WO2011016188A1 - Cad data processing device and cad data processing method - Google Patents

Cad data processing device and cad data processing method Download PDF

Info

Publication number
WO2011016188A1
WO2011016188A1 PCT/JP2010/004598 JP2010004598W WO2011016188A1 WO 2011016188 A1 WO2011016188 A1 WO 2011016188A1 JP 2010004598 W JP2010004598 W JP 2010004598W WO 2011016188 A1 WO2011016188 A1 WO 2011016188A1
Authority
WO
WIPO (PCT)
Prior art keywords
cad data
dimensional
dimensional object
data processing
movable member
Prior art date
Application number
PCT/JP2010/004598
Other languages
French (fr)
Japanese (ja)
Inventor
長尾良幸
山崎公司
佐藤昌康
杉山淳
Original Assignee
株式会社コンピュータシステム研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コンピュータシステム研究所 filed Critical 株式会社コンピュータシステム研究所
Priority to CN201080035049.0A priority Critical patent/CN102470610B/en
Publication of WO2011016188A1 publication Critical patent/WO2011016188A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Definitions

  • the present invention relates to a CAD data processing apparatus and a CAD data processing method, and more particularly to a CAD data processing apparatus and a CAD data processing method for processing three-dimensional CAD data.
  • the most primitive prototype model includes a clay model made of clay and a wood model made by cutting wood.
  • model production has problems such as manpower, time and cost, poor reproducibility, and too much dependence on the skill of the model craftsman.
  • 3D CAD data for the developed product
  • a prototype model is created using this 3D CAD data.
  • a technology called “typing” has been developed and put into practical use. This is a technique for creating a target “stereoscopic model” from three-dimensional CAD data at extremely high speed and low cost without manpower and time.
  • a typical technique for rapid prototyping is the “layer fabrication method”, which is based on the three-dimensional CAD data of an object and slice data (to be precise, a thin plate having a slight thickness constituting the object).
  • the three-dimensional object (three-dimensional model) is formed by stacking the sliced data one layer at a time.
  • photocontrast method in which a photocurable resin is solidified with a laser, and a solidifying agent / binder supplied by an ink jet method or the like.
  • the “powder fixing type laminating method” has recently undergone technical innovation, and it has become possible to form “color solid objects” at extremely low cost and at high speed. For this reason, application to various fields other than shaped articles such as machine parts is being expected.
  • a three-dimensional model of a building if a three-dimensional model is created using the three-dimensional CAD data of the building as it is, the user can observe only the “appearance” of the three-dimensional model created as an integral object. End up.
  • the external structure that can be observed from the outside is also important, but the room layout, internal structure, cross-sectional structure, layer structure, and concrete bar arrangement are more important. There are many.
  • the three-dimensional data of the three-dimensional object is used as it is, the inside of the building or structure cannot be seen.
  • an object of the present invention is to provide a CAD data processing apparatus and a CAD data processing method suitable for manufacturing a three-dimensional object by a three-dimensional printer, and in particular, dividing the one-piece object while preparing the target three-dimensional object as one.
  • a CAD data processing apparatus and CAD data processing method for processing three-dimensional CAD data so as to make it possible.
  • a CAD data processing apparatus includes: A storage unit for storing the gap width; An acquisition unit for acquiring three-dimensional CAD data of a three-dimensional object; An input receiving unit for receiving an operation input for designating one or more division instruction surfaces for dividing the three-dimensional object; A processing unit for processing the three-dimensional CAD data so as to divide (cut) the three-dimensional object in a divided region defined by the division instruction surface and the gap width; Have
  • the gap width is defined according to a three-dimensional modeling resolution of a three-dimensional printer on which the three-dimensional object is printed (three-dimensional modeled).
  • the three-dimensional printing resolution of a three-dimensional printer is as follows: In the case of a three-dimensional printer that uses powder as a base material and solidifies a part of the base material with a solidifying agent, the thickness of the base material spray layer once , And at least one of the penetration thickness of the solidifying agent (modeling agent, modeling ink). It is preferable to make the gap width as thin as possible.
  • the storage unit stores pattern data to be pasted on a surface in contact with the divided region
  • the three-dimensional CAD data is set so that the processing unit pastes at least one pattern data on a surface in contact with the divided area of at least one object of two or more objects obtained by dividing (cutting) the three-dimensional object. Further processing, It is characterized by that.
  • the pattern data is associated with each type of member
  • the input receiving unit receives an operation input for designating a type of a member to be exposed on at least one surface in contact with the divided region;
  • the processing part is Depending on the type of the designated member, the corresponding pattern data of the pattern data is read from the storage unit, and the three-dimensional CAD data is further pasted on at least one surface in contact with the divided area. It is characterized by processing.
  • the pattern data is Consists of one or more selected from the group consisting of color, pattern, character, symbol, mark, figure, bar arrangement, structural cross section, map, design drawing, wiring diagram, and solid shape It is characterized by that.
  • the processing part is Further processing the three-dimensional CAD data so that at least one shape that fits to each other is provided on both surfaces of the two or more objects that are divided (cut) of the three-dimensional object in contact with the divided region.
  • one is a concave portion and the other is a convex portion that can be accommodated in the concave portion.
  • “positioning” can be facilitated when the objects are combined again to make an apparent one-piece, and further, “slip” on the dividing surface, in particular division. It is possible to effectively prevent “slip” when the surface is specified obliquely.
  • the shape which mutually fits may be one, providing the shape can relieve the stress concerning the said shape, and can make it difficult to destroy the shape to fit, for example, a convex part.
  • the divided area is a flat area, a curved area, or a combination thereof.
  • the input receiving unit receives an operation input for designating a member included in the three-dimensional object as a movable member;
  • the processing part is The movable member is divided (cut) from the three-dimensional object in a member-divided region defined by a surface where the designated movable member is in contact with the member of the three-dimensional object other than the movable member and the gap width, and the movable member is movable Processing the three-dimensional CAD data so that it can function as a member; It is characterized by that.
  • the movable member is a door, a sliding door, or the like.
  • the processing part is The movable member has a hole in which at least one retrofitting rotation support shaft for opening and closing the movable member and the three-dimensional object in contact with the movable member via the inter-member divided region is to be opened and closed.
  • the three-dimensional shape is formed so that the three-dimensional object is formed at a first position where the three-dimensional object comes into contact with the movable member via the inter-member divided area, and the second position where the three-dimensional object comes into contact with the movable member via the inter-member divided area.
  • Process CAD data It is characterized by that.
  • the processing part is The movable member divides the two protrusions functioning as a pivot support shaft for opening and closing the movable member and the three-dimensional object contacting the movable member through the inter-member divided region.
  • the protrusions are formed at first and second positions that contact the three-dimensional object through a region, and at the third and fourth positions that face the first and second positions through the inter-member region.
  • Processing the three-dimensional CAD data so as to form two holes respectively for accommodating each;
  • the movable member and the three-dimensional object that contacts the movable member via the inter-member divided area have two holes for accommodating a pivot support shaft for opening and closing, and the movable member is divided into the inter-member divided area.
  • the first and second positions are in contact with the three-dimensional object through the first and second positions, and the holes are respectively formed in the third and fourth positions facing the first and second positions through the inter-member region.
  • the input receiving unit receives an operation input for designating a member included in the three-dimensional object as an excluded member;
  • the processing part is
  • the three-dimensional CAD data is processed so as to exclude the specified exclusion member from the three-dimensional object, and a retrofit member (possible to a part of the frame of the three-dimensional object surrounding the space where the exclusion member exists).
  • a guide slit for inserting a flexible plastic, glass plate, acrylic plate, etc.), and the retrofitting member is inserted into at least a portion of the three-dimensional object frame other than the portion provided with the guide slit. Processing the three-dimensional CAD data to form support grooves to be performed; It is characterized by that.
  • the solution of the present invention has been described as an apparatus.
  • the present invention can be realized as a method, a program, and a storage medium that stores the program substantially corresponding to these, and the scope of the present invention. It should be understood that these are also included.
  • Each step of the following methods and programs uses a general-purpose or dedicated arithmetic processing unit such as a CPU or DSP as necessary for data processing.
  • a storage device such as a magnetic tape, HDD, or memory.
  • a CAD data processing method using a computer in which the present invention is realized as a method, A storage step of storing the gap width in the storage unit; An acquisition step of acquiring three-dimensional CAD data of a three-dimensional object; An input receiving step of receiving an operation input for designating one or more division instruction surfaces for dividing the three-dimensional object; A processing step of processing the three-dimensional CAD data so as to divide (cut) the three-dimensional object in a division region defined by the division instruction surface and the gap width; Have
  • each step includes a calculation unit (processor), a control unit (CPU), an input unit, an output unit, a display unit, a communication unit, a storage unit, an input reception unit, a processing unit, etc., which a computer or a CAD data processing apparatus has. Or two or more parts shall execute suitably in cooperation. The following method is the same.
  • a CAD data processing method includes: The gap width is defined according to a three-dimensional modeling resolution of a three-dimensional printer on which the three-dimensional object is printed. It is characterized by that.
  • a CAD data processing method includes: Further storing in the storage unit pattern data to be attached to the surface in contact with the divided region; A processing step of further processing the three-dimensional CAD data so that at least one pattern data is pasted on a surface in contact with the divided region of at least one object of the two or more divided objects of the three-dimensional object; It further has these.
  • a CAD data processing method includes: There are a plurality of the pattern data, and the pattern data is associated with each type of member, A receiving step for further receiving an operation input for designating a type of a member to be exposed on at least one surface in contact with the divided region; Depending on the type of the designated member, the corresponding pattern data of the pattern data is read from the storage unit, and the three-dimensional CAD data is further pasted on at least one surface in contact with the divided area. Processing steps to process; It further has these.
  • a CAD data processing method includes:
  • the pattern data is Consists of one or more selected from the group consisting of color, pattern, character, symbol, mark, figure, bar arrangement, structural cross section, map, design drawing, wiring diagram, and solid shape ing, It is characterized by that.
  • a CAD data processing method includes: A processing step of further processing the three-dimensional CAD data so as to provide at least one shape to be fitted to each other on both surfaces of the two or more objects that are divided into the three-dimensional object, which are in contact with the divided region; It further has these.
  • a CAD data processing method includes: The divided region is a flat region or a curved region, or a combination of these, It is characterized by that.
  • a CAD data processing method includes: A reception step of receiving an operation input for designating a member included in the three-dimensional object as a movable member;
  • the movable member is divided (cut) from the three-dimensional object in a member-divided region defined by a surface where the designated movable member is in contact with the member of the three-dimensional object other than the movable member and the gap width, and the movable member is movable
  • a CAD data processing method includes:
  • the movable member has a hole in which at least one retrofitting rotation support shaft for opening and closing the movable member and the three-dimensional object in contact with the movable member via the inter-member divided region is to be opened and closed.
  • the three-dimensional shape is formed so that the three-dimensional object is formed at a first position where the three-dimensional object comes into contact with the movable member via the inter-member divided area, and the second position where the three-dimensional object comes into contact with the movable member via the inter-member divided area. Processing steps for processing CAD data; It further has these.
  • a CAD data processing method includes: The movable member divides the two protrusions functioning as a pivot support shaft for opening and closing the movable member and the three-dimensional object contacting the movable member through the inter-member divided region.
  • the protrusions are formed at first and second positions that contact the three-dimensional object through a region, and at the third and fourth positions that face the first and second positions through the inter-member region.
  • Processing the three-dimensional CAD data so as to form two holes respectively for accommodating each;
  • the movable member and the three-dimensional object that contacts the movable member via the inter-member divided area have two holes for accommodating a pivot support shaft for opening and closing, and the movable member is divided into the inter-member divided area.
  • the first and second positions are in contact with the three-dimensional object through the first and second positions, and the holes are respectively formed in the third and fourth positions facing the first and second positions through the inter-member region. Processing the three-dimensional CAD data so as to form two protrusions to be accommodated, respectively; It further has these.
  • a CAD data processing method includes: A reception step of receiving an operation input for designating a member included in the three-dimensional object as an excluded member; The three-dimensional CAD data is processed so as to exclude the specified exclusion member from the three-dimensional object, and a retrofit member (possible to a part of the frame of the three-dimensional object surrounding the space where the exclusion member exists).
  • a guide slit for inserting a flexible plastic, glass plate, acrylic plate, etc.), and the retrofitting member is inserted into at least a portion of the three-dimensional object frame other than the portion provided with the guide slit. Processing the three-dimensional CAD data to form support grooves to be performed; It further has these.
  • a program according to another aspect of the present invention which realizes the present invention as a method, A CAD data processing program for causing a computer to execute a CAD data processing method, A storage step of storing the gap width in the storage unit; An acquisition step of acquiring three-dimensional CAD data of a three-dimensional object; An input receiving step of receiving an operation input for designating one or more division instruction surfaces for dividing the three-dimensional object; A processing step of processing the three-dimensional CAD data so as to divide (cut) the three-dimensional object in a division region defined by the division instruction surface and the gap width; Have In addition, each step is appropriately executed by a calculation unit (processor), a control unit (CPU), an input unit, an output unit, a display unit, a communication unit, a storage unit, or the like included in the computer alone or in cooperation with two or more units. It shall be. The same applies to the subsequent programs.
  • a CAD data processing program is: The gap width is defined according to a three-dimensional modeling resolution of a three-dimensional printer on which the three-dimensional object is printed. It is characterized by that.
  • a CAD data processing program is: Further storing in the storage unit pattern data to be attached to the surface in contact with the divided region; A processing step of further processing the three-dimensional CAD data so that at least one pattern data is pasted on a surface in contact with the divided region of at least one object of the two or more divided objects of the three-dimensional object; It further has these.
  • a CAD data processing program is: There are a plurality of the pattern data, and the pattern data is associated with each type of member, A receiving step for further receiving an operation input for designating a type of a member to be exposed on at least one surface in contact with the divided region; Depending on the type of the designated member, the corresponding pattern data of the pattern data is read from the storage unit, and the three-dimensional CAD data is further pasted on at least one surface in contact with the divided area. Processing steps to process; It further has these.
  • a CAD data processing program is:
  • the pattern data is Consists of one or more selected from the group consisting of color, pattern, character, symbol, mark, figure, bar arrangement, structural cross section, map, design drawing, wiring diagram, and solid shape ing, It is characterized by that.
  • a CAD data processing program is: A processing step of further processing the three-dimensional CAD data so as to provide at least one shape to be fitted to each other on both surfaces of the two or more objects that are divided into the three-dimensional object, which are in contact with the divided region; It further has these.
  • a CAD data processing program is:
  • the divided region is a flat region or a curved region, or a combination of these, It is characterized by that.
  • a CAD data processing program is: A reception step of receiving an operation input for designating a member included in the three-dimensional object as a movable member;
  • the movable member is divided (cut) from the three-dimensional object in a member-divided region defined by a surface where the designated movable member is in contact with the member of the three-dimensional object other than the movable member and the gap width, and the movable member is movable
  • a CAD data processing program is:
  • the movable member has a hole in which at least one retrofitting rotation support shaft for opening and closing the movable member and the three-dimensional object in contact with the movable member via the inter-member divided region is to be opened and closed.
  • the three-dimensional shape is formed so that the three-dimensional object is formed at a first position where the three-dimensional object comes into contact with the movable member via the inter-member divided area, and the second position where the three-dimensional object comes into contact with the movable member via the inter-member divided area.
  • Processing steps for processing CAD data It further has these.
  • a CAD data processing program is:
  • the movable member divides the two protrusions functioning as a pivot support shaft for opening and closing the movable member and the three-dimensional object contacting the movable member through the inter-member divided region.
  • the protrusions are formed at first and second positions that contact the three-dimensional object through a region, and at the third and fourth positions that face the first and second positions through the inter-member region.
  • Processing the three-dimensional CAD data so as to form two holes respectively for accommodating each;
  • the movable member and the three-dimensional object that contacts the movable member via the inter-member divided area have two holes for accommodating a pivot support shaft for opening and closing, and the movable member is divided into the inter-member divided area.
  • the first and second positions are in contact with the three-dimensional object through the first and second positions, and the holes are respectively formed in the third and fourth positions facing the first and second positions through the inter-member region. Processing the three-dimensional CAD data so as to form two protrusions to be accommodated, respectively; It further has these.
  • a CAD data processing program is: A reception step of receiving an operation input for designating a member included in the three-dimensional object as an excluded member; The three-dimensional CAD data is processed so as to exclude the specified exclusion member from the three-dimensional object, and a retrofit member (possible to a part of the frame of the three-dimensional object surrounding the space where the exclusion member exists).
  • a guide slit for inserting a flexible plastic, glass plate, acrylic plate, etc.), and the retrofitting member is inserted into at least a portion of the three-dimensional object frame other than the portion provided with the guide slit. Processing the three-dimensional CAD data to form support grooves to be performed; It further has these.
  • FIG. 1 is a block diagram showing an outline of a CAD data processing apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the first embodiment.
  • FIG. 3 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the first embodiment is projected onto a two-dimensional plane.
  • FIG. 4 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the first embodiment is projected onto a two-dimensional plane.
  • FIG. 5 is a projection view in which the three-dimensional CAD data processed by the CAD data processing apparatus according to the first embodiment is projected onto a two-dimensional plane.
  • FIG. 1 is a block diagram showing an outline of a CAD data processing apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the first embodiment.
  • FIG. 6 is a lamination transition diagram showing the principle of the powder fixing type lamination method.
  • FIG. 7 is a stacking transition diagram illustrating a state in which a three-dimensional object is formed by a three-dimensional printer based on the powder fixing type stacking method using the three-dimensional CAD data processed by the CAD data processing apparatus according to the first embodiment.
  • FIG. 8 is a projection view showing the thickness of the divided area set in the three-dimensional object processed by the CAD data processing apparatus of the first embodiment.
  • FIG. 9 is a block diagram showing an outline of a CAD data processing apparatus according to Embodiment 2 of the present invention.
  • FIG. 10 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the second embodiment.
  • FIG. 10 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the second embodiment.
  • FIG. 11 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the second embodiment is projected onto a two-dimensional plane.
  • FIG. 12 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the second embodiment.
  • FIG. 13 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the second embodiment.
  • FIG. 14 is a block diagram showing an outline of a CAD data processing apparatus according to Embodiment 3 of the present invention.
  • FIG. 15 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment.
  • FIG. 16 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane.
  • FIG. 17 is a projection view in which three-dimensional CAD data provided with protrusions and holes is projected onto a two-dimensional plane.
  • FIG. 18 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment.
  • FIG. 19 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane.
  • FIG. 20 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment.
  • FIG. 21 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane.
  • FIG. 22 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment.
  • FIG. 23 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane.
  • FIG. 24 is an exploded perspective view showing a state in which a house in which three-dimensional CAD data is processed by the apparatus or program according to the fourth embodiment is produced as a three-dimensional object with a three-dimensional printer.
  • FIG. 25 is a diagram showing a one-dimensional house three-dimensional model produced in FIG. FIG.
  • FIG. 26 is a diagram illustrating a state of the divided surface when the one-dimensional house three-dimensional model illustrated in FIG. 25 is divided.
  • FIG. 27 is a diagram illustrating a state of the dividing surface when the one-dimensional house three-dimensional model illustrated in FIG. 25 is divided.
  • FIG. 28 is a diagram for explaining a state in which the opening and the guide slit are formed in the movable member with holes shown in FIG.
  • FIG. 29 is a diagram illustrating a state in which an opening, a sliding door as a movable member, and a guide slit are formed on the wall.
  • FIG. 30 is a diagram illustrating a state in which a large-sized three-dimensional model is divided.
  • FIG. 31 is a flowchart showing an example of processing for the seventh embodiment executed by the CAD data processing apparatus of FIG.
  • FIG. 1 is a block diagram showing an outline of a CAD data processing apparatus according to Embodiment 1 of the present invention.
  • the CAD data processing apparatus 100 includes a control unit (CPU) 110, an input unit 120, an output unit 130, a communication unit 140, a storage unit 150, and a display unit 160.
  • the storage unit 150 stores a gap width GAP suitable for dividing the target object with a target three-dimensional printer in advance.
  • the control unit 110 includes an acquisition unit 111, an input reception unit 112, a processing unit 113, and a three-dimensional output control unit 114.
  • the acquisition unit 111 acquires three-dimensional CAD data of a three-dimensional object.
  • the three-dimensional CAD data is created by the CAD system CD1, is received by the communication unit 140 via the network NET, and is finally passed to the acquisition unit 111.
  • the acquired three-dimensional CAD data is modeled as a three-dimensional model in a three-dimensional space by the three-dimensional output control unit 114, and this three-dimensional model (three-dimensional object) is projected onto a two-dimensional plane (projection plane).
  • the display unit 160 displays the projected “three-dimensional object”.
  • the input receiving unit 112 receives an operation input for designating one or more division instruction planes for dividing a three-dimensional object.
  • the user designates a division instruction screen for dividing the solid object displayed on the display unit 160 via the input unit 120 and the mouse MS, and the input reception unit 112 is designated. Accept the split instruction surface.
  • the processing unit 113 processes the three-dimensional CAD data so as to divide (cut) the three-dimensional object in the divided area defined by the division instruction surface and the gap width.
  • the gap width GAP is defined according to the three-dimensional modeling resolution of a three-dimensional printer on which a three-dimensional object is printed. For example, when processing for the three-dimensional printer PRN1, a numerical value corresponding to the three-dimensional modeling resolution of the printer is defined as the gap width and stored in the storage unit 150 in advance. Similarly, when processing for the three-dimensional printer PRN2, a numerical value corresponding to the three-dimensional modeling resolution of the printer is defined as a gap width and stored in the storage unit 150 in advance.
  • gap widths are stored in the storage unit 150, an identifier indicating an output destination printer is received from the input receiving unit 112 or the input unit 120, and an optimum gap is used for each printer according to the identifier.
  • the three-dimensional printing resolution of a three-dimensional printer is as follows: In the case of a three-dimensional printer that uses powder as a base material and solidifies a part of the base material with a solidifying agent, the thickness of the base material spray layer once , And at least one of the penetration thickness of the solidifying agent (modeling agent, modeling ink).
  • the gap width it is preferable to make the gap width as thin as possible in order to make it appear as if it is an integral object.
  • the three-dimensional output control unit 114 is a device driver of the three-dimensional printer PRN1 or a functional unit having the function, and the target three-dimensional object is sent via the output unit 130 using the three-dimensional CAD data subjected to the division processing. And output (three-dimensional printing) to the three-dimensional CAD printer PRN1. Via the three-dimensional output control unit 114 or the communication unit 140, the processed three-dimensional CAD data may be transmitted / output to external terminals PC1 and PC2 and stored on these terminals. .
  • the CAD data processing apparatus 100 is a general-purpose computer, a special-purpose computer, a server, a computer such as a PC, or a program that implements (executes) the functional units and processing procedures (methods) of this system on the computer. It is preferable to construct a CAD data processing device on a computer by holding the module in a CPU or storage unit of the computer or reading it from an external server or storage, and the same applies to each of the following embodiments. It is.
  • FIG. 2 is a flowchart showing an example of processing executed by the CAD data processing apparatus according to the first embodiment.
  • the storage unit stores the gap width. This step does not need to be executed every time, but only needs to be executed once to store an appropriate gap width.
  • the acquisition unit acquires three-dimensional CAD data of the three-dimensional object.
  • the input receiving unit receives an operation input for designating one or more division instruction surfaces for dividing the three-dimensional object.
  • the processing unit processes the three-dimensional CAD data so as to divide (cut) the three-dimensional object in the divided area defined by the division instruction surface and the gap width.
  • step S15 the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system.
  • the processed three-dimensional data may display a divided (cut) three-dimensional object on the display unit or store it in the storage unit 150 in order to confirm the division state.
  • FIG. 3 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the first embodiment is projected onto a two-dimensional plane.
  • the three-dimensional CAD data is obtained by modeling a cylindrical three-dimensional object OB11.
  • the user designates a desired location with a position pointing device (mouse), and the designated location is designated to be divided. It becomes surface CP. Since the division instruction surface CP is a plane having no thickness, the cylinder cannot be divided (cut) as it is. Therefore, as shown in (b) of the figure, the present apparatus sets the divided region CR with the gap width stored in the storage unit and displays the divided region with reference to the designated divided instruction surface CP.
  • the three-dimensional object OB11 is projected by.
  • FIG. 4 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus of Embodiment 1 is projected onto a two-dimensional plane.
  • FIG. 4A shows the three-dimensional object shown in FIG. 3B again in order to understand the transition state of the process.
  • FIG. 4B shows a case where the three-dimensional CAD data is processed so as to divide (cut) the three-dimensional object OB11 at the set divided region CR, and the three-dimensional object OB12 is projected with the processed data. .
  • the three-dimensional object OB12 is divided into an upper three-dimensional object OB12u and a lower three-dimensional object OB12d separated by a gap width.
  • the gap width is only a small thickness as a whole, if this is modeled / printed with a three-dimensional printer, a cylinder like an integral object can be obtained.
  • a 3D printer of a type in which powder is used as a substrate and a part of the substrate is solidified with a solidifying agent printing / stereoscopic modeling is performed using the 3D CAD data after processing.
  • the base material (powder) in the region does not solidify, it looks as if it is a single object, but it can be easily divided into the upper three-dimensional object OB12u and the lower three-dimensional object OB12d, and the original one is restored. What can be returned like an object can be manufactured.
  • FIG. 5 is a projection view in which the three-dimensional CAD data processed by the CAD data processing apparatus according to the first embodiment is projected onto a two-dimensional plane.
  • a state in which the three-dimensional object OB12 including the divided upper three-dimensional object OB12u and the lower three-dimensional object OB12d is formed by a three-dimensional printer using the “lamination method” is illustrated.
  • the lower solid object OB12d is formed by sequentially solidifying [m ⁇ 1] slice surfaces SL1 (more precisely, a slice region having a slight thickness), SL2, SL3 to SLm ⁇ 1 into a circular shape.
  • the two layers of the slice surfaces SLm and SLm + 1 are regions that are not solidified.
  • the two slice planes SLm and SLm + 1 are not solidified areas.
  • These two slice planes are areas corresponding to the divided areas.
  • the lower side of FIG. 5 shows a state in which the three-dimensional object OB10 before the division operation is formed by a three-dimensional printer using the “lamination method” for comparison.
  • the three-dimensional object OB10sl is formed by sequentially solidifying [n1] slices on a slice plane SL1 (more precisely, a slice region having a slight thickness), SL2, SL3 to SLn on a circle. Since all n slice planes are solidified, they are connected to each other and cannot be divided. Thus, since the divided area is a small thickness from the whole, the three-dimensional object OB10sl that cannot be divided has the same appearance as the three-dimensional object OB12sl that can be divided.
  • the user when the user creates one solid object OB10sl, when the two objects are combined, the user can observe the whole solid object, and when divided by the divided area, the user can observe the two divided appearances. Is possible. As will be described in detail later, it is possible to observe the cross-sectional structure and confirm tactile sensations such as irregularities by attaching patterns, shapes, symbols, and the like to the divided surfaces. Moreover, when the room is a partitioned room, it is possible to observe the room layout.
  • FIG. 6 is a lamination transition diagram showing the principle of the powder fixing type lamination method.
  • Lamination proceeds in the order of the arrows from the upper left.
  • a slice layer is formed on the bottom of a housing (not shown), and the powder to be formed is spread over the entire surface.
  • a solidifying agent having a function of solidifying a powder base material is applied only to an elliptical portion (portion to be solidified) that forms a three-dimensional object on the slice surface by using, for example, an ink jet technique. Further, a coloring agent or an agent such as ink is also applied to the portion to be colored together or separately.
  • the powder is again sprayed by an amount corresponding to one layer of the slice surface as in the beginning, and the solidifying agent is applied only to the elliptical part (the part to be solidified) that forms the three-dimensional object.
  • the desired three-dimensional object OB20sl can be obtained.
  • a truncated cone is created. Note that the three-dimensional object is formed by four slice planes for the convenience of drawing, but in reality, the three-dimensional object is formed by hundreds, thousands, tens of thousands, or even more slice planes. .
  • FIG. 7 is a stacking transition diagram illustrating a state in which a three-dimensional object is formed by a three-dimensional printer using a powder fixing type stacking method using the three-dimensional CAD data processed by the CAD data processing apparatus according to the first embodiment.
  • OB12 OB12u and OB12d sandwiching a divided region
  • FIG. 4 is formed by a powder fixing type laminating method.
  • a cylinder is formed by laminating sliced surfaces obtained by solidifying a powder base material in a circular shape.
  • gap set with this apparatus is set as the division
  • a slice surface solidified into a circular shape is sequentially formed thereon.
  • a three-dimensional object OB12sl-pwd that looks as if it were a single object. Since there is a divided region (powder layer / non-solidified layer) SLpwd in the middle, it can be easily divided into an upper three-dimensional object OB12usl and a lower three-dimensional object OB12dsl.
  • FIG. 8 is a projection view showing the thickness of the divided area set in the three-dimensional object processed by the CAD data processing apparatus of the first embodiment.
  • the thickness of the divided region CR1 of the three-dimensional object OB30 is set to the distance GW1.
  • the thickness (gap width) of the divided region CR2 of the three-dimensional object OB30 is set to a distance GW2 that is thicker than the distance GW1.
