WO2011015079A1 - 用户终端及测量pccpch rscp的方法 - Google Patents

用户终端及测量pccpch rscp的方法 Download PDF

Info

Publication number
WO2011015079A1
WO2011015079A1 PCT/CN2010/073579 CN2010073579W WO2011015079A1 WO 2011015079 A1 WO2011015079 A1 WO 2011015079A1 CN 2010073579 W CN2010073579 W CN 2010073579W WO 2011015079 A1 WO2011015079 A1 WO 2011015079A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
fft
measurement
channel estimation
pccpch
Prior art date
Application number
PCT/CN2010/073579
Other languages
English (en)
French (fr)
Inventor
宿金海
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011015079A1 publication Critical patent/WO2011015079A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]

Definitions

  • the present invention relates to the field of Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), and in particular, to a User Equipment (UE) and a Primary Common Control Physical Channel (Primary Common Control Physical Channel). , PCCPCH ) Received Signal Code Power (RSCP) method.
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • UE User Equipment
  • PCCPCH Primary Common Control Physical Channel
  • RSCP Received Signal Code Power
  • the physical layer performs cell measurement in different processes such as idle mode, random access mode, and service mode. All of these cells are measured by the upper layer protocol stack according to the signal strength of the current serving cell. Decide whether to initiate the relevant measurements.
  • the cell measurement includes serving cell measurement, co-frequency neighbor cell measurement, and inter-frequency neighbor cell measurement.
  • the most important measurement is RSCP.
  • the RSCP is used to identify the strength of the cell signal.
  • the user terminal (UE) tracks the signal of the serving cell in real time, and the UE also performs the scenario of cell camping, cell reselection, and cell switching according to the strength of the cell signal.
  • RSCP measurement There are two methods for RSCP measurement.
  • One method is to use the downlink synchronization code of the DwPTS slot of the TD-SCDMA system wireless subframe to implement measurement; the other is to use the TS0 slot of the TD-SCDMA system wireless subframe.
  • the training sequence (Midamble code) implements the measurement, that is, PCCPCH RSCP, and the measurement PCCPCH RSCP is the RSCP value of the PCCPCH that measures the TS0 time slot.
  • Table 1 shows the locations of the TS0 time slot and the DwPTS time slot in the TD-SCDMA system radio subframe.
  • Patent application 200610091854.0 (a method and system for performing the same frequency measurement in a TD-SCDMA system) uses the downlink synchronization code of the DwPTS slot to implement the measurement. Although this method can reduce the noise interference between the same frequency cells, the implementation thereof The process is computationally intensive.
  • Patent application 200710118299.0 power measurement method for TD-SCDMA neighboring cell and mobile terminal uses the Midamble code of the TS0 slot to implement measurement. This method needs to maintain the power offset of the neighboring cell, and needs to be non-stop. Listen to the broadcast channel of the neighboring cell. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a UE and a method for measuring PCCPCH RSCP.
  • the invention improves measurement accuracy, reduces computation amount, and reduces power consumption.
  • the invention discloses a method for measuring PCCPCH RSCP.
  • the UE pre-caches the Fast Fourier Transform (FFT) of the basic Midamble code of each measurement cell and the reciprocal of the FFT. After receiving the measurement command, according to the buffered basic Midamble code The FFT and the reciprocal of the FFT, perform channel estimation on each measurement cell; and calculate the PCCPCH RSCP of the corresponding cell according to the channel estimation result.
  • FFT Fast Fourier Transform
  • the step of the UE performing channel estimation on the measurement cell includes:
  • IFFT inverse inverse Fourier Transform
  • the number of iterations is increased by 1 ;
  • the channel recovery signal is transferred to perform the step of performing full interference cancellation on the FFT-based radio frequency data.
  • the step of performing total interference cancellation on the FFT-based radio frequency data further includes: simultaneously measuring noise of the FFT-based radio frequency data;
  • the UE performs noise reduction processing on the addition result according to the measured noise and a preset noise reduction threshold value.
  • the UE performs cell channel estimation for each round of less than or equal to 4 cells,
  • the step of estimating the channel includes: extracting 4 cells from the measurement cell, and performing channel estimation on the currently extracted 4 cells;
  • the method further includes: calculating a PCCPCH RSCP of the corresponding cell according to the cell channel estimation result, and sorting the four cells according to the calculated size of the PCCPCH RSCP, and extracting two of the cells.
  • the PCCPCH RSCP is a larger cell, and two cells are taken out from the remaining measurement cells, and the cell channel estimation is continued in the currently extracted 4 cells, and so on, until all the measurement cells perform cell channel estimation.
  • the UE calculates the PCCPCH RSCP by the following formula:
  • PCCPCH _ RSCP
  • 1 is the Miamble shift ⁇ noise- reduced signal estimation window corresponding to the PCCPCH in the TSO slot of the TD-SCDMA radio subframe; 1 ⁇ is the channel estimation of the cell numbered i.
  • the method further includes: after all the PCCPCH RSCPs of the measurement cells are calculated, the UE performs power conversion and filtering processing on the PCCPCH RSCP, and processes the processed PCCPCH RSCP.
