WO2011013568A1 - Immunosuppressive γδt cell - Google Patents

Immunosuppressive γδt cell Download PDF

Info

Publication number
WO2011013568A1
WO2011013568A1 PCT/JP2010/062335 JP2010062335W WO2011013568A1 WO 2011013568 A1 WO2011013568 A1 WO 2011013568A1 JP 2010062335 W JP2010062335 W JP 2010062335W WO 2011013568 A1 WO2011013568 A1 WO 2011013568A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
antibody
immunosuppressive
γδt
Prior art date
Application number
PCT/JP2010/062335
Other languages
French (fr)
Japanese (ja)
Inventor
椛島健治
大塚篤司
Original Assignee
国立大学法人 京都大学
アステラス製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 京都大学, アステラス製薬株式会社 filed Critical 国立大学法人 京都大学
Publication of WO2011013568A1 publication Critical patent/WO2011013568A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4621Cellular immunotherapy characterized by the effect or the function of the cells immunosuppressive or immunotolerising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/46433Antigens related to auto-immune diseases; Preparations to induce self-tolerance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]

Definitions

  • the present invention relates to ⁇ T cells having immunosuppressive ability, and specifically to immunosuppressive ⁇ T cells expressing CD39 on the cell surface.
  • the immune response is important as a protective response against bacterial infections and malignant tumor cells, that is, infectious immunity and tumor immunity. Is caused. There are still many refractory autoimmune diseases such as rheumatism and collagen diseases, and allergic diseases such as atopic dermatitis and asthma, and the development of treatments for them is required. In organ transplantation, a drug for suppressing an immune response to the transplanted organ is required.
  • CD4 + CD25 + Treg Regulatory CD4 + CD25 + T cells having Foxp3 + as a surface marker are widely known as T cells having a function of suppressing immunity (hereinafter referred to as “CD4 + CD25 + Treg”). Many reports have been made on the relationship with immune tolerance. In CD4 + CD25 + Treg, GITR high cells occupy a large number, and GITR high is regarded as one of the markers of regulatory T cells (Non-patent Document 3).
  • T cells contained in human peripheral blood are occupied by ⁇ T cells, but ⁇ T cells are also present at a rate of several percent.
  • This ⁇ T cell recognizes tumor cells that have abnormally accumulated isopentenyl pyrophosphate (IPP), an intermediate product of mevalotate metabolism, in the cell surface or cell surface as an antigen, and exhibits cytotoxic activity.
  • IPP isopentenyl pyrophosphate
  • Application to cancer cell immunotherapy is being studied.
  • Patent Document 1 discloses a method for obtaining regulatory ⁇ T cells by proliferating lymphocytes isolated from peripheral blood of healthy persons in vitro.
  • regulatory ⁇ T cells expressing Foxp3 were obtained by culturing cells using V ⁇ 9V ⁇ 2 T cell activators such as IL-2, IL-15, TGF- ⁇ and IPP. It has been reported.
  • Non-Patent Document 5 CD4 low / neg CD25 + T cells acquire immunosuppressive ability when cultured for 11 days using an anti-CD3 antibody and IL-2, and the induced CD4 low / neg CD25 + T cells become CD8. Has been reported to have about five times the CD4 + CD25 ⁇ T cell growth inhibitory capacity compared to CD4 + CD25 + Treg cells.
  • Non-Patent Documents 6 to 9 reports that GVHD worsens when ⁇ T cells are administered in graft-versus-host disease (GVHD) (Non-Patent Documents 6 to 9), and conversely, GVHD symptoms improve. (Non-Patent Documents 10 and 11) are mixed. This seems to be due to the fact that the population (subset) of ⁇ T cells having immunosuppressive ability is not properly separated.
  • An object of the present invention is to provide a ⁇ T cell having immunosuppressive ability, a novel marker of ⁇ T cell having immunosuppressive ability, and a method for inducing ⁇ T cells having immunosuppressive ability in vitro.
  • CD39 + ⁇ T cells have CD4 + CD25 ⁇ T cell proliferation inhibitory activity several tens of times that of CD4 + CD25 + Treg.
  • CD39 ⁇ ⁇ T cells can be induced in vitro into CD39 + ⁇ T cells by using a T cell stimulant and IL-2, and have the immunosuppressive ability of the present invention.
