な波長のレーザー光を発生する半導体レーザー素子などによって構成されており、駆動電圧が印加されているとき、レーザー光を発生し、レーザーダイオード→光ファイバ→光アイソレータの端子なる経路で、光アイソレータに供給する。
The laser diode is composed of a semiconductor laser element or the like that generates laser light having a wavelength necessary for exciting the Yb fiber. When a driving voltage is applied, the laser diode generates laser light, and laser diode → optical fiber. → Supply to the optical isolator through the path of the optical isolator terminal.
光アイソレータは、端子に供給されたレーザー光を通過させて端子から出射させ、また端子に供給されたレーザー光を遮断して、端子から出射しないように構成されており、端子に接続された光ファイバを介して、レーザーダイオードからレーザー光が供給されたとき、これを通過させて、端子から出射し、端子→光ファイバ→分波/合波器の端子なる経路で、分波/合波器に供給する。また、分波/合波器からレーザー光が出射され、これが光ファイバを介して、端子に供給されたとき、これを遮断させて、レーザーダイオードを保護する。
The optical isolator is configured so that the laser beam supplied to the terminal passes through and is emitted from the terminal, and the laser beam supplied to the terminal is blocked so as not to be emitted from the terminal. When a laser beam is supplied from a laser diode through a fiber, it passes through and is emitted from a terminal. A demultiplexer / multiplexer is a path of terminal → optical fiber → demultiplexer / multiplexer. To supply. Further, when the laser beam is emitted from the demultiplexer / multiplexer and supplied to the terminal via the optical fiber, it is blocked to protect the laser diode.
分波/合波器は、一方の各端子から第1の波長のレーザー光、第2の波長のレーザー光が入射されたとき、これを合波して、他方の端子から出射し、またこの端子から合波されたレーザー光が入射したとき、これを分波して、分派したレーザー光を端子から出射して端子から出射するように構成されており、端子に接続された光ファイバを介して、光アイソレータから所定の波長のレーザー光が供給されたとき、これを取り込み、端子に接続されたYbファイバに供給する。また、端子に接続されたYbファイバからレーザー光が供給されたとき、これを分波して、分波した波長のレーザー光を端子から出射して反射器に供給する。
When a laser beam having a first wavelength and a laser beam having a second wavelength are incident from one of the terminals, the demultiplexer / multiplexer synthesizes and emits the light from the other terminal. When the laser light combined from the terminal is incident, it is demultiplexed, and the split laser light is emitted from the terminal and emitted from the terminal, via an optical fiber connected to the terminal. When laser light having a predetermined wavelength is supplied from the optical isolator, it is captured and supplied to the Yb fiber connected to the terminal. When the laser beam is supplied from the Yb fiber connected to the terminal, the laser beam is demultiplexed, and the demultiplexed wavelength laser beam is emitted from the terminal and supplied to the reflector.
反射器においては、分波/合波器の端子などを端面加工されて構成された反射器であり、分波/合波器の端子からレーザー光が出射されたとき、これを反射させて、分波/合波器の端子に戻す。
In the reflector, the terminal of the demultiplexer / multiplexer is processed by processing the end face, and when the laser beam is emitted from the demultiplexer / multiplexer terminal, this is reflected, Return to the demultiplexer / multiplexer terminal.
Ybファイバは、コアにYbがドープされたダブルクラッドタイプのファイバであり、分波/合波器から所定の波長のレーザー光(励起用のレーザー光)が供給されて励起されたとき、励起されたレーザー光を発生し、これを分波/合波器の端子に供給するとともに、光学系の端子に供給する。
A Yb fiber is a double-clad type fiber whose core is doped with Yb, and is excited when a laser beam of a predetermined wavelength (excitation laser beam) is supplied from a demultiplexer / multiplexer and excited. The laser beam is generated and supplied to the demultiplexer / multiplexer terminal and also to the optical system terminal.
