WO2011016084A1 - Two-cylinder engine - Google Patents

Two-cylinder engine Download PDF

Info

Publication number
WO2011016084A1
WO2011016084A1 PCT/JP2009/003727 JP2009003727W WO2011016084A1 WO 2011016084 A1 WO2011016084 A1 WO 2011016084A1 JP 2009003727 W JP2009003727 W JP 2009003727W WO 2011016084 A1 WO2011016084 A1 WO 2011016084A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating disk
center line
rotation center
pin
cylinder
Prior art date
Application number
PCT/JP2009/003727
Other languages
French (fr)
Japanese (ja)
Inventor
清水茂治郎
竹村利彦
Original Assignee
Shimizu Shigejiro
Takemura Toshihiko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Shigejiro, Takemura Toshihiko filed Critical Shimizu Shigejiro
Priority to JP2011525689A priority Critical patent/JP5328918B2/en
Priority to PCT/JP2009/003727 priority patent/WO2011016084A1/en
Priority to DE112009005123T priority patent/DE112009005123T5/en
Publication of WO2011016084A1 publication Critical patent/WO2011016084A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/24Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type
    • F02B75/243Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type with only one crankshaft of the "boxer" type, e.g. all connecting rods attached to separate crankshaft bearings

Definitions

  • the present invention relates to a two-cylinder engine in which a piston crank mechanism that converts a reciprocating motion of a piston into a rotational motion and outputs the same is output.
  • the present invention relates to a two-cylinder engine equipped with a lightweight piston crank mechanism suitable for use in a horizontally opposed engine.
  • Motor paragliders that fly using the propeller thrust are equipped with an engine in the harness (seat) as a propeller drive source.
  • an engine mounted on a motor paraglider a small, light and low vibration engine is required so as not to be a burden on the operator during takeoff and landing.
  • a boxer (horizontally opposed type) engine described in Patent Document 1 As a low vibration engine, a boxer (horizontally opposed type) engine described in Patent Document 1 is known. In a boxer engine, vibrations are reduced by reciprocating a pair of horizontally opposed cylinders with a phase difference of 180 degrees so that the pistons cancel each other's vibrations. If the boxer engine is installed in the motor paraglider, the burden on the operator due to vibration can be reduced.
  • crankshafts for converting the linear motion of the piston of each cylinder into rotational motion.
  • the crankshaft of the engine is bent in the radial direction from the rotation center line and connected to the piston rod of each cylinder, and the crankarm portion is mutually connected.
  • the connecting shaft portions extending along the rotation center line are alternately formed, and the connecting shaft portions located at both ends are supported in a rotatable state by the crankcase via journal bearings. Has been.
  • crankshaft of the engine In the crankshaft of the engine, a large force is periodically applied from each cylinder in each part in the axial direction. Therefore, the crankshaft is made of a rigid and heavy material having high rigidity, and is generally a component that occupies a large weight among engine components.
  • the engine mounted on the device used on the human body is small and light and has low vibration as described above.
  • a boxer engine may be used to reduce the vibration, but it is desired to reduce the weight of the crankshaft that occupies a large weight in order to reduce the weight.
  • an object of the present invention is to propose a two-cylinder engine that is improved in weight by reducing the piston crank mechanism.
  • the two-cylinder engine of the present invention is A first rotating disk and a second rotating disk arranged coaxially with a predetermined interval in the direction of a preset rotation center line;
  • the first rotating disk and the second rotating disk are supported so as to be rotatable around the rotation center line via the bearing mechanism mounted on the circular outer peripheral surfaces of the first rotating disk and the second rotating disk.
  • In the first outer circular side surface of the first rotating disk opposite to the second rotating disk a portion deviated from the rotation center line, and separated from the first pin by a predetermined angle around the rotation center line.
  • a second outer pin fixed to the part A first piston rod of a first cylinder that is attached to an inner end of the first pin so as to be rotatable around a connecting axis parallel to the rotation center line and extends in a direction perpendicular to the rotation center line.
  • a first outer piston of a second cylinder that is attached to an inner end of the first outer pin so as to be rotatable about a connecting axis parallel to the rotation center line and extends in a direction perpendicular to the rotation center line.
  • the rod An inner end is attached to the second outer pin so as to be rotatable about a connecting axis parallel to the rotation center line, and is spaced from the first outer piston rod by a predetermined distance to the rotation center line. And a second outer piston rod of the second cylinder extending in a direction perpendicular to the second cylinder.
  • the first piston rod of the first cylinder is configured to move between the pair of first outer piston rod and second outer piston rod of the second cylinder.
  • Two cylinders can be arranged on the same plane perpendicular to the rotation center line.
  • the first cylinder and the second cylinder are arranged opposite to each other on a horizontal line orthogonal to the rotation center line, and the first pin and the second pin May be arranged at an angular interval of 180 degrees around the rotation center line.
  • the rotating disk includes a third rotating disk that is coaxially arranged at a predetermined interval with respect to the first rotating disk on the first outer circular side surface of the first rotating disk, and the second rotating disk. 2 on the side of the outer circular side surface, and a fourth rotating disk arranged coaxially with a constant interval with respect to the second rotating disk,
  • the first to fourth rotating disks are supported by the crankcase via the bearing mechanism so as to be rotatable around the rotation center line,
  • the first outer pin is spanned between the first rotating disk and the third rotating disk,
  • the second outer pin is preferably bridged between the second rotating disk and the fourth rotating disk.
  • a rolling bearing such as a deep groove ball bearing as the bearing mechanism, and to install a rolling bearing between the circular outer peripheral surface of the first to fourth rotating disks and the crankcase.
  • a synchronous rotating mechanism that synchronously rotates the third rotating disk and the fourth rotating disk is provided. It is desirable.
  • the synchronous rotation mechanism is A first drive-side gear attached to the third rotating disk so as to rotate integrally in a coaxial state; A second drive-side gear attached to the fourth rotating disk so as to rotate integrally in a coaxial state; An output rotation axis arranged parallel to the rotation center line; A first driven gear that is coaxially mounted so as to rotate integrally with the output rotating shaft and meshes with the first driving gear; It is possible to use one provided with a second driven gear that is coaxially attached to the output rotating shaft and meshed with the second driving gear.
  • the output rotation shaft is preferably a cam shaft for supplying fuel to the first cylinder and the second cylinder with a phase difference of 180 degrees. If the output rotation shaft is also used as a cam shaft for intake / exhaust control of the first cylinder and the second cylinder, the number of parts can be reduced.
  • the first pin is fitted in a playable state with respect to pin holes formed in the first rotating disc and the second rotating disc
  • the first outer pin is fitted in a playable state with respect to a pin hole formed in the third rotating disk
  • the second outer pin may be fitted in a playable state with respect to a pin hole formed in the fourth rotating disk.
  • the first to fourth rotating disks for converting the linear reciprocating motion of the piston rod into the rotational motion can be freely rotated by the crankcase via the bearing mechanism. It is supported. Therefore, the first to fourth rotating disks need only be connected so as to be able to rotate synchronously, and there is no need to have a structure that is firmly connected and fixed as in the conventional crankshaft.
  • the first piston rod includes a first inner piston rod and a second inner piston rod having the same shape extending in parallel.
  • the first and second outer piston rods and the first and second inner piston rods are common parts,
  • the first to fourth rotating disks are preferably common parts.
  • the piston crank mechanism of the two-cylinder engine of the present invention includes a plurality of rotating disks supported in a rotatable state by a crankcase via a bearing mechanism. Therefore, unlike the conventional mechanism in which a single crankshaft receives a force acting from the piston rod of each cylinder at an intermediate position in the axial direction, the in-plane direction from the piston rod of each cylinder to the rotating disk is different. A force acts in the direction, and this force is transmitted to the crankcase via a bearing mechanism mounted on the circular outer peripheral surface of the rotating disk. Therefore, compared to the crankshaft, the stress concentration can be alleviated, and the generation of forces such as torsional force and bending force that can deform the parts is suppressed or alleviated. Therefore, it is not necessary to form a rotating disk or the like from a highly rigid and heavy material, and the weight of the engine can be reduced.
  • FIG. 2 is a schematic longitudinal sectional view of a two-cylinder engine showing a portion cut along line AA in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view of a two-cylinder engine showing a portion cut along line BB in FIG. 1.
  • It is explanatory drawing which shows the piston crank mechanism of the 2-cylinder engine of FIG.
  • It is a fragmentary sectional view which shows the bearing mechanism which supports the 1st, 2nd rotation disc, and the bearing mechanism of the connection part of a 1st piston rod and a pin.
  • FIG. 1 is a schematic perspective view of a horizontally opposed two-cylinder engine to which the present invention is applied.
  • the two-cylinder engine 1 includes a rectangular cylindrical crankcase 2 that is flat in the front-rear direction, and a pair of cylinder blocks 3 and 4 that extend horizontally from the left and right side surfaces of the crankcase 2 horizontally.
  • FIG. 2 is a vertical cross-sectional view of the two-cylinder engine 1, which is a cross section taken along line AA in FIG.
  • FIG. 3 is a cross-sectional view of the two-cylinder engine 1, which is a cross-sectional view taken along line BB in FIG.
  • the first cylinder 5 and the second cylinder 6 are formed in the left and right cylinder blocks 3 and 4. These first and second cylinders 5 and 6 are arranged opposite to each other on a horizontal line L1 extending in the left-right direction of the engine, and in each of them, a linear reciprocating motion is performed in the reverse direction while maintaining a phase difference of 180 degrees.
  • a first piston 7 and a second piston 8 are arranged.
  • the first piston rod 9 of the first piston 7 and the second piston rod 10 of the second piston 8 extend toward the piston crank mechanism 20 incorporated in the crankcase 2, respectively. It is connected.
  • the piston crank mechanism 20 converts the linear reciprocating motion of the first piston 7 and the second piston 8 into a rotational motion about a rotational center line L2 extending horizontally in the longitudinal direction of the engine.
  • the engine output converted into the rotational motion by the piston crank mechanism 20 is taken out from the output rotating shaft 70 of the synchronous rotating mechanism 60 attached to the lower portion of the crankcase 2 and transmitted to the driven side (not shown). Is done.
  • FIG. 4 is an explanatory view showing a part of the piston crank mechanism 20 taken out. 2, 3, and 4, the piston crank mechanism 20 is coaxially arranged at a predetermined interval in the direction of the rotation center line L ⁇ b> 2 that extends horizontally in the front-rear direction (front-rear direction) 4.
  • the first to fourth rotating disks 21 to 24 are provided.
  • the first rotating disc 21 and the second rotating disc 22 are arranged adjacent to each other at regular intervals, and the third rotating disc 23 is arranged adjacent to the front side of the front first rotating disc 21 at regular intervals.
  • the rotating disk 24 is disposed adjacent to the rear side of the second rotating disk 22 on the rear side at a constant interval.
  • Each of the first to fourth rotating disks 21 to 24 is supported by the crankcase 2 so as to be rotatable around the rotation center line L2 via a bearing mechanism.
  • a first deep groove ball bearing 31 is mounted between the circular outer peripheral surface 21a of the first rotating disk 21 and the inner peripheral surface of the crankcase 2 to support the first rotating disk 21 in a rotatable state.
  • the other second to fourth rotating disks 22 to 24 are also respectively rotatable by second to fourth deep groove ball bearings 32 to 34 mounted between the inner peripheral surface of the crankcase 2. It is supported.
  • the first piston rod 9 of this example includes a first inner piston rod 9A and a second inner piston rod 9B which are common parts. These first and second inner piston rods 9A and 9B are arranged in parallel in the front-rear direction, and their rear ends (inner ends on the clan case side) are respectively connected to the inner first through the first pins 41.
  • the first rotating disk 21 and the second rotating disk 22 are connected.
  • the first pin 41 is a pin having a circular cross section and having a predetermined length.
  • the first and second pins 41 are parallel to the rotation center line L2 at a position away from the rotation center line L2 by a predetermined distance radially outward. It spans between the rotating disks 21 and 22.
  • the rear ends of the first and second inner piston rods 9A, 9B are coupled to the first pin 41 in a rotatable state via deep groove ball bearings 51, 52.
  • the second piston rod 10 is also composed of a first outer piston rod 10A and a second outer piston rod 10B which are common parts, and the common parts with the first and second inner piston rods 9A and 9B are also used.
  • a rear end portion of the first outer piston rod 10 ⁇ / b> A on the front side is connected to the first and third rotary disks 21 and 23 on the front side via a first outer pin 42.
  • the first outer pin 42 is bridged between the first and third rotating disks 21 and 23 in a state parallel to the rotation center line L2 at a position rotated 180 degrees with respect to the first pin 41.
  • a rear end portion of the first outer piston rod 10 ⁇ / b> A is connected to the first outer pin 42 through a deep groove ball bearing 53 so as to be rotatable.
  • the rear end portion of the first outer piston rod 10B on the right side is connected to the second and fourth rotary disks 22 and 24 on the rear side via the second outer pin 43. Parts common to the first outer pin 42 are used for the second outer pin 43, and at the same position as the first outer pin 42, the second and fourth rotating disks 22 and 24 are parallel to the rotation center line L2. It is bridged between.
  • a rear end portion of the second outer piston rod 10 ⁇ / b> B is connected to the second outer pin 43 through a deep groove ball bearing 54 so as to be rotatable.
  • the first pin 41 is fitted into the pin holes formed in the first rotating disk 21 and the second rotating disk 22 in a state where there is play, and the first outer pin 42 rotates in the first and third rotations.
  • the discs 21 and 23 are each fitted with play in the pin holes formed therein.