  • the three-dimensional objects OB30 and 31 are obtained by setting divided areas on cylinders of the same size (height and radius), but depending on the three-dimensional modeling resolution of a three-dimensional printer on which a three-dimensional object is printed (three-dimensional modeling), Since the thicknesses of the divided regions are respectively defined, different distances GW1 and GW2 are set.
  • the three-dimensional printing resolution of a three-dimensional printer is as follows: In the case of a three-dimensional printer that uses powder as a base material and solidifies a part of the base material with a solidifying agent, the thickness of the base material spray layer once , And at least one of the penetration thickness of the solidifying agent (modeling agent, modeling ink).
  • the user may arbitrarily set the thickness (gap width) of the divided region CR2.
  • the most suitable is that the gap width set based on the 3D modeling resolution and the 3D printer model (model name) are stored in the storage unit in association with each other, depending on the input of the 3D printer model to be used.
  • the gap width associated with the model is automatically selected, and a divided region in which the gap width is set is set.
  • FIG. 9 is a block diagram showing an outline of a CAD data processing apparatus according to Embodiment 2 of the present invention.
  • the CAD data processing apparatus 200 includes a control unit (CPU) 210, an input unit 220, an output unit 230, a communication unit 240, a storage unit 250, and a display unit 260.
  • the storage unit 250 the gap width GAP suitable for dividing the target object with the target three-dimensional printer is stored in the same manner as in the first embodiment.
  • the pattern data PD to be pasted on the surface of the three-dimensional object in contact with the divided area is stored.
  • Each of the pattern data PD is one or two selected from the group consisting of a color, a pattern, a character, a symbol, a mark, a figure, a reinforcing bar diagram, a structural sectional view, a map, a design drawing, a wiring diagram, and a three-dimensional shape. Consists of more than one.
  • the control unit 210 includes an acquisition unit 211, an input reception unit 212, a processing unit 213, and a three-dimensional output control unit 214.
  • the acquisition unit 211 acquires three-dimensional CAD data of a three-dimensional object.
  • the three-dimensional CAD data is created by the CAD system CD1, is received by the communication unit 240 via the network NET, and is finally passed to the acquisition unit 211.
  • the acquired three-dimensional CAD data is modeled as a three-dimensional model in a three-dimensional space by the three-dimensional output control unit 214, and this three-dimensional model (three-dimensional object) is projected onto a two-dimensional plane (projection plane).
  • the display unit 260 displays the projected “three-dimensional object”.
  • the input reception part 212 receives the operation input which designates the 1 or more division
  • the processing unit 213 processes the three-dimensional CAD data so as to divide (cut) the three-dimensional object in the divided area defined by the division instruction surface and the gap width.
  • the processing unit 213 further processes the three-dimensional CAD data so that at least one pattern data is pasted on a surface in contact with the divided region of at least one of two or more objects obtained by dividing (cutting) the three-dimensional object. To do.
  • FIG. 10 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the second embodiment.
  • the boxes of steps S21 and S25 different from the steps shown in FIG. 2 of the first embodiment are indicated by dotted lines.
  • the steps of the embodiment 2 including the same words as the words of the steps of the embodiment 1 perform the same processing unless otherwise specified.
  • the storage unit stores “gap width” and “pattern data”. This step does not need to be executed every time, and it is sufficient to execute it once and store an appropriate gap width and some pattern data.
  • Each of the pattern data is one selected from the group consisting of a color, a pattern, a character, a symbol, a mark, a figure, a reinforcing bar diagram, a structural sectional view, a map, a design drawing, a wiring diagram, and a three-dimensional shape. It consists of two or more things.
  • steps S22 to S24 are performed, which are the same as the steps S12 to S14 of the first embodiment.
  • the processing unit further processes the three-dimensional CAD data so that at least one pattern data is pasted on the surface in contact with the divided region.
  • the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system.
  • a three-dimensional object produced / modeled with processed three-dimensional data is suitable for confirming the structure and properties of the cut portion.
  • FIG. 11 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the second embodiment is projected onto a two-dimensional plane.
  • this apparatus sets a divided region CR with a gap width stored in the storage unit with reference to the designated division instruction surface, and displays the three-dimensional object in a state where the divided region is displayed.
  • OB21 is projected.
  • the processing unit of this apparatus is configured to paste pattern data on the surface BF1 on the upper three-dimensional object OB22u side and the BF2 on the lower three-dimensional object OB22d side that are in contact with the divided region CR. Further process the dimensional CAD data.
  • FIG. 12 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the second embodiment. Boxes in steps S33 and S35 different from the steps shown in FIG. 10 are indicated by dotted lines. The steps of the embodiment 2 including the same words as the words of the steps of the embodiment 1 perform the same processing unless otherwise specified.
  • the input receiving unit performs an operation input designating one or more division instruction surfaces for dividing the three-dimensional object, and a member to be exposed on at least one surface in contact with the divided region. It accepts operation input that specifies the type.
  • step S35 the processing unit reads the corresponding pattern data from the plurality of pattern data according to the type of the designated member, and at least one pattern data is divided into divided areas.
  • the three-dimensional CAD data is further processed so as to be pasted on the surface in contact with.
  • the pattern data is stored in the storage unit in association with the document of the member and the pattern data in the following format, for example.
  • Pattern data Reinforcement 1 Pattern indicating reinforcement of reinforcement 1 Reinforcement 2 Color and pattern indicating reinforcement of reinforcement 2 Reinforcement 3 Pattern and shape indicating reinforcement of reinforcement 3 Shape and pattern shown as) Wall containing heat insulating material 1 Pattern showing a wall containing heat insulating material 1 Wall containing heat insulating material 2 Pattern showing a wall containing heat insulating material 2 Pattern showing RC (or symbol or character information) Steel concrete A pattern (or symbol or character information) showing steel concrete Gravel A pattern (or symbol or text information) showing gravel. Gravel An uneven shape (and symbols and text information) that indicates gravel. Gravel Grained shape and pattern showing gravel Gravel Gravel Hemispherical shape and pattern showing gravel Asphalt Color and pattern showing asphalt (or symbol or character information) Concrete Colors and patterns indicating concrete (or symbols and text information)
  • step S36 the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system.
  • the three-dimensional object produced / modeled with the processed three-dimensional data is suitable for confirming the structure and properties of the cutting part, as in FIG. 10. It is possible to automatically paste the pattern of the cut surface simply by specifying the type.
  • FIG. 13 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the second embodiment. Boxes in steps S45 and S46 different from the steps shown in FIG. 12 are indicated by dotted lines. The steps of the embodiment 2 including the same words as the words of the steps of the embodiment 1 perform the same processing unless otherwise specified.
  • the processing unit obtains pattern data to be arranged on the surface exposed when the member is cut from the attribute information of the CAD data of the member divided on the division instruction surface. Identify.
  • Many CAD data have attribute information of the member (the object to be drawn) with names such as component information and property information, and the user can easily add the attribute information to the CAD data of the member. It is also possible to keep it.
  • This flowchart shows a configuration in which a pattern or shape of a cut surface is automatically added using attribute information added in this way or added by a user.
  • step S46 the processing unit identifies corresponding pattern data among the plurality of pattern data from the attribute information, and at least one pattern data is placed on the surface in contact with the divided region.
  • the three-dimensional CAD data is further processed to be pasted.
  • the pattern data includes not only the surface but also the shape data of the unevenness. Therefore, when the shape data is included, the data in the vicinity of the surface in contact with the divided region is also corrected / replaced. Please note that.
  • the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system.
  • the three-dimensional object produced / modeled with the processed three-dimensional data is suitable for confirming the structure and properties of the cut part as in FIGS. 10 and 12, but in the process of this flowchart, By using the attribute information added to the member crossed by the cut surface, it is possible to automatically add a pattern or shape of the cut surface.
  • the user can dramatically improve the convenience of the user because the apparatus automatically pastes the pattern, shape, symbol, character information, etc. of the cut surface only by specifying the location where the user wants to cut.
  • FIG. 14 is a block diagram showing an outline of a CAD data processing apparatus according to Embodiment 3 of the present invention.
  • the CAD data processing apparatus 300 includes a control unit (CPU) 310, an input unit 320, an output unit 330, a communication unit 340, a storage unit 350, and a display unit 360.
  • the storage unit 350 stores a gap width GAP suitable for dividing a target object with a target three-dimensional printer, and pattern data PD to be pasted on a three-dimensional object-side surface in contact with the divided area.
  • the two or more objects obtained by dividing (cutting) the three-dimensional object are to be fitted to each other to be provided on both surfaces in contact with the divided area. Is stored.
  • one is a recess / hole and the other is a protrusion / projection that can be accommodated in the recess.
  • “positioning” can be facilitated when the objects are combined again to make an apparent one-piece, and further, “slip” on the dividing surface, in particular division. It is possible to effectively prevent “slip” when the surface is specified obliquely.
  • the control unit 310 includes an acquisition unit 311, an input reception unit 312, a processing unit 313, and a three-dimensional output control unit 314.
  • the acquisition unit 311 acquires three-dimensional CAD data of a three-dimensional object.
  • the three-dimensional CAD data is created by the CAD system CD1, is received by the communication unit 340 via the network NET, and is finally passed to the acquisition unit 311.
  • the acquired three-dimensional CAD data is modeled as a three-dimensional model in a three-dimensional space by the three-dimensional output control unit 314, and the three-dimensional model (three-dimensional object) is projected onto a two-dimensional plane (projection plane).
  • the display unit 360 displays the projected “three-dimensional object”.
  • the input reception part 312 receives the operation input which designates the 1 or more division
  • the processing unit 313 processes the three-dimensional CAD data so as to divide (cut) the three-dimensional object in the divided area defined by the division instruction surface and the gap width.
  • the processing unit 313 further processes the three-dimensional CAD data so that at least one pattern data is pasted on a surface in contact with the divided region of at least one of the two or more objects obtained by dividing (cutting) the three-dimensional object.
  • processing unit 313 is configured to provide one or two shapes to be fitted to each other on both surfaces in contact with the divided regions of two or more objects obtained by dividing (cutting) the three-dimensional object.
  • the three-dimensional CAD data is further processed.
  • FIG. 15 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment.
  • the boxes of steps S51 and S55 different from the steps shown in FIG. 2 of the first embodiment are indicated by dotted lines.
  • the steps of the embodiment 3 including the same words as the words of the steps of the embodiment 1 perform the same processing unless otherwise specified.
  • the storage unit stores “gap width” and “shape data for a member to be fitted (concave, convex, etc.)”. This step does not have to be executed every time, and it is sufficient to execute it once and store an appropriate gap width and some shape data.
  • steps S52 to S54 are performed, which are the same as the steps S12 to S14 of the first embodiment.
  • the processing unit provides one or two shapes that are fitted to each other on both surfaces that are in contact with the divided regions of the two or more objects that are divided (cut) of the three-dimensional object.
  • the three-dimensional CAD data is further processed.
  • the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system.
  • a three-dimensional object produced / modeled with processed three-dimensional data is suitable for confirming the structure and properties of the cut portion.
  • FIG. 16 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane.
  • A in the figure is provided with projections CV1 and CV2 on the surface in contact with the divided area of the three-dimensional object OB31 divided (cut).
  • the arrangement of the protrusions CV1 and CV2 can be specified by the user, but usually, for example, it is preferable to automatically provide the corner portion and the opposite side of the corner portion.
  • (B) in the figure is provided with holes CC1 and CC2 on the surface in contact with the divided area of the three-dimensional object OB32 obtained by dividing (cutting) the three-dimensional object.
  • FIG. 17 is a projection view in which three-dimensional CAD data provided with protrusions and holes is projected onto a two-dimensional plane.
  • the three-dimensional object OB31-s provided with the protrusions CV1 and CV2 and the three-dimensional object OB32-s provided with the holes CC1 and CC2 are closely combined at the cut surface to form an apparent one-piece.
  • the shape is such that “positioning” can be facilitated.
  • FIG. 18 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment.
  • the boxes of steps S61, S63, and S65 different from the steps shown in FIG. 2 of the first embodiment are indicated by dotted lines.
  • the steps of the embodiment 3 including the same words as the words of the steps of the embodiment 1 perform the same processing unless otherwise specified.
  • the storage unit stores “gap width” and “shape data for accommodating the pivot support shaft attached later”.
  • the shape data contains shape data (dimension data) of the hole, but the scale data is used by appropriately changing the scale according to the thickness of the movable member provided with the hole.
  • the “first gap width” for the divided area is defined according to the three-dimensional modeling resolution of the three-dimensional printer on which the three-dimensional object is to be printed, but the “second gap” used when setting the movable member.
  • the “gap width” it is necessary to use a gap defined by a distance (clearance) that does not restrict the opening and closing of the movable member. Therefore, the second gap width depends on the shape and thickness of the movable member and the main body side with which the movable member is in contact, but tends to be larger than the first gap width.
  • the “distance at which the movable member can be opened and closed” is specifically determined by factors such as the installation position of the rotation support shaft and the thickness of the movable member.
  • step S63 the input receiving unit receives an operation input for designating one or more division instruction surfaces for dividing the three-dimensional object, and an operation input for designating the “movable member”. Then, after performing the process of step S64, in step S65, the processing unit determines that the designated movable member is a member-partitioned area defined by the surface where the designated movable member is in contact with a member of a three-dimensional object other than the movable member, and the gap width.
  • the three-dimensional CAD data is processed so as to be divided (cut) from the three-dimensional object, and the movable member and the three-dimensional object contacting the movable member via the inter-member divided region are opened and closed.
  • a hole in which at least one retrofitting pivot support shaft is to be received is a first position where the movable member contacts the three-dimensional object via the inter-member divided area, and the three-dimensional object contacts the movable member via the inter-member divided area.
  • the three-dimensional CAD data is processed so as to be formed at the second position where they touch each other.
  • the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system.
  • the three-dimensional object created / modeled with the processed three-dimensional data has holes formed on the movable member and the main body, it is possible to easily attach the rotation support shaft attached later and move easily. It is possible to provide a three-dimensional model provided with a member (typically a door).
  • FIG. 19 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane.
  • a typical example of a three-dimensional object provided with a movable member is a building such as a house or a building. However, for convenience of drawing and explanation, a description will be given in a mode in which a door is installed as a movable member on one outer wall. It is assumed that a rectangular frame OCP1 indicating a movable member is displayed on the surface of the three-dimensional object OB40.
  • a user uses the input part (mouse etc.) and the place and display element (in this example, a rectangular frame) which wants to process the displayed solid object OB40 as a "movable member".
  • OCP1 is specified.
  • a rectangular frame or other figure arbitrary figure such as a circle or triangle
  • the processing unit is a divided region between the members defined by the surface where the designated movable member is in contact with the member of the three-dimensional object other than the movable member and the gap width.
  • Three-dimensional CAD data is processed so as to be divided (cut).
  • the opening OP40 (hole) is installed at the location, and the movable member DR1 (door) is installed in the opening OP40.
  • B) in the drawing is provided with holes H1 and H2 in the same rotating shaft (not shown) for accommodating a later-mounted rotating support shaft on the surface of the opening OP40 that is in contact with the movable member. This shows a state in which the opening OP40-h is processed.
  • C) in the drawing is provided with holes H3 and H4 for accommodating a later-mounted rotation support shaft on the same rotation shaft (not shown) on the surface of the movable member DR1 in contact with the main body.
  • FIG. 20 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment.
  • This flowchart is a modification of FIG. 18 and shows an example in which a protrusion serving as a rotation support shaft is directly provided on the movable member or the main body side.
  • the boxes in steps S71 and S75 different from the steps shown in FIG. 18 are indicated by dotted lines.
  • the steps of the embodiment 3 including the same words as the words of the steps of the embodiment 1 perform the same processing unless otherwise specified.
  • the storage unit stores “gap width” and “shape data of the projection functioning as a rotation support shaft and a hole for accommodating the projection”.
  • the shape data contains the shape data (dimension data) of the protrusions and holes, but the scale is reduced according to the thickness of the movable member that provides the holes and protrusions and the body-side member that will be the wall. Are used as appropriate. This step does not have to be executed every time, and it is sufficient to execute it once and store an appropriate gap width and some shape data.
  • the “first gap width” for the divided area is defined according to the three-dimensional modeling resolution of the three-dimensional printer on which the three-dimensional object is to be printed, but the “second gap” used when setting the movable member.
  • the “gap width” it is necessary to use a gap defined by a distance (clearance) that does not restrict the opening and closing of the movable member. Therefore, the second gap width is larger than the first gap width.
  • the “distance at which the movable member can be opened and closed” is specifically determined by factors such as the installation position of the rotation support shaft and the thickness of the movable member.
  • steps S72, S73, and S74 are performed, which are the same as the processes S12, S13, and S14 of the first embodiment.
  • a process part is a member prescribed
  • the three-dimensional CAD data is processed so that the three-dimensional object is divided (cut) from the three-dimensional object in an inter-partition area, and the movable member and the three-dimensional object that contacts the movable member via the inter-partition area Two projecting portions that function as pivot support shafts that can be freely opened and closed are formed at first and second positions where the movable member contacts the three-dimensional object via the inter-member divided region.
  • the three-dimensional CAD data is processed so that two holes for accommodating each of the protrusions are formed in the third and fourth positions facing the first and second positions through the inter-member region, respectively.
  • the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system.
  • the three-dimensional object produced / modeled with the processed three-dimensional data is connected to the three-dimensional object on the main body side so that the movable member can be freely opened and closed by the protrusion functioning as the rotation support shaft. It is possible to provide a three-dimensional model that can produce “movement” very easily.
  • powder is used as a base material, the powder left without solidifying remains in such movable members and the holes in the vicinity thereof, but these residual powders are compressed air with an air gun or the like. It is preferable to blow off by spraying on the part. In this embodiment and other embodiments as well, it is preferable that the air gun is blown away by jetting compressed air in the divided region and the fitting shape formed in the vicinity thereof.
  • FIG. 21 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane.
  • a typical example of a three-dimensional object provided with a movable member is a building such as a house or a building.
  • a description will be given in a mode in which a door (opening / closing member) is installed as a movable member on one outer wall. It is assumed that a rectangular frame OCP2 indicating a movable member is displayed on the surface of the three-dimensional object (outer wall) OB50.
  • a user uses the input part (mouse etc.) and the place and display element (in this example, a rectangular frame) which wants to process the displayed solid object OB50 as a "movable member".
  • OCP2 the place and display element
  • a rectangular frame or other figure arbitrary figure such as a circle or triangle
  • its size may be designated with a mouse or the like (for example, the coordinates of the start point and end point of the rectangle are designated with the mouse).
  • the input receiving unit receives the operation input, and the processing unit is a divided region between the members defined by the surface where the designated movable member is in contact with the member of the three-dimensional object other than the movable member and the gap width.
  • Three-dimensional CAD data is processed so as to be divided (cut).
  • the opening OP50 (hole) is installed at the location, and the movable member DR2 (door) is installed in the opening OP50.
  • (B) in the drawing is provided with holes H5 and H6 in the same rotating shaft (not shown) for accommodating the protruding portion functioning as a rotating support shaft on the surface of the opening OP50 that contacts the movable member side. This shows a state of processing into a holed opening OP50-h.
  • (C) in the drawing is provided with projections PRG1 and PRG2 functioning as pivot support shafts on the same pivot shaft (not shown) on the surface of the movable member DR2 that is in contact with the main body. It shows how it is processed into DR2-h.
  • the protrusions PRG1 and PRG2 of the holed movable member DR2-prg thus processed are accommodated in the holes H5 and H6, respectively, at the time of printing / three-dimensional modeling by the three-dimensional printer.
  • the structure which forms a hole in a movable member and forms a projection part in the opening part by the side of a main body is also possible.
  • the hole of the movable member can be formed in one communication hole, and the protrusion on the main body side can be a bridge that connects both surfaces instead of the protrusion. is there.
  • FIG. 22 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment.
  • This flowchart is a modification of FIG. 18, in which a member such as a transparent window or sliding door glass in a three-dimensional object is specified as an exclusion portion, an opening is formed in a region occupied by the exclusion portion, and the opening This shows a method for forming guide slits and support grooves for inserting and holding a transparent member attached later.
  • the boxes of steps S81, S83, and S84 different from the steps shown in FIG. 18 are indicated by dotted lines.
  • the steps of the embodiment 3 including the same words as the words of the steps of the embodiment 1 perform the same processing unless otherwise specified.
  • the storage unit stores “gap width” and “shape data of guide slit and support groove”.
  • the shape data contains window frame shape data and guide slit shape data (dimension data) for inserting a transparent member (window) to be retrofitted into the window frame. ) And the thickness of the member on the main body side that will be the wall on which the window is provided. This step does not have to be executed every time, and it is sufficient to execute it once and store an appropriate gap width and some shape data.
  • steps S82 and S84 are performed, which are the same as the processes of processes S12 and S14 of the first embodiment.
  • the input receiving unit receives an operation input for designating a division instruction surface and an “exclusion member”.
  • the processing unit processes the three-dimensional CAD data so as to exclude the designated exclusion member from the three-dimensional object, and further, the space where the exclusion member exists.
  • a guide slit for inserting the retrofit member is formed in a part of the frame of the three-dimensional object surrounding the frame, and a support groove into which the retrofit member is to be inserted is formed in a portion other than the portion of the three-dimensional object frame where the guide slit is provided.
  • 3D CAD data is processed.
  • the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system.
  • a transparent plastic plate (not shown) is inserted as a retrofit member from the guide slit as a retrofit member into the three-dimensional object produced / modeled with the processed three-dimensional data. The plastic plate is supported by the support groove.
  • the plastic plate is slid horizontally or vertically along the support groove (here, it functions as a “rail”), as if it is a “sliding door” or “window”. It is also possible to produce as follows. When the retrofitting member is slid in this way, it is preferable to use a low-resistance fluororesin member so that the sliding surface is easily slid with a roller. In this way, in this configuration, it is possible to provide a three-dimensional model that can produce a transparent window or produce a “movement” in the horizontal or vertical direction of the transparent window very easily.
  • FIG. 23 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane.
  • a typical example of a three-dimensional object provided with a window is a building such as a house or a building.
  • a three-dimensional object will be described in a data processing mode for installing a window on one outer wall.
  • a rectangular frame indicating a window member is displayed on the surface of the three-dimensional object (outer wall) OB60.
  • a user uses the input part (mouse etc.) and the place and display element (this example) which wants to process (namely, exclude) the displayed solid object OB60 as a "window member" among them.
  • the rectangular frame OCP2 is designated as the exclusion part EXD.
  • a rectangular frame or other figure arbitrary figure such as a circle or triangle
  • its size may be designated with a mouse or the like (for example, the coordinates of the start point and end point of the rectangle are designated with the mouse).
  • the input receiving unit receives the operation input, and the processing unit processes the three-dimensional CAD data so as to exclude the excluded portion EXD that is the designated exclusion member from the three-dimensional object, and forms an opening OP60 as indicated by OB61. To do. Further, as shown in the opening OP60-gs of the three-dimensional object OB62, a guide slit GS for inserting a retrofitting member is formed in a part of the frame of the three-dimensional object surrounding the space where the exclusion portion EXD existed, Three-dimensional CAD data is processed so as to form a support groove GR into which a retrofitting member is to be inserted in a part frame other than the part where the guide slit is provided.
  • the opening OP60-gs-gr in which the guide slit GS and the support groove GR are formed are formed.
  • a transparent window member or a sliding door member which is retrofitted can be easily inserted into the opening through the guide slit and supported. It can be supported in the groove.
  • FIG. 24 is an exploded perspective view showing a state where a house in which three-dimensional CAD data is processed by the apparatus or program according to the fourth embodiment is manufactured as a three-dimensional object by a three-dimensional printer.
  • a house in which three-dimensional CAD data is processed by the apparatus or program according to the fourth embodiment is manufactured as a three-dimensional object by a three-dimensional printer.
  • several slice planes SLbtm constituting the floor (foundation) for the convenience of drawing and explanation, the drawing is made with one slice plane, but actually it is constituted by a plurality of layers. The same applies to the other layers.
  • 3D printing / three-dimensional modeling 3D printing / three-dimensional modeling.
  • the intermediate slice surfaces SLmdl-1, SLmdl-2, and SLmdl-n including the wall for room division and the outer wall are three-dimensionally modeled.
  • nth slice surface SLmdl-n On the nth slice surface SLmdl-n, a divided region (powder layer / non-solidified layer) SLpwd which is a slice surface based on data processed by the present apparatus or program is formed. However, even though this area is called modeling, it is a powder and will be removed later. And several slice surfaces SLcel which comprise a ceiling / roof are modeled on this. In this way, a three-dimensional model of a house that looks like an integral object is completed.
  • FIG. 25 is a diagram showing a one-dimensional house model produced in FIG.
  • the house three-dimensional model Home looks as if it were a single object, but it can easily be divided into a house ceiling part Home1 and a house room split part Home2. It is possible to restore the three-dimensional model Home.
  • a line is drawn to show the boundary of the slice layer in the figure, but it should be noted that in reality, the line is not visible and looks like a uniform wall. .
  • FIG. 26 is a diagram showing a state of the divided surface when the one-dimensional house three-dimensional model shown in FIG. 25 is divided. As shown in the figure, the color and pattern of the reinforcing bars RFst arranged horizontally as pattern data are pasted on the surface of the slice surface SLmdl-n in contact with the dividing surface. After the user divides the three-dimensional model, the user can easily understand the internal structure by looking at the pattern drawn on this surface.
  • FIG. 27 is a diagram showing a state of the divided surface when the one-dimensional house three-dimensional model shown in FIG. 25 is divided.
  • the surface of the slice surface SLmdl-n in contact with the divided surface is configured as a slice surface SLmdl-n1 to which another pattern data is pasted this time.
  • pattern data the color, pattern, and shape of the reinforcing bars RFbar arranged vertically are pasted to form protrusions.
  • a reinforcing bar symbol RFbar-txt is pasted as a symbol, which describes “D22- @ 200” which is a symbol used by those skilled in the art. This means that 200 rebars with a diameter of 22 mm are laid.
  • the user can easily draw the 3D model and see or touch the 3D “projection” or “symbol” to easily cut the internal structure of the cutting part or the shape of the internal space. It becomes possible to understand the spatial composition such as room layout.
  • a concave portion is formed on the surface of the house ceiling portion Home1 facing the portion where the protruding portion is configured as a pattern so as to fit the protruding portion.
  • Such protrusions and recesses can also be used as members for positioning during restoration.
  • FIG. 28 is a diagram for explaining a state in which the opening and the guide slit are formed in the movable member with holes shown in FIG.
  • the space of the region is excluded and the opening OP is formed.
  • a guide slit GS is formed in the opening OP.
  • FIG. 29 is a diagram illustrating a state in which an opening, a sliding door as a movable member, and a guide slit are formed on the wall.
  • the opening OP-sld is formed by excluding the space of the region based on the exclusion portion set by the user in the center of the wall WW1.
  • Guide grooves (not shown) that support the upper and lower ends of the sliding door and guide the sliding of the sliding door to the left and right are formed at the upper and lower portions of the opening OP-sld.
  • the sliding doors SLD1 and SLD2 are formed in the opening OP-sld.
  • the sliding doors SLD1 and SLD2 of the wall WW2 thus completed can be opened and closed by sliding left and right.
  • an opening and a guide slit can be formed on the sliding door as shown in FIG. 28 to form a three-dimensional model such as a sliding door with a window.
  • FIG. 30 is a diagram illustrating a state in which a large-sized three-dimensional model is divided.
  • the wall WW2 has a size that greatly exceeds the printable area CS of the three-dimensional printer used during printing / modeling.
  • the wall WW2 is covered with two printable areas.
  • the divided region CR-auto is installed in the center and divided into a left side wall WW2-1 and a right side wall WW2-r. As shown in FIG.
  • the division area can be set automatically, but can also be set by the user manually specifying the division instruction surface.
  • the left side wall WW2-1 is provided with an arrow-shaped convex part War
  • the right side wall WW2-r is provided with an arrow-shaped concave part Wcv having a shape fitting with the convex part War.
  • the convex portions and the concave portions here function not only simply fitted together but also function as connecting portions that firmly connect and prevent division after being fitted so that they can be easily determined from the arrow shape.
  • there are only one pair of convex portions and concave portions but a plurality of pairs may be provided to increase the connection strength.
  • the pattern data and pattern shapes include various shapes such as an arrow shape, a mushroom shape, a fishhook shape (and their punching shapes) that function as such a connecting portion, and the pattern is pasted on a divided portion. It is possible to attach.
  • FIG. 31 is a flowchart showing an example of processing for the embodiment 7 executed by the CAD data processing apparatus of FIG.
  • step S91 the size (scale) of the solid object and the printable area of the 3D printer used are acquired.
  • step S92 the processing unit determines whether or not the size of the three-dimensional object is within the printable area. If it falls within the range, in step S95, normal division processing in another embodiment is performed. If not, in step S93, the processing unit automatically sets a divided area to divide the three-dimensional object into a size that fits in one printable area, and three-dimensionally divides (cuts) the three-dimensional object. Process CAD data.
  • step S94 the processing unit processes the three-dimensional CAD data so as to form a concave portion and a convex portion that are fitted into each other on the main body side in contact with the divided region.
  • the processed three-dimensional CAD data is output in Step S96. According to this embodiment, it is possible to create a three-dimensional model that can be easily recombined (assembled) by automatically dividing a large-sized three-dimensional model without scaling and fitting the convex and concave portions together. It becomes.
  • the present invention has been applied to three-dimensional data such as a cylinder and a house model as a simple structure, but the principle of the present invention is, for example, a building such as a building other than a house, a road, a dam, a tunnel, Three-dimensional models such as underground common trenches and civil engineering structures such as sewers, especially color three-dimensional models are considered as applications.
  • Such three-dimensional models of buildings and civil engineering structures are suitable for use as promotional materials and presentation materials for owners and contractors.
  • the field of buildings and civil engineering structures where 3D CAD data processed according to the present invention is 3D-modeled with a 3D printer using the “powder-fixing-type lamination method”. The application to is likely.

