WO2011013863A1 - Neutral iridium complex for device of light-emitting electrochemical cells having rapid reactivity through cation transfer and method for producing same - Google Patents

Neutral iridium complex for device of light-emitting electrochemical cells having rapid reactivity through cation transfer and method for producing same Download PDF

Info

Publication number
WO2011013863A1
WO2011013863A1 PCT/KR2009/004238 KR2009004238W WO2011013863A1 WO 2011013863 A1 WO2011013863 A1 WO 2011013863A1 KR 2009004238 W KR2009004238 W KR 2009004238W WO 2011013863 A1 WO2011013863 A1 WO 2011013863A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex
chem
lec
soc
lecs
Prior art date
Application number
PCT/KR2009/004238
Other languages
French (fr)
Korean (ko)
Inventor
권태혁
오용호
신익수
홍종인
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to PCT/KR2009/004238 priority Critical patent/WO2011013863A1/en
Publication of WO2011013863A1 publication Critical patent/WO2011013863A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/135OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising mobile ions

Definitions

  • the present invention relates to a neutral iridium complex for a fast-responsive luminescent electrochemical cell, and a method for producing the same, and more particularly, to a neutral iridium complex for a luminescent electrochemical cell having fast operating time and stability, a method for preparing the complex, and the neutral Luminescent electrochemical cells (LECs) using iridium complexes.
  • LECs neutral Luminescent electrochemical cells
  • LECs Light-emitting electrochemical cells
  • OLEDs organic light-emitting diodes
  • E.S. Handy et. al., J. Am. Chem.
  • LEC The main difference between LEC and OLED is that the mechanism of action of the LEC is controlled by the presence of flowable ions in the monolayer, whereas the mechanism of action of the OLED is based on the movement of excitons in multiple layers ([12] CW).
  • Tang & SA Van Slyke Appl. Phys. Lett. 1987, 51, 913.
  • C. Adachi et. al., J. Appl. Phys. 2001, 90, 5048.
  • S. Lamansky et. al., J. Am. Chem. Soc. 2001, 123, 4304).
  • LEC Because of the complex mechanisms involved in ion transfer, such as low turn-on voltage, simple fabrication, LEC offers several advantages over OLEDs, so they can be used with air-stable electrodes. Following the application of bias in the LEC, the counter ions associated with the complex are redistributed around the electrode. This charge redistribution creates a high electric field at the electrode interface and increases the injection of holes and electrons at the anode and cathode, respectively.
  • Luthenium a variety of cations balanced by large negative counter ions such as PF 6 ⁇ ([2] J.-K. Lee, et. Al., Appl. Phys. Lett. 1996 , 69, 1686. [3] a) CH Lyons, et. al., J. Am. Chem. Soc. 1998, 120, 12100. b) ES Handy, et. al., J. Am. Chem. Soc. 1999, 121, 3525. c) FG Gao & AJ Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc.
  • LEC low-density lipoprotein
  • iTMC-based LECs [3] a) C.H. Lyons, et. al., J. Am. Chem. Soc. 1998, 120, 12100. b) E.S. Handy, et. al., J. Am. Chem. Soc. 1999, 121, 3525.
  • Changes in counter ions of iTMCs are one known method for reducing operating time.
  • the operating time has been found to decrease from several minutes to several seconds ([3] c) FG Gao & AJ Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc. 2002, 124, 4918. [7] b) ST Parker, et. al., Chem. Mater. 2005, 17, 3187.).
  • the inventors of the present invention while trying to develop an iridium complex showing a fast reaction time, by producing a variety of iridium complex and measuring each complex by UV, PL, CV using a variety of anions, cations, neutral neutral ions
  • the characteristics of the LEC such as its electrical and chemical properties and operating time, operating voltage, and morphology depending on the solvent, indicate that when a small cation is used in the complex, the cation moves toward the cathode under reverse bias.
  • the present invention has been completed by confirming that the electron insertion and the use of a small cation can provide a relatively fast turn-on time and increase stability.
  • Still another object of the present invention is to provide a method for preparing the iridium complex.
  • Still another object of the present invention is to provide a fast reactive light emitting electrochemical cell using the iridium complex.
  • the present invention is a complex for a fast reactive light-emitting electrochemical cells (LECs) device having a structure of the ligand-bound neutral iridium complex having the following formula (1).
  • L 1 is a major ligand that binds Ir and L 2 is a secondary ligand that binds Ir and has a pendant cation).
  • the medallion partner cation is preferably selected from the group consisting of Na + , Li + , K + and Cs + .
  • L 1 may be phenylquinoline, phenylpyridine, difluorophenyl, and derivatives thereof.
  • L 1 may be selected from heteroaromatic groups or derivatives thereof having approximately C10 to C40, but relatively good performance of LECs. It would be desirable to choose what is implemented.
  • L 2 may also be a heteroaromatic group of various forms having a carboxyl group, preferably in which anionic sultone group is bonded to the cationic metal ion. The more specific form described below would be desirable to achieve better performance LECs.
  • the complex may be a complex for an LEC device, which is selected from the group of Structural Formula 2 below.
  • R 1 to R 4 are each independently hydrogen, an alkyl group, or a phenyl group
  • R 5 to R 8 are each independently H, an alkyl group, F, or CF 3
  • M + is Is selected from the group consisting of Na + , Li + , K + and Cs +
  • n is 1 to 20
  • the complex may be selected from the group consisting of the following Structural Formulas 3 to 8.
  • M + is selected from the crowd consisting of Na + , Li + , K + and Cs + , and n is 1 to 20
  • the complexes are complexes for LEC devices, characterized by rapid reactivity through pendant cation transfer.
  • Structural formula 8 may be prepared through the following schemes 1 and 2.
  • the device is preferably ITO / complex + polyethylene oxide (PEO) (100-110 nm) / Au.
  • the neutral iridium complexes of the present invention exhibit relatively fast turn-on time and stability using accessory cations of cations, and are short to reach maximum brightness at a constant bias. It takes time.
  • FIG. 1 schematically shows the distribution of ionic species in an ionic Ir complex (7, left) and a neutral Ir complex (5, right), respectively, under reverse bias.
  • FIG. 2 shows the photophysical spectra of complexes 5 (a) and 7 (b), with UV and PL spectra obtained at 0.08 mM 2-MeTHF at 298 K.
  • FIG. The ECL spectrum of 5 was measured at 0.025 mM CH 3 CN at 298 K.
  • Film PL of 5 was obtained by dissolving 5 (20 mg) in 1 ml 2-ethoxyethanol and PEO (20 mg) in 0.5 ml CHCl 3 and then by spin coating of the resulting mixed solution. .
  • EL spectra were measured at 5 V.
  • Figure 3 shows a cyclic voltammogram of 1 mM complex (solid line) and 7 (dashed line), wherein the scan rate is 0.2 V s -1 and the supporting electrolyte is 0.1 M TBAPF 6 .
  • Figure 4 shows an AFM image of a neat film prepared from a) complex 5 in 2-ethoxyethanol, b) complex 7, in DCM and c) complex 7 in DCM: DCB (1: 1). a) and (b) were obtained by mixing with PEO in CHCl 3 .
  • FIG. 5 shows a plot of luminance versus voltage under reverse bias, with device arrangements for 5 and 7 being ITO / 5 (20 mg) + PEO (20 mg) (100-110 nm) / Au and ITO / 7 (30 mg) + PEO (10 mg) (100-110 nm) / Au. Insertion shows an enlargement of the working site.
  • FIG. 9 schematically shows the characteristics of the LECs using anion in the direction of study of conventional LECs
  • Figure 10 schematically shows the characteristics of the LECs using the cation as the LECs developed by the present inventors
  • FIG. 11 shows pqirpicsona device data (reverse) as device data and AFM data.
  • FIG. 13 shows Pqripicoh device data (reverse) as device data and AFM data.
  • FIG. 17 illustrates reverse-on volt comparison data
  • 21 is comparative data of Ra and Rq for pqirpicosna, pqirpicoh, pqirbpy,
  • FIG. 23 is an AFM image of pqirbpy 30 mg in 0.5 ml MC + 0.5 ml DCB and 10 mg of PEO in 0.5 ml CHCl 3 .
  • FIG. 25 is an AFM image of pqirpicoh 10 mg in 0.5 ml MC + 0.5 ml DCB and 20 mg of PEO in 0.5 ml CHCl 3 + 10.5 mg of TBAPF 6 .
  • FIG. 26 shows UV and PL spectra of 0.02 mM Compound 3 in methylene chloride
  • 35 is an AFM image of a mixed film of complex 7 and PEO in dichloromethane
  • the electrochemical and photophysical gaps of these complexes are similar, but complex 5 is 3.6 At V it emits red light and complex 7 emits at -5.6 V.
  • the complex 5 operation (turn-on) time is shorter than 0.5 minutes, this is PF 6 - is 60 times the operating time as compared with the iTMC (7) having a. This result is probably due to the faster delivery of Na + ions to the electrode compared to the PF 6 ⁇ ions.
  • the device life of complex 5 represents a six-fold increase in stability compared to the device made of complex 7, and three times shorter time to reach maximum brightness at a constant bias.
  • the present invention may contemplate modification of ligands such as phenylquinoline, phenyl pyridine and difluorophenyl pyridine.
  • Complex 6 was prepared by refluxing a mixture of complex 2 and bipyridine (bpy) in 2-ethoxyethanol, which was then treated with NH 4 PF 6 in methanol to synthesize complex 7.
  • the present invention also provides a fast reactive LEC device using the complex.
  • the device is preferably ITO / 5 + PEO (polyethylene oxide) (100-110 nm) / Au.
  • the present invention solves the slow operating time which is the biggest problem of current LECs.
  • the LEC is characterized by containing ions, and the characteristics of the LEC device change according to the ionic characteristics.
  • LECs are currently using anion (PF 6 -, BF 4 -, etc.) are'm studies conducted, their common problem is that the operating time is too slow. In particular, the larger the size of the anion, the slower the movement, and the light does not come out until several ten minutes or several hours have passed.
  • the inventors have synthesized Ir compounds containing cations smaller than anions (Na + , Li + , K +, etc.) to improve the turn-on time and form an important part of LECs.
  • the morphology was measured by AFM to study the device characteristics according to the shape.
  • the configuration of the LECs can be represented by the structure of the LEC device shown in FIG. 7.
  • the structure of the LECs is to obtain light by introducing a single layer of light emitting layer between the electrodes of the anode.
  • a single layer structure is distinguished from OLEDs and LEDs having a multilayer structure.
  • the light emitting layer is spin coated by mixing the light emitting compound and the ions together. At this time, the ions used affect the LEC device.
  • the LECs mechanism is shown in FIG. 8, and when a voltage is applied to the LEC device, ions move near the electrode to the anode or cathode (anion toward the anode and cation toward the cathode). As time passes, the amount of ions increases near each electrode, and as the amount of ions increases, the insertion of electrons and holes (electrons on the anode side and electrons on the cathode side) becomes easier at each electrode. (Ref .: Nature material, 6,894, 2007)
  • the purpose of our invention is to study the properties of LECs using small cations (Na + , Li +, K +, etc.) rather than anions (see FIG. 10). And when the reverse bias to the cation, the cation moves toward the cathode to help electron injection over time. 10 shows the movement of cations when reverse biased, and the arrows indicate electron insertion. As a result, the use of a small cation was able to obtain a relatively fast operating time compared to the anion having a large moving speed.
  • the contents confirming the characteristics of the ion complexes developed by the present inventors are as follows. First, by measuring the UV, PL, CV of each compound, the electrical and chemical properties of each compound was confirmed. Second, the difference in operating time according to the anion and cation in each complex was confirmed. In addition, the difference in the operating voltage (turn-on volt) according to the anion and cation was also confirmed. Third, the morphology according to the solvent used when manufacturing the device was measured by AFM. Fourth, the synthesis method and CV data of the complex were presented.
  • FIGS. 11 to 16 device data and AFM data of the Ir complex are shown in FIGS. 11 to 16.
  • the LEC device data presented in the figure can be summarized in Table 3 below.
  • the operating time was measured at -3V.
  • the method of measuring the operating time of LECs is the time of light emission under constant voltage (3V).
  • FIGS. 21 and 22 show comparative data of Ra and Rq for them.
  • PEO poly- (ethylene oxide)
  • MC methylene chloride
  • DCB o-dichlorobenzene
  • Bp the boiling point
  • the inventors have identified an example of neutral iridium complex 5 comprising pendant Na + ions in the LEC.
  • the LEC derived from complex 5 showed a 60 times faster run time compared to iTMC (7) with PF 6 ⁇ . This result is certainly due to the faster delivery of Na + ions compared to PF 6 ⁇ ions.
  • the device life of complex 5 showed a six-fold increase in stability compared to the device prepared with complex 7 and three times shorter time to reach maximum brightness under constant bias.
  • These new systems still have problems such as low efficiency, low stability and low brightness when compared to OLEDs, but we believe that the new strategy using cation transfer in a single layer is more time and stable than using iTMC-based LEC. It was confirmed that it can be improved. In order to develop LECs with better operation, tests will be made according to different cation sizes later.
  • the photophysical properties of complexes 5 and 7 are shown in Table 1 and FIG. 2 below.
  • the absorption spectrum of each compound in 2-MeTHF (2-methyltetrahydrofuran) shows a concentrated band ( ⁇ > 10 4 M ⁇ 1 cm ⁇ 1 ) in the ultraviolet region of the spectrum between 250 and 300 nm. These bands correspond to spin-allowing 1 ⁇ - ⁇ * ligand-centered (LC) transitions in both C ⁇ N and N ⁇ N ligands (FIG. 1). Low energy absorption characteristics in the 300 and 500 nm range are associated with spin-allowed and spin-inhibited metal-to-ligand charge transfer (MLCT) transitions (FIG. 2).
  • MLCT metal-to-ligand charge transfer
  • 2A shows the emission spectra and ECL and FL spectra, respectively, of Complex 5 in 2-MeTHF solution and as pure film.
  • ECL in complex 5 was also observed under pulsed voltage application corresponding to oxidation and reduction of the complex:
  • the solution consisted of 0.025 mM complex 5 and 0.1 M TBAPF 6 , the supporting electrolyte in acetonitrile.
  • the oxidation and reduction potential of the complex was measured by cyclic voltammetry (scan rate 100 mVs ⁇ 1 ) in acetonitrile solution (1.0 mM). Glassy carbon electrodes and platinum wires were used as working electrodes and counter electrodes, respectively. All potentials were recorded based on Ag / AgCl (saturated) reference electrode. Oxidation CV was performed using 0.1 M of TBAPF 6 (tetran-butylammonium hexafluorophosphate) as a supporting electrolyte.
  • TBAPF 6 tetran-butylammonium hexafluorophosphate
  • electrochemical properties of the compound were studied using cyclic voltammetry (scan rate: 0.2 V s -1 ) in CH 3 CN solution (1.0 mM) with 0.1 M TBAPF 6 as a supporting electrolyte. It was. A glassy carbon electrode was used as the working electrode and was recorded for the Ag quasi-reference electrode. All potential values were corrected for ferrocene / ferrocenium (Fc / Fc + ) redox pairs. Although complexes 5 and 7 have the same major ligands, their oxidation and reduction potentials were different. The oxidation and reduction potentials for 5 were 0.92 and 1.75 V, respectively, while the oxidation and reduction potentials for 7 were 1.29 and 1.45 V (Table 2).
  • the iridium metal center of 7 has an electron lacking environment than the iridium metal center of 5. This is because the bpy of 7 with two nitrogens acts as a better ⁇ -receptor than the picolinic acid (pic) unit of 5 with one nitrogen. As a result, the oxidation potential of 7 is higher than that of 5. In addition, the reduction potential of 7 is lower than the reduction potential of 5. This is because, based on the previously reported DFT calculations and experimental results, the energy of ⁇ * orbital is reduced in the order of pic>pq> bpy (9) a) FD Angelis, et. al. Inorg. Chem. 2007, 46, 5989.
  • the oxidation process has a peak current ratio (i pc / i pa ) and peak separation ( ⁇ E pp ) for 5, respectively, 0.42 and 83 mV, whereas for 7, it is 0.54 and 126 mV.
  • i pc / i pa peak current ratio
  • ⁇ E pp peak separation
  • LEC devices with 5 and 7 were prepared using the following configuration: ITO / 5 (20 mg) + PEO (20 mg) (100-110 nm) / Au and ITO / 7 (30 mg) + PEO (10 Mg) (100-110 nm) / Au. Because of the phase separation resulting from the different polarities of the materials, different conditions for the active layer were used. As shown in the AFM image (FIG. 4A), a pure film (5 or 7 + PEO) having a thickness of 100-110 nm with a root-mean-square (RMS) roughness of approximately 4 nm was obtained. The polar sulfonate groups increased the solubility in polar solvents (2-ethoxyethanol) and miscibility with PEO.
  • the size of the counter ion is known to be one of the most important factors controlling the rate of generation of the electric field at the electrode.
  • small cations such as Na +
  • LECs can operate at bias voltages close to the electrochemical gap ([8] H.-C. Su, et. Al. Adv. Funct. Mater. 2007, 17, 1019.). Therefore, devices based on complexes 5 and 7 were tested under a bias of 3 V similar to their electrochemical gap. Time-dependent brightness is shown in FIG. 6. The operating time required to reach 1 cd m ⁇ 2 was very different for both complexes at a constant 3V. Complex 5 took less than 0.5 minutes to emit red light, while complex 7 required 30 minutes to emit the same light. Because of the faster counter ion distribution time, complex 5 showed a faster reaction time than complex 7.
  • the device data and AFM data of the Ir complex were confirmed (FIGS. 11-16).
  • the LEC device data presented in the figure can be summarized in Table 3 below.
  • the current density of the LED device made of complex 5 as a function of voltage (FIG. 30), the light emission of the LED device made of complex 5 as a function of voltage (FIG. 31), the LED device made of complex 7 as a function of voltage Current density (FIG. 32), luminescence of the LED device made with complex 7 as a function of voltage (FIG. 33), AFM image of complex 5 and complex film of PEO (FIG. 34), complex 7 in dichloromethane and An AFM image (FIG. 35) of the mixed film of PEO and an AFM image (FIG. 36) of the mixed film of complex 7 and PEO in dichloromethane: dichloeobenzene (1: 1) were confirmed.

Abstract

The present invention relates to a complex for light-emitting electrochemical cells having rapid reactivity and a method for producing thereof, and more particularly to a neutral iridium complex combined with a ligand, wherein the complex is represented by the following formula 1 and used for a device of light-emitting electrochemical cells (LECs). <Formula 1> [L1]2IrL2 (Herein, L1 is a major ligand combined to Ir; and L2 is an auxiliary ligand combined to Ir and has a pendent counter cation).