光学系は、Ybファイバに接続される端子と、レーザー光を反射する4枚のミラーと、“+150mの”焦点距離を持ち、レーザー光をコリメートし、径を調整する2枚の凸レンズとを備えており、端子に供給されたレーザー光を反射させながら、径、偏向方向などを調整し、光共振器に入射させる。
The optical system includes a terminal connected to the Yb fiber, four mirrors that reflect the laser beam, and two convex lenses that have a focal length of “+150 m”, collimate the laser beam, and adjust the diameter. While reflecting the laser beam supplied to the terminal, the diameter, the deflection direction, and the like are adjusted, and the laser beam is incident on the optical resonator.
光共振器は、反射率90%以上にされ、光学系から供給されるレーザー光の光軸に対し、45度、傾けられて配置される平面鏡と、反射率90%以上にされ、平面鏡を透過したレーザー光(または、反射したレーザー光)の光軸と直交するように配置され、入射されたレーザー光を反射するとともに、一部を外部に出射させる平面鏡と、100%の反射率にされ、平面鏡で反射され、平面鏡で再度、反射されたレーザー光を反射し、平面鏡に戻す平面鏡と、一方の平面鏡、例えば平面鏡の裏面に配置され、印加された電圧に応じて、変形し、平面鏡の位置、取り付け角度などを調整するピエゾ素子とを備えており、光学系から平面鏡の裏面にレーザー光が供給されたとき、平面鏡を透過させて、各平面鏡の間に、これを閉じ込め、蓄積しながら、位相を調整する。
The optical resonator has a reflectivity of 90% or more and a plane mirror disposed at an angle of 45 degrees with respect to the optical axis of the laser beam supplied from the optical system, and a reflectivity of 90% or more and is transmitted through the plane mirror. Is arranged so as to be orthogonal to the optical axis of the laser beam (or the reflected laser beam), reflects the incident laser beam, and emits a part to the outside, and has a reflectivity of 100%, The plane mirror reflected by the plane mirror and reflected again by the plane mirror and returned to the plane mirror, and placed on one plane mirror, for example, the back of the plane mirror, deformed according to the applied voltage, and the position of the plane mirror And a piezo element that adjusts the mounting angle, etc., when laser light is supplied from the optical system to the back surface of the plane mirror, it is transmitted through the plane mirror and is not confined and accumulated between the plane mirrors. Et al., To adjust the phase.
また、上記動作と並行し、これら各平面鏡間に蓄積している強いレーザー光の一部を平面鏡から出射させ、外部にあるレーザー光利用装置、例えば電子と、レーザー光とを衝突させたときの逆コンプトン効果を利用して、強いX線を発生させるX線発生装置などに供給する。
In parallel with the above operation, a part of the strong laser beam accumulated between these plane mirrors is emitted from the plane mirror, and when an external laser beam utilization device, for example, an electron and a laser beam collide with each other The inverse Compton effect is used to supply an X-ray generator that generates strong X-rays.
このように、本発明においては、コンプトン光源用のレーザー標的としての応用を考える場合、発振をモードロックパルス化できれば、同じ平均パワーでも、より高いピーク強度が得られ、魅力的である。現状は共振器の複数の共鳴条件が同時に発振するマルチ縦モード発振であると考えられ、周回路の一部に可飽和吸収鏡を挿入したうえで、系全体の光路長を共振器部の光路長の整数倍に調整すれば、多数の縦モードの位相を揃えることができて、ハーモニックモードロック化が可能となり得る。
Thus, in the present invention, when considering application as a laser target for a Compton light source, if the oscillation can be made a mode-lock pulse, a higher peak intensity can be obtained even with the same average power, which is attractive. At present, it is considered to be multi-longitudinal mode oscillation in which multiple resonance conditions of the resonator oscillate simultaneously, and after inserting a saturable absorber mirror in a part of the peripheral circuit, the optical path length of the entire system is changed to the optical path of the resonator section If adjusted to an integral multiple of the length, the phases of a number of longitudinal modes can be made uniform, and harmonic mode locking can be achieved.