Abstract

Provided are a CAD data processing device and a CAD data processing method suitable for producing a solid product by a three-dimensional printer. The CAD data processing device (100) comprises a control unit (110), an input unit (120), an output unit (130), a communication unit (140), a storage unit (150), and a display unit (160). The control unit (110) comprises an acquisition unit (111), an input reception unit (112), a processing unit (113), and a three-dimensional output control unit (114). The acquisition unit (111) acquires three-dimensional CAD data of a solid product, the input reception unit (112) receives an input operation designating at least one of division instruction surfaces which divide the solid product, and the processing unit (113) processes the three-dimensional CAD data so that the solid product is divided (cut) by the division instruction surface and a division area defined by a gap width.

Description

CADデータ加工装置およびCADデータ加工方法CAD data processing apparatus and CAD data processing method
 本発明は、CADデータ加工装置およびCADデータ加工方法に関し、特に、3次元CADデータを加工するCADデータ加工装置およびCADデータ加工方法に関するものである。 The present invention relates to a CAD data processing apparatus and a CAD data processing method, and more particularly to a CAD data processing apparatus and a CAD data processing method for processing three-dimensional CAD data.
 従来から、製品開発においては、設計段階や開発段階にて幾つかの試作品を作成し、外観や性能の評価をしている。最も原始的な試作モデルには、粘土で作製したクレイモデルやウッド(木)を削り出して作製したウッドモデルがある。しかしながら、このようなモデル作製は、人手、時間、経費がかかり、再現性が悪く、モデル作製職人の技量に依存し過ぎるといった問題がある。このような従来の試作モデル作製技術に代わって、コンピュータ技術が進展した現在では、開発製品の造形データを3次元CADで作成し、この3次元CADデータを用いて試作モデルを作成する「ラピッドプロトタイピング」という技術が開発され、実用化されつつある。これは、3次元CADデータから目的とする「立体モデル」を人手や時間をかけずに、極めて、高速、かつ、低コストで作成する技術である。 Conventionally, in product development, several prototypes have been created at the design and development stages to evaluate the appearance and performance. The most primitive prototype model includes a clay model made of clay and a wood model made by cutting wood. However, such model production has problems such as manpower, time and cost, poor reproducibility, and too much dependence on the skill of the model craftsman. Now that computer technology has advanced in place of the conventional prototype model production technology, the rapid development of the prototype product is created using 3D CAD data for the developed product, and a prototype model is created using this 3D CAD data. A technology called “typing” has been developed and put into practical use. This is a technique for creating a target “stereoscopic model” from three-dimensional CAD data at extremely high speed and low cost without manpower and time.
 ラピッドプロトタイピングの代表的な技法は「積層造形法」であり、これは、対象物の3次元CADデータからスライス状データ(正確には、対象物を構成するわずかな厚さを持つ薄板)を作成し、このスライス状データを1層ずつ積層して立体物(立体模型)を形成するものである。そして、積層造形法で実用されているものとしては、大別して、レーザで光硬化性樹脂を固化させて造形する「光造影法」と、インクジェット方式などで固化剤/結合剤を供給して粉末を固めて造形する「粉末固着式積層法」とがあるが、低コスト、高速、カラー化という点で後者の方が優れている。「粉末固着式積層法」については、幾つかの関連特許が出願・取得されており、これを用いた3次元プリンタが市場に投入されている。例えば、従来技術としては「3次元物体の模型を製作する方法および装置」(特許文献1を参照されたい。)がある。 A typical technique for rapid prototyping is the “layer fabrication method”, which is based on the three-dimensional CAD data of an object and slice data (to be precise, a thin plate having a slight thickness constituting the object). The three-dimensional object (three-dimensional model) is formed by stacking the sliced data one layer at a time. And what is put to practical use in the layered modeling method is broadly divided into “photocontrast method” in which a photocurable resin is solidified with a laser, and a solidifying agent / binder supplied by an ink jet method or the like. There is a “powder-fixing-type lamination method” in which the shape is solidified, but the latter is superior in terms of low cost, high speed, and colorization. Regarding the “powder fixing type laminating method”, several related patents have been filed and acquired, and three-dimensional printers using the same have been put on the market. For example, as a conventional technique, there is a “method and apparatus for manufacturing a model of a three-dimensional object” (see Patent Document 1).
特表2004-538191号公報JP-T-2004-538191
 従来は、作成済みの3次元データから、より正確に、より安価に、より短時間で目的の立体物を造形するかに主眼がおかれてきた。これは、開発している製品が機械部品や携帯電話端末などの単体商品、即ち、比較的小さな物品の造形物である場合には、このような開発目標の設定でもさほど問題はなく、このような用途には「光造影法」が適している。 Conventionally, the focus has been on modeling the desired three-dimensional object more accurately, cheaper and in a shorter time from the created three-dimensional data. This means that if the product being developed is a single product such as a machine part or a mobile phone terminal, that is, a model of a relatively small article, there is not much problem with setting such a development target. “Optical imaging” is suitable for various applications.
 他方、「粉末固着式積層法」は、近年、技術的な革新があり、極めて低コストかつ高速に「カラーの立体物」を造形することが可能になった。そのため、機械部品などの物品造形物以外の様々な分野への応用が期待されるようになりつつある。 On the other hand, the “powder fixing type laminating method” has recently undergone technical innovation, and it has become possible to form “color solid objects” at extremely low cost and at high speed. For this reason, application to various fields other than shaped articles such as machine parts is being expected.
 しかしながら、建築物の立体模型の場合は、建築物の3次元CADデータをそのまま用いて立体模型を作成すると、ユーザが観察できるのは一体物として作成された立体模型の「外観のみ」になってしまう。建築物や土木、建設の構造物の場合は、外から観察できる外部構造も大切ではあるが、部屋割、内部構造、断面構造、層構造、コンクリートの配筋状況の方がより重要であることが多い。しかし、従来技術では、立体物の3次元データをそのまま使用したのでは、建築物や構造物の内部を見ることができない。即ち、建築物や構造物の部屋割、内部構造、断面構造、コンクリートの配筋状況を観察できる立体模型を作成することはできない。複雑な操作を必要とする3次元CADソフトの熟練オペレータに部屋割、内部構造、断面構造、コンクリートの配筋状況を観察できるように、元の3次元CADデータを加工することを指示するなどして、建築物の断面を観察できるように建築物の一部を切り取った「切り欠き立体模型」用のCADデータを作成する必要がある。このように、専門技術を持ったCADオペレータの手を煩わして「切り欠き立体模型」用のCADデータを作成して、内部構造が観察できるようになったとしても、このような「切り欠き立体模型」では、今度は、建築物や土木工作物の「全体」の構造、外観を観察できないといったジレンマがある。 However, in the case of a three-dimensional model of a building, if a three-dimensional model is created using the three-dimensional CAD data of the building as it is, the user can observe only the “appearance” of the three-dimensional model created as an integral object. End up. In the case of buildings, civil engineering, and construction structures, the external structure that can be observed from the outside is also important, but the room layout, internal structure, cross-sectional structure, layer structure, and concrete bar arrangement are more important. There are many. However, in the prior art, if the three-dimensional data of the three-dimensional object is used as it is, the inside of the building or structure cannot be seen. That is, it is not possible to create a three-dimensional model capable of observing the room layout, internal structure, cross-sectional structure, and concrete bar arrangement of buildings and structures. Instructing a skilled operator of 3D CAD software who needs complicated operations to process the original 3D CAD data so that the room allocation, internal structure, cross-sectional structure, and concrete bar arrangement can be observed. Therefore, it is necessary to create CAD data for a “notched solid model” in which a part of the building is cut out so that the cross section of the building can be observed. As described above, even if CAD data for a “notched three-dimensional model” is created by bothering the hands of a CAD operator having specialized skills, and the internal structure can be observed, The “model” now has a dilemma in which the “whole” structure and appearance of buildings and civil engineering works cannot be observed.
 そこで、本発明の目的は、3次元プリンタによる立体物作製に適したCADデータ加工装置およびCADデータ加工方法、特に、目的とする立体物をあたかも一体物として作製しつつも、当該一体物を分割可能ならしめるように3次元CADデータを加工するCADデータ加工装置およびCADデータ加工方法を提供することである。 Accordingly, an object of the present invention is to provide a CAD data processing apparatus and a CAD data processing method suitable for manufacturing a three-dimensional object by a three-dimensional printer, and in particular, dividing the one-piece object while preparing the target three-dimensional object as one. To provide a CAD data processing apparatus and CAD data processing method for processing three-dimensional CAD data so as to make it possible.
 上述した諸課題を解決すべく、本発明によるCADデータ加工装置は、
 ギャップ幅を格納する記憶部と、
 立体物の3次元CADデータを取得する取得部と、
 前記立体物を分割する1つ以上の分割指示面を指定する操作入力を受け付ける入力受付部と、
 前記分割指示面および前記ギャップ幅で規定された分割領域で前記立体物を分割(切断)するように、前記3次元CADデータを加工する加工部と、
を有する。
In order to solve the above-described problems, a CAD data processing apparatus according to the present invention includes:
A storage unit for storing the gap width;
An acquisition unit for acquiring three-dimensional CAD data of a three-dimensional object;
An input receiving unit for receiving an operation input for designating one or more division instruction surfaces for dividing the three-dimensional object;
A processing unit for processing the three-dimensional CAD data so as to divide (cut) the three-dimensional object in a divided region defined by the division instruction surface and the gap width;
Have
 また、本発明の一実施態様によるCADデータ加工装置では、
 前記ギャップ幅は、前記立体物が印刷(立体造形)される3次元プリンタの3次元造形分解能に応じて規定される、ことを特徴とする。
 例えば、3次元プリンタの3次元造形分解能は、粉末を基材に使用して固化剤で基材の一部を固化するタイプの3次元プリンタの場合は、一回の基材散布層の厚さ、および、固化剤(造形剤、造形インク)の浸透厚さの少なくとも一方に応じて規定される。ギャップ幅は、できる限り薄くすることが好適である。
In the CAD data processing apparatus according to one embodiment of the present invention,
The gap width is defined according to a three-dimensional modeling resolution of a three-dimensional printer on which the three-dimensional object is printed (three-dimensional modeled).
For example, the three-dimensional printing resolution of a three-dimensional printer is as follows: In the case of a three-dimensional printer that uses powder as a base material and solidifies a part of the base material with a solidifying agent, the thickness of the base material spray layer once , And at least one of the penetration thickness of the solidifying agent (modeling agent, modeling ink). It is preferable to make the gap width as thin as possible.
 また、本発明の一実施態様によるCADデータ加工装置では、
 前記記憶部が、前記分割領域に接する面に貼り付けるべきパターンデータを格納し、
 前記加工部が、前記立体物の分割(切断)された2以上の物体の少なくとも1つの物体の前記分割領域に接する面に、少なくとも1つのパターンデータを貼り付けるように、前記3次元CADデータをさらに加工する、
ことを特徴とする。
In the CAD data processing apparatus according to one embodiment of the present invention,
The storage unit stores pattern data to be pasted on a surface in contact with the divided region,
The three-dimensional CAD data is set so that the processing unit pastes at least one pattern data on a surface in contact with the divided area of at least one object of two or more objects obtained by dividing (cutting) the three-dimensional object. Further processing,
It is characterized by that.
 また、本発明の一実施態様によるCADデータ加工装置では、
 前記パターンデータが複数あり、前記パターンデータは部材の種類とそれぞれ関連付けられ、
 前記入力受付部が、前記分割領域に接する少なくとも1つの面に露出されるべき部材の種類を指定する操作入力を受け付け、
 前記加工部が、
前記指定された部材の種類に応じて、前記パターンデータのうちの対応するパターンデータを前記記憶部から読み出し、前記分割領域に接する少なくとも1つの面に貼り付けるように、前記3次元CADデータをさらに加工する、ことを特徴とする。
In the CAD data processing apparatus according to one embodiment of the present invention,
There are a plurality of the pattern data, and the pattern data is associated with each type of member,
The input receiving unit receives an operation input for designating a type of a member to be exposed on at least one surface in contact with the divided region;
The processing part is
Depending on the type of the designated member, the corresponding pattern data of the pattern data is read from the storage unit, and the three-dimensional CAD data is further pasted on at least one surface in contact with the divided area. It is characterized by processing.
 また、本発明の一実施態様によるCADデータ加工装置では、
 前記パターンデータが、
色彩、模様、文字、記号、マーク、図形、配筋図、構造断面図、地図、設計図、配線図、および、立体形状からなる群から選択される1つまたは2つ以上のものから構成されている、ことを特徴とする。
In the CAD data processing apparatus according to one embodiment of the present invention,
The pattern data is
Consists of one or more selected from the group consisting of color, pattern, character, symbol, mark, figure, bar arrangement, structural cross section, map, design drawing, wiring diagram, and solid shape It is characterized by that.
 また、本発明の一実施態様によるCADデータ加工装置では、
 前記加工部が、
前記立体物の分割(切断)された2以上の物体の前記分割領域に接する双方の面に、互いに嵌合する形状を少なくとも1つ設けるように、前記3次元CADデータをさらに加工する、ことを特徴とする。
 互いに嵌合する形状は、例えば、一方は凹部、他方は、凹部に収容可能な凸部である。本構成によれば、立体物を分割/分離した後に、再度、物体を組み合わせて、みかけ上の一体物にするときの「位置決め」を容易にでき、さらに、分割面における「滑り」、特に分割面が斜めに指定された場合の「滑り」を効果的に抑止できる。なお、互いに嵌合する形状は、1つでもよいが、複数設けることで当該形状にかかる応力を緩和することが可能であり、嵌合する形状、例えば凸部を破壊しにくくすることができる。
In the CAD data processing apparatus according to one embodiment of the present invention,
The processing part is
Further processing the three-dimensional CAD data so that at least one shape that fits to each other is provided on both surfaces of the two or more objects that are divided (cut) of the three-dimensional object in contact with the divided region. Features.
For example, one is a concave portion and the other is a convex portion that can be accommodated in the concave portion. According to this configuration, after dividing / separating the three-dimensional object, “positioning” can be facilitated when the objects are combined again to make an apparent one-piece, and further, “slip” on the dividing surface, in particular division. It is possible to effectively prevent “slip” when the surface is specified obliquely. In addition, although the shape which mutually fits may be one, providing the shape can relieve the stress concerning the said shape, and can make it difficult to destroy the shape to fit, for example, a convex part.
 また、本発明の一実施態様によるCADデータ加工装置では、
 前記分割領域が、平板状領域または曲面状領域、或いは、これらを組み合わせた領域である、ことを特徴とする。
In the CAD data processing apparatus according to one embodiment of the present invention,
The divided area is a flat area, a curved area, or a combination thereof.
 また、本発明の一実施態様によるCADデータ加工装置では、
 前記入力受付部が、前記立体物に含まれる部材を可動部材として指定する操作入力を受け付け、
 前記加工部が、
指定された可動部材がこの可動部材以外の前記立体物の部材と接する面と、前記ギャップ幅とで規定された部材間分割領域で、前記立体物から分割(切断)し、前記可動部材が可動部材として機能できるように、前記3次元CADデータを加工する、
ことを特徴とする。
 前記可動部材は、ドア、引き戸などである。
In the CAD data processing apparatus according to one embodiment of the present invention,
The input receiving unit receives an operation input for designating a member included in the three-dimensional object as a movable member;
The processing part is
The movable member is divided (cut) from the three-dimensional object in a member-divided region defined by a surface where the designated movable member is in contact with the member of the three-dimensional object other than the movable member and the gap width, and the movable member is movable Processing the three-dimensional CAD data so that it can function as a member;
It is characterized by that.
The movable member is a door, a sliding door, or the like.
 また、本発明の一実施態様によるCADデータ加工装置では、
 前記加工部が、
前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための少なくとも1つの後付けの回動支持軸が収容されるべき孔を、前記可動部材が前記立体物に前記部材間分割領域を介して接する第1の位置、および、前記立体物が前記可動部材に前記部材間分割領域を介して接する第2の位置に形成するように、前記3次元CADデータを加工する、
ことを特徴とする。
In the CAD data processing apparatus according to one embodiment of the present invention,
The processing part is
The movable member has a hole in which at least one retrofitting rotation support shaft for opening and closing the movable member and the three-dimensional object in contact with the movable member via the inter-member divided region is to be opened and closed. The three-dimensional shape is formed so that the three-dimensional object is formed at a first position where the three-dimensional object comes into contact with the movable member via the inter-member divided area, and the second position where the three-dimensional object comes into contact with the movable member via the inter-member divided area. Process CAD data,
It is characterized by that.
 また、本発明の一実施態様によるCADデータ加工装置では、
 前記加工部が、
前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための回動支持軸として機能する2つの突起部を、前記可動部材が前記部材間分割領域を介して前記立体物に接する第1および第2の位置に形成し、この第1および第2の位置に前記部材間領域を介して対向する第3および第4の位置に前記突起部の各々を収容する2つの孔をそれぞれ形成するように、前記3次元CADデータを加工する、
或いは、
前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための回動支持軸を収容する2つの孔を、前記可動部材が前記部材間分割領域を介して前記立体物に接する第1および第2の位置に形成し、この第1および第2の位置に前記部材間領域を介して対向する第3および第4の位置に前記孔の各々に収容されるべき2つの突起部をそれぞれ形成するように、前記3次元CADデータを加工する、
ことを特徴とする。
In the CAD data processing apparatus according to one embodiment of the present invention,
The processing part is
The movable member divides the two protrusions functioning as a pivot support shaft for opening and closing the movable member and the three-dimensional object contacting the movable member through the inter-member divided region. The protrusions are formed at first and second positions that contact the three-dimensional object through a region, and at the third and fourth positions that face the first and second positions through the inter-member region. Processing the three-dimensional CAD data so as to form two holes respectively for accommodating each;
Or
The movable member and the three-dimensional object that contacts the movable member via the inter-member divided area have two holes for accommodating a pivot support shaft for opening and closing, and the movable member is divided into the inter-member divided area. The first and second positions are in contact with the three-dimensional object through the first and second positions, and the holes are respectively formed in the third and fourth positions facing the first and second positions through the inter-member region. Processing the three-dimensional CAD data so as to form two protrusions to be accommodated, respectively;
It is characterized by that.
 また、本発明の一実施態様によるCADデータ加工装置では、
 前記入力受付部が、前記立体物に含まれる部材を除外部材として指定する操作入力を受け付け、
 前記加工部が、
指定された除外部材を前記立体物から除外するように、前記3次元CADデータを加工し、さらに、前記除外部材が存在していた空間を囲む前記立体物の枠の一部に後付け部材(可撓性を持つ透明プラスチック、ガラス板、アクリル板など)を挿入するためのガイドスリットを形成し、前記立体物の枠のうち前記ガイドスリットを設けた部分以外の少なくとも一部に前記後付け部材が挿入されるべき支持溝を形成するように、前記3次元CADデータを加工する、
ことを特徴とする。
In the CAD data processing apparatus according to one embodiment of the present invention,
The input receiving unit receives an operation input for designating a member included in the three-dimensional object as an excluded member;
The processing part is
The three-dimensional CAD data is processed so as to exclude the specified exclusion member from the three-dimensional object, and a retrofit member (possible to a part of the frame of the three-dimensional object surrounding the space where the exclusion member exists). A guide slit for inserting a flexible plastic, glass plate, acrylic plate, etc.), and the retrofitting member is inserted into at least a portion of the three-dimensional object frame other than the portion provided with the guide slit. Processing the three-dimensional CAD data to form support grooves to be performed;
It is characterized by that.
 上述したように本発明の解決手段を装置として説明してきたが、本発明はこれらに実質的に相当する方法、プログラム、プログラムを記録した記憶媒体としても実現し得るものであり、本発明の範囲にはこれらも包含されるものと理解されたい。なお、下記の方法やプログラムの各ステップは、データの処理においては必要に応じて、汎用或いは専用のCPU、DSPなどの演算処理装置を使用するものであり、入力したデータや加工・生成したデータなどを磁気テープ、HDD、メモリなどの記憶装置に格納するものである。 As described above, the solution of the present invention has been described as an apparatus. However, the present invention can be realized as a method, a program, and a storage medium that stores the program substantially corresponding to these, and the scope of the present invention. It should be understood that these are also included. Each step of the following methods and programs uses a general-purpose or dedicated arithmetic processing unit such as a CPU or DSP as necessary for data processing. Are stored in a storage device such as a magnetic tape, HDD, or memory.
 例えば、本発明を方法として実現させた、本発明の他の態様による、コンピュータを用いたCADデータ加工方法は、
 ギャップ幅を記憶部に格納する記憶ステップと、
 立体物の3次元CADデータを取得する取得ステップと、
 前記立体物を分割する1つ以上の分割指示面を指定する操作入力を受け付ける入力受付ステップと、
 前記分割指示面および前記ギャップ幅で規定された分割領域で前記立体物を分割(切断)するように、前記3次元CADデータを加工する加工ステップと、
を有する。
 なお、各ステップは、コンピュータ或いはCADデータ加工装置が有する演算部(プロセッサ)、制御部(CPU)、入力部、出力部、表示部、通信部、記憶部、入力受付部、加工部などが単独或いは2つ以上の部が連携して適宜実行するものとする。なお、以降の方法も同様である。
For example, a CAD data processing method using a computer according to another aspect of the present invention, in which the present invention is realized as a method,
A storage step of storing the gap width in the storage unit;
An acquisition step of acquiring three-dimensional CAD data of a three-dimensional object;
An input receiving step of receiving an operation input for designating one or more division instruction surfaces for dividing the three-dimensional object;
A processing step of processing the three-dimensional CAD data so as to divide (cut) the three-dimensional object in a division region defined by the division instruction surface and the gap width;
Have
In addition, each step includes a calculation unit (processor), a control unit (CPU), an input unit, an output unit, a display unit, a communication unit, a storage unit, an input reception unit, a processing unit, etc., which a computer or a CAD data processing apparatus has. Or two or more parts shall execute suitably in cooperation. The following method is the same.
 また、本発明の一実施態様によるCADデータ加工方法は、
 前記ギャップ幅は、前記立体物が印刷される3次元プリンタの3次元造形分解能に応じて規定される、
ことを特徴とする。
A CAD data processing method according to an embodiment of the present invention includes:
The gap width is defined according to a three-dimensional modeling resolution of a three-dimensional printer on which the three-dimensional object is printed.
It is characterized by that.
 また、本発明の一実施態様によるCADデータ加工方法は、
 前記分割領域に接する面に貼り付けるべきパターンデータを前記記憶部にさらに格納するステップと、
 前記立体物の分割された2以上の物体の少なくとも1つの物体の前記分割領域に接する面に、少なくとも1つのパターンデータを貼り付けるように、前記3次元CADデータをさらに加工する加工ステップと、
をさらに有する、ことを特徴とする。
A CAD data processing method according to an embodiment of the present invention includes:
Further storing in the storage unit pattern data to be attached to the surface in contact with the divided region;
A processing step of further processing the three-dimensional CAD data so that at least one pattern data is pasted on a surface in contact with the divided region of at least one object of the two or more divided objects of the three-dimensional object;
It further has these.
 また、本発明の一実施態様によるCADデータ加工方法は、
 前記パターンデータが複数あり、前記パターンデータは部材の種類とそれぞれ関連付けられ、
 前記分割領域に接する少なくとも1つの面に露出されるべき部材の種類を指定する操作入力をさらに受け付ける受付ステップと、
 前記指定された部材の種類に応じて、前記パターンデータのうちの対応するパターンデータを前記記憶部から読み出し、前記分割領域に接する少なくとも1つの面に貼り付けるように、前記3次元CADデータをさらに加工する加工ステップと、
をさらに有する、ことを特徴とする。
A CAD data processing method according to an embodiment of the present invention includes:
There are a plurality of the pattern data, and the pattern data is associated with each type of member,
A receiving step for further receiving an operation input for designating a type of a member to be exposed on at least one surface in contact with the divided region;
Depending on the type of the designated member, the corresponding pattern data of the pattern data is read from the storage unit, and the three-dimensional CAD data is further pasted on at least one surface in contact with the divided area. Processing steps to process;
It further has these.
 また、本発明の一実施態様によるCADデータ加工方法は、
 前記パターンデータが、
色彩、模様、文字、記号、マーク、図形、配筋図、構造断面図、地図、設計図、配線図、および、立体形状からなる群から選択される1つまたは2つ以上のものから構成されている、
ことを特徴とする。
A CAD data processing method according to an embodiment of the present invention includes:
The pattern data is
Consists of one or more selected from the group consisting of color, pattern, character, symbol, mark, figure, bar arrangement, structural cross section, map, design drawing, wiring diagram, and solid shape ing,
It is characterized by that.
 また、本発明の一実施態様によるCADデータ加工方法は、
 前記立体物の分割された2以上の物体の前記分割領域に接する双方の面に、互いに嵌合する形状を少なくとも1つ設けるように、前記3次元CADデータをさらに加工する加工ステップ、
をさらに有する、ことを特徴とする。
A CAD data processing method according to an embodiment of the present invention includes:
A processing step of further processing the three-dimensional CAD data so as to provide at least one shape to be fitted to each other on both surfaces of the two or more objects that are divided into the three-dimensional object, which are in contact with the divided region;
It further has these.
 また、本発明の一実施態様によるCADデータ加工方法は、
 前記分割領域が、平板状領域または曲面状領域、或いは、これらを組み合わせた領域である、
ことを特徴とする。
A CAD data processing method according to an embodiment of the present invention includes:
The divided region is a flat region or a curved region, or a combination of these,
It is characterized by that.
 また、本発明の一実施態様によるCADデータ加工方法は、
 前記立体物に含まれる部材を可動部材として指定する操作入力を受け付ける受付ステップと、
 指定された可動部材がこの可動部材以外の前記立体物の部材と接する面と、前記ギャップ幅とで規定された部材間分割領域で、前記立体物から分割(切断)し、前記可動部材が可動部材として機能できるように、前記3次元CADデータを加工する加工ステップ
をさらに有する、ことを特徴とする。
A CAD data processing method according to an embodiment of the present invention includes:
A reception step of receiving an operation input for designating a member included in the three-dimensional object as a movable member;
The movable member is divided (cut) from the three-dimensional object in a member-divided region defined by a surface where the designated movable member is in contact with the member of the three-dimensional object other than the movable member and the gap width, and the movable member is movable It further has a processing step of processing the three-dimensional CAD data so that it can function as a member.
 また、本発明の一実施態様によるCADデータ加工方法は、
 前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための少なくとも1つの後付けの回動支持軸が収容されるべき孔を、前記可動部材が前記立体物に前記部材間分割領域を介して接する第1の位置、および、前記立体物が前記可動部材に前記部材間分割領域を介して接する第2の位置に形成するように、前記3次元CADデータを加工する加工ステップと、
をさらに有する、ことを特徴とする。
A CAD data processing method according to an embodiment of the present invention includes:
The movable member has a hole in which at least one retrofitting rotation support shaft for opening and closing the movable member and the three-dimensional object in contact with the movable member via the inter-member divided region is to be opened and closed. The three-dimensional shape is formed so that the three-dimensional object is formed at a first position where the three-dimensional object comes into contact with the movable member via the inter-member divided area, and the second position where the three-dimensional object comes into contact with the movable member via the inter-member divided area. Processing steps for processing CAD data;
It further has these.
 また、本発明の一実施態様によるCADデータ加工方法は、
 前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための回動支持軸として機能する2つの突起部を、前記可動部材が前記部材間分割領域を介して前記立体物に接する第1および第2の位置に形成し、この第1および第2の位置に前記部材間領域を介して対向する第3および第4の位置に前記突起部の各々を収容する2つの孔をそれぞれ形成するように、前記3次元CADデータを加工する、
或いは、
前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための回動支持軸を収容する2つの孔を、前記可動部材が前記部材間分割領域を介して前記立体物に接する第1および第2の位置に形成し、この第1および第2の位置に前記部材間領域を介して対向する第3および第4の位置に前記孔の各々に収容されるべき2つの突起部をそれぞれ形成するように、前記3次元CADデータを加工する、加工ステップと、
をさらに有する、ことを特徴とする。
A CAD data processing method according to an embodiment of the present invention includes:
The movable member divides the two protrusions functioning as a pivot support shaft for opening and closing the movable member and the three-dimensional object contacting the movable member through the inter-member divided region. The protrusions are formed at first and second positions that contact the three-dimensional object through a region, and at the third and fourth positions that face the first and second positions through the inter-member region. Processing the three-dimensional CAD data so as to form two holes respectively for accommodating each;
Or
The movable member and the three-dimensional object that contacts the movable member via the inter-member divided area have two holes for accommodating a pivot support shaft for opening and closing, and the movable member is divided into the inter-member divided area. The first and second positions are in contact with the three-dimensional object through the first and second positions, and the holes are respectively formed in the third and fourth positions facing the first and second positions through the inter-member region. Processing the three-dimensional CAD data so as to form two protrusions to be accommodated, respectively;
It further has these.
 また、本発明の一実施態様によるCADデータ加工方法は、
 前記立体物に含まれる部材を除外部材として指定する操作入力を受け付ける受付ステップと、
 指定された除外部材を前記立体物から除外するように、前記3次元CADデータを加工し、さらに、前記除外部材が存在していた空間を囲む前記立体物の枠の一部に後付け部材(可撓性を持つ透明プラスチック、ガラス板、アクリル板など)を挿入するためのガイドスリットを形成し、前記立体物の枠のうち前記ガイドスリットを設けた部分以外の少なくとも一部に前記後付け部材が挿入されるべき支持溝を形成するように、前記3次元CADデータを加工する、加工ステップと、
をさらに有する、ことを特徴とする。
A CAD data processing method according to an embodiment of the present invention includes:
A reception step of receiving an operation input for designating a member included in the three-dimensional object as an excluded member;
The three-dimensional CAD data is processed so as to exclude the specified exclusion member from the three-dimensional object, and a retrofit member (possible to a part of the frame of the three-dimensional object surrounding the space where the exclusion member exists). A guide slit for inserting a flexible plastic, glass plate, acrylic plate, etc.), and the retrofitting member is inserted into at least a portion of the three-dimensional object frame other than the portion provided with the guide slit. Processing the three-dimensional CAD data to form support grooves to be performed;
It further has these.
 或いは、本発明を方法として実現させた、本発明の他の態様によるプログラムは、
 CADデータ加工方法をコンピュータに実行させるCADデータ加工プログラムであって、
 ギャップ幅を記憶部に格納する記憶ステップと、
 立体物の3次元CADデータを取得する取得ステップと、
 前記立体物を分割する1つ以上の分割指示面を指定する操作入力を受け付ける入力受付ステップと、
 前記分割指示面および前記ギャップ幅で規定された分割領域で前記立体物を分割(切断)するように、前記3次元CADデータを加工する加工ステップと、
を有する。
 なお、各ステップは、コンピュータが有する演算部(プロセッサ)、制御部(CPU)、入力部、出力部、表示部、通信部、記憶部などが単独或いは2つ以上の部が連携して適宜実行するものとする。なお、以降のプログラムも同様である。
Alternatively, a program according to another aspect of the present invention, which realizes the present invention as a method,
A CAD data processing program for causing a computer to execute a CAD data processing method,
A storage step of storing the gap width in the storage unit;
An acquisition step of acquiring three-dimensional CAD data of a three-dimensional object;
An input receiving step of receiving an operation input for designating one or more division instruction surfaces for dividing the three-dimensional object;
A processing step of processing the three-dimensional CAD data so as to divide (cut) the three-dimensional object in a division region defined by the division instruction surface and the gap width;
Have
In addition, each step is appropriately executed by a calculation unit (processor), a control unit (CPU), an input unit, an output unit, a display unit, a communication unit, a storage unit, or the like included in the computer alone or in cooperation with two or more units. It shall be. The same applies to the subsequent programs.
 また、本発明の一実施態様によるCADデータ加工プログラムは、
 前記ギャップ幅は、前記立体物が印刷される3次元プリンタの3次元造形分解能に応じて規定される、
ことを特徴とする。
A CAD data processing program according to an embodiment of the present invention is:
The gap width is defined according to a three-dimensional modeling resolution of a three-dimensional printer on which the three-dimensional object is printed.
It is characterized by that.
 また、本発明の一実施態様によるCADデータ加工プログラムは、
 前記分割領域に接する面に貼り付けるべきパターンデータを前記記憶部にさらに格納するステップと、
 前記立体物の分割された2以上の物体の少なくとも1つの物体の前記分割領域に接する面に、少なくとも1つのパターンデータを貼り付けるように、前記3次元CADデータをさらに加工する加工ステップと、
をさらに有する、ことを特徴とする。
A CAD data processing program according to an embodiment of the present invention is:
Further storing in the storage unit pattern data to be attached to the surface in contact with the divided region;
A processing step of further processing the three-dimensional CAD data so that at least one pattern data is pasted on a surface in contact with the divided region of at least one object of the two or more divided objects of the three-dimensional object;
It further has these.
 また、本発明の一実施態様によるCADデータ加工プログラムは、
 前記パターンデータが複数あり、前記パターンデータは部材の種類とそれぞれ関連付けられ、
 前記分割領域に接する少なくとも1つの面に露出されるべき部材の種類を指定する操作入力をさらに受け付ける受付ステップと、
 前記指定された部材の種類に応じて、前記パターンデータのうちの対応するパターンデータを前記記憶部から読み出し、前記分割領域に接する少なくとも1つの面に貼り付けるように、前記3次元CADデータをさらに加工する加工ステップと、
をさらに有する、ことを特徴とする。
A CAD data processing program according to an embodiment of the present invention is:
There are a plurality of the pattern data, and the pattern data is associated with each type of member,