Description

양이온 전달을 통한 빠른 반응성의 발광 전기화학 전지 소자용 중성 이리디움 착물 및 그의 제조방법Neutral Iridium Complex for Fast Reactive Light Emitting Electrochemical Cell Device through Cation Transfer
본 발명은 빠른 반응성의 발광 전기화학 전지용 중성 이리디움 착물 및 그 제조방법에 관한 것으로서, 보다 상세하게는 빠른 작동시간과 안정성을 갖는 발광 전기화학 전지용 중성 이리디움 착물, 상기 착물의 제조방법 및 상기 중성 이리디움 착물을 이용한 발광 전기화학 전지(LECs)에 관한 것이다.The present invention relates to a neutral iridium complex for a fast-responsive luminescent electrochemical cell, and a method for producing the same, and more particularly, to a neutral iridium complex for a luminescent electrochemical cell having fast operating time and stability, a method for preparing the complex, and the neutral Luminescent electrochemical cells (LECs) using iridium complexes.
LEC(Light-emitting electrochemical cell, 발광 전기화학 전지)은 OLED(organic light-emitting diode, 유기 발광 다이오드)에 대한 전도유망한 대안으로 커다란 주목을 받고 있다([1] a) Q. Pei, et. al., Science 1995, 269, 1086. b) Y. Cao, et. al., Appl. Phys. Lett. 1996, 68, 3218. [2] J.-K. Lee, et. al., Appl. Phys. Lett. 1996, 69, 1686. [3] a) C.H. Lyons, et. al., J. Am. Chem. Soc. 1998, 120, 12100. b) E.S. Handy, et. al., J. Am. Chem. Soc. 1999, 121, 3525. c) F.G. Gao & A.J. Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc. 2002, 124, 4918. e) S. Bernhard, et. al., J. Am. Chem. Soc. 2002, 124, 13624. f) M. Buda, et. al., J. Am. Chem. Soc. 2002, 124, 6090. [4] a) J.D. Slinker, et. al., Chem. Commun. 2003, 2392. b) C. Zhen, Y. Chuai, C. Lao, L. Huang, et. al., Appl. Phys. Lett. 2005, 87, 093508. [5] S. Bernhard, et. al., Adv. Mater. 2002, 14, 433. [6] X. Gong, et. al., Adv. Mater. 1998, 10, 1337. [7] a) J.D. Slinker, et. al., J. Am. Chem. Soc. 2004, 126, 2763. b) S.T. Parker, et. al., Chem. Mater. 2005, 17, 3187. c) A.B. Tamayo, et. al., Inorg. Chem. 2005, 44, 8723. d) M.S. Lowry & S. Bernhard, Chem. Eur. J. 2006, 12, 7970. e) H.-C. Su, et. al., Appl. Phys. Lett. 2006, 89, 261118. [8] H.-C. Su, et. al., Adv. Funct. Mater. 2007, 17, 1019. [9] a) F.D. Angelis, et. al., Inorg. Chem. 2007, 46, 5989. b) C. Dragonetti, et. al., Inorg. Chem. 2007, 46, 8533. c) D.D. Censo, et. al., Inorg. Chem. 2008, 47, 980. d) H.-C. Su, et. al., J. Am. Chem. Soc. 2008, 130, 3413. e) E. Zysman-Colman, et. al., Chem. Mater. 2008, 20, 388. [10] H.J. Bolink, et. al., J. Mater. Chem. 2007, 17, 5032. [11] Y.-M. Wang, et. al., Appl. Phys. Lett. 2005, 87, 233512.). LEC와 OLED 간의 주요한 차이는 LEC의 작동기전은 단일층내의 유동성 이온의 존재에 의해 조절되는 반면에, OLED의 작동기전은 복수층내의 여기자(exciton)의 이동에 기반한다는 점이다([12] C.W. Tang & S.A. Van Slyke, Appl. Phys. Lett. 1987, 51, 913. [13] a) M.A. Baldo, et. al., Nature 1998, 395, 151. b) C. Adachi, et. al., J. Appl. Phys. 2001, 90, 5048. [14] S. Lamansky, et. al., J. Am. Chem. Soc. 2001, 123, 4304). 이온 전달과 관련된 복잡한 기전 때문에, 낮은 작동(turn-on) 전압, 단순한 제조와 같이 LEC는 OLED에 대하여 몇 가지 장점을 제공하므로, 이들은 공기-안정한 전극을 갖고서 사용될 수 있다. LEC내 바이어스(bias)의 적용에 따라, 착물과 관련된 짝이온(counter ion)이 전극의 주변에 재분포된다. 이러한 전하 재분포는 전극 경계면(interface)에서 높은 전기장을 생성하고, 각각 양극 및 음극에서 홀 및 전자의 삽입(injection)을 증가시킨다.Light-emitting electrochemical cells (LECs) are receiving great attention as promising alternatives to organic light-emitting diodes (OLEDs) [1] a) Q. Pei, et. al., Science 1995, 269, 1086. b) Y. Cao, et. al., Appl. Phys. Lett. 1996, 68, 3218. [2] J.-K. Lee, et. al., Appl. Phys. Lett. 1996, 69, 1686. [3] a) C.H. Lyons, et. al., J. Am. Chem. Soc. 1998, 120, 12100. b) E.S. Handy, et. al., J. Am. Chem. Soc. 1999, 121, 3525. c) F.G. Gao & A.J. Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc. 2002, 124, 4918. e) S. Bernhard, et. al., J. Am. Chem. Soc. 2002, 124, 13624. f) M. Buda, et. al., J. Am. Chem. Soc. 2002, 124, 6090. [4] a) J.D. Slinker, et. al., Chem. Commun. 2003, 2392. b) C. Zhen, Y. Chuai, C. Lao, L. Huang, et. al., Appl. Phys. Lett. 2005, 87, 093508. [5] S. Bernhard, et. al., Adv. Mater. 2002, 14, 433. [6] X. Gong, et. al., Adv. Mater. 1998, 10, 1337. [7] a) J.D. Slinker, et. al., J. Am. Chem. Soc. 2004, 126, 2763. b) S.T. Parker, et. al., Chem. Mater. 2005, 17, 3187. c) A.B. Tamayo, et. al., Inorg. Chem. 2005, 44, 8723. d) M.S. Lowry & S. Bernhard, Chem. Eur. J. 2006, 12, 7970. e) H.-C. Su, et. al., Appl. Phys. Lett. 2006, 89, 261118. [8] H.-C. Su, et. al., Adv. Funct. Mater. 2007, 17, 1019. [9] a) F.D. Angelis, et. al., Inorg. Chem. 2007, 46, 5989. b) C. Dragonetti, et. al., Inorg. Chem. 2007, 46, 8533. c) D.D. Censo, et. al., Inorg. Chem. 2008, 47, 980. d) H.-C. Su, et. al., J. Am. Chem. Soc. 2008, 130, 3413. e) E. Zysman-Colman, et. al., Chem. Mater. 2008, 20, 388. [10] H.J. Bolink, et. al., J. Mater. Chem. 2007, 17, 5032. [11] Y.-M. Wang, et. al., Appl. Phys. Lett. 2005, 87, 233512.). The main difference between LEC and OLED is that the mechanism of action of the LEC is controlled by the presence of flowable ions in the monolayer, whereas the mechanism of action of the OLED is based on the movement of excitons in multiple layers ([12] CW). Tang & SA Van Slyke, Appl. Phys. Lett. 1987, 51, 913. [13] a) MA Baldo, et. al., Nature 1998, 395, 151. b) C. Adachi, et. al., J. Appl. Phys. 2001, 90, 5048. [14] S. Lamansky, et. al., J. Am. Chem. Soc. 2001, 123, 4304). Because of the complex mechanisms involved in ion transfer, such as low turn-on voltage, simple fabrication, LEC offers several advantages over OLEDs, so they can be used with air-stable electrodes. Following the application of bias in the LEC, the counter ions associated with the complex are redistributed around the electrode. This charge redistribution creates a high electric field at the electrode interface and increases the injection of holes and electrons at the anode and cathode, respectively.
컨쥬케이티드(conjugated) 폴리머, PEO(polyethyleneoxide)와 혼합된 MEH-PPV(poly[5-(20-ethylhexyloxy)-2-methoxy-1,4-phenylene vinylene])가 보고된 이후로([1] a) Q. Pei, et. al, Science 1995, 269, 1086. b) Y. Cao, et. al., Appl. Phys. Lett. 1996, 68, 3218.), 지금까지 몇 가지 다른 종류의 LEC가 개발되었다. 예를 들면, iTMC(ionic transition metal complex)에 기초한 단일층 LEC([3] a) C.H. Lyons, et. al., J. Am. Chem. Soc. 1998, 120, 12100. b) E.S. Handy, et. al., J. Am. Chem. Soc. 1999, 121, 3525. c) F.G. Gao & A.J. Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc. 2002, 124, 4918. e) S. Bernhard, et. al., J. Am. Chem. Soc. 2002, 124, 13624. f) M. Buda, et. al., J. Am. Chem. Soc. 2002, 124, 6090. [4] a) J.D. Slinker, et. al., Chem. Commun. 2003, 2392. b) C. Zhen, Y. Chuai, C. Lao, L. Huang, et. al., Appl. Phys. Lett. 2005, 87, 093508. [5] S. Bernhard, et. al., Adv. Mater. 2002, 14, 433. [6] X. Gong, et. al., Adv. Mater. 1998, 10, 1337. [7] a) J.D. Slinker, et. al., J. Am. Chem. Soc. 2004, 126, 2763. b) S.T. Parker, et. al., Chem. Mater. 2005, 17, 3187. c) A.B. Tamayo, et. al., Inorg. Chem. 2005, 44, 8723. d) M.S. Lowry & S. Bernhard, Chem. Eur. J. 2006, 12, 7970. e) H.-C. Su, et. al., Appl. Phys. Lett. 2006, 89, 261118. [8] H.-C. Su, et. al., Adv. Funct. Mater. 2007, 17, 1019. [9] a) F.D. Angelis, et. al., Inorg. Chem. 2007, 46, 5989. b) C. Dragonetti, et. al., Inorg. Chem. 2007, 46, 8533. c) D.D. Censo, et. al., Inorg. Chem. 2008, 47, 980. d) H.-C. Su, et. al., J. Am. Chem. Soc. 2008, 130, 3413. e) E. Zysman-Colman, et. al., Chem. Mater. 2008, 20, 388. [10] H.J. Bolink, et. al., J. Mater. Chem. 2007, 17, 5032. [11] Y.-M. Wang, et. al., Appl. Phys. Lett. 2005, 87, 233512.)가 보고되었는데, 이들은 좋은 열적 안정성 및 전하 운반 성질과 같은 종래의 폴리머 LEC에 대하여 몇가지 장점을 나타내었다([5] S. Bernhard, et. al., Adv. Mater. 2002, 14, 433.). 이러한 장점 때문에, PF6 -와 같은 커다란 음성 짝이온(counter ion)에 의한 균형화된 다양한 양이온인 루테니움([2] J.-K. Lee, et. al., Appl. Phys. Lett. 1996, 69, 1686. [3] a) C.H. Lyons, et. al., J. Am. Chem. Soc. 1998, 120, 12100. b) E.S. Handy, et. al., J. Am. Chem. Soc. 1999, 121, 3525. c) F.G. Gao & A.J. Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc. 2002, 124, 4918. e) S. Bernhard, et. al., J. Am. Chem. Soc. 2002, 124, 13624. f) M. Buda, et. al., J. Am. Chem. Soc. 2002, 124, 6090. [4] a) J.D. Slinker, et. al., Chem. Commun. 2003, 2392. b) C. Zhen, Y. Chuai, C. Lao, L. Huang, et. al., Appl. Phys. Lett. 2005, 87, 093508.), 오스미움(I)([5] S. Bernhard, et. al., Adv. Mater. 2002, 14, 433.), 및 RE(I) 착물([6] X. Gong, et. al., Adv. Mater. 1998, 10, 1337.)이 개발되었다. 보다 최근에, 이온 이리디움 착물이 보다 큰 주목을 받고 있다([7] a) J.D. Slinker, et. al., J. Am. Chem. Soc. 2004, 126, 2763. b) S.T. Parker, et. al., Chem. Mater. 2005, 17, 3187. c) A.B. Tamayo, et. al., Inorg. Chem. 2005, 44, 8723. d) M.S. Lowry & S. Bernhard, Chem. Eur. J. 2006, 12, 7970. e) H.-C. Su, et. al., Appl. Phys. Lett. 2006, 89, 261118. [8] H.-C. Su, et. al., Adv. Funct. Mater. 2007, 17, 1019. [9] a) F.D. Angelis, et. al., Inorg. Chem. 2007, 46, 5989. b) C. Dragonetti, et. al., Inorg. Chem. 2007, 46, 8533. c) D.D. Censo, et. al., Inorg. Chem. 2008, 47, 980. d) H.-C. Su, et. al., J. Am. Chem. Soc. 2008, 130, 3413. e) E. Zysman-Colman, et. al., Chem. Mater. 2008, 20, 388.). 이들은 높은 양자(quantum) 수율뿐만 아니라 높은 리간드 장력을 제공하는 높은 포텐셜을 갖고 있으므로([9] a) F.D. Angelis, et. al., Inorg. Chem. 2007, 46, 5989.), 높은 효율을 갖고 주요(main) 및/또는 보조 리간드의 변화를 통하여, 이들은 방출된 색깔을 조절하기가 용이할 수 있다. 그러나, 비록 이들 착물이 다양한 색깔을 갖고 높은 효율을 나타내기는 하지만, 느린 반응시간은 아직 해결되지 못했다.Since the reported MEH-PPV (poly [5- (20-ethylhexyloxy) -2-methoxy-1,4-phenylene vinylene]) mixed with conjugated polymer, polyethylene oxide (PEO) [1] a) Q. Pei, et. al, Science 1995, 269, 1086. b) Y. Cao, et. al., Appl. Phys. Lett. 1996, 68, 3218.), several different types of LEC have been developed so far. For example, single layer LEC based on an ionic transition metal complex (ITMC) [3] a) CH Lyons, et. al., J. Am. Chem. Soc. 1998, 120, 12100. b) ES Handy, et. al., J. Am. Chem. Soc. 1999, 121, 3525. c) FG Gao & AJ Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc. 2002, 124, 4918. e) S. Bernhard, et. al., J. Am. Chem. Soc. 2002, 124, 13624. f) M. Buda, et. al., J. Am. Chem. Soc. 2002, 124, 6090. [4] a) JD Slinker, et. al., Chem. Commun. 2003, 2392. b) C. Zhen, Y. Chuai, C. Lao, L. Huang, et. al., Appl. Phys. Lett. 2005, 87, 093508. [5] S. Bernhard, et. al., Adv. Mater. 2002, 14, 433. [6] X. Gong, et. al., Adv. Mater. 1998, 10, 1337. [7] a) JD Slinker, et. al., J. Am. Chem. Soc. 2004, 126, 2763. b) ST Parker, et. al., Chem. Mater. 2005, 17, 3187. c) AB Tamayo, et. al., Inorg. Chem. 2005, 44, 8723. d) MS Lowry & S. Bernhard, Chem. Eur. J. 2006, 12, 7970. e) H.-C. Su, et. al., Appl. Phys. Lett. 2006, 89, 261118. [8] H.-C. Su, et. al., Adv. Funct. Mater. 2007, 17, 1019. [9] a) FD Angelis, et. al., Inorg. Chem. 2007, 46, 5989. b) C. Dragonetti, et. al., Inorg. Chem. 2007, 46, 8533. c) DD Censo, et. al., Inorg. Chem. 2008, 47, 980. d) H.-C. Su, et. al., J. Am. Chem. Soc. 2008, 130, 3413. e) E. Zysman-Colman, et. al., Chem. Mater. 2008, 20, 388. [10] HJ Bolink, et. al., J. Mater. Chem. 2007, 17, 5032. [11] Y.-M. Wang, et. al., Appl. Phys. Lett. 2005, 87, 233512.), which showed several advantages over conventional polymer LECs such as good thermal stability and charge transport properties (S. Bernhard, et. Al., Adv. Mater. 2002). , 14, 433.). Because of these advantages, Luthenium, a variety of cations balanced by large negative counter ions such as PF 6 ([2] J.-K. Lee, et. Al., Appl. Phys. Lett. 1996 , 69, 1686. [3] a) CH Lyons, et. al., J. Am. Chem. Soc. 1998, 120, 12100. b) ES Handy, et. al., J. Am. Chem. Soc. 1999, 121, 3525. c) FG Gao & AJ Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc. 2002, 124, 4918. e) S. Bernhard, et. al., J. Am. Chem. Soc. 2002, 124, 13624. f) M. Buda, et. al., J. Am. Chem. Soc. 2002, 124, 6090. [4] a) JD Slinker, et. al., Chem. Commun. 2003, 2392. b) C. Zhen, Y. Chuai, C. Lao, L. Huang, et. al., Appl. Phys. Lett. 2005, 87, 093508.), Osmium (I) ([5] S. Bernhard, et. Al., Adv. Mater. 2002, 14, 433.), and RE (I) complexes [[6] X. Gong, et. Al., Adv. Mater. 1998, 10, 1337.). More recently, ionic iridium complexes have received greater attention ([7] a) JD Slinker, et. al., J. Am. Chem. Soc. 2004, 126, 2763. b) ST Parker, et. al., Chem. Mater. 2005, 17, 3187. c) AB Tamayo, et. al., Inorg. Chem. 2005, 44, 8723. d) MS Lowry & S. Bernhard, Chem. Eur. J. 2006, 12, 7970. e) H.-C. Su, et. al., Appl. Phys. Lett. 2006, 89, 261118. [8] H.-C. Su, et. al., Adv. Funct. Mater. 2007, 17, 1019. [9] a) FD Angelis, et. al., Inorg. Chem. 2007, 46, 5989. b) C. Dragonetti, et. al., Inorg. Chem. 2007, 46, 8533. c) DD Censo, et. al., Inorg. Chem. 2008, 47, 980. d) H.-C. Su, et. al., J. Am. Chem. Soc. 2008, 130, 3413. e) E. Zysman-Colman, et. al., Chem. Mater. 2008, 20, 388.). They have high potential to provide high ligand tension as well as high quantum yield [9] a) FD Angelis, et. al., Inorg. Chem. 2007, 46, 5989.) With high efficiency and through changes in the main and / or auxiliary ligands, they may be easy to control the emitted color. However, although these complexes have various colors and show high efficiency, slow reaction times have not been solved yet.
이와 같이, 비록 LEC의 사용이 상당한 장점을 제공하지만, LEC는 상용화될 수 있기에 앞서서 여전히 해결되어야 할 필요가 있는 몇 가지 심각한 문제가 있다. 예를 들면, 이들의 작동 시간은 짝 이온(counter ion)의 운동성에 의존하므로, 이것은 대개 몇 초에서 몇 시간의 범위에 속한다. LEC가 실질적으로 사용되기 위해서는, LEC의 작동 시간은 몇 밀리초 보다 짧아야 한다. 수많은 연구가 iTMC-기초한 LEC의 작동 시간의 향상에 초점을 맞추었다([3] a) C.H. Lyons, et. al., J. Am. Chem. Soc. 1998, 120, 12100. b) E.S. Handy, et. al., J. Am. Chem. Soc. 1999, 121, 3525. c) F.G. Gao & A.J. Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc. 2002, 124, 4918. e) S. Bernhard, et. al., J. Am. Chem. Soc. 2002, 124, 13624. f) M. Buda, et. al., J. Am. Chem. Soc. 2002, 124, 6090. [7] b) S.T. Parker, et. al., Chem. Mater. 2005, 17, 3187.).As such, although the use of LEC offers significant advantages, there are some serious problems that LEC still needs to be addressed before it can be commercialized. For example, since their operating time depends on the motility of the counter ions, this usually ranges from a few seconds to several hours. In order for the LEC to be used in practice, the operating time of the LEC must be shorter than a few milliseconds. Numerous studies have focused on improving the operating time of iTMC-based LECs [3] a) C.H. Lyons, et. al., J. Am. Chem. Soc. 1998, 120, 12100. b) E.S. Handy, et. al., J. Am. Chem. Soc. 1999, 121, 3525. c) F.G. Gao & A.J. Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc. 2002, 124, 4918. e) S. Bernhard, et. al., J. Am. Chem. Soc. 2002, 124, 13624. f) M. Buda, et. al., J. Am. Chem. Soc. 2002, 124, 6090. [7] b) S.T. Parker, et. al., Chem. Mater. 2005, 17, 3187.).
iTMC의 짝 이온의 변화는 작동 시간을 감소시키기 위한 한 가지 알려진 방법이다. 예를 들면, PF6 -을 ClO4 - 또는 BF4 -로 치환시켜 짝 이온의 크기를 감소시키는 경우, 작동 시간이 몇 분에서 몇 초로 감소되는 것이 발견되었다([3] c) F.G. Gao & A.J. Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc. 2002, 124, 4918. [7] b) S.T. Parker, et. al., Chem. Mater. 2005, 17, 3187.). 외부 바이어스(bias)의 영향하에서 양이온의 용이한(facile) 운반 때문에, 양이온 확산과 관련된 상기 폴리머 LEC는 상대적으로 빠른 반응 시간을 나타낸다([15] C. Yin, et. al., Chem. Mater. 2000, 12, 1853.). 이온의 성질이 작동 시간에 영향을 미칠뿐만 아니라, 또한 장치 안정성에 영향을 미친다는 것이 알려졌다([3] a) C.H. Lyons, et. al., J. Am. Chem. Soc. 1998, 120, 12100. b) E.S. Handy, et. al., J. Am. Chem. Soc. 1999, 121, 3525. c) F.G. Gao & A.J. Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc. 2002, 124, 4918. e) S. Bernhard, et. al., J. Am. Chem. Soc. 2002, 124, 13624. f) M. Buda, et. al., J. Am. Chem. Soc. 2002, 124, 6090. [4] a) J.D. Slinker, et. al., Chem. Commun. 2003, 2392. b) C. Zhen, Y. Chuai, C. Lao, L. Huang, et. al., Appl. Phys. Lett. 2005, 87, 093508. [5] S. Bernhard, et. al., Adv. Mater. 2002, 14, 433. [6] X. Gong, et. al., Adv. Mater. 1998, 10, 1337. [7] a) J.D. Slinker, et. al., J. Am. Chem. Soc. 2004, 126, 2763. b) S.T. Parker, et. al., Chem. Mater. 2005, 17, 3187. c) A.B. Tamayo, et. al., Inorg. Chem. 2005, 44, 8723. d) M.S. Lowry & S. Bernhard, Chem. Eur. J. 2006, 12, 7970. e) H.-C. Su, et. al., Appl. Phys. Lett. 2006, 89, 261118. [8] H.-C. Su, et. al., Adv. Funct. Mater. 2007, 17, 1019. [9] a) F.D. Angelis, et. al., Inorg. Chem. 2007, 46, 5989. b) C. Dragonetti, et. al., Inorg. Chem. 2007, 46, 8533. c) D.D. Censo, et. al., Inorg. Chem. 2008, 47, 980. d) H.-C. Su, et. al., J. Am. Chem. Soc. 2008, 130, 3413. e) E. Zysman-Colman, et. al., Chem. Mater. 2008, 20, 388. [10] H.J. Bolink, et. al., J. Mater. Chem. 2007, 17, 5032. [11] Y.-M. Wang, et. al., Appl. Phys. Lett. 2005, 87, 233512.).Changes in counter ions of iTMCs are one known method for reducing operating time. For example, when PF 6 - is replaced with ClO 4 - or BF 4 - to reduce the size of partner ions, the operating time has been found to decrease from several minutes to several seconds ([3] c) FG Gao & AJ Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc. 2002, 124, 4918. [7] b) ST Parker, et. al., Chem. Mater. 2005, 17, 3187.). Due to the facile transport of cations under the influence of external bias, the polymer LEC associated with cation diffusion shows a relatively fast reaction time ([15] C. Yin, et. Al., Chem. Mater. 2000, 12, 1853.). It is known that not only does the nature of the ions affect the operating time, but also the device stability (3) a) CH Lyons, et. al., J. Am. Chem. Soc. 1998, 120, 12100. b) ES Handy, et. al., J. Am. Chem. Soc. 1999, 121, 3525. c) FG Gao & AJ Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc. 2002, 124, 4918. e) S. Bernhard, et. al., J. Am. Chem. Soc. 2002, 124, 13624. f) M. Buda, et. al., J. Am. Chem. Soc. 2002, 124, 6090. [4] a) JD Slinker, et. al., Chem. Commun. 2003, 2392. b) C. Zhen, Y. Chuai, C. Lao, L. Huang, et. al., Appl. Phys. Lett. 2005, 87, 093508. [5] S. Bernhard, et. al., Adv. Mater. 2002, 14, 433. [6] X. Gong, et. al., Adv. Mater. 1998, 10, 1337. [7] a) JD Slinker, et. al., J. Am. Chem. Soc. 2004, 126, 2763. b) ST Parker, et. al., Chem. Mater. 2005, 17, 3187. c) AB Tamayo, et. al., Inorg. Chem. 2005, 44, 8723. d) MS Lowry & S. Bernhard, Chem. Eur. J. 2006, 12, 7970. e) H.-C. Su, et. al., Appl. Phys. Lett. 2006, 89, 261118. [8] H.-C. Su, et. al., Adv. Funct. Mater. 2007, 17, 1019. [9] a) FD Angelis, et. al., Inorg. Chem. 2007, 46, 5989. b) C. Dragonetti, et. al., Inorg. Chem. 2007, 46, 8533. c) DD Censo, et. al., Inorg. Chem. 2008, 47, 980. d) H.-C. Su, et. al., J. Am. Chem. Soc. 2008, 130, 3413. e) E. Zysman-Colman, et. al., Chem. Mater. 2008, 20, 388. [10] HJ Bolink, et. al., J. Mater. Chem. 2007, 17, 5032. [11] Y.-M. Wang, et. al., Appl. Phys. Lett. 2005, 87, 233512.).