また、モードロックパルス化したうえで、共振器部にSHG結晶を設置すれば高効率高繰り返しの2倍波レーザーを構成することができる可能性がある。共振器の損失が主に波長変換で決まるならば、励起光パワーは全て2倍波に移るので、効率が高い。共振器部の光路長を加速器繰り返しに合わせ、全周長をその整数倍に調整すれば、光陰極電子銃のドライブレーザーとしての応用可能性も考えられる。
Also, if a SHG crystal is installed in the resonator part after making it a mode-locked pulse, there is a possibility that a high-efficiency high-repetition double-wave laser can be constructed. If the loss of the resonator is mainly determined by wavelength conversion, the pumping light power is all shifted to the second harmonic, and thus the efficiency is high. If the optical path length of the resonator section is matched to the number of accelerators and the entire circumference is adjusted to an integral multiple of that, it can be applied as a drive laser for a photocathode electron gun.
3.本発明の原理の実証実験の説明
次に、本発明の原理実証試験の結果を説明する。
本発明に係る装置の原理実証を目的として、低パワーのシステムで検証実験を行った。コア励起のYb添加シングルモードファイバを増幅器として用い、波長976nmのレーザーダイオードによる最大500mWの励起光をWDMカプラより導入した。この増幅器のゲインは38である(波長1064nmレーザーでの測定)。増幅ファイバ以外の導波路もシングルモードファイバで構成されている。ファイバから空間に出射した後、マッチングのためのレンズ系と位置角度調整の鏡ペアを経由して共振器へ入射される。共振器からの出射後、同様にマッチング系を経由して、再びファイバに入力される。確立した手順で調整を行った後には、ファイバ入出力の効率は60%以上であり、大きな損失にはならない。ファイバ光路の途中に9:1のカプラを設置し、周回光の一部をモニターした。ファイバ光路の途中に設置されたアイソレータによって光の周回方向を限定している。 3. Explanation of Verification Experiment of Principle of the Present Invention Next, the result of the verification test of the principle of the present invention will be described.
For the purpose of verifying the principle of the device according to the present invention, a verification experiment was conducted with a low power system. A core-pumped Yb-doped single mode fiber was used as an amplifier, and a maximum of 500 mW pumping light from a laser diode having a wavelength of 976 nm was introduced from a WDM coupler. The gain of this amplifier is 38 (measurement with a 1064 nm wavelength laser). Waveguides other than the amplification fiber are also composed of a single mode fiber. After exiting from the fiber into the space, it enters the resonator via a lens system for matching and a mirror pair for adjusting the position angle. After the emission from the resonator, the light is again input to the fiber via the matching system. After adjustment using established procedures, the fiber input / output efficiency is 60% or more, which does not cause a large loss. A 9: 1 coupler was installed in the middle of the fiber optical path, and a part of the circulating light was monitored. The light circulation direction is limited by an isolator installed in the middle of the fiber optical path.
次に、本発明の原理実証試験の結果を説明する。
本発明に係る装置の原理実証を目的として、低パワーのシステムで検証実験を行った。コア励起のYb添加シングルモードファイバを増幅器として用い、波長976nmのレーザーダイオードによる最大500mWの励起光をWDMカプラより導入した。この増幅器のゲインは38である(波長1064nmレーザーでの測定)。増幅ファイバ以外の導波路もシングルモードファイバで構成されている。ファイバから空間に出射した後、マッチングのためのレンズ系と位置角度調整の鏡ペアを経由して共振器へ入射される。共振器からの出射後、同様にマッチング系を経由して、再びファイバに入力される。確立した手順で調整を行った後には、ファイバ入出力の効率は60%以上であり、大きな損失にはならない。ファイバ光路の途中に9:1のカプラを設置し、周回光の一部をモニターした。ファイバ光路の途中に設置されたアイソレータによって光の周回方向を限定している。 3. Explanation of Verification Experiment of Principle of the Present Invention Next, the result of the verification test of the principle of the present invention will be described.
