WO2011015065A1 - Sending method for reference signals - Google Patents

Sending method for reference signals Download PDF

Info

Publication number
WO2011015065A1
WO2011015065A1 PCT/CN2010/072182 CN2010072182W WO2011015065A1 WO 2011015065 A1 WO2011015065 A1 WO 2011015065A1 CN 2010072182 W CN2010072182 W CN 2010072182W WO 2011015065 A1 WO2011015065 A1 WO 2011015065A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
group
subcarriers
ofdm symbol
reference signals
Prior art date
Application number
PCT/CN2010/072182
Other languages
French (fr)
Chinese (zh)
Inventor
戴博
郁光辉
陈艺戬
杨勋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011015065A1 publication Critical patent/WO2011015065A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present invention relates to a higher-level evolution (Advanced Advancements for E-UTRA or Long Term Evolution-Advanced (LTE-A)) wireless communication system, and more particularly to a method for transmitting a reference signal for demodulation in an LTE-A system.
  • higher-level evolution Advanced Advancements for E-UTRA or Long Term Evolution-Advanced (LTE-A)
  • LTE-A Long Term Evolution-Advanced
  • MIMO Multiple-Input Multiple-Output
  • B3G Beyond 3rd Generation
  • 4G 4th generation
  • a new MIMO precoding method is proposed, which is an efficient MIMO multiplexing method, which converts MIMO into multiple independent virtual channels through precoding processing at the transceiver end. Because the effect of channel correlation is effectively eliminated, the precoding technique ensures the stability performance of the MIMO system in various environments.
  • FIG. 1 (a) and Figure 1 (b) are schematic diagrams of the frame structure of the Frequency Division Duplex (FDD) mode and the Time Division Duplex (TDD) mode of the LTE system, respectively.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • a 10 ms radio frame is composed of twenty slots (lengths) of lengths of 0.5 ms and slots 0 to 19, and slots 2i and The slot 2i+1 forms a subframe i of length 1 ms.
  • TDD Time Division Duplex
  • a 10 ms radio frame is composed of two half frames of 5 ms length, and one field contains 5 lengths of 1 ms.
  • the subframe i consists of two slots 2 ⁇ and slot 2i+1 that are 0.5 ms long.
  • one time slot contains 7 lengths of uplink symbols or downlink symbols; when the system uses extended CP, one time slot contains 6 Up or down symbols of length.
  • the above symbols are Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • One Resource Element is one subcarrier on one OFDM symbol, and one downlink resource block (RB) consists of 12 consecutive subcarriers and 7 consecutive (6 when using extended cyclic prefix)
  • the OFDM symbol is composed of 180 kHz in the frequency domain and a time slot of a general time slot in the time domain, as shown in FIG.
  • the LTE system allocates resources blocks as a basic unit.
  • the LTE system supports 4-antenna MIMO applications, and the corresponding antenna port #0, antenna port #1, antenna port #2, and antenna port #3 adopt a full-bandwidth cell-specific reference signal (CRS) method.
  • CRS cell-specific reference signal
  • the location of the cell-specific reference signal in the physical resource block is as shown in Figure 3(a).
  • the location of the cell-specific reference signal in the physical resource block is as shown in Figure 3(b).
  • the abscissa 1 indicates the sequence number of the subframe on the OFDM symbol, C, C 2 , C 3 and C 4 , corresponding to the cell-specific reference signal logical port #0, logical port #1, logical port #2 and logical port #3.
  • UE-specific reference signals there is a user-specific reference signal (UE-specific reference signals), and the reference signal is transmitted only in a time-frequency domain location where the user-specific Physical downlink shared channel (PDSCH) is located.
  • UE-specific reference signals includes downlink channel quality measurement and downlink channel estimation (demodulation).
  • LTE-A is an evolved version of LTE Release-8.
  • E-UTRA Evolved Universal Telecommunication Radio Access
  • UMTS Evolved Universal Mobile Telecommunications System
  • E-UTRAN Evolved Universal Mobile Telecommunications System
  • ITU-R IMT-Advanced proposed by ITU-R.
  • the requirements for backward compatibility with LTE Release-8 refer to: LTE Release-8 terminals can work in LTE-Advanced networks; LTE-Advanced terminals can work in LTE Release-8 networks.
  • LTE-Advanced should be able to operate in different spectrum configurations, including a wider spectrum configuration than LTE Release-8 (eg, 100 MHz continuous spectrum resources) to achieve higher performance and target peak rates. Since the LTE-Advanced network needs to be able to access the LTE user, its operating band needs to cover the current LTE frequency band, and there is no allocated continuous transmission bandwidth of 100 MHz in this frequency band. Therefore, a direct technology that LTE-Advanced needs to solve is to aggregate several continuous component carrier frequencies (spectrums) distributed in different frequency bands by using component carrier technology to form a 100 MHz bandwidth that can be used by LTE-Advanced.
  • spectrums continuous component carrier frequencies
  • LTE-Advanced demand research report proposed in September 2008, TR 36.814 V0.1.1 it has been clarified that the LTE-Advanced downlink can support up to 8 antennas.
  • LTE-Advanced defined LTE-Advanced for applications supporting 8-antenna and Coordinated Multiple Point (CoMP), dual-beamforming (beamforming) and other technologies.
  • CoMP Coordinated Multiple Point
  • the basic design framework of Advanced downlink reference signal defines the downlink reference signal for LTE-Advanced operation as two types of reference signals: reference signal for PDSCH demodulation and channel status information (CSI).
  • the generated reference signal, and the reference signal for PDSCH demodulation is transmitted based on the layer, and each layer corresponds to one reference signal.
  • the maximum number of layers that can be supported is 8.
  • the reference signals designed are mostly based on the common reference signal of the antenna port, and one, two and four layers of reference signals, and there are no more than four layers based on the layer reference signal transmission method. In view of this, it is necessary to provide a method for transmitting a reference signal to accommodate transmission requirements of layer-by-layer reference signals of more than four layers.
  • the present invention provides a method for transmitting a reference signal, where the reference signal is used for demodulation in an advanced long-term evolution system, and the method includes: dividing a reference signal corresponding to each layer into one or more Groups, so that the reference signals included in each group are different from each other, the resources occupied by the reference signals in the same group are the same, and the reference signals in different groups occupy different physical time-frequency resources; and the reference signals in the same group It is carried on the same resource by means of code division multiplexing.
  • the method further includes: when the number of layers of the reference signal is h, sequentially transmitting the first h reference signals in a time-frequency domain location where the user-specific physical shared channel is located.
  • the layer of the reference signal has 8 layers, and the reference signals corresponding to the layers are sequentially reference signal #0 of layer 1, reference signal #1 of layer 2, reference signal #2 of layer 3, reference signal of layer 4# 3.
  • each group contains 2 reference signals; wherein group 1 includes reference signal #0 and reference signal #4 in turn, group 2 includes reference signal #1 and reference signal #5 in sequence, and group 3 includes reference signal in turn. 2 and reference signal #6, and group 4 in turn contain references Signal #3 and reference signal #7; or, group 1 includes reference signal #0 and reference signal #7 in sequence, group 2 includes reference signal #1 and reference signal #6 in sequence, and group 3 sequentially includes reference signal #2 and reference signal #5, and group 4 sequentially includes reference signal #3 and reference signal #4; or, group 1 sequentially includes reference signal #0 and reference signal #6, and group 2 includes reference signals in sequence.
  • group 3 includes reference signal #2 and reference signal #4 in turn
  • group 4 includes reference signal #3 and reference signal #5 in sequence.
  • the orthogonal code used in the step of carrying the reference signals in the same group by means of code division multiplexing on the same resource is: the orthogonal code of the first reference signal of each of the four groups is ⁇ 1 , 1 ⁇ , the orthogonal code of the second reference signal of each group is ⁇ 1 , -1 ⁇ .
  • the mapping comprises: sequentially mapping the reference signals in the group 1 to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, occupying 3 subcarriers in the frequency domain;
  • the reference signals in the group 2 are sequentially mapped to the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, occupying the same three subcarriers in the frequency domain as the reference signal in the group 1.
  • mapping the reference signals in the group 3 to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols occupying a frequency difference from the reference signal in the group 1 Subcarriers; and sequentially mapping the reference signals in the group 4 to the second of the four OFDM symbols
  • the three subcarriers occupied by the reference signal in the group 1 are: the first, sixth, and eleventh subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 3 are: the physics
  • the second, seventh, and twelfth subcarriers in the resource block; or, the three subcarriers occupied by the reference signal in the group 1 are: the first, fifth, and ninth subcarriers in the physical resource block
  • the three subcarriers occupied by the reference signal in the group 3 are: The second, sixth, and tenth subcarriers in the physical resource block; or, the three subcarriers occupied by the reference signal in the group 1 are: first, fifth, and ninth in the physical resource block
  • the subcarriers, the three subcarriers occupied by the reference signal in the group 3 are: the third, seventh and eleventh subcarriers in the physical resource
  • the mapping comprises: sequentially mapping the reference signals in the group 1 to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, occupying 3 subcarriers in the frequency domain;
  • the reference signals in the group 2 are sequentially mapped to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, and occupy three subcarriers different from the reference signal in the group 1 in the frequency domain.
  • mapping the reference signals in the group 3 to the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, occupying the same three subcarriers in the frequency domain as the reference signal in the group 1. ; as well as
  • the reference signals in the group 4 are sequentially mapped onto the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, occupying the same three subcarriers in the frequency domain as the reference signals in the group 2.
  • the three subcarriers occupied by the reference signal in the group 1 are: the first, sixth, and eleventh subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 2 are: The second, seventh, and twelfth subcarriers in the physical resource block; or, the three subcarriers occupied by the reference signal in the group 1 are: first, fifth, and Nine subcarriers, the three subcarriers occupied by the reference signal in the group 2 are: the second, sixth, and tenth subcarriers in the physical resource block; or, the reference signal in the group 1 is occupied by 3
  • the subcarriers are: the first, fifth, and ninth subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the
  • the eleventh subcarrier includes: sequentially mapping the reference signals in the group 1 to the first one of the four OFDM symbols Omitting 3 subcarriers in the frequency domain on the OFDM symbol and the third OFDM symbol; sequentially mapping the reference signals in the group 2 to the second OFDM symbol and the fourth OFDM symbol in the four OFDM symbols Up, occupying 3 subcarriers different from the reference signal in the group 1 in the frequency domain; sequentially mapping the reference signals in the group 3 to the first one of the four OFDM symbols
  • the three subcarriers occupied by the reference signal in the group 1 are: first, sixth, and eleventh subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 2 are: the physics The second, seventh, and twelfth subcarriers in the resource block; or, the three subcarriers occupied by the reference signal in the group 1 are: the first, fifth, and ninth subcarriers in the physical resource block
  • the three subcarriers occupied by the reference signal in the group 2 are: the second, sixth, and tenth subcarriers in the physical resource block; or, the three subcarriers occupied by the reference signal in the group 1 are : the first, fifth, and ninth subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 2 are: third, seventh, and eleventh in the physical resource block
  • the three subcarriers occupied by the reference signal in the group 1 are: the first, sixth, and eleventh subcarriers in
  • the three subcarriers are: Second, seventh, and twelfth subcarrier block.
  • the reference signals corresponding to the layers are divided into two groups, group 1 and group 2, each group comprising four reference signals, wherein the group 1 includes the reference signal #0 and the reference signal #1 in sequence. , reference signal #4 and reference signal #5, group
  • Group 2 sequentially includes reference signal #2, reference signal #3, reference signal #6, and reference signal #7; or, group 1 sequentially includes reference signal #0, reference signal #1, reference signal #6, and reference signal #7, Group 2 includes reference signal #2, reference signal #3, reference signal #4, and reference signal #5 in sequence; or, group 1 includes reference signal #0, reference signal #1, reference signal #4, and reference signal in sequence.
  • #6, Group 2 includes reference signal #2, reference signal #3, reference signal #5, and reference signal #7 in sequence; or, group 1 includes reference signal #0, reference signal #1, reference signal #5, and reference signal in sequence.
  • Group 2 includes reference signal #2, reference signal #3, reference signal #4, and reference signal #6 in sequence; or, group 1 includes reference signal #0, reference signal #1, reference signal #4, and reference signal in sequence.
  • #7 Group 2 includes reference signal #2, reference signal #3, reference signal #5, and reference signal #6 in sequence; or, group 1 includes reference signal #0, reference signal #1, reference signal #5, and reference signal in sequence.
  • #6, Group 2 includes reference signal #2, reference signal #3, reference signal #4, and reference signal #7 in sequence; or, group 1 includes reference signal #0, reference signal #2, reference signal #4, and reference signal in sequence.
  • Group 2 contains reference signal #1, reference signal #3, reference signal #5 and reference signal #7 in sequence.
  • the orthogonal code used in the step of carrying the reference signals in the same group by means of code division multiplexing on the same resource is: the orthogonal code of the first reference signal of each of the two groups For ⁇ 1, 1, 1, 1 ⁇ , the orthogonal code of the second reference signal of each group is ⁇ 1, -1, 1, -1 ⁇ , and the orthogonal code of the third reference signal of each group is used.
  • the orthogonal codes used for ⁇ 1, 1, -1, -1 ⁇ , and the fourth reference signal of each group are -1, -1, 1 ⁇ ;
  • the first reference signal of each of the two groups adopts an orthogonal code of ⁇ 1, 1, 1,
  • the orthogonal code of the second reference signal of each group is u, -1, 1, -1 ⁇
  • the orthogonal code of the third reference signal of each group is ⁇ 1, -1, -1 , 1 ⁇
  • the fourth reference signal of each group uses an orthogonal code of ⁇ 1, 1, -1, -1 ⁇
  • the mapping comprises: sequentially mapping the reference signals in the group 1 to the four OFDM symbols, occupying 3 subcarriers in a frequency domain; and sequentially mapping the reference signals in the group 2 to the On the four OFDM symbols, three subcarriers different from the reference signal in the group 1 are occupied in the frequency domain.
  • the three subcarriers occupied by the reference signal in the group 1 are: the first, sixth, and eleventh subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 2 are: The second, seventh, and twelfth subcarriers in the resource block; or, the reference signal in the group 1 occupies the first, fifth, and ninth subcarriers in the physical resource block, and the group 2 The reference signal occupies the second, sixth and tenth subcarriers in the physical resource block;
  • the reference signal in the group 1 occupies the first, fifth, and ninth subcarriers in the physical resource block
  • the reference signal in the group 2 occupies the third, seventh, and tenth in the physical resource block.
  • the mapping comprises: sequentially mapping the reference signals in the group 1 to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, occupying 6 subcarriers in the frequency domain; Mapping the reference signals in the group 2 to the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, and occupying the same 6 sub-bands in the frequency domain as the reference signal in the group 1.
  • the six subcarriers are: first, second, sixth, seventh, eleventh and twelfth subcarriers in the physical resource block, or first, second, fifth, sixth, ninth and The tenth subcarrier.
  • the reference signals corresponding to the layers are divided into one group, and the group includes eight reference signals;
  • the orthogonal code used in the step of carrying the reference signals on the same resource by means of code division multiplexing is:
  • the orthogonal code used in the test signal #0 is ⁇ 1, 1, 1, 1, 1, 1 , 1, 1 ⁇ ;
  • the orthogonal code used for the test signal #1 is ⁇ 1, -1, 1, -1 1, -1, 1, -
  • the orthogonal code used for the test signal #2 is ⁇ 1, -1, -1, 1 1, -1, -1
  • the orthogonal code used in the test signal #3 is ⁇ 1, 1, -1, -1 1, 1, - 1, -
  • the orthogonal code used in the test signal #4 is ⁇ 1, 1 , 1, 1, -1, -1, - 1, -
  • the orthogonal code used in the test signal #5 is ⁇ 1, -1, 1, -1 -1, 1, -1
  • the mapping comprises: sequentially mapping reference signals in the group to the four OFDM symbols, occupying 6 subcarriers in a frequency domain; and the 6 subcarriers are first, second, sixth, seventh
  • the eleventh and twelfth subcarriers are either the first, second, fifth, sixth, ninth and tenth subcarriers.
  • the reference signal data mapped on the carrier of the same frequency domain position in different time domain symbols in the same group is the same.
  • the layer has 8 layers, and the reference signals corresponding to the layers are sequentially reference signals #k of layer k; k are 0, 1, 2, 3, 4, 5, 6 and 7 respectively; wherein the reference signal#
  • 3 ⁇ 4 is generated according to a pseudo-random sequence initial value c mit 2"; C mi t is an integer greater than or equal to zero.
  • rO mapping the sequence r( ) of the reference signal to the antenna logical port p, the OFDM symbol /, the subcarrier A, where: ⁇ (, _7 ⁇ ) is an orthogonal code factor, and
  • the method for transmitting a layer-based reference signal ensures minimum transmission of reference signal overhead while ensuring transmission performance, and can be well compatible with existing LTE systems.
  • high-order MIM0 transmission is realized, which supports the use of corresponding technologies and improves the overall performance of the system.
  • FIG. 1(a) is a schematic diagram of a frame structure of an LTE system FDD mode
  • FIG. 1(b) is a schematic diagram of a frame structure of an LTE system TDD mode
  • FIG. 2 is a schematic diagram of a physical resource block of an LTE system with a system bandwidth of 5 MHz
  • Figure 3 (b) is the location of the public reference signal in the physical resource block when the CP is extended
  • Figure 4 (a) to Figure 4 ( d) is a schematic diagram of the carrier position of the reference signal in the resource block according to the first embodiment of the method of the present invention
  • FIG. 5 (d) of the reference signal of the second embodiment of the method of the present invention are carried in the resource block
  • Figure 6 (a) and Figure 6 (b) is a schematic diagram of the carrier position of the reference signal in the resource block according to the third embodiment of the method of the present invention
  • Figure 7 (a) and Figure 7 (b) is the method of the present invention
  • FIG. 8(a) and FIG. 8(b) are schematic diagrams showing the carrier position of a reference signal in a resource block according to a fifth embodiment of the method of the present invention
  • FIG. 9(h) is a schematic diagram of a carrier position of a reference signal in a resource block according to a sixth embodiment of the method of the present invention.
  • the reference signal corresponding to each layer is recorded as the reference signal #0 of layer 1, the reference signal #1 of layer 2, and the layer 3 Reference signal #2, reference signal #3 of layer 4, reference signal #4 of layer 5, reference signal #5 of layer 6, reference signal #6 of layer 7, reference signal #7 of layer 8, where the base station will
  • the reference signals are divided into several groups, and the reference signals included in each group are different from each other. The resources occupied by the reference signals in the same group are the same.
  • FIG. 8 are diagrams showing respective embodiments of a reference signal transmission method according to the present invention, respectively showing specific carrier positions of a layer-based reference signal in its corresponding resource block.
  • reference numerals 7; ⁇ ⁇ , r 3 , ⁇ 4 , r 5 , ⁇ 6 , r 7 and r 8 respectively correspond to the reference signal #0 of layer 1 and the reference signal #1 of layer 2.
  • the reference signal is transmitted only in the time-frequency domain location where the user-specific physical shared channel is located.
  • C mit is a positive integer greater than or equal to zero
  • Equation (5) n % is the slot index in one radio frame; N is the identifier of the cell;
  • 3 ⁇ 4m is a user-specific logo
  • c init can also be generated in other ways, not limited to equation (5).
  • r( ) indicates the manner in which the sequence is generated, where (“how to map the elements of the sequence to the physical resources. When the number of layers is h, only the corresponding reference signal #0, reference signal# is transmitted. 1, ..., reference signal #hl, other reference signals are not transmitted.
  • an 8-layer reference signal is mapped onto the four OFDM symbols, respectively: the first one in the subframe a first OFDM symbol and a penultimate OFDM symbol of the slot, a first OFDM symbol of the second slot, and a second to last OFDM symbol; or a reciprocal of the first slot in the subframe OFDM symbols and the penultimate OFDM symbol, The second last OFDM symbol of the second time slot and the fourth last OFDM symbol; or when the cyclic prefix in the subframe is a regular cyclic prefix, the four OFDM symbols may be the fourth of the first time slot in the subframe OFDM symbols and a sixth OFDM symbol, a fourth OFDM symbol of the second slot, and a sixth OFDM symbol; or when the cyclic prefix in the subframe is a regular cyclic prefix, the four OFDM symbols may be in a subframe The fourth OFDM symbol and the seventh OFDM symbol of the first slot, the third OFDM symbol of the second slot, and the sixth OFDM symbol
  • all 8 layers of reference signals can be divided into 2 groups, each group containing 4 reference signals, wherein the reference signals included in each group are: Group 1 contains reference signals #0, #1 in sequence. , #4 and #5, group 2 contains reference signals #2, #3,
  • Group 1 contains reference signals #0, #1, #6, and #7 in sequence
  • group 2 contains reference signals #2, #3, in turn.
  • Group 1 contains reference signals #0, #1, #4, and #6 in turn, and group 2 contains reference signals #2, #3, in turn.
  • Group 1 contains reference signals #0, #1, #5, and #7 in turn, and group 2 contains reference signals #2, #3, in turn.
  • Group 1 contains reference signals #0, #1, #4, and #7 in sequence, and group 2 contains reference signals #2, #3, #5, and #6;
  • Group 1 contains reference signals #0, #1, #5, and #6 in turn, and group 2 contains reference signals #2, #3, in turn.
  • Group 1 contains reference signals #0, #2, #4, and #6 in turn, and group 2 contains reference signals #1, #3, in turn.
  • the first reference signal in each group corresponds to the orthogonal code is ⁇ 1, 1 , 1 , 1 ⁇
  • the second reference signal corresponds to the orthogonal code is ⁇ 1 , - 1 , 1 , -1 ⁇
  • the third reference signal corresponds to an orthogonal code of ⁇ 1, 1, -1, -1 ⁇
  • the fourth reference signal corresponds to an orthogonal code of ⁇ 1, -1, -1, 1 ⁇ ; or, the first in the group
  • the reference signals correspond to orthogonal codes ⁇ 1, 1, 1, 1 ⁇
  • the second reference signals correspond to orthogonal codes ⁇ 1, -1, 1, -1 ⁇
  • the third reference signals correspond to orthogonal codes.
  • the fourth reference signal in the group corresponds to the orthogonal code ⁇ 1, 1, -1, -1 ⁇ 0.
  • the reference signals in the first scene group 1 are sequentially mapped to the four OFDM symbols set as described above, occupying 3 subcarriers in the frequency domain; the reference signals in the group 2 are sequentially mapped to the aforementioned four OFDM symbols, in the frequency domain.
  • the three subcarriers occupying the reference signal in the group 1 are occupied, wherein: the reference signal in the group 1 occupies the first, sixth, and eleventh subcarriers in the physical resource block, and the reference signal in the group 2 occupies the physical resource.
  • the reference signal data mapped on the carriers of the same frequency domain position in different time domain symbols in the same group is the same.
  • the number of layers of the reference signal is 8, and the reference signal #0, the reference signal #1, and the reference signal #7 are respectively transmitted.
  • the 8-layer reference signals are divided into two groups, each of which contains four reference signals.
  • the reference signals included in group 1 are reference signals #0, #1, #4, and #6, respectively, and the reference signals included in group 2 are reference signals #2, #3, #5, and #7, respectively.
  • the reference signal #0 and the reference signal #2 correspond to the orthogonal code ⁇ 1, 1, 1, 1 ⁇
  • the reference signal #1 and the reference signal #3 correspond to the orthogonal code.
  • reference signal #4 and reference signal #5 correspond to orthogonal codes of ⁇ 1, 1, -1, -1 ⁇ , reference signal #6 and reference signal #7 correspond to positive Cross code is ⁇ 1, -1, -1 , 1 ⁇ .