이에, 본 발명자들은 빠른 반응시간을 나타내는 이리디움 착물을 개발하고자 노력하던 중, 다양한 이리디움 착물을 제조하고 여기에 음이온, 양이온, 중성의 다양한 짝이온을 사용하여 UV, PL, CV 측정함으로써 각 착물의 전기, 화학적 특성 및 작동시간, 작동 전압, 용매에 따른 형태(morphology) 등 LEC의 특성을 확인한 결과, 상기 착물에서 음이온이 아닌 작은 양이온을 사용했을 때 역 바이어스하에서 양이온이 음극쪽으로 이동하여 시간이 지날수록 전자 삽입을 도와주고, 또한 작은 양이온을 사용함으로 인하여 상대적으로 빠른 작동시간(turn-on time)을 얻을 수 있으며 또한 안정성이 증가됨을 확인함으로써 본 발명을 완성하였다.Thus, the inventors of the present invention, while trying to develop an iridium complex showing a fast reaction time, by producing a variety of iridium complex and measuring each complex by UV, PL, CV using a variety of anions, cations, neutral neutral ions The characteristics of the LEC, such as its electrical and chemical properties and operating time, operating voltage, and morphology depending on the solvent, indicate that when a small cation is used in the complex, the cation moves toward the cathode under reverse bias. The present invention has been completed by confirming that the electron insertion and the use of a small cation can provide a relatively fast turn-on time and increase stability.
본 발명의 목적은 LECs의 작동 시간과 안정성을 증가시키는 이리디움 착물을 제공하는 것이다.It is an object of the present invention to provide an iridium complex which increases the operating time and stability of LECs.
본 발명의 또 다른 목적은 상기 이리디움 착물의 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a method for preparing the iridium complex.
본 발명의 또 다른 목적은 상기 이리디움 착물을 이용한 빠른 반응성의 발광 전기화학 전지를 제공하는 것이다.Still another object of the present invention is to provide a fast reactive light emitting electrochemical cell using the iridium complex.
상기 목적을 달성하기 위하여, 본 발명은 리간드가 결합된 중성 이리디움 착물에 있어서, 하기의 구조식 1을 갖는 빠른 반응성의 발광 전기화학 전지(LECs; Light-emitting electrochemical cells) 소자용 착물이다. In order to achieve the above object, the present invention is a complex for a fast reactive light-emitting electrochemical cells (LECs) device having a structure of the ligand-bound neutral iridium complex having the following formula (1).
<구조식 1><Structure 1>
[L1]2IrL2 [L 1 ] 2 IrL 2
(여기서, L1은 Ir에 결합하는 주요 리간드이고, L2는 Ir에 결합하는 보조 리간드로서 메달린(pendent; 부속된) 짝 양이온(counter cation)을 갖는 것임)(Wherein L 1 is a major ligand that binds Ir and L 2 is a secondary ligand that binds Ir and has a pendant cation).
또한, 상기 메달린 짝 양이온은 Na+, Li+, K+ 및 Cs+로 이루어진 군중에서 선택되는 것이 바람직하다. 한편, L1 은 페닐퀴놀린, 페닐피리딘, 다이플루오로페닐 및 그들의 유도체 등이 될 수 있는데, 일반화하면, 대략적으로 C10 내지 C40인 헤테로방향족 그룹 내지는 그들의 유도체에서 선택할 수 있으나, 비교적 LECs의 성능이 잘 구현되는 것을 선택하는 것이 바람직할 것이다. 그리고, L2도 카르복실기를 갖는 다양한 형태의 헤테로방향족그룹이 될 수 있을 것인데 음이온적인 설톤기에 양이온적인 상기 금속이온이 결합된 형태가 바람직하다. 아래에 설명한 보다 구체적인 형태가 보다 좋은 성능의 LECs를 구현하기 위해서는 보다 바람직할 것이다. In addition, the medallion partner cation is preferably selected from the group consisting of Na + , Li + , K + and Cs + . On the other hand, L 1 may be phenylquinoline, phenylpyridine, difluorophenyl, and derivatives thereof. Generally, L 1 may be selected from heteroaromatic groups or derivatives thereof having approximately C10 to C40, but relatively good performance of LECs. It would be desirable to choose what is implemented. In addition, L 2 may also be a heteroaromatic group of various forms having a carboxyl group, preferably in which anionic sultone group is bonded to the cationic metal ion. The more specific form described below would be desirable to achieve better performance LECs.
또한, 보다 구체적으로 상기 착물은 하기 구조식 2의 군으로부터 선택되는 것을 특징으로 하는 LEC 소자용 착물일 수 있다. Also, more specifically, the complex may be a complex for an LEC device, which is selected from the group of Structural Formula 2 below.
<구조식 2><Structure 2>
Figure PCTKR2009004238-appb-I000001
Figure PCTKR2009004238-appb-I000001
(여기서, R1 내지 R4는 각각 독립적으로 수소, 알킬그룹, 또는 페닐(phenyl) 그룹이고, R5 내지 R8은 각각 독립적으로, H, 알킬그룹, F, 또는 CF3이고, M+은 Na+, Li+, K+ 및 Cs+로 이루어진 군중에서 선택되고, n은 1 내지 20 이다)Wherein R 1 to R 4 are each independently hydrogen, an alkyl group, or a phenyl group, R 5 to R 8 are each independently H, an alkyl group, F, or CF 3 , and M + is Is selected from the group consisting of Na + , Li + , K + and Cs + , n is 1 to 20)
상기 '각각 독립적으로'라는 표현은 다양한 형태의 구조를 선택적으로 기재하기 위해 사용한 표현이며, 또한, 예를 들면, 페닐그룹의 해석은, 당업자의 입장에서 치환이나 변형 가능한 유도체들을 포함하는 것으로 해석되어야 할 것이다. The expression 'independently' is an expression used to selectively describe various types of structures, and, for example, the interpretation of phenyl groups should be interpreted to include derivatives or substitutions available from those skilled in the art. something to do.
보다 더 구체적으로 상기 착물은 하기 구조식 3 내지 8로 이루어진 군 중에서 선택될 수 있다.More specifically, the complex may be selected from the group consisting of the following Structural Formulas 3 to 8.
<구조식 3><Structure 3>
Figure PCTKR2009004238-appb-I000002
Figure PCTKR2009004238-appb-I000002
<구조식 4><Structure 4>
Figure PCTKR2009004238-appb-I000003
Figure PCTKR2009004238-appb-I000003
<구조식 5><Structure 5>
Figure PCTKR2009004238-appb-I000004
Figure PCTKR2009004238-appb-I000004
<구조식 6><Structure 6>
Figure PCTKR2009004238-appb-I000005
Figure PCTKR2009004238-appb-I000005
<구조식 7><Structure 7>
Figure PCTKR2009004238-appb-I000006
Figure PCTKR2009004238-appb-I000006
(여기에서, M+은 Na+, Li+, K+ 및 Cs+로 이루어진 군중에서 선택되고, n은 1 내지 20 이다)(Wherein M + is selected from the crowd consisting of Na + , Li + , K + and Cs + , and n is 1 to 20)
<구조식 8><Structure 8>
Figure PCTKR2009004238-appb-I000007
Figure PCTKR2009004238-appb-I000007
그리고, 상기 착물들은 부속(pendant) 양이온 전달을 통해서 빠른 반응성을 나타내는 것을 특징으로 하는 LEC 소자용 착물이다. And, the complexes are complexes for LEC devices, characterized by rapid reactivity through pendant cation transfer.
또한, 본 발명은 상기 착물들의 제조방법을 제공한다. 구조식 8은 다음의 도식 1 및 도식 2의 과정을 통해 제조될 수 있다. The present invention also provides a method for preparing the complexes. Structural formula 8 may be prepared through the following schemes 1 and 2.
<도식 1> Scheme 1
Figure PCTKR2009004238-appb-I000008
Figure PCTKR2009004238-appb-I000008
<도식 2> Scheme 2
Figure PCTKR2009004238-appb-I000009
Figure PCTKR2009004238-appb-I000009
상기 과정에서 1->2의 과정은 알려져 있으며, 2->3의 과정에서 3-하이드록시피콜리닉산(3-hydroxypicolinic acid)사용하였는데, 원하는 착물의 형태에 따라, 하이드록시기와 카르복실기가 있는 다른 화합물을 사용할 수도 있을 것이다. 또한, 3->4->5의 과정에서도 마찬가지로 원하는 착물의 형태에 따라 사용되는 화합물의 변형이 가능할 것이다. 요컨대, 당업자의 입장에서 이해될 수 있는 범위내의 치환 또는 변형은 본 발명의 기술적 사상내의 것이라는 점을 언급하기 위해 예시적으로 설명하였다. In the above process, the process of 1-> 2 is known, and 3-hydroxypicolinic acid was used in the process of 2-> 3. According to the type of the desired complex, different hydroxy groups and carboxyl groups may be used. Compounds may also be used. In addition, the process of 3-> 4-> 5 will likewise be possible to modify the compound used depending on the form of the desired complex. In short, substitutions or modifications within the scope that can be understood by those skilled in the art have been described by way of example to mention that they are within the technical idea of the present invention.
한편, 상기 착물들을 이용하여 빠른 반응성과 안정성을 갖는 LECs 소자를 제공할 수 있다. 그리고, 상기 소자는 ITO/착물+PEO(polyethylene oxide)(100-110 ㎚)/Au인 것이 바람직하다. On the other hand, it is possible to provide a LECs device having a fast reactivity and stability using the complexes. The device is preferably ITO / complex + polyethylene oxide (PEO) (100-110 nm) / Au.
상기에서 살펴본 바와 같이, 본 발명의 중성 이리디움 착물은 양이온의 부속 짝이온을 사용하여 상대적으로 빠른 작동시간(turn-on time)과 안정성을 나타내며, 일정한 바이어스(bias)에서 최대 밝기에 도달하는데 짧은 시간을 필요로 한다.As discussed above, the neutral iridium complexes of the present invention exhibit relatively fast turn-on time and stability using accessory cations of cations, and are short to reach maximum brightness at a constant bias. It takes time.
또한 양이온 전달을 경유한 중성 이리듐 착물에 기반한 LECs에 대한 새로운 접근법을 제시함으로써, 향후 LECs의 실용화를 앞당길 것으로 생각된다. It is also expected to advance the practical use of LECs in the future by proposing a new approach to LECs based on neutral iridium complexes via cation transport.
도 1은 역 바이어스(reverse bias)하에서, 각각 이온 Ir 착물(7, 왼쪽) 및 중성 Ir 착물(5, 오른쪽)내의 이온 종들의 분포를 도식적으로 나타낸 것이다. FIG. 1 schematically shows the distribution of ionic species in an ionic Ir complex (7, left) and a neutral Ir complex (5, right), respectively, under reverse bias.
도 2는 착물 5(a) 및 7(b)의 광물리적 스펙트럼을 나타낸 것으로, UV 및 PL 스펙트럼을 298 K에서 0.02 mM 2-MeTHF하에서 얻어졌다. 5의 ECL 스펙트럼은 298 K에서 0.025 mM CH3CN에서 측정되었다. 5의 필름 PL은 1 ㎖의 2-ethoxyethanol내 5(20 ㎎) 및 0.5 ㎖의 CHCl3내 PEO(20 ㎎)를 용해시키고, 이어서 상기 결과적인 혼합된 용액의 스핀(spin) 코팅에 의해 얻어졌다. EL 스펙트럼은 5 V에서 측정되었다. 2 shows the photophysical spectra of complexes 5 (a) and 7 (b), with UV and PL spectra obtained at 0.08 mM 2-MeTHF at 298 K. FIG. The ECL spectrum of 5 was measured at 0.025 mM CH 3 CN at 298 K. Film PL of 5 was obtained by dissolving 5 (20 mg) in 1 ml 2-ethoxyethanol and PEO (20 mg) in 0.5 ml CHCl 3 and then by spin coating of the resulting mixed solution. . EL spectra were measured at 5 V.
도 3은 1 mM 착물(실선) 및 7(점선)의 순환 전류전압곡선(Cyclic voltammogram)을 나타낸 것으로, 상기 스캔(scan) 속도는 0.2 V s-1이고, 상기 지지(supporting) 전해질은 0.1 M TBAPF6이었다. Figure 3 shows a cyclic voltammogram of 1 mM complex (solid line) and 7 (dashed line), wherein the scan rate is 0.2 V s -1 and the supporting electrolyte is 0.1 M TBAPF 6 .
도 4는 a) 2-ethoxyethanol내 착물 5, b) DCM내 착물 7, 및 c) DCM:DCB(1:1)내 착물 7로부터 제조된 순수한 필름(neat film)의 AFM 이미지를 나타낸 것으로, (a) 및 (b)는 CHCl3 내 PEO와 혼합하여 얻어졌다. Figure 4 shows an AFM image of a neat film prepared from a) complex 5 in 2-ethoxyethanol, b) complex 7, in DCM and c) complex 7 in DCM: DCB (1: 1). a) and (b) were obtained by mixing with PEO in CHCl 3 .
도 5는 역 바이어스하에서 발광(luminance) 대 전압의 플럿(plot)을 나타낸 것으로, 5 및 7에 대한 장치 배열은 각각 ITO/5(20 ㎎)+PEO(20 ㎎)(100-110 ㎚)/Au 및 ITO/7(30 ㎎)+PEO(10 ㎎)(100-110 ㎚)/Au이었다. 삽입은 작동 부위의 확대도를 나타낸다. FIG. 5 shows a plot of luminance versus voltage under reverse bias, with device arrangements for 5 and 7 being ITO / 5 (20 mg) + PEO (20 mg) (100-110 nm) / Au and ITO / 7 (30 mg) + PEO (10 mg) (100-110 nm) / Au. Insertion shows an enlargement of the working site.
도 6은 3 V에서 착물 5 및 7의 단일층의 LEC 장치의 시간-의존 발광(luminance)을 나타낸 것이고, 6 shows time-dependent luminance of single layer LEC devices of complexes 5 and 7 at 3 V,
도 7은 LEC의 구성을 나타내는 LEC 장치의 구조이고, 7 is a structure of an LEC device showing the configuration of the LEC,
도 8은 LEC의 작동기전을 나타낸 것이고, 8 shows the operating mechanism of the LEC,
도 9는 기존의 LECs의 연구 방향으로 음이온을 이용한 LECs의 특성을 도식적으로 나타낸 것이고, Figure 9 schematically shows the characteristics of the LECs using anion in the direction of study of conventional LECs,
도 10은 본 발명자들이 개발한 LECs로 양이온을 이용한 LECs의 특성을 도식적으로 나타낸 것이고, Figure 10 schematically shows the characteristics of the LECs using the cation as the LECs developed by the present inventors,
도 11은 장치 데이터 및 AFM 데이터로, pqirpicsona 장치 데이터(reverse)를 나타낸 것이고, FIG. 11 shows pqirpicsona device data (reverse) as device data and AFM data.
도 12는 장치 데이터 및 AFM 데이터로, Pqirpicsona 장치 데이터(forward)를 나타낸 것이고, 12 shows Pqirpicsona device data (forward) as device data and AFM data,
도 13은 장치 데이터 및 AFM 데이터로, Pqripicoh 장치 데이터(reverse)를 나타낸 것이고, FIG. 13 shows Pqripicoh device data (reverse) as device data and AFM data.
도 14는 장치 데이터 및 AFM 데이터로, Pqirpicoh 장치 데이터(forward)를 나타낸 것이고, 14 shows Pqirpicoh device data (forward) with device data and AFM data,
도 15는 장치 데이터 및 AFM 데이터로, Pqirbpy 장치(reverse)를 나타낸 것이고, 15 shows a Pqirbpy device (reverse) with device data and AFM data,
도 16은 장치 데이터 및 AFM 데이터로, Pqirbpy 장치 데이터(forward)를 나타낸 것이고, 16 shows Pqirbpy device data (forward) as device data and AFM data,
도 17은 작동 전압(Turn-on volt) 비교 데이터(reverse bias)를 나타낸 것이고, FIG. 17 illustrates reverse-on volt comparison data;
도 18내지 도 25는 참고적 도면으로서,18 to 25 are for reference only;
도 18은 pqirpicosna에 대한 AFM 이미지 데이터를 나타낸 것이고, 18 shows AFM image data for pqirpicosna,
도 19는 pqirpicoh에 대한 AFM 이미지 데이터를 나타낸 것이고, 19 shows AFM image data for pqirpicoh,
도 20은 pqirbpy에 대한AFM 이미지 데이터를 나타낸 것이고, 20 shows AFM image data for pqirbpy,
도 21은 pqirpicosna, pqirpicoh, pqirbpy에 대한 Ra 및 Rq의 비교 데이터이고, 21 is comparative data of Ra and Rq for pqirpicosna, pqirpicoh, pqirbpy,
도 22는 pqirpicosna, pqirpicoh, pqirbpy에 대한 Ra 및 Rq의 비교 데이터이고, 22 is comparative data of Ra and Rq for pqirpicosna, pqirpicoh, pqirbpy,
도 23은 0.5 ㎖ MC + 0.5 ㎖ DCB내 pqirbpy 30 ㎎ 및 0.5 ㎖ CHCl3내 PEO 10 ㎎으로 측정한 AFM 이미지로 용매와 PEO에 따른 형태의 변화를 AFM으로 측정한 데이터이고, FIG. 23 is an AFM image of pqirbpy 30 mg in 0.5 ml MC + 0.5 ml DCB and 10 mg of PEO in 0.5 ml CHCl 3 .
도 24는 1 ㎖ 2-ethoxy ethanol내 pqirpicsona 및 0.5 ㎖ CHCl3내 PEO 20 ㎎으로 측정한 AFM 이미지로 용매와 PEO에 따른 형태의 변화를 AFM으로 측정한 데이터이고, 24 is an AFM image of pqirpicsona in 1 ml 2-ethoxy ethanol and 20 mg of PEO in 0.5 ml CHCl 3 .
도 25는 0.5 ㎖ MC + 0.5 ㎖ DCB내 pqirpicoh 10 ㎎ 및 0.5 ㎖ CHCl3내 PEO 20 ㎎ + TBAPF6 10.5 ㎎으로 측정한 AFM 이미지로 용매와 PEO에 따른 형태의 변화를 AFM으로 측정한 데이터이고, FIG. 25 is an AFM image of pqirpicoh 10 mg in 0.5 ml MC + 0.5 ml DCB and 20 mg of PEO in 0.5 ml CHCl 3 + 10.5 mg of TBAPF 6 .
도 26은 methylene chloride내 0.02 mM 화합물 3의 UV 및 PL 스펙트럼를 나타낸 것이고, FIG. 26 shows UV and PL spectra of 0.02 mM Compound 3 in methylene chloride,
도 27은 착물 3의 순환 전류전압곡선이고, 27 is a circulating current voltage curve of complex 3,
도 28은 착물 5의 순환 전류전압곡선이고, 28 is a circulating current voltage curve of complex 5,
도 29는 착물 7의 순환 전류전압곡선이고, 29 is a circulating current voltage curve of complex 7
도 30은 전압의 함수로서 착물 5로 제조된 LED 장치의 전류 밀도이고, 30 is the current density of an LED device made of complex 5 as a function of voltage,
도 31은 전압의 함수로서 착물 5로 제조된 LED 장치의 발광이고, 31 is light emission of an LED device made of complex 5 as a function of voltage,
도 32는 전압의 함수로서 착물 7로 제조된 LED 장치의 전류 밀도이고, 32 is the current density of an LED device made of complex 7 as a function of voltage,
도 33은 전압의 함수로서 착물 7로 제조된 LED 장치의 발광이고, 33 is light emission of an LED device made of complex 7 as a function of voltage,
도 34는 2-ethoxyethanol내 착물 5 및 PEO의 혼합 필름의 AFM 이미지이고, 34 is an AFM image of a mixed film of complex 5 and PEO in 2-ethoxyethanol,
도 35는 dichloromethane내 착물 7 및 PEO의 혼합 필름의 AFM 이미지이고, 35 is an AFM image of a mixed film of complex 7 and PEO in dichloromethane,
도 36은 dichloromethane: dichloeobenzene(1:1)내 착물 7 및 PEO의 혼합 필름의 AFM 이미지이다. 36 is an AFM image of a mixed film of complex 7 and PEO in dichloromethane: dichloeobenzene (1: 1).