  • the method further includes: maintaining a cell list according to the size of the processed PCCPCH RSCP on each carrier frequency.
  • the number of cells measured by the UE per subframe is less than or equal to 16.
  • the UE measures a maximum of 16 cells per subframe; 16 cells need to perform 7 rounds of cell channel estimation to finally complete the calculation of PCCPHC RSCP.
  • the present invention also discloses a UE, where the UE includes a cache module, a control module, and a measurement module.
  • the buffer module is configured to: store the FFT of the Midamble code of the TS0 slot of the TD-SCDMA radio subframe and the reciprocal of the FFT;
  • the control module is configured to: after receiving the measurement command, set the activation flag of the measurement module to 1; perform power conversion and filtering on the received PCCPCH RSCP measurement value;
  • the measurement module is configured to: detect whether the activation flag of the measurement cell is 1 in the TS0 time slot of each wireless subframe, and if yes, measure the PCCPCH RSCP of each measurement cell, and after measuring the PCCPCH RSCP of all measurement cells The measured value is reported to the control module.
  • the UE further includes a radio frequency data module,
  • the radio frequency data module is configured to: provide radio frequency data for the measurement module;
  • the control module is further configured to: determine whether the measurement resource is available before the measurement module is activated, and if yes, set the activation flag of the measurement module to 1; if not, wait for the measurement resource to be available, and then The activation flag is set to 1.
  • the measurement module is configured to: measure PCCPCH RSCP as follows: read radio frequency data from the radio frequency data module, and perform FFT on the read radio frequency data; read an FFT of the basic Midamble code from the cache module And reciprocal of the FFT; performing channel estimation on each measurement cell according to the FFT of the Midamble code and the inverse of the FFT and the FFT of the radio frequency data, and calculating the PCCPCH RSCP of the corresponding measurement cell according to the channel estimation result.
  • the invention pre-caches the FFT of the Midamble code and the reciprocal of the FFT into the UE, and directly uses the PCCPCH RSCP, which reduces the calculation amount, saves the system time and improves the system efficiency;
  • the total interference cancellation reduces the influence of the interference of the same-frequency neighboring cell on the measurement result, so that the measurement result is more accurate.
  • the present invention can calculate the PCCPCH RSCP of up to 16 cells in one subframe, which reduces the measurement time and reduces the power consumption. . BRIEF abstract
  • FIG. 1 is a schematic structural diagram of a UE according to the present invention.
  • FIG. 1 is a schematic structural diagram of a UE according to the present invention, including a cache module 12, a control module 10, a measurement module 11, and a radio frequency data module 13;
  • the buffer module 12 is configured to store an FFT value and an FFT reciprocal value of a Midamble code of a TS0 slot of the TD-SCDMA radio subframe;
  • the control module 10 is configured to determine whether the measurement resource is available after receiving the measurement command, and if yes, set the activation flag of the measurement module 11 to 1; otherwise, after the measurement resource is available, activate the measurement module 11
  • the flag position is 1; used for power conversion and filtering of the received PCCPCH RSCP measurement value;
  • the radio frequency data module 13 is configured to provide radio frequency data for the measurement module 11;
  • the measurement module 11 is configured to detect whether the activation flag of the measurement cell is 1 in the TS0 time slot of each wireless subframe, and if yes, measure the PCCPCH RSCP of each measurement cell, and after measuring the PCCPCH RSCP of all measurement cells, The measurement value is reported to the control module 10; the measurement module 11 measures the PCCPCH RSCP specifically: reading the radio frequency data from the radio frequency data module 13, and performing FFT on the read radio frequency data; reading the FFT of the Midamble code from the cache module 12 And reciprocal of the FFT; performing channel estimation on each measurement cell according to the FFT of the Midamble code and the inverse of the FFT, and the FFT of the radio frequency data, and calculating the PCCPCH RSCP of the corresponding measurement cell according to the channel estimation result.
  • FIG. 2 it is a flowchart of the method according to the present invention.
  • the FFT of the basic Midamble code of the TS0 slot of the TD-SCDMA radio subframe and the reciprocal of the FFT are already stored in the cache module 12, specifically Including the following steps:
  • Step 301 The control module 10 of the UE receives the measurement command.
  • Step 302 The control module 10 determines whether the measurement resource is available, and if so, proceeds to step 304; otherwise, proceeds to step 303;
  • Step 303 Wait for the measurement resource to be available, and then proceed to step 304;
  • Step 304 The activation flag of the measurement module 11 is set to 1;
  • Step 305 The measurement module 11 detects whether the activation flag of the UE is 1 in the TS0 time slot of each subframe. If yes, step 306 is performed; otherwise, no processing is performed on the current subframe; Step 306: From the cache module 12 Reading the FFT of the basic Midamble code and the reciprocal of the FFT; Step 307: Perform channel estimation on each measurement cell according to the FFT of the basic Midamble code and the reciprocal of the FFT, and calculate the PCCPCH RSCP of the corresponding cell according to the channel estimation result;