A receiving step for further receiving an operation input for designating a type of a member to be exposed on at least one surface in contact with the divided region;
Depending on the type of the designated member, the corresponding pattern data of the pattern data is read from the storage unit, and the three-dimensional CAD data is further pasted on at least one surface in contact with the divided area. Processing steps to process;
It further has these.
 また、本発明の一実施態様によるCADデータ加工プログラムは、
 前記パターンデータが、
色彩、模様、文字、記号、マーク、図形、配筋図、構造断面図、地図、設計図、配線図、および、立体形状からなる群から選択される1つまたは2つ以上のものから構成されている、
ことを特徴とする。
A CAD data processing program according to an embodiment of the present invention is:
The pattern data is
Consists of one or more selected from the group consisting of color, pattern, character, symbol, mark, figure, bar arrangement, structural cross section, map, design drawing, wiring diagram, and solid shape ing,
It is characterized by that.
 また、本発明の一実施態様によるCADデータ加工プログラムは、
 前記立体物の分割された2以上の物体の前記分割領域に接する双方の面に、互いに嵌合する形状を少なくとも1つ設けるように、前記3次元CADデータをさらに加工する加工ステップ、
をさらに有する、ことを特徴とする。
A CAD data processing program according to an embodiment of the present invention is:
A processing step of further processing the three-dimensional CAD data so as to provide at least one shape to be fitted to each other on both surfaces of the two or more objects that are divided into the three-dimensional object, which are in contact with the divided region;
It further has these.
 また、本発明の一実施態様によるCADデータ加工プログラムは、
 前記分割領域が、平板状領域または曲面状領域、或いは、これらを組み合わせた領域である、
ことを特徴とする。
A CAD data processing program according to an embodiment of the present invention is:
The divided region is a flat region or a curved region, or a combination of these,
It is characterized by that.
 また、本発明の一実施態様によるCADデータ加工プログラムは、
 前記立体物に含まれる部材を可動部材として指定する操作入力を受け付ける受付ステップと、
 指定された可動部材がこの可動部材以外の前記立体物の部材と接する面と、前記ギャップ幅とで規定された部材間分割領域で、前記立体物から分割(切断)し、前記可動部材が可動部材として機能できるように、前記3次元CADデータを加工する加工ステップ
をさらに有する、ことを特徴とする。
A CAD data processing program according to an embodiment of the present invention is:
A reception step of receiving an operation input for designating a member included in the three-dimensional object as a movable member;
The movable member is divided (cut) from the three-dimensional object in a member-divided region defined by a surface where the designated movable member is in contact with the member of the three-dimensional object other than the movable member and the gap width, and the movable member is movable It further has a processing step of processing the three-dimensional CAD data so that it can function as a member.
 また、本発明の一実施態様によるCADデータ加工プログラムは、
 前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための少なくとも1つの後付けの回動支持軸が収容されるべき孔を、前記可動部材が前記立体物に前記部材間分割領域を介して接する第1の位置、および、前記立体物が前記可動部材に前記部材間分割領域を介して接する第2の位置に形成するように、前記3次元CADデータを加工する加工ステップと、
をさらに有する、ことを特徴とする。
A CAD data processing program according to an embodiment of the present invention is:
The movable member has a hole in which at least one retrofitting rotation support shaft for opening and closing the movable member and the three-dimensional object in contact with the movable member via the inter-member divided region is to be opened and closed. The three-dimensional shape is formed so that the three-dimensional object is formed at a first position where the three-dimensional object comes into contact with the movable member via the inter-member divided area, and the second position where the three-dimensional object comes into contact with the movable member via the inter-member divided area. Processing steps for processing CAD data;
It further has these.
 また、本発明の一実施態様によるCADデータ加工プログラムは、
 前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための回動支持軸として機能する2つの突起部を、前記可動部材が前記部材間分割領域を介して前記立体物に接する第1および第2の位置に形成し、この第1および第2の位置に前記部材間領域を介して対向する第3および第4の位置に前記突起部の各々を収容する2つの孔をそれぞれ形成するように、前記3次元CADデータを加工する、
或いは、
前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための回動支持軸を収容する2つの孔を、前記可動部材が前記部材間分割領域を介して前記立体物に接する第1および第2の位置に形成し、この第1および第2の位置に前記部材間領域を介して対向する第3および第4の位置に前記孔の各々に収容されるべき2つの突起部をそれぞれ形成するように、前記3次元CADデータを加工する、加工ステップと、
をさらに有する、ことを特徴とする。
A CAD data processing program according to an embodiment of the present invention is:
The movable member divides the two protrusions functioning as a pivot support shaft for opening and closing the movable member and the three-dimensional object contacting the movable member through the inter-member divided region. The protrusions are formed at first and second positions that contact the three-dimensional object through a region, and at the third and fourth positions that face the first and second positions through the inter-member region. Processing the three-dimensional CAD data so as to form two holes respectively for accommodating each;
Or
The movable member and the three-dimensional object that contacts the movable member via the inter-member divided area have two holes for accommodating a pivot support shaft for opening and closing, and the movable member is divided into the inter-member divided area. The first and second positions are in contact with the three-dimensional object through the first and second positions, and the holes are respectively formed in the third and fourth positions facing the first and second positions through the inter-member region. Processing the three-dimensional CAD data so as to form two protrusions to be accommodated, respectively;
It further has these.
 また、本発明の一実施態様によるCADデータ加工プログラムは、
 前記立体物に含まれる部材を除外部材として指定する操作入力を受け付ける受付ステップと、
 指定された除外部材を前記立体物から除外するように、前記3次元CADデータを加工し、さらに、前記除外部材が存在していた空間を囲む前記立体物の枠の一部に後付け部材(可撓性を持つ透明プラスチック、ガラス板、アクリル板など)を挿入するためのガイドスリットを形成し、前記立体物の枠のうち前記ガイドスリットを設けた部分以外の少なくとも一部に前記後付け部材が挿入されるべき支持溝を形成するように、前記3次元CADデータを加工する、加工ステップと、
をさらに有する、ことを特徴とする。
A CAD data processing program according to an embodiment of the present invention is:
A reception step of receiving an operation input for designating a member included in the three-dimensional object as an excluded member;
The three-dimensional CAD data is processed so as to exclude the specified exclusion member from the three-dimensional object, and a retrofit member (possible to a part of the frame of the three-dimensional object surrounding the space where the exclusion member exists). A guide slit for inserting a flexible plastic, glass plate, acrylic plate, etc.), and the retrofitting member is inserted into at least a portion of the three-dimensional object frame other than the portion provided with the guide slit. Processing the three-dimensional CAD data to form support grooves to be performed;
It further has these.
 本発明によれば、目的とする立体物をあたかも一体物として作製しつつも、当該一体物を分割可能ならしめることが可能となる。 According to the present invention, it is possible to make it possible to divide the integrated object while producing the target three-dimensional object as an integrated object.
図1は、本発明の実施態様1によるCADデータ加工装置の概要を示すブロック図である。FIG. 1 is a block diagram showing an outline of a CAD data processing apparatus according to Embodiment 1 of the present invention. 図2は、実施態様1のCADデータ加工装置で実行される処理の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the first embodiment. 図3は、実施態様1のCADデータ加工装置で処理される3次元CADデータを2次元平面に投影した投影図である。FIG. 3 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the first embodiment is projected onto a two-dimensional plane. 図4は、実施態様1のCADデータ加工装置で処理される3次元CADデータを2次元平面に投影した投影図である。FIG. 4 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the first embodiment is projected onto a two-dimensional plane. 図5は、実施態様1のCADデータ加工装置で処理された3次元CADデータを2次元平面に投影した投影図である。FIG. 5 is a projection view in which the three-dimensional CAD data processed by the CAD data processing apparatus according to the first embodiment is projected onto a two-dimensional plane. 図6は、粉末固着式積層法の原理を示す積層遷移図である。FIG. 6 is a lamination transition diagram showing the principle of the powder fixing type lamination method. 図7は、実施態様1のCADデータ加工装置で処理された3次元CADデータを用いて粉末固着式積層法による3次元プリンタで立体物を造形する様子を示す積層遷移図である。FIG. 7 is a stacking transition diagram illustrating a state in which a three-dimensional object is formed by a three-dimensional printer based on the powder fixing type stacking method using the three-dimensional CAD data processed by the CAD data processing apparatus according to the first embodiment. 図8は、実施態様1のCADデータ加工装置で処理される立体物に設定される分割領域の厚さを示す投影図である。FIG. 8 is a projection view showing the thickness of the divided area set in the three-dimensional object processed by the CAD data processing apparatus of the first embodiment. 図9は、本発明の実施態様2によるCADデータ加工装置の概要を示すブロック図である。FIG. 9 is a block diagram showing an outline of a CAD data processing apparatus according to Embodiment 2 of the present invention. 図10は、実施態様2のCADデータ加工装置で実行される処理の一例を示すフローチャートである。FIG. 10 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the second embodiment. 図11は、実施態様2のCADデータ加工装置で処理される3次元CADデータを2次元平面に投影した投影図である。FIG. 11 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the second embodiment is projected onto a two-dimensional plane. 図12は、実施態様2のCADデータ加工装置で実行される処理の一例を示すフローチャートである。FIG. 12 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the second embodiment. 図13は、実施態様2のCADデータ加工装置で実行される処理の一例を示すフローチャートである。FIG. 13 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the second embodiment. 図14は、本発明の実施態様3によるCADデータ加工装置の概要を示すブロック図である。FIG. 14 is a block diagram showing an outline of a CAD data processing apparatus according to Embodiment 3 of the present invention. 図15は、実施態様3のCADデータ加工装置で実行される処理の一例を示すフローチャートである。FIG. 15 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment. 図16は、実施態様3のCADデータ加工装置で処理される3次元CADデータを2次元平面に投影した投影図である。FIG. 16 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane. 図17は、突起部および孔部を設けた3次元CADデータを2次元平面に投影した投影図である。FIG. 17 is a projection view in which three-dimensional CAD data provided with protrusions and holes is projected onto a two-dimensional plane. 図18は、実施態様3のCADデータ加工装置で実行される処理の一例を示すフローチャートである。FIG. 18 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment. 図19は、実施態様3のCADデータ加工装置で処理される3次元CADデータを2次元平面に投影した投影図である。FIG. 19 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane. 図20は、実施態様3のCADデータ加工装置で実行される処理の一例を示すフローチャートである。FIG. 20 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment. 図21は、実施態様3のCADデータ加工装置で処理される3次元CADデータを2次元平面に投影した投影図である。FIG. 21 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane. 図22は、実施態様3のCADデータ加工装置で実行される処理の一例を示すフローチャートである。FIG. 22 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment. 図23は、実施態様3のCADデータ加工装置で処理される3次元CADデータを2次元平面に投影した投影図である。FIG. 23 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane. 図24は、実施態様4による本発明による装置またはプログラムで3次元CADデータを加工した家屋を立体物として3次元プリンタで作製する様子を示す分解斜視図である。FIG. 24 is an exploded perspective view showing a state in which a house in which three-dimensional CAD data is processed by the apparatus or program according to the fourth embodiment is produced as a three-dimensional object with a three-dimensional printer. 図25は、図24で作製した一体物の家屋立体模型を示す図である。FIG. 25 is a diagram showing a one-dimensional house three-dimensional model produced in FIG. 図26は、図25に示した一体物の家屋立体模型を分割したときの分割面の様子を示す図である。FIG. 26 is a diagram illustrating a state of the divided surface when the one-dimensional house three-dimensional model illustrated in FIG. 25 is divided. 図27は、図25に示した一体物の家屋立体模型を分割したときの分割面の様子を示す図である。FIG. 27 is a diagram illustrating a state of the dividing surface when the one-dimensional house three-dimensional model illustrated in FIG. 25 is divided. 図28は、図21に示した孔付きの可動部材に開口部およびガイドスリットを形成する様子を説明する図である。FIG. 28 is a diagram for explaining a state in which the opening and the guide slit are formed in the movable member with holes shown in FIG. 図29は、壁に開口部、可動部材としての引き戸、およびガイドスリットを形成する様子を説明する図である。FIG. 29 is a diagram illustrating a state in which an opening, a sliding door as a movable member, and a guide slit are formed on the wall. 図30は、大きいサイズの立体模型を分割する様子を説明する図である。FIG. 30 is a diagram illustrating a state in which a large-sized three-dimensional model is divided. 図31は、図9のCADデータ加工装置で実行される実施態様7用の処理の一例を示すフローチャートである。FIG. 31 is a flowchart showing an example of processing for the seventh embodiment executed by the CAD data processing apparatus of FIG.
 以降、諸図面を参照しながら、本発明の実施態様を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<実施態様1>
 図1は、本発明の実施態様1によるCADデータ加工装置の概要を示すブロック図である。図に示すように、CADデータ加工装置100は、制御部(CPU)110と、入力部120と、出力部130と、通信部140と、記憶部150と、表示部160とを有する。記憶部150には、予め対象とする3次元プリンタで対象物体を分割するのに適したギャップ幅GAPが格納されている。制御部110は、取得部111、入力受付部112、加工部113、および3次元出力制御部114を有する。取得部111は、立体物の3次元CADデータを取得する。3次元CADデータは、CADシステムCD1で作成されたものであり、ネットワークNETを介して通信部140により受信され、最終的に取得部111に渡される。取得した3次元CADデータは、3次元出力制御部114により、3次元空間上に3次元モデルとしてモデリングされ、この3次元モデル(立体物)を2次元の平面(投影面)に投影し、この投影された「立体物」を表示部160が表示する。入力受付部112は、立体物を分割する1つ以上の分割指示面を指定する操作入力を受け付ける。具体的には、例えば、ユーザが、入力部120およびマウスMSを介して、表示部160に表示された立体物の分割を所望する分割指示面を指定し、入力受付部112は、指定された分割指示面を受け付ける。加工部113は、分割指示面およびギャップ幅で規定された分割領域で前記立体物を分割(切断)するように、3次元CADデータを加工する。
<Embodiment 1>
FIG. 1 is a block diagram showing an outline of a CAD data processing apparatus according to Embodiment 1 of the present invention. As shown in the figure, the CAD data processing apparatus 100 includes a control unit (CPU) 110, an input unit 120, an output unit 130, a communication unit 140, a storage unit 150, and a display unit 160. The storage unit 150 stores a gap width GAP suitable for dividing the target object with a target three-dimensional printer in advance. The control unit 110 includes an acquisition unit 111, an input reception unit 112, a processing unit 113, and a three-dimensional output control unit 114. The acquisition unit 111 acquires three-dimensional CAD data of a three-dimensional object. The three-dimensional CAD data is created by the CAD system CD1, is received by the communication unit 140 via the network NET, and is finally passed to the acquisition unit 111. The acquired three-dimensional CAD data is modeled as a three-dimensional model in a three-dimensional space by the three-dimensional output control unit 114, and this three-dimensional model (three-dimensional object) is projected onto a two-dimensional plane (projection plane). The display unit 160 displays the projected “three-dimensional object”. The input receiving unit 112 receives an operation input for designating one or more division instruction planes for dividing a three-dimensional object. Specifically, for example, the user designates a division instruction screen for dividing the solid object displayed on the display unit 160 via the input unit 120 and the mouse MS, and the input reception unit 112 is designated. Accept the split instruction surface. The processing unit 113 processes the three-dimensional CAD data so as to divide (cut) the three-dimensional object in the divided area defined by the division instruction surface and the gap width.
 ギャップ幅GAPは、立体物が印刷される3次元プリンタの3次元造形分解能に応じて規定される。例えば、3次元プリンタPRN1用に加工する場合には、当該プリンタの3次元造形分解能に応じた数値をギャップ幅として規定し、予め記憶部150に格納しておく。同様に、3次元プリンタPRN2用に加工する場合には、当該プリンタの3次元造形分解能に応じた数値をギャップ幅として規定し、予め記憶部150に格納しておく。幾つかのギャップ幅を記憶部150に格納しておき、出力先のプリンタを示す識別子の指定を入力受付部112や入力部120から受け付け、この識別子に応じて、各プリンタに最適なギャップを用いて、分割領域(正確には、分割面から垂直方向の分割領域の厚さ)を決定することも可能である。例えば、3次元プリンタの3次元造形分解能は、粉末を基材に使用して固化剤で基材の一部を固化するタイプの3次元プリンタの場合は、一回の基材散布層の厚さ、および、固化剤(造形剤、造形インク)の浸透厚さの少なくとも一方に応じて規定される。なお、立体物を3次元プリンタで立体造形したときに、あたかも、一体物であるかのごとく見せるために、ギャップ幅はできる限り薄くすることが好適である。 The gap width GAP is defined according to the three-dimensional modeling resolution of a three-dimensional printer on which a three-dimensional object is printed. For example, when processing for the three-dimensional printer PRN1, a numerical value corresponding to the three-dimensional modeling resolution of the printer is defined as the gap width and stored in the storage unit 150 in advance. Similarly, when processing for the three-dimensional printer PRN2, a numerical value corresponding to the three-dimensional modeling resolution of the printer is defined as a gap width and stored in the storage unit 150 in advance. Several gap widths are stored in the storage unit 150, an identifier indicating an output destination printer is received from the input receiving unit 112 or the input unit 120, and an optimum gap is used for each printer according to the identifier. Thus, it is also possible to determine the divided region (more precisely, the thickness of the divided region in the vertical direction from the dividing surface). For example, the three-dimensional printing resolution of a three-dimensional printer is as follows: In the case of a three-dimensional printer that uses powder as a base material and solidifies a part of the base material with a solidifying agent, the thickness of the base material spray layer once , And at least one of the penetration thickness of the solidifying agent (modeling agent, modeling ink). In addition, when a three-dimensional object is three-dimensionally modeled with a three-dimensional printer, it is preferable to make the gap width as thin as possible in order to make it appear as if it is an integral object.
 取得した3次元CADデータ、分割指示面、分割領域の位置や形状の情報、加工後の3次元CADデータ、は、記憶部150に中間データとして格納しておくことが望ましい。3次元出力制御部114は、3次元プリンタPRN1のデバイスドライバ或いは、その機能を有する機能部であり、分割加工を施された3次元CADデータを用いて、目的の立体物は出力部130を介して3次元CADプリンタPRN1に出力(立体印刷)される。3次元出力制御部114、或いは、通信部140を介して、加工後の3次元CADデータを外部の装置である端末PC1、PC2、に送信/出力し、これらの端末上に格納させてもよい。このように、生成した情報や中間データおよび取得したデータを外部に送信したり、表示部に表示したり、生成した情報や中間データおよび取得したデータなどを記憶部に格納したりすることは、後述する他の実施態様でも同様に可能であることに注意されたい。なお、CADデータ加工装置100は、汎用コンピュータ、特定用途コンピュータ、サーバ、PCなどのコンピュータ、或いは、これらコンピュータに、本システムの機能部や処理手順(方法)をコンピュータ上で実現(実行)するプログラムモジュールをコンピュータが持つCPUや記憶部に保持したり、外部のサーバやストレージから読み込んだりすることで、コンピュータ上にCADデータ加工装置を構築することが好適であり、後続の各実施態様においても同様である。 It is desirable to store the acquired three-dimensional CAD data, the division instruction plane, information on the position and shape of the divided area, and the three-dimensional CAD data after processing as intermediate data in the storage unit 150. The three-dimensional output control unit 114 is a device driver of the three-dimensional printer PRN1 or a functional unit having the function, and the target three-dimensional object is sent via the output unit 130 using the three-dimensional CAD data subjected to the division processing. And output (three-dimensional printing) to the three-dimensional CAD printer PRN1. Via the three-dimensional output control unit 114 or the communication unit 140, the processed three-dimensional CAD data may be transmitted / output to external terminals PC1 and PC2 and stored on these terminals. . In this way, the generated information and intermediate data and acquired data are transmitted to the outside, displayed on the display unit, and the generated information and intermediate data and acquired data are stored in the storage unit. It should be noted that other embodiments described below are possible as well. The CAD data processing apparatus 100 is a general-purpose computer, a special-purpose computer, a server, a computer such as a PC, or a program that implements (executes) the functional units and processing procedures (methods) of this system on the computer. It is preferable to construct a CAD data processing device on a computer by holding the module in a CPU or storage unit of the computer or reading it from an external server or storage, and the same applies to each of the following embodiments. It is.
 図2は、実施態様1のCADデータ加工装置で実行される処理の一例を示すフローチャートである。図に示すように、ステップS11にて、記憶部がギャップ幅を格納する。このステップは毎回実行する必要はなく、1回だけ実行して適正なギャップ幅を格納しておくことで足りる。次に、ステップS12では、取得部が立体物の3次元CADデータを取得する。続いて、ステップS13にて、入力受付部は、立体物を分割する1つ以上の分割指示面を指定する操作入力を受け付ける。ステップS14では、加工部は、分割指示面およびギャップ幅で規定された分割領域で前記立体物を分割(切断)するように、3次元CADデータを加工する。最後に、ステップS15にて、3次元出力制御部は、加工された3次元データを外部の3次元プリンタやCADシステムに出力する。加工された3次元データは、分割状況を確認するために、分割(切断)した立体物を表示部に表示させたり、記憶部150に格納したりしてもよい。 FIG. 2 is a flowchart showing an example of processing executed by the CAD data processing apparatus according to the first embodiment. As shown in the figure, in step S11, the storage unit stores the gap width. This step does not need to be executed every time, but only needs to be executed once to store an appropriate gap width. Next, in step S12, the acquisition unit acquires three-dimensional CAD data of the three-dimensional object. Subsequently, in step S13, the input receiving unit receives an operation input for designating one or more division instruction surfaces for dividing the three-dimensional object. In step S14, the processing unit processes the three-dimensional CAD data so as to divide (cut) the three-dimensional object in the divided area defined by the division instruction surface and the gap width. Finally, in step S15, the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system. The processed three-dimensional data may display a divided (cut) three-dimensional object on the display unit or store it in the storage unit 150 in order to confirm the division state.
 図3は、実施態様1のCADデータ加工装置で処理される3次元CADデータを2次元平面に投影した投影図である。図中の(a)に示すように、3次元CADデータは円柱の立体物OB11をモデリングしたものであり、ユーザは所望の箇所を位置指示装置(マウス)で指定し、指定した箇所が分割指示面CPとなる。分割指示面CPは、厚みがない平面であるため、このままでは、円柱を分割(切断)することができない。そこで、図中の(b)に示すように、本装置は、指定された分割指示面CPを基準に、記憶部に格納されたギャップ幅で分割領域CRを設定し、分割領域を表示した状態で立体物OB11を投影する。 FIG. 3 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the first embodiment is projected onto a two-dimensional plane. As shown in (a) in the figure, the three-dimensional CAD data is obtained by modeling a cylindrical three-dimensional object OB11. The user designates a desired location with a position pointing device (mouse), and the designated location is designated to be divided. It becomes surface CP. Since the division instruction surface CP is a plane having no thickness, the cylinder cannot be divided (cut) as it is. Therefore, as shown in (b) of the figure, the present apparatus sets the divided region CR with the gap width stored in the storage unit and displays the divided region with reference to the designated divided instruction surface CP. The three-dimensional object OB11 is projected by.
 図4は、実施態様1のCADデータ加工装置で処理される3次元CADデータを2次元平面に投影した投影図である。図4の(a)は、処理の遷移状態の理解のため図3の(b)の立体物を再度示したものである。図4の(b)は、設定された分割領域CRの部分で立体物OB11を分割(切断)するように3次元CADデータを加工し、加工後のデータで立体物OB12を投影したものである。分割によって、立体物OB12は、ギャップ幅の距離だけ離間して、上部立体物OB12uと、下部立体物OB12dとに分割されている。ギャップ幅は、全体からすれば僅かな厚みに過ぎないため、これを3次元プリンタで造形/印刷すると、あたかも一体物のような円柱を得ることができる。もちろん、例えば、粉末を基材に使用して固化剤で基材の一部を固化するタイプの3次元プリンタの場合に、この加工後の3次元CADデータを用いて、印刷/立体造形をすれば、当該領域の基材(粉末)は固化しないため、一見は、一体物かのように見えるが、上部立体物OB12uと、下部立体物OB12dとに容易に分割し、また、元通りに一体物のように戻すことが可能なものを作製可能となる。 FIG. 4 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus of Embodiment 1 is projected onto a two-dimensional plane. FIG. 4A shows the three-dimensional object shown in FIG. 3B again in order to understand the transition state of the process. FIG. 4B shows a case where the three-dimensional CAD data is processed so as to divide (cut) the three-dimensional object OB11 at the set divided region CR, and the three-dimensional object OB12 is projected with the processed data. . As a result of the division, the three-dimensional object OB12 is divided into an upper three-dimensional object OB12u and a lower three-dimensional object OB12d separated by a gap width. Since the gap width is only a small thickness as a whole, if this is modeled / printed with a three-dimensional printer, a cylinder like an integral object can be obtained. Of course, for example, in the case of a 3D printer of a type in which powder is used as a substrate and a part of the substrate is solidified with a solidifying agent, printing / stereoscopic modeling is performed using the 3D CAD data after processing. For example, since the base material (powder) in the region does not solidify, it looks as if it is a single object, but it can be easily divided into the upper three-dimensional object OB12u and the lower three-dimensional object OB12d, and the original one is restored. What can be returned like an object can be manufactured.
 図5は、実施態様1のCADデータ加工装置で処理された3次元CADデータを2次元平面に投影した投影図である。図5の上側には、分割後の上部立体物OB12uと、下部立体物OB12dから構成される立体物OB12を「積層法」を用いる3次元プリンタで造形した様子を示してある。スライス面SL1(正確には、わずかな厚さを持つスライス領域)、SL2、SL3からSLm-1まで[m-1]個を順次、円状に固化させて下部立体物OB12dが造形される。スライス面SLm-1の上に、スライス面SLm、SLm+1の2層は、固化しない領域となる。本実施態様では、2つのスライス面SLm、SLm+1を固化しない領域としたが、固化しない領域はできるだけ薄くすることが望ましく、印刷/造形時に使用される3Dプリンタの特性によるが、1つのスライス面だけを固化しない領域に設定して、立体物を分割することも可能であることに注意されたい。粉末固着式積層であれば、固化させずに粉末の基材のまま残す。この2つのスライス面が分割領域に相当する領域である。そして、固化させなかったスライス面SLm、SLm+1の上に、スライス面SLm+2からスライス面SLnまで[n-(m+1)]個だけ、順次、円上に固化させて上部立体物OB12uが造形される。このようにして、あたかも一体物かのようであるが、上部と下部に分割できる立体物OB12slを造形することができる。 FIG. 5 is a projection view in which the three-dimensional CAD data processed by the CAD data processing apparatus according to the first embodiment is projected onto a two-dimensional plane. On the upper side of FIG. 5, a state in which the three-dimensional object OB12 including the divided upper three-dimensional object OB12u and the lower three-dimensional object OB12d is formed by a three-dimensional printer using the “lamination method” is illustrated. The lower solid object OB12d is formed by sequentially solidifying [m−1] slice surfaces SL1 (more precisely, a slice region having a slight thickness), SL2, SL3 to SLm−1 into a circular shape. On the slice surface SLm−1, the two layers of the slice surfaces SLm and SLm + 1 are regions that are not solidified. In this embodiment, the two slice planes SLm and SLm + 1 are not solidified areas. However, it is desirable to make the non-solidified areas as thin as possible, and depending on the characteristics of the 3D printer used during printing / modeling, only one slice plane is used. Note that it is also possible to divide a three-dimensional object by setting to a region that does not solidify. In the case of the powder-fixing type lamination, the powder base material is left without being solidified. These two slice planes are areas corresponding to the divided areas. Then, on the slice surfaces SLm and SLm + 1 that have not been solidified, only [n− (m + 1)] pieces from the slice surface SLm + 2 to the slice surface SLn are sequentially solidified on the circle to form the upper three-dimensional object OB12u. The In this manner, a three-dimensional object OB12sl that can be divided into an upper part and a lower part can be formed as if it were an integrated object.
 図5の下側には、比較のために分割操作前の立体物OB10を「積層法」を用いる3次元プリンタで造形した様子を示してある。立体物OB10slは、スライス面SL1(正確には、わずかな厚さを持つスライス領域)、SL2、SL3からSLnまで[n1]個を順次、円上に固化させて造形したものである。n個のスライス面はすべて固化しているため、相互に結合しており、分割することはできない。このように、分割領域が全体からすれば僅かな厚さであるため、分割できない立体物OB10slは、分割可能な立体物OB12slと、同様の外観を呈する。従って、ユーザは、立体物OB10slを1つ作成すれば、2つを組み合わせているときは、立体物の全体を観察できるし、分割領域で分割すれば、分割後の2つの外観を観察することが可能となる。後で詳述するが、分割面に模様、形状、記号などを付すことにより、断面構造を観察したり、凹凸などの触感を確認したりすることが可能となる。また、内部が区画された部屋である場合には、部屋割を観察することも可能となる。 The lower side of FIG. 5 shows a state in which the three-dimensional object OB10 before the division operation is formed by a three-dimensional printer using the “lamination method” for comparison. The three-dimensional object OB10sl is formed by sequentially solidifying [n1] slices on a slice plane SL1 (more precisely, a slice region having a slight thickness), SL2, SL3 to SLn on a circle. Since all n slice planes are solidified, they are connected to each other and cannot be divided. Thus, since the divided area is a small thickness from the whole, the three-dimensional object OB10sl that cannot be divided has the same appearance as the three-dimensional object OB12sl that can be divided. Therefore, when the user creates one solid object OB10sl, when the two objects are combined, the user can observe the whole solid object, and when divided by the divided area, the user can observe the two divided appearances. Is possible. As will be described in detail later, it is possible to observe the cross-sectional structure and confirm tactile sensations such as irregularities by attaching patterns, shapes, symbols, and the like to the divided surfaces. Moreover, when the room is a partitioned room, it is possible to observe the room layout.
 図6は、粉末固着式積層法の原理を示す積層遷移図である。左上から矢印の順に積層が進む。まず、筐体(図示せず)の底にスライス面を1層、形成する粉末を全面に散布する。このスライス面に立体物を形成する楕円の箇所(固化したい部分)にだけ、例えばインクジェット技法を用いて、粉末の基材を固化させる作用を持つ固化剤を塗布する。さらに、色付けしたい部分には、発色剤やインクなどの薬剤も、併せて或いは別途塗布する。その後は、最初と同様にスライス面1層に相当する量だけ、粉末を再度散布し、また、立体物を形成する楕円の箇所(固化したい部分)にだけ、固化剤を塗布する。これを繰り返して、固化しなかった粉末PWDを除去すれば、目的の立体物OB20slを得ることができる。この例では、円錐台を作成している。作図の便宜上4つのスライス面で立体物を形成させてあるが、実際には、何百、何千、何万、或いはさらに多くのスライス面で立体物を形成するものであることに注意されたい。 FIG. 6 is a lamination transition diagram showing the principle of the powder fixing type lamination method. Lamination proceeds in the order of the arrows from the upper left. First, a slice layer is formed on the bottom of a housing (not shown), and the powder to be formed is spread over the entire surface. A solidifying agent having a function of solidifying a powder base material is applied only to an elliptical portion (portion to be solidified) that forms a three-dimensional object on the slice surface by using, for example, an ink jet technique. Further, a coloring agent or an agent such as ink is also applied to the portion to be colored together or separately. After that, the powder is again sprayed by an amount corresponding to one layer of the slice surface as in the beginning, and the solidifying agent is applied only to the elliptical part (the part to be solidified) that forms the three-dimensional object. By repeating this and removing the powder PWD that has not solidified, the desired three-dimensional object OB20sl can be obtained. In this example, a truncated cone is created. Note that the three-dimensional object is formed by four slice planes for the convenience of drawing, but in reality, the three-dimensional object is formed by hundreds, thousands, tens of thousands, or even more slice planes. .
 図7は、実施態様1のCADデータ加工装置で処理された3次元CADデータを用いて粉末固着式積層法による3次元プリンタで立体物を造形する様子を示す積層遷移図である。これは、図4のOB12(分割領域を挟んだOB12u,OB12d)を粉末固着式積層法で造形する様子を示したものである。図に示すように、粉末の基材を円形に固化させたスライス面を積層させることによって、円柱を形成していく。そして、本装置で設定した空隙となるべき層を分割領域(粉末層/非固化層)SLpwdとする。そして、その上には、また、順次、円形に固化させたスライス面を形成していく。完成したのは、あたかも一体物に見える立体物OB12sl-pwdである。これは、中間に分割領域(粉末層/非固化層)SLpwdがあるため、上部立体物OB12usl、下部立体物OB12dslに簡単に分割できる。 FIG. 7 is a stacking transition diagram illustrating a state in which a three-dimensional object is formed by a three-dimensional printer using a powder fixing type stacking method using the three-dimensional CAD data processed by the CAD data processing apparatus according to the first embodiment. This shows how OB12 (OB12u and OB12d sandwiching a divided region) in FIG. 4 is formed by a powder fixing type laminating method. As shown in the figure, a cylinder is formed by laminating sliced surfaces obtained by solidifying a powder base material in a circular shape. And the layer which should become the space | gap set with this apparatus is set as the division | segmentation area | region (powder layer / non-solidified layer) SLpwd. Then, a slice surface solidified into a circular shape is sequentially formed thereon. What is completed is a three-dimensional object OB12sl-pwd that looks as if it were a single object. Since there is a divided region (powder layer / non-solidified layer) SLpwd in the middle, it can be easily divided into an upper three-dimensional object OB12usl and a lower three-dimensional object OB12dsl.