이하에서, LEC(light-emitting electrochemical cell, 발광 전기화학 전지)의 작동(turn-on) 시간과 안정성을 증가시키는 신규 착물과 그 제조방법을 보다 구체적인 예를 통해 설명하며, 본원발명과 짝(counter) 음이온을 갖는 고전적 이온 전이 금속착물(iTMC, ionic transition metal complex)인 7로 표시되는 착물을 대비하여 설명한다. 본원발명에서는 짝(counter) 음이온을 갖는 고전적 이온 전이 금속착물(iTMC, ionic transition metal complex)(7) 대신에, 일반적으로 벌키한 음이온 보다 고형 필름에서 보다 빠른 운동성을 갖는다고 알려진 부속(pendant) Na+을 포함하는 중성 이리디움 착물(5)이 도입된다. 이들 착물의 합성, 광물리 및 전기화학적 특성을 제시한다. ITO/5 또는 7+PEO(polyethylene oxide)(100-110 ㎚)/Au의 장치 구조에서, 전압이 증가함에 따라, 이들 착물의 전기화학 및 광물리적 간극(gap)은 유사하지만, 착물 5는 3.6 V에서 적색광을 방출하고 착물 7은 -5.6 V에서 방출한다. 추가적으로, 일정한 전압 -3V에서, 착물 5의 작동(turn-on) 시간은 0.5분보다 짧고, 이것은 PF6 -을 갖는 iTMC(7)에 비교하여 60배 빠른 작동 시간이다. 이러한 결과는 아마 PF6 - 이온에 비교되는 전극에 Na+ 이온의 보다 빠른 전달 때문일 것이다. 또한, 착물 5의 장치 수명은 착물 7로 제조된 장치에 비교하여 안정성에서 6배 증가를 나타내고, 일정한 바이어스(bias)에서 최대 밝기에 도달하는데 3배 짧은 시간을 나타낸다.Hereinafter, a novel complex and a manufacturing method for increasing the turn-on time and stability of a light-emitting electrochemical cell (LEC) and a method of manufacturing the same will be described by more specific examples. The contrast is described in contrast to the complex represented by 7, which is a classic ionic transition metal complex (iTMC) with anions. In the present invention, instead of the classic ionic transition metal complex (iTMC) having counter anions, i.e., pendant Na, which is generally known to have faster mobility in solid films than bulky anions. A neutral iridium complex 5 comprising + is introduced. The synthesis, mineralization and electrochemical properties of these complexes are presented. In the device structure of ITO / 5 or 7 + polyethylene oxide (PEO) (100-110 nm) / Au, as the voltage increases, the electrochemical and photophysical gaps of these complexes are similar, but complex 5 is 3.6 At V it emits red light and complex 7 emits at -5.6 V. In addition, at a constant voltage -3V, the complex 5 operation (turn-on) time is shorter than 0.5 minutes, this is PF 6 - is 60 times the operating time as compared with the iTMC (7) having a. This result is probably due to the faster delivery of Na + ions to the electrode compared to the PF 6 ions. In addition, the device life of complex 5 represents a six-fold increase in stability compared to the device made of complex 7, and three times shorter time to reach maximum brightness at a constant bias.
이와 같이, iTMC-기초한 LEC와 관련된 느린 작동 시간을 극복하기 위하여, 본 발명자들은 PF6 - 짝 음이온을 갖는 양이온 이리디움 착물(7) 대신에 부속(pendant) 짝 양이온을 갖는 중성 Ir(Ⅲ) 착물(5)의 사용을 제안한다. 본 발명에서, 기준으로 PF6 - 짝 음이온을 갖는 양이온 이리디움 착물(7)와 함께, 부속 나트륨 이온을 갖는 중성 이리디움 착물(5)을 제조하였다(하기 합성과정 참조). 도 1은 착물 7 대신에 착물 5를 사용한 장점을 설명한다. 역 바이어스(reverse bias)하에서, 중성 Ir(Ⅲ) 착물내 Na+은 ITO 전극에 상대적으로 빠르게 이동하였고, 반면에 이온 Ir(Ⅲ) 착물내 PF6 -는 금속전극에 상대적으로 느리게 확산되었다. 그러므로, 본 발명자들은 착물 5가 커다란 크기의 짝 음이온(PF6 -)을 갖는 착물 7보다 빠른 반응을 가져올 것이라 예상한다.As such, in order to overcome the slow operating times associated with iTMC-based LECs, we have identified neutral Ir (III) complexes with pendant partner cations instead of cationic iridium complexes 7 with PF 6 partner anions. We propose the use of (5). In the present invention, PF 6, based-paired with the cationic complex anions come Stadium 7 neutral come Stadium complex (5), having a fitting with a sodium ion was prepared (see synthesis). 1 illustrates the advantage of using complex 5 instead of complex 7. Under reverse bias, Na + in the neutral Ir (III) complex moved relatively quickly to the ITO electrode, while PF 6 in the ion Ir (III) complex diffused relatively slowly to the metal electrode. Therefore, we expect that complex 5 will result in a faster reaction than complex 7 with large sized counter anion (PF 6 ).
또한, 본 발명은 phenylquinoline, phenyl pyridine 및 difluorophenyl pyridine 등의 리간드의 변형을 생각할 수 있을 것이다. In addition, the present invention may contemplate modification of ligands such as phenylquinoline, phenyl pyridine and difluorophenyl pyridine.
<착물 5 및 7의 합성><Synthesis of Complexes 5 and 7>
Figure PCTKR2009004238-appb-I000010
Figure PCTKR2009004238-appb-I000010
구체적으로, iridium(Ⅲ) bis(2-phenylquinolato- N,C2')picolinate에 기초한 앞서 보고된 이리디움 착물이 가역적 전기화학 행동(ipc/ipa=0.92, ipa/ipc=0.92) 및 펄스된 전압전류법(voltammetry)에 기초한 ECL(electrogenerated chemiluminescence)(φECL=0.88)의 높은 수율을 나타내기 때문에, 본 발명자들은 이리디움 착물내 주요한 리간드로 2-phenylquinoline(pq, 1)을 선택하였다([16] I.-S. Shin, J. I. Kim, T.-H. Kwon, J.-I. Hong, J.-K. Lee, H. Kim, J. Phys. Chem. C. 2007, 111, 2280.). 기준 이온 이리디움 착물을 제조하기 위하여, 각각 보조 리간드 및 짝 음이온으로서 bipyridine 및 PF6 -을 선택하였다.Specifically, previously reported iridium complexes based on iridium (III) bis (2-phenylquinolato-N, C 2 ' ) picolinate exhibit reversible electrochemical behavior (i pc / i pa = 0.92, i pa / i pc = 0.92). And high yield of electrogenerated chemiluminescence ( ECL ) (φ ECL = 0.88) based on pulsed voltammetry, we chose 2-phenylquinoline (pq, 1) as the major ligand in the iridium complex. [16] I.-S. Shin, JI Kim, T.-H. Kwon, J.-I. Hong, J.-K. Lee, H. Kim, J. Phys. Chem. C. 2007, 111, 2280.). To prepare reference ion iridium complexes, bipyridine and PF 6 were selected as auxiliary ligands and counter anions, respectively.
상기 도식은 본 발명에서 조사된 신규 화합물의 합성을 나타낸다. Nonoyama에 의하여 보고된 방법([17] M. Nonoyama, Bull. Chem. Soc. Jpn. 1974, 47, 767.)을 사용하여 Ir(Ⅲ) 2량체를 합성하였다. chloro-bridged dimer(2), 3-hydroxypicolinic acid 및 sodium carbonate의 혼합액을 2-ethoxyethanol내 비활성 대기(inert atmosphere)하에서 환류(reflux)시켜서 착물 3을 합성하였다. 착물 3을 DMF(N,N'-dimethylformamide)내 cesium carbonate의 존재하에서 1,4-butanesultone과 반응시켜서 착물 4를 제조하였다. 착물 4를 메탄올내 NaOH로 처리하여 착물 5를 얻었다. The above scheme shows the synthesis of novel compounds investigated in the present invention. Ir (III) dimers were synthesized using the method reported by Nonoyama ([17] M. Nonoyama, Bull. Chem. Soc. Jpn. 1974, 47, 767.). Complex 3 was synthesized by refluxing a mixture of chloro-bridged dimer (2), 3-hydroxypicolinic acid and sodium carbonate under inert atmosphere in 2-ethoxyethanol. Complex 4 was prepared by reacting complex 3 with 1,4-butanesultone in the presence of cesium carbonate in DMF (N, N'-dimethylformamide). Complex 4 was treated with NaOH in methanol to give complex 5.
착물 2 및 bipyridine(bpy)의 혼합액을 2-ethoxyethanol내에서 환류시켜서 착물 6을 제조하였고, 그리고 나서 이것을 메탄올내 NH4PF6로 처리하여 착물 7를 합성하였다. Complex 6 was prepared by refluxing a mixture of complex 2 and bipyridine (bpy) in 2-ethoxyethanol, which was then treated with NH 4 PF 6 in methanol to synthesize complex 7.
또한, 본 발명은 상기 착물을 이용한 빠른 반응성의 LEC 소자를 제공한다.The present invention also provides a fast reactive LEC device using the complex.
본 발명의 빠른 반응성의 LEC 소자에 있어서, 상기 소자는 ITO/5+PEO(polyethylene oxide)(100-110 ㎚)/Au인 것이 바람직하다.In the fast reactive LEC device of the present invention, the device is preferably ITO / 5 + PEO (polyethylene oxide) (100-110 nm) / Au.
본 발명은 현재 LECs의 가장 큰 문제점인 느린 작동 시간을 해결시켜 준다. LEC는 이온을 포함하고 있는 것이 특징인데, 그 이온 특징에 따라서 LEC 장치의 특징도 변하게 된다. 현재 LECs는 음이온을 이용(PF6 -, BF4 - 등)한 연구들이 진행 중인데, 이들의 공통적인 문제점은 작동 시간이 너무 느리다는 것이다. 특히 음이온의 크기가 클수록 이동 속도가 느려져서 작동 시간이 수 십분 혹은 수 시간 이상이 지나야 빛이 나온다. 본 발명자들은 이러한 문제점을 해결하고자 음이온보다 작은 양이온(Na+, Li+, K+ 등)을 포함한 Ir 화합물을 합성하여 빠른 작동 시간(turn-on time)을 개선하며, 또한 LECs의 중요한 부분인 형태(morphology)를 AFM으로 측정하여 형태에 따른 장치 특징에 관하여 연구하였다.The present invention solves the slow operating time which is the biggest problem of current LECs. The LEC is characterized by containing ions, and the characteristics of the LEC device change according to the ionic characteristics. LECs are currently using anion (PF 6 -, BF 4 -, etc.) are'm studies conducted, their common problem is that the operating time is too slow. In particular, the larger the size of the anion, the slower the movement, and the light does not come out until several ten minutes or several hours have passed. In order to solve this problem, the inventors have synthesized Ir compounds containing cations smaller than anions (Na + , Li + , K +, etc.) to improve the turn-on time and form an important part of LECs. The morphology was measured by AFM to study the device characteristics according to the shape.
먼저, LECs의 구성은 도 7과 같이 나타내는 LEC 장치 구조로 표현할 수 있는데, 도 7과 같이 LECs의 구조는 양극의 전극 사이에 단일 층의 발광층을 도입하여 빛을 얻는 것이다. 또한 단일층 구조인 것이 다층구조인 OLED 및 LED와는 구별된다. 발광층에는 발광 화합물과 이온을 함께 섞어서 스핀 코팅(spin coating)을 하게 된다. 이때 사용되는 이온에 따라 LEC 장치에 영향을 주게 된다.First, the configuration of the LECs can be represented by the structure of the LEC device shown in FIG. 7. The structure of the LECs is to obtain light by introducing a single layer of light emitting layer between the electrodes of the anode. In addition, a single layer structure is distinguished from OLEDs and LEDs having a multilayer structure. The light emitting layer is spin coated by mixing the light emitting compound and the ions together. At this time, the ions used affect the LEC device.
LECs 기전은 도 8에 나타내었는데, LEC 장치에 전압을 걸어주게 되면 양극 혹은 음극으로 이온들이 전극부근으로 이동(양극쪽으로는 음이온, 음극쪽으로는 양이온이 이동)하게 된다. 시간이 지날수록 각각의 전극부근에 이온들의 양이 늘어나게 되고, 이온의 양이 많아질수록 각각의 전극에서 전자, 전공들의 삽입(양극쪽은 전공, 음극쪽은 전자)이 쉬어지게 됨으로써 빛을 얻게 된다(참고 문헌 : Nature material, 6,894,2007)The LECs mechanism is shown in FIG. 8, and when a voltage is applied to the LEC device, ions move near the electrode to the anode or cathode (anion toward the anode and cation toward the cathode). As time passes, the amount of ions increases near each electrode, and as the amount of ions increases, the insertion of electrons and holes (electrons on the anode side and electrons on the cathode side) becomes easier at each electrode. (Ref .: Nature material, 6,894, 2007)
기존의 LECs의 연구 방향은 음이온을 이용한 LECs의 특성에 관한 연구였는데, 간단히 요약하면 음이온(PF6 - , BF4 -,등)의 크기가 클수록 이동하는 속도가 느려서 작동 시간(turn-on time)이 느려진다는 것이다. 그 시간이 수분에서 수시간까지 걸린다고 보고되고 있다. 또한 음이온의 역할을 살펴보면 양극쪽으로 이동을 하여 시간이 지날수록 양극쪽에 모이면서 홀 삽입(hole injection)을 도와준다(도 9 참조). 도 9에서 역 바이어스일 때(즉 ITO에 -를 걸어주었을 때)의 음이온의 이동 방향을 나타내고 있으며, 화살표는 홀 삽입(hole injection) 방향을 나타내고 있다.Was studies direction of the existing LECs is Study on the characteristics of the LECs using an anion, In brief anion (PF 6 -, BF 4 - , etc.), the speed is slow, the operating time (turn-on time) that moves the larger the Is slowing down. It is reported that the time ranges from minutes to hours. In addition, looking at the role of the negative ions to move toward the anode and as the time passes over the anode to help hole injection (hole injection) (see Figure 9). In FIG. 9, the direction of negative ions moving when reverse biased (that is, when − is applied to ITO) is shown, and the arrow indicates the direction of hole injection.
우리 발명의 목적은 음이온이 아닌 작은 양이온(Na+, Li+ , K+ 등)을 사용하여 LECs의 특성을 연구하는 것이다(도 10 참조). 그리고 양이온으로 역 바이어스일 때 양이온이 음극쪽으로 이동하여 시간이 지날수록 전자 삽입(electron injection)을 도와주게 된다. 도 10은 역 바이어스일 때 양이온의 이동을 나타내고 있으며, 화살표는 전자 삽입을 나타내고 있다. 그 결과, 작은 양이온을 사용함으로 이동속도가 큰 음이온에 비하여 상대적으로 빠른 작동 시간을 얻을 수 있었다. 또한 양이온의 화합물만을 합성하는 것만이 아니라 같은 동일한 화합물(메인 리간드 ; 2-phenyl-quinoline을 지닌 화합물)을 제조하여 각각의 짝이온들이 양이온, 중성, 음이온일 때의 장치 특성들을 비교 실험하였다.The purpose of our invention is to study the properties of LECs using small cations (Na + , Li +, K +, etc.) rather than anions (see FIG. 10). And when the reverse bias to the cation, the cation moves toward the cathode to help electron injection over time. 10 shows the movement of cations when reverse biased, and the arrows indicate electron insertion. As a result, the use of a small cation was able to obtain a relatively fast operating time compared to the anion having a large moving speed. In addition, the same compound (main ligand; compound having 2-phenyl-quinoline) was prepared as well as synthesizing only a compound of a cation, and the device characteristics when the counterions were cations, neutrals and anions were compared.
이와 같은 본 발명자들의 개발한 이온 착물의 특성을 확인한 내용은 다음과 같다. 먼저, 각 화합물의 UV, PL, CV를 측정함으로써, 각 화합물들의 전기, 화학적 특성을 확인하였다. 둘째, 각 착물에서 음이온과 양이온에 따른 작동 시간의 차이를 확인하였다. 아울러, 음이온과 양이온에 따른 작동 전압(turn-on volt)의 차이도 확인하였다. 셋째, 장치를 제조할 때 사용하는 용매에 따른 형태(morphology)를 AFM으로 측정하여 확인하였다. 넷째, 상기 착물의 합성 방법 및 CV 데이터 등을 제시하였다.The contents confirming the characteristics of the ion complexes developed by the present inventors are as follows. First, by measuring the UV, PL, CV of each compound, the electrical and chemical properties of each compound was confirmed. Second, the difference in operating time according to the anion and cation in each complex was confirmed. In addition, the difference in the operating voltage (turn-on volt) according to the anion and cation was also confirmed. Third, the morphology according to the solvent used when manufacturing the device was measured by AFM. Fourth, the synthesis method and CV data of the complex were presented.
이를 위하여, 도 11 내지 도 16에 Ir 착물의 장치 데이터 및 AFM 데이터를 제시한다. 상기 도면에 제시된 LEC 장치 데이터는 하기 표 3으로 요약될 수 있다.To this end, device data and AFM data of the Ir complex are shown in FIGS. 11 to 16. The LEC device data presented in the figure can be summarized in Table 3 below.
또한, -3 V에서 작동 시간을 측정하였다. LECs의 작동 시간의 측정방법은 정 전압(3V) 하에서 빛이 나오는 시간을 말한다. 기존의 수십 분에서 수시간 걸리던 시간이 본 발명자들이 제조한 양이온을 포함한 Ir 화합물을 사용하면 2~3분 이내에 빛이 나오는 것을 확인할 수 있었다.In addition, the operating time was measured at -3V. The method of measuring the operating time of LECs is the time of light emission under constant voltage (3V). When using the Ir compound containing a cation prepared by the inventors of the time that took several hours from the existing tens of minutes it was confirmed that the light comes out within 2 to 3 minutes.
또한, 도 18 내지 도 20에 pqirpicosna, pqirpicoh, pqirbpy에 대한 AFM 이미지 데이터를 제시한다. 도 21 및 도 22에 이들에 대한 Ra 및 Rq의 비교 데이터를 제시한다.In addition, AFM image data for pqirpicosna, pqirpicoh, pqirbpy are shown in FIGS. 21 and 22 show comparative data of Ra and Rq for them.
또한, 도 23 내지 도 25에 용매에 따른 형태(morphology) 영향에 대한 데이터를 제시한다. 상기 도면은 용매와 PEO에 따른 형태의 변화를 AFM으로 측정한 데이터이다. 용매의 차이만으로도 형태의 개선이 이루어지는 것을 확인할 수 있었다. MC의 낮은 bp만으로는 좋은 형태를 얻을 수 없었는데 이는 스핀 코팅시 너무 낮은 bp를 지니면 스핀 코팅 도중에 용매가 제거 되어버림으로 좋은 형태를 얻기가 어렵기 때문이다. 따라서 좋은 용매는 화합물을 충분히 녹일 수 있어야 하며(약 26~30 ㎎/㎖), 적당한 bp를 지니고 있어야 함을 확인할 수 있었다. 또한 유기물만 사용하게 되면 코팅후 형태를 좋은 상태로 얻기 어렵기 때문에 형태를 더욱 향상시키기 위하여 전도성 폴리머(conducting polymer)인 PEO를 첨가하여 보다 좋은 형태를 얻을 수 있었다. 좋은 형태는 LECs 장치의 성능에 중요한 영향을 미치게 됨으로 형태를 향상 시키는 것은 LECs 연구에서 상당히 중요한 부분이다.23 to 25 also present data on morphology effects depending on the solvent. The figure shows the data measured by AFM of the change in form depending on the solvent and PEO. It was confirmed that the form was improved only by the difference in solvent. The low bp of MC alone did not yield a good shape because it was difficult to obtain a good shape because the solvent was removed during spin coating if the bp was too low during spin coating. Therefore, a good solvent should be able to sufficiently dissolve the compound (about 26 ~ 30 mg / ㎖), it was confirmed that it should have a suitable bp. In addition, if only the organic material is used, it is difficult to obtain a good shape after coating, and thus a better shape can be obtained by adding PEO, which is a conducting polymer. Good shape has a significant impact on the performance of LECs devices, so improving shape is a significant part of LECs research.
상기 사용한 약어로 사용한 용어는 다음과 같다. PEO는 poly-(ethylene oxide)를, MC는 methylene chloride를, DCB는 o-dichlorobenzene를, Bp는 끓는점(Boiling Point)를 나타낸다.The terms used as the abbreviations used above are as follows. PEO represents poly- (ethylene oxide), MC represents methylene chloride, DCB represents o-dichlorobenzene, and Bp represents the boiling point.
결론적으로, 본 발명자들은 LEC내 부속(pendant) Na+ 이온을 포함하는 중성 이리디움 착물(5)의 실시예를 확인하였다. 착물 5로부터 유도된 상기 LEC는 PF6 -를 갖는 iTMC(7)에 비교하여 60배 빠른 작동 시간을 나타내었다. 이러한 결과는 확실히 PF6 - 이온에 비교하여 Na+ 이온의 보다 빠른 전달 때문이다. 또한, 착물 5의 장치 수명은 착물 7을 갖고 제조된 장치에 비교하여 안정성에서 6배 증가를 나타내었고, 일정한 바이어스 하에서 최대 밝기에 도달하는데 3배 짧은 시간을 나타내었다. 이러한 신규 시스템은 여전히 OLED와 비교하였을 때, 낮은 효율, 낮은 안정성 및 낮은 밝기와 같은 문제점을 갖지만, 본 발명자들은 단일층내에 양이온 전달을 이용한 신규 전략이 iTMC-기초 LEC를 이용하는 것보다 작동 시간 및 안정성을 향상시킬수 있음을 확인하였다. 보다 나은 작동을 갖는 LEC를 개발하기 위하여, 추후 다른 양이온 크기에 따른 테스트가 이루어질 것이다.In conclusion, the inventors have identified an example of neutral iridium complex 5 comprising pendant Na + ions in the LEC. The LEC derived from complex 5 showed a 60 times faster run time compared to iTMC (7) with PF 6 . This result is certainly due to the faster delivery of Na + ions compared to PF 6 ions. In addition, the device life of complex 5 showed a six-fold increase in stability compared to the device prepared with complex 7 and three times shorter time to reach maximum brightness under constant bias. These new systems still have problems such as low efficiency, low stability and low brightness when compared to OLEDs, but we believe that the new strategy using cation transfer in a single layer is more time and stable than using iTMC-based LEC. It was confirmed that it can be improved. In order to develop LECs with better operation, tests will be made according to different cation sizes later.
이하, 본 발명을 하기 실시예에 의거하여 보다 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명은 하기 실시예에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 치환 및 균등한 타 실시예로 변경할 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the present invention is not limited to the following examples and may be changed to other embodiments equivalent to substitutions and equivalents without departing from the technical spirit of the present invention. Will be apparent to those of ordinary skill in the art.