  • the cell channel estimation includes the following steps:
  • Step 3071 Read radio frequency data from the radio frequency data module 13 to 128-point chip data.
  • Step 3072 Perform FFT on the read 128-point chip data to obtain 128-point chip data.
  • Step 3073 Perform full interference cancellation on the data obtained in step 3072, and simultaneously measure noise;
  • Step 3074 Multiply the inverse of the FFT of the basic Midamble code of the corresponding cell by the data point after the interference cancellation, and then perform IFFT on the point multiplication result. Obtaining a residual channel estimate of the cell;
  • Step 3075 Perform joint primary path selection on the remaining channel estimation of the cell, to obtain a channel estimate after the cell joint primary path is selected;
  • Step 3076 Add the channel estimation obtained by the cell joint main path obtained in step 3075 to the channel estimation of the cell after the previous iteration, and then measure the noise and preset according to step 3073.
  • the noise reduction threshold is used to perform noise reduction processing on the addition result, and the channel estimation after the noise reduction of the cell is obtained;
  • the "channel estimation after the cell denoising obtained in the previous iteration" uses its initial value, that is, 0;
  • Step 3077 Perform FFT on the channel estimation after the noise reduction, and then basic with the cell
  • the FFT of the Midamble code performs a point multiplication operation
  • Step 3078 The number of iterations is increased by 1; The initial value of the number of iterations is 0;
  • Step 3079 determining whether the number of iterations is equal to 4, if yes, the channel estimation of the current measurement cell ends, outputting the point multiplication result, and clearing the number of iterations; otherwise, using the point multiplication result as a whole
  • the interference cancellation channel recovery signal is transferred to step 3073 for execution;
  • the UE After proceeding to step 3073, the UE proceeds to the next iteration until iteratively 4 times, and outputs a channel estimate for calculating the PCCPCH RSCP.
  • the above channel estimation method provided by the present invention makes the measurement PCCPCH RSCP more accurate.
  • the limit case is a PCCPCH RSCP measurement of 16 cells in one subframe.
  • PCCPCH _ RSCP
  • PCCPCH- RSCP value is output from step 3079, the signal after the noise estimation window Wl (TSO) corresponding to the PCCPCH Miamble shift l; i is the number of the cell channel estimation. Then according to PCCPCH RSCP1, PCCPCH RSCP2, PCCPCH RSCP3,
  • PCCPCH—RSCP4 sorts cells 1-4. Assume that the ranking result is 1-4-2-3. Then, cell 1 and cell 4 enter the next round of calculation. At this point, the first round of calculation ends; and so on, After each round of calculation, the PCCPCH RSCPs of cells 1 and 4 are both large, that is, there are cells 1 and 4 in each round of calculation, so that the first two cells are always the strongest cells, so that the same can be better eliminated. Frequency interference makes the measurement accuracy higher. There are a total of seven rounds of calculation.
  • the channel estimation of the cell in each round and then calculate the PCCPCH RSCP of the cell.
  • the reason why 4 cells are taken here is because it can ensure better interference cancellation and ensure the accuracy of measurement.
  • the number of cells measured per round is more. The measurement capability is increased.
  • the number of measurement cells per round can be any one of 1, 2, 3 or 4, and 4 cells per round is an optimal situation.
  • Step 308 After all the PCCPCH-RSCPs of all the measurement cells are calculated, the PCCPCH-RSCP value is reported to the control module.
  • Step 309 The control module performs power conversion and filtering processing on the received PCCPCH-RSCP value.
  • the power conversion method uses the following formula:
  • RSCP (measured dBm value) refers to the PCCPCH RSCP that actually arrives at the RF end by measurement
  • RSCP - dBm 10 * lg PCCPCH - RSCP, which is the automatic gain
  • the amplified PCCPCH RSCP is in dBm
  • AGC-dB is the amplification gain
  • C-dB is the channel parameter to be adjusted and is a constant.
  • RSCP is expanded by 256 times, so that
  • the PCCPCH RSCP value does not fluctuate in the ldB range, and the measurement results of the cells cannot be effectively sorted.
  • Step 310 The control module 10 reports the PCCPCH RSCP value to the upper layer periodically for all measurement cells, and then maintains the cell list on each carrier frequency.
  • the measurement result is mapped according to Table 2, and the measured actual power value is converted into a corresponding value on the protocol.
  • the reported value refers to the value range of the PCCPCH RSCP mapping that the control module 10 is to report to the upper layer.
  • the measured value refers to the actual measured PCCPCH RSCP power value in dBm.
  • the reporting period in this step can use different reporting periods according to different states in 3GPP TS 25.123».
  • the invention pre-caches the FFT of the Midamble code and the reciprocal of the FFT into the UE, and directly uses the PCCPCH RSCP, which reduces the calculation amount, saves the system time and improves the system efficiency;
  • the total interference cancellation reduces the influence of the interference of the same-frequency neighboring cell on the measurement result, so that the measurement result is more accurate.
  • the present invention can calculate the PCCPCH RSCP of up to 16 cells in one subframe, which reduces the measurement time and reduces the power consumption. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