 図8は、実施態様1のCADデータ加工装置で処理される立体物に設定される分割領域の厚さを示す投影図である。図中の(a)では、立体物OB30の分割領域CR1の厚さは距離GW1に設定される。図中の(b)では、立体物OB30の分割領域CR2の厚さ(ギャップ幅)は、距離GW1よりも厚い距離GW2に設定される。立体物OB30,31は、同じサイズ(高さ、半径)の円柱に分割領域を設定したものであるが、立体物が印刷(立体造形)される3次元プリンタの3次元造形分解能に応じて、分割領域の厚さをそれぞれ規定しているため、異なる距離GW1、GW2がそれぞれ設定されたものである。例えば、3次元プリンタの3次元造形分解能は、粉末を基材に使用して固化剤で基材の一部を固化するタイプの3次元プリンタの場合は、一回の基材散布層の厚さ、および、固化剤(造形剤、造形インク)の浸透厚さの少なくとも一方に応じて規定される。あるいは、分割領域CR2の厚さ(ギャップ幅)は、ユーザが任意に設定してもよい。ちなみに、最も好適なのは、3次元造形分解能に基づき設定したギャップ幅と、3次元プリンタの機種(機種名)とを関連付けて記憶部に格納しておき、使用する3次元プリンタの機種の入力に応じて、当該機種に関連付けられたギャップ幅を自動的に選択し、当該ギャップ幅を設定した分割領域を設定することである。 FIG. 8 is a projection view showing the thickness of the divided area set in the three-dimensional object processed by the CAD data processing apparatus of the first embodiment. In (a) in the figure, the thickness of the divided region CR1 of the three-dimensional object OB30 is set to the distance GW1. In (b) in the figure, the thickness (gap width) of the divided region CR2 of the three-dimensional object OB30 is set to a distance GW2 that is thicker than the distance GW1. The three-dimensional objects OB30 and 31 are obtained by setting divided areas on cylinders of the same size (height and radius), but depending on the three-dimensional modeling resolution of a three-dimensional printer on which a three-dimensional object is printed (three-dimensional modeling), Since the thicknesses of the divided regions are respectively defined, different distances GW1 and GW2 are set. For example, the three-dimensional printing resolution of a three-dimensional printer is as follows: In the case of a three-dimensional printer that uses powder as a base material and solidifies a part of the base material with a solidifying agent, the thickness of the base material spray layer once , And at least one of the penetration thickness of the solidifying agent (modeling agent, modeling ink). Alternatively, the user may arbitrarily set the thickness (gap width) of the divided region CR2. Incidentally, the most suitable is that the gap width set based on the 3D modeling resolution and the 3D printer model (model name) are stored in the storage unit in association with each other, depending on the input of the 3D printer model to be used. In other words, the gap width associated with the model is automatically selected, and a divided region in which the gap width is set is set.
<実施態様2>
 図9は、本発明の実施態様2によるCADデータ加工装置の概要を示すブロック図である。図に示すように、CADデータ加工装置200は、制御部(CPU)210と、入力部220と、出力部230と、通信部240と、記憶部250と、表示部260とを有する。記憶部250には、予め対象とする3次元プリンタで対象物体を分割するのに適したギャップ幅GAPが格納されていることは、実施態様1と同様であるが、実施態様2では、さらに、分割領域に接する立体物側の面に貼り付けるべきパターンデータPDを格納する。パターンデータPDの各々は、色彩、模様、文字、記号、マーク、図形、配筋図、構造断面図、地図、設計図、配線図、および、立体形状からなる群から選択される1つまたは2つ以上のものから構成されている。制御部210は、取得部211、入力受付部212、加工部213、および3次元出力制御部214を有する。取得部211は、立体物の3次元CADデータを取得する。3次元CADデータは、CADシステムCD1で作成されたものであり、ネットワークNETを介して通信部240により受信され、最終的に取得部211に渡される。取得した3次元CADデータは、3次元出力制御部214により、3次元空間上に3次元モデルとしてモデリングされ、この3次元モデル(立体物)を2次元の平面(投影面)に投影し、この投影された「立体物」を表示部260が表示する。
<Embodiment 2>
FIG. 9 is a block diagram showing an outline of a CAD data processing apparatus according to Embodiment 2 of the present invention. As shown in the figure, the CAD data processing apparatus 200 includes a control unit (CPU) 210, an input unit 220, an output unit 230, a communication unit 240, a storage unit 250, and a display unit 260. In the storage unit 250, the gap width GAP suitable for dividing the target object with the target three-dimensional printer is stored in the same manner as in the first embodiment. The pattern data PD to be pasted on the surface of the three-dimensional object in contact with the divided area is stored. Each of the pattern data PD is one or two selected from the group consisting of a color, a pattern, a character, a symbol, a mark, a figure, a reinforcing bar diagram, a structural sectional view, a map, a design drawing, a wiring diagram, and a three-dimensional shape. Consists of more than one. The control unit 210 includes an acquisition unit 211, an input reception unit 212, a processing unit 213, and a three-dimensional output control unit 214. The acquisition unit 211 acquires three-dimensional CAD data of a three-dimensional object. The three-dimensional CAD data is created by the CAD system CD1, is received by the communication unit 240 via the network NET, and is finally passed to the acquisition unit 211. The acquired three-dimensional CAD data is modeled as a three-dimensional model in a three-dimensional space by the three-dimensional output control unit 214, and this three-dimensional model (three-dimensional object) is projected onto a two-dimensional plane (projection plane). The display unit 260 displays the projected “three-dimensional object”.
 入力受付部212は、立体物を分割する1つ以上の分割指示面を指定する操作入力を受け付ける。具体的には、例えば、ユーザが、入力部220およびマウスMSを介して、表示部260に表示された立体物の分割を所望する分割指示面を指定し、入力受付部212は、指定された分割指示面を受け付ける。加工部213は、分割指示面およびギャップ幅で規定された分割領域で前記立体物を分割(切断)するように、3次元CADデータを加工する。加工部213は、立体物の分割(切断)された2以上の物体の少なくとも1つの物体の前記分割領域に接する面に、少なくとも1つのパターンデータを貼り付けるように、3次元CADデータをさらに加工する。 <The input reception part 212 receives the operation input which designates the 1 or more division | segmentation instruction | indication surface which divides | segments a solid object. Specifically, for example, the user designates a division instruction screen for dividing the solid object displayed on the display unit 260 via the input unit 220 and the mouse MS, and the input receiving unit 212 is designated. Accept the split instruction surface. The processing unit 213 processes the three-dimensional CAD data so as to divide (cut) the three-dimensional object in the divided area defined by the division instruction surface and the gap width. The processing unit 213 further processes the three-dimensional CAD data so that at least one pattern data is pasted on a surface in contact with the divided region of at least one of two or more objects obtained by dividing (cutting) the three-dimensional object. To do.
 図10は、実施態様2のCADデータ加工装置で実行される処理の一例を示すフローチャートである。本フローチャートでは、実施態様1の図2に示したステップと異なるステップS21、S25のボックスは点線で表示してある。実施態様1のステップの文言と同様の文言を含む実施態様2のステップは、特に言及しない限り同様の処理を行うものとする。図に示すように、ステップS21にて、記憶部が「ギャップ幅」および「パターンデータ」を格納する。このステップは毎回実行する必要はなく、1回だけ実行して適正なギャップ幅、および、幾つかのパターンデータを格納しておくことで足りる。なお、パターンデータの各々は、色彩、模様、文字、記号、マーク、図形、配筋図、構造断面図、地図、設計図、配線図、および、立体形状からなる群から選択される1つまたは2つ以上のものから構成されている。次に、ステップS22~S24の処理を行うが、これらは、実施態様1の処理S12~S14の処理と同様である。ステップS25では、加工部は、分割領域に接する面に、少なくとも1つのパターンデータを貼り付けるように3次元CADデータをさらに加工する。最後に、ステップS26にて、3次元出力制御部は、加工された3次元データを外部の3次元プリンタやCADシステムに出力する。加工された3次元データで作製/造形された立体物は、切断部の構造や性状を確認するのに適している。 FIG. 10 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the second embodiment. In this flowchart, the boxes of steps S21 and S25 different from the steps shown in FIG. 2 of the first embodiment are indicated by dotted lines. The steps of the embodiment 2 including the same words as the words of the steps of the embodiment 1 perform the same processing unless otherwise specified. As shown in the figure, in step S21, the storage unit stores “gap width” and “pattern data”. This step does not need to be executed every time, and it is sufficient to execute it once and store an appropriate gap width and some pattern data. Each of the pattern data is one selected from the group consisting of a color, a pattern, a character, a symbol, a mark, a figure, a reinforcing bar diagram, a structural sectional view, a map, a design drawing, a wiring diagram, and a three-dimensional shape. It consists of two or more things. Next, steps S22 to S24 are performed, which are the same as the steps S12 to S14 of the first embodiment. In step S25, the processing unit further processes the three-dimensional CAD data so that at least one pattern data is pasted on the surface in contact with the divided region. Finally, in step S26, the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system. A three-dimensional object produced / modeled with processed three-dimensional data is suitable for confirming the structure and properties of the cut portion.
 図11は、実施態様2のCADデータ加工装置で処理される3次元CADデータを2次元平面に投影した投影図である。図中の(a)に示すように、本装置は、指定された分割指示面を基準に、記憶部に格納されたギャップ幅で分割領域CRを設定し、分割領域を表示した状態で立体物OB21を投影する。図中の(b)に示すように、本装置の加工部は、分割領域CRに接する上部立体物OB22u側の面BF1、下部立体物OB22d側のBF2に、パターンデータをそれぞれ貼り付けるように3次元CADデータをさらに加工する。このようにして、一見は、一体物かのように見えるが、上部立体物OB22uと、下部立体物OB22dとに容易に分割し、また、元通りに一体物のように戻すことが可能なものを作製可能となり、さらには、分割したときの分割面にパターンデータを貼り付けることで、立体物の内部構造や内部の性状を即座に理解し得るような立体物を提供することが可能となる。 FIG. 11 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the second embodiment is projected onto a two-dimensional plane. As shown in (a) in the figure, this apparatus sets a divided region CR with a gap width stored in the storage unit with reference to the designated division instruction surface, and displays the three-dimensional object in a state where the divided region is displayed. OB21 is projected. As shown in (b) in the figure, the processing unit of this apparatus is configured to paste pattern data on the surface BF1 on the upper three-dimensional object OB22u side and the BF2 on the lower three-dimensional object OB22d side that are in contact with the divided region CR. Further process the dimensional CAD data. In this way, it looks like an integrated object, but it can be easily divided into the upper three-dimensional object OB22u and the lower three-dimensional object OB22d, and can be returned to the original object as it was. Furthermore, it is possible to provide a three-dimensional object that can immediately understand the internal structure and the internal properties of the three-dimensional object by pasting pattern data on the divided surface when it is divided. .
 図12は、実施態様2のCADデータ加工装置で実行される処理の一例を示すフローチャートである。図10に示したステップと異なるステップS33、S35のボックスは点線で表示してある。実施態様1のステップの文言と同様の文言を含む実施態様2のステップは、特に言及しない限り同様の処理を行うものとする。図に示すように、ステップS33にて、入力受付部は、立体物を分割する1つ以上の分割指示面を指定する操作入力と、分割領域に接する少なくとも1つの面に露出されるべき部材の種類を指定する操作入力とを受け付ける。ステップS34の処理を済ませた後、ステップS35では、加工部は、指定された部材の種類に応じて、複数のパターンデータのうちの対応するパターンデータを読み出し、少なくとも1つのパターンデータを、分割領域に接する面に、貼り付けるように3次元CADデータをさらに加工する。パターンデータは、例えば、以下のような形式で部材の書類とパターンデータとを関連付けて記憶部に格納しておく。
<パターンデータ>
  部材の種類       パターンデータ
  配筋1         配筋1の配筋を示す模様
  配筋2         配筋2の配筋を示す色彩および模様
  配筋3         配筋3の配筋を示す模様および形状(鉄筋を突起部として示す形状および模様)
  断熱材1入り壁     断熱材1を含む壁を示す模様
  断熱材2入り壁     断熱材2を含む壁を示す模様
  RC          RCを示す模様(或いは記号や文字情報)
  鉄骨コンクリート    鉄骨コンクリートを示す模様(或いは記号や文字情報)
  砂利          砂利を示す模様(或いは記号や文字情報)
  砂利          砂利を示す凹凸のある形状(および記号や文字情報)
  砂利          砂利を示す凹凸のある形状および模様
  玉砂利         玉砂利を示す半球状の凹凸のある形状および模様
  アスファルト      アスファルトを示す色彩および模様(或いは記号や文字情報)
  コンクリート      コンクリートを示す色彩および模様(或いは記号や文字情報)
FIG. 12 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the second embodiment. Boxes in steps S33 and S35 different from the steps shown in FIG. 10 are indicated by dotted lines. The steps of the embodiment 2 including the same words as the words of the steps of the embodiment 1 perform the same processing unless otherwise specified. As shown in the figure, in step S33, the input receiving unit performs an operation input designating one or more division instruction surfaces for dividing the three-dimensional object, and a member to be exposed on at least one surface in contact with the divided region. It accepts operation input that specifies the type. After completing the process of step S34, in step S35, the processing unit reads the corresponding pattern data from the plurality of pattern data according to the type of the designated member, and at least one pattern data is divided into divided areas. The three-dimensional CAD data is further processed so as to be pasted on the surface in contact with. The pattern data is stored in the storage unit in association with the document of the member and the pattern data in the following format, for example.
<Pattern data>
Types of members Pattern data Reinforcement 1 Pattern indicating reinforcement of reinforcement 1 Reinforcement 2 Color and pattern indicating reinforcement of reinforcement 2 Reinforcement 3 Pattern and shape indicating reinforcement of reinforcement 3 Shape and pattern shown as)
Wall containing heat insulating material 1 Pattern showing a wall containing heat insulating material 1 Wall containing heat insulating material 2 Pattern showing a wall containing heat insulating material 2 Pattern showing RC (or symbol or character information)
Steel concrete A pattern (or symbol or character information) showing steel concrete
Gravel A pattern (or symbol or text information) showing gravel.
Gravel An uneven shape (and symbols and text information) that indicates gravel.
Gravel Grained shape and pattern showing gravel Gravel Gravel Hemispherical shape and pattern showing gravel Asphalt Color and pattern showing asphalt (or symbol or character information)
Concrete Colors and patterns indicating concrete (or symbols and text information)
 最後に、ステップS36にて、3次元出力制御部は、加工された3次元データを外部の3次元プリンタやCADシステムに出力する。加工された3次元データで作製/造形された立体物は、切断部の構造や性状を確認するのに適しているのは図10のそれと同様であるが、本フローチャートの処理では、内部の部材の種類を指定するだけで、切断面のパターンを自動的に貼り付けることが可能となっている。 Finally, in step S36, the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system. The three-dimensional object produced / modeled with the processed three-dimensional data is suitable for confirming the structure and properties of the cutting part, as in FIG. 10. It is possible to automatically paste the pattern of the cut surface simply by specifying the type.
 図13は、実施態様2のCADデータ加工装置で実行される処理の一例を示すフローチャートである。図12に示したステップと異なるステップS45、S46のボックスは点線で表示してある。実施態様1のステップの文言と同様の文言を含む実施態様2のステップは、特に言及しない限り同様の処理を行うものとする。図に示すように、ステップS45にて、加工部は、分割指示面で分割される部材のCADデータの属性情報から、当該部材が切断されたときに露出する面に配置されるべきパターンデータを特定する。CADデータには、部品情報やプロパティ情報などの名称で、当該部材(描画対象のもの)の属性情報を持つものが多く、また、ユーザが、属性情報を当該部材のCADデータに容易に付加しておくことも可能である。本フローチャートでは、このように付加された、或いは、ユーザにより付加された属性情報を利用して、自動的に切断面の模様や形状などを付加する構成を示す。 FIG. 13 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the second embodiment. Boxes in steps S45 and S46 different from the steps shown in FIG. 12 are indicated by dotted lines. The steps of the embodiment 2 including the same words as the words of the steps of the embodiment 1 perform the same processing unless otherwise specified. As shown in the figure, in step S45, the processing unit obtains pattern data to be arranged on the surface exposed when the member is cut from the attribute information of the CAD data of the member divided on the division instruction surface. Identify. Many CAD data have attribute information of the member (the object to be drawn) with names such as component information and property information, and the user can easily add the attribute information to the CAD data of the member. It is also possible to keep it. This flowchart shows a configuration in which a pattern or shape of a cut surface is automatically added using attribute information added in this way or added by a user.
 ステップS45の処理を実行した後、ステップS46では、加工部は、属性情報から、複数のパターンデータのうちの対応するパターンデータを特定し、少なくとも1つのパターンデータを、分割領域に接する面に、貼り付けるように3次元CADデータをさらに加工する。ここで、貼り付けるといっても、パターンデータには表面のみならず凹凸の形状データも含まれるため、形状データを含む場合には、分割領域に接する面の近傍のデータも修正/置換されることに注意されたい。最後に、ステップS46にて、3次元出力制御部は、加工された3次元データを外部の3次元プリンタやCADシステムに出力する。加工された3次元データで作製/造形された立体物は、切断部の構造や性状を確認するのに適しているのは図10、図12のそれらと同様であるが、本フローチャートの処理では、切断面が横切る部材に付加された属性情報を利用して、自動的に切断面の模様や形状などを付加することが可能となっている。ユーザは、切断したい場所を指定するだけ、本装置が自動的に切断面の模様、形状、記号、文字情報などを貼り付ける構成であるため、ユーザの利便性が飛躍的に向上する。 After executing the process of step S45, in step S46, the processing unit identifies corresponding pattern data among the plurality of pattern data from the attribute information, and at least one pattern data is placed on the surface in contact with the divided region. The three-dimensional CAD data is further processed to be pasted. Here, even if pasting, the pattern data includes not only the surface but also the shape data of the unevenness. Therefore, when the shape data is included, the data in the vicinity of the surface in contact with the divided region is also corrected / replaced. Please note that. Finally, in step S46, the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system. The three-dimensional object produced / modeled with the processed three-dimensional data is suitable for confirming the structure and properties of the cut part as in FIGS. 10 and 12, but in the process of this flowchart, By using the attribute information added to the member crossed by the cut surface, it is possible to automatically add a pattern or shape of the cut surface. The user can dramatically improve the convenience of the user because the apparatus automatically pastes the pattern, shape, symbol, character information, etc. of the cut surface only by specifying the location where the user wants to cut.
<実施態様3>
 図14は、本発明の実施態様3によるCADデータ加工装置の概要を示すブロック図である。図に示すように、CADデータ加工装置300は、制御部(CPU)310と、入力部320と、出力部330と、通信部340と、記憶部350と、表示部360とを有する。記憶部350には、予め対象とする3次元プリンタで対象物体を分割するのに適したギャップ幅GAP、および、分割領域に接する立体物側の面に貼り付けるべきパターンデータPDが格納されていることは、実施態様2と同様であるが、実施態様3では、さらに、立体物の分割(切断)された2以上の物体の前記分割領域に接する双方の面に設けられるべき互いに嵌合する形状を示す形状データFDを格納する。互いに嵌合する形状は、例えば、一方は凹部/孔部、他方は、凹部に収容可能な凸部/突起部である。本構成によれば、立体物を分割/分離した後に、再度、物体を組み合わせて、みかけ上の一体物にするときの「位置決め」を容易にでき、さらに、分割面における「滑り」、特に分割面が斜めに指定された場合の「滑り」を効果的に抑止できる。制御部310は、取得部311、入力受付部312、加工部313、および3次元出力制御部314を有する。取得部311は、立体物の3次元CADデータを取得する。3次元CADデータは、CADシステムCD1で作成されたものであり、ネットワークNETを介して通信部340により受信され、最終的に取得部311に渡される。取得した3次元CADデータは、3次元出力制御部314により、3次元空間上に3次元モデルとしてモデリングされ、この3次元モデル(立体物)を2次元の平面(投影面)に投影し、この投影された「立体物」を表示部360が表示する。
<Embodiment 3>
FIG. 14 is a block diagram showing an outline of a CAD data processing apparatus according to Embodiment 3 of the present invention. As shown in the figure, the CAD data processing apparatus 300 includes a control unit (CPU) 310, an input unit 320, an output unit 330, a communication unit 340, a storage unit 350, and a display unit 360. The storage unit 350 stores a gap width GAP suitable for dividing a target object with a target three-dimensional printer, and pattern data PD to be pasted on a three-dimensional object-side surface in contact with the divided area. This is the same as in the second embodiment, but in the third embodiment, the two or more objects obtained by dividing (cutting) the three-dimensional object are to be fitted to each other to be provided on both surfaces in contact with the divided area. Is stored. For example, one is a recess / hole and the other is a protrusion / projection that can be accommodated in the recess. According to this configuration, after dividing / separating the three-dimensional object, “positioning” can be facilitated when the objects are combined again to make an apparent one-piece, and further, “slip” on the dividing surface, in particular division. It is possible to effectively prevent “slip” when the surface is specified obliquely. The control unit 310 includes an acquisition unit 311, an input reception unit 312, a processing unit 313, and a three-dimensional output control unit 314. The acquisition unit 311 acquires three-dimensional CAD data of a three-dimensional object. The three-dimensional CAD data is created by the CAD system CD1, is received by the communication unit 340 via the network NET, and is finally passed to the acquisition unit 311. The acquired three-dimensional CAD data is modeled as a three-dimensional model in a three-dimensional space by the three-dimensional output control unit 314, and the three-dimensional model (three-dimensional object) is projected onto a two-dimensional plane (projection plane). The display unit 360 displays the projected “three-dimensional object”.
 入力受付部312は、立体物を分割する1つ以上の分割指示面を指定する操作入力を受け付ける。具体的には、例えば、ユーザが、入力部320およびマウスMSを介して、表示部360に表示された立体物の分割を所望する分割指示面を指定し、入力受付部312は、指定された分割指示面を受け付ける。加工部313は、分割指示面およびギャップ幅で規定された分割領域で前記立体物を分割(切断)するように、3次元CADデータを加工する。加工部313は、立体物の分割(切断)された2以上の物体の少なくとも1つの物体の前記分割領域に接する面に、少なくとも1つのパターンデータを貼り付けるように、3次元CADデータをさらに加工する。また、加工部313は、立体物の分割(切断)された2以上の物体の分割領域に接する双方の面に、互いに嵌合する形状を少なくとも1つの物体につき1つ、或いは2つ設けるように、3次元CADデータをさらに加工する。 <The input reception part 312 receives the operation input which designates the 1 or more division | segmentation instruction | indication surface which divides | segments a solid object. Specifically, for example, the user designates a division instruction surface for dividing the solid object displayed on the display unit 360 via the input unit 320 and the mouse MS, and the input receiving unit 312 is designated. Accept the split instruction surface. The processing unit 313 processes the three-dimensional CAD data so as to divide (cut) the three-dimensional object in the divided area defined by the division instruction surface and the gap width. The processing unit 313 further processes the three-dimensional CAD data so that at least one pattern data is pasted on a surface in contact with the divided region of at least one of the two or more objects obtained by dividing (cutting) the three-dimensional object. To do. In addition, the processing unit 313 is configured to provide one or two shapes to be fitted to each other on both surfaces in contact with the divided regions of two or more objects obtained by dividing (cutting) the three-dimensional object. The three-dimensional CAD data is further processed.
 図15は、実施態様3のCADデータ加工装置で実行される処理の一例を示すフローチャートである。本フローチャートでは、実施態様1の図2に示したステップと異なるステップS51、S55のボックスは点線で表示してある。実施態様1のステップの文言と同様の文言を含む実施態様3のステップは、特に言及しない限り同様の処理を行うものとする。図に示すように、ステップS51にて、記憶部が「ギャップ幅」および「嵌合(凹部、凸部など)させる部材のための形状データ」を格納する。このステップは毎回実行する必要はなく、1回だけ実行して適正なギャップ幅、および、幾つかの形状データを格納しておくことで足りる。次に、ステップS52~S54の処理を行うが、これらは、実施態様1の処理S12~S14の処理と同様である。ステップS55では、加工部は、立体物の分割(切断)された2以上の物体の分割領域に接する双方の面に、互いに嵌合する形状を少なくとも1つの物体につき1つ、或いは、2つ設けるように、3次元CADデータをさらに加工する。最後に、ステップS56にて、3次元出力制御部は、加工された3次元データを外部の3次元プリンタやCADシステムに出力する。加工された3次元データで作製/造形された立体物は、切断部の構造や性状を確認するのに適している。立体物を分割/分離した後に、再度、物体を組み合わせて(嵌め合わせて)、みかけ上の一体物にするときの「位置決め」を容易にできる。即ち、組み合わせの位置決めを正確にすることによって、再度、あたかも元通りの一体物に復元することが可能となるのである。さらに、分割面における「滑り」、特に分割面が斜めに指定された場合の「滑り」を効果的に抑止できるようになる。 FIG. 15 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment. In this flowchart, the boxes of steps S51 and S55 different from the steps shown in FIG. 2 of the first embodiment are indicated by dotted lines. The steps of the embodiment 3 including the same words as the words of the steps of the embodiment 1 perform the same processing unless otherwise specified. As shown in the drawing, in step S51, the storage unit stores “gap width” and “shape data for a member to be fitted (concave, convex, etc.)”. This step does not have to be executed every time, and it is sufficient to execute it once and store an appropriate gap width and some shape data. Next, steps S52 to S54 are performed, which are the same as the steps S12 to S14 of the first embodiment. In step S <b> 55, the processing unit provides one or two shapes that are fitted to each other on both surfaces that are in contact with the divided regions of the two or more objects that are divided (cut) of the three-dimensional object. Thus, the three-dimensional CAD data is further processed. Finally, in step S56, the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system. A three-dimensional object produced / modeled with processed three-dimensional data is suitable for confirming the structure and properties of the cut portion. After dividing / separating the three-dimensional object, it is possible to easily “position” when the objects are combined (fitted together) again to form an apparent one-piece. That is, by making the positioning of the combination accurate, it can be restored again as if it were the original one. Furthermore, it is possible to effectively prevent “slip” on the split surface, particularly “slip” when the split surface is specified obliquely.
 図16は、実施態様3のCADデータ加工装置で処理される3次元CADデータを2次元平面に投影した投影図である。図中の(a)は、立体物の分割(切断)された立体物OB31の分割領域に接する面に、突起部CV1、CV2を設けたものである。突起部CV1、CV2の配置は、ユーザが指定することも可能であるが、通常は、例えば、自動的にコーナー部と、そのコーナー部の反対側に設けることが好適である。図中の(b)は、立体物の分割(切断)された立体物OB32の分割領域に接する面に、孔部CC1、CC2を設けたものである。 FIG. 16 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane. (A) in the figure is provided with projections CV1 and CV2 on the surface in contact with the divided area of the three-dimensional object OB31 divided (cut). The arrangement of the protrusions CV1 and CV2 can be specified by the user, but usually, for example, it is preferable to automatically provide the corner portion and the opposite side of the corner portion. (B) in the figure is provided with holes CC1 and CC2 on the surface in contact with the divided area of the three-dimensional object OB32 obtained by dividing (cutting) the three-dimensional object.
 図17は、突起部および孔部を設けた3次元CADデータを2次元平面に投影した投影図である。図に示すように、突起部CV1、CV2を設けた立体物OB31-sと、孔部CC1、CC2を設けた立体物OB32-sは、切断面でぴったりと組み合わせて、みかけ上の一体物にするときの「位置決め」を容易にすることが可能な形状となっている。 FIG. 17 is a projection view in which three-dimensional CAD data provided with protrusions and holes is projected onto a two-dimensional plane. As shown in the figure, the three-dimensional object OB31-s provided with the protrusions CV1 and CV2 and the three-dimensional object OB32-s provided with the holes CC1 and CC2 are closely combined at the cut surface to form an apparent one-piece. The shape is such that “positioning” can be facilitated.
 図18は、実施態様3のCADデータ加工装置で実行される処理の一例を示すフローチャートである。本フローチャートでは、実施態様1の図2に示したステップと異なるステップS61、S63,S65のボックスは点線で表示してある。実施態様1のステップの文言と同様の文言を含む実施態様3のステップは、特に言及しない限り同様の処理を行うものとする。図に示すように、ステップS61にて、記憶部が「ギャップ幅」および「後付けの回動支持軸を収容するための形状データ」を格納する。形状データには、具体的には、孔の形状データ(寸法データ)が収容されているが、孔を設ける可動部材の厚みに応じて縮尺を適宜変更して使用する。このステップは毎回実行する必要はなく、1回だけ実行して適正なギャップ幅、および、幾つかの形状データを格納しておくことで足りる。なお、分割領域用の「第1のギャップ幅」は、立体物が印刷されるべき3次元プリンタの3次元造形分解能に応じて規定されるが、可動部材を設定する際に用いる「第2のギャップ幅」は、可動部材の開閉を規制しないような距離(クリアランス)に規定したものを用いる必要がある。よって、第2のギャップ幅は、可動部材やこれが接する本体側の形状や厚さに依存するが、第1のギャップ幅よりも大きくなる傾向がある。「可動部材が開閉可能な距離」とは、具体的には、回動支持軸の設置位置、可動部材の厚さなどのファクターで決定される。 FIG. 18 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment. In this flowchart, the boxes of steps S61, S63, and S65 different from the steps shown in FIG. 2 of the first embodiment are indicated by dotted lines. The steps of the embodiment 3 including the same words as the words of the steps of the embodiment 1 perform the same processing unless otherwise specified. As shown in the figure, in step S61, the storage unit stores “gap width” and “shape data for accommodating the pivot support shaft attached later”. Specifically, the shape data contains shape data (dimension data) of the hole, but the scale data is used by appropriately changing the scale according to the thickness of the movable member provided with the hole. This step does not have to be executed every time, and it is sufficient to execute it once and store an appropriate gap width and some shape data. Note that the “first gap width” for the divided area is defined according to the three-dimensional modeling resolution of the three-dimensional printer on which the three-dimensional object is to be printed, but the “second gap” used when setting the movable member. As the “gap width”, it is necessary to use a gap defined by a distance (clearance) that does not restrict the opening and closing of the movable member. Therefore, the second gap width depends on the shape and thickness of the movable member and the main body side with which the movable member is in contact, but tends to be larger than the first gap width. The “distance at which the movable member can be opened and closed” is specifically determined by factors such as the installation position of the rotation support shaft and the thickness of the movable member.
 次に、ステップS62、S63の処理を行うが、これらは、実施態様1の処理S12、S13の処理と同様である。次に、ステップS63にて、入力受付部は、立体物を分割する1つ以上の分割指示面を指定する操作入力、および「可動部材」を指定する操作入力を受け付ける。そして、ステップS64の処理を実行した後、ステップS65では、加工部は、指定された可動部材がこの可動部材以外の立体物の部材と接する面と、ギャップ幅とで規定された部材間分割領域で、立体物から分割(切断)するように、3次元CADデータを加工し、さらに、可動部材とこの可動部材に前記部材間分割領域を介して接する立体物とを開閉自在に連結するための少なくとも1つの後付けの回動支持軸が収容されるべき孔を、可動部材が立体物に部材間分割領域を介して接する第1の位置、および、立体物が可動部材に部材間分割領域を介して接する第2の位置に形成するように、3次元CADデータを加工する。最後に、ステップS66にて、3次元出力制御部は、加工された3次元データを外部の3次元プリンタやCADシステムに出力する。加工された3次元データで作製/造形された立体物は、可動部材および本体側に孔を形成しているため、後付けの回動支持軸を簡単に装着することが可能であり、簡易に可動部材(典型的にはドア)を設けた立体模型を提供することが可能となる。 Next, the processes of steps S62 and S63 are performed, which are the same as the processes of processes S12 and S13 of the first embodiment. Next, in step S63, the input receiving unit receives an operation input for designating one or more division instruction surfaces for dividing the three-dimensional object, and an operation input for designating the “movable member”. Then, after performing the process of step S64, in step S65, the processing unit determines that the designated movable member is a member-partitioned area defined by the surface where the designated movable member is in contact with a member of a three-dimensional object other than the movable member, and the gap width. Then, the three-dimensional CAD data is processed so as to be divided (cut) from the three-dimensional object, and the movable member and the three-dimensional object contacting the movable member via the inter-member divided region are opened and closed. A hole in which at least one retrofitting pivot support shaft is to be received is a first position where the movable member contacts the three-dimensional object via the inter-member divided area, and the three-dimensional object contacts the movable member via the inter-member divided area. Then, the three-dimensional CAD data is processed so as to be formed at the second position where they touch each other. Finally, in step S66, the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system. Since the three-dimensional object created / modeled with the processed three-dimensional data has holes formed on the movable member and the main body, it is possible to easily attach the rotation support shaft attached later and move easily. It is possible to provide a three-dimensional model provided with a member (typically a door).
 図19は、実施態様3のCADデータ加工装置で処理される3次元CADデータを2次元平面に投影した投影図である。可動部材を設ける立体物の典型例は、家屋やビルなどの建造物であるが、作図および説明の便宜上、1つの外壁に可動部材としてドアを設置する態様で説明するものとする。前提として、立体物OB40の表面には、可動部材を示す矩形枠OCP1が表示されているものとする。図中の(a)に示すように、ユーザは、入力部(マウスなど)を用いて、表示された立体物OB40をうち「可動部材」として加工したい場所や表示要素(本例では、矩形枠OCP1)を指定する。もちろん、矩形枠や他の図形(円形、三角形などの任意の図形)およびその大きさをマウスなどで指定してもよい(例えば、矩形の始点および終点の座標をマウスで指示する。)。入力受付部は当該操作入力を受け付け、加工部は、指定された可動部材がこの可動部材以外の立体物の部材と接する面と、ギャップ幅とで規定された部材間分割領域で、立体物から分割(切断)するように、3次元CADデータを加工する。 FIG. 19 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane. A typical example of a three-dimensional object provided with a movable member is a building such as a house or a building. However, for convenience of drawing and explanation, a description will be given in a mode in which a door is installed as a movable member on one outer wall. It is assumed that a rectangular frame OCP1 indicating a movable member is displayed on the surface of the three-dimensional object OB40. As shown to (a) in a figure, a user uses the input part (mouse etc.) and the place and display element (in this example, a rectangular frame) which wants to process the displayed solid object OB40 as a "movable member". OCP1) is specified. Of course, a rectangular frame or other figure (arbitrary figure such as a circle or triangle) and its size may be designated with a mouse or the like (for example, the coordinates of the start point and end point of the rectangle are designated with the mouse). The input receiving unit receives the operation input, and the processing unit is a divided region between the members defined by the surface where the designated movable member is in contact with the member of the three-dimensional object other than the movable member and the gap width. Three-dimensional CAD data is processed so as to be divided (cut).
 このようにして、指定された矩形枠OCP1の領域に基づき、開口部OP40(孔)が当該箇所に設置され、開口部OP40内に、可動部材DR1(ドア)が設置される。図中の(b)は、開口部OP40の可動部材側に接する面に、後付けの回動支持軸を収容するための孔H1、H2を同一の回動軸(図示しない)に設け、孔付きの開口部OP40-hに加工する様子を示したものである。図中の(c)は、可動部材DR1の本体側に接する面に、後付けの回動支持軸を収容するための孔H3、H4を同一の回動軸(図示しない)に設け、孔付きの可動部材DR1-hに加工する様子を示したものである。このように加工した孔付きの可動部材DR1-hの孔H3、H4に後付けの2つの回動支持軸(収容が容易になるような伸縮可能なスプリング機構付きの支持軸が好適である。)を装着(収容)し、孔付きの開口部OP40-hのそれぞれの孔H1、H2に回動支持軸を装着(収容)することが望ましい。なお、孔H3,H4は、1つの連通孔としてもよい。また、回動支持軸は後付けが好適ではあるが、加工部が、本体側に連結しないいわゆる「はめ殺しの回動支持軸」として双方の孔に収容されるように、当該孔の位置に「回動支持軸部材」を立体成形するように3次元データを加工することも可能である。 In this way, based on the area of the designated rectangular frame OCP1, the opening OP40 (hole) is installed at the location, and the movable member DR1 (door) is installed in the opening OP40. (B) in the drawing is provided with holes H1 and H2 in the same rotating shaft (not shown) for accommodating a later-mounted rotating support shaft on the surface of the opening OP40 that is in contact with the movable member. This shows a state in which the opening OP40-h is processed. (C) in the drawing is provided with holes H3 and H4 for accommodating a later-mounted rotation support shaft on the same rotation shaft (not shown) on the surface of the movable member DR1 in contact with the main body. It shows a state in which the movable member DR1-h is processed. Two pivotal support shafts retrofitted in the holes H3 and H4 of the movable member DR1-h with holes processed in this way (a support shaft with an extendable spring mechanism is preferable for easy accommodation). It is desirable to mount (accommodate) and to mount (accommodate) the rotation support shaft in each of the holes H1 and H2 of the apertured opening OP40-h. The holes H3 and H4 may be one communication hole. Further, although the rotation support shaft is preferably retrofitted, the processed portion is positioned at the position of the hole so that the processed portion is accommodated in both holes as a so-called “fitting rotation support shaft” that is not connected to the main body side. It is also possible to process the three-dimensional data so that the “rotating support shaft member” is three-dimensionally formed.