<실시예 1> 도구Example 1 Tools
DMSO-d 6내에서 Advance 300 또는 500 MHz Bruker spectrometer를 사용하여 1H 및 13C NMR 스펙트럼을 기록하였다. DMSO-d 61H NMR chemical shift를 CH3SOCH3(2.50 ppm)를 기준으로 측정하였고, DMSO-d 613C NMR chemical shift를 CH3SOCH3(38 ppm)에 상대적으로 측정하였다. UV-Vis 스펙트럼을 Beckman DU 650 spectrophotometer로 기록하였다. Bruker로부터 MALDI-TOF Mass Spectrometry를 사용하여 매스 스펙트럼을 얻었다. Jasco FP-7500 spectrophotometer를 사용하여 형광 스펙트럼을 기록하였다. CHI650B model을 사용하여 Cyclic voltammetry를 수행하였다. Photo Research PR-650 spectroradiometer를 사용하여 LEC 장치의 전기 및 방출 특성을 측정하였다. 1 H and 13 C NMR spectra were recorded using an Advance 300 or 500 MHz Bruker spectrometer in DMSO- d 6 . DMSO- d 6 in a 1 H NMR chemical shift was measured by a CH 3 SOCH 3 (2.50 ppm) , DMSO- d 6 within the 13 C NMR chemical shift was measured relative to the CH 3 SOCH 3 (38 ppm) . UV-Vis spectra were recorded on a Beckman DU 650 spectrophotometer. Mass spectra were obtained from Bruker using MALDI-TOF Mass Spectrometry. Fluorescence spectra were recorded using a Jasco FP-7500 spectrophotometer. Cyclic voltammetry was performed using the CHI650B model. The electrical and emission characteristics of the LEC device were measured using a Photo Research PR-650 spectroradiometer.
<실시예 2> 합성(화합물 3) Example 2 Synthesis (Compound 3)
Figure PCTKR2009004238-appb-I000011
Figure PCTKR2009004238-appb-I000011
<2-1> 화합물 2의 합성<2-1> Synthesis of Compound 2
IrCl3nH2O(220 ㎎, 0.74 m㏖) 및 2-phenylquinoline(300 ㎎, 1.46 m㏖)의 혼합물을 2-methoxyethanol 및 증류수의 3:1 혼합액내에서 24 h 동안 환류시켰다. 실온으로 냉각시킨 후에, 추가적으로 증류수를 첨가하여 산물을 침전시켰다. 이어서, 그 결과로 얻어진 혼합물을 부크너 깔대기(Bㆌchner funnel)를 통하여 여과시키고 나서, hexane 및 ethyl ether로 여러 번 세척하여 미정제된 산물을 생성시켰다(200 ㎎, 63.8% 수율).A mixture of IrCl 3 n H 2 O (220 mg, 0.74 mmol) and 2-phenylquinoline (300 mg, 1.46 mmol) was refluxed for 24 h in a 3: 1 mixture of 2-methoxyethanol and distilled water. After cooling to room temperature, additional distilled water was added to precipitate the product. The resulting mixture was then filtered through a Büchner funnel and washed several times with hexane and ethyl ether to give the crude product (200 mg, 63.8% yield).
<2-2> 화합물 3의 합성<2-2> Synthesis of Compound 3
화합물 2(1.0 g, 0.786 m㏖), 3-hydroxypicolinic acid(328 ㎎, 2.36 m㏖) 및 Na2CO3(833 ㎎, 7.86 mmol)의 혼합물을 2-ethoxyethanol내에서 10-12 h 동안 비활성 대기하에서 환류시켰다. 실온으로 냉각시킨 후에, 상기 용매를 높은 진공하에서 증발시키고 methylene chloride에 용해시켰다. 유기상을 증류수로 세척하고 Na2SO4에서 건조시켰다. 상기 용매를 증발시켜 미정제된 산물을 생성시키고, 이것을 실리카 겔 컬럼 크로마토그래피에 적용시켰다. 기타 데이터는 다음과 같다:A mixture of compound 2 (1.0 g, 0.786 mmol), 3-hydroxypicolinic acid (328 mg, 2.36 mmol) and Na 2 CO 3 (833 mg, 7.86 mmol) in an inert atmosphere for 10-12 h in 2-ethoxyethanol Under reflux. After cooling to room temperature, the solvent was evaporated under high vacuum and dissolved in methylene chloride. The organic phase was washed with distilled water and dried over Na 2 SO 4 . The solvent was evaporated to yield crude product which was subjected to silica gel column chromatography. Other data are as follows:
1H NMR (300 MHz, DMSO-d6, δ): (ppm) 13.5 (s, 9 Hz, 1H), 8.60 (d, 9 Hz, 1H), 8.50 (d, 9 Hz, 3H), 8.45 (d, 3 Hz, 1H), 8.21 (d, 9 Hz, 1H), 8.06 (t, 15 Hz, 2H), 8.00 (q, 13.3 Hz, 2H), 7.54 (q, 9 Hz, 3H), 7.44 (q, 21 Hz, 4H), 7.37 (d, 12 Hz , 1H), 7.24 (d, 9 Hz, 1H), 7.07 (t, 15 Hz, 3H), 6.98 (t, 3H) , 6.71 (t, 27 Hz, 1H), 6.62 (t, 12 Hz, 2H), 6.06 (d, 27 Hz, 1H). 1 H NMR (300 MHz, DMSO-d 6 , δ): (ppm) 13.5 (s, 9 Hz, 1H), 8.60 (d, 9 Hz, 1H), 8.50 (d, 9 Hz, 3H), 8.45 ( d, 3 Hz, 1H), 8.21 (d, 9 Hz, 1H), 8.06 (t, 15 Hz, 2H), 8.00 (q, 13.3 Hz, 2H), 7.54 (q, 9 Hz, 3H), 7.44 ( q, 21 Hz, 4H), 7.37 (d, 12 Hz, 1H), 7.24 (d, 9 Hz, 1H), 7.07 (t, 15 Hz, 3H), 6.98 (t, 3H), 6.71 (t, 27 Hz, 1H), 6.62 (t, 12 Hz, 2H), 6.06 (d, 27 Hz, 1H).
13C NMR (125 MHz, DMSO-d6, δ): (ppm) 175.71, 170.30, 169.07, 158.83, 149.46, 148.07, 147.48,146.95, 145.69, 139.79, 139.52, 137.41, 134.88, 134.45, 134.12, 131.12, 130.44, 130.17, 129.79, 129.53, 129.36, 129.20, 128.66, 127.67, 127.31, 127.11, 126.63, 126.49, 126.38, 126.16, 125.47, 124.22, 121.95, 121.33, 117.50, 117.42. 13 C NMR (125 MHz, DMSO-d 6 , δ): (ppm) 175.71, 170.30, 169.07, 158.83, 149.46, 148.07, 147.48,146.95, 145.69, 139.79, 139.52, 137.41, 134.88, 134.45, 134.12, 131.12, 134.12 130.44, 130.17, 129.79, 129.53, 129.36, 129.20, 128.66, 127.67, 127.31, 127.11, 126.63, 126.49, 126.38, 126.16, 125.47, 124.22, 121.95, 121.33, 117.50, 117.42.
HRMS: C36H24IrN3O3에 대한 이론 수치, 739.1447; 실험 수치, 739.1449HRMS: Theoretical Value for C 36 H 24 IrN 3 O 3 , 739.1447; Experimental Number, 739.1449
<실시예 3> 합성(화합물 5) Example 3 Synthesis (Compound 5)
Figure PCTKR2009004238-appb-I000012
Figure PCTKR2009004238-appb-I000012
<3-1> 화합물 4의 합성<3-1> Synthesis of Compound 4
DMF내에서 화합물 3(350 ㎎, 0.47 m㏖), Cs2CO3(308 ㎎, 0.95 m㏖) 및 1,4-butanesultone(451 ㎎, 3.31 m㏖)의 혼합물을 실온에서 24 h 동안 교반하였다. 용매를 진공하에서 증발시키고 methylene chloride에 용해시켰다. 유기상을 증류수, 소금물로 세척하고 Na2SO4에서 건조시켰다. 상기 용매를 증발시켜 미정제된 산물을 생성시키고, 이것을 실리카 겔에서 컬럼 크로마토그래피를 적용시켜 methylene chloride 및 methyl alcohol(10:1, v/v)로 용출시켜 최종적으로 원하는 산물을 합성하였다(80 ㎎, 19% 수율). 기타 데이터는 다음과 같다:In DMF, a mixture of compound 3 (350 mg, 0.47 mmol), Cs 2 CO 3 (308 mg, 0.95 mmol) and 1,4-butanesultone (451 mg, 3.31 mmol) was stirred at room temperature for 24 h. . The solvent was evaporated in vacuo and dissolved in methylene chloride. The organic phase was washed with distilled water, brine and dried over Na 2 SO 4 . The solvent was evaporated to yield a crude product which was subjected to column chromatography on silica gel and eluted with methylene chloride and methyl alcohol (10: 1, v / v) to finally synthesize the desired product (80 mg). , 19% yield). Other data are as follows:
1H NMR (300 MHz, DMSO-d6, δ): (ppm) 8.76 (d, 9 Hz, 1H), 8.55 (d, 9 Hz, 1H), 8.45 (q, 18 Hz, 3H), 8.19 (d, 9 Hz, 1H), 8.02 (t, 15 Hz, 2H), 7.95 (d, 9 Hz, 1H), 7.52 (m, 39 Hz, 6H), 7.28 (d, 9 Hz, 1H), 7.06 (q, 12 Hz, 2H), 6.94 (t, 9Hz, 1H), 7.68 (t, 9 Hz, 1H), 6.59 (q, 6 Hz, 2H), 6.05 (d, 6 Hz, 2H). 1 H NMR (300 MHz, DMSO-d 6 , δ): (ppm) 8.76 (d, 9 Hz, 1H), 8.55 (d, 9 Hz, 1H), 8.45 (q, 18 Hz, 3H), 8.19 ( d, 9 Hz, 1H), 8.02 (t, 15 Hz, 2H), 7.95 (d, 9 Hz, 1H), 7.52 (m, 39 Hz, 6H), 7.28 (d, 9 Hz, 1H), 7.06 ( q, 12 Hz, 2H), 6.94 (t, 9 Hz, 1H), 7.68 (t, 9 Hz, 1H), 6.59 (q, 6 Hz, 2H), 6.05 (d, 6 Hz, 2H).
13C NMR (125 MHz, DMSO-d6, δ): (ppm) 170.27, 169.46, 169.08, 157.43, 151.71, 150.65, 147.98, 147.04, 146.90, 145.98, 140.14, 139.47, 139.30, 137.69, 134.99 , 133.92, 131.04, 130.05, 129.65, 129.15, 128.84, 128.39, 127.67, 127.33, 127.18, 126.53, 126.30, 126.25, 126.05, 124.55, 124.27, 121.51, 120.93, 117.45, 117.40, 68.87, 60.61, 51.40, 50.87, 27.47, 21.77, 21.62 13 C NMR (125 MHz, DMSO-d 6 , δ): (ppm) 170.27, 169.46, 169.08, 157.43, 151.71, 150.65, 147.98, 147.04, 146.90, 145.98, 140.14, 139.47, 139.30, 137.69, 134.99, 133.92 131.04, 130.05, 129.65, 129.15, 128.84, 128.39, 127.67, 127.33, 127.18, 126.53, 126.30, 126.25, 126.05, 124.55, 124.27, 121.51, 120.93, 117.45, 117.40, 68.87, 60.61, 60.61, 60.61. 21.62
HRMS: C40H32IrN3O6S에 대한 이론 수치, 875.1641; 실험 수치, 875.1728HRMS: Theoretical Value for C 40 H 32 IrN 3 O 6 S, 875.1641; Experimental Number, 875.1728
<3-2> 화합물 5의 합성<3-2> Synthesis of Compound 5
methyl alcohol내 화합물 4(100 ㎎, 0.11 m㏖) 및 NaOH(5 ㎎, 0.13 m㏖) 혼합물을 24시간 동안 실온에서 교반하였다. 용매를 증발시켜 오렌지-붉은색의 고형물을 제조하였고, 이것을 dichloromethane 및 hexane내에서 재결정하였다(90 ㎎, 88% 수율). 기타 데이터는 다음과 같다:A mixture of compound 4 (100 mg, 0.11 mmol) and NaOH (5 mg, 0.13 mmol) in methyl alcohol was stirred at room temperature for 24 hours. The solvent was evaporated to give an orange-red solid, which was recrystallized in dichloromethane and hexane (90 mg, 88% yield). Other data are as follows:
1H NMR (300 MHz, DMSO-d6, δ): (ppm) 8.76 (d, J=9 Hz, 1H), 8.55 (d, J=9 Hz, 1H), 8.45 (q, J=18 Hz, 3H), 8.19 (d, J=9 Hz, 1H), 8.02 (t, J=15 Hz, 2H), 7.95 (d, J=9 Hz, 1H), 7.52 (m, J=39 Hz, 6H), 7.28 (d, J=9 Hz, 1H), 7.06 (q, J=12 Hz, 2H), 6.94 (t, J=9 Hz, 1H), 7.68 (t, J=9 Hz, 1H), 6.59 (q, J=6 Hz, 2H), 6.05 (d, J=6 Hz, 2H). 1 H NMR (300 MHz, DMSO-d 6 , δ): (ppm) 8.76 (d, J = 9 Hz, 1H), 8.55 (d, J = 9 Hz, 1H), 8.45 (q, J = 18 Hz , 3H), 8.19 (d, J = 9 Hz, 1H), 8.02 (t, J = 15 Hz, 2H), 7.95 (d, J = 9 Hz, 1H), 7.52 (m, J = 39 Hz, 6H ), 7.28 (d, J = 9 Hz, 1H), 7.06 (q, J = 12 Hz, 2H), 6.94 (t, J = 9 Hz, 1H), 7.68 (t, J = 9 Hz, 1H), 6.59 (q, J = 6 Hz, 2H), 6.05 (d, J = 6 Hz, 2H).
13C NMR (125 MHz, DMSO-d6, δ): (ppm) 170.27, 169.46, 169.08, 157.43, 151.71, 150.65, 147.98, 147.04, 146.90, 145.98, 140.14, 139.47, 139.30, 137.69, 134.99, 133.92, 131.04, 130.05, 129.65, 129.15, 128.84, 128.39, 127.67, 127.33, 127.18, 126.53, 126.30, 126.25, 126.05, 124.55, 124.27, 121.51, 120.93, 117.45, 117.40, 68.87, 60.61, 51.40, 50.87, 27.47, 21.77, 21.62. 13 C NMR (125 MHz, DMSO-d 6 , δ): (ppm) 170.27, 169.46, 169.08, 157.43, 151.71, 150.65, 147.98, 147.04, 146.90, 145.98, 140.14, 139.47, 139.30, 137.69, 134.99, 133.92 131.04, 130.05, 129.65, 129.15, 128.84, 128.39, 127.67, 127.33, 127.18, 126.53, 126.30, 126.25, 126.05, 124.55, 124.27, 121.51, 120.93, 117.45, 117.40, 68.87, 60.61, 60.61, 60.61. 21.62.
HRMS: C40H32IrN3-NaO6S에 대한 이론 수치, 898.1539; 실험 수치, 898.1537HRMS: Theoretical Value for C 40 H 32 IrN 3 -NaO 6 S, 898.1539; Experimental Figure, 898.1537
<실시예 4> 합성(화합물 7)Example 4 Synthesis (Compound 7)
Figure PCTKR2009004238-appb-I000013
Figure PCTKR2009004238-appb-I000013
화합물 2(350 ㎎, 0.26 m㏖) 및 2,2'-bipyridine(64 ㎎, 0.41 m㏖) 혼합물을 8~10 시간 동안 2-ethoxyethanol내 비활성 대기하에서 환류시켰다. 실온으로 냉각시킨 후에, 상기 용매를 높은 진공하에서 증발시키고 잔류물을 메탄올에 용해시켰다. 메탄올내 상기 잔류물 용액에 NH4PF6(64 ㎎, 0.41 m㏖)을 첨가하였다. 실온에서 하룻밤동안 교반시킨 후에, 그 결과로 얻어진 혼합물을 이어서 뷰크너 깔대기(Bㆌchner funnel)를 통하여 여과시키고 나서 hexane 및 ethyl ether로 몇 번 세척하여 오렌지색의 고형물을 얻었다(200 ㎎, 27.7% 수율). 기타 데이터는 다음과 같다:A mixture of compound 2 (350 mg, 0.26 mmol) and 2,2'-bipyridine (64 mg, 0.41 mmol) was refluxed under inert atmosphere in 2-ethoxyethanol for 8-10 hours. After cooling to room temperature, the solvent was evaporated under high vacuum and the residue was dissolved in methanol. To the residue solution in methanol was added NH 4 PF 6 (64 mg, 0.41 mmol). After stirring at room temperature overnight, the resulting mixture was then filtered through a Büchner funnel and washed several times with hexane and ethyl ether to give an orange solid (200 mg, 27.7% yield). ). Other data are as follows:
1H NMR (300 MHz, DMSO-d6, δ): (ppm) 8.56 (q, J=39 Hz, 2H), 8.37 (d, J=39 Hz, 1H), 8.23 (d, J=33 Hz, 1H), 8.10 (q, J=30 Hz, 2H), 7.93 (d, J=6 Hz, 1H), 7.68 (t, J=12 Hz, 1H), 7.42 (t, J=15 Hz, 1H), 7.18 (q, J=24 Hz, 2H), 7.07 (t, J=15 Hz, 1H), 6.82 (t, J=15 Hz, 1H), 6.41 (d, J=9 Hz, 1H). 1 H NMR (300 MHz, DMSO-d 6 , δ): (ppm) 8.56 (q, J = 39 Hz, 2H), 8.37 (d, J = 39 Hz, 1H), 8.23 (d, J = 33 Hz , 1H), 8.10 (q, J = 30 Hz, 2H), 7.93 (d, J = 6 Hz, 1H), 7.68 (t, J = 12 Hz, 1H), 7.42 (t, J = 15 Hz, 1H ), 7.18 (q, J = 24 Hz, 2H), 7.07 (t, J = 15 Hz, 1H), 6.82 (t, J = 15 Hz, 1H), 6.41 (d, J = 9 Hz, 1H).
13C NMR (125 MHz, DMSO-d6, δ): (ppm) 169.69, 154.98, 150.86, 147.29, 146.71, 145.74, 140.39, 139.78, 133.73, 130.93, 130.59, 129.36, 128.35, 127.67, 127.41, 126.74, 124.20, 123.99, 122.69, 118.18. 13 C NMR (125 MHz, DMSO-d 6 , δ): (ppm) 169.69, 154.98, 150.86, 147.29, 146.71, 145.74, 140.39, 139.78, 133.73, 130.93, 130.59, 129.36, 128.35, 127.67, 127.41, 126.74, 126.74 124.20, 123.99, 122.69, 118.18.
HRMS: C40H28F6IrN4P에 대한 이론 수치, 902.1585; 실험 수치, 902.1602HRMS: theoretical figures for C 40 H 28 F 6 IrN 4 P, 902.1585; Experimental Figure, 902.1602
<실시예 5> 광물리적 특성Example 5 Mineral Physical Properties
착물 5 및 7의 광물리적 성질을 하기 표 1 및 도 2에 제시한다. 2-MeTHF(2-methyltetrahydrofuran)내 각 화합물의 흡수 스펙트럼은 250 및 300 ㎚ 사이의 스펙트럼의 자외선 부위에서 집중적 밴드(ε>104 M-1-1)를 나타낸다. 이들 밴드들은 C^N 및 N^N 리간드 모두에서 스핀-허용딘 1π-π* LC(ligand-centered) 전이에 해당한다(도 1). 300 및 500 ㎚ 범위의 낮은 에너지 흡수 특징은 스핀-허용 및 스핀-금지된 MLCT(metal-to-ligand charge transfer) 전이와 연관된다(도 2). 도 2a는 2-MeTHF 용액내 및 순수한 필름으로서 착물 5의 방출 스펙트럼 및 각각 ECL 및 FL 스펙트럼을 나타낸다. 착물 5의 순수한 필름의 PL 스펙트럼의 방출 최대(λmax=580 ㎚)는 용액 스펙트럼의 방출 최대(λmax=570 ㎚, φPL=0.14)에 비교하여 약간 적색편이 된다. 이것은 자기조립(self-aggregation)에 기인된다고 판단된다. 착물 5내 ECL이 또한 상기 착물의 산화 및 환원에 상응하는 펄스된 전압 적용하에서 관찰되었다: 상기 용액은 0.025 mM 착물 5 및 아세토나이트릴(acetonitrile)내 지지 전해질인 0.1 M TBAPF6로 구성되었다. 산화환원 전구체(precursor) 사이의 재조합(recombination)이 상기 착물의 여기 상태를 생성하였고, 연속된 방출을 N2-냉각 CCD 카메라로 탐지하였다. 상기 ECL 스펙트럼(λmax=600 ㎚)은 다른 용매 극성 때문에 약간 적색편이 되었다. 이것은 동일한 3MLCT가 아마 소멸(annihilation) 과정동안에 발생함을 의미한다. 그러나, 용액 PL에 비교하여 착물 5의 상기 EL 방출 최대(λmax=640 ㎚)는 약 70 ㎚ 정도 급격히 적색편이 된다. 도 2b는 또한 상기 PL 스펙트럼의 방출 최대(λmax=550 ㎚, φPL=0.31)에 비교되는 착물 7의 EL 방출 최대(λmax=600 ㎚)의 적색편이를 나타낸다. 이러한 LEC에 대한 흥미로운 스펙트럼 편이 효과는 이전에 몇 번 보고되었다([7] a) J.D. Slinker, et. al., J. Am. Chem. Soc. 2004, 126, 2763. [10] H.J. Bolink, et. al., J. Mater. Chem. 2007, 17, 5032. [11] Y.-M. Wang, et. al., Appl. Phys. Lett. 2005, 87, 233512. [15] C. Yin, et. al., Chem. Mater. 2000, 12, 1853.). 비록 상기 편이의 원인은 불명확하지만, 본 발명자들은 이것은 Wang 등(11] Y.-M. Wang, et. al., Appl. Phys. Lett. 2005, 87, 233512.)에 의하여 제안된 바와 같이, 상기 장치내 높은 전기장하에서 분자 오비탈의 분극화(polarization) 효과 때문이라고 판단한다.The photophysical properties of complexes 5 and 7 are shown in Table 1 and FIG. 2 below. The absorption spectrum of each compound in 2-MeTHF (2-methyltetrahydrofuran) shows a concentrated band (ε> 10 4 M −1 cm −1 ) in the ultraviolet region of the spectrum between 250 and 300 nm. These bands correspond to spin-allowing 1π-π * ligand-centered (LC) transitions in both C ^ N and N ^ N ligands (FIG. 1). Low energy absorption characteristics in the 300 and 500 nm range are associated with spin-allowed and spin-inhibited metal-to-ligand charge transfer (MLCT) transitions (FIG. 2). 2A shows the emission spectra and ECL and FL spectra, respectively, of Complex 5 in 2-MeTHF solution and as pure film. The emission maximum (λ max = 580 nm) of the PL spectrum of the pure film of complex 5 is slightly reddish compared to the emission maximum (λ max = 570 nm, φ PL = 0.14) of the solution spectrum. It is believed that this is due to self-aggregation. ECL in complex 5 was also observed under pulsed voltage application corresponding to oxidation and reduction of the complex: The solution consisted of 0.025 mM complex 5 and 0.1 M TBAPF 6 , the supporting electrolyte in acetonitrile. Recombination between the redox precursors produced the excited state of the complex, and continuous release was detected with an N 2 -cooled CCD camera. The ECL spectrum (λ max = 600 nm) was slightly reddish due to different solvent polarities. This means that the same 3 MLCTs probably occur during the annihilation process. However, compared to the solution PL, the EL emission maximum (λ max = 640 nm) of the complex 5 rapidly becomes a red piece by about 70 nm. 2B also shows the red shift of the EL emission maximum (λ max = 600 nm) of complex 7 compared to the emission maximum (λ max = 550 nm, φ PL = 0.31) of the PL spectrum. Interesting spectral shift effects on these LECs have been reported several times before [7] a) JD Slinker, et. al., J. Am. Chem. Soc. 2004, 126, 2763. [10] HJ Bolink, et. al., J. Mater. Chem. 2007, 17, 5032. [11] Y.-M. Wang, et. al., Appl. Phys. Lett. 2005, 87, 233512. [15] C. Yin, et. al., Chem. Mater. 2000, 12, 1853.). Although the cause of the shift is unclear, we believe that this is suggested by Wang et al. (11) Y.-M. Wang, et. Al., Appl. Phys. Lett. 2005, 87, 233512. It is believed that this is due to the polarization effect of molecular orbitals under high electric field in the device.
표 1
λmaxPL[a][㎚] φpL[b] λmaxEL[a][㎚] Llum[d][cd/㎡] Vturn-on tmin[e]
5 570 0.14 640 990 3.6 0.5
7 550 0.31 600 1213 5.4 30
Table 1
λ maxPL [a] [nm] φ pL [b] λ maxEL [a] [nm] L lum [d] [cd / ㎡] V turn-on t min [e]
5 570 0.14 640 990 3.6 0.5
7 550 0.31 600 1213 5.4 30
<Ir 착물의 광물리 및 장치 성질>Mineral and Physical Properties of Ir Complexes
[a] 0.02 mM 2-MeTHF 용액내에서 측정.[a] Measurement in 0.02 mM 2-MeTHF solution.
[b] 2-MeTHF 용액에서 양자 효율측정을 수행하였다. 기준으로 (pq)2Iracac의 용액(2-MeTHF내 φpL=0.10)을 사용하였다(14] S. Lamansky, et. al., J. Am. Chem. Soc. 2001, 123, 4304).).[b] Quantum efficiency measurements were performed in 2-MeTHF solution. Based on the (pq) 2 Iracac a solution (2-MeTHF within φ pL = 0.10) was used in (14] S. Lamansky, et. Al., J. Am. Chem. Soc. 2001, 123, 4304).) .