用户终端及测量 PCCPCH RSCP的方法
技术领域
本发明涉及时分同步码分多址 ( Time Division- Synchronous Code Division Multiple Access, TD-SCDMA )领域,尤其涉及一种用户终端( User Equipment, UE )及测量主公共控制物理信道(Primary Common Control Physical Channel, PCCPCH )接收信号码功率( Received Signal Code Power, RSCP ) 的方法。
背景技术
在 TD-SCDMA移动通讯系统中, 物理层在空闲模式、 随机进入模式以 及业务模式等不同过程中要进行小区测量, 所有这些小区的测量都是由上层 协议栈根据目前服务小区的信号强弱来决定是否启动相关测量。 小区测量包 括服务小区测量、 同频邻小区测量、 异频邻小区测量等, 其中最重要的测量 量是 RSCP。 RSCP是用来标识小区信号的强弱, 用户终端 (UE )对服务小 区的信号实时跟踪, UE也会根据小区信号的强弱进行小区驻留、 小区重选和 小区切换等场景。
RSCP测量通常的做法有两种方法,一种方法是利用 TD-SCDMA系统无 线子帧的 DwPTS时隙的下行同步码来实现测量; 另一种是利用 TD-SCDMA 系统无线子帧的 TS0时隙的训练序列(Midamble码)实现测量, 即 PCCPCH RSCP, 测量 PCCPCH RSCP是测量 TS0时隙的 PCCPCH 的 RSCP值。 表 1 中是 TS0时隙和 DwPTS时隙在 TD-SCDMA系统无线子帧中的位置。
Figure imgf000003_0001
表 1
专利申请 200610091854.0 (—种 TD-SCDMA系统中进行同频测量的方 法和系统)釆用了 DwPTS时隙的下行同步码来实现测量,此方法虽然可以减 弱同频小区间的噪声干扰,但其实现过程计算量大。专利申请 200710118299.0 ( TD-SCDMA 邻小区的功率测量方法及移动终端) 釆用了 TS0 时隙的 Midamble码来实现测量, 此方法需要维护邻小区功率偏移, 并且需要不停的 监听邻小区的广播信道。 发明内容
本发明所要解决的技术问题是, 提供一种 UE及测量 PCCPCH RSCP的 方法, 本发明提高了测量精度, 减少了运算量, 降低了功耗。
本发明公开了一种测量 PCCPCH RSCP的方法, UE预先緩存各测量小区 基本 Midamble码的快速傅立叶变换( Fast Fourier Transform, FFT )及 FFT的 倒数, 当接收到测量命令后, 根据緩存的基本 Midamble码的 FFT及 FFT的 倒数, 对各测量小区进行信道估计; 以及根据信道估计结果, 计算相应小区 的 PCCPCH RSCP。
所述 UE对测量小区进行信道估计的步骤包括:
对当前测量小区的射频数据进行 FFT;
对经过所述 FFT的射频数据进行全干扰消除;
对经过所述全干扰消除的射频数据及所述小区的基本 Midamble码的 FFT 的倒数进行点乘运算, 并对点乘结果进行快速傅立叶逆变换(Inverse Fast Fourier Transform, IFFT ) , 得到所述小区的剩余信道估计;
对所述剩余信道估计进行联合主径选择, 得到所述小区联合主径选择后 的信道估计;
将所述小区联合主径选择后的信道估计与前一次迭代得到的所述小区降 噪后的信道估计相加, 并对相加结果进行降噪处理, 得到所述小区降噪后的 信道估计;
对所述降噪后的信道估计进行 FFT,之后与所述小区的基本 Midamble码 的 FFT进行点乘运算;
迭代次数加 1 ; 以及
判断所述迭代次数是否等于 4, 若是, 则当前测量小区的信道估计结束, 输出所述点乘运算结果, 并清零所述迭代次数; 若不是, 将所述点乘运算结 果作为全干扰消除的信道恢复信号, 转入执行所述对所述经过 FFT的射频数 据进行全干扰消除的步骤。 所述对所述经过 FFT的射频数据进行全干扰消除的步骤还包括: 同时测 量所述经过 FFT的射频数据的噪声;
所述降噪处理的步骤中, UE根据所述测量的噪声以及预设的降噪门限 值, 对所述相加结果进行降噪处理。
所述对各测量小区进行信道估计的步骤中, 所述 UE每轮对小于等于 4 个小区进行小区信道估计,
所述信道估计的步骤包括: 从测量小区中取出 4个小区, 对当前取出的 4个小区进行信道估计;
所述计算相应小区的 PCCPCH RSCP的步骤之后, 该方法还包括: 根据 小区信道估计结果计算相应小区的 PCCPCH RSCP,根据计算得到的 PCCPCH RSCP的大小对所述 4个小区进行排序,取出其中两个 PCCPCH RSCP较大的 小区, 并从剩余的测量小区中取出两个小区, 继续在当前取出的 4个小区进 行小区信道估计, 依次类推, 直到所有测量小区都进行了小区信道估计。
所述计算相应小区的 PCCPCH RSCP 的步骤中, UE通过如下公式计算 PCCPCH RSCP:
16
PCCPCH _ RSCP = |2 , h G wx
7=1
w
其中, 1为 TD-SCDMA无线子帧的 TSO 时隙中 PCCPCH对应的 Miamble shift Μχ 降噪后的信号估计窗; 1^ 为编号为 i的小区的信道估 计。
该方法还包括: 所有测量小区的 PCCPCH RSCP都计算完毕后, 所述 UE 对所述 PCCPCH RSCP 进行功率转换及滤波处理, 并上 经过处理的 PCCPCH RSCP。
所述 UE 上报 PCCPCH RSCP后, 该方法还包括: 在每个载频上根据所 述经过处理的 PCCPCH RSCP的大小维护小区列表。
所述 UE每子帧测量小区的数量小于等于 16个。
釆用这样的策略, 使得干扰消除的时候, 尽可能的把最强的 2个小区包 含在其中, 这样就最大可能的消除了小区之间的干扰, 使得测量 PCCPCH RSCP结果更加精确, 更利于 UE的重选以及切换等性能的提高。