 図20は、実施態様3のCADデータ加工装置で実行される処理の一例を示すフローチャートである。本フローチャートは、図18の変形例であり、可動部材や本体側に回動支持軸となる突起部を直接設けた例を示すものである。本フローチャートでは、図18に示したステップと異なるステップS71、S75のボックスは点線で表示してある。実施態様1のステップの文言と同様の文言を含む実施態様3のステップは、特に言及しない限り同様の処理を行うものとする。図に示すように、ステップS71にて、記憶部が「ギャップ幅」および「回動支持軸として機能する突起部およびそれを収容する孔の形状データ」を格納する。形状データには、具体的には、突起部および孔の形状データ(寸法データ)が収容されているが、孔や突起部を設ける可動部材や壁となる本体側の部材の厚みに応じて縮尺を適宜変更して使用する。このステップは毎回実行する必要はなく、1回だけ実行して適正なギャップ幅、および、幾つかの形状データを格納しておくことで足りる。なお、分割領域用の「第1のギャップ幅」は、立体物が印刷されるべき3次元プリンタの3次元造形分解能に応じて規定されるが、可動部材を設定する際に用いる「第2のギャップ幅」は、可動部材の開閉を規制しないような距離(クリアランス)に規定したものを用いる必要がある。よって、第2のギャップ幅は、第1のギャップ幅よりも大きい。「可動部材が開閉可能な距離」とは、具体的には、回動支持軸の設置位置、可動部材の厚さなどのファクターで決定される。 FIG. 20 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment. This flowchart is a modification of FIG. 18 and shows an example in which a protrusion serving as a rotation support shaft is directly provided on the movable member or the main body side. In this flowchart, the boxes in steps S71 and S75 different from the steps shown in FIG. 18 are indicated by dotted lines. The steps of the embodiment 3 including the same words as the words of the steps of the embodiment 1 perform the same processing unless otherwise specified. As shown in the figure, in step S71, the storage unit stores “gap width” and “shape data of the projection functioning as a rotation support shaft and a hole for accommodating the projection”. Specifically, the shape data contains the shape data (dimension data) of the protrusions and holes, but the scale is reduced according to the thickness of the movable member that provides the holes and protrusions and the body-side member that will be the wall. Are used as appropriate. This step does not have to be executed every time, and it is sufficient to execute it once and store an appropriate gap width and some shape data. Note that the “first gap width” for the divided area is defined according to the three-dimensional modeling resolution of the three-dimensional printer on which the three-dimensional object is to be printed, but the “second gap” used when setting the movable member. As the “gap width”, it is necessary to use a gap defined by a distance (clearance) that does not restrict the opening and closing of the movable member. Therefore, the second gap width is larger than the first gap width. The “distance at which the movable member can be opened and closed” is specifically determined by factors such as the installation position of the rotation support shaft and the thickness of the movable member.
 次に、ステップS72、S73、S74の処理を行うが、これらは、実施態様1の処理S12、S13、S14の処理と同様である。そして、これらのステップの処理を実行した後、ステップS75では、加工部は、指定された可動部材がこの可動部材以外の前記立体物の部材と接する面と、前記ギャップ幅とで規定された部材間分割領域で、前記立体物から分割(切断)するように、前記3次元CADデータを加工し、さらに、前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための回動支持軸として機能する2つの突起部を、前記可動部材が前記部材間分割領域を介して前記立体物に接する第1および第2の位置に形成し、この第1および第2の位置に前記部材間領域を介して対向する第3および第4の位置に前記突起部の各々を収容する2つの孔をそれぞれ形成するように、前記3次元CADデータを加工する、或いは、前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための回動支持軸を収容する2つの孔を、前記可動部材が前記部材間分割領域を介して前記立体物に接する第1および第2の位置に形成し、この第1および第2の位置に前記部材間領域を介して対向する第3および第4の位置に前記孔の各々に収容されるべき2つの突起部をそれぞれ形成するように、前記3次元CADデータを加工する。最後に、ステップS66にて、3次元出力制御部は、加工された3次元データを外部の3次元プリンタやCADシステムに出力する。加工された3次元データで作製/造形された立体物は、このままで可動部材が回動支持軸として機能する突起部で開閉自在に本体側の立体物と連結されているため、可動部材の「動き」を演出できる立体模型を極めて簡易に提供することが可能となる。粉末を基材に使う場合には、このような可動部材やその近傍の孔には、固化せずに残した粉末が入り込んだままであるが、それらの残存粉末は、エアガンなどで圧縮空気を当該箇所に噴射することで吹き飛ばすことが好適である。これは、本実施態様および他の実施態様においても、分割領域やその近傍に形成された嵌合する形状などにおいても、同様にエアガンの圧縮空気の噴射で吹き飛ばすことが好適である。 Next, steps S72, S73, and S74 are performed, which are the same as the processes S12, S13, and S14 of the first embodiment. And after performing the process of these steps, in step S75, a process part is a member prescribed | regulated by the surface where the designated movable member contacts the member of the three-dimensional object other than this movable member, and the said gap width | variety. The three-dimensional CAD data is processed so that the three-dimensional object is divided (cut) from the three-dimensional object in an inter-partition area, and the movable member and the three-dimensional object that contacts the movable member via the inter-partition area Two projecting portions that function as pivot support shafts that can be freely opened and closed are formed at first and second positions where the movable member contacts the three-dimensional object via the inter-member divided region. The three-dimensional CAD data is processed so that two holes for accommodating each of the protrusions are formed in the third and fourth positions facing the first and second positions through the inter-member region, respectively. Or Has two holes for accommodating a rotation support shaft for opening and closing the movable member and the three-dimensional object contacting the movable member through the inter-member divided region, and the movable member is disposed between the members. The holes are formed at first and second positions that contact the three-dimensional object via the divided areas, and at the third and fourth positions facing the first and second positions via the inter-member area. The three-dimensional CAD data is processed so as to form two protrusions to be accommodated in each. Finally, in step S66, the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system. The three-dimensional object produced / modeled with the processed three-dimensional data is connected to the three-dimensional object on the main body side so that the movable member can be freely opened and closed by the protrusion functioning as the rotation support shaft. It is possible to provide a three-dimensional model that can produce “movement” very easily. When powder is used as a base material, the powder left without solidifying remains in such movable members and the holes in the vicinity thereof, but these residual powders are compressed air with an air gun or the like. It is preferable to blow off by spraying on the part. In this embodiment and other embodiments as well, it is preferable that the air gun is blown away by jetting compressed air in the divided region and the fitting shape formed in the vicinity thereof.
 図21は、実施態様3のCADデータ加工装置で処理される3次元CADデータを2次元平面に投影した投影図である。可動部材を設けた立体物の典型例は、家屋やビルなどの建造物であるが、作図および説明の便宜上、1つの外壁に可動部材としてドア(開閉部材)を設置する態様で説明する。前提として、立体物(外壁)OB50の表面には、可動部材を示す矩形枠OCP2が表示されているものとする。図中の(a)に示すように、ユーザは、入力部(マウスなど)を用いて、表示された立体物OB50をうち「可動部材」として加工したい場所や表示要素(本例では、矩形枠OCP2)を指定する。もちろん、矩形枠や他の図形(円形、三角形などの任意の図形)およびその大きさをマウスなどで指定してもよい(例えば、矩形の始点および終点の座標をマウスで指示する。)。入力受付部は当該操作入力を受け付け、加工部は、指定された可動部材がこの可動部材以外の立体物の部材と接する面と、ギャップ幅とで規定された部材間分割領域で、立体物から分割(切断)するように、3次元CADデータを加工する。このようにして、指定された矩形枠OCP2の領域に基づき、開口部OP50(孔)が当該箇所に設置され、開口部OP50内に、可動部材DR2(ドア)が設置される。図中の(b)は、開口部OP50の可動部材側に接する面に、回動支持軸として機能する突起部を収容するための孔H5、H6を同一の回動軸(図示しない)に設け、孔付きの開口部OP50-hに加工する様子を示したものである。図中の(c)は、可動部材DR2の本体側に接する面に、回動支持軸として機能する突起部PRG1,PRG2を同一の回動軸(図示しない)に設け、突起部付きの可動部材DR2-hに加工する様子を示したものである。このように加工した孔付きの可動部材DR2-prgの突起部PRG1,PRG2は、3次元プリンタの印刷/立体造形時に孔H5、H6にそれぞれ収容される。なお、可動部材に孔を形成し、本体側の開口部に突起部を形成する構成も可能である。その場合には、可動部材の孔を1つの連通孔に形成することも可能であり、さらに、本体側の突起部は、突起部ではなく双方の面を結ぶ1つのブリッジとすることも可能である。 FIG. 21 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane. A typical example of a three-dimensional object provided with a movable member is a building such as a house or a building. For convenience of drawing and explanation, a description will be given in a mode in which a door (opening / closing member) is installed as a movable member on one outer wall. It is assumed that a rectangular frame OCP2 indicating a movable member is displayed on the surface of the three-dimensional object (outer wall) OB50. As shown to (a) in a figure, a user uses the input part (mouse etc.) and the place and display element (in this example, a rectangular frame) which wants to process the displayed solid object OB50 as a "movable member". OCP2) is specified. Of course, a rectangular frame or other figure (arbitrary figure such as a circle or triangle) and its size may be designated with a mouse or the like (for example, the coordinates of the start point and end point of the rectangle are designated with the mouse). The input receiving unit receives the operation input, and the processing unit is a divided region between the members defined by the surface where the designated movable member is in contact with the member of the three-dimensional object other than the movable member and the gap width. Three-dimensional CAD data is processed so as to be divided (cut). In this way, based on the area of the designated rectangular frame OCP2, the opening OP50 (hole) is installed at the location, and the movable member DR2 (door) is installed in the opening OP50. (B) in the drawing is provided with holes H5 and H6 in the same rotating shaft (not shown) for accommodating the protruding portion functioning as a rotating support shaft on the surface of the opening OP50 that contacts the movable member side. This shows a state of processing into a holed opening OP50-h. (C) in the drawing is provided with projections PRG1 and PRG2 functioning as pivot support shafts on the same pivot shaft (not shown) on the surface of the movable member DR2 that is in contact with the main body. It shows how it is processed into DR2-h. The protrusions PRG1 and PRG2 of the holed movable member DR2-prg thus processed are accommodated in the holes H5 and H6, respectively, at the time of printing / three-dimensional modeling by the three-dimensional printer. In addition, the structure which forms a hole in a movable member and forms a projection part in the opening part by the side of a main body is also possible. In that case, the hole of the movable member can be formed in one communication hole, and the protrusion on the main body side can be a bridge that connects both surfaces instead of the protrusion. is there.
 図22は、実施態様3のCADデータ加工装置で実行される処理の一例を示すフローチャートである。本フローチャートは、図18の変形例であり、立体物のなかで透明な窓や引き戸のガラスなどとなる部材を除外部として指定し、除外部が占める領域に開口部を形成し、当該開口部へ後付けの透明部材を挿入、保持するためのガイドスリットおよび支持溝を形成する手法を示したものである。本フローチャートでは、図18に示したステップと異なるステップS81、S83、S84のボックスは点線で表示してある。実施態様1のステップの文言と同様の文言を含む実施態様3のステップは、特に言及しない限り同様の処理を行うものとする。図に示すように、ステップS81にて、記憶部が「ギャップ幅」および「ガイドスリットと支持溝との形状データ」を格納する。形状データには、具体的には、窓枠の形状データおよび窓枠に後付けの透明部材(窓)を挿入するためのガイドスリット形状データ(寸法データ)が収容されているが、窓(除外部)のサイズ(寸法)、窓を設ける壁となる本体側の部材の厚みに応じて縮尺を適宜変更して使用する。このステップは毎回実行する必要はなく、1回だけ実行して適正なギャップ幅、および、幾つかの形状データを格納しておくことで足りる。 FIG. 22 is a flowchart illustrating an example of processing executed by the CAD data processing apparatus according to the third embodiment. This flowchart is a modification of FIG. 18, in which a member such as a transparent window or sliding door glass in a three-dimensional object is specified as an exclusion portion, an opening is formed in a region occupied by the exclusion portion, and the opening This shows a method for forming guide slits and support grooves for inserting and holding a transparent member attached later. In this flowchart, the boxes of steps S81, S83, and S84 different from the steps shown in FIG. 18 are indicated by dotted lines. The steps of the embodiment 3 including the same words as the words of the steps of the embodiment 1 perform the same processing unless otherwise specified. As shown in the figure, in step S81, the storage unit stores “gap width” and “shape data of guide slit and support groove”. Specifically, the shape data contains window frame shape data and guide slit shape data (dimension data) for inserting a transparent member (window) to be retrofitted into the window frame. ) And the thickness of the member on the main body side that will be the wall on which the window is provided. This step does not have to be executed every time, and it is sufficient to execute it once and store an appropriate gap width and some shape data.
 本フローチャ-トでは、ステップS82,S84の処理を行うが、これらは、実施態様1の処理S12、S14の処理と同様である。ステップS83の処理を実行した後、ステップS83では、入力受付部が、分割指示面および「除外部材」を指定する操作入力を受け付ける。そして、ステップS84の処理を実行した後、ステップS85では、加工部は、指定された除外部材を立体物から除外するように3次元CADデータを加工し、さらに、除外部材が存在していた空間を囲む立体物の枠の一部に後付け部材を挿入するためのガイドスリットを形成し、立体物の枠のうちガイドスリットを設けた部分以外に後付け部材が挿入されるべき支持溝を形成するように3次元CADデータを加工する。最後に、ステップS86にて、3次元出力制御部は、加工された3次元データを外部の3次元プリンタやCADシステムに出力する。加工された3次元データで作製/造形された立体物には、後付け部材として、透明なプラスチック板(図示しない)を窓や引き戸としてガイドスリットから挿入する。プラスチック板は、支持溝で支持するが、プラスチック板を支持溝(ここでは「レール」として機能する。)に沿って横方向や縦方向に摺動させて、あたかも「引き戸」や「窓」のように演出することも可能である。このように後付け部材を摺動させたときには、摺動面にローラーや摺動し易くなるように低抵抗のフッ素樹脂部材を使用することが好適である。このように、本構成では、透明な窓を演出したり、透明な窓の横方向や縦方向への「動き」を演出したりできる立体模型を極めて簡易に提供することが可能となる。 In this flowchart, the processes of steps S82 and S84 are performed, which are the same as the processes of processes S12 and S14 of the first embodiment. After performing the process of step S83, in step S83, the input receiving unit receives an operation input for designating a division instruction surface and an “exclusion member”. After executing the process of step S84, in step S85, the processing unit processes the three-dimensional CAD data so as to exclude the designated exclusion member from the three-dimensional object, and further, the space where the exclusion member exists. A guide slit for inserting the retrofit member is formed in a part of the frame of the three-dimensional object surrounding the frame, and a support groove into which the retrofit member is to be inserted is formed in a portion other than the portion of the three-dimensional object frame where the guide slit is provided. 3D CAD data is processed. Finally, in step S86, the three-dimensional output control unit outputs the processed three-dimensional data to an external three-dimensional printer or CAD system. A transparent plastic plate (not shown) is inserted as a retrofit member from the guide slit as a retrofit member into the three-dimensional object produced / modeled with the processed three-dimensional data. The plastic plate is supported by the support groove. The plastic plate is slid horizontally or vertically along the support groove (here, it functions as a “rail”), as if it is a “sliding door” or “window”. It is also possible to produce as follows. When the retrofitting member is slid in this way, it is preferable to use a low-resistance fluororesin member so that the sliding surface is easily slid with a roller. In this way, in this configuration, it is possible to provide a three-dimensional model that can produce a transparent window or produce a “movement” in the horizontal or vertical direction of the transparent window very easily.
 図23は、実施態様3のCADデータ加工装置で処理される3次元CADデータを2次元平面に投影した投影図である。窓を設けた立体物の典型例は、家屋やビルなどの建造物であるが、作図および説明の便宜上、1つの外壁に窓を設置するためのデータ加工の態様で説明する。前提として、立体物(外壁)OB60の表面には、窓部材を示す矩形枠が表示されているものとする。図中の(a)に示すように、ユーザは、入力部(マウスなど)を用いて、表示された立体物OB60をうち「窓部材」として加工(即ち除外)したい場所や表示要素(本例では、矩形枠OCP2)を除外部EXDとして指定する。もちろん、矩形枠や他の図形(円形、三角形などの任意の図形)およびその大きさをマウスなどで指定してもよい(例えば、矩形の始点および終点の座標をマウスで指示する。)。入力受付部は当該操作入力を受け付け、加工部は、指定された除外部材である除外部EXDを立体物から除外するように3次元CADデータを加工し、OB61に示すように開口部OP60を形成する。さらに、立体物OB62の開口部OP60-gsに示すように、除外部EXDが存在していた空間を囲む立体物の枠の一部に後付け部材を挿入するためのガイドスリットGSを形成し、立体物の枠のうちガイドスリットを設けた部分以外に後付け部材が挿入されるべき支持溝GRを形成するように3次元CADデータを加工する。このように最終的には、ガイドスリットGS、および、支持溝GRを形成した開口部OP60-gs-grが形成される。このように加工したガイドスリットGS、および、支持溝GRを形成した開口部OP60-gs-grには、容易に後付けの透明な窓部材や引き戸部材などをガイドスリットを通じて開口部に挿入し、支持溝に支持させることが可能となる。 FIG. 23 is a projection view in which three-dimensional CAD data processed by the CAD data processing apparatus according to the third embodiment is projected onto a two-dimensional plane. A typical example of a three-dimensional object provided with a window is a building such as a house or a building. For convenience of drawing and explanation, a three-dimensional object will be described in a data processing mode for installing a window on one outer wall. As a premise, a rectangular frame indicating a window member is displayed on the surface of the three-dimensional object (outer wall) OB60. As shown to (a) in a figure, a user uses the input part (mouse etc.) and the place and display element (this example) which wants to process (namely, exclude) the displayed solid object OB60 as a "window member" among them. Then, the rectangular frame OCP2) is designated as the exclusion part EXD. Of course, a rectangular frame or other figure (arbitrary figure such as a circle or triangle) and its size may be designated with a mouse or the like (for example, the coordinates of the start point and end point of the rectangle are designated with the mouse). The input receiving unit receives the operation input, and the processing unit processes the three-dimensional CAD data so as to exclude the excluded portion EXD that is the designated exclusion member from the three-dimensional object, and forms an opening OP60 as indicated by OB61. To do. Further, as shown in the opening OP60-gs of the three-dimensional object OB62, a guide slit GS for inserting a retrofitting member is formed in a part of the frame of the three-dimensional object surrounding the space where the exclusion portion EXD existed, Three-dimensional CAD data is processed so as to form a support groove GR into which a retrofitting member is to be inserted in a part frame other than the part where the guide slit is provided. Thus, finally, the opening OP60-gs-gr in which the guide slit GS and the support groove GR are formed are formed. In the opening OP60-gs-gr formed with the guide slit GS and the support groove GR formed in this way, a transparent window member or a sliding door member which is retrofitted can be easily inserted into the opening through the guide slit and supported. It can be supported in the groove.
<実施態様4>
 図24は、実施態様4による本発明による装置またはプログラムで3次元CADデータを加工した家屋を立体物として3次元プリンタで作製する様子を示す分解斜視図である。図に示すように、はじめに、床(基礎)を構成する幾つかのスライス面SLbtm(作図および説明の便宜上、スライス面1層で描画しているが実際には複数の層で構成される。以下、他の層でも同様である。)を3次元印刷/立体造形する。その上に、部屋割のための壁および外壁を含む中間のスライス面SLmdl-1、SLmdl-2、SLmdl-nを立体造形する。n個目のスライス面SLmdl-nの上に、本装置やプログラムで加工したデータによるスライス面である分割領域(粉末層/非固化層)SLpwdを造形する。但し、この領域は造形といっても、粉末であるため、あとで取り除かれることになる。そして、この上に天井/屋根を構成する幾つかのスライス面SLcelが造形される。このようにして、あたかも一体物のような家屋の立体模型が完成する。
<Embodiment 4>
FIG. 24 is an exploded perspective view showing a state where a house in which three-dimensional CAD data is processed by the apparatus or program according to the fourth embodiment is manufactured as a three-dimensional object by a three-dimensional printer. As shown in the figure, first, several slice planes SLbtm constituting the floor (foundation) (for the convenience of drawing and explanation, the drawing is made with one slice plane, but actually it is constituted by a plurality of layers. The same applies to the other layers.) 3D printing / three-dimensional modeling. Further, the intermediate slice surfaces SLmdl-1, SLmdl-2, and SLmdl-n including the wall for room division and the outer wall are three-dimensionally modeled. On the nth slice surface SLmdl-n, a divided region (powder layer / non-solidified layer) SLpwd which is a slice surface based on data processed by the present apparatus or program is formed. However, even though this area is called modeling, it is a powder and will be removed later. And several slice surfaces SLcel which comprise a ceiling / roof are modeled on this. In this way, a three-dimensional model of a house that looks like an integral object is completed.
 図25は、図24で作製した一体物の家屋立体模型を示す図である。図に示すように家屋立体模型Homeはあたかも一体物に見えるが、容易に、家屋天井部Home1と、家屋部屋割部Home2とに分割でき、分割したものも、用意に元通りの一体物の家屋立体模型Homeに復元することが可能である。発明の理解に資するために、図においてスライス層の境界を示すたに線を描画してあるが、実際には、線は見えず、外観上は均一な壁のように見えることに注意されたい。 FIG. 25 is a diagram showing a one-dimensional house model produced in FIG. As shown in the figure, the house three-dimensional model Home looks as if it were a single object, but it can easily be divided into a house ceiling part Home1 and a house room split part Home2. It is possible to restore the three-dimensional model Home. In order to help the understanding of the invention, a line is drawn to show the boundary of the slice layer in the figure, but it should be noted that in reality, the line is not visible and looks like a uniform wall. .
 図26は、図25に示した一体物の家屋立体模型を分割したときの分割面の様子を示す図である。図に示すように、分割面に接するスライス面SLmdl-nの表面には、パターンデータとして横に配設した鉄筋RFstの色彩および模様が貼り付けられている。ユーザは、立体模型を分割した後、この面に描画されるパターンを見て、容易に内部構造を理解することが可能となる。 FIG. 26 is a diagram showing a state of the divided surface when the one-dimensional house three-dimensional model shown in FIG. 25 is divided. As shown in the figure, the color and pattern of the reinforcing bars RFst arranged horizontally as pattern data are pasted on the surface of the slice surface SLmdl-n in contact with the dividing surface. After the user divides the three-dimensional model, the user can easily understand the internal structure by looking at the pattern drawn on this surface.
 図27は、図25に示した一体物の家屋立体模型を分割したときの分割面の様子を示す図である。図に示すように、分割面に接するスライス面SLmdl-nの表面を、今度は別パターンデータを貼り付けたスライス面SLmdl-n1として構成したものである。パターンデータとしては、縦に配設した鉄筋RFbarの色彩、模様、および形状が貼り付けられ、突起部となっている。また、鉄筋記号RFbar-txtが記号として貼り付けられており、これには当業者が使用する記号である「D22-@200」が記載されている。この意味は、直径22mmの鉄筋が200本敷設されることを意味している。ユーザは、立体模型を分割した後、この面に描画、および、立体形成された「突起部」や「記号」を見たり、触ったりして、容易に切断部の内部構造や内部空間の形状や部屋割などの空間的な構成を理解することが可能となる。パターンとして突起部が構成された部分に対向する家屋天井部Home1の面には、突起部と嵌め合うように、凹部が形成される。このような突起部と、凹部とは、復元時の位置決めのための部材として使用することも可能である。 FIG. 27 is a diagram showing a state of the divided surface when the one-dimensional house three-dimensional model shown in FIG. 25 is divided. As shown in the figure, the surface of the slice surface SLmdl-n in contact with the divided surface is configured as a slice surface SLmdl-n1 to which another pattern data is pasted this time. As pattern data, the color, pattern, and shape of the reinforcing bars RFbar arranged vertically are pasted to form protrusions. Further, a reinforcing bar symbol RFbar-txt is pasted as a symbol, which describes “D22- @ 200” which is a symbol used by those skilled in the art. This means that 200 rebars with a diameter of 22 mm are laid. After dividing the 3D model, the user can easily draw the 3D model and see or touch the 3D “projection” or “symbol” to easily cut the internal structure of the cutting part or the shape of the internal space. It becomes possible to understand the spatial composition such as room layout. A concave portion is formed on the surface of the house ceiling portion Home1 facing the portion where the protruding portion is configured as a pattern so as to fit the protruding portion. Such protrusions and recesses can also be used as members for positioning during restoration.
<実施態様5>
 図28は、図21に示した孔付きの可動部材に開口部およびガイドスリットを形成する様子を説明する図である。図に示すように、可動部材DR2-prgの中央にユーザによって設定された除外部EXDに基づき、当該領域の空間を除外し、開口部OPが形成される。開口部OPには、ガイドスリットGSが形成される。このようにしてできあがった可動部材DR2-prg-wのガイドスリットGSに後付けの透明部材を挿入すれば、窓付きのドアといった趣の立体模型を形成することが可能となる。
<Embodiment 5>
FIG. 28 is a diagram for explaining a state in which the opening and the guide slit are formed in the movable member with holes shown in FIG. As shown in the figure, based on the exclusion portion EXD set by the user at the center of the movable member DR2-prg, the space of the region is excluded and the opening OP is formed. A guide slit GS is formed in the opening OP. By inserting a retrofitted transparent member into the guide slit GS of the movable member DR2-prg-w thus completed, it is possible to form a three-dimensional model such as a door with a window.
<実施態様6>
 図29は、壁に開口部、可動部材としての引き戸、およびガイドスリットを形成する様子を説明する図である。図に示すように、壁WW1の中央にユーザによって設定された除外部に基づき、当該領域の空間を除外して、開口部OP-sldが形成される。開口部OP-sldの上部および下部には、引き戸の上端部、下端部を支持し、左右への引き戸の摺動をガイドするガイド溝(図示せず)が形成される。そして、開口部OP-sldの中に、引き戸SLD1,SLD2を形成する。このようにしてできあがった壁WW2の引き戸SLD1,SLD2は、左右に引いてスライドして開閉することが可能である。また、この引き戸には、図28のように開口部およびガイドスリットを形成して、窓付きのスライドドアといった趣の立体模型を形成することが可能となる。
<Embodiment 6>
FIG. 29 is a diagram illustrating a state in which an opening, a sliding door as a movable member, and a guide slit are formed on the wall. As shown in the figure, the opening OP-sld is formed by excluding the space of the region based on the exclusion portion set by the user in the center of the wall WW1. Guide grooves (not shown) that support the upper and lower ends of the sliding door and guide the sliding of the sliding door to the left and right are formed at the upper and lower portions of the opening OP-sld. Then, the sliding doors SLD1 and SLD2 are formed in the opening OP-sld. The sliding doors SLD1 and SLD2 of the wall WW2 thus completed can be opened and closed by sliding left and right. In addition, an opening and a guide slit can be formed on the sliding door as shown in FIG. 28 to form a three-dimensional model such as a sliding door with a window.
<実施態様7>
 図30は、大きいサイズの立体模型を分割する様子を説明する図である。図に示すように、壁WW2は、印刷/造形時に使用する3次元プリンタの印刷可能領域CSを大幅に超えるサイズである。壁WW2は、印刷可能領域2つ分でカバーされる。このとき、目的とする立体模型である壁WW2のサイズを縮尺する方法もあるが、縮尺すると立体模型としての迫力に欠けるといった欠点がある。このような場合には、壁WW2-divのように、分割領域CR-autoを中央に設置し、左側壁WW2-lと、右側壁WW2-rとに分割する。分割領域の設定は、図31に示すように、自動で行うこともできるが、ユーザが手動で分割指示面を指定して設定することもできる。左側壁WW2-lには、矢印型の凸部Warを設置し、右側壁WW2-rには、凸部Warと嵌め合う形状である矢印抜型の凹部Wcvを設置する。このようにして、大型サイズの立体模型でありながら、分割可能であり、かつ、凸部及び凹部を嵌め合うことで容易に再結合(組立)可能な立体模型を作成することが可能となる。この例では、2つに分割したが、3つ以上に分割することも可能である。また、ここでの凸部、凹部は、単に嵌め合うのみならず、矢印型から容易に判断できるように、嵌め合わせた後は、しっかりと連結し、分割を抑止する連結部としてそれぞれ機能する。ここでは、凸部、凹部は一対だけであるが、複数の対を設けて連結強度を高めてもよい。さらに、パターンデータやパターンの形状には、このような連結部として機能する矢印型、きのこ型、釣り針型(およびこれらの抜き型)などの様々な形状を含み、パターンとしては分割した部分に貼り付けることが可能である。
<Embodiment 7>
FIG. 30 is a diagram illustrating a state in which a large-sized three-dimensional model is divided. As shown in the figure, the wall WW2 has a size that greatly exceeds the printable area CS of the three-dimensional printer used during printing / modeling. The wall WW2 is covered with two printable areas. At this time, there is a method of reducing the size of the wall WW2, which is the target three-dimensional model, but there is a drawback that the force of the three-dimensional model is lacking when the scale is reduced. In such a case, like the wall WW2-div, the divided region CR-auto is installed in the center and divided into a left side wall WW2-1 and a right side wall WW2-r. As shown in FIG. 31, the division area can be set automatically, but can also be set by the user manually specifying the division instruction surface. The left side wall WW2-1 is provided with an arrow-shaped convex part War, and the right side wall WW2-r is provided with an arrow-shaped concave part Wcv having a shape fitting with the convex part War. In this way, it is possible to create a three-dimensional model that can be divided and easily re-coupled (assembled) by fitting the convex portion and the concave portion while being a large-sized three-dimensional model. In this example, it is divided into two, but it is also possible to divide into three or more. In addition, the convex portions and the concave portions here function not only simply fitted together but also function as connecting portions that firmly connect and prevent division after being fitted so that they can be easily determined from the arrow shape. Here, there are only one pair of convex portions and concave portions, but a plurality of pairs may be provided to increase the connection strength. Furthermore, the pattern data and pattern shapes include various shapes such as an arrow shape, a mushroom shape, a fishhook shape (and their punching shapes) that function as such a connecting portion, and the pattern is pasted on a divided portion. It is possible to attach.
 図31は、図9のCADデータ加工装置で実行される実施態様7用の処理の一例を示すフローチャートである。図に示すように、ステップS91にて、立体物の印刷時サイズ(縮尺)、および、使用3Dプリンタの印刷可能領域を取得する。次に、ステップS92では、加工部が印刷可能領域に立体物の印刷時サイズが収まるかを判定する。収まる場合は、ステップS95にて、他の実施態様における通常の分割処理をおこなう。収まらない場合は、ステップS93にて、加工部が、印刷可能領域1つに収まる大きさに立体物を分割する分割領域を自動的に設定し、立体物を分割(切断)するように3次元CADデータを加工する。続いて、ステップS94にて、加工部が、分割領域に接する本体側に、互いに嵌め合う形状である凹部、凸部を形成するように3次元CADデータを加工する。最後に、ステップS95,S94を実行した後、ステップS96にて、加工された3次元CADデータを出力する。本実施態様によれば、サイズの大きな立体模型を縮尺することなく、自動的に分割し、凸部及び凹部を嵌め合うことで容易に再結合(組立)可能な立体模型を作成することが可能となる。 FIG. 31 is a flowchart showing an example of processing for the embodiment 7 executed by the CAD data processing apparatus of FIG. As shown in the figure, in step S91, the size (scale) of the solid object and the printable area of the 3D printer used are acquired. Next, in step S92, the processing unit determines whether or not the size of the three-dimensional object is within the printable area. If it falls within the range, in step S95, normal division processing in another embodiment is performed. If not, in step S93, the processing unit automatically sets a divided area to divide the three-dimensional object into a size that fits in one printable area, and three-dimensionally divides (cuts) the three-dimensional object. Process CAD data. Subsequently, in step S94, the processing unit processes the three-dimensional CAD data so as to form a concave portion and a convex portion that are fitted into each other on the main body side in contact with the divided region. Finally, after executing Steps S95 and S94, the processed three-dimensional CAD data is output in Step S96. According to this embodiment, it is possible to create a three-dimensional model that can be easily recombined (assembled) by automatically dividing a large-sized three-dimensional model without scaling and fitting the convex and concave portions together. It becomes.
 本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各部、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の部、手段、ステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。実施態様では、本発明を簡単な構造物として円柱、家屋模型などの3次元データに適用してきたが、本発明の原理は、例えば、家屋以外のビルなどの建築物、道路、ダム、トンネル、地下共同溝、下水道などの土木構造物などの立体模型、特にカラーの立体模型が用途として考えられる。このような建築物や土木構造物の立体模型は、施主や工事の発注者への販促資料やプレゼン資料として使用するのに適している。特に、カラー立体造形物はビジュアルに訴求するため、本発明により加工した3次元CADデータを「粉末固着式積層法」を使用する3次元プリンタで立体造形するような建築物や土木構造物の分野への適用が有望であろう。 Although the present invention has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various changes and modifications based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention. For example, the functions included in each part, each step, etc. can be rearranged so that there is no logical contradiction, and a plurality of parts, means, steps, etc. can be combined or divided into one. is there. In the embodiment, the present invention has been applied to three-dimensional data such as a cylinder and a house model as a simple structure, but the principle of the present invention is, for example, a building such as a building other than a house, a road, a dam, a tunnel, Three-dimensional models such as underground common trenches and civil engineering structures such as sewers, especially color three-dimensional models are considered as applications. Such three-dimensional models of buildings and civil engineering structures are suitable for use as promotional materials and presentation materials for owners and contractors. In particular, since color 3D objects appeal visually, the field of buildings and civil engineering structures where 3D CAD data processed according to the present invention is 3D-modeled with a 3D printer using the “powder-fixing-type lamination method”. The application to is likely.