  • Reference signal #0 located on the first, sixth, eleventh subcarriers of the penultimate symbol of the first slot in the subframe and the first, sixth, eleventh of the first symbol of the last On the first subcarrier, and the first, sixth, eleventh subcarriers of the penultimate symbol of the second slot, and the first, sixth, eleventh subcarriers of the first symbol of the last Upper; corresponding orthogonal code is ⁇ 1, 1 , 1 , 1 ⁇ .
  • Reference signal #1 located on the first, sixth, eleventh subcarriers of the second to last symbol of the second slot in the subframe and the first, sixth, eleventh of the first symbol of the last On the first subcarrier, and the first, sixth, eleventh subcarriers of the penultimate symbol of the second slot, and the first, sixth, eleventh subcarriers of the first symbol of the last Upper;
  • the corresponding orthogonal code is ⁇ 1, -1, 1, -1 ⁇ .
  • Reference signal #2 located on the second, seventh, twelfth subcarriers of the penultimate symbol of the first slot in the subframe and the second, seventh, and twelfth subfields of the first symbol of the last On the carrier, and on the second, seventh, and twelfth subcarriers of the second to last symbol of the second time slot, and on the second, seventh, and twelfth subcarriers of the last symbol;
  • the code is ⁇ 1, 1 , 1 , 1 ⁇ .
  • Reference signal #3 located on the second, seventh, twelfth subcarriers of the second to last symbol of the second slot in the subframe and the second, seventh, and twelfth subfields of the first symbol On the carrier, and on the second, seventh, and twelfth subcarriers of the second to last symbol of the second time slot, and on the second, seventh, and twelfth subcarriers of the last symbol;
  • the code is ⁇ 1 , -1 , 1 , -1 ⁇ .
  • Reference signal #4 located on the first, sixth, eleventh subcarriers of the penultimate symbol of the first slot in the subframe and the first, sixth, eleventh of the first symbol of the last On the first subcarrier, and the first, sixth, eleventh subcarriers of the penultimate symbol of the second slot, and the first, sixth, eleventh subcarriers of the first symbol of the last Upper;
  • the corresponding orthogonal code is ⁇ 1, 1 , -1 , -1 ⁇ .
  • Reference signal #5 located on the second, seventh, twelfth subcarriers of the penultimate symbol of the first slot in the subframe and the second, seventh, and twelfth subfields of the first symbol of the last On the carrier, and on the second, seventh, and twelfth subcarriers of the second to last symbol of the second time slot, and on the second, seventh, and twelfth subcarriers of the last symbol;
  • the code is ⁇ 1, 1 , -1 , -1 ⁇ .
  • Reference signal #6 located on the first, sixth, eleventh subcarriers of the penultimate symbol of the first slot in the subframe and the first, sixth, eleventh of the first symbol of the last On the subcarriers, and on the first, sixth, eleventh subcarriers and the last number of the second to last symbols of the second slot On the first, sixth, and eleventh subcarriers of a symbol; the corresponding orthogonal code is ⁇ 1, -1, -1, 1 ⁇ .
  • Reference signal #7 located on the second, seventh, twelfth subcarriers of the penultimate symbol of the first slot in the subframe and the second, seventh, and twelfth subfields of the first symbol of the last On the carrier, and on the second, seventh, and twelfth subcarriers of the second to last symbol of the second time slot, and on the second, seventh, and twelfth subcarriers of the last symbol;
  • the code is ⁇ 1, -1, -1, 1 ⁇ .
  • PRB is the resource block index of the corresponding PDSCH
  • N ⁇ SCH is the number of resource blocks occupied by the corresponding PDSCH.
  • the position of the reference signal in the physical resource block is as shown in Fig. 4(a) to Fig. 4(d), where Fig. 4(a) to Fig. 4(d) correspond to the reference signal# 0 to the time-frequency position and orthogonal code of the reference signal #7, and the orthogonal code mapping method.
  • the reference signal in the second scene group 1 is sequentially mapped to the first of the four OFDM symbols set as described above.
  • the OFDM symbol and the third OFDM symbol occupy 6 subcarriers in the frequency domain; the reference signals in group 2 are sequentially mapped to the second OFDM symbol and the fourth OFDM symbol of the above four OFDM symbols, at the frequency
  • the domain occupies the same 6 subcarriers as the reference signal in Group 1.
  • the foregoing six subcarriers are the first, second, sixth, seventh, eleventh, and twelfth subcarriers in the physical resource block, or are the first, second, fifth, and sixth in the physical resource block. , ninth, tenth, a total of six subcarriers.
  • the mapped reference signal data is the same on the same frequency domain location in the different time domain symbol physical resource blocks in the same group, and the first frequency domain location in the physical resource block and the carrier mapping on the second frequency domain location
  • the reference signal data is the same, and the third frequency domain position in the physical resource block is the same as the reference signal data mapped on the carrier of the fourth frequency domain position, and the fifth frequency domain position and the first in the physical resource block are
  • the reference signal data mapped on the carrier of the six-frequency domain location is the same.
  • the number of layers of the reference signal is 8, and the reference signal #0, the reference signal #1, and the reference signal #7 are respectively transmitted.
  • the reference signals in group 1 are reference signals #0, #1, #4, and #6, respectively, and the reference signals in group 2 are reference signals #2, #3, #5, and #7, respectively, and the sequence of reference signals in the group.
  • reference signal #0 and reference signal #2 correspond to orthogonal codes of ⁇ 1, 1, 1, 1 ⁇
  • reference signal #1 and reference signal #3 correspond to orthogonal codes of ⁇ 1, -1, 1 , -1 ⁇
  • reference signal #4 and reference signal #5 correspond to orthogonal codes of ⁇ 1, 1, -1, -1 ⁇
  • reference signal #6 and reference signal #7 correspond to orthogonal codes of ⁇ 1, -1 , -1, 1 ⁇ .
  • Reference signal #0 located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and the second slot On the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol; the corresponding orthogonal code is ⁇ 1, 1, 1, 1 ⁇ .
  • Reference signal #1 located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and the second slot On the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol; the corresponding orthogonal code is ⁇ 1, -1, 1, -1 ⁇ .
  • Reference signal #2 located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the first symbol of the first time slot of the subframe, and the second time slot On the first, second, sixth, seventh, eleventh and twelfth subcarriers of the first symbol of the last sign; the corresponding orthogonal code is ⁇ 1, 1, 1, 1 ⁇ .
  • Reference signal #3 located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the first symbol of the first time slot of the subframe, and the second time slot The first, second, sixth, seventh, eleventh and twelfth subcarriers of the first symbol of the last digit; the corresponding orthogonal code is ⁇ 1, -1, 1, -1 ⁇ .
  • Reference signal #4 located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and the second slot On the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol; the corresponding orthogonal code is ⁇ 1, 1, -1, -1 ⁇ .
  • Reference signal #5 located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the last symbol of the first time slot in the subframe, and the second time slot On the first, second, sixth, seventh, eleventh and twelfth subcarriers of the first symbol of the last digit; the corresponding orthogonal code is ⁇ 1, 1, -1, -1 ⁇ .
  • Reference signal #6 located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and the second slot On the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol; the corresponding orthogonal code is ⁇ 1, -1, -1, 1 ⁇ .
  • Reference signal #7 located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the last symbol of the first time slot in the subframe, and the second time slot On the first, second, sixth, seventh, eleventh and twelfth subcarriers of the first symbol of the last digit; the corresponding orthogonal code is -1, -1, i ⁇ .
  • the positions of these reference signals in the physical resource block are as shown in Fig. 5(a) to Fig. 5(d), and Fig. 5(a) to Fig. 5(d) correspond to the reference signals respectively.
  • #0 to the frequency domain position and orthogonal code of the reference signal #7, and the orthogonal code mapping method. It should be noted that, in this embodiment, orthogonal codes in the frequency domain are used, and in other embodiments, orthogonal codes in the time domain are used.
  • all 8 layers of reference signals can also be divided into 4 groups, each group containing 2 reference signals, wherein the reference signals contained in each group are: Group 1 contains reference signals #0 and # in turn. 4. Group 2 contains reference signals #1 and #5 in sequence, group 3 contains reference signals #2 and #6 in turn, group 4 contains reference signals #3 and #7 in sequence; or, group 1 contains reference signals #0 and # in turn. 7, group 2 contains reference signals #1 and #6 in turn, group 3 Including reference signals #2 and #5 in sequence, group 4 contains reference signals #3 and #4 in sequence; or, group 1 contains reference signals #0 and #6 in sequence, and group 2 contains reference signals #1 and #7 in sequence, group 3 Including reference signals #2 and #4 in turn, group 4 contains reference signals #3 and #5 in sequence.
  • the first reference signal in the group corresponds to the orthogonal code ⁇ 1, 1 ⁇
  • the second reference signal corresponds to the orthogonal code ⁇ 1, -1 ⁇ .
  • the reference signals in the third scene group 1 are sequentially mapped to the first OFDM symbol and the third OFDM symbol of the foregoing four OFDM symbols, occupying 3 subcarriers in the frequency domain;
  • the reference signals in the group 2 are sequentially Mapping to the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, occupying the same three subcarriers in the frequency domain as the reference signal in the group 1;
  • the reference signals in the group 3 are sequentially mapped to the four On the first OFDM symbol and the third OFDM symbol, occupying 3 subcarriers different from the reference signal in group 1 in the frequency domain;
  • the reference signals in group 4 are sequentially mapped into the four OFDM symbols On the second OFDM symbol and the fourth OFDM symbol, occupying the same three subcarriers in the frequency domain as the reference signal in group 3, where: the reference signal in group 1 occupies the first and sixth in the physical resource block The eleventh subcarrier, the reference signal in the group 3 occupies the second, seventh, and twelf
  • the reference signal in group 1 occupies the first, fifth, and ninth subcarriers in the physical resource block, and the reference signal in group 3 occupies the second, sixth, and tenth subcarriers in the physical resource block;
  • the reference signal in group 1 occupies the first, fifth, and ninth subcarriers in the physical resource block, and the reference signal in group 3 occupies the third, seventh, and eleventh sub-parts in the physical resource block. Carrier.
  • the reference signal data mapped on the carrier of the same frequency domain position in different time domain symbols in the same group is the same.
  • the number of layers of the reference signal is 8, and the reference signal #0, the reference signal #1, and the reference signal #7 are respectively transmitted.
  • the reference signals in group 1 are reference signals #0 and #4
  • the reference signals in group 2 are reference signals #1 and #5
  • the reference signals in group 3 are reference signals #2 and #6, group 4
  • the reference signals in the order are reference signals #3 and #7 in sequence.
  • the reference signals #0, #1, #2, and #3 correspond to orthogonal codes of ⁇ 1, 1 ⁇
  • reference signals #4, #5, #6, and #7 correspond to orthogonal codes of ⁇ 1, -1 ⁇ . .
  • Reference signal #0 located on the first, sixth, eleventh subcarriers of the second to last symbol of the first slot in the subframe, and the first of the second to last symbols of the second slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is ⁇ 1, 1 ⁇ .
  • Reference signal #1 located on the first, sixth, eleventh subcarriers of the last symbol of the second time slot in the subframe, and the first of the first symbol of the second time slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is ⁇ 1, 1 ⁇ .
  • Reference signal #2 located on the second, seventh, twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and second, the second to last symbol of the second slot Seventh, the twelfth subcarrier; the corresponding orthogonal code is ⁇ 1, 1 ⁇ .
  • Reference signal #3 located on the second, seventh, twelfth subcarriers of the first symbol of the first time slot of the subframe, and the second symbol of the first symbol of the second time slot Seventh, the twelfth subcarrier; the corresponding orthogonal code is, i ⁇ o
  • Reference signal #4 located on the first, sixth, eleventh subcarriers of the second to last symbol of the first slot in the subframe, and the first of the second to last symbols of the second slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is ⁇ 1, -1 ⁇ .
  • Reference signal #5 located on the first, sixth, eleventh subcarriers of the last symbol of the second time slot in the subframe, and the first of the first symbol of the second time slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is ⁇ 1, -1 ⁇ ⁇
  • Reference signal #6 is located on the second, seventh, and twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and second and second of the second to last symbol of the second slot 7.
  • the corresponding orthogonal code is ⁇ 1, -1 ⁇ .
  • Reference signal #7 located on the second, seventh, twelfth subcarriers of the first symbol of the first time slot of the subframe, and the second symbol of the first symbol of the second time slot Seventh, tenth On two subcarriers; the corresponding orthogonal code is ⁇ 1, -1 ⁇ .
  • the cyclic prefix is a regular cyclic prefix
  • the positions of these reference signals in the physical resource block are as shown in Fig. 6(a) and Fig. 6(b), where Fig. 6(a) and Fig. 6(b) correspond to the reference respectively. Time-frequency position and orthogonal code of signal #0 to reference signal #7, and orthogonal code mapping.
  • the reference signals in the fourth scene group 1 are sequentially mapped to the first OFDM symbol and the third OFDM symbol of the foregoing four OFDM symbols, occupying 3 subcarriers in the frequency domain;
  • the reference signals in the group 2 are sequentially Mapping to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, occupying 3 subcarriers different from the reference signal in the group 1 in the frequency domain;
  • the reference signals in the group 3 are sequentially mapped to the fourth On the second OFDM symbol and the fourth OFDM symbol, occupying the same 3 subcarriers as the group 1 in the frequency domain;
  • the reference signals in the group 4 are sequentially mapped to the second of the four OFDM symbols On the OFDM symbol and on the fourth OFDM symbol, occupy the same three subcarriers as the group 2 in the frequency domain, where: the reference signal in the group 1 occupies the first, sixth, eleventh in the physical resource block a subcarrier, the reference signal in the group 2 occupies the second, seventh, and twel
  • the reference signal data mapped on the carriers of the same frequency domain position in different time domain symbols in the same group is the same.
  • the number of layers of the reference signal is 8, and the reference signal #0, the reference signal #1, and the reference signal #7 are respectively transmitted.
  • the reference signals in group 1 are reference signals #0 and #4, group 2
  • the reference signals in the order are reference signals #1 and #5, the reference signals in group 3 are sequentially referenced to signals #2 and #6, and the reference signals in group 4 are sequentially referenced to signals #3 and #7.
  • the reference signals #0, #1, #2, and #3 correspond to orthogonal codes ⁇ 1, 1 ⁇
  • the reference signals #4, #5, #6, and #7 correspond to orthogonal codes ⁇ 1, -1 ⁇
  • Reference signal #0, located on the first, sixth, eleventh subcarriers of the second to last symbol of the first slot in the subframe, and the first of the second to last symbols of the second slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is ⁇ 1, 1 ⁇ .
  • Reference signal #1 located on the second, seventh, twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and second, the second to last symbol of the second slot Seventh, the twelfth subcarrier; the corresponding orthogonal code is ⁇ 1, 1 ⁇ .
  • Reference signal #2 located on the first, sixth, eleventh subcarriers of the last symbol of the first time slot in the subframe, and the first of the first symbol of the second time slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is ⁇ 1, 1 ⁇ .
  • Reference signal #3 located on the second, seventh, twelfth subcarriers of the first symbol of the first time slot of the subframe, and the second symbol of the first symbol of the second time slot Seventh, the twelfth subcarrier; the corresponding orthogonal code is ⁇ 1, 1 ⁇ .
  • Reference signal #4 located on the first, sixth, eleventh subcarriers of the second to last symbol of the first slot in the subframe, and the first of the second to last symbols of the second slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is ⁇ 1, -i ⁇ .
  • Reference signal #5 located on the second, seventh, twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and second, the second to last symbol of the second slot Seventh, the twelfth subcarrier; the corresponding orthogonal code is -i
  • the corresponding orthogonal code is ⁇ 1, -1 reference signal #7, the second, seventh, and the first symbol located in the last slot of the first slot in the subframe
  • the corresponding orthogonal code is ⁇ 1, -1 ⁇
  • Fig. 7(a) and Fig. 7(b) correspond to the reference respectively.
  • the reference signals in the fifth scene group 1 are sequentially mapped to the first of the four OFDM symbols set as described above.
  • the reference signals in group 2 are sequentially mapped onto the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, 3 subcarriers occupying different reference signals in group 1 in the frequency domain; reference signals in group 3 are sequentially mapped to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, occupying in the frequency domain 3 subcarriers identical to the reference signal in group 2; the reference signals in group 4 are sequentially mapped onto the second OFDM symbol and the fourth OFDM symbol on the four OFDM symbols, occupying and group 1 in the frequency domain
  • the reference signal has the same 3 subcarriers; wherein: the reference signal in group 1 occupies the first, sixth, and eleventh subcarriers in the physical resource block, and the reference signal in group 2 occupies the second in the physical resource block The seventh, the twelfth subcarrier; or the reference signal in the group 1 occupies the first, fifth, and ninth subcarriers
  • the reference signal in group 1 occupies the first, fifth, and ninth subcarriers in the physical resource block, and the reference signal in group 2 occupies the third, seventh, and eleventh sub-parts in the physical resource block. Carrier; or,
  • the reference signal in group 1 occupies the first, sixth, and eleventh subcarriers in the physical resource block, and the reference signal in group 2 occupies the second, seventh, and twelfth in the physical resource block. Subcarriers.
  • the reference signal data mapped on the carrier of the same frequency domain position in different time domain symbols in the same group is the same.
  • the number of layers of the reference signal is 8, and the reference signal #0, the reference signal #1, and the reference signal #7 are respectively transmitted.
  • the reference signals in group 1 are reference signals #0 and #4
  • the reference signals in group 2 are reference signals #1 and #5
  • the reference signals in group 3 are reference signals #2 and #6, group 4
  • the reference signals in the order are reference signals #3 and #7 in sequence.
  • the reference signals #0, #1, #2, and #3 correspond to orthogonal codes of ⁇ 1, 1 ⁇
  • reference signals #4, #5, #6, and #7 correspond to orthogonal codes of ⁇ 1, -1 ⁇ . .
  • Reference signal #0 located on the first, sixth, eleventh subcarriers of the second to last symbol of the first slot in the subframe, and the first of the second to last symbols of the second slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is ⁇ 1, 1 ⁇ .
  • Reference signal #1 located on the second, seventh, and twelve subcarriers of the first symbol of the second time slot of the subframe, and the second, seventh, and twelve subcarriers of the first symbol of the second time slot
  • the corresponding orthogonal code is ⁇ 1, 1 ⁇ 0 reference signal #2, located on the second, seventh, twelfth subcarriers of the second to last symbol of the first slot in the subframe, and the second On the second, seventh, and twelfth subcarriers of the penultimate symbol of the slot; the corresponding orthogonal code is ⁇ 1, 1 ⁇ .
  • the corresponding orthogonal code is ⁇ 1, 1 ⁇ 0 reference signal #4, the first, sixth, eleventh subcarriers of the penultimate symbol of the first slot in the subframe And, on the first, sixth, and eleventh subcarriers of the second to last symbol of the second time slot; the corresponding orthogonal code is ⁇ 1, -1 ⁇ .
  • Reference signal #5 located on the second, seventh, twelve subcarriers of the first symbol of the second time slot of the subframe, and the second, seventh, twelve subcarriers of the first symbol of the second time slot
  • the corresponding orthogonal code is ⁇ 1, -1 ⁇ 0 reference signal #6, located on the second, seventh, twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and On the second, seventh, and twelfth subcarriers of the second to last symbols of the two slots; the corresponding orthogonal code is ⁇ 1, -1 ⁇ .
  • Reference signal #7 located on the first, sixth, eleventh subcarriers of the first symbol of the first time slot of the subframe, and the first, sixth of the first symbol of the second time slot Eleven subcarriers; Corresponding orthogonal codes are ⁇ 1, -1 ⁇ 0.
  • the positions of these reference signals in the physical resource block are as shown in Fig. 8(a) and Fig. 8(b), where Fig. 8 (a) and FIG. 8(b) correspond to the time-frequency position and orthogonal code of the reference signal #0 to the reference signal #7, respectively, and the orthogonal code mapping method.
  • all 8 layers of reference signals can be divided into 1 group, and the group includes 8 reference signals, wherein the orthogonal codes corresponding to the reference signals #0, #1, #2, and #3 are respectively ⁇ 1, 1, 1, 1, 1, 1, 1, 1 ⁇ , ⁇ 1, -1, 1, -1, 1, -1 ⁇ , ⁇ 1, -1, -1, 1 , 1, -1, -1, 1 ⁇ and ⁇ 1, 1, -1, -1, -1, -1 ⁇ , reference signals #4, #5, #6, and #7 correspond to positive
  • the code is ⁇ 1, 1, 1, 1, -1, -1, -1, -1 ⁇ , ⁇ 1, -1, 1, -1, 1, -1, 1 ⁇ , ⁇ 1, -1, -1, 1, 1, 1, -1 ⁇ and ⁇ 1, 1, -1, -1, -1, 1, 1 ⁇ .
  • the reference signal is carried on a resource block of the corresponding physical shared channel.
  • the sixth scenario sequentially maps the reference signals in the group to the four OFDM symbols set by the foregoing, and occupies 6 subcarriers in the frequency domain, where the 6 subcarriers are the first, second, sixth, seventh, and eleventh. And the twelfth subcarrier, or the first, second, fifth, sixth, ninth and tenth subcarriers.
  • the reference signal data mapped on the carrier of the same frequency domain location in the physical resource block in the different time domain symbols in the group is the same, and the first frequency domain location in the physical resource block is mapped on the carrier of the second frequency domain location.
  • the reference signal data is the same, and the third frequency domain position in the physical resource block is the same as the reference signal data mapped on the carrier of the fourth frequency domain position, and the fifth frequency domain position and the sixth in the physical resource block are
  • the reference signal data mapped on the carrier of the frequency domain location is the same.
  • the number of layers of the reference signal is 8, respectively, transmitting the reference signal #0, the reference signal
  • the orthogonal code corresponding to reference signal #0 is ⁇ 1, 1, 1, 1, 1, 1, 1, 1 ⁇
  • the orthogonal code corresponding to reference signal #1 is ⁇ 1, -1, 1, -1, 1, -1, 1, -1 ⁇
  • the orthogonal code corresponding to #2 is ⁇ 1, -1, -1, 1, 1, -1, -1, 1 ⁇
  • the orthogonal code corresponding to reference signal #3 is ⁇ 1, 1, -1, - 1, 1, 1, -1, -1 ⁇
  • the orthogonal code corresponding to reference signal #4 is ⁇ 1, 1, 1, 1, -1, -1, -1, -1 ⁇
  • the orthogonal code is ⁇ 1, -1, 1, -1, -1, 1 ⁇
  • the orthogonal code corresponding to reference signal #6 is ⁇ 1, -1, -1, 1, -1 , 1, 1, -1 ⁇
  • the orthogonal code corresponding to the reference signal #7 is ⁇ 1, 1, 1, -1, -1, -1, -1, -1
  • the reference signals #0, #1, #2, #3, #4, #5, #6, and #7 are located on the same time-frequency resource, that is, the second-to-last symbol of the first slot in the subframe.
  • the cyclic prefix is a normal cyclic prefix, when the position of these reference signals in a physical resource block in FIG.
  • the reference signal transmitting method proposed by the invention ensures the transmission performance of the reference signal while ensuring the minimum reference signal overhead, and can be compatible with the existing LTE system, thereby realizing high-order ⁇ transmission and improving The performance of the system.
  • the method for transmitting a layer-based reference signal ensures the transmission performance while ensuring the minimum reference signal overhead, and is compatible with the existing LTE system, thereby realizing
  • the high-order ⁇ transmission supports the use of the corresponding technology and improves the overall performance of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention discloses a sending method for reference signals, and the reference signals are used for demodulation in long term evolution-advanced system. The sending method includes that: the reference signals corresponding to each layer are divided into one or multiple groups; the reference signals in each group are different from each other; each reference signal in the same group are loaded on the same resources by code division multiplexing; physical time-frequency resources taken by the reference signals in the different groups are different from each other. The present invention provides the layer-based sending method for the reference signals. The sending method can ensure the transmission performance while ensuring the less overhead of the reference signals as much as possible, and can be well compatible with an existed LTE system, thereby realizing high order MIMO transmission, and improving overall performance of the system.