For the purpose of verifying the principle of the device according to the present invention, a verification experiment was conducted with a low power system. A core-pumped Yb-doped single mode fiber was used as an amplifier, and a maximum of 500 mW pumping light from a laser diode having a wavelength of 976 nm was introduced from a WDM coupler. The gain of this amplifier is 38 (measurement with a 1064 nm wavelength laser). Waveguides other than the amplification fiber are also composed of a single mode fiber. After exiting from the fiber into the space, it enters the resonator via a lens system for matching and a mirror pair for adjusting the position angle. After the emission from the resonator, the light is again input to the fiber via the matching system. After adjustment using established procedures, the fiber input / output efficiency is 60% or more, which does not cause a large loss. A 9: 1 coupler was installed in the middle of the fiber optical path, and a part of the circulating light was monitored. The light circulation direction is limited by an isolator installed in the middle of the fiber optical path.
図4は、本発明の装置において、モニターポートからのパワーを測定しながら励起LDの出力を変えていった結果を示すものである。
FIG. 4 shows the result of changing the output of the excitation LD while measuring the power from the monitor port in the apparatus of the present invention.
上記測定で用いた共振器は、99.99%の反射率をもつ共振器鏡で構成したフィネス30000(増大率20000)のものである。LD電流350mAを超えた時点で発振が始まり、励起パワーに比例して周回光が増加していく様子が示されている。モニターポートで測定された光強度から、共振器内部に実現している光強度は440Wと推測された。IRビューアで共振器を観測すると、図6に示すように、確かに高強度の光が蓄積されていることが分かる。僅か500mW程度の低出力励起レーザーで、440Wのレーザー光が全く制御無しに実現できることを示すことが出来た。
The resonator used in the above measurement is a finesse 30000 (increase rate 20000) composed of a resonator mirror having a reflectivity of 99.99%. It is shown that the oscillation starts when the LD current exceeds 350 mA, and the circulating light increases in proportion to the excitation power. From the light intensity measured at the monitor port, the light intensity realized in the resonator was estimated to be 440 W. When the resonator is observed with an IR viewer, it can be seen that high-intensity light is certainly accumulated as shown in FIG. It was shown that a 440 W laser beam can be realized without any control with a low power excitation laser of only about 500 mW.
図5は、本発明の装置において、フォトダイオードで出力光を観測して短い時間スケールでの発振の安定性を調べた結果を示すものである。
図5において、共振器鏡として反射率90%(増大率20)のものを使用した場合と反射率99.99%(増大率20000)のものを使用した場合についての様子を示している。高フィネスの共振器の場合、発振光強度に細かい振動がみられる。これは、共鳴幅が狭くなるにつれ、環境の振動などによる共鳴条件の感度が高くなった結果、系が常に過渡的な状態にある為と思われる。振動によって共鳴状態が変動しながらも、自発発振によって共鳴を回復しようとしている状態である。共振器の構造体の剛性を高めることによって、この変動はある程度改善が出来ると期待できる。 FIG. 5 shows the result of examining the stability of oscillation on a short time scale by observing output light with a photodiode in the apparatus of the present invention.
FIG. 5 shows a state in which a resonator mirror having a reflectivity of 90% (increase rate of 20) is used and a resonator mirror having a reflectivity of 99.99% (increase rate of 20000) is used. In the case of a high finesse resonator, fine oscillation is observed in the oscillation light intensity. This seems to be because the system is always in a transient state as a result of an increase in the sensitivity of resonance conditions due to environmental vibrations as the resonance width becomes narrower. In this state, the resonance state is fluctuated by vibration, but the resonance is being recovered by spontaneous oscillation. It can be expected that this variation can be improved to some extent by increasing the rigidity of the resonator structure.