Claims (22)

  1.  CADデータ加工装置であって、
     ギャップ幅を格納する記憶部と、
     立体物の3次元CADデータを取得する取得部と、
     前記立体物を分割する1つ以上の分割指示面を指定する操作入力を受け付ける入力受付部と、
     前記分割指示面および前記ギャップ幅で規定された分割領域で前記立体物を分割するように、前記3次元CADデータを加工する加工部と、
    を有するCADデータ加工装置。
    A CAD data processing device,
    A storage unit for storing the gap width;
    An acquisition unit for acquiring three-dimensional CAD data of a three-dimensional object;
    An input receiving unit for receiving an operation input for designating one or more division instruction surfaces for dividing the three-dimensional object;
    A processing unit for processing the three-dimensional CAD data so as to divide the three-dimensional object in a divided region defined by the division instruction surface and the gap width;
    CAD data processing apparatus having
  2.  請求項1に記載のCADデータ加工装置において、
     前記ギャップ幅は、前記立体物が印刷される3次元プリンタの3次元造形分解能に応じて規定される、
    ことを特徴とするCADデータ加工装置。
    The CAD data processing device according to claim 1,
    The gap width is defined according to a three-dimensional modeling resolution of a three-dimensional printer on which the three-dimensional object is printed.
    A CAD data processing apparatus characterized by that.
  3.  請求項1に記載のCADデータ加工装置において、
     前記記憶部が、前記分割領域に接する面に貼り付けるべきパターンデータを格納し、
     前記加工部が、前記立体物の分割された2以上の物体の少なくとも1つの物体の前記分割領域に接する面に、少なくとも1つのパターンデータを貼り付けるように、前記3次元CADデータをさらに加工する、
    ことを特徴とするCADデータ加工装置。
    The CAD data processing device according to claim 1,
    The storage unit stores pattern data to be pasted on a surface in contact with the divided region,
    The processing unit further processes the three-dimensional CAD data so that at least one pattern data is pasted on a surface of at least one of the two or more divided objects of the solid object in contact with the divided region. ,
    A CAD data processing apparatus characterized by that.
  4.  請求項3に記載のCADデータ加工装置において、
     前記パターンデータが複数あり、前記パターンデータは部材の種類とそれぞれ関連付けられ、
     前記入力受付部が、前記分割領域に接する少なくとも1つの面に露出されるべき部材の種類を指定する操作入力を受け付け、
     前記加工部が、
    前記指定された部材の種類に応じて、前記パターンデータのうちの対応するパターンデータを前記記憶部から読み出し、前記分割領域に接する少なくとも1つの面に貼り付けるように、前記3次元CADデータをさらに加工する、
    ことを特徴とするCADデータ加工装置。
    The CAD data processing apparatus according to claim 3,
    There are a plurality of the pattern data, and the pattern data is associated with each type of member,
    The input receiving unit receives an operation input for designating a type of a member to be exposed on at least one surface in contact with the divided region;
    The processing part is
    Depending on the type of the designated member, the corresponding pattern data of the pattern data is read from the storage unit, and the three-dimensional CAD data is further pasted on at least one surface in contact with the divided area. To process,
    A CAD data processing apparatus characterized by that.
  5.  請求項3に記載のCADデータ加工装置において、
     前記パターンデータが、
    色彩、模様、文字、記号、マーク、図形、配筋図、構造断面図、地図、設計図、配線図、および、立体形状からなる群から選択される1つまたは2つ以上のものから構成されている、
    ことを特徴とするCADデータ加工装置。
    The CAD data processing apparatus according to claim 3,
    The pattern data is
    Consists of one or more selected from the group consisting of color, pattern, character, symbol, mark, figure, bar arrangement, structural cross section, map, design drawing, wiring diagram, and solid shape ing,
    A CAD data processing apparatus characterized by that.
  6.  請求項1に記載のCADデータ加工装置において、
     前記加工部が、
    前記立体物の分割された2以上の物体の前記分割領域に接する双方の面に、互いに嵌合する形状を少なくとも1つ設けるように、前記3次元CADデータをさらに加工する、
    ことを特徴とするCADデータ加工装置。
    The CAD data processing device according to claim 1,
    The processing part is
    Further processing the three-dimensional CAD data so as to provide at least one shape that fits to both surfaces of the two or more objects that are divided into the three-dimensional object and that are in contact with the divided region;
    A CAD data processing apparatus characterized by that.
  7.  請求項1に記載のCADデータ加工装置において、
     前記分割領域が、平板状領域または曲面状領域、或いは、これらを組み合わせた領域である、
    ことを特徴とするCADデータ加工装置。
    The CAD data processing device according to claim 1,
    The divided region is a flat region or a curved region, or a combination of these,
    A CAD data processing apparatus characterized by that.
  8.  請求項1に記載のCADデータ加工装置において、
     前記入力受付部が、前記立体物に含まれる部材を可動部材として指定する操作入力を受け付け、
     前記加工部が、
    指定された可動部材がこの可動部材以外の前記立体物の部材と接する面と、前記ギャップ幅とで規定された部材間分割領域で、前記立体物から分割し、前記可動部材が可動部材として機能できるように、前記3次元CADデータを加工する、
    ことを特徴とするCADデータ加工装置。
    The CAD data processing device according to claim 1,
    The input receiving unit receives an operation input for designating a member included in the three-dimensional object as a movable member;
    The processing part is
    The designated movable member is divided from the three-dimensional object in a member-divided region defined by the surface that contacts the three-dimensional object member other than the movable member and the gap width, and the movable member functions as the movable member. Processing the three-dimensional CAD data so that it can
    A CAD data processing apparatus characterized by that.
  9.  請求項8に記載のCADデータ加工装置において、
     前記加工部が、
    指定された可動部材がこの可動部材以外の前記立体物の部材と接する面と、前記ギャップ幅とで規定された部材間分割領域で、前記立体物から分割するように、前記3次元CADデータを加工し、さらに、前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための少なくとも1つの後付けの回動支持軸が収容されるべき孔を、前記可動部材が前記立体物に前記部材間分割領域を介して接する第1の位置、および、前記立体物が前記可動部材に前記部材間分割領域を介して接する第2の位置に形成するように、前記3次元CADデータを加工する、
    ことを特徴とするCADデータ加工装置。
    The CAD data processing apparatus according to claim 8,
    The processing part is
    The three-dimensional CAD data is divided so that the designated movable member is divided from the three-dimensional object in a member-divided region defined by a surface that contacts the member of the three-dimensional object other than the movable member and the gap width. A hole that is to be processed and further accommodates at least one post-rotation support shaft for opening and closing the movable member and the three-dimensional object that contacts the movable member via the inter-member divided region. The movable member is formed at a first position where the three-dimensional object comes into contact with the three-dimensional object via the inter-member divided area, and at a second position where the three-dimensional object comes into contact with the movable member via the inter-member divided area. And processing the three-dimensional CAD data.
    A CAD data processing apparatus characterized by that.
  10.  請求項8に記載のCADデータ加工装置において、
     前記加工部が、
    前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための回動支持軸として機能する2つの突起部を、前記可動部材が前記部材間分割領域を介して前記立体物に接する第1および第2の位置に形成し、この第1および第2の位置に前記部材間領域を介して対向する第3および第4の位置に前記突起部の各々を収容する2つの孔をそれぞれ形成するように、前記3次元CADデータを加工する、
    或いは、
    前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための回動支持軸を収容する2つの孔を、前記可動部材が前記部材間分割領域を介して前記立体物に接する第1および第2の位置に形成し、この第1および第2の位置に前記部材間領域を介して対向する第3および第4の位置に前記孔の各々に収容されるべき2つの突起部をそれぞれ形成するように、前記3次元CADデータを加工する、
    ことを特徴とするCADデータ加工装置。
    The CAD data processing apparatus according to claim 8,
    The processing part is
    The movable member divides the two protrusions functioning as a pivot support shaft for opening and closing the movable member and the three-dimensional object contacting the movable member through the inter-member divided region. The protrusions are formed at first and second positions that contact the three-dimensional object through a region, and at the third and fourth positions that face the first and second positions through the inter-member region. Processing the three-dimensional CAD data so as to form two holes respectively for accommodating each;
    Or
    The movable member and the three-dimensional object that contacts the movable member via the inter-member divided area have two holes for accommodating a pivot support shaft for opening and closing, and the movable member is divided into the inter-member divided area. The first and second positions are in contact with the three-dimensional object through the first and second positions, and the holes are respectively formed in the third and fourth positions facing the first and second positions through the inter-member region. Processing the three-dimensional CAD data so as to form two protrusions to be accommodated, respectively;
    A CAD data processing apparatus characterized by that.
  11.  請求項1に記載のCADデータ加工装置において、
     前記入力受付部が、前記立体物に含まれる部材を除外部材として指定する操作入力を受け付け、
     前記加工部が、
    指定された除外部材を前記立体物から除外するように、前記3次元CADデータを加工し、さらに、前記除外部材が存在していた空間を囲む前記立体物の枠の一部に後付け部材を挿入するためのガイドスリットを形成し、前記立体物の枠のうち前記ガイドスリットを設けた部分以外の少なくとも一部に前記後付け部材が挿入されるべき支持溝を形成するように、前記3次元CADデータを加工する、
    ことを特徴とするCADデータ加工装置。
    The CAD data processing device according to claim 1,
    The input receiving unit receives an operation input for designating a member included in the three-dimensional object as an excluded member;
    The processing part is
    The three-dimensional CAD data is processed so as to exclude the specified exclusion member from the three-dimensional object, and a retrofit member is inserted into a part of the frame of the three-dimensional object surrounding the space where the exclusion member existed The three-dimensional CAD data is formed so that a support groove into which the retrofitting member is to be inserted is formed in at least a part of the frame of the three-dimensional object other than the part provided with the guide slit. Processing,
    A CAD data processing apparatus characterized by that.
  12.  コンピュータを用いたCADデータ加工方法であって、
     ギャップ幅を記憶部に格納する記憶ステップと、
     立体物の3次元CADデータを取得する取得ステップと、
     前記立体物を分割する1つ以上の分割指示面を指定する操作入力を受け付ける入力受付ステップと、
     前記分割指示面および前記ギャップ幅で規定された分割領域で前記立体物を分割するように、前記3次元CADデータを加工する加工ステップと、
    を有するCADデータ加工方法。
    A CAD data processing method using a computer,
    A storage step of storing the gap width in the storage unit;
    An acquisition step of acquiring three-dimensional CAD data of a three-dimensional object;
    An input receiving step of receiving an operation input for designating one or more division instruction surfaces for dividing the three-dimensional object;
    A processing step of processing the three-dimensional CAD data so as to divide the three-dimensional object in a divided area defined by the division instruction surface and the gap width;
    CAD data processing method comprising:
  13.  請求項12に記載のCADデータ加工方法において、
     前記ギャップ幅は、前記立体物が印刷される3次元プリンタの3次元造形分解能に応じて規定される、
    ことを特徴とするCADデータ加工方法。
    The CAD data processing method according to claim 12,
    The gap width is defined according to a three-dimensional modeling resolution of a three-dimensional printer on which the three-dimensional object is printed.
    The CAD data processing method characterized by the above-mentioned.
  14.  請求項12に記載のCADデータ加工方法において、
     前記分割領域に接する面に貼り付けるべきパターンデータを前記記憶部にさらに格納するステップと、
     前記立体物の分割された2以上の物体の少なくとも1つの物体の前記分割領域に接する面に、少なくとも1つのパターンデータを貼り付けるように、前記3次元CADデータをさらに加工する加工ステップと、
    をさらに有する、ことを特徴とするCADデータ加工方法。
    The CAD data processing method according to claim 12,
    Further storing in the storage unit pattern data to be attached to the surface in contact with the divided region;
    A processing step of further processing the three-dimensional CAD data so that at least one pattern data is pasted on a surface in contact with the divided region of at least one object of the two or more divided objects of the three-dimensional object;
    A CAD data processing method, further comprising:
  15.  請求項14に記載のCADデータ加工方法において、
     前記パターンデータが複数あり、前記パターンデータは部材の種類とそれぞれ関連付けられ、
     前記分割領域に接する少なくとも1つの面に露出されるべき部材の種類を指定する操作入力をさらに受け付ける受付ステップと、
     前記指定された部材の種類に応じて、前記パターンデータのうちの対応するパターンデータを前記記憶部から読み出し、前記分割領域に接する少なくとも1つの面に貼り付けるように、前記3次元CADデータをさらに加工する加工ステップと、
    をさらに有する、ことを特徴とするCADデータ加工方法。
    The CAD data processing method according to claim 14,
    There are a plurality of the pattern data, and the pattern data is associated with each type of member,
    A receiving step for further receiving an operation input for designating a type of a member to be exposed on at least one surface in contact with the divided region;
    Depending on the type of the designated member, the corresponding pattern data of the pattern data is read from the storage unit, and the three-dimensional CAD data is further pasted on at least one surface in contact with the divided area. Processing steps to process;
    A CAD data processing method, further comprising:
  16.  請求項14に記載のCADデータ加工方法において、
     前記パターンデータが、
    色彩、模様、文字、記号、マーク、図形、配筋図、構造断面図、地図、設計図、配線図、および、立体形状からなる群から選択される1つまたは2つ以上のものから構成されている、
    ことを特徴とするCADデータ加工方法。
    The CAD data processing method according to claim 14,
    The pattern data is
    Consists of one or more selected from the group consisting of color, pattern, character, symbol, mark, figure, bar arrangement, structural cross section, map, design drawing, wiring diagram, and solid shape ing,
    The CAD data processing method characterized by the above-mentioned.
  17.  請求項12に記載のCADデータ加工方法において、
     前記立体物の分割された2以上の物体の前記分割領域に接する双方の面に、互いに嵌合する形状を少なくとも1つ設けるように、前記3次元CADデータをさらに加工する加工ステップ、
    をさらに有する、ことを特徴とするCADデータ加工方法。
    The CAD data processing method according to claim 12,
    A processing step of further processing the three-dimensional CAD data so as to provide at least one shape to be fitted to each other on both surfaces of the two or more objects that are divided into the three-dimensional object, which are in contact with the divided region;
    A CAD data processing method, further comprising:
  18.  請求項12に記載のCADデータ加工方法において、
     前記分割領域が、平板状領域または曲面状領域、或いは、これらを組み合わせた領域である、
    ことを特徴とするCADデータ加工方法。
    The CAD data processing method according to claim 12,
    The divided region is a flat region or a curved region, or a combination of these,
    The CAD data processing method characterized by the above-mentioned.
  19.  請求項12に記載のCADデータ加工方法において、
     前記立体物に含まれる部材を可動部材として指定する操作入力を受け付ける受付ステップと、
     指定された可動部材がこの可動部材以外の前記立体物の部材と接する面と、前記ギャップ幅とで規定された部材間分割領域で、前記立体物から分割し、前記可動部材が可動部材として機能できるように、前記3次元CADデータを加工する加工ステップと、
    をさらに有する、ことを特徴とするCADデータ加工方法。
    The CAD data processing method according to claim 12,
    A reception step of receiving an operation input for designating a member included in the three-dimensional object as a movable member;
    The designated movable member is divided from the three-dimensional object in a member-divided region defined by the surface that contacts the three-dimensional object member other than the movable member and the gap width, and the movable member functions as the movable member. A processing step for processing the three-dimensional CAD data,
    A CAD data processing method, further comprising:
  20.  請求項19に記載のCADデータ加工方法において、
     前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための少なくとも1つの後付けの回動支持軸が収容されるべき孔を、前記可動部材が前記立体物に前記部材間分割領域を介して接する第1の位置、および、前記立体物が前記可動部材に前記部材間分割領域を介して接する第2の位置に形成するように、前記3次元CADデータを加工する加工ステップと、
    をさらに有する、ことを特徴とするCADデータ加工方法。
    The CAD data processing method according to claim 19,
    The movable member has a hole in which at least one retrofitting rotation support shaft for opening and closing the movable member and the three-dimensional object in contact with the movable member via the inter-member divided region is to be opened and closed. The three-dimensional shape is formed so that the three-dimensional object is formed at a first position where the three-dimensional object comes into contact with the movable member via the inter-member divided area, and the second position where the three-dimensional object comes into contact with the movable member via the inter-member divided area. Processing steps for processing CAD data;
    A CAD data processing method, further comprising:
  21.  請求項19に記載のCADデータ加工方法において、
     前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための回動支持軸として機能する2つの突起部を、前記可動部材が前記部材間分割領域を介して前記立体物に接する第1および第2の位置に形成し、この第1および第2の位置に前記部材間領域を介して対向する第3および第4の位置に前記突起部の各々を収容する2つの孔をそれぞれ形成するように、前記3次元CADデータを加工する、
    或いは、
    前記可動部材とこの可動部材に前記部材間分割領域を介して接する前記立体物とを開閉自在に連結するための回動支持軸を収容する2つの孔を、前記可動部材が前記部材間分割領域を介して前記立体物に接する第1および第2の位置に形成し、この第1および第2の位置に前記部材間領域を介して対向する第3および第4の位置に前記孔の各々に収容されるべき2つの突起部をそれぞれ形成するように、前記3次元CADデータを加工する、加工ステップと、
    をさらに有する、ことを特徴とするCADデータ加工方法。
    The CAD data processing method according to claim 19,
    The movable member divides the two protrusions functioning as a pivot support shaft for opening and closing the movable member and the three-dimensional object contacting the movable member through the inter-member divided region. The protrusions are formed at first and second positions that contact the three-dimensional object through a region, and at the third and fourth positions that face the first and second positions through the inter-member region. Processing the three-dimensional CAD data so as to form two holes respectively for accommodating each;
    Or
    The movable member and the three-dimensional object that contacts the movable member via the inter-member divided area have two holes for accommodating a pivot support shaft for opening and closing, and the movable member is divided into the inter-member divided area. The first and second positions are in contact with the three-dimensional object through the first and second positions, and the holes are respectively formed in the third and fourth positions facing the first and second positions through the inter-member region. Processing the three-dimensional CAD data so as to form two protrusions to be accommodated, respectively;
    A CAD data processing method, further comprising:
  22.  請求項12に記載のCADデータ加工方法において、
     前記立体物に含まれる部材を除外部材として指定する操作入力を受け付ける受付ステップと、
     指定された除外部材を前記立体物から除外するように、前記3次元CADデータを加工し、さらに、前記除外部材が存在していた空間を囲む前記立体物の枠の一部に後付け部材を挿入するためのガイドスリットを形成し、前記立体物の枠のうち前記ガイドスリットを設けた部分以外の少なくとも一部に前記後付け部材が挿入されるべき支持溝を形成するように、前記3次元CADデータを加工する、加工ステップと、
    をさらに有する、ことを特徴とするCADデータ加工方法。
    The CAD data processing method according to claim 12,
    A reception step of receiving an operation input for designating a member included in the three-dimensional object as an excluded member;
    The three-dimensional CAD data is processed so as to exclude the specified exclusion member from the three-dimensional object, and a retrofit member is inserted into a part of the frame of the three-dimensional object surrounding the space where the exclusion member existed The three-dimensional CAD data is formed so that a support groove into which the retrofitting member is to be inserted is formed in at least a part of the frame of the three-dimensional object other than the part provided with the guide slit. Machining steps, and
    A CAD data processing method, further comprising:
PCT/JP2010/004598 2009-08-07 2010-07-15 Cad data processing device and cad data processing method WO2011016188A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080035049.0A CN102470610B (en) 2009-08-07 2010-07-15 Cad data processing device and cad data processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-184971 2009-08-07
JP2009184971A JP5653011B2 (en) 2009-08-07 2009-08-07 CAD data processing apparatus and CAD data processing program