[c] LEC 장치의 EL 스펙트럼은 -5 V에서 측정되었다.[c] The EL spectrum of the LEC device was measured at -5 V.
[d] 5 및 7에 대한 최대 밝기는 각각 -6.8 V 및 -7.6 V이었다.[d] The maximum brightness for 5 and 7 was -6.8 V and -7.6 V, respectively.
[e] 일정한 전압 -3 V에서 1 cd/㎡에 도달하는데 필요한 시간이다.[e] Time required to reach 1 cd / m 2 at constant voltage −3 V.
아울러, methylene chloride내 0.02 mM 화합물 3의 UV 및 PL 스펙트럼을 측정하였다(도 26).In addition, UV and PL spectra of 0.02 mM Compound 3 in methylene chloride were measured (FIG. 26).
<실시예 6> 전기화학적 특성 - 순환 전류전압법(Cyclic voltammetry)Example 6 Electrochemical Properties-Cyclic Voltammetry
acetonitrile 용액(1.0 mM)내 순환 전류전압법(scan rate 100 mVs-1)에 의해 착물의 산화 및 환원 포텐셜을 측정하였다. 작동 전극(working electrode) 및 상대 전극(counter electrode)으로 각각 유리탄소 전극(glassy carbon electrode) 및 백금전선(platinum wire)을 사용하였다. 모든 포텐셜은 Ag/AgCl(포화) 기준전극을 기준으로 기록되었다. 지지 전해질로 TBAPF6(tetran-butylammonium hexafluorophosphate) 0.1 M을 사용하여 산화 CV를 수행하였다.The oxidation and reduction potential of the complex was measured by cyclic voltammetry (scan rate 100 mVs −1 ) in acetonitrile solution (1.0 mM). Glassy carbon electrodes and platinum wires were used as working electrodes and counter electrodes, respectively. All potentials were recorded based on Ag / AgCl (saturated) reference electrode. Oxidation CV was performed using 0.1 M of TBAPF 6 (tetran-butylammonium hexafluorophosphate) as a supporting electrolyte.
구체적으로, 지지 전해질로서 0.1 M TBAPF6을 갖는 CH3CN 용액(1.0 mM)내 순환 전류전압법(cyclic voltammetry)(스캔 속도: 0.2 V s-1)을 사용하여 상기 화합물의 전기화학적 성질을 연구하였다. 작동 전극으로 유리탄소 전극(glassy carbon electrode)을 사용하였고, 유사-기준 전극(Ag quasi-reference electrode)에 대해서 기록되었다. 모든 포텐셜 수치는 ferrocene/ferrocenium(Fc/Fc+) 산화환원 쌍에 대해서 보정되었다. 비록 착물 5 및 7이 동일한 주요 리간드를 갖지만, 그들의 산화 및 환원 포텐셜은 달랐다. 5에 대한 산화 및 환원 포텐셜은 각각 0.92 및 1.75 V인 반면에, 7에 대한 산화 및 환원 포텐셜은 1.29 및 1.45 V였다(표 2). 이러한 차이는 보조 리간드의 다른 π-수용기 능력으로부터 유래된다. 7의 이리디움 금속 중심은 5의 이리디움 금속 중심보다 전자 결여된 환경을 갖는다. 이것은 2개의 질소를 갖는 7의 bpy가 하나의 질소를 갖는 5의 picolinic acid(pic) 단위보다 더 나은 π-수용기로 작용하기 때문이다. 그 결과로서, 7의 산화 포텐셜은 5의 산화 포텐셜보다 더 높다. 또한, 7의 환원 포텐셜은 5의 환원 포텐셜보다 더 낮다. 이것은 앞서 보고된 DFT 계산 및 실험 결과에 기초하여 π* 오비탈의 에너지가 pic>pq>bpy의 순서로 감소되기 때문이다([9] a) F.D. Angelis, et. al. Inorg. Chem. 2007, 46, 5989. b) C. Dragonetti, et. al. Inorg. Chem. 2007, 46, 8533. [18] a) K. K.-W. et. al. Inorg. Chem. 2003, 42, 6886. b) K. K.-W. et. al. Inorg. Chim. Acta 2004, 357, 3109.). 이것은 착물 5의 LUMO가 pq 리간드에 잔류하는 반면에 착물 7의 LUMO는 bpy 리간드에 있음을 의미한다. 그러나, 5 및 7에 대한 전기화학 밴드 간격(ΔEφ=Eox-Ered)은 서로 유사하다(2.67 eV 및 2.75 eV). 산화 과정은 5에 대한 피크 전류율(peak current ratio)(ipc/ipa) 및 피크 분리(peak separation)(ΔEpp)가 각각 0.42 및 83 mV인 반면에, 7에 대한 그것은 0.54 및 126 mV였음을 나타낸다. 착물 5 및 7 모두 피크 전류율(즉, 산화시에 ipc/ipa 및 환원시에 ipa/ipc) 및 피크-피크(peak-to-peak) 분리(ΔEpp)에 관하여 산화 및 환원시에 모두 유사-가역 단일-전자-과정(quasi-reversible one-electron-process)을 나타낸다(도 3). 여기 상태가 산화환원 쌍의 전기화학적 재조합에 의하여 생성되므로, 착물의 유사-가역적 전기화학은 효율적 LEC 장치를 위한 중요한 조건이다.Specifically, electrochemical properties of the compound were studied using cyclic voltammetry (scan rate: 0.2 V s -1 ) in CH 3 CN solution (1.0 mM) with 0.1 M TBAPF 6 as a supporting electrolyte. It was. A glassy carbon electrode was used as the working electrode and was recorded for the Ag quasi-reference electrode. All potential values were corrected for ferrocene / ferrocenium (Fc / Fc + ) redox pairs. Although complexes 5 and 7 have the same major ligands, their oxidation and reduction potentials were different. The oxidation and reduction potentials for 5 were 0.92 and 1.75 V, respectively, while the oxidation and reduction potentials for 7 were 1.29 and 1.45 V (Table 2). This difference is derived from the other π-receptor capacity of the auxiliary ligand. The iridium metal center of 7 has an electron lacking environment than the iridium metal center of 5. This is because the bpy of 7 with two nitrogens acts as a better π-receptor than the picolinic acid (pic) unit of 5 with one nitrogen. As a result, the oxidation potential of 7 is higher than that of 5. In addition, the reduction potential of 7 is lower than the reduction potential of 5. This is because, based on the previously reported DFT calculations and experimental results, the energy of π * orbital is reduced in the order of pic>pq> bpy (9) a) FD Angelis, et. al. Inorg. Chem. 2007, 46, 5989. b) C. Dragonetti, et. al. Inorg. Chem. 2007, 46, 8533. [18] a) KK-W. et. al. Inorg. Chem. 2003, 42, 6886. b) KK-W. et. al. Inorg. Chim. Acta 2004, 357, 3109.). This means that the LUMO of complex 5 remains in the pq ligand while the LUMO of complex 7 is in the bpy ligand. However, the electrochemical band spacings (ΔE φ = E ox −E red ) for 5 and 7 are similar to each other (2.67 eV and 2.75 eV). The oxidation process has a peak current ratio (i pc / i pa ) and peak separation (ΔE pp ) for 5, respectively, 0.42 and 83 mV, whereas for 7, it is 0.54 and 126 mV. Indicates that Complexes 5 and 7 both oxidize and reduce with respect to peak current rates (ie i pc / i pa on oxidation and i pa / i pc on reduction) and peak-to-peak separation (ΔE pp ) The poems all exhibit quasi-reversible one-electron-process (FIG. 3). Since the excited state is produced by electrochemical recombination of redox pairs, pseudo-reversible electrochemistry of the complex is an important condition for efficient LEC devices.
표 2
Compl 산화과정 환원과정
Eox o, V ipc/ipa ΔEpp , V Ered o, V ipc/ipa ΔEpp , V
5 0.92 0.42 0.083 -1.75 0.32 0.074
7 1.29 0.54 0.126 -1.45 0.95 0.070
TABLE 2
Compl Oxidation process Reduction Process
E ox o , V i pc / i pa ΔE pp , V E red o , V i pc / i pa ΔE pp , V
5 0.92 0.42 0.083 -1.75 0.32 0.074
7 1.29 0.54 0.126 -1.45 0.95 0.070
<Ir 착물의 전기화학 데이터[a]><Electrochemical Data of Ir Complexes [a]>
[a] 모든 전기화학 데이터는 0.1 M TBAPF6을 포함하는 CH3CN 용액의 실온에서 측정되었다.[a] All electrochemical data were measured at room temperature of CH 3 CN solution containing 0.1 M TBAPF 6 .
아울러, 착물 3의 순환 전류전압곡선(도 27), 착물 5의 순환 전류전압곡선(도 28) 및 착물 7의 순환 전류전압곡선(도 29)을 확인하였다.In addition, the cyclic current voltage curve of the complex 3 (FIG. 27), the cyclic current voltage curve of the complex 5 (FIG. 28), and the cyclic current voltage curve of the complex 7 (FIG. 29) were confirmed.
<실시예 7> 장치(Device) 연구 - AFM 이미지Example 7 Device Study-AFM Image
<7-1> 장치 제조<7-1> Device Manufacturing
<7-1-1> 장치 5<7-1-1> Device 5
1 ㎖의 ethoxyethanol내 20 ㎎의 5를 0.5 ㎖ CHCl3내 PEO 20 ㎎과 혼합하였다. 5 s 동안 500 rpm, 30 s 동안 1500 rpm, 및 10 sec 동안 700 rpm으로 단계적인 스피딩(speeding)으로 경박 필름을 ITO 전극에 스핀-캐스트(spin-cast)하였다. 그리고 나서, 상기 경박 필름에 100 ㎚ 두께로 Au를 침착시켰다.20 mg of 5 in 1 ml of ethoxyethanol was mixed with 20 mg of PEO in 0.5 ml CHCl 3 . The thin film was spin-cast to the ITO electrode with stepwise speeding at 500 rpm for 5 s, 1500 rpm for 30 s, and 700 rpm for 10 sec. Then, Au was deposited on the thin film at a thickness of 100 nm.
<7-1-2> 장치 7<7-1-2> Device 7
CH2Cl2(0.5 ㎖) 및 dichlorobenzene(0.5 ㎖)내 용해된 30 ㎎의 7을 0.5 ㎖ CHCl3내 PEO 10 ㎎과 혼합하였다. 다른 절차는 상기 5의 절차와 동일하다.30 mg of 7 dissolved in CH 2 Cl 2 (0.5 mL) and dichlorobenzene (0.5 mL) was mixed with 10 mg of PEO in 0.5 mL CHCl 3 . The other procedure is the same as that of 5 above.
<7-2> 장치 연구<7-2> device research
5 및 7을 갖는 LEC 장치는 다음의 구성을 사용하여 제조되었다: ITO/5(20 ㎎)+PEO(20 ㎎)(100-110 ㎚)/Au 및 ITO/7(30 ㎎)+PEO(10 ㎎)(100-110 ㎚)/Au. 상기 물질의 다른 극성으로부터 결과되는 상분리 때문에, 활성층을 위한 다른 조건이 사용되었다. AFM 이미지(도 4a)에 제시된 바와 같이, 대략 4 ㎚의 표준편차(root-mean-square, RMS) 거칠기를 갖는 100-110 ㎚ 두께를 갖는 순수한 필름(5 또는 7+PEO)이 얻어졌다. 극성 sulfonate 그룹이 극성 용매(2-ethoxyethanol)에 대한 용해도 및 PEO와 함께 혼화성을 증가시켰다. 이것이 좋은 외관을 갖는 착물 5를 유발시켰다. DCM(dichloromethane)내 착물 7의 필름은 약간 거친 외관(대략 8 ㎚의 RMS 거칠기)을 나타내지만 상기 필름내에서 핀구멍(pinhole)이 관찰(도 4b)되는 반면에, 어떠한 방출도 관찰되지 않았다. 상기 시료내 구멍의 정도를 최소화하기 위하여, 상호용제(cosolvent)로 DCB(dichlorobenzene)를 사용하였다. 그 결과로서, 어떠한 구멍 및 어떠한 특정한 집적 특징 또는 어떠한 상분리를 갖는 단일 스핀-코팅된 박막(spin-coated thin film)(대략 4 ㎚ RMS)이 도 4c에 제시된 바와 같이 얻어질 수 있고, 이것은 바이어스하에서 빛을 방출할 수 있다.LEC devices with 5 and 7 were prepared using the following configuration: ITO / 5 (20 mg) + PEO (20 mg) (100-110 nm) / Au and ITO / 7 (30 mg) + PEO (10 Mg) (100-110 nm) / Au. Because of the phase separation resulting from the different polarities of the materials, different conditions for the active layer were used. As shown in the AFM image (FIG. 4A), a pure film (5 or 7 + PEO) having a thickness of 100-110 nm with a root-mean-square (RMS) roughness of approximately 4 nm was obtained. The polar sulfonate groups increased the solubility in polar solvents (2-ethoxyethanol) and miscibility with PEO. This led to complex 5 having a good appearance. The film of complex 7 in dichloromethane (DCM) had a slightly rough appearance (approximately 8 nm RMS roughness) but no pinholes were observed in the film, whereas no emission was observed. In order to minimize the degree of pores in the sample, DCB (dichlorobenzene) was used as a cosolvent. As a result, a single spin-coated thin film (approximately 4 nm RMS) with any holes and any particular integration features or any phase separation can be obtained as shown in FIG. 4C, which is under bias Can emit light.
LEC 장치에서, 상기 짝 이온의 크기는 전극에서 전기장의 생성 속도를 조절하는 가장 중요한 인자중의 하나라고 알려졌다. 본 발명자들은 Na+와 같은 작은 양이온이 보다 큰 짝 음이온보다 더 빨리 전기장을 생성한다고 판단한다. 그러므로, 작은 양이온은 작동 시간을 감소시킬 수 있다. 도 5는 제조된 장치에 대한 광출력 대 전압을 비교한다. 전압이 증가함에 따라, 착물 5는 3.6 V에서 적색광을 방출하고, 이것은 이것의 전기적 간극보다 약간 더 높다(ΔEφ=2.67 eV). 이러한 편차는 역 바이어스하에서 Na+가 전극에 도달하기 위하여 필요한 시간 때문이다. 그러나, 상기 작동 전압이상에서, 착물 5는 전압이 증가함에 따라 OLED와 유사하게 계속적으로 빛을 방출하였다. 대비되게, 비록 착물 7에 대한 전기화학 간극(ΔEφ=2.75 eV)은 유사하지만, 착물 7은 착물 5보다 더 높은 작동 전압(5.4 V)을 필요로 하였다. 이러한 결과는 짝 음이온(PF6 -)이 Na+에 비교하여 전극에 도달하기 위한 보다 긴 시간을 필요로 한다. 도달된 최대 발광(luminance)은 5에 대하여 6.8 V에서 0.23 cd A-1의 전류 효율을 갖는 990 cd m-2이었고, 착물 7에 대해서는 7.6 V에서 0.23 cd A-1의 전류 효율을 갖는 1210 cd m-2이었다.In LEC devices, the size of the counter ion is known to be one of the most important factors controlling the rate of generation of the electric field at the electrode. We believe that small cations, such as Na + , generate an electric field faster than larger counter anions. Therefore, small cations can reduce operating time. 5 compares light output versus voltage for the fabricated device. As the voltage increases, complex 5 emits red light at 3.6 V, which is slightly higher than its electrical gap (ΔE φ = 2.67 eV). This deviation is due to the time required for Na + to reach the electrode under reverse bias. However, above this operating voltage, complex 5 continued to emit light similarly to the OLED as the voltage increased. In contrast, although the electrochemical gap (ΔE φ = 2.75 eV) for complex 7 was similar, complex 7 required a higher operating voltage (5.4 V) than complex 5. This result requires a longer time for the counter anion (PF 6 ) to reach the electrode as compared to Na + . The maximum luminescence reached was 990 cd m -2 with a current efficiency of 0.23 cd A -1 at 6.8 V for 5 and 1210 cd with a current efficiency of 0.23 cd A -1 at 7.6 V for complex 7 m -2 .
정(forward) 바이어스하에서, 작동 전압은 착물 5의 경우에 4.8 V였고, 착물 7의 경우에 5.4 V였다. 착물 5에 대한 다른 작동 전압(3.6 및 4.8 V)의 원인은 불명확하지만, 본 발명자들은 이것이 Au 및 Na+ 사이의 일종의 반발력때문 일 것이라 판단한다. 그러므로, Na+ 이온은 정 바이어스 하에서 Au 전극에 도달하는데 더 많은 시간을 필요로 할 것이다.Under forward bias, the operating voltage was 4.8 V for complex 5 and 5.4 V for complex 7. The cause of the different operating voltages (3.6 and 4.8 V) for complex 5 is unclear, but we believe that this may be due to some sort of repulsion between Au and Na + . Therefore, Na + ions will need more time to reach the Au electrode under positive bias.
LECs의 명확한 특징은 이들이 전기화학 간극에 밀접한 바이어스 전압에서 작동할 수 있다는 점이다([8] H.-C. Su, et. al. Adv. Funct. Mater. 2007, 17, 1019.). 그러므로, 착물 5 및 7에 기초한 장치를 그들의 전기화학 간극에 유사한 3 V의 바이어스 하에서 테스트하였다. 시간-의존 밝기가 도 6에 제시된다. 1 cd m-2에 도달하는데 필요한 작동 시간은 일정한 3 V에서 두 착물에 있어서 매우 달랐다. 착물 5는 적색광을 방출하는데 0.5분 이하가 걸린데 반하여, 착물 7은 동일 광을 방출하는데 30분을 필요로 하였다. 보다 빠른 짝 이온 분포시간 때문에, 착물 5는 착물 7보다 더 빠른 반응시간을 나타내었다. 본 발명자들의 현재의 지식한도에서, LECs에 대한 이리디움 착물에 기초한 보고된 가장 빠른 반응 시간은 2.5분이다([9] e) E. Zysman-Colman, et. al. Chem. Mater. 2008, 20, 388.). 이러한 결과에 비추어 볼때, 착물 5는 5배 이상 향상된 반응 시간을 나타내었다. 증가되는 전류에 따라, 밝기는 75분 이후에 착물 5의 경우에 27 cd m-2의 최대에 도달하였다. 한편, 착물 7은 30 cd m-2의 최대 발광에 도달하는데 210분을 필요로 하였다. 추가하여, 중성 Ir 착물 5는 이온 Ir 착물 7보다 더 나은 장치 안정성을 나타내었다(도 6). 이전의 보고에서, 짝 음이온 크기의 감소됨에 따라 작동 시간은 향상되지만, 장치 안정성은 감소된다고 제시되었다([3] c) F.G. Gao, & A.J. Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc. 2002, 124, 4918. [7] b) S.T. Parker, J. et. al., Chem. Mater. 2005, 17, 3187.). 대비되게, 본 발명자들은 보다 짧은 반응시간 뿐만 아니라 보다 나은 안정성도 얻었다. 상기 장치의 수명(수명은 일정한 바이어스하에서 장치의 밝기가 최대치에서 반으로 decay하는데 걸리는 시간으로 정의된다.)은 착물 5에서는 3 h이었고, 착물 7에서는 0.5 h이었다.A distinctive feature of LECs is that they can operate at bias voltages close to the electrochemical gap ([8] H.-C. Su, et. Al. Adv. Funct. Mater. 2007, 17, 1019.). Therefore, devices based on complexes 5 and 7 were tested under a bias of 3 V similar to their electrochemical gap. Time-dependent brightness is shown in FIG. 6. The operating time required to reach 1 cd m −2 was very different for both complexes at a constant 3V. Complex 5 took less than 0.5 minutes to emit red light, while complex 7 required 30 minutes to emit the same light. Because of the faster counter ion distribution time, complex 5 showed a faster reaction time than complex 7. In our present knowledge limit, the fastest reported reaction time based on iridium complexes for LECs is 2.5 minutes ([9] e) E. Zysman-Colman, et. al. Chem. Mater. 2008, 20, 388.). In view of these results, complex 5 showed a reaction time that was more than five times improved. With increasing current, the brightness reached a maximum of 27 cd m −2 for complex 5 after 75 minutes. On the other hand, complex 7 required 210 minutes to reach the maximum light emission of 30 cd m −2 . In addition, the neutral Ir complex 5 showed better device stability than the ionic Ir complex 7 (FIG. 6). In previous reports, it has been shown that operating time improves with decreasing counter anion size, but device stability decreases ([3] c) FG Gao, & AJ Bard, J. Am. Chem. Soc. 2000, 122, 7426. d) H. Rudmann, et. al., J. Am. Chem. Soc. 2002, 124, 4918. [7] b) ST Parker, J. et. al., Chem. Mater. 2005, 17, 3187.). In contrast, the inventors obtained better stability as well as shorter reaction times. The lifetime of the device (life is defined as the time it takes for the brightness of the device to decay in half at maximum under constant bias) was 3 h in complex 5 and 0.5 h in complex 7.
이를 위하여, Ir 착물의 장치 데이터 및 AFM 데이터를 확인하였다(도 11 내지 도 16). 상기 도면에 제시된 LEC 장치 데이터는 하기 표 3으로 요약될 수 있다.For this purpose, the device data and AFM data of the Ir complex were confirmed (FIGS. 11-16). The LEC device data presented in the figure can be summarized in Table 3 below.
표 3
Reverse bias Forward bias
turn-on volt (V) Luminancemax(cd/m2) turn-on volt (V) Luminancemax(cd/m2)
pqirpicosna -3.6 990 5.0 35
pqirpicoh -3.6 190 3.2 94
pqirbpy -5.4 1213 5.4 385
TABLE 3
Reverse bias Forward bias
turn-on volt (V) Luminance max (cd / m 2 ) turn-on volt (V) Luminance max (cd / m 2 )
pqirpicosna -3.6 990 5.0 35
pqirpicoh -3.6 190 3.2 94
pqirbpy -5.4 1213 5.4 385
<Ir 착물의 LEC 장치 데이터> <LEC device data of Ir complex>
또한, 전압의 함수로서 착물 5로 제조된 LED 장치의 전류 밀도(도 30), 전압의 함수로서 착물 5로 제조된 LED 장치의 발광(도 31), 전압의 함수로서 착물 7로 제조된 LED 장치의 전류 밀도(도 32), 전압의 함수로서 착물 7로 제조된 LED 장치의 발광(도 33), 2-ethoxyethanol내 착물 5 및 PEO의 혼합 필름의 AFM 이미지(도 34), dichloromethane내 착물 7 및 PEO의 혼합 필름의 AFM 이미지(도 35) 및 dichloromethane: dichloeobenzene(1:1)내 착물 7 및 PEO의 혼합 필름의 AFM 이미지(도 36)를 확인하였다.Further, the current density of the LED device made of complex 5 as a function of voltage (FIG. 30), the light emission of the LED device made of complex 5 as a function of voltage (FIG. 31), the LED device made of complex 7 as a function of voltage Current density (FIG. 32), luminescence of the LED device made with complex 7 as a function of voltage (FIG. 33), AFM image of complex 5 and complex film of PEO (FIG. 34), complex 7 in dichloromethane and An AFM image (FIG. 35) of the mixed film of PEO and an AFM image (FIG. 36) of the mixed film of complex 7 and PEO in dichloromethane: dichloeobenzene (1: 1) were confirmed.
한편, 본 발명의 구체적 범위는 상기 기술한 실시예 보다는 특허청구범위에 의하여 한정지어지며, 특허청구 범위의 의미와 범위 및 그 등가적 개념으로 도출되는 모든 변경 및 변형된 형태를 본 발명의 범위로 포함하여 해석하여야 한다.On the other hand, the specific scope of the present invention is defined by the claims rather than the embodiments described above, all changes and modifications derived from the meaning and scope and equivalent concepts of the claims to the scope of the invention It should be interpreted as including.