  • the second outer pin 43 is fitted into the pin holes formed in the second and fourth rotating disks 22 and 24 with play. That is, these pins 41 to 43 are not firmly fixed to the first to fourth rotating disks 21 to 24, and are inserted into the pin holes formed in these rotating disks in a floating state.
  • Two first and second inner piston rods 9A and 9B constituting the first piston rod 9, and two first and second outer piston rods 10A constituting the second piston rod 10, 10B and the first to fourth rotating disks 21 to 24 have the same thickness dimension in the direction of the rotation center line L2. Further, they are arranged within the radial dimensions of the first cylinder 5 and the second cylinder 6 in the direction of the rotation center line L2.
  • FIG. 5A is a partial cross-sectional view showing a mounting portion of the first and second deep groove ball bearings 31 and 32 and the deep groove ball bearings 51 and 52
  • FIG. 5B is a view of the third deep groove ball bearing 33 and the deep groove ball bearing 53. It is a fragmentary sectional view which shows a mounting part.
  • the first and second deep groove ball bearings 31 and 32 include annular outer rings 31a and 32a attached to the circular inner peripheral surface 2a of the crankcase 2 on both sides of the first and second inner piston rods 9A and 9B.
  • the intervals between these outer rings are held by a plurality of annular collars 35 having different widths mounted on the circular inner peripheral surface 2a.
  • Inner ring raceway surfaces 31b and 32b formed integrally with the circular outer peripheral surfaces 21a and 22a of the first and second rotary disks 21 and 22 are arranged concentrically inside the outer rings 31a and 32a.
  • balls 31d, 32d are arranged in a rollable manner along the circumferential direction at regular intervals by ball retainers 31c, 32c.
  • the third deep groove ball bearing 33 has the same structure
  • the fourth deep groove ball bearing 34 (not shown) has the same structure as the third deep groove ball bearing 33.
  • the deep groove ball bearings 51, 52 arranged between the first pin 41 and the first piston rod 9 (9 ⁇ / b> A, 9 ⁇ / b> B) have inner ring raceway surfaces 51 a, 52 a on the circular outer peripheral surface of the first pin 41.
  • the outer ring raceway surfaces 51b and 52b are integrally formed on the circular inner peripheral surface of the pin hole of the first piston rod 9 (9A and 9B). That is, the first pin 41 is an inner ring integrated type pin, and the first piston rod 9 is an outer ring integrated type rod.
  • the deep groove ball bearing 53 disposed between the second pin 42 and the first outer piston rod 10A of the second pstron rod 10 has a similar structure, and a third pin (not shown)
  • the deep groove ball bearing 54 disposed between the second piston rod 10 ⁇ / b> B and the second outer piston rod 10 ⁇ / b> B of the second piston rod 10 has the same structure as the deep groove ball bearing 53.
  • a first gear shaft 61a is coaxially attached to the front side surface of the third rotating disk 23 located on the most front side, and the first gear shaft 61a projects forward from the front end of the crankcase 2,
  • a first driving gear 61 is fixed to the protruding shaft end portion in a coaxial state.
  • the second gear shaft 62a is coaxially attached to the rear side surface of the fourth rotating disk 24 located at the rearmost side, and this gear shaft 62a is rearward from the rear end of the crankcase 2.
  • the second drive side gear 62 is fixed to the projecting shaft end portion coaxially.
  • a rotor shaft 63 is connected and fixed coaxially to the rear side of the second drive side gear 62, and a shaft end of the rotor shaft 63 is connected to a generator for supplying electric power to a spark plug or the like.
  • the outer rotor 64 is fixed coaxially.
  • An output rotation shaft 70 having a rotation center line L3 extending in the front-rear direction in parallel with the rotation center line L2 as a center axis is disposed below the first to fourth rotation disks 21 to 24.
  • a first driven gear 65 is fixed coaxially to the front portion of the output rotating shaft 70, and a second driven gear 66 is fixed coaxially to the rear portion.
  • the first and second driven gears 65 and 66 mesh with the first and second drive gears 61 and 62, respectively.
  • a shaft end portion 70a on the front side of the output rotating shaft 70 passes through a front cover case 68 attached to the front end portion of the crankcase 2 and protrudes forward, and is supported by the front cover case 68 in a rotatable state. ing.
  • the shaft end portion 70b on the rear side of the output rotation shaft 70 is also supported in a rotatable state by the inner side surface portion of the rear cover case 69 attached to the rear end portion of the crankcase 2.
  • the front cover case 68 covers the first driving gear 61 and the second driven gear 65, and the rear cover case 69 covers the second driving gear 62 and the second driven gear 66. .
  • first to third pins 41 to 43 for connecting the piston rods 9 and 10 to the rotary disks 21 to 24 do not need to be used for firmly connecting and fixing the rotary disks 21 to 24 to each other. Therefore, they do not need to be formed of a material having high rigidity and weight as in the prior art, and the connection structure between the pins 41 to 43 and the rotating disks 21 to 24 is a light connection that is simply inserted and fixed. The structure may be sufficient.
  • the synchronous rotation mechanism 60 since the synchronous rotation mechanism 60 is disposed, it is possible to prevent the rotational phases of the rotating disks 21 to 24 that are not firmly connected and fixed to each other from being shifted. Therefore, the rotational force can be efficiently output via the rotary disks 21 to 24.
  • first and second inner piston rods 9A and 9B and the first and second outer piston rods 10A and 10B are common parts, and the first to fourth rotating disks 21 to 24 are common parts, and the second,
  • the third pins 42 and 43 are common parts, and these parts, including the first pin 41, are arranged so as to be symmetric with respect to the plane including the horizontal line L1 orthogonal to the rotation center line L2. .
  • the piston crank mechanism 20 balances the weight before and after the horizontal line L1, so that the vibration of the two-cylinder engine 1 is further suppressed.
  • the second and third pins 42 and 43 are common parts, and the first and second inner piston rods 9A and 9B and the first and second outer piston rods 10A and 10B are common parts. Since the four-rotation disks 21 to 24 are also common parts, engine components can be greatly reduced.
  • first and second inner piston rods 9A and 9B, the first and second outer piston rods 10A and 10B, and the first to fourth rotating disks 21 to 24 are formed thin in the direction of the rotation center line L2. Therefore, the lubricating oil can easily go around the deep groove ball bearings 31 to 34 and the deep groove ball bearings 51 to 54, and wear at each bearing portion can be reduced.
  • the horizontally opposed two-cylinder engine 1 is lightweight and has low vibration, and is therefore suitable as an engine mounted on a device used by being mounted on a human body such as a motor paraglider.
  • a human body such as a motor paraglider.
  • it can also be used as an engine for other purposes, for example, an engine for automobiles or other industrial machines.
  • the pair of inner piston rods 9A and 9B is used as the first piston rod 9, but a single piston rod can also be used.
  • the bearing mechanism for rotatably supporting the rotating disks 21 to 24 is not limited to the deep groove ball bearing, and other rolling bearing mechanisms may be employed.
  • the output rotating shaft 70 can be used as a hollow shaft to reduce the weight of the engine.
  • the output rotation shaft 70 can function as a camshaft shaft for driving and controlling the intake and exhaust valves with a phase difference of 180 degrees with respect to the first cylinder and the second cylinder. it can.
  • the first and second drive side gears 61 and 62, the second drive side gears 61 and 62, and the second drive side gears 61 and 62 can be transmitted to the output rotary shaft 70 by decelerating the rotation of the first to fourth rotary disks 21 to 24 to 1 ⁇ 2. What is necessary is just to set the reduction ratio of the gear type transmission mechanism consisting of the driven gears 65 and 66 to 1 ⁇ 2.
  • the first piston rod and the second piston rod reciprocate twice during the intake process, the compression process, the combustion expansion process, and the exhaust process.
  • the side gear 62 rotates twice.
  • the intake valve and the exhaust valve need only be driven once, if the rotational speed of the output rotary shaft 70 is set to 1/2 the rotational speed of the rotary disks 21 to 24, the output rotary shaft 70 And camshaft.
  • the two-cylinder engine 1 may be a two-cycle engine. In the case of a two-cycle engine, a scavenging port and an exhaust port are configured for each cylinder 5 and 6.
  • a plurality of, for example, two, two-cylinder engines 1 are connected to each other so that the rotation center line L2 of the piston crank mechanism 20 is common and the output rotation shaft 70 is connected to each other.
  • a 4-cylinder engine can be constructed.
  • a four-cylinder engine can be constructed by connecting a plurality of, for example, two, two-cylinder engines 1 so that their output rotation shafts 70 are common.
  • FIG. 7A is an explanatory view showing another example of a piston crank mechanism provided with two rotating disks to which the present invention is applied.
  • the illustrated piston crank mechanism 20A includes two rotating disks 21A and 21B arranged coaxially with a preset rotation center line L2, and these rotation disks 21A and 21B are constant in the direction of the rotation center line L2. Are arranged in parallel with a gap of. These rotary disks 21A and 21B are supported in a freely rotatable state by the circular inner peripheral surface of the crankcase 2A via bearing mechanisms 31A and 31B mounted on the circular outer peripheral surfaces.
  • a first pin 41A is bridged between the rotating disks 21A and 21B.
  • the first pin 41A is located at a portion deviating from the rotation center line L2.
  • a first outer pin 42A is attached to the first outer circular side surface 21a of the rotating disk 21A opposite to the rotating disk 21B, and the second outer circular side surface 21b of the rotating disk 21B opposite to the rotating disk 21A is attached.
  • the second outer pin 43A is attached.
  • the first and second outer pins 42A and 43A are attached to a portion that is deviated from the rotation center line L2 and is 180 degrees away from the first pin 41A around the rotation center line L2.
  • the rear end portion of the first piston rod 9C of the first cylinder 5A on the crankcase 2A side is attached to the first pin 41A so as to be rotatable around a connecting axis parallel to the rotation center line L2.
  • One piston rod 9C extends in a direction perpendicular to the rotation center line L2.
  • the second piston rod of the second cylinder 6A includes a first outer piston rod 10C and a second outer piston rod 10D.
  • the first outer piston rod 10C is connected to the first outer pin 42A, and the second outer piston rod. 10D is connected to the second outer pin 43A.
  • the weight of the piston crank mechanism can be reduced as compared with the case of using a conventional crankshaft. Further, since the piston crank mechanism 20A can be configured in a well-balanced manner so as to be symmetric with respect to the plane including the horizontal line L1 orthogonal to the rotation center line L2, low vibration can be achieved.
  • FIG. 7B is an explanatory diagram showing a piston crank mechanism of a horizontally opposed two-cylinder engine to which the present invention is applied as a reference example.
  • the illustrated piston crank mechanism 20B includes a rotating disk 21C disposed coaxially with a preset rotation center line L2 and a rotating mechanism 21C mounted on a circular outer peripheral surface 21a of the rotating disk 21C. And a crankcase 2A that supports 21C in a rotatable state.
  • the first pin 41B attached to a portion deviating from the rotation center line L2, and in the other circular side surface 21e of the rotating disk 21C, a portion deviating from the rotation center line L2.
  • the first pin 41B includes a second pin 42B attached to a portion 180 degrees away from the rotation center line L2.
  • a rear end portion of the first piston rod 9D of the first cylinder 5B on the crankcase 2B side is attached to the first pin 41B so as to be rotatable around a connecting axis parallel to the rotation center line L2.
  • One piston rod 9D extends in a direction perpendicular to the rotation center line L2.
  • the rear end portion of the second piston rod 10E of the second cylinder 6B is attached to the second pin 42B so as to be rotatable around a connecting axis parallel to the rotation center line L2, and this second piston The rod 10E also extends in a direction perpendicular to the rotation center line L2.
  • the first cylinder 5B and the second cylinder 6B are arranged at positions that are perpendicular to the rotation center line L2 and shifted from the plane including the horizontal line L1 in the opposite directions to the rotation center line L2. ing. That is, the first cylinder 5B is slightly shifted from the horizontal line L1 to the second piston rod 10E side, and the second cylinder 6B is slightly shifted from the horizontal line L1 to the first piston rod 9D side. Further, the outer end portion of the first piston rod 9D is bent in a crank shape so as to be positioned on the central axis L2 of the first cylinder 5B, and the outer end portion of the second piston rod 10E is the central axis of the second cylinder 6B. It is bent in a crank shape so as to be positioned at L3.
  • the weight of the piston crank mechanism can be reduced as compared with the case where the conventional crankshaft is used.
  • the piston crank mechanism 20B is thinly configured in the direction of the rotation center line L2, for example, if the cylinder 5B and the cylinder 6B are disposed opposite to each other on a plane including the rotation center line L2, the first piston from each cylinder 5, 6 The action point of the couple acting on the piston crank mechanism 20 approaches through the rod 9D and the second piston rod 10E. As a result, since the influence of the couple on the piston crank mechanism 20 can be suppressed, vibration can be reduced.
  • the rotary disks 21A, 21B, and 21C may be rotatably supported by a gear mechanism in order to extract the rotation of the rotary disks 21A, 21B, and 21C to the outside.
  • the gear mechanism includes external teeth formed on the circular outer peripheral surface of each rotating disk, and a plurality of driven gears that are arranged along the outer periphery of each rotating disk and mesh with the external teeth of each rotating disk. Shall be provided. Further, the external teeth of the rotating disk and the driven gear are formed so as not to disengage not only in the radial load but also in the axial load. The rotation of each rotating disk is taken out via a plurality of driven gears.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Transmission Devices (AREA)

Abstract

A piston crank mechanism (20) of a horizontally opposed two-cylinder engine (1) is provided with first to fourth rotating circular discs (21-24) coaxially arranged along a rotation center axis (L2) at predetermined intervals.  The rotating circular discs (21-24) are supported by a circular inner peripheral surface (2a) of a crankcase (2) through deep groove ball bearings (31-34).  Piston rods (9A, 9B) of a first cylinder (5) are connected to a first pin (41) connected between the first and second rotating circular discs (21, 22), and piston rods (10A, 10B) of a second cylinder (6) are connected to second and third pins (42, 43) connected respectively between the first and third rotating circular disc (21, 23) and between the second and fourth rotating circular discs (22, 24).  Because large torsional stress and bending stress do not occur in the rotating circular discs (21-24), the weight of the horizontally opposed two-cylinder engine is less than the weight of an engine using a highly rigid, heavy crankshaft.