所述 UE每子帧最多测量 16个小区; 16个小区需要做 7轮小区信道估 计, 才能最终完成 PCCPHC RSCP的计算。
本发明还公开了一种 UE, 所述 UE包括緩存模块、 控制模块以及测量模 块,
緩存模块设置为: 存储 TD-SCDMA无线子帧的 TS0时隙的 Midamble码 的 FFT及 FFT的倒数;
控制模块设置为: 在接收到测量命令后, 将所述测量模块的激活标志位 置 1; 对接收到的 PCCPCH RSCP测量值进行功率转换及滤波;
所述测量模块设置为: 在每个无线子帧的 TS0时隙, 检测自身的激活标 志位是否为 1 , 若是, 则测量各测量小区的 PCCPCH RSCP, 并在测量完所有 测量小区的 PCCPCH RSCP后, 将测量值上报给所述控制模块。
所述 UE还包括射频数据模块,
所述射频数据模块设置为: 为所述测量模块提供射频数据;
所述控制模块还设置为: 在激活测量模块前, 判断测量资源是否可用, 若是, 则将所述测量模块的激活标志位置为 1 ; 若不是, 等待测量资源可用 后, 将所述测量模块的激活标志位置为 1。
所述测量模块设置为: 按如下方式测量 PCCPCH RSCP: 从所述射频数 据模块中读取射频数据, 并对读取到的射频数据进行 FFT; 从所述緩存模块 中读取基本 Midamble码的 FFT及 FFT的倒数; 根据所述 Midamble码的 FFT 及 FFT的倒数、 射频数据的 FFT, 对各测量小区进行信道估计, 并根据信道 估计结果, 计算相应测量小区的 PCCPCH RSCP。
本发明将 Midamble码的 FFT及 FFT的倒数预先緩存到 UE 中, 计算 PCCPCH RSCP时, 直接取用, 降低了计算量, 节省了系统时间, 提高了系 统效率; 并且在小区信道估计时, 进行了全干扰消除, 降低了同频邻小区的 干扰对测量结果的影响, 使得测量结果更加准确; 本发明在一个子帧上最多 可计算 16个小区的 PCCPCH RSCP, 减少了测量时间, 降低了功耗。 附图概述
图 1 是本发明所述 UE的结构示意图;
图 2 是本发明所述方法的流程图。 本发明的较佳实施方式
下面结合附图和优选实施例, 对本发明做进一步详细描述。
如图 1所示, 是本发明所述 UE的结构示意图, 包括緩存模块 12、 控制 模块 10、 测量模块 11以及射频数据模块 13;
緩存模块 12用于存储 TD-SCDMA无线子帧的 TS0时隙的 Midamble码 的 FFT值及 FFT倒数值;
控制模块 10用于在接收到测量命令后, 判断测量资源是否可用, 若是, 则将所述测量模块 11的激活标志位置为 1 ; 否则, 等待测量资源可用后, 将 所述测量模块 11的激活标志位置为 1; 用于对接收到的 PCCPCH RSCP测量 值进行功率转换及滤波;
射频数据模块 13用于为所述测量模块 11提供射频数据;
测量模块 11用于在每个无线子帧的 TS0时隙,检测自身的激活标志位是 否为 1 , 若是, 则测量各测量小区的 PCCPCH RSCP, 并在测量完所有测量小 区的 PCCPCH RSCP后, 将测量值上报给控制模块 10; 测量模块 11 测量 PCCPCH RSCP具体包括: 从射频数据模块 13中读取射频数据, 并对读取到 的射频数据进行 FFT; 从緩存模块 12中读取 Midamble码的 FFT及 FFT的倒 数; 根据所述 Midamble码的 FFT及 FFT的倒数、 射频数据的 FFT, 对各测 量小区进行信道估计, 并根据信道估计结果, 计算相应测量小区的 PCCPCH RSCP。
如图 2所示, 是本发明所述方法流程图; 本实施例中, 假设 TD-SCDMA 无线子帧的 TS0时隙的基本 Midamble码的 FFT及 FFT的倒数已经存储在緩 存模块 12中, 具体包括如下步骤:
步骤 301 : UE的控制模块 10接收到测量命令; 步骤 302: 控制模块 10判断测量资源是否可用, 若是, 则转入步骤 304; 否则, 转入步骤 303;
步骤 303: 等待测量资源可用, 之后转入步骤 304;
步骤 304: 将测量模块 11的激活标志位置为 1 ;
步骤 305: 测量模块 11在每个子帧的 TS0时隙, 检测自身的激活标志位 是否为 1若是, 则执行步骤 306; 否则, 在当前子帧上不进行任何处理; 步骤 306:从緩存模块 12中读取基本 Midamble码的 FFT及 FFT的倒数; 步骤 307: 根据所述基本 Midamble码的 FFT及 FFT的倒数,对各测量小 区进行信道估计, 并根据信道估计结果, 计算相应小区的 PCCPCH RSCP; 其中, 小区信道估计包括如下步骤:
步骤 3071 : 从射频数据模块 13中读取射频数据一一 128点码片数据; 步骤 3072: 对读取的 128点码片数据进行 FFT, 得到 128点码片数据的
FFT;
步骤 3073: 对步骤 3072得到的数据进行全干扰消除, 并同时测量噪声; 步骤 3074: 用经过干扰消除后的数据点乘对应小区的基本 Midamble码 的 FFT的倒数, 然后对点乘结果进行 IFFT, 得到该小区的剩余信道估计; 步骤 3075: 对所述小区的剩余信道估计进行联合主径选择, 得到所述小 区联合主径选择后的信道估计;
步骤 3076: 将步骤 3075得到的所述小区联合主径选择后的信道估计与 前一次迭代得到的所述小区降噪后的信道估计相加,并才艮据步骤 3073测得的 噪声以及预设的降噪门限对相加结果进行降噪处理, 得到所述小区降噪后的 信道估计;
进行第一次迭代时, 所述 "前一次迭代得到的所述小区降噪后的信道估 计" 釆用其初始值, 即为 0;
步骤 3077: 对所述降噪后的信道估计进行 FFT, 之后与所述小区的基本
Midamble码的 FFT进行点乘运算;