Description

一种参考信号的发送方法  Method for transmitting reference signal
技术领域 Technical field
本发明涉及高级长期演进 ( Further Advancements for E-UTRA或者 Long Term Evolution- Advanced(LTE- A) )无线通信系统, 尤其涉及 LTE-A系统中 用于解调的参考信号的发送方法。  The present invention relates to a higher-level evolution (Advanced Advancements for E-UTRA or Long Term Evolution-Advanced (LTE-A)) wireless communication system, and more particularly to a method for transmitting a reference signal for demodulation in an LTE-A system.
背景技术 Background technique
多入多出 (Multiple-Input Multiple-Output, MIMO )技术可以增大系统 容量, 提高传输性能, 并能很好地和其它物理层技术融合, 因此成为后三代 ( Beyond 3rd Generation, B3G )和第四代 ( 4th generation, 4G )移动通信系 统的关键技术。 但是, 在信道相关性强时, 由多径信道带来的分集增益和复 用增益大大降低, 造成 MIMO系统性能的大幅下降。 近年来提出了一种新的 MIMO预编码方法,该方法是一种高效的 MIMO 复用方式,其通过收发端的预编码处理将 MIMO信道化成多个独立的虚拟信 道。 因为有效消除了信道相关性的影响, 所以预编码技术保证了 MIMO系统 在各种环境下的稳定性能。 长期演进(Long Term Evolution, LTE ) 系统是第三代伙伴组织 (3rd Generation Partnership Project, 3 GPP ) 的重要计划。 图 1 ( a )和图 1 ( b )分 别为 LTE系统频分双工( Frequency Division Duplex, FDD )模式和时分双工 ( Time Division Duplex , TDD )模式的帧结构示意图。 在图 1( a )所示的 FDD模式的帧结构中,一个 10ms的无线帧( radio frame ) 由二十个长度为 0.5ms, 编号 0~19的时隙 ( slot )组成, 时隙 2i和时隙 2i+l 组成长度为 1ms的子帧 (subframe ) i。 在图 1( b )所示的 TDD模式的帧结构中,一个 10ms的无线帧( radio frame ) 由两个长为 5ms的半帧(half frame )组成, 一个半帧包含 5个长为 1ms的子 帧 ( subframe ) 。 子帧 i由 2个长均为 0.5ms的时隙 2ι和时隙 2i+l组成。 两种帧结构里, 当系统采用常规循环前缀( Normal Cyclic Prefix, Normal CP )的时候, 一个时隙包含 7个长度的上行符号或下行符号; 当系统采用扩 展 CP的时候, 一个时隙包含 6个长度的上行符号或下行符号。 上述的符号 为正交频分复用 ( Orthogonal Frequency Division Multiplexing, OFDM )符号。 一个资源单元 ( Resource Element, RE ) 为一个 OFDM符号上的一个子 载波, 而一个下行资源块(Resource Block, RB ) 由连续 12个子载波和连续 7个(釆用扩展循环前缀时为 6个) OFDM符号构成, 在频域上为 180kHz, 时域上为一个一般时隙的时间长度, 如图 2所示。 LTE系统在进行资源分配 时, 以资源块为基本单位进行分配。 LTE系统支持 4天线的 MIMO应用, 相应的天线端口 #0、 天线端口 #1、 天线端口 #2 及天线端口 #3 采用全带宽的小区专有参考信号 (Cell-specific reference signals, CRS ) 方式。 当循环前缀为常规循环前缀的时候, 小区专 有参考信号在物理资源块中的位置如图 3 ( a )所示。 当循环前綴为扩展循环 前缀的时候, 小区专有参考信号在物理资源块中的位置如图 3 ( b )所示。 图 3 ) 和图 3 ( b ) 中, 横坐标 1表示子帧在 OFDM符号上的序号, C,、 C2、 C3以及 C4 , 对应于小区专有参考信号逻辑端口 #0、 逻辑端口 #1、 逻辑端口 #2 以及逻辑端口 #3。 另夕卜, 还有一种用户专有的参考信号 ( UE-specific reference signals ) , 该参考信号仅在用户专有的物理下行共享信道 ( Physical downlink shared channel, PDSCH )所在的时频域位置上传输。 其中小区专有参考信号功能包 括对下行信道质量测量和下行信道估计 (解调) 。 Multiple-Input Multiple-Output (MIMO) technology can increase system capacity, improve transmission performance, and integrate well with other physical layer technologies, thus becoming the next three generations (Beyond 3rd Generation, B3G) and The key technology of 4th generation (4G) mobile communication system. However, when the channel correlation is strong, the diversity gain and multiplexing gain brought by the multipath channel are greatly reduced, resulting in a significant drop in the performance of the MIMO system. In recent years, a new MIMO precoding method is proposed, which is an efficient MIMO multiplexing method, which converts MIMO into multiple independent virtual channels through precoding processing at the transceiver end. Because the effect of channel correlation is effectively eliminated, the precoding technique ensures the stability performance of the MIMO system in various environments. The Long Term Evolution (LTE) system is an important program of the 3rd Generation Partnership Project (3GPP). Figure 1 (a) and Figure 1 (b) are schematic diagrams of the frame structure of the Frequency Division Duplex (FDD) mode and the Time Division Duplex (TDD) mode of the LTE system, respectively. In the frame structure of the FDD mode shown in FIG. 1( a ), a 10 ms radio frame is composed of twenty slots (lengths) of lengths of 0.5 ms and slots 0 to 19, and slots 2i and The slot 2i+1 forms a subframe i of length 1 ms. In the frame structure of the TDD mode shown in FIG. 1(b), a 10 ms radio frame is composed of two half frames of 5 ms length, and one field contains 5 lengths of 1 ms. Subframe (frame). The subframe i consists of two slots 2ι and slot 2i+1 that are 0.5 ms long. In the two frame structures, when the system uses the Normal Cyclic Prefix (Normal CP), one time slot contains 7 lengths of uplink symbols or downlink symbols; when the system uses extended CP, one time slot contains 6 Up or down symbols of length. The above symbols are Orthogonal Frequency Division Multiplexing (OFDM) symbols. One Resource Element (RE) is one subcarrier on one OFDM symbol, and one downlink resource block (RB) consists of 12 consecutive subcarriers and 7 consecutive (6 when using extended cyclic prefix) The OFDM symbol is composed of 180 kHz in the frequency domain and a time slot of a general time slot in the time domain, as shown in FIG. When resource allocation is performed, the LTE system allocates resources blocks as a basic unit. The LTE system supports 4-antenna MIMO applications, and the corresponding antenna port #0, antenna port #1, antenna port #2, and antenna port #3 adopt a full-bandwidth cell-specific reference signal (CRS) method. When the cyclic prefix is a regular cyclic prefix, the location of the cell-specific reference signal in the physical resource block is as shown in Figure 3(a). When the cyclic prefix is an extended cyclic prefix, the location of the cell-specific reference signal in the physical resource block is as shown in Figure 3(b). In Fig. 3) and Fig. 3(b), the abscissa 1 indicates the sequence number of the subframe on the OFDM symbol, C, C 2 , C 3 and C 4 , corresponding to the cell-specific reference signal logical port #0, logical port #1, logical port #2 and logical port #3. In addition, there is a user-specific reference signal (UE-specific reference signals), and the reference signal is transmitted only in a time-frequency domain location where the user-specific Physical downlink shared channel (PDSCH) is located. . The cell-specific reference signal function includes downlink channel quality measurement and downlink channel estimation (demodulation).
LTE-A是 LTE Release-8的演进版本。 除满足或超过 3GPP TR 25.913 : " equirements for Evolved Universal Telecommunication Radio Access ( E-UTRA ) and Evolved Universal Mobile Telecommunications System ( UMTS ) Terrestrial Radio Access Network ( E-UTRAN ) " 的所有相关需求 夕卜, 还要达到或超过 ITU-R提出的 IMT- Advanced 的需求。 其中, 与 LTE Release-8后向兼容的需求是指: LTE Release-8的终端可以在 LTE-Advanced 的网络中工作; LTE-Advanced的终端可以在 LTE Release-8的网络中工作。 另外, LTE-Advanced应能在不同大小的频谱配置,包括比 LTE Release-8 更宽的频谱配置 (如 100MHz的连续的频谱资源) 下工作, 以达到更高的性 能和目标峰值速率。 由于 LTE-Advanced网络需要能够接入 LTE用户, 所以其操作频带需要 覆盖目前 LTE频带,在这个频段上已经不存在可分配的连续 100MHz的频傳 带宽了。 所以 LTE-Advanced需要解决的一个直接技术是将几个分布在不同 频段上的连续分量载频 (频谱) 釆用载波聚集 (Component carrier )技术聚 合起来, 形成 LTE-Advanced可以使用的 100MHz带宽。 即对于聚集后的频 谱, 被划分为 n个分量载频 (频谱) , 每个分量载频 (频谱) 内的频谱是连 续的。 在 2008年 9月提出的 LTE-Advanced的需求研究报告 TR 36.814 V0.1.1 中已经明确了 LTE-Advanced下行最多可以支持 8天线的应用。 在 2009年 2 月 3GPP第 56次会议上对 LTE-Advanced明确了为支持 8天线的应用以及多 点协作传输 ( Coordinated Multiple Point, CoMP ) 、 双流波束赋形 ( Beamforming )等技术的使用下 LTE-Advanced下行参考信号的设计基本框 架 (Way forward ) , 将对 LTE-Advanced操作的下行参考信号定义为两种类 型的参考信号: 面向 PDSCH解调的参考信号和面向信道状态信息 (Channel Status Information, CSI )产生的参考信号, 并且, 面向 PDSCH解调的参考 信号基于层发送, 每层对应一种参考信号, 在 LTE-Advanced系统中, 最多 可以支持的层数是 8。 现有方案中,所设计的参考信号大都是基于天线端口的公有的参考信号, 以及一层、 两层和四层专有的参考信号, 还没有四层以上的基于层参考信号 的发送方法。 有鉴于此, 有必要提供一种参考信号的发送方法, 以适应四层 以上的基于层参考信号的发送需求。 LTE-A is an evolved version of LTE Release-8. In addition to meeting or exceeding all relevant requirements of 3GPP TR 25.913 : "equrements for Evolved Universal Telecommunication Radio Access (E-UTRA) and Evolved Universal Mobile Telecommunications System ( UMTS ) Terrestrial Radio Access Network ( E-UTRAN )" Or exceed the requirements of IMT-Advanced proposed by ITU-R. The requirements for backward compatibility with LTE Release-8 refer to: LTE Release-8 terminals can work in LTE-Advanced networks; LTE-Advanced terminals can work in LTE Release-8 networks. In addition, LTE-Advanced should be able to operate in different spectrum configurations, including a wider spectrum configuration than LTE Release-8 (eg, 100 MHz continuous spectrum resources) to achieve higher performance and target peak rates. Since the LTE-Advanced network needs to be able to access the LTE user, its operating band needs to cover the current LTE frequency band, and there is no allocated continuous transmission bandwidth of 100 MHz in this frequency band. Therefore, a direct technology that LTE-Advanced needs to solve is to aggregate several continuous component carrier frequencies (spectrums) distributed in different frequency bands by using component carrier technology to form a 100 MHz bandwidth that can be used by LTE-Advanced. That is, for the aggregated spectrum, it is divided into n component carrier frequencies (spectrums), and the spectrum in each component carrier frequency (spectrum) is continuous. In the LTE-Advanced demand research report proposed in September 2008, TR 36.814 V0.1.1, it has been clarified that the LTE-Advanced downlink can support up to 8 antennas. At the 56th meeting of the 3GPP in February 2009, LTE-Advanced defined LTE-Advanced for applications supporting 8-antenna and Coordinated Multiple Point (CoMP), dual-beamforming (beamforming) and other technologies. The basic design framework of Advanced downlink reference signal (Way forward) defines the downlink reference signal for LTE-Advanced operation as two types of reference signals: reference signal for PDSCH demodulation and channel status information (CSI). The generated reference signal, and the reference signal for PDSCH demodulation is transmitted based on the layer, and each layer corresponds to one reference signal. In the LTE-Advanced system, the maximum number of layers that can be supported is 8. In the existing solution, the reference signals designed are mostly based on the common reference signal of the antenna port, and one, two and four layers of reference signals, and there are no more than four layers based on the layer reference signal transmission method. In view of this, it is necessary to provide a method for transmitting a reference signal to accommodate transmission requirements of layer-by-layer reference signals of more than four layers.
发明内容 本发明所要解决的技术问题, 在于需要提供一种参考信号的发送方法, 该参考信号用于高级长期演进系统中的解调。 为了解决上述技术问题, 本发明提供了一种参考信号的发送方法, 所述 参考信号用于高级长期演进系统中的解调, 所述方法包括: 将各层对应的参 考信号分为一个或多个组, 以使各组包含的参考信号互不相同, 同一组内各 参考信号所占用的资源相同, 及不同组内的参考信号占用物理时频资源互不 相同; 以及 同一组内各参考信号通过码分复用的方式承载在相同的资源上。 所述方法还包括: 所述参考信号的层数为 h时, 在用户专有的物理共享 信道所在的时频域位置上依次发送前 h个参考信号。 所述参考信号的层有 8层, 所述各层对应的参考信号依次为层 1的参考 信号 #0、 层 2的参考信号 #1、 层 3的参考信号 #2、 层 4的参考信号 #3、 层 5 的参考信号 #4、 层 6的参考信号 #5、 层 7的参考信号 #6以及层 8的参考信号 #7; 所述方法还包括: 设置四个正交频分复用 (OFDM )符号, 将 8层参考 信号映射到所述四个 OFDM符号上; 其中, 所述四个 OFDM符号分别为: 子帧中第一个时隙的倒数第一个 OFDM 符号和倒数第二个 OFDM符号以及第二个时隙的倒数第一个 OFDM符号和 倒数第二个 OFDM符号; 或者, 子帧中第一个时隙的倒数第一个 OFDM符 号和倒数第二个 OFDM符号以及第二个时隙的倒数第二个 OFDM符号和倒 数第四个 OFDM符号; 或者, 当子帧中循环前缀为常规循环前缀时, 所述四个 OFDM符号分別为: 子 帧中第一个时隙的第四个 OFDM符号和第六个 OFDM符号以及第二个时隙 的第四个和第六个 OFDM符号; 或者, 子帧中第一个时隙的第四个 OFDM 符号和第七个 OFDM符号以及第二个时隙的第三个 OFDM符号和第六个 OFDM符号。 在所述分组步骤中, 将各层对应的参考信号分为 4个组, 组 1、 组 2、 组SUMMARY OF THE INVENTION The technical problem to be solved by the present invention is to provide a method for transmitting a reference signal for demodulation in an advanced long term evolution system. In order to solve the above technical problem, the present invention provides a method for transmitting a reference signal, where the reference signal is used for demodulation in an advanced long-term evolution system, and the method includes: dividing a reference signal corresponding to each layer into one or more Groups, so that the reference signals included in each group are different from each other, the resources occupied by the reference signals in the same group are the same, and the reference signals in different groups occupy different physical time-frequency resources; and the reference signals in the same group It is carried on the same resource by means of code division multiplexing. The method further includes: when the number of layers of the reference signal is h, sequentially transmitting the first h reference signals in a time-frequency domain location where the user-specific physical shared channel is located. The layer of the reference signal has 8 layers, and the reference signals corresponding to the layers are sequentially reference signal #0 of layer 1, reference signal #1 of layer 2, reference signal #2 of layer 3, reference signal of layer 4# 3. Reference signal #4 of layer 5, reference signal #5 of layer 6, reference signal #6 of layer 7, and reference signal #7 of layer 8; the method further comprises: setting four orthogonal frequency division multiplexing ( OFDM) symbol, mapping an 8-layer reference signal onto the four OFDM symbols; wherein, the four OFDM symbols are respectively: a first OFDM symbol of the first time slot of the subframe and a second to last An OFDM symbol and a first OFDM symbol and a second to last OFDM symbol of the second slot; or a first OFDM symbol and a second to last OFDM symbol and a second of the first slot in the subframe The second last OFDM symbol and the fourth last OFDM symbol of the time slot; or, when the cyclic prefix in the subframe is a regular cyclic prefix, the four OFDM symbols are: the first time slot in the subframe Fourth OFDM symbol and sixth OFDM symbol and fourth and sixth OFD of the second slot Or the fourth OFDM symbol and the seventh OFDM symbol of the first slot in the subframe and the third OFDM symbol and the sixth OFDM symbol of the second slot. In the grouping step, the reference signals corresponding to the layers are divided into four groups, group 1, group 2, group
3及组 4 , 每组各包含 2个参考信号; 其中 组 1依次包含参考信号 #0和参考信号 #4,组 2依次包含参考信号 #1和参 考信号 #5 , 组 3依次包含参考信号 #2和参考信号 #6 , 以及组 4依次包含参考 信号 #3和参考信号 #7; 或者, 组 1依次包含参考信号 #0和参考信号 #7 , 组 2依次包含参考信号 #1和参考信号 #6,组 3依次包含参考信号 #2和参考信号 #5, 以及组 4依次包 含参考信号 #3和参考信号 #4; 或者, 组 1依次包含参考信号 #0和参考信号 #6, 组 2依次包含参考信号3 and group 4, each group contains 2 reference signals; wherein group 1 includes reference signal #0 and reference signal #4 in turn, group 2 includes reference signal #1 and reference signal #5 in sequence, and group 3 includes reference signal in turn. 2 and reference signal #6, and group 4 in turn contain references Signal #3 and reference signal #7; or, group 1 includes reference signal #0 and reference signal #7 in sequence, group 2 includes reference signal #1 and reference signal #6 in sequence, and group 3 sequentially includes reference signal #2 and reference signal #5, and group 4 sequentially includes reference signal #3 and reference signal #4; or, group 1 sequentially includes reference signal #0 and reference signal #6, and group 2 includes reference signals in sequence.
#1和参考信号 #7,组 3依次包含参考信号 #2和参考信号 #4, 以及组 4依次包 含参考信号 #3和参考信号 #5。 同一组内各参考信号通过码分复用的方式承载在相同的资源上的步骤中 采用的正交码为: 所述 4组中每组的第一个参考信号采用的正交码为 {1 , 1 } , 每组的第二个参考信号采用的正交码为 {1 , -1}。 所述映射的步骤包括: 将所述组 1 中的参考信号依次映射到所述四个 OFDM符号中的第一个 OFDM符号和第三个 OFDM符号上, 在频域上占用 3个子载波; 将所述组 2 中的参考信号依次映射到所述四个 OFDM符号中的第二个 OFDM符号和第四个 OFDM符号上, 在频域上占用与所述组 1 中参考信号 相同的 3个子载波; 将所述组 3 中的参考信号依次映射到所述四个 OFDM符号中的第一个 OFDM符号和第三个 OFDM符号上, 在频域上占用与所述组 1 中参考信号 不同的 3个子载波; 以及 将所述组 4 中的参考信号依次映射到所述四个 OFDM符号中的第二个#1 and reference signal #7, group 3 includes reference signal #2 and reference signal #4 in turn, and group 4 includes reference signal #3 and reference signal #5 in sequence. The orthogonal code used in the step of carrying the reference signals in the same group by means of code division multiplexing on the same resource is: the orthogonal code of the first reference signal of each of the four groups is {1 , 1 } , the orthogonal code of the second reference signal of each group is {1 , -1}. The mapping comprises: sequentially mapping the reference signals in the group 1 to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, occupying 3 subcarriers in the frequency domain; The reference signals in the group 2 are sequentially mapped to the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, occupying the same three subcarriers in the frequency domain as the reference signal in the group 1. And mapping the reference signals in the group 3 to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, occupying a frequency difference from the reference signal in the group 1 Subcarriers; and sequentially mapping the reference signals in the group 4 to the second of the four OFDM symbols
OFDM符号和第四个 OFDM符号上, 在频域上占用与组 3 中参考信号相同 的 3个子载波。 所述组 1中的参考信号占用的 3个子载波为: 物理资源块中的第一、 第 六和第十一个子载波, 所述组 3中的参考信号占用的 3个子载波为: 该物理 资源块中的第二、 第七和第十二个子载波; 或者, 所述组 1中的参考信号占用的 3个子载波为: 所述物理资源块中 的第一、第五和第九个子载波,所述组 3中的参考信号占用的 3个子载波为: 所述物理资源块中的第二、 第六和第十个子载波; 或者, 所述组 1中的参考信号占用的 3个子载波为: 所述物理资源块中 的第一、第五和第九个子载波,所述组 3中的参考信号占用的 3个子载波为: 所述物理资源块中的第三、 第七和第十一个子载波。 所述映射的步骤包括: 将所述组 1 中的参考信号依次映射到所述四个 OFDM符号中的第一个 OFDM符号和第三个 OFDM符号上, 在频域上占用 3个子载波; 将所述组 2 中的参考信号依次映射到所述四个 OFDM符号中的第一个 OFDM符号和第三个 OFDM符号上, 在频域上占用与所述组 1 中参考信号 不同的 3个子载波; 将所述组 3 中的参考信号依次映射到所述四个 OFDM符号中的第二个 OFDM符号和第四个 OFDM符号上, 在频域上占用与组 1 中参考信号相同 的 3个子载波; 以及 On the OFDM symbol and the fourth OFDM symbol, the same three subcarriers as the reference signal in Group 3 are occupied in the frequency domain. The three subcarriers occupied by the reference signal in the group 1 are: the first, sixth, and eleventh subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 3 are: the physics The second, seventh, and twelfth subcarriers in the resource block; or, the three subcarriers occupied by the reference signal in the group 1 are: the first, fifth, and ninth subcarriers in the physical resource block The three subcarriers occupied by the reference signal in the group 3 are: The second, sixth, and tenth subcarriers in the physical resource block; or, the three subcarriers occupied by the reference signal in the group 1 are: first, fifth, and ninth in the physical resource block The subcarriers, the three subcarriers occupied by the reference signal in the group 3 are: the third, seventh and eleventh subcarriers in the physical resource block. The mapping comprises: sequentially mapping the reference signals in the group 1 to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, occupying 3 subcarriers in the frequency domain; The reference signals in the group 2 are sequentially mapped to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, and occupy three subcarriers different from the reference signal in the group 1 in the frequency domain. And mapping the reference signals in the group 3 to the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, occupying the same three subcarriers in the frequency domain as the reference signal in the group 1. ; as well as