Description

2気筒エンジン2-cylinder engine
 本発明は、ピストンの往復運動を回転運動に変換して出力するピストンクランク機構の改良を図った2気筒エンジンに関する。特に、本発明は、水平対向型エンジンに用いるのに適した軽量なピストンクランク機構を備えた2気筒エンジンに関する。 The present invention relates to a two-cylinder engine in which a piston crank mechanism that converts a reciprocating motion of a piston into a rotational motion and outputs the same is output. In particular, the present invention relates to a two-cylinder engine equipped with a lightweight piston crank mechanism suitable for use in a horizontally opposed engine.
 プロペラによる推力を利用して飛行するモーターパラグライダーは、プロペラ駆動源として、ハーネス部分(座席)にエンジンを搭載している。モーターパラグライダーに搭載するエンジンとしては、離着陸時に操作者の負担にならないように小型軽量で低振動のものが求められている。 Motor paragliders that fly using the propeller thrust are equipped with an engine in the harness (seat) as a propeller drive source. As an engine mounted on a motor paraglider, a small, light and low vibration engine is required so as not to be a burden on the operator during takeoff and landing.
 低振動のエンジンとしては特許文献1に記載されているボクサー(水平対向型)エンジンが知られている。ボクサーエンジンでは、水平対向配置されている一対の気筒を、各ピストンがお互いの振動をうち消すように180度の位相差で往復運動して振動の低減が図られている。ボクサーエンジンをモーターパラグライダーに搭載すれば、振動による操作者への負担を軽減できる。 As a low vibration engine, a boxer (horizontally opposed type) engine described in Patent Document 1 is known. In a boxer engine, vibrations are reduced by reciprocating a pair of horizontally opposed cylinders with a phase difference of 180 degrees so that the pistons cancel each other's vibrations. If the boxer engine is installed in the motor paraglider, the burden on the operator due to vibration can be reduced.
 ボクサーエンジンなどのエンジンにおいては、各気筒のピストンの直線運動を回転運動に変換するためのクランク軸が備わっている。特許文献1にも記載されているように、エンジンのクランク軸は、その回転中心線から半径方向に折れ曲がって各気筒のピストンロッドに連結されているクランクアーム部分と、クランクアーム部分を相互に連結するために回転中心線に沿って延びている連結軸部分とが交互に形成された構造となっており、両端に位置する連結軸部分がジャーナル軸受けを介してクランクケースによって回転自在の状態で支持されている。 Engines such as boxer engines are equipped with a crankshaft for converting the linear motion of the piston of each cylinder into rotational motion. As described in Patent Document 1, the crankshaft of the engine is bent in the radial direction from the rotation center line and connected to the piston rod of each cylinder, and the crankarm portion is mutually connected. For this purpose, the connecting shaft portions extending along the rotation center line are alternately formed, and the connecting shaft portions located at both ends are supported in a rotatable state by the crankcase via journal bearings. Has been.
特表2002-525481号公報JP-T-2002-525481
 エンジンのクランク軸では、その軸線方向における各部分において各気筒から大きな力が周期的に作用する。したがって、クランク軸は、剛性の高い強固で重量のある材料から構成されており、一般的にエンジン構成部品の中で大きな重量を占める部品である。 In the crankshaft of the engine, a large force is periodically applied from each cylinder in each part in the axial direction. Therefore, the crankshaft is made of a rigid and heavy material having high rigidity, and is generally a component that occupies a large weight among engine components.
 モーターパラグライダーなどのような人体に装着して用いる機器に搭載するエンジンは、上記のように小型軽量で低振動のものが望ましい。低振動化のためにはボクサーエンジンを用いればよいが、軽量化のためには大きな重量を占めるクランク軸の軽量化が望まれるところである。 It is desirable that the engine mounted on the device used on the human body, such as a motor paraglider, is small and light and has low vibration as described above. A boxer engine may be used to reduce the vibration, but it is desired to reduce the weight of the crankshaft that occupies a large weight in order to reduce the weight.
 本発明の課題は、このような点に鑑みて、ピストンクランク機構を改良して軽量化を図った2気筒エンジンを提案することにある。 In view of the above, an object of the present invention is to propose a two-cylinder engine that is improved in weight by reducing the piston crank mechanism.
 上記の課題を解決するために、本発明の2気筒エンジンは、
 予め設定した回転中心線の方向に一定の間隔を開けて同軸に配置された第1回転円盤および第2回転円盤と、
 前記第1回転円盤および前記第2回転円盤の円形外周面に装着した前記軸受け機構を介して、前記第1回転円盤および前記第2回転円盤を前記回転中心線回りに回転自在の状態で支持しているクランクケースと、
 前記第1回転円盤と前記第2回転円盤の間において、前記回転中心線から外れた部位に架け渡して固定した第1ピンと、
 前記第1回転円盤における前記第2回転円盤とは反対側の第1外側円形側面において、前記回転中心線から外れた部位であって、前記第1ピンとは前記回転中心線回りに所定角度、離れた部位に固定した第1外側ピンと、
 前記第2回転円盤における前記第1回転円盤とは反対側の第2外側円形側面において、前記回転中心線から外れた部位であって、前記第1ピンとは前記回転中心線回りに所定角度、離れた部位に固定した第2外側ピンとを備えており、
 前記第1ピンに対して内側端部が前記回転中心線に平行な連結軸線回りに回転自在の状態で取り付けられ、前記回転中心線に直交する方向に延びている第1気筒の第1ピストンロッドと、
 第1外側ピンに対して内側端部が前記回転中心線に平行な連結軸線回りに回転自在の状態で取り付けられ、前記回転中心線に直交する方向に延びている第2気筒の第1外側ピストンロッドと、
 第2外側ピンに対して内側端部が前記回転中心線に平行な連結軸線回りに回転自在の状態で取り付けられ、前記第1外側ピストンロッドに対して一定の間隔を開けて前記回転中心線に直交する方向に延びている第2気筒の第2外側ピストンロッドとを有していることを特徴とする。
In order to solve the above problems, the two-cylinder engine of the present invention is
A first rotating disk and a second rotating disk arranged coaxially with a predetermined interval in the direction of a preset rotation center line;
The first rotating disk and the second rotating disk are supported so as to be rotatable around the rotation center line via the bearing mechanism mounted on the circular outer peripheral surfaces of the first rotating disk and the second rotating disk. A crankcase,
A first pin which is fixed between the first rotating disk and the second rotating disk so as to extend over a portion off the rotation center line;
In the first outer circular side surface of the first rotating disk opposite to the second rotating disk, a portion deviated from the rotation center line, and separated from the first pin by a predetermined angle around the rotation center line. A first outer pin fixed to the site;
In the second outer circular side surface of the second rotating disk opposite to the first rotating disk, a portion deviated from the rotation center line, and separated from the first pin by a predetermined angle around the rotation center line. A second outer pin fixed to the part,
A first piston rod of a first cylinder that is attached to an inner end of the first pin so as to be rotatable around a connecting axis parallel to the rotation center line and extends in a direction perpendicular to the rotation center line. When,
A first outer piston of a second cylinder that is attached to an inner end of the first outer pin so as to be rotatable about a connecting axis parallel to the rotation center line and extends in a direction perpendicular to the rotation center line. The rod,
An inner end is attached to the second outer pin so as to be rotatable about a connecting axis parallel to the rotation center line, and is spaced from the first outer piston rod by a predetermined distance to the rotation center line. And a second outer piston rod of the second cylinder extending in a direction perpendicular to the second cylinder.
 本発明によれば、第1気筒の第1ピストンロッドが第2気筒の一対の第1外側ピストンロッドおよび第2外側ピストンロッドの間を移動できるように構成されているので、第1気筒および第2気筒を回転中心線に直交する同一平面上に配置することができる。 According to the present invention, the first piston rod of the first cylinder is configured to move between the pair of first outer piston rod and second outer piston rod of the second cylinder. Two cylinders can be arranged on the same plane perpendicular to the rotation center line.
 本発明の2気筒エンジンを水平対向型のものとする場合には、前記第1気筒および前記第2気筒を前記回転中心線に直交する水平線上において対向配置し、前記第1ピンと前記第2ピンとを、前記回転中心線回りに180度の角度間隔の位置に配置すればよい。 When the two-cylinder engine of the present invention is of a horizontally opposed type, the first cylinder and the second cylinder are arranged opposite to each other on a horizontal line orthogonal to the rotation center line, and the first pin and the second pin May be arranged at an angular interval of 180 degrees around the rotation center line.
 この構成の水平対向型の2気筒エンジンにおいて、
 前記回転円盤は、前記第1回転円盤の前記第1外側円形側面の側において当該第1回転円盤に対して一定の間隔で同軸に配置した第3回転円盤と、前記第2回転円盤の前記第2外側円形側面の側において当該第2回転円盤に対して一定の間隔で同軸に配置した第4回転円盤とを備えており、
 前記第1~第4回転円盤は、前記軸受け機構を介して、前記回転中心線回りに回転自在の状態で前記クランクケースによって支持されており、
 前記第1外側ピンは、前記第1回転円盤と前記第3回転円盤の間に架け渡されており、
 前記第2外側ピンは、前記第2回転円盤と前記第4回転円盤の間に架け渡されていることが望ましい。
In the horizontally opposed two-cylinder engine having this configuration,
The rotating disk includes a third rotating disk that is coaxially arranged at a predetermined interval with respect to the first rotating disk on the first outer circular side surface of the first rotating disk, and the second rotating disk. 2 on the side of the outer circular side surface, and a fourth rotating disk arranged coaxially with a constant interval with respect to the second rotating disk,
The first to fourth rotating disks are supported by the crankcase via the bearing mechanism so as to be rotatable around the rotation center line,
The first outer pin is spanned between the first rotating disk and the third rotating disk,
The second outer pin is preferably bridged between the second rotating disk and the fourth rotating disk.
 この場合、前記軸受け機構として深溝玉軸受け等の転がり軸受けを採用し、前記第1~第4回転円盤の円形外周面と前記クランクケースの間にそれぞれ転がり軸受けを装着することが望ましい。 In this case, it is desirable to employ a rolling bearing such as a deep groove ball bearing as the bearing mechanism, and to install a rolling bearing between the circular outer peripheral surface of the first to fourth rotating disks and the crankcase.
 また、両側の第3、第4回転円盤の間に回転位相ずれが発生しないようにするためには、前記第3回転円盤と前記第4回転円盤を同期回転させる同期回転機構を有していることが望ましい。 Further, in order to prevent a rotational phase shift from occurring between the third and fourth rotating disks on both sides, a synchronous rotating mechanism that synchronously rotates the third rotating disk and the fourth rotating disk is provided. It is desirable.
 ここで、同期回転機構は、
 前記第3回転円盤に同軸状態で一体回転するように取り付けた第1駆動側歯車と、
 前記第4回転円盤に同軸状態で一体回転するように取り付けた第2駆動側歯車と、
 前記回転中心線に平行に配置した出力回転軸と、
 前記出力回転軸に一体回転するように同軸状態に取り付けられ、前記第1駆動側歯車に噛み合っている第1従動側歯車と、
 前記出力回転軸に一体回転するように同軸状態に取り付けられ、前記第2駆動側歯車に噛み合っている第2従動側歯車とを備えているものを用いることができる。
Here, the synchronous rotation mechanism is
A first drive-side gear attached to the third rotating disk so as to rotate integrally in a coaxial state;
A second drive-side gear attached to the fourth rotating disk so as to rotate integrally in a coaxial state;
An output rotation axis arranged parallel to the rotation center line;
A first driven gear that is coaxially mounted so as to rotate integrally with the output rotating shaft and meshes with the first driving gear;
It is possible to use one provided with a second driven gear that is coaxially attached to the output rotating shaft and meshed with the second driving gear.
 この場合、前記出力回転軸は、前記第1気筒および前記第2気筒に対して180度の位相差で燃料を供給するためのカム軸であることが望ましい。前記出力回転軸を前記第1気筒および前記第2気筒の吸排気制御用のカム軸として兼用すれば、部品点数が少なくて済む。 In this case, the output rotation shaft is preferably a cam shaft for supplying fuel to the first cylinder and the second cylinder with a phase difference of 180 degrees. If the output rotation shaft is also used as a cam shaft for intake / exhaust control of the first cylinder and the second cylinder, the number of parts can be reduced.
 また、本発明の2気筒エンジンにおいては、前記第1ピンは、前記第1回転円盤および前記第2回転円盤に形成したピン穴に対して遊びのある状態で嵌め込まれており、
 前記第1外側ピンは前記第3回転円盤に形成したピン穴に対して遊びのある状態で嵌め込まれており、
 前記第2外側ピンは前記第4回転円盤に形成したピン穴に対して遊びのある状態で嵌め込まれている構成とすることができる。
In the two-cylinder engine of the present invention, the first pin is fitted in a playable state with respect to pin holes formed in the first rotating disc and the second rotating disc,
The first outer pin is fitted in a playable state with respect to a pin hole formed in the third rotating disk,
The second outer pin may be fitted in a playable state with respect to a pin hole formed in the fourth rotating disk.
 すなわち、本発明の2気筒エンジンのピストンクランク機構では、ピストンロッドの直線往復運動を回転運動に変換するための第1~第4回転円盤がそれぞれ軸受け機構を介してクランクケースによって回転自在の状態で支持されている。したがって、第1~第4の回転円盤は同期回転できるように連結されていればよく、従来のクランク軸のように強固に連結固定された構造にする必要が無い。 In other words, in the piston crank mechanism of the two-cylinder engine of the present invention, the first to fourth rotating disks for converting the linear reciprocating motion of the piston rod into the rotational motion can be freely rotated by the crankcase via the bearing mechanism. It is supported. Therefore, the first to fourth rotating disks need only be connected so as to be able to rotate synchronously, and there is no need to have a structure that is firmly connected and fixed as in the conventional crankshaft.
 次に、部品点数を減らすためには、
 前記第1ピストンロッドは、平行に延びる同一形状の第1内側ピストンロッドおよび第2内側ピストンロッドを備えており、
 前記第1、第2外側ピストンロッドおよび前記第1、第2内側ピストンロッドは共用部品であり、
 前記第1~第4回転円盤は共用部品であることが望ましい。
Next, to reduce the number of parts,
The first piston rod includes a first inner piston rod and a second inner piston rod having the same shape extending in parallel.
The first and second outer piston rods and the first and second inner piston rods are common parts,
The first to fourth rotating disks are preferably common parts.