步骤 3078: 迭代次数加 1 ; 迭代次数的初始值为 0;
步骤 3079: 判断所述迭代次数是否等于 4, 若是, 则当前测量小区的信 道估计结束, 输出所述点乘运算结果, 并清零所述迭代次数; 否则, 将所述 点乘运算结果作为全干扰消除的信道恢复信号, 转入步骤 3073执行;
转入步骤 3073后, UE继续进行下一次迭代, 直至迭代 4次, 输出供计 算 PCCPCH RSCP 的信道估计, 本发明提供的如上信道估计方法使得测量 PCCPCH RSCP更精确。
一轮信道估计中需要经过 4次迭代, 才能计算出最多 4个小区的信道估 计值, 然后根据信道估计计算小区的 PCCPCH RSCP。 本轮 4个小区计算完 毕, 则进行下一轮 4个小区的计算, 直至最多 16个小区都计算完毕。
极限情况是一个子帧内做 16个小区的 PCCPCH RSCP测量。本实施例中, 假设有 16个测量小区, 编号为 1-16, 因 UE每轮可支持最多在 4个小区进行 PCCPCH的 RSCP计算, 故: 首先取出编号为 1-4的小区, 在这四个小区上 进行小区信道估计, 结果分别为 hl、 h2、 h3、 h4, 然后根据 hl、 h2、 h3、 h4, 通过以下公式计算这四个小区的 PCCPCH RSCP;
16
PCCPCH _ RSCP = |2 , h G wx
7=1 上式中, PCCPCH— RSCP是步骤 3079输出的值, Wl为 TSO中 PCCPCH 对应的 Miamble shift l 的降噪后的信号估计窗; 为编号为 i的小区的信 道估计。 然后根据 PCCPCH RSCP1 、 PCCPCH RSCP2、 PCCPCH RSCP3 、
PCCPCH— RSCP4对小区 1-4进行排序, 假设排序结果为 1-4-2-3 , 那么, 小区 1和小区 4则进入下一轮计算, 到此, 第一轮计算结束; 依次类推, 假设每 轮计算后, 小区 1和 4的 PCCPCH RSCP都较大, 即每轮计算中都有小区 1 和 4, 这样就可以保证前 2个小区总是最强的小区, 这样能更好的消除同频 干扰, 使得测量精确度更高, 总共有七轮计算, 剩余的六轮计算中, 每轮的 四个小区分别为: 1、 4、 5、 6; 1、 4、 7、 8; 1、 4、 9、 10; 1、 4、 11、 12; 1、 4、 13、 14 ; 1、 4、 15、 16 ; 所有小区都计算完成后, 将计算结果: PCCPCH RSCP1—— PCCPCH RSCP16上报给控制模块。
每一轮计算小区的信道估计, 然后计算小区的 PCCPCH RSCP, 这里之 所以取 4个小区, 是因为这样能保证更好的进行干扰消除, 保证测量的精度, 同时, 每一轮测量的小区多, 增加了测量能力, 当然, 每轮测量小区的数目 可以是 1个、 2个、 3个或者 4个中的任何一种情况, 每轮做 4个小区是一种 最优的情况。
步骤 308 : 所有测量小区的 PCCPCH— RSCP 都计算完成后, 上报 PCCPCH— RSCP值给控制模块;
步骤 309: 控制模块对接收到的 PCCPCH— RSCP值进行功率转换及滤波 处理;
功率转换釆用如下公式:
RSCP (实测的 dBm值 ) = RSCP_dBm- AGC_dB+ C_dB 其中, RSCP (实测的 dBm值)是指通过测量得到的实际到达射频端的 PCCPCH RSCP; RSCP— dBm= 10 *lg PCCPCH— RSCP, 即为经过自动增益放大 后的 PCCPCH RSCP, 单位为 dBm; AGC— dB为放大增益; C— dB是待调信 道参数, 是一个常数。
本实施例中, 釆用 =丄的 α滤波。 滤波后 RSCP扩大了 256倍, 这样,
2
按照 PCCPCH RSCP 的大小对测量小区进行排序时, 就不会因为 PCCPCH RSCP值在 ldB范围波动, 而不能对小区的测量结果进行有效的排序。
步骤 310: 控制模块 10对所有测量小区按周期上报 PCCPCH RSCP值给 上层, 然后在每个载频上分别维护小区列表。
控制模块 10上报测量结果前, 先将测量结果按照表 2进行映射, 即将测 量得到的实际功率值转换成协议上对应的值。
表 2 上报值 测量量值 单位
P-CCPCH RSCP LEV -05 P-CCPCH RSCP <-120 dBm
P-CCPCH RSCP LEV -04 -120 < P-CCPCH RSCP < -119 dBm
P-CCPCH RSCP LEV -03 -119≤ P-CCPCH RSCP < -118 dBm
P-CCPCH RSCP LEV 89 -27≤ P-CCPCH RSCP < -26 dBm
P-CCPCH RSCP LEV 90 -26≤ P-CCPCH RSCP < -25 dBm
P-CCPCH RSCP LEV 91 -25 < P-CCPCH RSCP dBm
表 2中,上报值是指控制模块 10要上报给上层的 PCCPCH RSCP映射的 取值范围, 测量量值是指实际测量到的 PCCPCH RSCP 的功率值, 单位是 dBm。
本步骤中的上报的周期可以从《3GPP TS 25.123» 中根据不同的状态釆 用不同的上报周期。
以上仅是本发明的优选实施例, 对于本领域的技术人员来说, 本发明可 以有各种更改或变化, 凡在本发明的精神和原则之内, 所作的任何修改、 等 同替换、 改进等, 均应包含在本发明的保护范围之内。
工业实用性
本发明将 Midamble码的 FFT及 FFT的倒数预先緩存到 UE 中, 计算 PCCPCH RSCP时, 直接取用, 降低了计算量, 节省了系统时间, 提高了系 统效率; 并且在小区信道估计时, 进行了全干扰消除, 降低了同频邻小区的 干扰对测量结果的影响, 使得测量结果更加准确; 本发明在一个子帧上最多 可计算 16个小区的 PCCPCH RSCP, 减少了测量时间, 降低了功耗。