図5において、共振器鏡として反射率90%(増大率20)のものを使用した場合と反射率99.99%(増大率20000)のものを使用した場合についての様子を示している。高フィネスの共振器の場合、発振光強度に細かい振動がみられる。これは、共鳴幅が狭くなるにつれ、環境の振動などによる共鳴条件の感度が高くなった結果、系が常に過渡的な状態にある為と思われる。振動によって共鳴状態が変動しながらも、自発発振によって共鳴を回復しようとしている状態である。共振器の構造体の剛性を高めることによって、この変動はある程度改善が出来ると期待できる。 FIG. 5 shows the result of examining the stability of oscillation on a short time scale by observing output light with a photodiode in the apparatus of the present invention.
FIG. 5 shows a state in which a resonator mirror having a reflectivity of 90% (increase rate of 20) is used and a resonator mirror having a reflectivity of 99.99% (increase rate of 20000) is used. In the case of a high finesse resonator, fine oscillation is observed in the oscillation light intensity. This seems to be because the system is always in a transient state as a result of an increase in the sensitivity of resonance conditions due to environmental vibrations as the resonance width becomes narrower. In this state, the resonance state is fluctuated by vibration, but the resonance is being recovered by spontaneous oscillation. It can be expected that this variation can be improved to some extent by increasing the rigidity of the resonator structure.
コンプトン光源用のレーザー標的としての応用を考える場合、発振をモードロックパルス化できれば、同じ平均パワーでも、より高いピーク強度が得られ、魅力的である。現状は共振器の複数の共鳴条件が同時に発振するマルチ縦モード発振であると考えられ、周回路の一部に可飽和吸収鏡を挿入したうえで、系全体の光路長を共振器部の光路長の整数倍に調整すれば、多数の縦モードの位相を揃えることができて、ハーモニックモードロック化が可能ではないかと判断される。
When considering application as a laser target for a Compton light source, if the oscillation can be mode-locked, higher peak intensity can be obtained even with the same average power, which is attractive. At present, it is considered to be multi-longitudinal mode oscillation in which multiple resonance conditions of the resonator oscillate simultaneously, and after inserting a saturable absorber mirror in a part of the peripheral circuit, the optical path length of the entire system is changed to the optical path of the resonator section If it is adjusted to an integral multiple of the length, the phases of a number of longitudinal modes can be aligned, and it is determined that harmonic mode locking is possible.
図6は、本発明の電子銃駆動用レーザーへの応用例を示すものである。図6において、モードロックパルス化したうえで、共振器部にSHG結晶を設置すれば高効率高繰り返しの2倍波レーザーを構成することができる可能性が示される。共振器の損失が主に波長変換で決まるならば、励起光パワーは全て2倍波に移るので、効率が高い。共振器部の光路長を加速器繰り返しに合わせ、全周長をその整数倍に調整すれば、光陰極電子銃のドライブレーザーとしても応用が可能ではないかと考えている。
FIG. 6 shows an application example of the present invention to an electron gun driving laser. FIG. 6 shows the possibility that a high-efficiency, high-repetition double-wave laser can be configured by forming a mode-locked pulse and then installing an SHG crystal in the resonator section. If the loss of the resonator is mainly determined by wavelength conversion, the pumping light power is all shifted to the second harmonic, and thus the efficiency is high. If the optical path length of the resonator section is adjusted to the number of accelerators and the entire circumference is adjusted to an integral multiple of it, it can be applied as a drive laser for a photocathode electron gun.
4.まとめ
高効率に連続高強度のレーザー光を実現する手法として、レーザー蓄積装置の技術がある。これを高ゲイン増幅器と組み合わせることで系を自己発振状態にすることができ、共振器制御の技術的困難を解決することができる。この手法はレーザーコンプトン光源にとって有効であるだけでなく、パルス化やSHGとの組み合わせにより様々な応用の可能性が期待できる。 4). Summary There is a laser storage technology as a technique for realizing continuous and high intensity laser light with high efficiency. By combining this with a high gain amplifier, the system can be brought into a self-oscillation state, and the technical difficulty of resonator control can be solved. This method is not only effective for a laser Compton light source, but it can be expected to be applied in various ways by combining with pulsing and SHG.