 本発明の2気筒エンジンのピストンクランク機構は、軸受け機構を介してクランクケースによって回転自在の状態で支持されている複数枚の回転円盤を備えている。したがって、従来のように1本のクランク軸によって、その軸線方向の途中位置に各気筒のピストンロッドから作用する力を受け持つ機構とは異なり、各気筒のピストンロッドから回転円盤に対してその面内方向に力が作用し、この力が回転円盤の円形外周面に装着した軸受け機構を介してクランクケースに伝達する。したがって、クランク軸の場合に比べて、応力集中を緩和でき、ねじれ力、曲げ力などの部品を変形させる力の発生も抑制あるいは緩和される。よって、回転円盤などを高剛性の重量のある材料から形成する必要がなく、エンジンの軽量化を達成することができる。 The piston crank mechanism of the two-cylinder engine of the present invention includes a plurality of rotating disks supported in a rotatable state by a crankcase via a bearing mechanism. Therefore, unlike the conventional mechanism in which a single crankshaft receives a force acting from the piston rod of each cylinder at an intermediate position in the axial direction, the in-plane direction from the piston rod of each cylinder to the rotating disk is different. A force acts in the direction, and this force is transmitted to the crankcase via a bearing mechanism mounted on the circular outer peripheral surface of the rotating disk. Therefore, compared to the crankshaft, the stress concentration can be alleviated, and the generation of forces such as torsional force and bending force that can deform the parts is suppressed or alleviated. Therefore, it is not necessary to form a rotating disk or the like from a highly rigid and heavy material, and the weight of the engine can be reduced.
本発明を適用した2気筒エンジンの要部の概略斜視図である。It is a schematic perspective view of the principal part of the 2-cylinder engine to which this invention is applied. 図1のA-A線で切断した部分を示す2気筒エンジンの概略縦断面図である。FIG. 2 is a schematic longitudinal sectional view of a two-cylinder engine showing a portion cut along line AA in FIG. 1. 図1のB-B線で切断した部分を示す2気筒エンジンの概略横断面図である。FIG. 2 is a schematic cross-sectional view of a two-cylinder engine showing a portion cut along line BB in FIG. 1. 図1の2気筒エンジンのピストンクランク機構を示す説明図である。It is explanatory drawing which shows the piston crank mechanism of the 2-cylinder engine of FIG. 第1、第2回転円盤を支持している軸受け機構および第1ピストンロッドとピンの連結部分の軸受け機構を示す部分断面図である。It is a fragmentary sectional view which shows the bearing mechanism which supports the 1st, 2nd rotation disc, and the bearing mechanism of the connection part of a 1st piston rod and a pin. 第3回転円盤を支持している軸受け機構および第2ピストンロッドとピンの連結部分の軸受け機構を示す部分断面図である。It is a fragmentary sectional view which shows the bearing mechanism which is supporting the 3rd rotation disk, and the bearing mechanism of the connection part of a 2nd piston rod and a pin. 本発明を適用した多気筒エンジンの一例を示す説明図である。It is explanatory drawing which shows an example of the multicylinder engine to which this invention is applied. 本発明を適用した多気筒エンジンの一例を示す説明図である。It is explanatory drawing which shows an example of the multicylinder engine to which this invention is applied. 本発明を適用したピストンクランク機構の一例を示す説明図である。It is explanatory drawing which shows an example of the piston crank mechanism to which this invention is applied. 本発明を応用したピストンクランク機構の一例を示す説明図である。It is explanatory drawing which shows an example of the piston crank mechanism to which this invention is applied.
 以下に、図面を参照して、本発明を適用した2気筒エンジンの実施の形態を説明する。 Hereinafter, an embodiment of a two-cylinder engine to which the present invention is applied will be described with reference to the drawings.
(全体構成)
 図1は本発明を適用した水平対向型の2気筒エンジンの概略斜視図である。2気筒エンジン1は、前後方向に扁平な矩形筒状のクランクケース2と、このクランクケース2の左右の側面から水平に左右に延びている一対のシリンダーブロック3、4とを備えている。
(overall structure)
FIG. 1 is a schematic perspective view of a horizontally opposed two-cylinder engine to which the present invention is applied. The two-cylinder engine 1 includes a rectangular cylindrical crankcase 2 that is flat in the front-rear direction, and a pair of cylinder blocks 3 and 4 that extend horizontally from the left and right side surfaces of the crankcase 2 horizontally.
 図2は2気筒エンジン1の縦断面図であり、図1におけるA-A線で切断した部分の断面である。図3は2気筒エンジン1の横断面図であり、図1におけるB-B線で切断した部分の断面図である。これらの図も参照して説明すると、左右のシリンダーブロック3、4に第1気筒5および第2気筒6が形成されている。これら第1、第2気筒5、6はエンジン左右方向に延びる水平線L1上に対向配置されており、これらの内部には、それぞれ、180度の位相差を保って逆向きに直線往復運動を行う第1ピストン7および第2ピストン8が配置されている。 FIG. 2 is a vertical cross-sectional view of the two-cylinder engine 1, which is a cross section taken along line AA in FIG. FIG. 3 is a cross-sectional view of the two-cylinder engine 1, which is a cross-sectional view taken along line BB in FIG. Referring to these figures, the first cylinder 5 and the second cylinder 6 are formed in the left and right cylinder blocks 3 and 4. These first and second cylinders 5 and 6 are arranged opposite to each other on a horizontal line L1 extending in the left-right direction of the engine, and in each of them, a linear reciprocating motion is performed in the reverse direction while maintaining a phase difference of 180 degrees. A first piston 7 and a second piston 8 are arranged.
 第1ピストン7の第1ピストンロッド9および第2ピストン8の第2ピストンロッド10はそれぞれ、クランクケース2内に組み込まれているピストンクランク機構20に向けて延びており、当該ピストンクランク機構20に連結されている。ピストンクランク機構20は第1ピストン7および第2ピストン8の直線往復運動を、エンジン前後方向に水平に延びる回転中心線L2を中心とする回転運動に変換する。 The first piston rod 9 of the first piston 7 and the second piston rod 10 of the second piston 8 extend toward the piston crank mechanism 20 incorporated in the crankcase 2, respectively. It is connected. The piston crank mechanism 20 converts the linear reciprocating motion of the first piston 7 and the second piston 8 into a rotational motion about a rotational center line L2 extending horizontally in the longitudinal direction of the engine.
 ピストンクランク機構20によって回転運動に変換されたエンジン出力は、クランクケース2の下側部分に取り付けられている同期回転機構60の出力回転軸70から取り出されて被駆動側(図示せず)に伝達される。 The engine output converted into the rotational motion by the piston crank mechanism 20 is taken out from the output rotating shaft 70 of the synchronous rotating mechanism 60 attached to the lower portion of the crankcase 2 and transmitted to the driven side (not shown). Is done.
(ピストンクランク機構)
 図4はピストンクランク機構20の部分を取り出して示す説明図である。図2、図3および図4を参照して説明すると、ピストンクランク機構20は、前後方向に水平に延びる回転中心線L2の方向(前後方向)に所定の間隔で同軸状態に配列されている4枚の第1~第4回転円盤21~24を備えている。第1回転円盤21および第2回転円盤22は一定の間隔で前後に隣接配置されており、第3回転円盤23は前側の第1回転円盤21の前側に一定の間隔で隣接配置され、第4回転円盤24は後側の第2回転円盤22の後側に一定の間隔で隣接配置されている。
(Piston crank mechanism)
FIG. 4 is an explanatory view showing a part of the piston crank mechanism 20 taken out. 2, 3, and 4, the piston crank mechanism 20 is coaxially arranged at a predetermined interval in the direction of the rotation center line L <b> 2 that extends horizontally in the front-rear direction (front-rear direction) 4. The first to fourth rotating disks 21 to 24 are provided. The first rotating disc 21 and the second rotating disc 22 are arranged adjacent to each other at regular intervals, and the third rotating disc 23 is arranged adjacent to the front side of the front first rotating disc 21 at regular intervals. The rotating disk 24 is disposed adjacent to the rear side of the second rotating disk 22 on the rear side at a constant interval.
 第1~第4回転円盤21~24のそれぞれは、軸受け機構を介して、クランクケース2によって回転中心線L2回りに回転自在の状態で支持されている。本例では、第1回転円盤21の円形外周面21aとクランクケース2の内周面の間に第1深溝玉軸受け31を装着して、第1回転円盤21を回転自在の状態で支持しており、他の第2~第4回転円盤22~24も同様に、クランクケース2の内周面との間に装着された第2~第4深溝玉軸受け32~34によってそれぞれ回転自在の状態で支持されている。 Each of the first to fourth rotating disks 21 to 24 is supported by the crankcase 2 so as to be rotatable around the rotation center line L2 via a bearing mechanism. In this example, a first deep groove ball bearing 31 is mounted between the circular outer peripheral surface 21a of the first rotating disk 21 and the inner peripheral surface of the crankcase 2 to support the first rotating disk 21 in a rotatable state. Similarly, the other second to fourth rotating disks 22 to 24 are also respectively rotatable by second to fourth deep groove ball bearings 32 to 34 mounted between the inner peripheral surface of the crankcase 2. It is supported.
 ここで、本例の第1ピストンロッド9は共通部品である第1内側ピストンロッド9Aと第2内側ピストンロッド9Bからなる。これら第1、第2内側ピストンロッド9A、9Bは前後に平行に配置されており、それらの後端部(クランケース側の内側端部)は、それぞれ、第1ピン41を介して内側の第1回転円盤21および第2回転円盤22に連結されている。第1ピン41は円形断面をした所定長さのピンであり、回転中心線L2から半径方向の外方に所定距離だけ外れた位置において、回転中心線L2に平行な状態で第1、第2回転円盤21、22の間に架け渡されている。この第1ピン41に、深溝玉軸受け51、52を介して回転自在の状態で第1、第2内側ピストンロッド9A、9Bの後端部が連結されている。 Here, the first piston rod 9 of this example includes a first inner piston rod 9A and a second inner piston rod 9B which are common parts. These first and second inner piston rods 9A and 9B are arranged in parallel in the front-rear direction, and their rear ends (inner ends on the clan case side) are respectively connected to the inner first through the first pins 41. The first rotating disk 21 and the second rotating disk 22 are connected. The first pin 41 is a pin having a circular cross section and having a predetermined length. The first and second pins 41 are parallel to the rotation center line L2 at a position away from the rotation center line L2 by a predetermined distance radially outward. It spans between the rotating disks 21 and 22. The rear ends of the first and second inner piston rods 9A, 9B are coupled to the first pin 41 in a rotatable state via deep groove ball bearings 51, 52.
 同様に、第2ピストンロッド10も、共通部品である第1外側ピストンロッド10Aおよび第2外側ピストンロッド10Bからなり、これらにも第1、第2内側ピストンロッド9A、9Bとの共通部品が使用されている。前側の第1外側ピストンロッド10Aの後端部は、第1外側ピン42を介して前側の第1、第3回転円盤21、23に連結されている。第1外側ピン42は、第1ピン41に対して180度回転した位置において、回転中心線L2に平行な状態で第1、第3回転円盤21、23の間に架け渡されている。この第1外側ピン42に、深溝玉軸受け53を介して回転自在の状態で第1外側ピストンロッド10Aの後端部が連結されている。 Similarly, the second piston rod 10 is also composed of a first outer piston rod 10A and a second outer piston rod 10B which are common parts, and the common parts with the first and second inner piston rods 9A and 9B are also used. Has been. A rear end portion of the first outer piston rod 10 </ b> A on the front side is connected to the first and third rotary disks 21 and 23 on the front side via a first outer pin 42. The first outer pin 42 is bridged between the first and third rotating disks 21 and 23 in a state parallel to the rotation center line L2 at a position rotated 180 degrees with respect to the first pin 41. A rear end portion of the first outer piston rod 10 </ b> A is connected to the first outer pin 42 through a deep groove ball bearing 53 so as to be rotatable.
 右側の第1外側ピストンロッド10Bの後端部は、第2外側ピン43を介して後側の第2、第4回転円盤22、24に連結されている。第2外側ピン43は第1外側ピン42との共通部品が使用されており、第1外側ピン42と同一位置において、回転中心線L2に平行な状態で第2、第4回転円盤22、24の間に架け渡されている。この第2外側ピン43に、深溝玉軸受け54を介して回転自在の状態で第2外側ピストンロッド10Bの後端部が連結されている。 The rear end portion of the first outer piston rod 10B on the right side is connected to the second and fourth rotary disks 22 and 24 on the rear side via the second outer pin 43. Parts common to the first outer pin 42 are used for the second outer pin 43, and at the same position as the first outer pin 42, the second and fourth rotating disks 22 and 24 are parallel to the rotation center line L2. It is bridged between. A rear end portion of the second outer piston rod 10 </ b> B is connected to the second outer pin 43 through a deep groove ball bearing 54 so as to be rotatable.
 ここで、第1ピン41は、第1回転円盤21および第2回転円盤22に形成したピン穴に対して遊びのある状態で嵌め込まれており、第1外側ピン42は第1、第3回転円盤21、23に形成したピン穴に対してそれぞれ遊びのある状態で嵌め込まれている。同様に、第2外側ピン43は第2、第4回転円盤22、24に形成したピン穴に対して遊びのある状態で嵌め込まれている。すなわち、これらのピン41~43は第1~第4回転円盤21~24に強固に固着されておらず、これらの回転円盤に形成したピン穴に浮動状態で差し込まれた状態となっている。 Here, the first pin 41 is fitted into the pin holes formed in the first rotating disk 21 and the second rotating disk 22 in a state where there is play, and the first outer pin 42 rotates in the first and third rotations. The discs 21 and 23 are each fitted with play in the pin holes formed therein. Similarly, the second outer pin 43 is fitted into the pin holes formed in the second and fourth rotating disks 22 and 24 with play. That is, these pins 41 to 43 are not firmly fixed to the first to fourth rotating disks 21 to 24, and are inserted into the pin holes formed in these rotating disks in a floating state.
 なお、第1ピストンロッド9を構成している2本の第1、第2内側ピストンロッド9A、9B、第2ピストンロッド10を構成している2本の第1、第2外側ピストンロッド10A、10Bおよび、第1~第4回転円盤21~24は、回転中心線L2方向における厚さ寸法が同一となっている。また、これらは、回転中心線L2方向において、第1気筒5および第2気筒6の径寸法内に配置されている。 Two first and second inner piston rods 9A and 9B constituting the first piston rod 9, and two first and second outer piston rods 10A constituting the second piston rod 10, 10B and the first to fourth rotating disks 21 to 24 have the same thickness dimension in the direction of the rotation center line L2. Further, they are arranged within the radial dimensions of the first cylinder 5 and the second cylinder 6 in the direction of the rotation center line L2.
 次に、図5Aは第1、第2深溝玉軸受け31、32および深溝玉軸受け51、52の装着部分を示す部分断面図であり、図5Bは第3深溝玉軸受け33および深溝玉軸受け53の装着部分を示す部分断面図である。 Next, FIG. 5A is a partial cross-sectional view showing a mounting portion of the first and second deep groove ball bearings 31 and 32 and the deep groove ball bearings 51 and 52, and FIG. 5B is a view of the third deep groove ball bearing 33 and the deep groove ball bearing 53. It is a fragmentary sectional view which shows a mounting part.