将所述组 4 中的参考信号依次映射到所述四个 OFDM符号中的第二个 OFDM符号和第四个 OFDM符号上, 在频域上占用与组 2中参考信号相同 的 3个子载波。 所述组 1中的参考信号占用的 3个子载波为:所述物理资源块中的第一、 第六和第十一个子载波, 所述组 2中的参考信号占用的 3个子载波为: 所述 物理资源块中的第二、 第七和第十二个子载波; 或者, 所述组 1中的参考信号占用的 3个子载波为: 所述物理资源块中 的第一、第五和第九个子载波,所述组 2中的参考信号占用的 3个子载波为: 所述物理资源块中的第二、 第六和第十个子载波; 或者, 所述组 1中的参考信号占用的 3个子载波为: 所述物理资源块中 的第一、第五和第九个子载波,所述组 2中的参考信号占用的 3个子载波为: 所述物理资源块中的第三、 第七和第十一个子载波。 所述映射的步骤包括: 将所述组 1 中的参考信号依次映射到所述四个 OFDM符号中的第一个 OFDM符号和第三个 OFDM符号上, 在频域上占用 3个子载波; 将所述组 2 中的参考信号依次映射到所述四个 OFDM符号中的第二个 OFDM符号和第四个 OFDM符号上, 在频域上占用与所述组 1 中参考信号 不同的 3个子载波; 将所述组 3 中的参考信号依次映射到所述四个 OFDM符号中的第一个The reference signals in the group 4 are sequentially mapped onto the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, occupying the same three subcarriers in the frequency domain as the reference signals in the group 2. The three subcarriers occupied by the reference signal in the group 1 are: the first, sixth, and eleventh subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 2 are: The second, seventh, and twelfth subcarriers in the physical resource block; or, the three subcarriers occupied by the reference signal in the group 1 are: first, fifth, and Nine subcarriers, the three subcarriers occupied by the reference signal in the group 2 are: the second, sixth, and tenth subcarriers in the physical resource block; or, the reference signal in the group 1 is occupied by 3 The subcarriers are: the first, fifth, and ninth subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 2 are: the third and seventh sums in the physical resource block. The eleventh subcarrier. The mapping includes: sequentially mapping the reference signals in the group 1 to the first one of the four OFDM symbols Omitting 3 subcarriers in the frequency domain on the OFDM symbol and the third OFDM symbol; sequentially mapping the reference signals in the group 2 to the second OFDM symbol and the fourth OFDM symbol in the four OFDM symbols Up, occupying 3 subcarriers different from the reference signal in the group 1 in the frequency domain; sequentially mapping the reference signals in the group 3 to the first one of the four OFDM symbols
OFDM符号和第三个 OFDM符号上 , 在频域上占用与所述组 2中参考信号 相同的 3个子载波; 以及 将所述组 4 中的参考信号依次映射到所述四个 OFDM符号中的第二个 OFDM符号和第四个 OFDM符号上, 在频域上占用与组 1 中参考信号相同 的 3个子载波。 所述组 1中的参考信号占用的 3个子载波为: 物理资源块中的第一、 第 六和第十一个子载波, 所述组 2中的参考信号占用的 3个子载波为: 该物理 资源块中的第二、 第七和第十二个子载波; 或者, 所述组 1中的参考信号占用的 3个子载波为: 所述物理资源块中 的第一、第五和第九个子载波,所述组 2中的参考信号占用的 3个子载波为: 所述物理资源块中的第二、 第六和第十个子载波; 或者, 所述组 1中的参考信号占用的 3个子载波为: 所述物理资源块中 的第一、第五和第九个子载波,所述组 2中的参考信号占用的 3个子载波为: 所述物理资源块中的第三、 第七和第十一个子载波; 或者, 所述组 1中的参考信号占用的 3个子载波为: 所述物理资源块中 的第一、 第六和第十一个子载波, 所述组 2中的参考信号占用的 3个子载波 为: 所述物理资源块中的第二、 第七和第十二个子载波。 在所述分组步骤中, 将各层对应的参考信号分为 2个组, 组 1及组 2, 每组各包含 4个参考信号, 其中, 组 1依次包含参考信号 #0、 参考信号 #1、 参考信号 #4和参考信号 #5, 组And omitting, on the OFDM symbol and the third OFDM symbol, three subcarriers identical to the reference signal in the group 2 in the frequency domain; and sequentially mapping the reference signals in the group 4 into the four OFDM symbols On the second OFDM symbol and the fourth OFDM symbol, the same three subcarriers as the reference signal in Group 1 are occupied in the frequency domain. The three subcarriers occupied by the reference signal in the group 1 are: first, sixth, and eleventh subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 2 are: the physics The second, seventh, and twelfth subcarriers in the resource block; or, the three subcarriers occupied by the reference signal in the group 1 are: the first, fifth, and ninth subcarriers in the physical resource block The three subcarriers occupied by the reference signal in the group 2 are: the second, sixth, and tenth subcarriers in the physical resource block; or, the three subcarriers occupied by the reference signal in the group 1 are : the first, fifth, and ninth subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 2 are: third, seventh, and eleventh in the physical resource block Or, the three subcarriers occupied by the reference signal in the group 1 are: the first, sixth, and eleventh subcarriers in the physical resource block, and the reference signal in the group 2 is occupied. The three subcarriers are: Second, seventh, and twelfth subcarrier block. In the grouping step, the reference signals corresponding to the layers are divided into two groups, group 1 and group 2, each group comprising four reference signals, wherein the group 1 includes the reference signal #0 and the reference signal #1 in sequence. , reference signal #4 and reference signal #5, group
2依次包含参考信号 #2、 参考信号 #3、 参考信号 #6和参考信号 #7; 或者, 组 1依次包含参考信号 #0、 参考信号 #1、 参考信号 #6和参考信号 #7, 组 2依次包含参考信号 #2、 参考信号 #3、 参考信号 #4和参考信号 #5; 或者, 组 1依次包含参考信号 #0、 参考信号 #1、 参考信号 #4和参考信号 #6, 组 2依次包含参考信号 #2、 参考信号 #3、 参考信号 #5和参考信号 #7; 或者, 组 1依次包含参考信号 #0、 参考信号 #1、 参考信号 #5和参考信号 #7, 组 2依次包含参考信号 #2、 参考信号 #3、 参考信号 #4和参考信号 #6; 或者, 组 1依次包含参考信号 #0、 参考信号 #1、 参考信号 #4和参考信号 #7, 组 2依次包含参考信号 #2、 参考信号 #3、 参考信号 #5和参考信号 #6; 或者, 组 1依次包含参考信号 #0、 参考信号 #1、 参考信号 #5和参考信号 #6, 组 2依次包含参考信号 #2、 参考信号 #3、 参考信号 #4和参考信号 #7; 或者, 组 1依次包含参考信号 #0、 参考信号 #2、 参考信号 #4和参考信号2 sequentially includes reference signal #2, reference signal #3, reference signal #6, and reference signal #7; or, group 1 sequentially includes reference signal #0, reference signal #1, reference signal #6, and reference signal #7, Group 2 includes reference signal #2, reference signal #3, reference signal #4, and reference signal #5 in sequence; or, group 1 includes reference signal #0, reference signal #1, reference signal #4, and reference signal in sequence. #6, Group 2 includes reference signal #2, reference signal #3, reference signal #5, and reference signal #7 in sequence; or, group 1 includes reference signal #0, reference signal #1, reference signal #5, and reference signal in sequence. #7, Group 2 includes reference signal #2, reference signal #3, reference signal #4, and reference signal #6 in sequence; or, group 1 includes reference signal #0, reference signal #1, reference signal #4, and reference signal in sequence. #7, Group 2 includes reference signal #2, reference signal #3, reference signal #5, and reference signal #6 in sequence; or, group 1 includes reference signal #0, reference signal #1, reference signal #5, and reference signal in sequence. #6, Group 2 includes reference signal #2, reference signal #3, reference signal #4, and reference signal #7 in sequence; or, group 1 includes reference signal #0, reference signal #2, reference signal #4, and reference signal in sequence.
#6, 组 2依次包含参考信号 #1、 参考信号 #3、 参考信号 #5和参考信号 #7。 #6, Group 2 contains reference signal #1, reference signal #3, reference signal #5 and reference signal #7 in sequence.
同一组内各参考信号通过码分复用的方式承载在相同的资源上的步骤中 釆用的正交码为: 所述 2个组中每组的第一个参考信号釆用的正交码为 {1, 1, 1, 1}, 每 组的第二个参考信号采用的正交码为 {1, -1, 1, -1}, 每组的第三个参考信 号采用的正交码为 {1, 1, -1, -1}, 及每组的第四个参考信号采用的正交码 为 , -1, -1, 1};  The orthogonal code used in the step of carrying the reference signals in the same group by means of code division multiplexing on the same resource is: the orthogonal code of the first reference signal of each of the two groups For {1, 1, 1, 1}, the orthogonal code of the second reference signal of each group is {1, -1, 1, -1}, and the orthogonal code of the third reference signal of each group is used. The orthogonal codes used for {1, 1, -1, -1}, and the fourth reference signal of each group are -1, -1, 1};
或者, 所述 2个组中每组的第一个参考信号采用的正交码为 {1, 1, 1, Or, the first reference signal of each of the two groups adopts an orthogonal code of {1, 1, 1,
1}, 每组的第二个参考信号采用的正交码为 u, -1, 1, -1}, 每组的第三个 参考信号采用的正交码为 {1, -1, -1, 1}, 及每组的第四个参考信号采用的 正交码为 {1, 1, -1, -1}„ 1}, the orthogonal code of the second reference signal of each group is u, -1, 1, -1}, and the orthogonal code of the third reference signal of each group is {1, -1, -1 , 1}, and the fourth reference signal of each group uses an orthogonal code of {1, 1, -1, -1}
所述映射的步骤包括: 将所述组 1 中的参考信号依次映射到所述四个 OFDM符号上, 在频域上占用 3个子载波; 以及 将所述组 2中的参考信号依次映射到所述四个 OFDM符号上,在频域上 占用与所述组 1中参考信号不同的 3个子载波。 所述组 1中的参考信号占用的 3个子载波为: 物理资源块中的第一、 第 六和第十一个子载波, 以及所述组 2中的参考信号占用的 3个子载波为: 物 理资源块中的第二、 第七和第十二个子载波; 或者, 所述组 1中的参考信号占用物理资源块中的第一、 第五和第九个 子载波, 以及所述组 2中的参考信号占用物理资源块中的第二、 第六和第十 个子载波; The mapping comprises: sequentially mapping the reference signals in the group 1 to the four OFDM symbols, occupying 3 subcarriers in a frequency domain; and sequentially mapping the reference signals in the group 2 to the On the four OFDM symbols, three subcarriers different from the reference signal in the group 1 are occupied in the frequency domain. The three subcarriers occupied by the reference signal in the group 1 are: the first, sixth, and eleventh subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 2 are: The second, seventh, and twelfth subcarriers in the resource block; or, the reference signal in the group 1 occupies the first, fifth, and ninth subcarriers in the physical resource block, and the group 2 The reference signal occupies the second, sixth and tenth subcarriers in the physical resource block;
或者, 所述组 1中的参考信号占用物理资源块中的第一、 第五和第九个 子载波, 以及所述组 2中的参考信号占用物理资源块中的第三、 第七和第十 一个子载波。  Or, the reference signal in the group 1 occupies the first, fifth, and ninth subcarriers in the physical resource block, and the reference signal in the group 2 occupies the third, seventh, and tenth in the physical resource block. One subcarrier.
所述映射的步骤包括: 将所述组 1 中的参考信号依次映射到所述四个 OFDM符号中的第一个 OFDM符号和第三个 OFDM符号上, 在频域上占用 6个子载波; 以及 将所述组 2 中的参考信号依次映射到所述四个 OFDM符号中的第二个 OFDM符号和第四个 OFDM符号上 , 在频域上占用与所述组 1 中参考信号 相同的 6个子载波。 所述 6个子载波为: 物理资源块中的第一、 第二、 第六、 第七、 第十一 及第十二个子载波, 或者第一、 第二、 第五、 第六、 第九及第十个子载波。 在所述分组步骤中, 将各层对应的参考信号分为 1个组, 组内包含 8个 参考信号;  The mapping comprises: sequentially mapping the reference signals in the group 1 to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, occupying 6 subcarriers in the frequency domain; Mapping the reference signals in the group 2 to the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, and occupying the same 6 sub-bands in the frequency domain as the reference signal in the group 1. Carrier. The six subcarriers are: first, second, sixth, seventh, eleventh and twelfth subcarriers in the physical resource block, or first, second, fifth, sixth, ninth and The tenth subcarrier. In the grouping step, the reference signals corresponding to the layers are divided into one group, and the group includes eight reference signals;
组内各参考信号通过码分复用的方式承载在相同的资源上的步骤中采用 的正交码为: 考信号 #0采用的正交码为 {1 , 1, 1, 1, 1, 1, 1, 1};  The orthogonal code used in the step of carrying the reference signals on the same resource by means of code division multiplexing is: The orthogonal code used in the test signal #0 is {1, 1, 1, 1, 1, 1 , 1, 1};
考信号 #1釆用的正交码为 {1, -1, 1, -1 1, -1, 1, - 考信号 #2釆用的正交码为 {1, -1, -1, 1 1, -1, -1, 考信号 #3采用的正交码为 {1, 1, -1, -1 1, 1, - 1, - 考信号 #4采用的正交码为 {1 , 1, 1, 1, -1, -1, - 1, - 考信号 #5采用的正交码为 {1, -1, 1, -1 -1, 1, -1, 参考信号 #6釆用的正交码为 {1, -1, -1, 1, -1, 1, 1, -1}; 以及 参考信号 #7釆用的正交码为 {1, 1, -1, -1, -1, -1, 1, 1}。 The orthogonal code used for the test signal #1 is {1, -1, 1, -1 1, -1, 1, - The orthogonal code used for the test signal #2 is {1, -1, -1, 1 1, -1, -1, the orthogonal code used in the test signal #3 is {1, 1, -1, -1 1, 1, - 1, - The orthogonal code used in the test signal #4 is {1, 1 , 1, 1, -1, -1, - 1, - The orthogonal code used in the test signal #5 is {1, -1, 1, -1 -1, 1, -1, The orthogonal code of reference signal #6 is {1, -1, -1, 1, -1, 1, 1, -1}; and the orthogonal code of reference signal #7 is {1, 1, -1, -1, -1, -1, 1, 1}.
所述映射的步骤包括:将组内的参考信号依次映射到所述四个 OFDM符 号上, 在频域上占用 6个子载波; 所述 6个子载波为第一、 第二、 第六、 第七、 第十一及第十二个子载波, 或者为第一、 第二、 第五、 第六、 第九及第十个子载波。 同一组内不同时域符号相同频域位置的载波上映射的参考信号数据相 同。  The mapping comprises: sequentially mapping reference signals in the group to the four OFDM symbols, occupying 6 subcarriers in a frequency domain; and the 6 subcarriers are first, second, sixth, seventh The eleventh and twelfth subcarriers are either the first, second, fifth, sixth, ninth and tenth subcarriers. The reference signal data mapped on the carrier of the same frequency domain position in different time domain symbols in the same group is the same.
所述层有 8层, 所述各层对应的参考信号依次为层 k的参考信号 #k; k 分别为 0, 1, 2, 3, 4, 5, 6及 7; 其中 所述参考信号 #k的序列 是根据下式产生: r(m) = -^=(l-2-c(2m)) + j-^=(l-2-c(2m + l)),m = 0,l,...,L-l 其中: k分别为 0, 1, 2, 3, 4, 5, 6及 7;  The layer has 8 layers, and the reference signals corresponding to the layers are sequentially reference signals #k of layer k; k are 0, 1, 2, 3, 4, 5, 6 and 7 respectively; wherein the reference signal# The sequence of k is generated according to the following formula: r(m) = -^=(l-2-c(2m)) + j-^=(l-2-c(2m + l)),m = 0,l ,...,Ll where: k are 0, 1, 2, 3, 4, 5, 6 and 7 respectively;
L为参考信号 #k需要的序列长度; 伪随机序列 c(o根据下式产生: c(i) = (χλ(ί + Νσ) + x2 (i + NC)) mod 2 L is the sequence length required for the reference signal #k; the pseudo-random sequence c (o is generated according to the following formula: c(i) = (χ λ (ί + Ν σ ) + x 2 (i + N C )) mod 2
x, ( + 31) = ( , ( + 3 ) + x, ( ) ) mod 2  x, ( + 31) = ( , ( + 3 ) + x, ( ) ) mod 2
x2 (i + 31) = ( 2( + 3) + x2 (i + 2) + x2 (i + 1) + x2 (;')) mod 2 其中: x 2 (i + 31) = ( 2 ( + 3) + x 2 (i + 2) + x 2 (i + 1) + x 2 (;')) mod 2 where:
Nc =1600; (0) = 1, (") = 0, « = 1, 2, ... , 30 ; N c =1600; (0) = 1, (") = 0, « = 1, 2, ..., 30 ;
¾根据伪随机序列初始值 cmit 2"产生; Cmit为大于等于零的整数。 通过
Figure imgf000013_0001
rO)将参考信号的序列 r( )映射到天线逻辑端口 p、 OFDM符号 /、 子载波 A上, 其中: α(,_7·)为正交码因子, 且
3⁄4 is generated according to a pseudo-random sequence initial value c mit 2"; C mi t is an integer greater than or equal to zero. by
Figure imgf000013_0001
rO) mapping the sequence r( ) of the reference signal to the antenna logical port p, the OFDM symbol /, the subcarrier A, where: α(, _7·) is an orthogonal code factor, and
=0且_/' = 0,1,2或 3时, a(i,j) = V, =0 and _/' = 0, 1, 2 or 3, a(i,j) = V,
= 1且 = 0 or = 2时, a(i, y) = 1;  = 1 and = 0 or = 2, a(i, y) = 1;
= lJL j = \or y = 3 H†, a(iJ) = -\; = lJL j = \or y = 3 H†, a(iJ) = -\;
=2且 j' = 0or_/ = l时, a(ij) = l; i = 2JL j = 2or y = 30†, a(i,j) = -\; i =3 JL j = 0or j = 30†, a(ij) = \; =2 and j' = 0or_/ = l, a(ij) = l; i = 2JL j = 2or y = 30†, a(i,j) = -\; i =3 JL j = 0or j = 30 †, a(ij) = \;
i = 3Hj = lorj = 2 H, O — 1。  i = 3Hj = lorj = 2 H, O — 1.
与现有技术相比, 本发明提供的基于层的参考信号的发送方法, 在保证 了尽量少的参考信号开销的同时, 还保证了传输的性能, 并且可以很好地兼 容已有的 LTE系统, 从而实现了高阶的 MIM0传输, 支持了相应技术的使 用, 提高了系统的整体性能。  Compared with the prior art, the method for transmitting a layer-based reference signal provided by the present invention ensures minimum transmission of reference signal overhead while ensuring transmission performance, and can be well compatible with existing LTE systems. Thus, high-order MIM0 transmission is realized, which supports the use of corresponding technologies and improves the overall performance of the system.
附图概述 图 1 (a) 为 LTE系统 FDD模式的帧结构示意图; 图 1 (b) 为 LTE系统 TDD模式的帧结构示意图; 图 2为系统带宽为 5MHz的 LTE系统的物理资源块示意图; 图 3 (a) 为常规 CP时公有参考信号在物理资源块中的位置示意图; 图 3 (b) 为扩展 CP时公有参考信号在物理资源块中的位置示意图; 图 4 (a)至图 4 (d)为本发明方法第一实施例的参考信号在资源块中载 波位置示意图; 图 5 (a)至图 5 (d)为本发明方法第二实施例的参考信号在资源块中载 波位置示意图; 图 6 (a)和图 6 (b)为本发明方法第三实施例的参考信号在资源块中载 波位置示意图; 图 7 (a)和图 7 (b)为本发明方法第四实施例的参考信号在资源块中载 波位置示意图; 图 8 (a)和图 8 (b)为本发明方法第五实施例的参考信号在资源块中载 波位置示意图; 图 9 (a)至图 9 (h)为本发明方法第六实施例的参考信号在资源块中载 波位置示意图。 1(a) is a schematic diagram of a frame structure of an LTE system FDD mode; FIG. 1(b) is a schematic diagram of a frame structure of an LTE system TDD mode; FIG. 2 is a schematic diagram of a physical resource block of an LTE system with a system bandwidth of 5 MHz; 3 (a) Schematic diagram of the location of the public reference signal in the physical resource block for the conventional CP; Figure 3 (b) is the location of the public reference signal in the physical resource block when the CP is extended; Figure 4 (a) to Figure 4 ( d) is a schematic diagram of the carrier position of the reference signal in the resource block according to the first embodiment of the method of the present invention; FIG. 5 (a) to FIG. 5 (d) of the reference signal of the second embodiment of the method of the present invention are carried in the resource block Figure 6 (a) and Figure 6 (b) is a schematic diagram of the carrier position of the reference signal in the resource block according to the third embodiment of the method of the present invention; Figure 7 (a) and Figure 7 (b) is the method of the present invention FIG. 8(a) and FIG. 8(b) are schematic diagrams showing the carrier position of a reference signal in a resource block according to a fifth embodiment of the method of the present invention; FIG. 9(a) to FIG. FIG. 9(h) is a schematic diagram of a carrier position of a reference signal in a resource block according to a sixth embodiment of the method of the present invention.
本发明的较佳实施方式 Preferred embodiment of the invention
以下将结合附图及实施例来详细说明本发明的实施方式, 借此对本发明 如何应用技术手段来解决技术问题, 并达成技术效果的实现过程能充分理解 并据以实施。 本发明提出的针对 LTE-Advanced 系统的面向信道状态信息产生的参考 信号的发送方法中, 各层对应的参考信号记为层 1的参考信号 #0、 层 2的参 考信号 #1、 层 3的参考信号 #2、 层 4的参考信号 #3、 层 5的参考信号 #4、 层 6的参考信号 #5、 层 7的参考信号 #6、 层 8的参考信号 #7; 其中, 基站将所 有参考信号分为若干组, 每组包含的参考信号互不相同, 同一组内各参考信 号所占用的资源相同, 不同组的参考信号占用物理时频资源互不相同, 同一 组内各参考信号通过码分复用的方式承载在相同的资源上。 图 4至图 8为本发明参考信号发送方法各个实施例, 分别示出了本发明 基于层的参考信号在其相应资源块中的具体载波位置。 图 4至图 8中标号 7;、 τΊ、 r3、 τ4、 r5、 τ6、 r7以及 r8, 分别对应于层 1 的参考信号 #0、 层 2的参考信号 #1、 层 3的参考信号 #2、层 4的参考信号 #3、 层 5的参考信号 #4、 层 6的参考信号 #5、 层 7的参考信号 #6和层 8的参考信 号 #7。 参考信号仅在用户专有的物理共享信道所在的时频域位置上传输。 参考 信号 #k (k=0 1, 2 3, 4 5, 6 7) 的序列 的产生方法如下式所示: 式(1)
Figure imgf000015_0001