高効率に連続高強度のレーザー光を実現する手法として、レーザー蓄積装置の技術がある。これを高ゲイン増幅器と組み合わせることで系を自己発振状態にすることができ、共振器制御の技術的困難を解決することができる。この手法はレーザーコンプトン光源にとって有効であるだけでなく、パルス化やSHGとの組み合わせにより様々な応用の可能性が期待できる。 4). Summary There is a laser storage technology as a technique for realizing continuous and high intensity laser light with high efficiency. By combining this with a high gain amplifier, the system can be brought into a self-oscillation state, and the technical difficulty of resonator control can be solved. This method is not only effective for a laser Compton light source, but it can be expected to be applied in various ways by combining with pulsing and SHG.
本発明は、強いレーザー光を発生させるレーザー装置に関し、特に、光共振器のフィネスを高めた時でも、安定して発振させ得るようにしたレーザーコンプトン散乱を利用した光源用レーザーに関するものであり、産業上の利用可能性を有する。
The present invention relates to a laser device that generates strong laser light, and more particularly, to a laser for a light source using laser Compton scattering that can oscillate stably even when the finesse of an optical resonator is increased, Has industrial applicability.
Claims (5)
- 光共振器を使用して、希土類ファイバで生成されたレーザー光を共振させることによりレーザー光を生成するレーザー発振装置であって、
励起用のレーザー光を発生する励起用レーザー光源と、
前記励起用レーザー光源で生成されたレーザー光が供給されたとき、所望波長のレーザー光を生成する希土類ファイバと、
対向配置された2枚の凹面鏡、または複数枚の平面鏡を含む面鏡群によって構成され、前記希土類ファイバで生成されたレーザー光を蓄積する光共振器と、
前記光共振器と前記希土類ファイバとの間に介挿され、前記希土類ファイバからのレーザー光を前記光共振器の一方に導き、逆方向のレーザー光を遮断する光アイソレータと、
前記光共振器の他方から出射されるレーザー光を取り込み、前記希土類ファイバ、前記光アイソレータを介し、前記光共振器に戻し、共振を促進させる周回光路と、
を備えたことを特徴とするレーザー発振装置。 A laser oscillation device that generates laser light by using an optical resonator to resonate laser light generated by a rare earth fiber,
An excitation laser light source for generating excitation laser light;
A rare earth fiber that generates laser light of a desired wavelength when supplied with the laser light generated by the excitation laser light source;
An optical resonator configured to store two laser beams generated by the rare earth fiber, each of which is constituted by two concave mirrors arranged opposite to each other, or a plane mirror group including a plurality of plane mirrors;
An optical isolator that is interposed between the optical resonator and the rare earth fiber, guides laser light from the rare earth fiber to one of the optical resonators, and blocks laser light in the reverse direction;
A laser beam that is emitted from the other of the optical resonators, returns to the optical resonator via the rare earth fiber and the optical isolator, and a circulating optical path that promotes resonance;
A laser oscillation device comprising: - 光共振器を使用して、希土類ファイバで生成されたレーザー光を共振させることにより強いレーザー光を生成するレーザー発振装置であって、
励起用のレーザー光を発生する励起用レーザー光源と、
前記励起用レーザー光源で生成されたレーザー光が供給されたとき、所望波長のレーザー光を生成する希土類ファイバと、
対向配置された2枚の凹面鏡、または複数枚の平面鏡を含む面鏡群によって構成され、前記希土類ファイバで生成されたレーザー光を蓄積する光共振器と、
前記光共振器から出射され、前記希土類ファイバを介して供給された、一方のレーザー光を反射させ、前記希土類ファイバを介して、前記光共振器に戻し、共振を促進させる反射器と、を備え、
前記光共振器から出射された、他方のレーザー光を外部に出射することを特徴とするレーザー発振装置。 A laser oscillation device that generates strong laser light by using an optical resonator to resonate laser light generated by a rare earth fiber,
An excitation laser light source for generating excitation laser light;
A rare earth fiber that generates laser light of a desired wavelength when supplied with the laser light generated by the excitation laser light source;
An optical resonator configured to store two laser beams generated by the rare earth fiber, each of which is constituted by two concave mirrors arranged opposite to each other, or a plane mirror group including a plurality of plane mirrors;
A reflector that reflects one of the laser beams emitted from the optical resonator and supplied via the rare earth fiber, returns the laser light to the optical resonator via the rare earth fiber, and promotes resonance. ,
A laser oscillation apparatus, wherein the other laser beam emitted from the optical resonator is emitted to the outside. - 前記希土類ファイバは、Ybがドープされたコアを持つ、ことを特徴とする請求項1又は2に記載のレーザー発振装置。 3. The laser oscillation device according to claim 1, wherein the rare earth fiber has a core doped with Yb.