 まず、これらの図を参照して第1~第4回転円盤21~24の軸受け機構を説明する。第1、第2深溝玉軸受け31、32は、第1、第2内側ピストンロッド9A、9Bの両側において、クランクケース2の円形内周面2aに装着した円環状の外輪31a、32aを備えており、これらの外輪の間隔(回転中心線L2の方向の間隔)は、同じく円形内周面2aに装着した幅の異なる複数の円環状のカラー35によって保持されている。各外輪31a、32aの内側には、第1、第2回転円盤21、22の円形外周面21a、22aに一体形成した内輪軌道面31b、32bが同心状に配置されている。これら外輪31a、32aおよび内輪軌道面31b、32bの間には、ボールリテーナ31c、32cによって一定の間隔で円周方向に沿ってボール31d、32dが転動可能な状態で配列されている。 First, the bearing mechanism of the first to fourth rotating disks 21 to 24 will be described with reference to these drawings. The first and second deep groove ball bearings 31 and 32 include annular outer rings 31a and 32a attached to the circular inner peripheral surface 2a of the crankcase 2 on both sides of the first and second inner piston rods 9A and 9B. The intervals between these outer rings (intervals in the direction of the rotation center line L2) are held by a plurality of annular collars 35 having different widths mounted on the circular inner peripheral surface 2a. Inner ring raceway surfaces 31b and 32b formed integrally with the circular outer peripheral surfaces 21a and 22a of the first and second rotary disks 21 and 22 are arranged concentrically inside the outer rings 31a and 32a. Between these outer rings 31a, 32a and inner ring raceway surfaces 31b, 32b, balls 31d, 32d are arranged in a rollable manner along the circumferential direction at regular intervals by ball retainers 31c, 32c.
 図5Bに示すように、第3深溝玉軸受け33も同様な構造であり、不図示の第4深溝玉軸受け34は第3深溝玉軸受け33と同様な構造である。 As shown in FIG. 5B, the third deep groove ball bearing 33 has the same structure, and the fourth deep groove ball bearing 34 (not shown) has the same structure as the third deep groove ball bearing 33.
 次に、第1ピン41と第1ピストンロッド9(9A、9B)の間に配置されている深溝玉軸受け51、52は、その内輪軌道面51a、52aが第1ピン41の円形外周面に一体形成されており、その外輪軌道面51b、52bが第1ピストンロッド9(9A、9B)のピン穴の円形内周面に一体形成されている。すなわち、第1ピン41は内輪一体型のピンであり、第1ピストンロッド9は外輪一体型のロッドである。 Next, the deep groove ball bearings 51, 52 arranged between the first pin 41 and the first piston rod 9 (9 </ b> A, 9 </ b> B) have inner ring raceway surfaces 51 a, 52 a on the circular outer peripheral surface of the first pin 41. The outer ring raceway surfaces 51b and 52b are integrally formed on the circular inner peripheral surface of the pin hole of the first piston rod 9 (9A and 9B). That is, the first pin 41 is an inner ring integrated type pin, and the first piston rod 9 is an outer ring integrated type rod.
 図5Bに示すように、第2ピン42と第2ピストロンロッド10の第1外側ピストンロッド10Aとの間に配置されている深溝玉軸受け53も同様な構造であり、不図示の第3ピン43と第2ピストンロッド10の第2外側ピストンロッド10Bとの間に配置されている深溝玉軸受け54も深溝玉軸受け受け53と同様な構造となっている。 As shown in FIG. 5B, the deep groove ball bearing 53 disposed between the second pin 42 and the first outer piston rod 10A of the second pstron rod 10 has a similar structure, and a third pin (not shown) The deep groove ball bearing 54 disposed between the second piston rod 10 </ b> B and the second outer piston rod 10 </ b> B of the second piston rod 10 has the same structure as the deep groove ball bearing 53.
(同期回転機構)
 次に、第1~第4回転円盤21~24の回転は、先に述べたように、同期回転機構60を介してその出力回転軸70から被駆動側に取り出される。
(Synchronous rotation mechanism)
Next, the rotations of the first to fourth rotating disks 21 to 24 are taken out from the output rotating shaft 70 to the driven side via the synchronous rotating mechanism 60 as described above.
 図1~図4を参照して同期回転機構60を説明する。最も前側に位置している第3回転円盤23の前側面には同軸状態に第1歯車軸61aが取り付けられており、この第1歯車軸61aはクランクケース2の前端から前方に突出しており、突出した軸端部には同軸状態に第1駆動側歯車61が固着されている。 The synchronous rotation mechanism 60 will be described with reference to FIGS. A first gear shaft 61a is coaxially attached to the front side surface of the third rotating disk 23 located on the most front side, and the first gear shaft 61a projects forward from the front end of the crankcase 2, A first driving gear 61 is fixed to the protruding shaft end portion in a coaxial state.
 これに対して、最も後側に位置している第4回転円盤24の後側面には同軸状態に第2歯車軸62aが取り付けられており、この歯車軸62aはクランクケース2の後端から後方に突出しており、突出した軸端部には同軸状態に第2駆動側歯車62が固着されている。また、第2駆動側歯車62の後側には同軸状態でロータ軸63が連結固定されており、このロータ軸63の軸端部には、点火プラグなどに電力を供給するための発電機のアウターロータ64が同軸状態に固着されている。 On the other hand, the second gear shaft 62a is coaxially attached to the rear side surface of the fourth rotating disk 24 located at the rearmost side, and this gear shaft 62a is rearward from the rear end of the crankcase 2. The second drive side gear 62 is fixed to the projecting shaft end portion coaxially. A rotor shaft 63 is connected and fixed coaxially to the rear side of the second drive side gear 62, and a shaft end of the rotor shaft 63 is connected to a generator for supplying electric power to a spark plug or the like. The outer rotor 64 is fixed coaxially.
 第1~第4回転円盤21~24の下側には、回転中心線L2と平行に前後方向に延びる回転中心線L3を中心軸線とする出力回転軸70が配置されている。この出力回転軸70の前側の部位には同軸状態で第1従動側歯車65が固着されており、その後側の部位には同軸状態で第2従動側歯車66が固着されている。これら第1、第2従動側歯車65、66は第1、第2駆動側歯車61、62にそれぞれ噛み合っている。 An output rotation shaft 70 having a rotation center line L3 extending in the front-rear direction in parallel with the rotation center line L2 as a center axis is disposed below the first to fourth rotation disks 21 to 24. A first driven gear 65 is fixed coaxially to the front portion of the output rotating shaft 70, and a second driven gear 66 is fixed coaxially to the rear portion. The first and second driven gears 65 and 66 mesh with the first and second drive gears 61 and 62, respectively.
 出力回転軸70の前側の軸端部70aは、クランクケース2の前端部に取り付けた前側カバーケース68を貫通して前方に突出していると共に、当該前側カバーケース68によって回転自在の状態で支持されている。出力回転軸70の後側の軸端部70bも、クランクケース2の後端部に取り付けた後側カバーケース69の内側面部分によって回転自在の状態で支持されている。前側カバーケース68によって、第1駆動側歯車61および第2従動側歯車65が覆われており、後側カバーケース69によって、第2駆動側歯車62および第2従動側歯車66が覆われている。 A shaft end portion 70a on the front side of the output rotating shaft 70 passes through a front cover case 68 attached to the front end portion of the crankcase 2 and protrudes forward, and is supported by the front cover case 68 in a rotatable state. ing. The shaft end portion 70b on the rear side of the output rotation shaft 70 is also supported in a rotatable state by the inner side surface portion of the rear cover case 69 attached to the rear end portion of the crankcase 2. The front cover case 68 covers the first driving gear 61 and the second driven gear 65, and the rear cover case 69 covers the second driving gear 62 and the second driven gear 66. .
(作用効果)
 2気筒エンジン1のピストンクランク機構20では、各気筒5、6のピストンロッド9、10からの力が各回転円盤21~24に対してそれらの面内方向に作用する。したがって、従来のように両側の軸端部が支持されているクランク軸の途中位置にピストンロッドからの力が軸線に直交する方向に作用する場合とは異なり、各回転円盤21~24には大きな応力集中がなく、大きな曲げ応力あるいはねじれ応力も発生しない。よって、回転円盤21~24を従来のクランク軸のような高剛性の重量のある材料から形成する必要がない。
(Function and effect)
In the piston crank mechanism 20 of the two-cylinder engine 1, the force from the piston rods 9 and 10 of the cylinders 5 and 6 acts on the rotary disks 21 to 24 in the in-plane direction. Therefore, unlike the conventional case where the force from the piston rod acts in the direction perpendicular to the axis at the midway position of the crankshaft on which the shaft end portions on both sides are supported, each rotating disk 21 to 24 has a large size. There is no stress concentration and no large bending stress or torsional stress is generated. Therefore, it is not necessary to form the rotary disks 21 to 24 from a material having high rigidity and weight like a conventional crankshaft.
 また、各ピストンロッド9、10を各回転円盤21~24に連結するための第1~第3ピン41~43は、回転円盤21~24を相互に強固に連結固定するために用いる必要がないので、これらも従来のような高剛性の重量のある材料から形成する必要がなく、また、これらのピン41~43と回転円盤21~24との連結構造も単に差し込み固定するだけの軽微な連結構造でよい。 Further, the first to third pins 41 to 43 for connecting the piston rods 9 and 10 to the rotary disks 21 to 24 do not need to be used for firmly connecting and fixing the rotary disks 21 to 24 to each other. Therefore, they do not need to be formed of a material having high rigidity and weight as in the prior art, and the connection structure between the pins 41 to 43 and the rotating disks 21 to 24 is a light connection that is simply inserted and fixed. The structure may be sufficient.
 さらに、同期回転機構60を配置してあるので、相互間が強固に連結固定されていない回転円盤21~24の回転位相がずれることを防止できる。よって、回転円盤21~24を介して効率良く回転力を出力することができる。 Furthermore, since the synchronous rotation mechanism 60 is disposed, it is possible to prevent the rotational phases of the rotating disks 21 to 24 that are not firmly connected and fixed to each other from being shifted. Therefore, the rotational force can be efficiently output via the rotary disks 21 to 24.
 また、各気筒5、6が水平線L1上に同軸に対向配置されるとともに、第1ピストン7に接続された第1ピストンロッド9が第2ピストン8に接続された一対の第1、第2外側ピストンロッド10A、10Bの間を移動するように配置されているので、各気筒5、6から、第1ピストンロッド9および一対の第1、第2外側ピストンロッド10A、10Bを介してピストンクランク機構20に働く偶力の作用点が接近している。この結果、偶力がピストンクランク機構20に与える影響が抑制されるので、2気筒エンジン1を低振動化することができる。 A pair of first and second outer sides in which the cylinders 5 and 6 are coaxially disposed opposite to each other on the horizontal line L 1 and the first piston rod 9 connected to the first piston 7 is connected to the second piston 8. Since it is arranged to move between the piston rods 10A and 10B, a piston crank mechanism is provided from each cylinder 5 and 6 via the first piston rod 9 and the pair of first and second outer piston rods 10A and 10B. The action point of the couple acting on 20 is approaching. As a result, since the influence of the couple on the piston crank mechanism 20 is suppressed, the vibration of the two-cylinder engine 1 can be reduced.
 さらに、第1、第2内側ピストンロッド9A、9Bおよび第1、第2外側ピストンロッド10A、10Bが共通部品とされ、第1~第4回転円盤21~24が共通部品とされ、第2、第3ピン42、43が共通部品とされ、これらの部品は、第1ピン41を含めて、回転中心線L2と直交して水平線L1を含む面に対して対称となるように配置されている。この結果、ピストンクランク機構20は、水平線L1を挟んだ前後の重量のバランスが取れているので、2気筒エンジン1の振動が、一層、抑制される。 Further, the first and second inner piston rods 9A and 9B and the first and second outer piston rods 10A and 10B are common parts, and the first to fourth rotating disks 21 to 24 are common parts, and the second, The third pins 42 and 43 are common parts, and these parts, including the first pin 41, are arranged so as to be symmetric with respect to the plane including the horizontal line L1 orthogonal to the rotation center line L2. . As a result, the piston crank mechanism 20 balances the weight before and after the horizontal line L1, so that the vibration of the two-cylinder engine 1 is further suppressed.
 また、第2、第3ピン42、43が共通部品とされ、第1、第2内側ピストンロッド9A、9Bおよび第1、第2外側ピストンロッド10A、10Bが共通部品とされ、第1~第4回転円盤21~24も共通部品とされているので、エンジン構成部品を大幅に削減できる。 The second and third pins 42 and 43 are common parts, and the first and second inner piston rods 9A and 9B and the first and second outer piston rods 10A and 10B are common parts. Since the four-rotation disks 21 to 24 are also common parts, engine components can be greatly reduced.
 さらに、第1、第2内側ピストンロッド9A、9B、第1、第2外側ピストンロッド10A、10B、および、第1~第4回転円盤21~24は、回転中心線L2方向に薄く形成されているので、潤滑油が、各深溝玉軸受け31~34、各深溝玉軸受け51~54に回り込みやすく、各軸受け部分における磨耗を低減させることができる。 Further, the first and second inner piston rods 9A and 9B, the first and second outer piston rods 10A and 10B, and the first to fourth rotating disks 21 to 24 are formed thin in the direction of the rotation center line L2. Therefore, the lubricating oil can easily go around the deep groove ball bearings 31 to 34 and the deep groove ball bearings 51 to 54, and wear at each bearing portion can be reduced.
 以上説明したように、水平対向型の2気筒エンジン1は、軽量で低振動なので、モーターパラグライダーなどのように人体に装着して用いる機器に搭載するエンジンとして適している。勿論、それ以外の用途のエンジン、たとえば、自動車、その他の産業機械用エンジンとして用いることも可能である。 As described above, the horizontally opposed two-cylinder engine 1 is lightweight and has low vibration, and is therefore suitable as an engine mounted on a device used by being mounted on a human body such as a motor paraglider. Of course, it can also be used as an engine for other purposes, for example, an engine for automobiles or other industrial machines.
 なお、上記の実施の形態では、第1ピストンロッド9として一対の内側ピストンロッド9A、9Bを用いているが、単一のピストンロッドを用いることもできる。また、回転円盤21~24を回転自在に支持するための軸受け機構としては、深溝玉軸受けに限られるものではなく、それ以外の転がり軸受け機構を採用することもできる。さらに、出力回転軸70を中空軸としてエンジン軽量化を図ることもできる。 In the above embodiment, the pair of inner piston rods 9A and 9B is used as the first piston rod 9, but a single piston rod can also be used. Further, the bearing mechanism for rotatably supporting the rotating disks 21 to 24 is not limited to the deep groove ball bearing, and other rolling bearing mechanisms may be employed. Further, the output rotating shaft 70 can be used as a hollow shaft to reduce the weight of the engine.