Claims (10)

  1. 리간드가 결합된 중성 이리디움 착물에 있어서, 하기의 구조식 1을 갖는 빠른 반응성의 발광 전기화학 전지(LECs; Light-emitting electrochemical cells) 소자용 착물:In a neutral iridium complex to which a ligand is bound, a complex for a fast reactive light-emitting electrochemical cells (LECs) device having the structure
    <구조식 1><Structure 1>
    [L1]2IrL2 [L 1 ] 2 IrL 2
    (여기서, L1은 Ir에 결합하는 주요 리간드이고, L2는 Ir에 결합하는 보조 리간드로서 부속(pendent; 메달린) 짝 양이온(counter cation)을 갖는 것임)(Wherein L 1 is a major ligand that binds Ir and L 2 is a secondary ligand that binds Ir and has a pendant counter cation)
  2. 제 1항에 있어서, 상기 부속 짝 양이온은 Na+, Li+, K+ 및 Cs+로 이루어진 군중에서 선택되는 것을 특징으로 하는 LEC 소자용 착물.The complex for a LEC device according to claim 1, wherein the accessory partner cation is selected from the group consisting of Na + , Li + , K + and Cs + .
  3. 제 2항에 있어서, 상기 착물은 하기 구조식 2의 군으로부터 선택되는 것을 특징으로 하는 LEC 소자용 착물:The complex for an LEC device according to claim 2, wherein the complex is selected from the group of Structural Formula 2:
    <구조식 2><Formula 2>
    Figure PCTKR2009004238-appb-I000014
    Figure PCTKR2009004238-appb-I000014
    (여기서, R1 내지 R4는 각각 독립적으로 수소, 알킬그룹, 또는 페닐(phenyl) 그룹이고, R5 내지 R8은 각각 독립적으로, H, 알킬그룹, F, 또는 CF3이고, M+은 Na+, Li+, K+ 및 Cs+로 이루어진 군중에서 선택되고, n은 1 내지 20 이다)Wherein R 1 to R 4 are each independently hydrogen, an alkyl group, or a phenyl group, R 5 to R 8 are each independently H, an alkyl group, F, or CF 3 , and M + is Is selected from the group consisting of Na + , Li + , K + and Cs + , n is 1 to 20)
  4. 제 2항에 있어서, 상기 착물은 하기 구조식 3 내지 7로 이루어진 군 중에서 선택된 것을 특징으로 하는 LEC 소자용 착물:The complex for a LEC device according to claim 2, wherein the complex is selected from the group consisting of the following Chemical Formulas 3 to 7:
    <구조식 3><Structure 3>
    Figure PCTKR2009004238-appb-I000015
    Figure PCTKR2009004238-appb-I000015
    <구조식 4><Structure 4>
    Figure PCTKR2009004238-appb-I000016
    Figure PCTKR2009004238-appb-I000016
    <구조식 5><Structure 5>
    Figure PCTKR2009004238-appb-I000017
    Figure PCTKR2009004238-appb-I000017
    <구조식 6><Structure 6>
    Figure PCTKR2009004238-appb-I000018
    Figure PCTKR2009004238-appb-I000018
    <구조식 7><Structure 7>
    Figure PCTKR2009004238-appb-I000019
    Figure PCTKR2009004238-appb-I000019
    (여기에서, M+은 Na+, Li+, K+ 및 Cs+로 이루어진 군중에서 선택되고, n은 1 내지 20 이다)(Wherein M + is selected from the crowd consisting of Na + , Li + , K + and Cs + , and n is 1 to 20)
  5. 제 4항에 있어서, 상기 착물은 하기 구조식 8인 것을 특징으로 하는 LEC 소자용 착물.The complex for a LEC device according to claim 4, wherein the complex is of the following Structural Formula 8.
    <구조식 8><Structure 8>
    Figure PCTKR2009004238-appb-I000020
    Figure PCTKR2009004238-appb-I000020
  6. 제 1항 내지 제 5항 중 어느 한 항에 있어서, 상기 착물은 부속(pendant) 양이온 전달을 통해서 빠른 반응성을 나타내는 것을 특징으로 하는 LEC 소자용 착물.6. The complex for an LEC device according to claim 1, wherein the complex exhibits rapid reactivity through pendant cation transfer. 7.
  7. 제 1항 내지 제 5항 중 어느 한 항의 착물의 제조방법.A method for producing a complex of any one of claims 1 to 5.
  8. 제 7항에 있어서, 상기 착물은 도식 1 및 도식 2와 같은 방법을 통해 제조되는 것을 특징으로 하는 착물의 제조방법.8. The method of claim 7, wherein the complex is prepared by the same method as in Scheme 1 and Scheme 2.
    <도식 1>Scheme 1
    Figure PCTKR2009004238-appb-I000021
    Figure PCTKR2009004238-appb-I000021
    <도식 2>Scheme 2
    Figure PCTKR2009004238-appb-I000022
    Figure PCTKR2009004238-appb-I000022
  9. 제 1항 내지 제 5항 중 어느 한 항의 착물을 이용한 빠른 반응성의 LEC 소자.A fast reactive LEC device using the complex of any one of claims 1 to 5.
  10. 제 9항에 있어서, 상기 소자는 ITO/착물+PEO(polyethylene oxide)(100-110 ㎚)/Au인 것을 특징으로 하는 LEC 소자.10. The LEC device of claim 9, wherein the device is ITO / complex + polyethylene oxide (PEO) (100-110 nm) / Au.
PCT/KR2009/004238 2009-07-29 2009-07-29 Neutral iridium complex for device of light-emitting electrochemical cells having rapid reactivity through cation transfer and method for producing same WO2011013863A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/004238 WO2011013863A1 (en) 2009-07-29 2009-07-29 Neutral iridium complex for device of light-emitting electrochemical cells having rapid reactivity through cation transfer and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/004238 WO2011013863A1 (en) 2009-07-29 2009-07-29 Neutral iridium complex for device of light-emitting electrochemical cells having rapid reactivity through cation transfer and method for producing same