The embodiments of the present invention will be described in detail below with reference to the accompanying drawings and embodiments, in which the present invention can be applied to the technical problems, and the implementation of the technical effects can be fully understood and implemented. In the method for transmitting a reference signal generated by the channel state information for the LTE-Advanced system, the reference signal corresponding to each layer is recorded as the reference signal #0 of layer 1, the reference signal #1 of layer 2, and the layer 3 Reference signal #2, reference signal #3 of layer 4, reference signal #4 of layer 5, reference signal #5 of layer 6, reference signal #6 of layer 7, reference signal #7 of layer 8, where the base station will The reference signals are divided into several groups, and the reference signals included in each group are different from each other. The resources occupied by the reference signals in the same group are the same. The reference signals of different groups occupy different physical time-frequency resources, and the reference signals in the same group pass. The code division multiplexing method is carried on the same resource. 4 to FIG. 8 are diagrams showing respective embodiments of a reference signal transmission method according to the present invention, respectively showing specific carrier positions of a layer-based reference signal in its corresponding resource block. 4 to 8, reference numerals 7; τ Ί , r 3 , τ 4 , r 5 , τ 6 , r 7 and r 8 respectively correspond to the reference signal #0 of layer 1 and the reference signal #1 of layer 2. Reference signal #2 of layer 3, reference signal #3 of layer 4, reference signal #4 of layer 5, reference signal #5 of layer 6, reference signal #6 of layer 7, and reference signal #7 of layer 8. The reference signal is transmitted only in the time-frequency domain location where the user-specific physical shared channel is located. The sequence of the reference signal #k (k=0 1, 2 3, 4 5, 6 7) is generated as follows: Equation (1)
Figure imgf000015_0001
其中:  among them:
L为参考信号 #k需要的序列长度; 伪随机序列 按照如下公式产生: c(i) = (x](i + Nc) + x2 (i + NC)) mod 2 式 (2) χλ (/ + 31) = ( , (? + 3) + , ()) mod 2 式 (3) x2 (z + 31) = [x2 (i + 3) + x2 (i + 2) + x2 (i + 1) + x2 (z)) mod 2 式 (4) L is the sequence length required for the reference signal #k; the pseudo-random sequence is generated as follows: c(i) = (x ] (i + N c ) + x 2 (i + N C )) mod 2 Equation (2) χ λ (/ + 31) = ( , (? + 3) + , ()) mod 2 Equation (3) x 2 (z + 31) = [x 2 (i + 3) + x 2 (i + 2) + x 2 (i + 1) + x 2 (z)) mod 2 (4)
Nc =1600; N c =1600;
x1( ) = \,xl(n) = ,n = \,2,...,30; x 1 ( ) = \,x l (n) = , n = \,2,...,30;
χ2根据伪随机序列初始值 cinit =H°=。^0)'2"产生; χ 2 According to the pseudo-random sequence initial value c init =H° = . ^0) '2' is generated;
Cmit为一大于等于零的正整数; C mit is a positive integer greater than or equal to zero;
可以根据式 ( 5 )计算出的 cinit , 代入式 ( 2 ) 、 式 ( 3 ) 以及式 ( 4 ) 产生伪随机序列 c(i):
Figure imgf000015_0002
式(5 ) n%为一个无线帧中的时隙索引; N 为小区的标识;
The c init can be calculated according to equation (5), and the pseudo-random sequence c(i) is generated by substituting equations (2), (3), and (4):
Figure imgf000015_0002
Equation (5) n % is the slot index in one radio frame; N is the identifier of the cell;
¾m为用户专有的标识; 3⁄4m is a user-specific logo;
Lx」为下取整运算。  Lx" is the next rounding operation.
但是, cinit也可以通过其他方式产生, 不限于式 (5) 。 将参考信号 (m')映射到天线逻辑端口 P、 OFDM 符号 /、 子载波 A上 = a(i, j) x rl rh {m ') , a(i, J)为如下表所示的正交码因子: 其中, r(m相当于原始序列, rLt (m ')是从原始序列截取下来的一段序列 映射到物理资源上,如何截取由/ w'和 m对关系确定, 0<= 如果; = 那么, rim和 (m ')就是相同的; i [a(i , 0), a(i, 1), a(i, 2), a(】, 2)] However, c init can also be generated in other ways, not limited to equation (5). Map the reference signal (m') to the antenna logical port P , OFDM symbol /, subcarrier A = a(i, j) xr l rh {m ') , a(i, J) is positive as shown in the following table Crossing factor: Where r(m is equivalent to the original sequence, r Lt (m ') is a sequence intercepted from the original sequence mapped to the physical resource, and how to intercept is determined by the relationship between / w' and m, 0 <= if; = then , rim and (m ') are the same; i [a(i , 0), a(i, 1), a(i, 2), a(], 2)]
0 11, 1, 1, 1]  0 11, 1, 1, 1]
1 |1, ■1, 1, ■1]  1 |1, ■1, 1, ■1]
2 11, 1, ■1, ■1]  2 11, 1, ■1, ■1]
|1, ■1, •1, 1] 或者该正交码因子也可以描述为:  |1, ■1, •1, 1] or the orthogonal code factor can also be described as:
=0且 _ = 0,1,2或 3时, "(,·, =1; =0 and _ = 0, 1, 2 or 3, "(, ·, =1;
=1且 = 0 or = 2时, 7) = 1;  =1 and = 0 or = 2, 7) = 1;
=1且 = \or y = 3Ht, a{i,j) = ~ ; =1 and = \or y = 3Ht, a{i,j) = ~ ;
=2且 _/ = 0or _/' = 1时, , 7) = 1;  =2 and _/ = 0or _/' = 1, when, 7) = 1;
=2且 _ = 2 or = 3时, aj,f) =— . =2 and _ = 2 or = 3, a j,f) =- .
=3且_/ = 0 or = 3时, α(, ) = 1;  =3 and _/ = 0 or = 3, α(, ) = 1;
=3且_/ = 1 or = 2时, a{i ) = ~l。  =3 and _/ = 1 or = 2, a{i ) = ~l.
需要说明的是, 上述 r( )表示序列的产生方式, 此处的 (《 表示如何 将序列的元素映射到物理资源上。 当层数为 h时,只发送相应参考信号 #0,参考信号 #1, …,参考信号 #h-l, 其他的参考信号不发送。 设置四个 OFDM符号, 将 8层参考信号映射到该四个 OFDM符号上, 该四个 OFDM符号分别为: 子帧中第一个时隙的倒数第一个 OFDM符号和倒数第二个 OFDM符号、 第二个时隙的倒数第一个 OFDM符号和倒数第二个 OFDM符号; 或者 子帧中第一个时隙的倒数第一个 OFDM符号和倒数第二个 OFDM符号、 第二个时隙的倒数第二个 OFDM符号和倒数第四个 OFDM符号; 或者 当子帧中循环前缀为常规循环前缀时,四个 OFDM符号可以为子帧中第 一个时隙的第四个 OFDM符号和第六个 OFDM符号、 第二个时隙的第四个 OFDM符号和第六个 OFDM符号; 或者 当子帧中循环前缀为常规循环前缀时,四个 OFDM符号可以为子帧中第 一个时隙的第四个 OFDM符号和第七个 OFDM符号、 第二个时隙的第三个 OFDM符号和第六个 OFDM符号。 It should be noted that the above r( ) indicates the manner in which the sequence is generated, where (“how to map the elements of the sequence to the physical resources. When the number of layers is h, only the corresponding reference signal #0, reference signal# is transmitted. 1, ..., reference signal #hl, other reference signals are not transmitted. Four OFDM symbols are set, and an 8-layer reference signal is mapped onto the four OFDM symbols, respectively: the first one in the subframe a first OFDM symbol and a penultimate OFDM symbol of the slot, a first OFDM symbol of the second slot, and a second to last OFDM symbol; or a reciprocal of the first slot in the subframe OFDM symbols and the penultimate OFDM symbol, The second last OFDM symbol of the second time slot and the fourth last OFDM symbol; or when the cyclic prefix in the subframe is a regular cyclic prefix, the four OFDM symbols may be the fourth of the first time slot in the subframe OFDM symbols and a sixth OFDM symbol, a fourth OFDM symbol of the second slot, and a sixth OFDM symbol; or when the cyclic prefix in the subframe is a regular cyclic prefix, the four OFDM symbols may be in a subframe The fourth OFDM symbol and the seventh OFDM symbol of the first slot, the third OFDM symbol of the second slot, and the sixth OFDM symbol.
对所有参考信号进行分组时, 可以将所有 8层参考信号划分为 2组, 每 组包含 4个参考信号, 其中每组中所包含的参考信号为: 组 1依次包含参考信号 #0、 #1、 #4及 #5 , 组 2依次包含参考信号 #2、 #3、When grouping all reference signals, all 8 layers of reference signals can be divided into 2 groups, each group containing 4 reference signals, wherein the reference signals included in each group are: Group 1 contains reference signals #0, #1 in sequence. , #4 and #5, group 2 contains reference signals #2, #3,
#6及 #7; 或者, #6与 #7; Or,
组 1依次包含参考信号 #0、 #1、 #6及 #7 , 组 2依次包含参考信号 #2、 #3、 Group 1 contains reference signals #0, #1, #6, and #7 in sequence, and group 2 contains reference signals #2, #3, in turn.
#4及 #5; 或者, #4和 #5; Or,
组 1依次包含参考信号 #0、 #1、 #4及 #6, 组 2依次包含参考信号 #2、 #3、 Group 1 contains reference signals #0, #1, #4, and #6 in turn, and group 2 contains reference signals #2, #3, in turn.
#5及 #7; 或者, #5和#7; Or,
组 1依次包含参考信号 #0、 #1、 #5及 #7 , 组 2依次包含参考信号 #2、 #3、 Group 1 contains reference signals #0, #1, #5, and #7 in turn, and group 2 contains reference signals #2, #3, in turn.
#4及 #6; 或者, #4和 #6; Or,
组 1依次包含参考信号 #0、 #1、 #4及 #7 , 组 2依次包含参考信号 #2、 #3、 #5及 #6; 或者,  Group 1 contains reference signals #0, #1, #4, and #7 in sequence, and group 2 contains reference signals #2, #3, #5, and #6;
组 1依次包含参考信号 #0、 #1、 #5及 #6, 组 2依次包含参考信号 #2、 #3、 Group 1 contains reference signals #0, #1, #5, and #6 in turn, and group 2 contains reference signals #2, #3, in turn.
#4及 #7; 或者, #4和 #7; Or,
组 1依次包含参考信号 #0、 #2、 #4及 #6, 组 2依次包含参考信号 #1、 #3、 Group 1 contains reference signals #0, #2, #4, and #6 in turn, and group 2 contains reference signals #1, #3, in turn.
#5及 #7。 当组内参考信号的顺序按照上述方式排列时, 各组内第一个参考信号对 应正交码为 {1 , 1 , 1 , 1} , 第二个参考信号对应正交码为 {1 , -1 , 1 , -1} , 第三个参考信号对应正交码为 {1, 1, -1, -1}, 第四个参考信号对应正交码 为 {1, -1, -1, 1}; 或者, 组内第一个参考信号对应正交码为 {1, 1, 1, 1}, 第二个参考信号对应 正交码为 {1, -1, 1, -1}, 第三个参考信号对应正交码为 {1, -1, -1, 1}, 组 内第四个参考信号对应正交码为 {1, 1, -1, -1}0 将所有 8层参考信号划分为 2组时, 可以分为如下所述的第一场景和第 二场景这两种典型场景。 第一场景 组 1中的参考信号依次映射到前述设置的四个 OFDM符号上,在频域上 占用 3个子载波; 组 2中的参考信号依次映射到前述的四个 OFDM符号上, 在频域上占用与组 1中参考信号不同的 3个子载波, 其中: 组 1中的参考信号占用物理资源块中的第一、 第六、 第十一个子载波, 组 2中的参考信号占用物理资源块中的第二、 第七、 第十二个子载波; 或者, 组 1中的参考信号占用物理资源块中的第一、 第五、 第九个子载波, 组 2中的参考信号占用物理资源块中的第二、 第六、 第十个子载波; 或者, 组 1中的参考信号占用物理资源块中的第一、 第五、 第九个子载波, 组 2中的参考信号占用物理资源块中的第三、 第七、 第十一个子载波。 同一组内不同时域符号相同频域位置的载波上映射的参考信号数据是相 同的。 对应于第一场景的第一实施例 本实施例中, 参考信号的层数为 8, 分别发送参考信号 #0, 参考信号 #1, 参考信号 #7。 将该 8层参考信号分为两组, 每组内包含 4个参考信 号。 组 1所包含的参考信号依次为参考信号 #0、 #1、 #4以及 #6, 组 2所包含 的参考信号依次为参考信号 #2、 #3、 #5以及 #7。 两组内参考信号的顺序按照 前述方式排列时, 参考信号 #0和参考信号 #2对应正交码为 {1, 1, 1, 1}, 参 考信号 #1和参考信号 #3对应正交码为 {1, -1, 1, -1}, 参考信号 #4和参考信 号 #5对应正交码为 {1, 1, -1, -1}, 参考信号 #6和参考信号 #7对应正交码为 {1, -1, -1 , 1}。 #5 and #7. When the order of the reference signals in the group is arranged as described above, the first reference signal in each group corresponds to the orthogonal code is {1, 1 , 1 , 1} , and the second reference signal corresponds to the orthogonal code is {1 , - 1 , 1 , -1} , The third reference signal corresponds to an orthogonal code of {1, 1, -1, -1}, and the fourth reference signal corresponds to an orthogonal code of {1, -1, -1, 1}; or, the first in the group The reference signals correspond to orthogonal codes {1, 1, 1, 1}, the second reference signals correspond to orthogonal codes {1, -1, 1, -1}, and the third reference signals correspond to orthogonal codes. {1, -1, -1, 1}, the fourth reference signal in the group corresponds to the orthogonal code {1, 1, -1, -1} 0. When all 8 layers of reference signals are divided into 2 groups, they can be divided into 2 groups. It is a typical scenario of the first scene and the second scene as described below. The reference signals in the first scene group 1 are sequentially mapped to the four OFDM symbols set as described above, occupying 3 subcarriers in the frequency domain; the reference signals in the group 2 are sequentially mapped to the aforementioned four OFDM symbols, in the frequency domain. The three subcarriers occupying the reference signal in the group 1 are occupied, wherein: the reference signal in the group 1 occupies the first, sixth, and eleventh subcarriers in the physical resource block, and the reference signal in the group 2 occupies the physical resource. The second, seventh, and twelfth subcarriers in the block; or, the reference signal in the group 1 occupies the first, fifth, and ninth subcarriers in the physical resource block, and the reference signal in the group 2 occupies the physical resource block The second, sixth, and tenth subcarriers in the medium; or, the reference signal in the group 1 occupies the first, fifth, and ninth subcarriers in the physical resource block, and the reference signal in the group 2 occupies the physical resource block Third, seventh, eleventh subcarrier. The reference signal data mapped on the carriers of the same frequency domain position in different time domain symbols in the same group is the same. In the first embodiment corresponding to the first scenario, in the embodiment, the number of layers of the reference signal is 8, and the reference signal #0, the reference signal #1, and the reference signal #7 are respectively transmitted. The 8-layer reference signals are divided into two groups, each of which contains four reference signals. The reference signals included in group 1 are reference signals #0, #1, #4, and #6, respectively, and the reference signals included in group 2 are reference signals #2, #3, #5, and #7, respectively. When the order of the reference signals in the two groups is arranged as described above, the reference signal #0 and the reference signal #2 correspond to the orthogonal code {1, 1, 1, 1}, and the reference signal #1 and the reference signal #3 correspond to the orthogonal code. For {1, -1, 1, -1}, reference signal #4 and reference signal #5 correspond to orthogonal codes of {1, 1, -1, -1}, reference signal #6 and reference signal #7 correspond to positive Cross code is {1, -1, -1 , 1}.
参考信号 #0, 位于子帧中第一个时隙的倒数第二个符号的第一、 第六、 第十一个子载波上和倒数第一个符号的第一、 第六、 第十一个子载波上, 以 及第二个时隙的倒数第二个符号的第一、 第六、 第十一个子载波上和倒数第 一个符号的第一、 第六、 第十一个子载波上; 对应正交码为 {1, 1 , 1 , 1}。 参考信号 #1, 位于子帧中第二个时隙的倒数第二个符号的第一、 第六、 第十一个子载波上和倒数第一个符号的第一、 第六、 第十一个子载波上, 以 及第二个时隙的倒数第二个符号的第一、 第六、 第十一个子载波上和倒数第 一个符号的第一、 第六、 第十一个子载波上; 对应正交码为 {1, -1, 1, -1 }。  Reference signal #0, located on the first, sixth, eleventh subcarriers of the penultimate symbol of the first slot in the subframe and the first, sixth, eleventh of the first symbol of the last On the first subcarrier, and the first, sixth, eleventh subcarriers of the penultimate symbol of the second slot, and the first, sixth, eleventh subcarriers of the first symbol of the last Upper; corresponding orthogonal code is {1, 1 , 1 , 1}. Reference signal #1, located on the first, sixth, eleventh subcarriers of the second to last symbol of the second slot in the subframe and the first, sixth, eleventh of the first symbol of the last On the first subcarrier, and the first, sixth, eleventh subcarriers of the penultimate symbol of the second slot, and the first, sixth, eleventh subcarriers of the first symbol of the last Upper; The corresponding orthogonal code is {1, -1, 1, -1 }.
参考信号 #2, 位于子帧中第一个时隙的倒数第二个符号的第二、 第七、 第十二个子载波上和倒数第一个符号的第二、 第七、 第十二个子载波上, 以 及第二个时隙的倒数第二个符号的第二、 第七、 第十二个子载波上和倒数第 一个符号的第二、 第七、 第十二个子载波上; 对应正交码为 {1 , 1 , 1 , 1}。 参考信号 #3 , 位于子帧中第二个时隙的倒数第二个符号的第二、 第七、 第十二个子载波上和倒数第一个符号的第二、 第七、 第十二个子载波上, 以 及第二个时隙的倒数第二个符号的第二、 第七、 第十二个子载波上和倒数第 一个符号的第二、 第七、 第十二个子载波上; 对应正交码为 {1 , -1 , 1 , -1 }。  Reference signal #2, located on the second, seventh, twelfth subcarriers of the penultimate symbol of the first slot in the subframe and the second, seventh, and twelfth subfields of the first symbol of the last On the carrier, and on the second, seventh, and twelfth subcarriers of the second to last symbol of the second time slot, and on the second, seventh, and twelfth subcarriers of the last symbol; The code is {1, 1 , 1 , 1}. Reference signal #3, located on the second, seventh, twelfth subcarriers of the second to last symbol of the second slot in the subframe and the second, seventh, and twelfth subfields of the first symbol On the carrier, and on the second, seventh, and twelfth subcarriers of the second to last symbol of the second time slot, and on the second, seventh, and twelfth subcarriers of the last symbol; The code is {1 , -1 , 1 , -1 }.
参考信号 #4, 位于子帧中第一个时隙的倒数第二个符号的第一、 第六、 第十一个子载波上和倒数第一个符号的第一、 第六、 第十一个子载波上, 以 及第二个时隙的倒数第二个符号的第一、 第六、 第十一个子载波上和倒数第 一个符号的第一、 第六、 第十一个子载波上; 对应正交码为 {1, 1 , -1 , -1 }。 参考信号 #5, 位于子帧中第一个时隙的倒数第二个符号的第二、 第七、 第十二个子载波上和倒数第一个符号的第二、 第七、 第十二个子载波上, 以 及第二个时隙的倒数第二个符号的第二、 第七、 第十二个子载波上和倒数第 一个符号的第二、 第七、 第十二个子载波上; 对应正交码为 {1 , 1 , -1 , -1 }。 参考信号 #6, 位于子帧中第一个时隙的倒数第二个符号的第一、 第六、 第十一个子载波上和倒数第一个符号的第一、 第六、 第十一个子载波上, 以 及第二个时隙的倒数第二个符号的第一、 第六、 第十一个子载波上和倒数第 一个符号的第一、 第六、 第十一个子载波上; 对应正交码为 {1, -1, -1, 1}。 参考信号 #7, 位于子帧中第一个时隙的倒数第二个符号的第二、 第七、 第十二个子载波上和倒数第一个符号的第二、 第七、 第十二个子载波上, 以 及第二个时隙的倒数第二个符号的第二、 第七、 第十二个子载波上和倒数第 一个符号的第二、 第七、 第十二个子载波上; 对应正交码为 {1, -1, -1, 1}。 Reference signal #4, located on the first, sixth, eleventh subcarriers of the penultimate symbol of the first slot in the subframe and the first, sixth, eleventh of the first symbol of the last On the first subcarrier, and the first, sixth, eleventh subcarriers of the penultimate symbol of the second slot, and the first, sixth, eleventh subcarriers of the first symbol of the last Upper; The corresponding orthogonal code is {1, 1 , -1 , -1 }. Reference signal #5, located on the second, seventh, twelfth subcarriers of the penultimate symbol of the first slot in the subframe and the second, seventh, and twelfth subfields of the first symbol of the last On the carrier, and on the second, seventh, and twelfth subcarriers of the second to last symbol of the second time slot, and on the second, seventh, and twelfth subcarriers of the last symbol; The code is {1, 1 , -1 , -1 }. Reference signal #6, located on the first, sixth, eleventh subcarriers of the penultimate symbol of the first slot in the subframe and the first, sixth, eleventh of the first symbol of the last On the subcarriers, and on the first, sixth, eleventh subcarriers and the last number of the second to last symbols of the second slot On the first, sixth, and eleventh subcarriers of a symbol; the corresponding orthogonal code is {1, -1, -1, 1}. Reference signal #7, located on the second, seventh, twelfth subcarriers of the penultimate symbol of the first slot in the subframe and the second, seventh, and twelfth subfields of the first symbol of the last On the carrier, and on the second, seventh, and twelfth subcarriers of the second to last symbol of the second time slot, and on the second, seventh, and twelfth subcarriers of the last symbol; The code is {1, -1, -1, 1}.
将参考信号序列^ 1)映射到天线逻辑端口 pOFDM 符号 /上子载波; t 上, 对于 CP为: 常规循环前缀时, Mapping the reference signal sequence ^ 1 ) to the antenna logical port pOFDM symbol/upper subcarrier; on t, for CP: when regular cyclic prefix
¾ =^ ')χ^ (^') 3⁄4 =^ ') χ ^ (^')
Figure imgf000020_0001
Figure imgf000020_0001
if ns mod 2 = 0 If n s mod 2 = 0
[2,3 if ns mod 2 = 1 [2,3 if n s mod 2 = 1
Figure imgf000020_0002
Figure imgf000020_0002
I'  I'
0,1,. •,3N™-1 扩展循环前綴 A:' + 12x«PRB 0,1,. •,3NTM-1 extended cyclic prefix A:' + 12x« PRB
(7w'mod3)x5 ifpe{0,l,4,6}  (7w'mod3)x5 ifpe{0,l,4,6}
k':  k':
l + (ra'mod3)x5 {2,3,5,7}  l + (ra'mod3)x5 {2,3,5,7}
4 r=o  4 r=o
5 l' = \  5 l' = \
/ =  / =
4 l' = 2 if ns mod 2 = 0 4 l' = 2 if n s mod 2 = 0
l'=  l'=
if ns mod 2 = 1 If n s mod 2 = 1
Figure imgf000021_0001
其中:
Figure imgf000021_0001
among them:
«PRB为相应的 PDSCH的资源块索引, N^SCH为相应的 PDSCH占用的资 源块数量。 当 CP为常规循环前缀的时, 参考信号在物理资源块中的位置如图 4(a) 至图 4 (d) 所示, 其中图 4 (a) 至图 4 (d) 分别对应参考信号 #0到参考信 号 #7的时频位置和正交码, 以及正交码映射方式。 « PRB is the resource block index of the corresponding PDSCH, and N^ SCH is the number of resource blocks occupied by the corresponding PDSCH. When the CP is a regular cyclic prefix, the position of the reference signal in the physical resource block is as shown in Fig. 4(a) to Fig. 4(d), where Fig. 4(a) to Fig. 4(d) correspond to the reference signal# 0 to the time-frequency position and orthogonal code of the reference signal #7, and the orthogonal code mapping method.
第二场景 组 1 中的参考信号依次映射到前述设置的四个 OFDM符号中的第一个The reference signal in the second scene group 1 is sequentially mapped to the first of the four OFDM symbols set as described above.
OFDM符号和第三个 OFDM符号上, 在频域上占用 6个子载波; 组 2中的 参考信号依次映射到上述四个 OFDM符号中的第二个 OFDM符号和第四个 OFDM符号上, 在频域上占用与组 1中参考信号相同的 6个子载波。 上述 6个子载波为物理资源块中的第一、 第二、 第六、 第七、 第十一、 第十二个子载波, 或者为物理资源块中的第一、 第二、 第五、 第六、 第九、 第十个共 6个子载波。 相同组内不同时域符号物理资源块中相同频域位置的载波上, 映射的参 考信号数据是相同的, 并且该物理资源块中第一个频域位置与第二频域位置 的载波上映射的参考信号数据是相同的, 该物理资源块中第三个频域位置与 第四频域位置的载波上映射的参考信号数据是相同的, 该物理资源块中第五 个频域位置与第六频域位置的载波上映射的参考信号数据是相同的。 对应于该第二场景的第二实施例 本实施例中, 参考信号的层数为 8, 分别发送参考信号 #0, 参考信号 #1, 参考信号 #7。 组 1中的参考信号依次为参考信号 #0、 #1、 #4以及 #6, 组 2中的参考信号依次为参考信号 #2、 #3、 #5以及 #7, 组内各参考信号顺序 按照前述方式排列, 参考信号 #0和参考信号 #2对应正交码为 {1, 1, 1, 1}, 参考信号 #1和参考信号 #3对应正交码为 {1, -1, 1, -1}, 参考信号 #4和参考 信号 #5对应正交码为 {1, 1, -1, -1}, 参考信号 #6和参考信号 #7对应正交码 为 {1, -1, -1, 1}。 OFDM symbol and the third OFDM symbol occupy 6 subcarriers in the frequency domain; the reference signals in group 2 are sequentially mapped to the second OFDM symbol and the fourth OFDM symbol of the above four OFDM symbols, at the frequency The domain occupies the same 6 subcarriers as the reference signal in Group 1. The foregoing six subcarriers are the first, second, sixth, seventh, eleventh, and twelfth subcarriers in the physical resource block, or are the first, second, fifth, and sixth in the physical resource block. , ninth, tenth, a total of six subcarriers. The mapped reference signal data is the same on the same frequency domain location in the different time domain symbol physical resource blocks in the same group, and the first frequency domain location in the physical resource block and the carrier mapping on the second frequency domain location The reference signal data is the same, and the third frequency domain position in the physical resource block is the same as the reference signal data mapped on the carrier of the fourth frequency domain position, and the fifth frequency domain position and the first in the physical resource block are The reference signal data mapped on the carrier of the six-frequency domain location is the same. In the second embodiment corresponding to the second scenario, in the embodiment, the number of layers of the reference signal is 8, and the reference signal #0, the reference signal #1, and the reference signal #7 are respectively transmitted. The reference signals in group 1 are reference signals #0, #1, #4, and #6, respectively, and the reference signals in group 2 are reference signals #2, #3, #5, and #7, respectively, and the sequence of reference signals in the group. Arranged in the foregoing manner, reference signal #0 and reference signal #2 correspond to orthogonal codes of {1, 1, 1, 1}, and reference signal #1 and reference signal #3 correspond to orthogonal codes of {1, -1, 1 , -1}, reference signal #4 and reference signal #5 correspond to orthogonal codes of {1, 1, -1, -1}, reference signal #6 and reference signal #7 correspond to orthogonal codes of {1, -1 , -1, 1}.
参考信号 #0, 位于子帧中第一个时隙的倒数第二个符号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上, 以及第二个时隙的倒数第二个符 号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上; 对应正交码为 {1, 1, 1, 1}。  Reference signal #0, located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and the second slot On the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol; the corresponding orthogonal code is {1, 1, 1, 1}.
参考信号 #1, 位于子帧中第一个时隙的倒数第二个符号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上, 以及第二个时隙的倒数第二个符 号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上; 对应正交码为 {1, -1, 1, -1}。  Reference signal #1, located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and the second slot On the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol; the corresponding orthogonal code is {1, -1, 1, -1}.
参考信号 #2, 位于子帧中第一个时隙的倒数第一个符号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上, 以及第二个时隙的倒数第一个符 号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上; 对应正交码为 {1, 1, 1, 1}。 参考信号 #3, 位于子帧中第一个时隙的倒数第一个符号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上, 以及第二个时隙的倒数第一个符 号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上; 对应正交码为 {1, -1, 1, -1}。 Reference signal #2, located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the first symbol of the first time slot of the subframe, and the second time slot On the first, second, sixth, seventh, eleventh and twelfth subcarriers of the first symbol of the last sign; the corresponding orthogonal code is {1, 1, 1, 1}. Reference signal #3, located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the first symbol of the first time slot of the subframe, and the second time slot The first, second, sixth, seventh, eleventh and twelfth subcarriers of the first symbol of the last digit; the corresponding orthogonal code is {1, -1, 1, -1}.
参考信号 #4, 位于子帧中第一个时隙的倒数第二个符号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上, 以及第二个时隙的倒数第二个符 号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上; 对应正交码为 {1, 1, -1, -1}。 参考信号 #5, 位于子帧中第一个时隙的倒数第一个符号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上, 以及第二个时隙的倒数第一个符 号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上; 对应正交码为 {1, 1, -1, -1}。  Reference signal #4, located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and the second slot On the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol; the corresponding orthogonal code is {1, 1, -1, -1}. Reference signal #5, located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the last symbol of the first time slot in the subframe, and the second time slot On the first, second, sixth, seventh, eleventh and twelfth subcarriers of the first symbol of the last digit; the corresponding orthogonal code is {1, 1, -1, -1}.
参考信号 #6, 位于子帧中第一个时隙的倒数第二个符号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上, 以及第二个时隙的倒数第二个符 号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上; 对应正交码为 {1, -1, -1, 1}。  Reference signal #6, located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and the second slot On the first, second, sixth, seventh, eleventh and twelfth subcarriers of the penultimate symbol; the corresponding orthogonal code is {1, -1, -1, 1}.
参考信号 #7, 位于子帧中第一个时隙的倒数第一个符号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上, 以及第二个时隙的倒数第一个符 号的第一、 第二、 第六、 第七、 第十一及第十二个子载波上; 对应正交码为 , -1, -1, i}。  Reference signal #7, located on the first, second, sixth, seventh, eleventh and twelfth subcarriers of the last symbol of the first time slot in the subframe, and the second time slot On the first, second, sixth, seventh, eleventh and twelfth subcarriers of the first symbol of the last digit; the corresponding orthogonal code is -1, -1, i}.
当循环前缀为常规循环前缀的时候, 这些参考信号在物理资源块中的位 置如图 5 (a) 至图 5 (d) 所示, 图 5 (a) 至图 5 (d)分别对应参考信号 #0 到参考信号 #7的频域位置和正交码, 以及正交码映射方式。 需要说明的是, 本实施例采用的是频域的正交码, 其余实施例采用的是时域的正交码。  When the cyclic prefix is a regular cyclic prefix, the positions of these reference signals in the physical resource block are as shown in Fig. 5(a) to Fig. 5(d), and Fig. 5(a) to Fig. 5(d) correspond to the reference signals respectively. #0 to the frequency domain position and orthogonal code of the reference signal #7, and the orthogonal code mapping method. It should be noted that, in this embodiment, orthogonal codes in the frequency domain are used, and in other embodiments, orthogonal codes in the time domain are used.
对所有参考信号进行分组时, 还可以将所有 8层参考信号划分为 4组, 每组包含 2个参考信号, 其中每组中所包含的参考信号为: 组 1依次包含参考信号 #0和 #4, 组 2依次包含参考信号 #1和 #5, 组 3 依次包含参考信号 #2和 #6, 组 4依次包含参考信号 #3和 #7; 或者, 组 1依次包含参考信号 #0和 #7, 组 2依次包含参考信号 #1和 #6, 组 3 依次包含参考信号 #2和 #5, 组 4依次包含参考信号 #3和 #4; 或者, 组 1依次包含参考信号 #0和 #6, 组 2依次包含参考信号 #1和 #7, 组 3 依次包含参考信号 #2和 #4, 组 4依次包含参考信号 #3和 #5。 各组内参考信号的顺序按照上述方式排列时, 组内第一个参考信号对应 正交码为 {1 , 1}, 第二个参考信号对应正交码为 {1 , -1}。 将所有 8层参考信号划分为 4组时,可以分为如下所述的三种典型场景: 第三场景、 第四场景和第五场景。 第三场景 组 1 中的参考信号依次映射到前述设置的四个 OFDM符号中第一个 OFDM符号上和第三个 OFDM符号上, 在频域上占用 3个子载波; 组 2中 的参考信号依次映射到该四个 OFDM符号中第二个 OFDM符号上和第四个 OFDM符号上, 在频域上占用与组 1中参考信号相同的 3个子载波; 组 3中 的参考信号依次映射到该四个 OFDM符号中第一个 OFDM符号上和第三个 OFDM符号上, 在频域上占用与组 1中参考信号不同的 3个子载波; 组 4中 的参考信号依次映射到该四个 OFDM符号中第二个 OFDM符号上和第四个 OFDM符号上, 在频域上占用与组 3中参考信号相同的 3个子载波, 其中: 组 1中的参考信号占用物理资源块中的第一、 第六、 第十一个子载波, 组 3中的参考信号占用该物理资源块中的第二、 第七、 第十二个子载波; 或 者, When grouping all reference signals, all 8 layers of reference signals can also be divided into 4 groups, each group containing 2 reference signals, wherein the reference signals contained in each group are: Group 1 contains reference signals #0 and # in turn. 4. Group 2 contains reference signals #1 and #5 in sequence, group 3 contains reference signals #2 and #6 in turn, group 4 contains reference signals #3 and #7 in sequence; or, group 1 contains reference signals #0 and # in turn. 7, group 2 contains reference signals #1 and #6 in turn, group 3 Including reference signals #2 and #5 in sequence, group 4 contains reference signals #3 and #4 in sequence; or, group 1 contains reference signals #0 and #6 in sequence, and group 2 contains reference signals #1 and #7 in sequence, group 3 Including reference signals #2 and #4 in turn, group 4 contains reference signals #3 and #5 in sequence. When the order of the reference signals in each group is arranged as described above, the first reference signal in the group corresponds to the orthogonal code {1, 1}, and the second reference signal corresponds to the orthogonal code {1, -1}. When all 8 layers of reference signals are divided into 4 groups, they can be divided into three typical scenarios as follows: the third scenario, the fourth scenario, and the fifth scenario. The reference signals in the third scene group 1 are sequentially mapped to the first OFDM symbol and the third OFDM symbol of the foregoing four OFDM symbols, occupying 3 subcarriers in the frequency domain; the reference signals in the group 2 are sequentially Mapping to the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, occupying the same three subcarriers in the frequency domain as the reference signal in the group 1; the reference signals in the group 3 are sequentially mapped to the four On the first OFDM symbol and the third OFDM symbol, occupying 3 subcarriers different from the reference signal in group 1 in the frequency domain; the reference signals in group 4 are sequentially mapped into the four OFDM symbols On the second OFDM symbol and the fourth OFDM symbol, occupying the same three subcarriers in the frequency domain as the reference signal in group 3, where: the reference signal in group 1 occupies the first and sixth in the physical resource block The eleventh subcarrier, the reference signal in the group 3 occupies the second, seventh, and twelfth subcarriers in the physical resource block; or
组 1中的参考信号占用所述物理资源块中的第一、第五、第九个子载波, 组 3中的参考信号占用所述物理资源块中的第二、 第六、 第十个子载波; 或者,  The reference signal in group 1 occupies the first, fifth, and ninth subcarriers in the physical resource block, and the reference signal in group 3 occupies the second, sixth, and tenth subcarriers in the physical resource block; Or,
组 1中的参考信号占用所述物理资源块中的第一、第五、第九个子载波, 组 3中的参考信号占用所述物理资源块中的第三、 第七、 第十一个子载波。 同一组内不同时域符号相同频域位置的载波上映射的参考信号数据是相 同的。  The reference signal in group 1 occupies the first, fifth, and ninth subcarriers in the physical resource block, and the reference signal in group 3 occupies the third, seventh, and eleventh sub-parts in the physical resource block. Carrier. The reference signal data mapped on the carrier of the same frequency domain position in different time domain symbols in the same group is the same.
对应该第三场景的第三实施例 本实施例中, 参考信号的层数为 8, 分别发送参考信号 #0 , 参考信号 #1 , 参考信号 #7。 组 1中的参考信号依次为参考信号 #0和 #4, 组 2中的 参考信号依次为参考信号 #1和 #5 ,组 3中的参考信号依次为参考信号 #2和 #6 , 组 4中的参考信号依次为参考信号 #3和 #7。 其中, 参考信号 #0、 #1、 #2及 #3 对应正交码为 {1, 1 }, 参考信号 #4、 #5、 #6及 #7对应正交码为 { 1, -1}。 参考信号 #0, 位于子帧中第一个时隙的倒数第二个符号的第一、 第六、 第十一个子载波上, 以及第二个时隙的倒数第二个符号的第一、 第六、 第十 一个子载波上; 对应正交码为 {1 , 1}。 参考信号 #1, 位于子帧中第二个时隙的倒数第一个符号的第一、 第六、 第十一个子载波上, 以及第二个时隙的倒数第一个符号的第一、 第六、 第十 一个子载波上; 对应正交码为 {1 , 1}。 参考信号 #2, 位于子帧中第一个时隙的倒数第二个符号的第二、 第七、 第十二个子载波上, 以及第二个时隙的倒数第二个符号的第二、 第七、 第十 二个子载波上; 对应正交码为 {1 , 1}。 Third embodiment corresponding to the third scenario In this embodiment, the number of layers of the reference signal is 8, and the reference signal #0, the reference signal #1, and the reference signal #7 are respectively transmitted. The reference signals in group 1 are reference signals #0 and #4, the reference signals in group 2 are reference signals #1 and #5, and the reference signals in group 3 are reference signals #2 and #6, group 4 The reference signals in the order are reference signals #3 and #7 in sequence. Wherein, the reference signals #0, #1, #2, and #3 correspond to orthogonal codes of {1, 1 }, and reference signals #4, #5, #6, and #7 correspond to orthogonal codes of {1, -1}. . Reference signal #0, located on the first, sixth, eleventh subcarriers of the second to last symbol of the first slot in the subframe, and the first of the second to last symbols of the second slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is {1, 1}. Reference signal #1, located on the first, sixth, eleventh subcarriers of the last symbol of the second time slot in the subframe, and the first of the first symbol of the second time slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is {1, 1}. Reference signal #2, located on the second, seventh, twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and second, the second to last symbol of the second slot Seventh, the twelfth subcarrier; the corresponding orthogonal code is {1, 1}.
参考信号 #3 , 位于子帧中第一个时隙的倒数第一个符号的第二、 第七、 第十二个子载波上, 以及第二个时隙的倒数第一个符号的第二、 第七、 第十 二个子载波上; 对应正交码为 , i } o  Reference signal #3, located on the second, seventh, twelfth subcarriers of the first symbol of the first time slot of the subframe, and the second symbol of the first symbol of the second time slot Seventh, the twelfth subcarrier; the corresponding orthogonal code is, i } o
参考信号 #4, 位于子帧中第一个时隙的倒数第二个符号的第一、 第六、 第十一个子载波上, 以及第二个时隙的倒数第二个符号的第一、 第六、 第十 一个子载波上; 对应正交码为 {1, -1}。 参考信号 #5 , 位于子帧中第二个时隙的倒数第一个符号的第一、 第六、 第十一个子载波上, 以及第二个时隙的倒数第一个符号的第一、 第六、 第十 一个子载波上; 对应正交码为 {1, -1} ο  Reference signal #4, located on the first, sixth, eleventh subcarriers of the second to last symbol of the first slot in the subframe, and the first of the second to last symbols of the second slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is {1, -1}. Reference signal #5, located on the first, sixth, eleventh subcarriers of the last symbol of the second time slot in the subframe, and the first of the first symbol of the second time slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is {1, -1} ο
参考信号 #6位于子帧中第一个时隙的倒数第二个符号的第二、 第七、 第 十二个子载波上, 以及第二个时隙的倒数第二个符号的第二、 第七、 第十二 个子载波上; 对应正交码为 {1 , -1}。 参考信号 #7 , 位于子帧中第一个时隙的倒数第一个符号的第二、 第七、 第十二个子载波上, 以及第二个时隙的倒数第一个符号的第二、 第七、 第十 二个子载波上; 对应正交码为 {1 , -1}。 当循环前缀为常规循环前缀的时候, 这些参考信号在物理资源块中的位 置如图 6 ( a )和图 6 ( b ) 所示, 其中图 6 ( a ) 和图 6 ( b ) 分别对应参考信 号 #0到参考信号 #7的时频位置和正交码, 以及正交码映射方式。 Reference signal #6 is located on the second, seventh, and twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and second and second of the second to last symbol of the second slot 7. On the twelfth subcarrier; the corresponding orthogonal code is {1, -1}. Reference signal #7, located on the second, seventh, twelfth subcarriers of the first symbol of the first time slot of the subframe, and the second symbol of the first symbol of the second time slot Seventh, tenth On two subcarriers; the corresponding orthogonal code is {1, -1}. When the cyclic prefix is a regular cyclic prefix, the positions of these reference signals in the physical resource block are as shown in Fig. 6(a) and Fig. 6(b), where Fig. 6(a) and Fig. 6(b) correspond to the reference respectively. Time-frequency position and orthogonal code of signal #0 to reference signal #7, and orthogonal code mapping.