 次に、4サイクルエンジンの場合には、出力回転軸70は第1気筒および前記第2気筒に対して180度の位相差で吸排気バルブを駆動制御するためのカムシャフト軸として機能させることができる。この場合には、第1~第4回転円盤21~24の回転を1/2に減速して出力回転軸70に伝達できるように、第1、第2駆動側歯車61、62と、第2従動側歯車65、66とからなる歯車式伝達機構の減速比を1/2に設定しておけばよい。 Next, in the case of a four-cycle engine, the output rotation shaft 70 can function as a camshaft shaft for driving and controlling the intake and exhaust valves with a phase difference of 180 degrees with respect to the first cylinder and the second cylinder. it can. In this case, the first and second drive side gears 61 and 62, the second drive side gears 61 and 62, and the second drive side gears 61 and 62 can be transmitted to the output rotary shaft 70 by decelerating the rotation of the first to fourth rotary disks 21 to 24 to ½. What is necessary is just to set the reduction ratio of the gear type transmission mechanism consisting of the driven gears 65 and 66 to ½.
 すなわち、4サイクルエンジンでは、吸入工程、圧縮工程、燃焼膨張工程および排気工程を行う間に第1ピストンロッドおよび第2ピストンロッドが2回往復移動するので、第1駆動側歯車61および第2駆動側歯車62は2回転する。これに対して、吸気バルブおよび排気バルブはそれぞれ1回だけ駆動されればよいので、出力回転軸70の回転数を回転円盤21~24の1/2の回転数としておけば、出力回転軸70とカム軸とを兼用できる。もちろん、2気筒エンジン1を2サイクルエンジンとしてもよい。2サイクルエンジンとする場合には、各気筒5、6に対して掃気ポートおよび排気ポートを構成しておく。 That is, in the 4-cycle engine, the first piston rod and the second piston rod reciprocate twice during the intake process, the compression process, the combustion expansion process, and the exhaust process. The side gear 62 rotates twice. On the other hand, since the intake valve and the exhaust valve need only be driven once, if the rotational speed of the output rotary shaft 70 is set to 1/2 the rotational speed of the rotary disks 21 to 24, the output rotary shaft 70 And camshaft. Of course, the two-cylinder engine 1 may be a two-cycle engine. In the case of a two-cycle engine, a scavenging port and an exhaust port are configured for each cylinder 5 and 6.
(多気筒エンジンの構成例)
 本発明の2気筒エンジンを連結することにより、4気筒以上の偶数気筒を備えた多気筒エンジンを構築できる。
(Configuration example of multi-cylinder engine)
By connecting the two-cylinder engine of the present invention, a multi-cylinder engine having an even number of four or more cylinders can be constructed.
 たとえば、図6Aに示すように、複数台、たとえば2台の2気筒エンジン1を、それらのピストンクランク機構20の回転中心線L2が共通となるようにして、出力回転軸70を相互に連結することにより、4気筒エンジンを構築できる。この代わりに、図6Bに示すように、複数台、たとえば2台の2気筒エンジン1を、それらの出力回転軸70が共通となるように連結しても、4気筒エンジンを構築できる。 For example, as shown in FIG. 6A, a plurality of, for example, two, two-cylinder engines 1 are connected to each other so that the rotation center line L2 of the piston crank mechanism 20 is common and the output rotation shaft 70 is connected to each other. Thus, a 4-cylinder engine can be constructed. Instead, as shown in FIG. 6B, a four-cylinder engine can be constructed by connecting a plurality of, for example, two, two-cylinder engines 1 so that their output rotation shafts 70 are common.
 もちろん、図6Aに示す連結状態の4気筒エンジンと図6Bに示す4気筒エンジンの出力回転軸70を相互に連結して、複合型の多気筒エンジンを構築することも可能である。また、連結する2気筒エンジン1の台数は図6A、6Bに示す2台に限定されるものではなく、連数台数を増やすことにより高出力のエンジンを実現できる。 Of course, it is also possible to construct a composite multi-cylinder engine by mutually connecting the output rotation shafts 70 of the connected four-cylinder engine shown in FIG. 6A and the four-cylinder engine shown in FIG. 6B. Further, the number of two-cylinder engines 1 to be connected is not limited to the two shown in FIGS. 6A and 6B, and a high-power engine can be realized by increasing the number of stations.
(その他の実施の形態)
 図7Aは、本発明を適用した2枚の回転円盤を備えたピストンクランク機構の別の例を示す説明図である。図示のピストンクランク機構20Aは、予め設定した回転中心線L2に同軸に配置した2枚の回転円盤21A、21Bを備えており、これらの回転円盤21A、21Bは、回転中心線L2の方向に一定の間隔を開けて平行に配置されている。これらの回転円盤21A、21Bは、それらの円形外周面に装着した軸受け機構31A、31Bを介して、クランクケース2Aの円形内周面によって回転自在の状態で支持されている。
(Other embodiments)
FIG. 7A is an explanatory view showing another example of a piston crank mechanism provided with two rotating disks to which the present invention is applied. The illustrated piston crank mechanism 20A includes two rotating disks 21A and 21B arranged coaxially with a preset rotation center line L2, and these rotation disks 21A and 21B are constant in the direction of the rotation center line L2. Are arranged in parallel with a gap of. These rotary disks 21A and 21B are supported in a freely rotatable state by the circular inner peripheral surface of the crankcase 2A via bearing mechanisms 31A and 31B mounted on the circular outer peripheral surfaces.
 回転円盤21A、21Bの間には第1ピン41Aが架け渡されている。第1ピン41Aは、回転中心線L2から外れた部位に位置している。回転円盤21Aにおける回転円盤21Bとは反対側の第1外側円形側面21aには第1外側ピン42Aが取り付けられており、回転円盤21Bにおける回転円盤21Aとは反対側の第2外側円形側面21bには第2外側ピン43Aが取り付けられている。これら第1、第2外側ピン42A、43Aは、回転中心線L2から外れた部位であって、第1ピン41Aとは回転中心線L2回りに180度離れた部位に取り付けられている。 A first pin 41A is bridged between the rotating disks 21A and 21B. The first pin 41A is located at a portion deviating from the rotation center line L2. A first outer pin 42A is attached to the first outer circular side surface 21a of the rotating disk 21A opposite to the rotating disk 21B, and the second outer circular side surface 21b of the rotating disk 21B opposite to the rotating disk 21A is attached. The second outer pin 43A is attached. The first and second outer pins 42A and 43A are attached to a portion that is deviated from the rotation center line L2 and is 180 degrees away from the first pin 41A around the rotation center line L2.
 第1ピン41Aには、第1気筒5Aの第1ピストンロッド9Cのクランクケース2A側の後端部が回転中心線L2に平行な連結軸線回りに回転自在の状態で取り付けられており、この第1ピストンロッド9Cは回転中心線L2に直交する方向に延びている。第2気筒6Aの第2ピストンロッドは第1外側ピストンロッド10Cと第2外側ピストンロッド10Dから構成されており、第1外側ピストンロッド10Cは第1外側ピン42Aに連結され、第2外側ピストンロッド10Dは第2外側ピン43Aに連結されている。 The rear end portion of the first piston rod 9C of the first cylinder 5A on the crankcase 2A side is attached to the first pin 41A so as to be rotatable around a connecting axis parallel to the rotation center line L2. One piston rod 9C extends in a direction perpendicular to the rotation center line L2. The second piston rod of the second cylinder 6A includes a first outer piston rod 10C and a second outer piston rod 10D. The first outer piston rod 10C is connected to the first outer pin 42A, and the second outer piston rod. 10D is connected to the second outer pin 43A.
 このように構成したピストンクランク機構20Aにおいても、従来のクランク軸を用いる場合に比べてピストンクランク機構の軽量化を達成できる。また、ピストンクランク機構20Aを、回転中心線L2と直交して水平線L1を含む面に対して対称となるようにバランスよく構成することができるので、低振動化を図ることができる。 In the piston crank mechanism 20A configured as described above, the weight of the piston crank mechanism can be reduced as compared with the case of using a conventional crankshaft. Further, since the piston crank mechanism 20A can be configured in a well-balanced manner so as to be symmetric with respect to the plane including the horizontal line L1 orthogonal to the rotation center line L2, low vibration can be achieved.
 図7Bは本発明を応用した水平対向型の2気筒エンジンのピストンクランク機構を参考例として示す説明図である。図示のピストンクランク機構20Bは、予め設定した回転中心線L2に同軸に配置した1枚の回転円盤21Cと、この回転円盤21Cの円形外周面21aに装着した軸受け機構31Cを介して、当該回転円盤21Cを回転自在の状態で支持しているクランクケース2Aとを備えている。また、回転円盤21Cにおける一方の円形側面21dにおいて、回転中心線L2から外れた部位に取り付けた第1ピン41Bと、回転円盤21Cにおける他方の円形側面21eにおいて、回転中心線L2から外れた部位であって、第1ピン41Bとは回転中心線L2回りに180度離れた部位に取り付けた第2ピン42Bとを備えている。 FIG. 7B is an explanatory diagram showing a piston crank mechanism of a horizontally opposed two-cylinder engine to which the present invention is applied as a reference example. The illustrated piston crank mechanism 20B includes a rotating disk 21C disposed coaxially with a preset rotation center line L2 and a rotating mechanism 21C mounted on a circular outer peripheral surface 21a of the rotating disk 21C. And a crankcase 2A that supports 21C in a rotatable state. In addition, in one circular side surface 21d of the rotating disk 21C, the first pin 41B attached to a portion deviating from the rotation center line L2, and in the other circular side surface 21e of the rotating disk 21C, a portion deviating from the rotation center line L2. The first pin 41B includes a second pin 42B attached to a portion 180 degrees away from the rotation center line L2.
 第1ピン41Bには、第1気筒5Bの第1ピストンロッド9Dのクランクケース2B側の後端部が回転中心線L2に平行な連結軸線回りに回転自在の状態で取り付けられており、この第1ピストンロッド9Dは回転中心線L2に直交する方向に延びている。同様に、第2ピン42Bには、第2気筒6Bの第2ピストンロッド10Eの後端部が回転中心線L2に平行な連結軸線回りに回転自在の状態で取り付けられており、この第2ピストンロッド10Eも回転中心線L2に直交する方向に延びている。 A rear end portion of the first piston rod 9D of the first cylinder 5B on the crankcase 2B side is attached to the first pin 41B so as to be rotatable around a connecting axis parallel to the rotation center line L2. One piston rod 9D extends in a direction perpendicular to the rotation center line L2. Similarly, the rear end portion of the second piston rod 10E of the second cylinder 6B is attached to the second pin 42B so as to be rotatable around a connecting axis parallel to the rotation center line L2, and this second piston The rod 10E also extends in a direction perpendicular to the rotation center line L2.
 ここで、図7Bでは、第1気筒5Bと第2気筒6Bとは、回転中心線L2と直交して水平線L1を含む平面上から回転中心線L2方向を互いに反対方向にずれた位置に配置されている。すなわち、第1気筒5Bが、水平線L1よりも第2ピストンロッド10E側に僅かにずれており、第2気筒6Bが、水平線L1よりも第1ピストンロッド9D側に僅かにずれている。また、第1ピストンロッド9Dの外側端部は第1気筒5Bの中心軸線L2に位置するように、クランク状に折れ曲がっており、第2ピストンロッド10Eの外側端部は第2気筒6Bの中心軸線L3に位置するように、クランク状に折れ曲がっている。 Here, in FIG. 7B, the first cylinder 5B and the second cylinder 6B are arranged at positions that are perpendicular to the rotation center line L2 and shifted from the plane including the horizontal line L1 in the opposite directions to the rotation center line L2. ing. That is, the first cylinder 5B is slightly shifted from the horizontal line L1 to the second piston rod 10E side, and the second cylinder 6B is slightly shifted from the horizontal line L1 to the first piston rod 9D side. Further, the outer end portion of the first piston rod 9D is bent in a crank shape so as to be positioned on the central axis L2 of the first cylinder 5B, and the outer end portion of the second piston rod 10E is the central axis of the second cylinder 6B. It is bent in a crank shape so as to be positioned at L3.
 このように構成したピストンクランク機構20Bにおいても、従来のクランク軸を用いる場合に比べて、ピストンクランク機構の軽量化を達成できる。また、ピストンクランク機構20Bが回転中心線L2方向で薄く構成されるので、例えば、気筒5Bと気筒6Bを回転中心線L2を含む平面上に対向配置すれば、各気筒5、6から第1ピストンロッド9Dおよび第2ピストンロッド10Eを介してピストンクランク機構20に働く偶力の作用点が接近する。この結果、偶力がピストンクランク機構20に与える影響を抑制できるので、低振動化を図ることができる。 Also in the piston crank mechanism 20B configured as described above, the weight of the piston crank mechanism can be reduced as compared with the case where the conventional crankshaft is used. In addition, since the piston crank mechanism 20B is thinly configured in the direction of the rotation center line L2, for example, if the cylinder 5B and the cylinder 6B are disposed opposite to each other on a plane including the rotation center line L2, the first piston from each cylinder 5, 6 The action point of the couple acting on the piston crank mechanism 20 approaches through the rod 9D and the second piston rod 10E. As a result, since the influence of the couple on the piston crank mechanism 20 can be suppressed, vibration can be reduced.
 なお、ピストンクランク機構20A、20Bでは、各回転円盤21A、21B、21Cの回転を外部に取り出すために、各回転円盤21A、21B、21Cを歯車機構で回転自在に支持してもよい。この場合、歯車機構は、各回転円盤の円形外周面に形成した外歯と、各回転円盤の外周に沿って配置され、各回転円盤の外歯と噛合って従動する複数の従動歯車とを備えるものとする。また、回転円盤の外歯と従動歯車とは、ラジアル方向の負荷だけではなく、アキシャル方向の負荷に対しても、その噛み合いが外れない形状としておく。そして、各回転円盤の回転は、複数の従動歯車を介して、取り出す。 In the piston crank mechanisms 20A and 20B, the rotary disks 21A, 21B, and 21C may be rotatably supported by a gear mechanism in order to extract the rotation of the rotary disks 21A, 21B, and 21C to the outside. In this case, the gear mechanism includes external teeth formed on the circular outer peripheral surface of each rotating disk, and a plurality of driven gears that are arranged along the outer periphery of each rotating disk and mesh with the external teeth of each rotating disk. Shall be provided. Further, the external teeth of the rotating disk and the driven gear are formed so as not to disengage not only in the radial load but also in the axial load. The rotation of each rotating disk is taken out via a plurality of driven gears.
1  2気筒エンジン
2、2A、2B クランクケース
3  第1シリンダーブロック
4  第2シリンダーブロック
5、5A、5B 第1気筒
6、6A、6B 第2気筒
7  第1ピストン
8  第2ピストン
9、9C、9D 第1ピストンロッド
9A 第1内側ピストンロッド
9B 第2内側ピストンロッド
10、10E 第2ピストンロッド
10A、10C 第1外側ピストンロッド
10B、10D 第2外側ピストンロッド
20、20A、20B ピストンクランク機構
21~24 回転円盤
31~34 深溝玉軸受け
35 カラー
41、41A、41B 第1ピン
42、42A 第1外側ピン
42B、43B 第2ピン
43A 第2外側ピン
51~54 深溝玉軸受け
60 同期回転機構
61、62 駆動側歯車
65、66 従動側歯車
70 出力回転軸
L1 水平線
L2 回転中心線
L3 回転中心線
1 2- cylinder engine 2, 2A, 2B Crankcase 3 First cylinder block 4 Second cylinder block 5, 5A, 5B First cylinder 6, 6A, 6B Second cylinder 7 First piston 8 Second piston 9, 9C, 9D First piston rod 9A First inner piston rod 9B Second inner piston rod 10, 10E Second piston rod 10A, 10C First outer piston rod 10B, 10D Second outer piston rod 20, 20A, 20B Piston crank mechanisms 21-24 Rotating disks 31 to 34 Deep groove ball bearing 35 Collar 41, 41A, 41B First pin 42, 42A First outer pin 42B, 43B Second pin 43A Second outer pin 51-54 Deep groove ball bearing 60 Synchronous rotation mechanism 61, 62 Drive Side gear 65, 66 Driven side gear 70 Output rotating shaft L1 Horizontal line L2 Rotating Core L3 rotation center line