Claims

权 利 要 求 书
1、一种测量主公共控制物理信道( PCCPCH )接收信号码片功率( RSCP ) 的方法, 所述方法包括:
用户终端( UE )预先緩存各测量小区基本训练序列( Midamble码)的快 速傅立叶变换 ( FFT )及 FFT的倒数;
当接收到测量命令后, 根据緩存的基本 Midamble码的 FFT及 FFT的倒 数, 对各测量小区进行信道估计; 以及
根据信道估计结果, 计算相应小区的 PCCPCH RSCP。
2、 如权利要求 1所述的方法, 其中, 所述对测量小区进行信道估计的步 骤包括:
对当前测量小区的射频数据进行 FFT;
对经过所述 FFT的射频数据进行全干扰消除;
对经过所述全干扰消除的射频数据及所述小区的基本 Midamble码的 FFT 的倒数进行点乘运算, 并对点乘结果进行快速傅立叶逆变换(IFFT ) , 得到 所述小区的剩余信道估计;
对所述剩余信道估计进行联合主径选择, 得到所述小区联合主径选择后 的信道估计;
将所述小区联合主径选择后的信道估计与前一次迭代得到的所述小区降 噪后的信道估计相加, 并对相加结果进行降噪处理, 得到所述小区降噪后的 信道估计;
对所述降噪后的信道估计进行 FFT,之后与所述小区的基本 Midamble码 的 FFT进行点乘运算;
迭代次数加 1 ; 以及
判断所述迭代次数是否等于 4, 若是, 则当前测量小区的信道估计结束, 输出所述点乘运算结果, 并清零所述迭代次数; 若不是, 将所述点乘运算结 果作为全干扰消除的信道恢复信号, 转入执行所述对所述经过 FFT的射频数 据进行全干扰消除的步骤。
3、 如权利要求 2所述的方法, 其中,
所述对所述经过 FFT的射频数据进行全干扰消除的步骤还包括: 同时测 量所述经过 FFT的射频数据的噪声;
所述降噪处理的步骤中, UE根据所述测量的噪声以及预设的降噪门限 值, 对所述相加结果进行降噪处理。
4、 如权利要求 1或 2所述的方法, 其中, 所述对各测量小区进行信道估 计的步骤中, 所述 UE每轮对小于等于 4个小区进行信道估计,
所述信道估计的步骤包括: 从测量小区中取出 4个小区, 对当前取出的 4个小区进行小区信道估计;
所述计算相应小区的 PCCPCH RSCP的步骤之后, 该方法还包括: 根据 计算得到的 PCCPCH RSCP的大小对所述 4个小区进行排序, 取出其中两个 PCCPCH RSCP较大的小区, 并从剩余的测量小区中取出两个小区, 继续对 当前取出的 4个小区进行小区信道估计, 依次类推, 直到所有测量小区都进 行了信道估计。
5、如权利要求 4所述的方法,其中,所述计算相应小区的 PCCPCH RSCP 的步骤中, UE通过如下公式计算 PCCPCH RSCP:
16
PCCPCH _ RSCP = |2 , h G wx
7=1
w
其中, 1为 TD-SCDMA无线子帧的 TSO 时隙中 PCCPCH对应的
Miamble shift Μχ 降噪后的信号估计窗; 1^ 为编号为 i的小区的信道估 计。
6、 如权利要求 1所述的方法, 该方法还包括:
所有测量小区的 PCCPCH RSCP都计算完毕后,所述 UE对所述 PCCPCH RSCP进行功率转换及滤波处理, 并上报经过处理的 PCCPCH RSCP。
7、 如权利要求 6所述的方法, 其中, 所述 UE 上报 PCCPCH RSCP后, 该方法还包括: 在每个载频上根据所述经过处理的 PCCPCH RSCP的大小维 护小区列表。
8、 如权利要求 1所述的方法, 其中, 所述 UE每子帧测量小区的数量小 于等于 16个。
9、 一种用户终端(UE ) , 所述 UE包括緩存模块、 控制模块以及测量模 块,
緩存模块设置为: 存储 TD-SCDMA无线子帧的 TS0 时隙的训练序列
( Midamble码) 的快速傅立叶变换(FFT )及 FFT的倒数;
控制模块设置为: 在接收到测量命令后, 将所述测量模块的激活标志位 置 1 ;对接收到的主公共控制物理信道(PCCPCH )接收信号码片功率(RSCP ) 测量值进行功率转换及滤波;
测量模块设置为: 在每个无线子帧的 TS0时隙, 检测自身的激活标志位 是否为 1 , 若是, 则测量各测量小区的 PCCPCH RSCP, 并在测量完所有测量 小区的 PCCPCH RSCP后, 将测量值上报给所述控制模块。
10、 如权利要求 9所述的 UE, 所述 UE还包括射频数据模块,
所述射频数据模块设置为: 为所述测量模块提供射频数据;
所述控制模块还设置为: 在激活测量模块前, 判断测量资源是否可用, 若是, 则将所述测量模块的激活标志位置为 1 ; 若不是, 等待测量资源可用 后, 将所述测量模块的激活标志位置为 1。
11、 如权利要求 9所述的 UE, 其中, 所述测量模块设置为: 按如下方式 测量 PCCPCH RSCP: 从所述射频数据模块中读取射频数据, 并对读取到的 射频数据进行 FFT; 从所述緩存模块中读取基本 Midamble码的 FFT及 FFT 的倒数; 根据所述 Midamble码的 FFT及 FFT的倒数、 射频数据的 FFT, 对 各测量小区进行信道估计, 并根据信道估计结果, 计算相应测量小区的 PCCPCH RSCP。
PCT/CN2010/073579 2009-08-04 2010-06-04 用户终端及测量pccpch rscp的方法 WO2011015079A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910109244.2A CN101990232B (zh) 2009-08-04 2009-08-04 一种用户终端及测量pccpch rscp的方法
CN200910109244.2 2009-08-04