Publications (1)

Publication Number Publication Date
WO2011016188A1 true WO2011016188A1 (en) 2011-02-10

Family

ID=43544099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004598 WO2011016188A1 (en) 2009-08-07 2010-07-15 Cad data processing device and cad data processing method

Country Status (3)

Country Link
JP (1) JP5653011B2 (en)
CN (1) CN102470610B (en)
WO (1) WO2011016188A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103164582A (en) * 2013-03-21 2013-06-19 西北工业大学 Identification method for three-dimensional computer-aided design (CAD) model intersection manufacture characteristics

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5870386B2 (en) * 2011-07-13 2016-03-01 株式会社コンピュータシステム研究所 Solid model manufacturing method and CAD data processing apparatus
US10635756B2 (en) * 2013-03-15 2020-04-28 Bushel Stop Inc. Method and system for designing goods
CN103341976A (en) * 2013-07-22 2013-10-09 陈功举 3D (Three-dimensional) desktop printing method and system
CN104076771A (en) * 2014-06-13 2014-10-01 华南理工大学 Modularized local area network monitoring system applied to 3D printing equipment
CN104399253A (en) * 2014-10-24 2015-03-11 合肥斯科尔智能科技有限公司 Three-dimensional toy printer
CN205451698U (en) * 2014-11-19 2016-08-10 上海聚然智能科技有限公司 Real picture point multidimension degree display and subassembly thereof
JP6388404B2 (en) * 2014-12-25 2018-09-12 キヤノン株式会社 Print data dividing device, program, and recording medium
JP2016168828A (en) * 2015-03-12 2016-09-23 キヤノン株式会社 Print data dividing device and program
JP6464928B2 (en) * 2015-05-28 2019-02-06 京セラドキュメントソリューションズ株式会社 Parts ordering system, program, and method
CN106273470B (en) * 2015-06-10 2018-11-30 三纬国际立体列印科技股份有限公司 Three-dimensional printing device and its print data storage method
JP6654022B2 (en) * 2015-11-20 2020-02-26 ローランドディー.ジー.株式会社 Section data creation apparatus, section data creation method and program
JP6572142B2 (en) 2016-01-26 2019-09-04 キヤノン株式会社 Information processing apparatus, control method, and program
JP6803675B2 (en) * 2016-03-29 2020-12-23 キヤノン株式会社 Information processing equipment, control methods, and programs
JP6804718B2 (en) * 2016-07-08 2020-12-23 富士ゼロックス株式会社 3D data generator, 3D modeling device, manufacturing method and program of modeled object
JP6599837B2 (en) * 2016-10-05 2019-10-30 日本ヒューム株式会社 Formwork design apparatus, formwork production method, concrete molded product production method, formwork design system, and formwork design method
JP6906939B2 (en) * 2016-12-14 2021-07-21 三菱重工業株式会社 Manufacturing method, parts, and manufacturing program of 3D model
WO2019045735A1 (en) * 2017-08-31 2019-03-07 General Electric Company Distribution of customized engineering models for additive manufacturing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10211659A (en) * 1997-01-31 1998-08-11 Toyota Motor Corp Laminate forming method
JP2002248692A (en) * 2001-02-23 2002-09-03 Minolta Co Ltd Three-dimensional shaping system, three-dimensional shaping center, program, memory medium and method for ordering three-dimensional shaping
JP2004155007A (en) * 2002-11-06 2004-06-03 Torigoe Jushi Kogyo:Kk Method for manufacturing building model
JP2006137173A (en) * 2004-11-11 2006-06-01 Korea Mach Res Inst Three dimensional printing prototyping system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10344902B4 (en) * 2002-09-30 2009-02-26 Matsushita Electric Works, Ltd., Kadoma Method for producing a three-dimensional object
US9415544B2 (en) * 2006-08-29 2016-08-16 3D Systems, Inc. Wall smoothness, feature accuracy and resolution in projected images via exposure levels in solid imaging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10211659A (en) * 1997-01-31 1998-08-11 Toyota Motor Corp Laminate forming method
JP2002248692A (en) * 2001-02-23 2002-09-03 Minolta Co Ltd Three-dimensional shaping system, three-dimensional shaping center, program, memory medium and method for ordering three-dimensional shaping
JP2004155007A (en) * 2002-11-06 2004-06-03 Torigoe Jushi Kogyo:Kk Method for manufacturing building model
JP2006137173A (en) * 2004-11-11 2006-06-01 Korea Mach Res Inst Three dimensional printing prototyping system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103164582A (en) * 2013-03-21 2013-06-19 西北工业大学 Identification method for three-dimensional computer-aided design (CAD) model intersection manufacture characteristics
CN103164582B (en) * 2013-03-21 2016-01-13 西北工业大学 Three-dimensional CAD model intersects manufacturing feature recognition methods

Also Published As

Publication number Publication date
CN102470610A (en) 2012-05-23
CN102470610B (en) 2014-07-09
JP2011039695A (en) 2011-02-24
JP5653011B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
JP5653011B2 (en) CAD data processing apparatus and CAD data processing program
JP5543740B2 (en) 3D model manufacturing method and 3D model
US10286602B1 (en) Fabrication baseplate with anchor channels
EP3140815B1 (en) Fabricating three-dimensional objects with embossing
US20150137423A1 (en) Three-dimensional printing method
JP5891586B2 (en) CAD data generating apparatus, CAD data generating program, and storage medium
CN108427782A (en) A kind of three-dimensional building model treatment method and device based on BIM
WO2015101160A1 (en) Method for making projection of three-dimensional object based on preset site
CN103208225A (en) Tile map manufacturing method and system
CN102855190A (en) Visual debugging system for 3D user interface program
CN104890233A (en) Three-dimensional printing device and printing head control method thereof
JP2018001725A (en) Three-dimensional data-generating device, three-dimensional molding apparatus, production method of molded article, and program
JP2017056574A (en) Three-dimensional molding apparatus, three-dimensional molding method and control program for three-dimensional molding apparatus
Bhooshan et al. Design workflow for additive manufacturing: a comparative study
CN113158320B (en) Three-dimensional modeling system based on building plane design
KR20150112078A (en) System of Virtual-Reality blind catalog containing authoring and simulating of blind products, and method for providing virtual-Reality blind catalog thereof
JP2013018222A (en) Method of manufacturing three-dimensional model, three dimensional model and cad data processing device
CN111324922B (en) Method, device, computer equipment and storage medium for generating floor tile model
CN112324095A (en) Method and system for intelligently assembling building space
CN110706342A (en) BIM model-based method for displaying geological model section through Web end in lightweight manner
CN111191308A (en) Method and device for constructing course arrangement mode and electronic equipment
CN108153975A (en) Surplus setting system, setting method and electronic equipment
Yang Introduction and future outlook of the 3D printing technology
EP3983222A1 (en) System and method for 3d printing a support structure
CN103440365A (en) Method for generating parameters of electric screen cabinet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035049.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806189

Country of ref document: EP

Kind code of ref document: A1