- 前記出力カプラは、前記光共振器の他方から出射されるレーザー光を取り込み、当該取り込んだレーザー光の一部を外部に出射するとともに、前記レーザー光の大半を前記希土類ファイバ、前記光アイソレータを介し、前記光共振器に戻すことにより共振を促進させることを特徴とする請求項3に記載のレーザー発振装置。 The output coupler captures a laser beam emitted from the other of the optical resonators, emits a part of the captured laser beam to the outside, and most of the laser beam via the rare earth fiber and the optical isolator. 4. The laser oscillation device according to claim 3, wherein resonance is promoted by returning to the optical resonator.
- 前記光共振器は、2枚の凹面鏡及び1枚の平面鏡によって構成されるフォックス・スミス干渉計タイプであることを特徴とする請求項2又は4に記載のレーザー発振装置。 The laser oscillation device according to claim 2 or 4, wherein the optical resonator is of a Fox Smith interferometer type including two concave mirrors and one plane mirror.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2807113A CA2807113C (en) | 2009-08-05 | 2010-07-29 | Light source laser utilizing laser compton scattering |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-182822 | 2009-08-05 | ||
JP2009182822A JP2011035331A (en) | 2009-08-05 | 2009-08-05 | Laser for light source using laser compton scattering |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011016379A1 true WO2011016379A1 (en) | 2011-02-10 |
Family
ID=43544275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/062750 WO2011016379A1 (en) | 2009-08-05 | 2010-07-29 | Light-source laser utilizing laser compton-scattering |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2011035331A (en) |
CA (1) | CA2807113C (en) |
WO (1) | WO2011016379A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012018034A1 (en) * | 2010-08-05 | 2012-02-09 | 大学共同利用機関法人高エネルギー加速器研究機構 | Laser oscillation apparatus |
WO2014118998A1 (en) * | 2013-02-01 | 2014-08-07 | Inter-University Research Institute Corporation High Energy Accelerator Research Organization | Two dimensional (2-d)-4-mirror optical resonator |
WO2014118999A1 (en) * | 2013-02-01 | 2014-08-07 | Inter-University Research Institute Corporation High Energy Accelerator Research Organization | Burst-laser generator using an optical resonator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5975461B2 (en) * | 2012-02-03 | 2016-08-23 | 大学共同利用機関法人 高エネルギー加速器研究機構 | Laser Compton scattering device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06318751A (en) * | 1992-05-22 | 1994-11-15 | General Instr Corp | Longitudinal mode selection laser |
JP2000244044A (en) * | 1999-02-18 | 2000-09-08 | Communication Research Laboratory Mpt | Regenerative mode synchronous laser using fabry-perot filter |
-
2009
- 2009-08-05 JP JP2009182822A patent/JP2011035331A/en active Pending
-
2010
- 2010-07-29 CA CA2807113A patent/CA2807113C/en active Active
- 2010-07-29 WO PCT/JP2010/062750 patent/WO2011016379A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06318751A (en) * | 1992-05-22 | 1994-11-15 | General Instr Corp | Longitudinal mode selection laser |
JP2000244044A (en) * | 1999-02-18 | 2000-09-08 | Communication Research Laboratory Mpt | Regenerative mode synchronous laser using fabry-perot filter |
Non-Patent Citations (2)
Title |
---|
D. OEPTS ET AL.: "Selection of single-mode radiation from a short-pulse free-electron laser", PHYSICAL REVIEW LETTERS, vol. 70, no. 21, 24 May 1993 (1993-05-24), pages 3255 - 3258, XP000361786, DOI: doi:10.1103/PhysRevLett.70.3255 * |