第四场景 组 1 中的参考信号依次映射到前述设置的四个 OFDM符号中第一个 OFDM符号上和第三个 OFDM符号上, 在频域上占用 3个子载波; 组 2中 的参考信号依次映射到该四个 OFDM符号中第一个 OFDM符号上和第三个 OFDM符号上, 在频域上占用与组 1中参考信号不同的 3个子载波; 组 3中 的参考信号依次映射到该四个 OFDM符号中第二个 OFDM符号上和第四个 OFDM符号上, 在频域上占用与组 1相同的 3个子载波; 组 4中的参考信号 依次映射到该四个 OFDM符号中第二个 OFDM符号上和第四个 OFDM符号 上, 在频域上占用与组 2相同的 3个子载波, 其中: 组 1中的参考信号占用所述物理资源块中的第一、 第六、 第十一个子载 波, 组 2中的参考信号占用所述物理资源块中的第二、 第七、 第十二个子载 波; 或者 组 1中的参考信号占用所述物理资源块中的第一、第五、第九个子载波, 组 2中的参考信号占用所述物理资源块中的第二、 第六、 第十个子载波; 或 者, 组 1中的参考信号占用所述物理资源块中的第一、第五、第九个子载波, 组 2中的参考信号占用所述物理资源块中的第三、 第七、 第十一个子载波。 同一组内不同时域符号相同频域位置的载波上映射的参考信号数据是相 同的。 对应该第四场景的第四实施例 本实施例中, 参考信号的层数为 8 , 分别发送参考信号 #0 , 参考信号 #1 , 参考信号 #7。 其中组 1中的参考信号依次为参考信号 #0和 #4, 组 2 中的参考信号依次为参考信号 #1 和 #5, 组 3 中的参考信号依次参考信号 #2 和 #6, 组 4中的参考信号依次参考信号 #3和 #7。 其中, 参考信号 #0、 #1、 #2 及 #3对应正交码为 {1 , 1} , 参考信号 #4、 #5、 #6及 #7对应正交码为 {1 , -1 }。 参考信号 #0, 位于子帧中第一个时隙的倒数第二个符号的第一、 第六、 第十一个子载波上, 以及第二个时隙的倒数第二个符号的第一、 第六、 第十 一个子载波上; 对应正交码为 {1 , 1}。 参考信号 #1 , 位于子帧中第一个时隙的倒数第二个符号的第二、 第七、 第十二个子载波上, 以及第二个时隙的倒数第二个符号的第二、 第七、 第十 二个子载波上; 对应正交码为 {1, 1}。 参考信号 #2, 位于子帧中第一个时隙的倒数第一个符号的第一、 第六、 第十一个子载波上, 以及第二个时隙的倒数第一个符号的第一、 第六、 第十 一个子载波上; 对应正交码为 {1 , 1}。 参考信号 #3, 位于子帧中第一个时隙的倒数第一个符号的第二、 第七、 第十二个子载波上, 以及第二个时隙的倒数第一个符号的第二、 第七、 第十 二个子载波上; 对应正交码为 {1 , 1}。 The reference signals in the fourth scene group 1 are sequentially mapped to the first OFDM symbol and the third OFDM symbol of the foregoing four OFDM symbols, occupying 3 subcarriers in the frequency domain; the reference signals in the group 2 are sequentially Mapping to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, occupying 3 subcarriers different from the reference signal in the group 1 in the frequency domain; the reference signals in the group 3 are sequentially mapped to the fourth On the second OFDM symbol and the fourth OFDM symbol, occupying the same 3 subcarriers as the group 1 in the frequency domain; the reference signals in the group 4 are sequentially mapped to the second of the four OFDM symbols On the OFDM symbol and on the fourth OFDM symbol, occupy the same three subcarriers as the group 2 in the frequency domain, where: the reference signal in the group 1 occupies the first, sixth, eleventh in the physical resource block a subcarrier, the reference signal in the group 2 occupies the second, seventh, and twelfth subcarriers in the physical resource block; or the reference signal in the group 1 occupies the first and fifth in the physical resource block , the ninth subcarrier, the reference signal in group 2 Using the second, sixth, and tenth subcarriers in the physical resource block; or, the reference signal in the group 1 occupies the first, fifth, and ninth subcarriers in the physical resource block, in the group 2 The reference signal occupies the third, seventh, eleventh subcarriers in the physical resource block. The reference signal data mapped on the carriers of the same frequency domain position in different time domain symbols in the same group is the same. Fourth Embodiment Corresponding to the Fourth Scenario In this embodiment, the number of layers of the reference signal is 8, and the reference signal #0, the reference signal #1, and the reference signal #7 are respectively transmitted. The reference signals in group 1 are reference signals #0 and #4, group 2 The reference signals in the order are reference signals #1 and #5, the reference signals in group 3 are sequentially referenced to signals #2 and #6, and the reference signals in group 4 are sequentially referenced to signals #3 and #7. Wherein, the reference signals #0, #1, #2, and #3 correspond to orthogonal codes {1, 1}, and the reference signals #4, #5, #6, and #7 correspond to orthogonal codes {1, -1 } . Reference signal #0, located on the first, sixth, eleventh subcarriers of the second to last symbol of the first slot in the subframe, and the first of the second to last symbols of the second slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is {1, 1}. Reference signal #1, located on the second, seventh, twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and second, the second to last symbol of the second slot Seventh, the twelfth subcarrier; the corresponding orthogonal code is {1, 1}. Reference signal #2, located on the first, sixth, eleventh subcarriers of the last symbol of the first time slot in the subframe, and the first of the first symbol of the second time slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is {1, 1}. Reference signal #3, located on the second, seventh, twelfth subcarriers of the first symbol of the first time slot of the subframe, and the second symbol of the first symbol of the second time slot Seventh, the twelfth subcarrier; the corresponding orthogonal code is {1, 1}.
参考信号 #4, 位于子帧中第一个时隙的倒数第二个符号的第一、 第六、 第十一个子载波上, 以及第二个时隙的倒数第二个符号的第一、 第六、 第十 一个子载波上; 对应正交码为 {1 , -i }。  Reference signal #4, located on the first, sixth, eleventh subcarriers of the second to last symbol of the first slot in the subframe, and the first of the second to last symbols of the second slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is {1, -i }.
参考信号 #5 , 位于子帧中第一个时隙的倒数第二个符号的第二、 第七、 第十二个子载波上, 以及第二个时隙的倒数第二个符号的第二、 第七、 第十 二个子载波上; 对应正交码为 , -i  Reference signal #5, located on the second, seventh, twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and second, the second to last symbol of the second slot Seventh, the twelfth subcarrier; the corresponding orthogonal code is -i
参考信号 #6, 位于子帧中第一个时隙的倒数第一个符号的第一、 第六、 第十一个子载波上, 以及第二个时隙的倒数第一个符号的第一、 第六、 第十 一个子载波上; 对应正交码为 {1, -1 参考信号 #7 , 位于子帧中第一个时隙的倒数第一个符号的第二、 第七、 第十二个子载波上, 以及第二个时隙的倒数第一个符号的第二、 第七、 第十 二个子载波上; 对应正交码为 {1 , -1}„ 当循环前缀为常规循环前缀的时候, 这些参考信号在物理资源块中的位 置如图 7 ( a )和图 7 ( b ) 所示, 其中图 7 ( a ) 和图 7 ( b ) 分别对应参考信 号 #0到参考信号 #7的时频位置和正交码, 以及正交码映射方式。 第五场景 组 1 中的参考信号依次映射到前述设置的四个 OFDM符号中第一个Reference signal #6, located on the first, sixth, eleventh subcarriers of the last symbol of the first time slot in the subframe, and the first of the first symbol of the second time slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is {1, -1 reference signal #7, the second, seventh, and the first symbol located in the last slot of the first slot in the subframe On the twelve subcarriers, and on the second, seventh, and twelfth subcarriers of the first symbol of the second time slot; the corresponding orthogonal code is {1, -1} When the cyclic prefix is a regular cyclic prefix, the positions of these reference signals in the physical resource block are as shown in Fig. 7(a) and Fig. 7(b), where Fig. 7(a) and Fig. 7(b) correspond to the reference respectively. Time-frequency position and orthogonal code of signal #0 to reference signal #7, and orthogonal code mapping. The reference signals in the fifth scene group 1 are sequentially mapped to the first of the four OFDM symbols set as described above.
OFDM符号上和第三个 OFDM符号上, 在频域上占用 3个子载波; 组 2中 的参考信号依次映射到该四个 OFDM符号中第二个 OFDM符号上和第四个 OFDM符号上, 在频域上占用与组 1中参考信号不同的 3个子载波; 组 3中 的参考信号依次映射到该四个 OFDM符号中第一个 OFDM符号上和第三个 OFDM符号上, 在频域上占用与组 2中参考信号相同的 3个子载波; 组 4中 的参考信号依次映射到该四个 OFDM符号上第二个 OFDM符号上和第四个 OFDM符号上, 在频域上占用与组 1中参考信号相同的 3个子载波; 其中: 组 1中的参考信号占用物理资源块中的第一、 第六、 第十一个子载波, 组 2中的参考信号占用该物理资源块中的第二、 第七、 第十二个子载波; 或者, 组 1中的参考信号占用所述物理资源块中的第一、第五、第九个子载波, 组 2中的参考信号占用所述物理资源块中的第二、 第六、 第十个子载波; 或者, On the OFDM symbol and on the third OFDM symbol, occupy 3 subcarriers in the frequency domain; the reference signals in group 2 are sequentially mapped onto the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, 3 subcarriers occupying different reference signals in group 1 in the frequency domain; reference signals in group 3 are sequentially mapped to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, occupying in the frequency domain 3 subcarriers identical to the reference signal in group 2; the reference signals in group 4 are sequentially mapped onto the second OFDM symbol and the fourth OFDM symbol on the four OFDM symbols, occupying and group 1 in the frequency domain The reference signal has the same 3 subcarriers; wherein: the reference signal in group 1 occupies the first, sixth, and eleventh subcarriers in the physical resource block, and the reference signal in group 2 occupies the second in the physical resource block The seventh, the twelfth subcarrier; or the reference signal in the group 1 occupies the first, fifth, and ninth subcarriers in the physical resource block, and the reference signal in the group 2 occupies the physical resource block Second, Sixth, tenth subcarrier; or
组 1中的参考信号占用所述物理资源块中的第一、第五、第九个子载波, 组 2中的参考信号占用所述物理资源块中的第三、 第七、 第十一个子载波; 或者,  The reference signal in group 1 occupies the first, fifth, and ninth subcarriers in the physical resource block, and the reference signal in group 2 occupies the third, seventh, and eleventh sub-parts in the physical resource block. Carrier; or,
组 1中的参考信号占用所述物理资源块中的第一、 第六、 第十一个子载 波, 组 2中的参考信号占用所述物理资源块中的第二、 第七、 第十二个子载 波。  The reference signal in group 1 occupies the first, sixth, and eleventh subcarriers in the physical resource block, and the reference signal in group 2 occupies the second, seventh, and twelfth in the physical resource block. Subcarriers.
同一组内不同时域符号相同频域位置的载波上映射的参考信号数据是相 同的。  The reference signal data mapped on the carrier of the same frequency domain position in different time domain symbols in the same group is the same.
对应该第五场景的第五实施例 本实施例中, 参考信号的层数为 8, 分别发送参考信号 #0, 参考信号 #1, 参考信号 #7。 组 1中的参考信号依次为参考信号 #0和 #4, 组 2中的 参考信号依次为参考信号 #1和 #5 ,组 3中的参考信号依次为参考信号 #2和 #6 , 组 4中的参考信号依次为参考信号 #3和 #7。 其中, 参考信号 #0、 #1、 #2及 #3 对应正交码为 {1, 1}, 参考信号 #4、 #5、 #6及 #7对应正交码为 {1, -1}。 参考信号 #0, 位于子帧中第一个时隙的倒数第二个符号的第一、 第六、 第十一个子载波上, 以及第二个时隙的倒数第二个符号的第一、 第六、 第十 一个子载波上; 对应正交码为 {1, 1}。 参考信号 #1, 位于子帧中第二个时隙的倒数第一个符号的第二、 七、 十 二子载波上, 以及第二个时隙的倒数第一个符号的第二、 七、 十二子载波; 对应正交码为 {1, 1}0 参考信号 #2, 位于子帧中第一个时隙的倒数第二个符号的第二、 第七、 第十二个子载波上, 以及第二个时隙的倒数第二个符号的第二、 第七、 第十 二个子载波上; 对应正交码为 {1, 1}。 Fifth embodiment corresponding to the fifth scenario In this embodiment, the number of layers of the reference signal is 8, and the reference signal #0, the reference signal #1, and the reference signal #7 are respectively transmitted. The reference signals in group 1 are reference signals #0 and #4, the reference signals in group 2 are reference signals #1 and #5, and the reference signals in group 3 are reference signals #2 and #6, group 4 The reference signals in the order are reference signals #3 and #7 in sequence. Wherein, the reference signals #0, #1, #2, and #3 correspond to orthogonal codes of {1, 1}, and reference signals #4, #5, #6, and #7 correspond to orthogonal codes of {1, -1}. . Reference signal #0, located on the first, sixth, eleventh subcarriers of the second to last symbol of the first slot in the subframe, and the first of the second to last symbols of the second slot , the sixth, the eleventh subcarrier; the corresponding orthogonal code is {1, 1}. Reference signal #1, located on the second, seventh, and twelve subcarriers of the first symbol of the second time slot of the subframe, and the second, seventh, and twelve subcarriers of the first symbol of the second time slot The corresponding orthogonal code is {1, 1} 0 reference signal #2, located on the second, seventh, twelfth subcarriers of the second to last symbol of the first slot in the subframe, and the second On the second, seventh, and twelfth subcarriers of the penultimate symbol of the slot; the corresponding orthogonal code is {1, 1}.
参考信号 #3, 位于子帧中第一个时隙的倒数第一个符号的第一、 六、 十 一子载波上, 以及第二个时隙的倒数第一个符号的第一、 六、 十一子载波上; 对应正交码为 {1, 1}0 参考信号 #4, 位于子帧中第一个时隙的倒数第二个符号的第一、 第六、 第十一个子载波上, 以及第二个时隙的倒数第二个符号的第一、 第六、 第十 一个子载波上; 对应正交码为 {1, -1}。 参考信号 #5, 位于子帧中第二个时隙的倒数第一个符号的第二、 七、 十 二子载波上, 以及第二个时隙的倒数第一个符号的第二、七、 十二子载波上; 对应正交码为 {1, -1}0 参考信号 #6, 位于子帧中第一个时隙的倒数第二个符号的第二、 第七、 第十二个子载波上, 以及第二个时隙的倒数第二个符号的第二、 第七、 第十 二个子载波上; 对应正交码为 {1, -1}。 参考信号 #7, 位于子帧中第一个时隙的倒数第一个符号的第一、 六、 十 一子载波上, 以及第二个时隙的倒数第一个符号的第一、 六、 十一子载波上; 对应正交码为 {1, -1}0 当循环前缀为常规循环前缀的时候, 这些参考信号在物理资源块中的位 置如图 8 (a)和图 8 (b) 所示, 其中图 8 (a) 和图 8 (b) 分别对应参考信 号 #0到参考信号 #7的时频位置和正交码, 以及正交码映射方式。 Reference signal #3, located on the first, sixth, eleventh subcarriers of the first symbol of the first time slot of the subframe, and the first and sixth symbols of the first symbol of the second time slot On the eleven subcarriers; the corresponding orthogonal code is {1, 1} 0 reference signal #4, the first, sixth, eleventh subcarriers of the penultimate symbol of the first slot in the subframe And, on the first, sixth, and eleventh subcarriers of the second to last symbol of the second time slot; the corresponding orthogonal code is {1, -1}. Reference signal #5, located on the second, seventh, twelve subcarriers of the first symbol of the second time slot of the subframe, and the second, seventh, twelve subcarriers of the first symbol of the second time slot The corresponding orthogonal code is {1, -1} 0 reference signal #6, located on the second, seventh, twelfth subcarriers of the penultimate symbol of the first slot in the subframe, and On the second, seventh, and twelfth subcarriers of the second to last symbols of the two slots; the corresponding orthogonal code is {1, -1}. Reference signal #7, located on the first, sixth, eleventh subcarriers of the first symbol of the first time slot of the subframe, and the first, sixth of the first symbol of the second time slot Eleven subcarriers; Corresponding orthogonal codes are {1, -1} 0. When the cyclic prefix is a regular cyclic prefix, the positions of these reference signals in the physical resource block are as shown in Fig. 8(a) and Fig. 8(b), where Fig. 8 (a) and FIG. 8(b) correspond to the time-frequency position and orthogonal code of the reference signal #0 to the reference signal #7, respectively, and the orthogonal code mapping method.
对所有参考信号进行分组时, 还可以将所有 8层参考信号划分为 1组, 组内包含 8个参考信号, 其中参考信号 #0、 #1、 #2及 #3对应的正交码分别为 {1, 1, 1, 1, 1, 1, 1, 1}、 {1, -1, 1, -1, 1, -1, 1, -1}、 {1, -1, -1, 1, 1, -1, -1, 1}及 {1, 1, -1, -1, 1, 1, -1, -1}, 参考信号 #4、 #5、 #6 及 #7 对应的正交码为 {1, 1, 1, 1, -1, -1, -1, -1}、 {1, -1, 1, -1, -1, 1, -1, 1}、 {1, -1, -1, 1, -1, 1, 1, -1}及 {1, 1, -1, -1, -1, -1, 1, 1}。 当层 数为 h时, 只发送相应参考信号 #0, 参考信号 #1, 参考信号 #h-l, 其他 参考信号不发送。 参考信号承载在相应的物理共享信道的资源块上。 将所有 8层参考信号划分为 1组时, 为如下所述的第六场景。 第六场景 将组内的参考信号依次映射到前述设置的四个 OFDM符号上,在频域上 占用 6个子载波, 该 6个子载波为第一、 第二、 第六、 第七、 第十一及第十 二个子载波, 或者为第一、 第二、 第五、 第六、 第九及第十个子载波。 组内不同时域符号该物理资源块中相同频域位置的载波上映射的参考信 号数据是相同的, 并且该物理资源块中第一个频域位置与第二频域位置的载 波上映射的参考信号数据是相同的 , 该物理资源块中第三个频域位置与第四 频域位置的载波上映射的参考信号数据是相同的, 该物理资源块中第五个频 域位置与第六频域位置的载波上映射的参考信号数据是相同的。 对应于该第六场景的第六实施例 本实施例中, 参考信号的层数为 8, 分别发送参考信号 #0, 参考信号When all reference signals are grouped, all 8 layers of reference signals can be divided into 1 group, and the group includes 8 reference signals, wherein the orthogonal codes corresponding to the reference signals #0, #1, #2, and #3 are respectively {1, 1, 1, 1, 1, 1, 1, 1}, {1, -1, 1, -1, 1, -1, 1, -1}, {1, -1, -1, 1 , 1, -1, -1, 1} and {1, 1, -1, -1, 1, 1, -1, -1}, reference signals #4, #5, #6, and #7 correspond to positive The code is {1, 1, 1, 1, -1, -1, -1, -1}, {1, -1, 1, -1, -1, 1, -1, 1}, {1, -1, -1, 1, -1, 1, 1, -1} and {1, 1, -1, -1, -1, -1, 1, 1}. When the number of layers is h, only the corresponding reference signal #0, reference signal #1, reference signal #h-l, other reference signals are not sent. The reference signal is carried on a resource block of the corresponding physical shared channel. When all 8 layers of reference signals are divided into 1 group, it is the sixth scene as described below. The sixth scenario sequentially maps the reference signals in the group to the four OFDM symbols set by the foregoing, and occupies 6 subcarriers in the frequency domain, where the 6 subcarriers are the first, second, sixth, seventh, and eleventh. And the twelfth subcarrier, or the first, second, fifth, sixth, ninth and tenth subcarriers. The reference signal data mapped on the carrier of the same frequency domain location in the physical resource block in the different time domain symbols in the group is the same, and the first frequency domain location in the physical resource block is mapped on the carrier of the second frequency domain location. The reference signal data is the same, and the third frequency domain position in the physical resource block is the same as the reference signal data mapped on the carrier of the fourth frequency domain position, and the fifth frequency domain position and the sixth in the physical resource block are The reference signal data mapped on the carrier of the frequency domain location is the same. Corresponding to the sixth embodiment of the sixth scenario, in this embodiment, the number of layers of the reference signal is 8, respectively, transmitting the reference signal #0, the reference signal
#1, 参考信号 #7, 其中参考信号 #0对应的正交码为 {1, 1, 1, 1, 1, 1, 1, 1}, 参考信号 #1对应的正交码为 {1, -1, 1, -1, 1, -1, 1, -1}, 参考信 号 #2对应的正交码为 {1, -1, -1, 1, 1, -1, -1, 1}, 参考信号 #3对应的正 交码为 {1, 1, -1, -1, 1, 1, -1, -1}, 参考信号 #4对应的正交码为 {1, 1, 1, 1, -1, -1, -1, -1}, 参考信号 #5对应的正交码为 {1, -1, 1, -1, -1, 1, -1, 1}, 参考信号 #6对应的正交码为 {1, -1, -1, 1, -1, 1, 1, -1}, 以及参 考信号 #7对应的正交码为 {1, 1, -1, -1, -1, -1, 1, 1}。 参考信号 #0、 #1、 #2、 #3、 #4、 #5、 #6及 #7位于相同的时频资源上, 即 子帧中第一个时隙的倒数第二个符号的第一、 第二、 第六、 第七、 第十一及 第十二个上, 第一个时隙的倒数第一个符号的第一、 第二、 第六、 第七、 第 十一及第十二个上, 第二个时隙的倒数第二个符号的第一、 第二、 第六、 第 七、 第十一及第十二个上, 以及第二个时隙的倒数第一个符号的第一、 第二、 第六、 第七、 第十一及第十二个上。 当循环前缀为常规循环前缀的时候, 这些参考信号在物理资源块中的位 置如图 9 )至图 9 (h)所示, 其中图 9 )至图 9 (h)分别对应 T 至 Τ8在物理资源块中的位置。 本发明提出的参考信号发送方法, 在保证了尽量少的参考信号开销的同 时, 还保证了传输的性能, 并且可以艮好地兼容已有的 LTE系统, 从而实现 了高阶的 ΜΙΜΟ传输, 提高了系统的性能。 以上所述仅为本发明的实施例, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可有各种更改和变化。 凡在本发明的精神和原则之内所 作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求范围之内。 #1, reference signal #7, where the orthogonal code corresponding to reference signal #0 is {1, 1, 1, 1, 1, 1, 1, 1}, and the orthogonal code corresponding to reference signal #1 is {1, -1, 1, -1, 1, -1, 1, -1}, Reference letter The orthogonal code corresponding to #2 is {1, -1, -1, 1, 1, -1, -1, 1}, and the orthogonal code corresponding to reference signal #3 is {1, 1, -1, - 1, 1, 1, -1, -1}, the orthogonal code corresponding to reference signal #4 is {1, 1, 1, 1, -1, -1, -1, -1}, corresponding to reference signal #5 The orthogonal code is {1, -1, 1, -1, -1, 1, -1, 1}, and the orthogonal code corresponding to reference signal #6 is {1, -1, -1, 1, -1 , 1, 1, -1}, and the orthogonal code corresponding to the reference signal #7 is {1, 1, -1, -1, -1, -1, 1, 1}. The reference signals #0, #1, #2, #3, #4, #5, #6, and #7 are located on the same time-frequency resource, that is, the second-to-last symbol of the first slot in the subframe. First, second, sixth, seventh, eleventh and twelfth, the first, second, sixth, seventh, eleventh and eleventh of the first symbol of the first time slot Twelve, the first, second, sixth, seventh, eleventh and twelfth of the penultimate symbol of the second time slot, and the first to the second of the second time slot The first, second, sixth, seventh, eleventh and twelfth symbols of the symbol. When the cyclic prefix is a normal cyclic prefix, when the position of these reference signals in a physical resource block in FIG. 9) to 9 (h), in which FIG. 9) to 9 (h) corresponding to T in Τ 8 The location in the physical resource block. The reference signal transmitting method proposed by the invention ensures the transmission performance of the reference signal while ensuring the minimum reference signal overhead, and can be compatible with the existing LTE system, thereby realizing high-order ΜΙΜΟ transmission and improving The performance of the system. The above is only the embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalents, improvements, etc. made within the spirit and scope of the invention are intended to be included within the scope of the appended claims.
工业实用性 本发明提供的基于层的参考信号的发送方法, 在保证了尽量少的参考信 号开销的同时,还保证了传输的性能,并且可以很好地兼容已有的 LTE系统, 从而实现了高阶的 ΜΙΜΟ传输, 支持了相应技术的使用, 提高了系统的整体 性能。 Industrial Applicability The method for transmitting a layer-based reference signal provided by the present invention ensures the transmission performance while ensuring the minimum reference signal overhead, and is compatible with the existing LTE system, thereby realizing The high-order ΜΙΜΟ transmission supports the use of the corresponding technology and improves the overall performance of the system.