Claims (9)

  1.  予め設定した回転中心線(L2)の方向に一定の間隔を開けて同軸に配置された第1回転円盤(21A)および第2回転円盤(21B)と、
     前記第1回転円盤(21A)および前記第2回転円盤(21B)の円形外周面に装着した前記軸受け機構(31A、31B)を介して、前記第1回転円盤(21A)および前記第2回転円盤(21B)を前記回転中心線(L2)回りに回転自在の状態で支持しているクランクケース(2A)と、
     前記第1回転円盤(21A)と前記第2回転円盤(21B)の間において、前記回転中心線(L2)から外れた部位に架け渡して固定した第1ピン(41A)と、
     前記第1回転円盤(21A)における前記第2回転円盤(21B)とは反対側の第1外側円形側面において、前記回転中心線(L2)から外れた部位であって、前記第1ピン(41A)とは前記回転中心線(L2)回りに所定角度、離れた部位に固定した第1外側ピン(42A)と、
     前記第2回転円盤(21B)における前記第1回転円盤(21A)とは反対側の第2外側円形側面において、前記回転中心線(L2)から外れた部位であって、前記第1ピン(41A)とは前記回転中心線(L2)回りに所定角度、離れた部位に固定した第2外側ピン(43A)とを備えており、
     前記第1ピン(41A)に対して内側端部が前記回転中心線(L2)に平行な連結軸線回りに回転自在の状態で取り付けられ、前記回転中心線(L2)に直交する方向に延びている第1気筒(5)の第1ピストンロッド(9C)と、
     第1外側ピン(42A)に対して内側端部が前記回転中心線(L2)に平行な連結軸線回りに回転自在の状態で取り付けられ、前記回転中心線(L2)に直交する方向に延びている第2気筒(6)の第1外側ピストンロッド(10C)と、
     第2外側ピン(43A)に対して内側端部が前記回転中心線(L2)に平行な連結軸線回りに回転自在の状態で取り付けられ、前記第1外側ピストンロッド(10C)に対して一定の間隔を開けて前記回転中心線(L2)に直交する方向に延びている第2気筒(6)の第2外側ピストンロッド(10D)とを有していることを特徴とする2気筒エンジン。
    A first rotating disk (21A) and a second rotating disk (21B) arranged coaxially at a predetermined interval in the direction of a preset rotation center line (L2);
    The first rotating disk (21A) and the second rotating disk via the bearing mechanisms (31A, 31B) mounted on the circular outer peripheral surfaces of the first rotating disk (21A) and the second rotating disk (21B). A crankcase (2A) supporting (21B) in a rotatable state around the rotation center line (L2);
    A first pin (41A) fixed between the first rotating disk (21A) and the second rotating disk (21B) across and fixed to a portion off the rotation center line (L2);
    In the first outer circular side surface of the first rotating disk (21A) opposite to the second rotating disk (21B), the first pin (41A) is a portion deviated from the rotation center line (L2). ) Is a first outer pin (42A) fixed to a part separated by a predetermined angle around the rotation center line (L2),
    In the second outer circular side surface of the second rotating disk (21B) opposite to the first rotating disk (21A), the second rotating disk (21B) is a portion deviated from the rotation center line (L2), and the first pin (41A ) Includes a second outer pin (43A) fixed at a predetermined angle and away from the rotation center line (L2),
    An inner end portion is attached to the first pin (41A) so as to be rotatable around a connecting axis parallel to the rotation center line (L2), and extends in a direction perpendicular to the rotation center line (L2). A first piston rod (9C) of the first cylinder (5),
    An inner end is attached to the first outer pin (42A) so as to be rotatable around a connecting axis parallel to the rotation center line (L2), and extends in a direction perpendicular to the rotation center line (L2). A first outer piston rod (10C) of the second cylinder (6),
    An inner end is attached to the second outer pin (43A) so as to be rotatable around a connecting axis parallel to the rotation center line (L2), and is fixed to the first outer piston rod (10C). A two-cylinder engine having a second outer piston rod (10D) of a second cylinder (6) extending in a direction perpendicular to the rotation center line (L2) with a gap therebetween.
  2.  請求項1に記載の2気筒エンジンにおいて、
     前記第1気筒(5)および前記第2気筒(6)が前記回転中心線(L2)に直交する水平線(L1)上において対向配置されており、
     前記第1ピン(41B)と前記第2ピン(42B、43B)とは、前記回転中心線(L2)回りに180度の角度間隔の位置に配置されていることを特徴とする2気筒エンジン。
    The two-cylinder engine according to claim 1,
    The first cylinder (5) and the second cylinder (6) are arranged to face each other on a horizontal line (L1) orthogonal to the rotation center line (L2),
    The two-cylinder engine, wherein the first pin (41B) and the second pin (42B, 43B) are arranged at an angular interval of 180 degrees around the rotation center line (L2).
  3.  請求項2に記載の2気筒エンジンにおいて、
     前記回転円盤は、前記第1回転円盤(21)の前記第1外側円形側面の側において当該第1回転円盤(21)に対して一定の間隔で同軸に配置した第3回転円盤(23)と、前記第2回転円盤(22)の前記第2外側円形側面の側において当該第2回転円盤(22)に対して一定の間隔で同軸に配置した第4回転円盤(24)とを備えており、
     前記第1~第4回転円盤(21~24)は、前記軸受け機構を介して、前記回転中心線(L2)回りに回転自在の状態で前記クランクケース(2)によって支持されており、
     前記第1外側ピン(42)は、前記第1回転円盤(21)と前記第3回転円盤(23)の間に架け渡されており、
     前記第2外側ピン(43)は、前記第2回転円盤(22)と前記第4回転円盤(24)の間に架け渡されていることを特徴とする2気筒エンジン。
    The two-cylinder engine according to claim 2,
    The rotating disk includes a third rotating disk (23) arranged coaxially with a constant interval with respect to the first rotating disk (21) on the side of the first outer circular side surface of the first rotating disk (21). And a fourth rotating disk (24) arranged coaxially with a constant distance to the second rotating disk (22) on the second outer circular side surface side of the second rotating disk (22). ,
    The first to fourth rotating disks (21 to 24) are supported by the crankcase (2) through the bearing mechanism so as to be rotatable around the rotation center line (L2),
    The first outer pin (42) is bridged between the first rotating disk (21) and the third rotating disk (23),
    The two-cylinder engine, wherein the second outer pin (43) is bridged between the second rotating disk (22) and the fourth rotating disk (24).
  4.  請求項3に記載の2気筒エンジンにおいて、
     前記軸受け機構は転がり軸受けであり、前記第1~第4回転円盤(21~24)の円形外周面と前記クランクケース(2)の間にそれぞれ装着されていることを特徴とする2気筒エンジン。
    The two-cylinder engine according to claim 3,
    The two-cylinder engine is characterized in that the bearing mechanism is a rolling bearing and is mounted between a circular outer peripheral surface of the first to fourth rotating disks (21 to 24) and the crankcase (2).
  5.  請求項3に記載の2気筒エンジンにおいて、
     前記第3回転円盤(23)と前記第4回転円盤(24)を同期回転させる同期回転機構(60)を有していることを特徴とする2気筒エンジン。
    The two-cylinder engine according to claim 3,
    A two-cylinder engine comprising a synchronous rotation mechanism (60) for synchronously rotating the third rotating disk (23) and the fourth rotating disk (24).
  6.  請求項5に記載の2気筒エンジンにおいて、
     前記同期回転機構(60)は、
     前記第3回転円盤(23)に同軸状態で一体回転するように取り付けた第1駆動側歯車(61)と、
     前記第4回転円盤(24)に同軸状態で一体回転するように取り付けた第2駆動側歯車(62)と、
     前記回転中心線(L2)に平行に配置した出力回転軸(70)と、
     前記出力回転軸(70)に一体回転するように同軸状態に取り付けられ、前記第1駆動側歯車(61)に噛み合っている第1従動側歯車(65)と、
     前記出力回転軸(70)に一体回転するように同軸状態に取り付けられ、前記第2駆動側歯車(62)に噛み合っている第2従動側歯車(66)とを備えていることを特徴とする2気筒エンジン。
    The two-cylinder engine according to claim 5,
    The synchronous rotation mechanism (60)
    A first drive-side gear (61) attached to the third rotating disk (23) so as to rotate integrally therewith;
    A second driving gear (62) attached to the fourth rotating disk (24) so as to rotate integrally therewith, coaxially;
    An output rotation axis (70) arranged parallel to the rotation center line (L2);
    A first driven gear (65) attached coaxially so as to rotate integrally with the output rotating shaft (70) and meshing with the first driving gear (61);
    A second driven gear (66) that is coaxially attached to the output rotary shaft (70) and is meshed with the second drive gear (62) is provided. 2-cylinder engine.
  7.  請求項6に記載の2気筒エンジンにおいて、
     前記出力回転軸は、前記第1気筒(5)および前記第2気筒(6)に対して180度の位相差で燃料を供給するためのカム軸であることを特徴とする2気筒エンジン。
    The two-cylinder engine according to claim 6,
    The two-cylinder engine, wherein the output rotation shaft is a cam shaft for supplying fuel with a phase difference of 180 degrees to the first cylinder (5) and the second cylinder (6).
  8.  請求項3に記載の2気筒エンジンにおいて、
     前記第1ピン(41)は、前記第1回転円盤(21)および前記第2回転円盤(22)に形成したピン穴に対して遊びのある状態で嵌め込まれており、
     前記第1外側ピン(42)は前記第3回転円盤(23)に形成したピン穴に対して遊びのある状態で嵌め込まれており、
     前記第2外側ピン(43)は前記第4回転円盤(24)に形成したピン穴に対して遊びのある状態で嵌め込まれていることを特徴とする2気筒エンジン。
    The two-cylinder engine according to claim 3,
    The first pin (41) is fitted in a playable state with respect to pin holes formed in the first rotating disk (21) and the second rotating disk (22),
    The first outer pin (42) is fitted in a playable state with respect to a pin hole formed in the third rotating disk (23),
    The two-cylinder engine is characterized in that the second outer pin (43) is fitted in a playable state with respect to a pin hole formed in the fourth rotating disk (24).
  9.  請求項3に記載の2気筒エンジンにおいて、
     前記第1ピストンロッド(9)は、平行に延びる同一形状の第1内側ピストンロッド(9A)および第2内側ピストンロッド(9B)を備えており、
     前記第1、第2外側ピストンロッド(10A、10B)および前記第1、第2内側ピストンロッド(9A、9B)は共用部品であり、
     前記第1~第4回転円盤(21~24)は共用部品であることを特徴とする2気筒エンジン。
    The two-cylinder engine according to claim 3,
    The first piston rod (9) includes a first inner piston rod (9A) and a second inner piston rod (9B) having the same shape extending in parallel.
    The first and second outer piston rods (10A, 10B) and the first and second inner piston rods (9A, 9B) are common parts,
    The two-cylinder engine, wherein the first to fourth rotating disks (21 to 24) are shared parts.
PCT/JP2009/003727 2009-08-04 2009-08-04 Two-cylinder engine WO2011016084A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011525689A JP5328918B2 (en) 2009-08-04 2009-08-04 2-cylinder engine
PCT/JP2009/003727 WO2011016084A1 (en) 2009-08-04 2009-08-04 Two-cylinder engine
DE112009005123T DE112009005123T5 (en) 2009-08-04 2009-08-04 Two-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/003727 WO2011016084A1 (en) 2009-08-04 2009-08-04 Two-cylinder engine