G. T. HARVEY ET AL.: "Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission", OPTICS LETTERS, vol. 18, no. 2, 15 January 1993 (1993-01-15), pages 107 - 109, XP000331296 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012018034A1 (en) * | 2010-08-05 | 2012-02-09 | 大学共同利用機関法人高エネルギー加速器研究機構 | Laser oscillation apparatus |
US8675708B2 (en) | 2010-08-05 | 2014-03-18 | Inter-University Research Institute Corporation High Energy Accelerator Research Organization | Laser oscillation apparatus |
WO2014118998A1 (en) * | 2013-02-01 | 2014-08-07 | Inter-University Research Institute Corporation High Energy Accelerator Research Organization | Two dimensional (2-d)-4-mirror optical resonator |
WO2014118999A1 (en) * | 2013-02-01 | 2014-08-07 | Inter-University Research Institute Corporation High Energy Accelerator Research Organization | Burst-laser generator using an optical resonator |
US9769913B2 (en) | 2013-02-01 | 2017-09-19 | Inter-University Research Institute Corporation High Energy Accelerator Research Organization | Burst-laser generator using an optical resonator |
Also Published As
Publication number | Publication date |
---|---|
CA2807113C (en) | 2017-07-18 |
CA2807113A1 (en) | 2011-02-10 |
JP2011035331A (en) | 2011-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7764719B2 (en) | Pulsed fiber laser | |
US7742512B2 (en) | Scalable laser with robust phase locking | |
US9166362B2 (en) | Cascaded raman lasing system | |
US7457326B2 (en) | Method and apparatus for coherently combining multiple laser oscillators | |
JP6345348B2 (en) | Method and apparatus for temporally condensing pump power to support generation of high peak power pulse bursts or other time-varying laser output waveforms | |
US10218143B2 (en) | Dual output semiconductor optical amplifier-based tunable fiber laser | |
WO2012018034A1 (en) | Laser oscillation apparatus | |
WO2011016379A1 (en) | Light-source laser utilizing laser compton-scattering | |
JP5975461B2 (en) | Laser Compton scattering device | |
Dagenais et al. | Wavelength stability characteristics of a high-power, amplified superfluorescent source | |
US7319707B2 (en) | L-band light source | |
JP2002141599A (en) | Semiconductor laser module, laser unit, and raman amplifier | |
Freitag et al. | Intensity stabilised Nd: YAG ring laser with 1.5 W single-frequency output power at 1.357 µm | |
CN113241577A (en) | Tunable random fiber laser based on two gratings | |
CA2781123C (en) | Miniaturized laser amplifier arrangement having a pump source | |
JP3197007U (en) | Laser oscillator | |
US20120255936A1 (en) | Laser system for the marking of metallic and non-metallic materials | |
US20240275118A1 (en) | Single Pass Optical Amplifer | |
JP2018174206A (en) | Laser device | |
WO2024166554A1 (en) | Laser resonator, optical comb generation device, and optical comb generation method | |
JP2008198874A (en) | Pulse laser device | |
US8630327B2 (en) | System for emitting a polychromatic light, provided with coupled sub-cavities | |
Kasai et al. | A 13 C 2 H 2 frequency-stabilized, polarization-maintained erbium fiber ring laser with no frequency modulation | |
JP2003086893A (en) | Semiconductor laser module and raman amplifier using the same | |
KR19990025550A (en) | High power pumping device for optical fiber amplification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10806378 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10806378 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2807113 Country of ref document: CA |