Publications (1)

Publication Number Publication Date
WO2011015079A1 true WO2011015079A1 (zh) 2011-02-10

Family

ID=43543905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073579 WO2011015079A1 (zh) 2009-08-04 2010-06-04 用户终端及测量pccpch rscp的方法

Country Status (2)

Country Link
CN (1) CN101990232B (zh)
WO (1) WO2011015079A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137484B (zh) * 2011-03-30 2014-12-31 中兴通讯股份有限公司 邻小区接收信号码功率的测量方法和装置
CN104581759B (zh) * 2013-10-25 2020-02-21 瑞典爱立信有限公司 无线接入网系统的接收信号码功率rscp的测量方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588824A (zh) * 2004-08-02 2005-03-02 北京天碁科技有限公司 一种以训练序列进行信道估计的方法及装置
CN101453236A (zh) * 2007-11-29 2009-06-10 杰脉通信技术(上海)有限公司 同频多小区信道估计方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615233A (en) * 1992-07-22 1997-03-25 Motorola, Inc. Method for channel estimation using individual adaptation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588824A (zh) * 2004-08-02 2005-03-02 北京天碁科技有限公司 一种以训练序列进行信道估计的方法及装置
CN101453236A (zh) * 2007-11-29 2009-06-10 杰脉通信技术(上海)有限公司 同频多小区信道估计方法

Also Published As

Publication number Publication date
CN101990232A (zh) 2011-03-23
CN101990232B (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
CN101388723B (zh) 一种无线通信定时同步方法及小区搜索方法和系统
CN100399847C (zh) 邻小区测量方法
RU2463746C2 (ru) Измерения разности времени синхронизации в системах ofdm
CN1757211B (zh) 基于估计信道延迟扩展的信道估计
KR20070098460A (ko) 하향링크 프리앰블 신호를 이용한 셀 탐색 장치 및 방법
CN101489238B (zh) 一种时间差的测量方法、系统及装置
CN102356671A (zh) 一种通信系统频段搜索的方法和装置
CN103841597A (zh) Td-scdma系统的频点扫描方法和装置
CN102572894B (zh) 一种干扰小区选择方法及装置
CN107171981A (zh) 通道校正方法及装置
CN101447823B (zh) 一种td-scdma系统下行同步方法
WO2011015079A1 (zh) 用户终端及测量pccpch rscp的方法
CN101959207B (zh) 一种邻小区的测量方法和装置
CN102238726A (zh) 一种用于lte-a信号的非线性最小二乘toa估计方法
CN110651453B (zh) 数据合并方法、装置及设备
CN101741773A (zh) 时分同步码分多址接入系统中终端信道估计的方法及装置
CN103685120B (zh) 一种用于lte系统中的重同步方法及系统
EP2756603B1 (en) Channel estimation method, channel estimation apparatus and communication device for cdma systems
CN101719881A (zh) 一种噪声功率的估计方法、装置和通信系统
CN102468866B (zh) Lte系统中基于频域差分镜像相关的定时同步方法与装置
CN1148017C (zh) 利用训练序列快速进行信道估计的方法和装置
CN102291161B (zh) Td-scdma系统中进行同频测量的方法及装置
CN101583209B (zh) 家庭基站信道估计后处理方法和装置及接收方法和接收机
WO2014086212A1 (zh) 无线通信系统信道估计中的抗采样偏差处理方法和装置
CN102857449A (zh) 一种并行同频干扰消除方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10805983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10805983

Country of ref document: EP

Kind code of ref document: A1