Claims

权 利 要 求 书 Claim
1、一种参考信号的发送方法, 所述参考信号用于高级长期演进系统中的 解调, 所述方法包括: 将各层对应的参考信号分为一个或多个组, 以使各组包含的参考信号互 不相同, 同一组内各参考信号所占用的资源相同, 及不同组内的参考信号占 用物理时频资源互不相同; 以及 同一组内各参考信号通过码分复用的方式承载在相同的资源上。  A method for transmitting a reference signal, the reference signal being used for demodulation in an advanced long-term evolution system, the method comprising: dividing a reference signal corresponding to each layer into one or more groups, so that each group includes The reference signals are different from each other, the resources occupied by the reference signals in the same group are the same, and the reference signals in different groups occupy different physical time-frequency resources; and the reference signals in the same group are carried by code division multiplexing. On the same resource.
2、 如权利要求 1所述的方法, 其还包括: 所述参考信号的层数为 h时, 在用户专有的物理共享信道所在的时频域 位置上依次发送前 h个参考信号。  2. The method according to claim 1, further comprising: when the number of layers of the reference signal is h, sequentially transmitting the first h reference signals at a time-frequency domain location where the user-specific physical shared channel is located.
3、 如权利要求 1所述的方法, 其中: 3. The method of claim 1 wherein:
所述层有 8层, 所述各层对应的参考信号依次为层 1的参考信号 #0、 层 2的参考信号 #1、 层 3的参考信号 #2、 层 4的参考信号 #3、 层 5的参考信号 #4、 层 6的参考信号 #5、 层 7的参考信号 #6以及层 8的参考信号 #7;  The layer has 8 layers, and the reference signals corresponding to the layers are sequentially reference signal #0 of layer 1, reference signal #1 of layer 2, reference signal #2 of layer 3, reference signal #3 of layer 4, layer Reference signal #4 of 5, reference signal #5 of layer 6, reference signal #6 of layer 7, and reference signal #7 of layer 8;
所述方法还包括: 设置四个正交频分复用 (OFDM )符号, 将 8层参考 信号映射到所述四个 OFDM符号上; 其中,  The method further includes: setting four orthogonal frequency division multiplexing (OFDM) symbols, and mapping an eight-layer reference signal onto the four OFDM symbols;
所述四个 OFDM符号分别为: 子帧中第一个时隙的倒数第一个 OFDM 符号和倒数第二个 OFDM符号以及第二个时隙的倒数第一个 OFDM符号和 倒数第二个 OFDM符号; 或者, 子帧中第一个时隙的倒数第一个 OFDM符 号和倒数第二个 OFDM符号以及第二个时隙的倒数第二个 OFDM符号和倒 数第四个 OFDM符号; 或者,  The four OFDM symbols are respectively: a first OFDM symbol and a second last OFDM symbol of a first slot in a subframe, and a first OFDM symbol and a second to last OFDM of the second slot Or a symbol of the first OFDM symbol and the penultimate OFDM symbol of the first slot in the subframe, and a second to last OFDM symbol and a fourth OFDM symbol of the second slot; or
当子帧中循环前缀为常规循环前缀时, 所述四个 OFDM符号分别为: 子 帧中第一个时隙的第四个 OFDM符号和第六个 OFDM符号以及第二个时隙 的第四个 OFDM符号和第六个 OFDM符号; 或者, 子帧中第一个时隙的第 四个 OFDM符号和第七个 OFDM符号以及第二个时隙的第三个 OFDM符号 和第六个 OFDM符号。  When the cyclic prefix in the subframe is a regular cyclic prefix, the four OFDM symbols are: a fourth OFDM symbol and a sixth OFDM symbol of the first slot in the subframe, and a fourth OFDM symbol OFDM symbol and sixth OFDM symbol; or, the fourth OFDM symbol and the seventh OFDM symbol of the first slot in the subframe and the third OFDM symbol and the sixth OFDM symbol of the second slot .
4、 如权利要求 3所述的方法, 其中: 在所述分组步骤中, 将各层对应的参考信号分为 4个组, 组 1、 组 2、 组 3及组 4, 每组各包含 2个参考信号, 其中, 4. The method of claim 3, wherein: In the grouping step, the reference signals corresponding to the layers are divided into four groups, group 1, group 2, group 3, and group 4, each group comprising two reference signals, wherein
组 1依次包含参考信号 #0和参考信号 #4,组 2依次包含参考信号 #1和参 考信号 #5 , 组 3依次包含参考信号 #2和参考信号 #6, 以及组 4依次包含参考 信号 #3和参考信号 #7; 或者,  The group 1 includes the reference signal #0 and the reference signal #4 in turn, the group 2 includes the reference signal #1 and the reference signal #5 in sequence, the group 3 sequentially includes the reference signal #2 and the reference signal #6, and the group 4 sequentially includes the reference signal # 3 and reference signal #7; or,
组 1依次包含参考信号 #0和参考信号 #7 ,组 2依次包含参考信号 #1和参 考信号 #6, 组 3依次包含参考信号 #2和参考信号 #5 , 以及組 4依次包含参考 信号 #3和参考信号 #4; 或者,  The group 1 includes the reference signal #0 and the reference signal #7 in sequence, and the group 2 includes the reference signal #1 and the reference signal #6 in sequence, the group 3 sequentially includes the reference signal #2 and the reference signal #5, and the group 4 sequentially includes the reference signal # 3 and reference signal #4; or,
组 1依次包含参考信号 #0和参考信号 #6,组 2依次包含参考信号 #1和参 考信号 #7 , 组 3依次包含参考信号 #2和参考信号 #4, 以及组 4依次包含参考 信号 #3和参考信号 #5。  The group 1 includes the reference signal #0 and the reference signal #6 in turn, and the group 2 includes the reference signal #1 and the reference signal #7 in sequence, the group 3 sequentially includes the reference signal #2 and the reference signal #4, and the group 4 sequentially includes the reference signal # 3 and reference signal #5.
5、 如权利要求 4所述的方法, 其中:  5. The method of claim 4, wherein:
同一组内各参考信号通过码分复用的方式承载在相同的资源上的步骤中 采用的正交码为: 所述 4个组中每组的第一个参考信号采用的正交码为 {1 , 1 }, 每组的第二个参考信号釆用的正交码为 {1, -1 }。  The orthogonal code used in the step of carrying the reference signals on the same resource by means of code division multiplexing in the same group is: the orthogonal code used by the first reference signal of each of the four groups is { 1 , 1 }, the orthogonal code of the second reference signal of each group is {1, -1 }.
6、 如权利要求 5所述的方法, 其中, 所述映射的步骤包括:  6. The method of claim 5, wherein the mapping comprises:
将所述组 1 中的参考信号依次映射到所述四个 OFDM符号中的第一个 OFDM符号和第三个 OFDM符号上, 在频域上占用 3个子载波;  And sequentially mapping the reference signals in the group 1 to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, occupying 3 subcarriers in the frequency domain;
将所述组 2 中的参考信号依次映射到所述四个 OFDM符号中的第二个 OFDM符号和第四个 OFDM符号上, 在频域上占用与所述组 1 中参考信号 相同的 3个子载波;  Mapping the reference signals in the group 2 to the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, and occupying the same three sub-carriers in the frequency domain as the reference signals in the group 1 Carrier wave
将所述组 3 中的参考信号依次映射到所述四个 OFDM符号中的第一个 OFDM符号和第三个 OFDM符号上, 在频域上占用与所述组 1 中参考信号 不同的 3个子载波; 以及  Mapping the reference signals in the group 3 to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, occupying three sub-bands different from the reference signal in the group 1 in the frequency domain Carrier wave;
将所述组 4 中的参考信号依次映射到所述四个 OFDM符号中的第二个 Mapping the reference signals in the group 4 to the second of the four OFDM symbols in sequence
OFDM符号和第四个 OFDM符号上, 在频域上占用与组 3 中参考信号相同 的 3个子载波。 On the OFDM symbol and the fourth OFDM symbol, the same three subcarriers as the reference signal in Group 3 are occupied in the frequency domain.
7、 如权利要求 6所述的方法, 其中: 所述组 1中的参考信号占用的 3个子载波为: 物理资源块中的第一、 第 六和第十一个子载波, 以及所述组 3中的参考信号占用的 3个子载波为: 所 述物理资源块中的第二、 第七和第十二个子载波; 或者, 7. The method of claim 6 wherein: The three subcarriers occupied by the reference signal in the group 1 are: the first, sixth, and eleventh subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 3 are: The second, seventh, and twelfth subcarriers in the physical resource block; or
所述组 1中的参考信号占用的 3个子载波为:所述物理资源块中的第一、 第五和第九个子载波, 以及所述组 3中的参考信号占用的 3个子载波为: 所 述物理资源块中的第二、 第六和第十个子载波; 或者,  The three subcarriers occupied by the reference signal in the group 1 are: the first, fifth, and ninth subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 3 are: The second, sixth, and tenth subcarriers in the physical resource block; or
所述组 1中的参考信号占用的 3个子载波为:所述物理资源块中的第一、 第五和第九个子载波, 以及所述组 3中的参考信号占用的 3个子载波为: 所 述物理资源块中的第三、 第七和第十一个子载波。  The three subcarriers occupied by the reference signal in the group 1 are: the first, fifth, and ninth subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 3 are: The third, seventh, and eleventh subcarriers in the physical resource block.
8、 如权利要求 5所述的方法, 其中, 所述映射的步骤包括:  8. The method of claim 5, wherein the mapping comprises:
将所述组 1 中的参考信号依次映射到所述四个 OFDM符号中的第一个 OFDM符号和第三个 OFDM符号上, 在频域上占用 3个子载波;  And sequentially mapping the reference signals in the group 1 to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, occupying 3 subcarriers in the frequency domain;
将所述组 2 中的参考信号依次映射到所述四个 OFDM符号中的第一个 OFDM符号和第三个 OFDM符号上, 在频域上占用与所述组 1 中参考信号 不同的 3个子载波;  Mapping the reference signals in the group 2 to the first OFDM symbol and the third OFDM symbol of the four OFDM symbols, occupying three sub-bands different from the reference signal in the group 1 in the frequency domain Carrier wave
将所述组 3 中的参考信号依次映射到所述四个 OFDM符号中的第二个 OFDM符号和第四个 OFDM符号上, 在频域上占用与组 1 中参考信号相同 的 3个子载波; 以及  And sequentially mapping the reference signals in the group 3 to the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, occupying the same three subcarriers in the frequency domain as the reference signal in the group 1; as well as
将所述组 4 中的参考信号依次映射到所述四个 OFDM符号中的第二个 OFDM符号和第四个 OFDM符号上, 在频域上占用与组 2中参考信号相同 的 3个子载波。  The reference signals in the group 4 are sequentially mapped onto the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, occupying the same three subcarriers as the reference signal in the group 2 in the frequency domain.
9、 如权利要求 8所述的方法, 其中:  9. The method of claim 8 wherein:
所述组 1中的参考信号占用的 3个子载波为:所述物理资源块中的第一、 第六和第十一个子载波, 以及所述组 2中的参考信号占用的 3个子载波为: 所述物理资源块中的第二、 第七和第十二个子载波; 或者,  The three subcarriers occupied by the reference signal in the group 1 are: the first, sixth, and eleventh subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 2 are : the second, seventh, and twelfth subcarriers in the physical resource block; or
所述组 1中的参考信号占用的 3个子载波为:所述物理资源块中的第一、 第五和第九个子载波, 以及所述组 2中的参考信号占用的 3个子载波为: 所 述物理资源块中的第二、 第六和第十个子载波; 或者, 所述组 1中的参考信号占用的 3个子载波为:所述物理资源块中的第一、 第五和第九个子载波, 以及所述组 2中的参考信号占用的 3个子载波为: 所 述物理资源块中的第三、 第七和第十一个子载波。 The three subcarriers occupied by the reference signal in the group 1 are: the first, fifth, and ninth subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 2 are: The second, sixth, and tenth subcarriers in the physical resource block; or The three subcarriers occupied by the reference signal in the group 1 are: the first, fifth, and ninth subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 2 are: The third, seventh, and eleventh subcarriers in the physical resource block.
10、 如权利要求 5所述的方法, 其中, 所述映射的步骤包括:  10. The method of claim 5, wherein the mapping comprises:
将所述组 1 中的参考信号依次映射到所述四个 OFDM符号中的第一个 Mapping the reference signals in the group 1 to the first of the four OFDM symbols in sequence
OFDM符号和第三个 OFDM符号上, 在频域上占用 3个子载波; And occupying 3 subcarriers in the frequency domain on the OFDM symbol and the third OFDM symbol;
将所述组 2 中的参考信号依次映射到所述四个 OFDM符号中的第二个 OFDM符号和第四个 OFDM符号上, 在频域上占用与所述组 1 中参考信号 不同的 3个子载波;  Mapping the reference signals in the group 2 to the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, occupying three sub-bands different from the reference signal in the group 1 in the frequency domain Carrier wave
将所述组 3 中的参考信号依次映射到所述四个 OFDM符号中的第一个 Mapping the reference signals in the group 3 to the first of the four OFDM symbols in sequence
OFDM符号和第三个 OFDM符号上, 在频域上占用与所述组 2中参考信号 相同的 3个子载波; 以及 And occupying, on the OFDM symbol and the third OFDM symbol, the same three subcarriers in the frequency domain as the reference signal in the group 2;
将所述组 4 中的参考信号依次映射到所述四个 OFDM符号中的第二个 OFDM符号和第四个 OFDM符号上, 在频域上占用与组 1 中参考信号相同 的 3个子载波。  The reference signals in the group 4 are sequentially mapped to the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, occupying the same three subcarriers as the reference signal in the group 1 in the frequency domain.
11、 如权利要求 10所述的方法, 其中: 所述组 1中的参考信号占用的 3个子载波为: 物理资源块中的第一、 第 六和第十一个子载波, 以及所述组 2中的参考信号占用的 3个子载波为: 该 物理资源块中的第二、 第七和第十二个子载波; 或者, 所述组 1中的参考信号占用的 3个子载波为:所述物理资源块中的第一、 第五和第九个子载波, 以及所述组 2中的参考信号占用的 3个子载波为: 所 述物理资源块中的第二、 第六和第十个子载波; 或者, 所述组 1中的参考信号占用的 3个子载波为:所述物理资源块中的第一、 第五和第九个子载波, 以及所述组 2中的参考信号占用的 3个子载波为: 所 述物理资源块中的第三、 第七和第十一个子载波; 或者, 所述组 1中的参考信号占用所述物理资源块中的第一、 第六和第十一个 子载波, 以及所述组 2中的参考信号占用所述物理资源块中的第二、 第七和 第十二个子载波。 11. The method according to claim 10, wherein: the three subcarriers occupied by the reference signal in the group 1 are: first, sixth and eleventh subcarriers in the physical resource block, and the group The three subcarriers occupied by the reference signal in 2 are: the second, seventh, and twelfth subcarriers in the physical resource block; or the three subcarriers occupied by the reference signal in the group 1 are: the physical The first, fifth, and ninth subcarriers in the resource block, and the three subcarriers occupied by the reference signal in the group 2 are: second, sixth, and tenth subcarriers in the physical resource block; or The three subcarriers occupied by the reference signal in the group 1 are: the first, fifth, and ninth subcarriers in the physical resource block, and the three subcarriers occupied by the reference signal in the group 2 are: The third, seventh, and eleventh subcarriers in the physical resource block; or, the reference signal in the group 1 occupies the first, sixth, and eleventh subcarriers in the physical resource block And the reference signal in the group 2 occupies the Second, seventh, and twelfth subcarrier resource block processing.
12、 如权利要求 3所述的方法, 其中: 在所述分组步骤中, 将各层对应的参考信号分为 2个组, 组 1及组 2, 每组各包含 4个参考信号, 其中, 组 1依次包含参考信号 #0、 参考信号 #1、 参考信号 #4和参考信号 #5, 以 及组 2依次包含参考信号 #2、参考信号 #3、参考信号 #6和参考信号 #7; 或者, 组 1依次包含参考信号 #0、 参考信号 #1、 参考信号 #6和参考信号 #7, 以 及组 2依次包含参考信号 #2、参考信号 #3、参考信号 #4和参考信号 #5; 或者, 组 1依次包含参考信号 #0、 参考信号 #1、 参考信号 #4和参考信号 #6, 以 及组 2依次包含参考信号 #2、参考信号 #3、参考信号 #5和参考信号 #7; 或者, 组 1依次包含参考信号 #0、 参考信号 #1、 参考信号 #5和参考信号 #7, 以 及组 2依次包含参考信号 #2、参考信号 #3、参考信号 #4和参考信号 #6; 或者, 组 1依次包含参考信号 #0、 参考信号 #1、 参考信号 #4和参考信号 #7, 以 及组 2依次包含参考信号 #2、参考信号 #3、参考信号 #5和参考信号 #6; 或者, 组 1依次包含参考信号 #0、 参考信号 #1、 参考信号 #5和参考信号 #6, 以 及组 2依次包含参考信号 #2、参考信号 #3、参考信号 #4和参考信号 #7; 或者, 组 1依次包含参考信号 #0、 参考信号 #2、 参考信号 #4和参考信号 #6, 以 及组 2依次包含参考信号 #1、 参考信号 #3、 参考信号 #5和参考信号 #7。 The method according to claim 3, wherein: in the grouping step, the reference signals corresponding to the layers are divided into two groups, group 1 and group 2, each group comprising four reference signals, wherein Group 1 includes reference signal #0, reference signal #1, reference signal #4, and reference signal #5, respectively, and group 2 sequentially includes reference signal #2, reference signal #3, reference signal #6, and reference signal #7; Group 1 includes reference signal #0, reference signal #1, reference signal #6, and reference signal #7, respectively, and group 2 includes reference signal #2, reference signal #3, reference signal #4, and reference signal #5 in sequence; Alternatively, the group 1 sequentially includes the reference signal #0, the reference signal #1, the reference signal #4, and the reference signal #6, and the group 2 sequentially includes the reference signal #2, the reference signal #3, the reference signal #5, and the reference signal #7. Or, group 1 includes reference signal #0, reference signal #1, reference signal #5, and reference signal #7, respectively, and group 2 includes reference signal #2, reference signal #3, reference signal #4, and reference signal # in sequence. 6; or, group 1 contains parameters in turn Signal #0, reference signal #1, reference signal #4, and reference signal #7, and group 2 sequentially include reference signal #2, reference signal #3, reference signal #5, and reference signal #6; or, group 1 includes Reference signal #0, reference signal #1, reference signal #5 and reference signal #6, and group 2 sequentially include reference signal #2, reference signal #3, reference signal #4, and reference signal #7; or, group 1 in turn The reference signal #0, the reference signal #2, the reference signal #4, and the reference signal #6 are included, and the group 2 sequentially includes the reference signal #1, the reference signal #3, the reference signal #5, and the reference signal #7.
13、 如权利要求 12所述的方法, 其中: 同一组内各参考信号通过码分复用的方式承载在相同的资源上的步骤中 釆用的正交码为: 所述 2个组中每组的第一个参考信号采用的正交码为 {I, 1, 1, 1}, 每 组的第二个参考信号釆用的正交码为 {1, -1, 1, -1}, 每组的第三个参考信 号采用的正交码为 {1, 1, -1, -1}, 及每组的第四个参考信号采用的正交码 为 {1, -1, -1, 1}; 或者, 所述 2个组中每组的第一个参考信号采用的正交码为 {1, 1, 1, 1}, 每 组的第二个参考信号采用的正交码为 {1, -1, 1, -1}, 每组的第三个参考信 号采用的正交码为 {1 , -1 , -1 , 1 } , 及每组的第四个参考信号采用的正交码 为 {1 , 1 , -1 , -1}。 13. The method according to claim 12, wherein: the orthogonal code used in the step of carrying the reference signals in the same group by means of code division multiplexing on the same resource is: each of the two groups The first reference signal of the group adopts an orthogonal code of {I, 1, 1, 1}, and the orthogonal code of the second reference signal of each group is {1, -1, 1, -1}, The third reference signal of each group adopts an orthogonal code of {1, 1, -1, -1}, and the fourth reference signal of each group adopts an orthogonal code of {1, -1, -1, 1); or, the first reference signal of each of the two groups adopts an orthogonal code of {1, 1, 1, 1}, and the orthogonal code of the second reference signal of each group is { 1, -1, 1, -1}, the third reference letter for each group The orthogonal codes used are {1, -1, -1, 1 }, and the orthogonal codes used in the fourth reference signal of each group are {1, 1 , -1 , -1}.
14、 如权利要求 12所述的方法, 其中, 所述映射的步骤包括: 将所述组 1中的参考信号依次映射到所述四个 OFDM符号上,在频域上 占用 3个子载波; 以及 将所述组 2中的参考信号依次映射到所述四个 OFDM符号上,在频域上 占用与所述组 1中参考信号不同的 3个子载波。  14. The method according to claim 12, wherein the mapping comprises: sequentially mapping reference signals in the group 1 to the four OFDM symbols, occupying 3 subcarriers in a frequency domain; The reference signals in the group 2 are sequentially mapped onto the four OFDM symbols, occupying 3 subcarriers different from the reference signals in the group 1 in the frequency domain.
15、 如权利要求 14所述的方法, 其中: 所述组 1中的参考信号占用的 3个子载波为: 物理资源块中的第一、 第 六和第十一个子载波, 以及所述组 2中的参考信号占用的 3个子载波为: 物 理资源块中的第二、 第七和第十二个子载波; 或者, 所述组 1中的参考信号占用的 3个子载波为: 物理资源块中的第一、 第 五和第九个子载波, 以及所述组 2中的参考信号占用物理资源块中的第二、 第六和第十个子载波; 或者, 所述组 1中的参考信号占用物理资源块中的第一、第五和第九个子载波, 以及所述组 2中的参考信号占用物理资源块中的第三、 第七和第十一个子载 波。 15. The method according to claim 14, wherein: the three subcarriers occupied by the reference signal in the group 1 are: first, sixth and eleventh subcarriers in the physical resource block, and the group The three subcarriers occupied by the reference signal in 2 are: the second, seventh, and twelfth subcarriers in the physical resource block; or the three subcarriers occupied by the reference signal in the group 1 are: in the physical resource block The first, fifth, and ninth subcarriers, and the reference signal in the group 2 occupy the second, sixth, and tenth subcarriers in the physical resource block; or, the reference signal in the group 1 occupies the physical The first, fifth, and ninth subcarriers in the resource block, and the reference signals in the group 2 occupy the third, seventh, and eleventh subcarriers in the physical resource block.
16、 如权利要求 13所述的方法, 其中, 所述映射的步骤包括: 将所述组 1 中的参考信号依次映射到所述四个 OFDM符号中的第一个 OFDM符号和第三个 OFDM符号上, 在频域上占用 6个子载波; 以及 将所述组 2 中的参考信号依次映射到所述四个 OFDM符号中的第二个 OFDM符号和第四个 OFDM符号上 , 在频域上占用与所述组 1 中参考信号 相同的 6个子载波。  16. The method of claim 13, wherein the mapping comprises: sequentially mapping reference signals in the group 1 to a first one of the four OFDM symbols and a third OFDM Symbolically, occupying 6 subcarriers in the frequency domain; and sequentially mapping the reference signals in the group 2 to the second OFDM symbol and the fourth OFDM symbol of the four OFDM symbols, in the frequency domain The same 6 subcarriers as the reference signal in the group 1 are occupied.
17、 如权利要求 16所述的方法, 其中: 所述 6个子载波为: 物理资源块中的第一、 第二、 第六、 第七、 第十一 及第十二个子载波, 或者第一、 第二、 第五、 第六、 第九及第十个子载波。 17. The method according to claim 16, wherein: the six subcarriers are: first, second, sixth, seventh, eleventh and twelfth subcarriers in a physical resource block, or first , second, fifth, sixth, ninth and tenth subcarriers.
18、 如权利要求 3所述的方法, 其中: 在所述分组步骤中, 将各层对应的参考信号分为 1个组, 组内包含 8个 参考信号; 18. The method according to claim 3, wherein: in the grouping step, the reference signals corresponding to the layers are divided into one group, and the group includes eight reference signals;
组内各参考信号通过码分复用的方式承载在相同的资源上的步骤中釆用 的正交码为: 考信号 #0釆用的正交码为 {1, 1, 1, 1, 1, 1, 1, 1};  The orthogonal codes used in the steps in which the reference signals in the group are carried on the same resource by means of code division multiplexing are: The orthogonal code used for the test signal #0 is {1, 1, 1, 1, 1 , 1, 1, 1};
考信号 #1采用的正交码为 {1, -1, 1, -1 1, -1, 1, -1}  The orthogonal code used in test signal #1 is {1, -1, 1, -1 1, -1, 1, -1}
考信号 #2采用的正交码为 {1 , -1, -1, 1 1, -1, -1, 1}  The orthogonal code used in test signal #2 is {1, -1, -1, 1 1, -1, -1, 1}
考信号 #3采用的正交码为 {1, 1, -1, -1 1, 1, -1, -1}  The orthogonal code used in test signal #3 is {1, 1, -1, -1 1, 1, -1, -1}
考信号 #4釆用的正交码为 {1 , 1, 1, 1, -1, ■ ■1, -1, -1}  The orthogonal code of the test signal #4釆 is {1 , 1, 1, 1, -1, ■ ■ 1, -1, -1}
考信号 #5釆用的正交码为 {1, -1, 1, -1 -1, 1, -1, 1}  The orthogonal code of the test signal #5釆 is {1, -1, 1, -1 -1, 1, -1, 1}
考信号 #6采用的正交码为 {1 , -1, -1, 1 -1, 1, 1, -1} 以及 考信号 #7采用的正交码为 {1, 1, -1, -1 -1, -1, 1, 1}  The orthogonal code used in test signal #6 is {1, -1, -1, 1 -1, 1, 1, -1} and the orthogonal code used in test signal #7 is {1, 1, -1, - 1 -1, -1, 1, 1}
19、 如权利要求 18所述的方法, 其中, 所述映射的步骤包括: 将组内的参考信号依次映射到所述四个 OFDM符号上, 在频域上占用 6 个子载波;  The method of claim 18, wherein the mapping comprises: sequentially mapping reference signals in the group to the four OFDM symbols, occupying 6 subcarriers in a frequency domain;
所述 6个子载波为: 第一、 第二、 第六、 第七、 第十一及第十二个子载 波, 或者第一、 第二、 第五、 第六、 第九及第十个子载波。  The six subcarriers are: first, second, sixth, seventh, eleventh and twelfth subcarriers, or first, second, fifth, sixth, ninth and tenth subcarriers.
20、 如权利要求 7、 9、 11、 15、 17或 19所述的方法, 其中: 同一组内不同时域符号相同频域位置的载波上映射的参考信号数据相 同。  20. The method of claim 7, 9, 11, 15, 17, or 19, wherein: the reference signal data mapped on the carrier of the same frequency domain location in different time domain symbols in the same group is the same.
21、 如权利要求 1所述的方法, 其中, 所述层有 8层, 所述各层对应的参考信号依次为层 k的参考信号 #k; k 分别为 0, 1, 2, 3, 4, 5, 6及 7; 其中 所述参考信号 #k的序列 是根据下式产生: r(m) = -j=(l-2-c(2m)) + j^=(l-2-c(2m + Y)),m = 0,l,...,L-l 其中: The method according to claim 1, wherein the layer has 8 layers, and the reference signals corresponding to the layers are sequentially reference signals #k of layer k; k are 0, 1, 2, 3, 4 respectively , 5, 6 and 7; wherein the sequence of the reference signal #k is generated according to the following formula: r(m) = -j=(l-2-c(2m)) + j^=(l-2-c(2m + Y)),m = 0,l,...,Ll where:
L为所述参考信号 需要的序列长度;  L is the sequence length required for the reference signal;
伪随机序列 根据下式产生:  The pseudo-random sequence is generated according to the following formula:
c(z') = (x,(i + Nc) + x2 (i + NC)) mod 2 c(z') = (x,(i + N c ) + x 2 (i + N C )) mod 2
x, ( + 31) = ( , ( + 3 ) + x, ( ) ) mod 2  x, ( + 31) = ( , ( + 3 ) + x, ( ) ) mod 2
x2 (i + 31) = ( 2( + 3) + x2 (i + 2) + x2 (,' + 1) + x2 (/')) mod 2 其中: x 2 (i + 31) = ( 2 ( + 3) + x 2 (i + 2) + x 2 (, ' + 1) + x 2 (/')) mod 2 where:
Nc=1600 ; N c =1600 ;
xl(0) = \,xl(n) = 0,n = l,2,...,30; x l (0) = \,x l (n) = 0,n = l,2,...,30;
根据伪随机序列初始值 cimt =∑ (")·2 产生; According to the pseudo-random sequence initial value c imt = ∑ (") · 2 is generated;
Cinit为一个大于等于零的正整数。  Cinit is a positive integer greater than or equal to zero.
22、 如权利要求 21所述的方法, 其还包括:  22. The method of claim 21, further comprising:
通过 ag) =a ',_/)xr(w)将参考信号的序列 r(/w)映射到天线逻辑端口 p、 OFDM符号 /、 子载波 A上; 其中:  The sequence r(/w) of the reference signal is mapped to the antenna logical port p, the OFDM symbol /, subcarrier A by ag) = a ', _/) xr (w);
α( ,_7·)为正交码因子, 且  α( , _7·) is an orthogonal code factor, and
= 0JLj = 0,l,2或 3时, a(i ) = l;  = 0JLj = 0, l, 2 or 3, a(i ) = l;
= 1且 = 0 or J = 2时, a(i, y) = 1;  = 1 and = 0 or J = 2, a(i, y) = 1;
= 1 JL = 1 or 7 = 3 H† , a(i,j) = -\;  = 1 JL = 1 or 7 = 3 H† , a(i,j) = -\;
i = 23. j = Qor 7 = 13†, a(i,j) = \\  i = 23. j = Qor 7 = 13†, a(i,j) = \\
i = 23- j = 2or y = 30†, a(i,j)^-\]  i = 23- j = 2or y = 30†, a(i,j)^-\]
z = 3 JL = 0 or 7 = 3 EI† , a(i, y) = 1; 以及 i = 3JLj = lorj = 2H, α()·, ) = _1。  z = 3 JL = 0 or 7 = 3 EI† , a(i, y) = 1; and i = 3JLj = lorj = 2H, α()·, ) = _1.
PCT/CN2010/072182 2009-08-07 2010-04-26 Sending method for reference signals WO2011015065A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910161082.7 2009-08-07
CN200910161082.7A CN101626620B (en) 2009-08-07 2009-08-07 Transmitting method of reference signal

Publications (1)

Publication Number Publication Date
WO2011015065A1 true WO2011015065A1 (en) 2011-02-10

Family

ID=41522235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072182 WO2011015065A1 (en) 2009-08-07 2010-04-26 Sending method for reference signals

Country Status (2)

Country Link
CN (1) CN101626620B (en)
WO (1) WO2011015065A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015143621A1 (en) * 2014-03-25 2015-10-01 华为技术有限公司 Method and device for inserting and extracting pilot sequences
EP3484086A4 (en) * 2016-08-12 2019-07-31 Huawei Technologies Co., Ltd. Method for sending reference signal and device for sending reference signal
US20190357159A1 (en) * 2017-02-03 2019-11-21 Idac Holdings, Inc. Broadcast channel transmission and demodulation

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626620B (en) * 2009-08-07 2014-03-12 中兴通讯股份有限公司 Transmitting method of reference signal
WO2011088589A1 (en) 2010-01-20 2011-07-28 Telefonaktiebolaget L M Ericsson (Publ) Antenna port mapping method and device for demodulation reference signals
EP2369775B1 (en) 2010-03-16 2019-05-08 Lg Electronics Inc. Method and base station for transmitting reference signals, and method and user equipment for receiving reference signals
US8743980B2 (en) 2010-08-12 2014-06-03 Acer Incorporated Method of designing reference signal pattern and related communication device
WO2013110212A1 (en) * 2012-01-26 2013-08-01 Nokia Siemens Networks Oy Communication mechanism using group based demodulation reference signal
MX2018002442A (en) * 2015-11-24 2018-06-18 Ericsson Telefon Ab L M Wireless device, radio-network node, and methods performed therein for managing signaling in a wireless communication network.
KR102221431B1 (en) 2016-01-20 2021-03-02 닛본 덴끼 가부시끼가이샤 Methods and apparatuses for transmitting a reference signal
CN108282296B (en) * 2017-01-06 2024-03-01 华为技术有限公司 Reference signal transmission method and device
CN108365933B (en) * 2017-01-26 2023-07-18 华为技术有限公司 Method and device for transmitting reference signal
CN108632190B (en) * 2017-03-24 2022-06-17 中兴通讯股份有限公司 Information sending and receiving method and device, terminal and base station
CN108112079B (en) 2017-06-23 2022-04-29 中兴通讯股份有限公司 Method and device for sending, configuring and receiving configuration resources
WO2020143780A1 (en) * 2019-01-10 2020-07-16 华为技术有限公司 Signal processing method and device
CN111431686B (en) 2019-01-10 2024-04-12 华为技术有限公司 Signal processing method and device
CN113853007B (en) * 2020-06-28 2024-05-10 华为技术有限公司 Communication method and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080316947A1 (en) * 2007-06-21 2008-12-25 Bengt Lindoff METHOD AND APPARATUS FOR 3G LTE FDD and TDD DETECTION USING REFERENCE SIGNAL CORRELATION
CN101447815A (en) * 2007-11-27 2009-06-03 大唐移动通信设备有限公司 Shaped-beam transmission method and shaped-beam transmission device
CN101459462A (en) * 2008-12-31 2009-06-17 中兴通讯股份有限公司 Reference signal transmitting method
CN101510868A (en) * 2009-03-17 2009-08-19 中兴通讯股份有限公司 Method for mapping reference signal and physical resource block
CN101594335A (en) * 2009-06-19 2009-12-02 中兴通讯股份有限公司 The mapping method of reference signal and Physical Resource Block
CN101626620A (en) * 2009-08-07 2010-01-13 中兴通讯股份有限公司 Transmitting method of reference signal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355412B (en) * 2008-08-19 2013-07-03 中兴通讯股份有限公司 Method for transmitting signal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080316947A1 (en) * 2007-06-21 2008-12-25 Bengt Lindoff METHOD AND APPARATUS FOR 3G LTE FDD and TDD DETECTION USING REFERENCE SIGNAL CORRELATION
CN101447815A (en) * 2007-11-27 2009-06-03 大唐移动通信设备有限公司 Shaped-beam transmission method and shaped-beam transmission device
CN101459462A (en) * 2008-12-31 2009-06-17 中兴通讯股份有限公司 Reference signal transmitting method
CN101510868A (en) * 2009-03-17 2009-08-19 中兴通讯股份有限公司 Method for mapping reference signal and physical resource block
CN101594335A (en) * 2009-06-19 2009-12-02 中兴通讯股份有限公司 The mapping method of reference signal and Physical Resource Block
CN101626620A (en) * 2009-08-07 2010-01-13 中兴通讯股份有限公司 Transmitting method of reference signal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015143621A1 (en) * 2014-03-25 2015-10-01 华为技术有限公司 Method and device for inserting and extracting pilot sequences
US10135589B2 (en) 2014-03-25 2018-11-20 Huawei Technologies Co., Ltd. Inserting and extracting pilot sequences
EP3484086A4 (en) * 2016-08-12 2019-07-31 Huawei Technologies Co., Ltd. Method for sending reference signal and device for sending reference signal
US10972237B2 (en) 2016-08-12 2021-04-06 Huawei Technologies Co., Ltd. Reference signal sending method and reference signal sending apparatus
EP3855670A1 (en) * 2016-08-12 2021-07-28 Huawei Technologies Co., Ltd. Reference signal sending method and reference signal sending apparatus
US20190357159A1 (en) * 2017-02-03 2019-11-21 Idac Holdings, Inc. Broadcast channel transmission and demodulation
US11943724B2 (en) * 2017-02-03 2024-03-26 Interdigital Patent Holdings, Inc. Broadcast channel transmission and demodulation

Also Published As

Publication number Publication date
CN101626620A (en) 2010-01-13
CN101626620B (en) 2014-03-12

Similar Documents

Publication Publication Date Title
WO2011015065A1 (en) Sending method for reference signals
CN110266463B (en) Data transmission method and terminal equipment
JP5487320B2 (en) Reference signal sequence mapping system and method in high-end long term evolution system
US11082192B2 (en) Methods and systems for numerology determination of wireless communication systems
CA2796374C (en) Systems and methods for bundling resource blocks in a wireless communication system
CN101541085B (en) Sending and using method of measure-reference signals
JP5731544B2 (en) Antenna port mapping method and apparatus for demodulated reference signal
EP2599356B1 (en) Signaling methods for ue-specific dynamic downlink scheduler in ofdma systems
JP5468606B2 (en) Resource block mapping of symbols with repeated overlap
WO2011017953A1 (en) Method and device for determining position of cell reference signal
WO2011032419A1 (en) Sequence generation and mapping method and transmission device for reference signals
CN110612736B (en) Communication apparatus, base station, method and recording medium
JP2020507988A (en) User apparatus and wireless communication method
WO2018211800A1 (en) Transmission device, receiving device, method and recording medium
JP2019518343A (en) Reduced density channel state information reference signal
WO2018137464A1 (en) Method and apparatus for sending reference signal
EP2378698B1 (en) Systems and methods for bundling resource blocks in a wireless communication system
JP6027637B2 (en) Antenna port mapping method and apparatus for demodulated reference signal
CN116419273A (en) Communication method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10805969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10805969

Country of ref document: EP

Kind code of ref document: A1