Publications (1)

Publication Number Publication Date
WO2011016084A1 true WO2011016084A1 (en) 2011-02-10

Family

ID=43544008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003727 WO2011016084A1 (en) 2009-08-04 2009-08-04 Two-cylinder engine

Country Status (3)

Country Link
JP (1) JP5328918B2 (en)
DE (1) DE112009005123T5 (en)
WO (1) WO2011016084A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108533398A (en) * 2018-05-25 2018-09-14 华中科技大学 A kind of opposed type electricity generation module and the unmanned plane for including the opposed type electricity generation module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2057164A (en) * 1932-12-20 1936-10-13 Hugh M Rockwell Internal combustion engine
JPS59108816U (en) * 1983-01-12 1984-07-23 日産自動車株式会社 engine crankshaft device
JPS59164816U (en) * 1983-04-20 1984-11-05 トキコ株式会社 crankshaft
DE3635873A1 (en) * 1986-10-22 1988-05-05 Wilhelm Knechtel Two-stroke internal combustion engine and two-stroke compressor of radial construction
JPH1162599A (en) * 1997-08-08 1999-03-05 Yamaha Motor Co Ltd Crank chamber supercharging engine
WO2001090546A1 (en) * 2000-05-22 2001-11-29 Igor Olegovich Kiriljuk Opposed internal combustion engine
JP2002061507A (en) * 2001-08-24 2002-02-28 Suzuki Motor Corp Lubrication device for four-cycle engine for motorcycle
JP2002525481A (en) * 1998-09-22 2002-08-13 ダンリオン アール アンド ディー,インコーポレイティド Crankcase compression engine
JP2003042137A (en) * 2001-08-01 2003-02-13 Kawasaki Heavy Ind Ltd Crank mechanism of reciprocating machine
WO2003095813A1 (en) * 2002-04-24 2003-11-20 Segador Gil G Axially aligned opposed piston engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2057164A (en) * 1932-12-20 1936-10-13 Hugh M Rockwell Internal combustion engine
JPS59108816U (en) * 1983-01-12 1984-07-23 日産自動車株式会社 engine crankshaft device
JPS59164816U (en) * 1983-04-20 1984-11-05 トキコ株式会社 crankshaft
DE3635873A1 (en) * 1986-10-22 1988-05-05 Wilhelm Knechtel Two-stroke internal combustion engine and two-stroke compressor of radial construction
JPH1162599A (en) * 1997-08-08 1999-03-05 Yamaha Motor Co Ltd Crank chamber supercharging engine
JP2002525481A (en) * 1998-09-22 2002-08-13 ダンリオン アール アンド ディー,インコーポレイティド Crankcase compression engine
WO2001090546A1 (en) * 2000-05-22 2001-11-29 Igor Olegovich Kiriljuk Opposed internal combustion engine
JP2003042137A (en) * 2001-08-01 2003-02-13 Kawasaki Heavy Ind Ltd Crank mechanism of reciprocating machine
JP2002061507A (en) * 2001-08-24 2002-02-28 Suzuki Motor Corp Lubrication device for four-cycle engine for motorcycle
WO2003095813A1 (en) * 2002-04-24 2003-11-20 Segador Gil G Axially aligned opposed piston engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108533398A (en) * 2018-05-25 2018-09-14 华中科技大学 A kind of opposed type electricity generation module and the unmanned plane for including the opposed type electricity generation module
CN108533398B (en) * 2018-05-25 2024-02-06 华中科技大学 Opposed power generation module and unmanned aerial vehicle comprising same

Also Published As

Publication number Publication date
JPWO2011016084A1 (en) 2013-01-10
JP5328918B2 (en) 2013-10-30
DE112009005123T5 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
EP2454458B1 (en) A reciprocating piston mechanism
JP5764702B2 (en) Coaxial crankless engine
EP2930329B1 (en) An internal combustion engine including variable compression ratio
JPWO2008010490A1 (en) Cycloid reciprocating engine and pump device using this crank mechanism
WO2009018863A1 (en) A reciprocating piston mechanism
US8757123B2 (en) Balancing an opposed-piston, opposed-cylinder engine
JP2010275993A (en) Engine and engine system for hybrid vehicle
JP5328918B2 (en) 2-cylinder engine
JP2010523885A (en) Rotary engine
US8757126B2 (en) Non-reciprocating piston engine
JPS5835880Y2 (en) Balancer device for reciprocating piston engine
JP4865774B2 (en) Balancer device
JP2009281458A (en) Internal combustion engine equipped with balancer device
JP2000249191A (en) Arrangement for mass balance and/or moment balance of reciprocating internal-combustion engine
JP2011102602A (en) Balance device in internal combustion engine
JP6398172B2 (en) Internal combustion engine
JP3757944B2 (en) Engine starter
JP2007002698A (en) 6-cylinder engine
JP2015151902A (en) Isometric and isotropic type reciprocal engine
JP6295592B2 (en) Internal combustion engine
RU2222705C2 (en) Internal combustion engine without connecting rods
JP2013104422A (en) Reciprocating engine using assembling type center planetarium gear double eccentric disk two cylinder one crank pin type hypocycloid planetarium gear mechanism
JP2014066168A (en) Reciprocating internal combustion engine, crankshaft, vehicle and motorcycle
WO2004042244A1 (en) Crankshaft of an internal combustion engine
JP2008255909A (en) Crankless reciprocating engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848017

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011525689

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120090051235

Country of ref document: DE

Ref document number: 112009005123

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848017

Country of ref document: EP

Kind code of ref document: A1