Publications (1)

Publication Number Publication Date
WO2011013863A1 true WO2011013863A1 (en) 2011-02-03

Family

ID=43529503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004238 WO2011013863A1 (en) 2009-07-29 2009-07-29 Neutral iridium complex for device of light-emitting electrochemical cells having rapid reactivity through cation transfer and method for producing same

Country Status (1)

Country Link
WO (1) WO2011013863A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190023900A (en) * 2017-08-30 2019-03-08 울산과학기술원 Ionic yiridium complex and polymer solar cell comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004113A2 (en) * 2005-06-30 2007-01-11 Koninklijke Philips Electronics N.V. Electro luminescent metal complexes
US20080200677A1 (en) * 2005-07-08 2008-08-21 Merck Patent Gmbh Metal Complexes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004113A2 (en) * 2005-06-30 2007-01-11 Koninklijke Philips Electronics N.V. Electro luminescent metal complexes
US20080200677A1 (en) * 2005-07-08 2008-08-21 Merck Patent Gmbh Metal Complexes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ELISABETH H. ET AL.: "Iridium(III) Complexs with PEO and PS Polymer Macroligands and Light-Emitting Properties; Synthesis and Characterization", MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 206, 2005, pages 989 - 997 *
KWON, T-H ET AL.: "New Approach Toward Fast Response Light-Emitting Electrochemical Cells Based on Neutral Iridium Complexs via Cation Transport", ADVANCED FUNCTIONAL MATERIALS, vol. 19, 2009, pages 711 - 717, XP001520275, DOI: doi:10.1002/adfm.200801231 *
NEVE, F. ET AL.: "Cationic Cyclometalated Iridium Luminophores: Photophysical, Redox, and Structural Characterization", ORGANOMETALLICS, vol. 23, 2004, pages 5856 - 5863 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190023900A (en) * 2017-08-30 2019-03-08 울산과학기술원 Ionic yiridium complex and polymer solar cell comprising the same
KR102038195B1 (en) * 2017-08-30 2019-10-29 울산과학기술원 Ionic yiridium complex and polymer solar cell comprising the same

Similar Documents

Publication Publication Date Title
TWI548721B (en) Phosphorescent materials
Ho et al. Carbazole-based coplanar molecule (CmInF) as a universal host for multi-color electrophosphorescent devices
CN104974155B (en) Organic electroluminescent material and device
KR102090916B1 (en) Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
WO2012138172A2 (en) Novel organometallic compound, and organic light-emitting diode using same
WO2011081286A2 (en) Novel compound for an organic photoelectric device, and organic photoelectric device including same
WO2016064102A1 (en) Organic electroluminescent device
Chen et al. An ionic terfluorene derivative for saturated deep-blue solid state light-emitting electrochemical cells
KR20170133281A (en) Organic electroluminescent materials and devices
EP2743274A1 (en) Organometallic complexes, organic electroluminescent device, and display using the same
WO2019045252A1 (en) Organic electroluminescent device
Chen et al. Carbazole and benzimidazole/oxadiazole hybrids as bipolar host materials for sky blue, green, and red PhOLEDs
Lv et al. Improved hole-transporting properties of Ir complex-doped organic layer for high-efficiency organic light-emitting diodes
WO2013176521A1 (en) Organic light-emitting device and manufacturing method thereof
WO2012105753A9 (en) Deep-blue phosphorescent iridium complex using an n-methylimidazolyl triazole ancillary ligand
Cao et al. Alkyl effects on the optoelectronic properties of bicarbazole/cyanobenzene hybrid host materials: Double delayed fluorescent host/dopant systems in solution-processed OLEDs
WO2020060283A1 (en) Organic light emitting diode
CN111039987A (en) Organic transition metal complex, polymer, mixture, composition and organic electronic device
WO2018084681A1 (en) Coating composition, method for producing organic electroluminescent device using same, and organic electroluminescent device produced thereby
Maheshwaran et al. High performance solution-processed green phosphorescent organic light-emitting diodes with high current efficiency and long-term stability
Liu et al. Molecular evolution of host materials by regular tuning of n/p ratio for high-performance phosphorescent organic light-emitting diodes
WO2018194277A1 (en) Organic electroluminescent device
Zhang et al. Highly efficient yellow phosphorescent organic light-emitting diodes with novel phosphine oxide-based bipolar host materials
WO2019022546A1 (en) Delayed fluorescence material and organic light emitting device comprising same
WO2011013863A1 (en) Neutral iridium complex for device of light-emitting electrochemical cells having rapid reactivity through cation transfer and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847851

Country of ref document: EP

Kind code of ref document: A1