  • a method for inducing ⁇ T cells was completed.
  • this invention consists of the following. 1. Immunosuppressive ⁇ T cells expressing CD39 on the cell surface. 2. 2. The ⁇ T cell according to item 1, which is derived from bone marrow. 3. 3. The ⁇ T cell according to item 1 or 2, further expressing CD25 or CD73 on the cell surface. 4). 4. The ⁇ T cell according to any one of items 1 to 3, wherein the cell phenotype is Foxp3 ⁇ CTLA-4 ⁇ GITR + . 5. 5. The ⁇ T cell according to any one of 1 to 4 above, wherein the cell phenotype is CD39 + CD4 ⁇ / low CD25 + CD73 + Foxp3 ⁇ CTLA-4 ⁇ GITR + . 6). 6.
  • a method for preparing an immunosuppressive ⁇ T cell which comprises the following steps: (I) treating lymphocytes with a labeled anti- ⁇ T cell receptor antibody and a labeled anti-CD39 antibody; (Ii) A step of separating and obtaining lymphocytes that bind to an anti- ⁇ T cell receptor antibody and an anti-CD39 antibody. 7). 6.
  • a method for preparing an immunosuppressive ⁇ T cell according to any one of items 3 to 5 including the following steps: (I) treating lymphocytes with a labeled anti- ⁇ T cell receptor antibody, a labeled anti-CD39 antibody, and a labeled anti-CD25 antibody; (Ii) A step of separating and obtaining lymphocytes that bind to an anti- ⁇ T cell receptor antibody, an anti-CD39 antibody and an anti-CD25 antibody. 8).
  • An immunosuppressive ⁇ T cell obtained by the method according to 6 or 7 above.
  • 9. A therapeutic agent for an immune disease caused by an excessive immune reaction, comprising the immunosuppressive ⁇ T cell according to any one of 1 to 5 and 8 as an active ingredient. 10. 7.
  • the therapeutic agent for an immune disease according to item 6 above, wherein the immune disease is an autoimmune disease, an allergic disease or an inflammatory disease.
  • the immune disease is an autoimmune disease, an allergic disease or an inflammatory disease.
  • An inhibitor of immune rejection during organ transplantation comprising the immunosuppressive ⁇ T cell according to any one of 1 to 5 and 8 as an active ingredient.
  • a method for screening for a substance that promotes or suppresses the proliferation of CD4 + CD25 ⁇ T cells comprising the following steps: (1) contacting the immunosuppressive ⁇ T cell and CD4 + CD25 ⁇ T cell according to any one of 1 to 5 above with a test substance in the presence of a dendritic cell; (2) a step of measuring the amount of CD4 + CD25 ⁇ T cells; (3) A step of selecting a test substance when the amount of CD4 + CD25 ⁇ T cells is increased or decreased compared to the absence of the test substance. 13.
  • a method of inducing CD39 + ⁇ T cells by culturing CD39 ⁇ ⁇ T cells in the presence of a T cell stimulating agent and IL-2.
  • T cell stimulant selected from the group consisting of soluble antigen, peptide fragment of antigen, alloantigen, anti-CD2 antibody, anti-CD3 antibody, anti-CD28 antibody, anti- ⁇ TCR antibody, LFA-3, staphylococcal enterotoxin B (SEB) 14.
  • SEB staphylococcal enterotoxin B 14.
  • 15. The method for inducing immunosuppressive ⁇ T cells according to item 13 or 14 above, wherein the T cell stimulating agent is an anti-CD3 antibody.
  • 16. 16 An immunosuppressive ⁇ T cell induced by the method according to any one of 13 to 15 above. 17. 17. 17.
  • a therapeutic agent for an immune disease caused by an excessive immune reaction comprising the immunosuppressive ⁇ T cell according to item 16 as an active ingredient. 18.
  • ⁇ T cells expressing CD39 of the present invention have excellent immunosuppressive ability, therapeutic agents such as autoimmune diseases, allergic diseases and inflammatory diseases caused by excessive or abnormal immune reactions and immunity during organ transplantation Useful as an inhibitor.
  • the immunosuppressive ⁇ T cells of the present invention were measured for dendritic cell (DC) -dependent CD4 + CD25 ⁇ T cell proliferation inhibitory activity.
  • DC dendritic cell
  • CD4 + CD25 + Treg was 1/10 of CD4 + CD25 ⁇ T cells.
  • about 50% of the CD4 + CD25 ⁇ T cell proliferation was suppressed, whereas the immunosuppressive ⁇ T cells of the present invention had an abundance ratio of 1/100 to CD4 + CD25 ⁇ T cells of 80%.
  • CD4 + CD25 ⁇ T cells are known as effector cells for the development of autoimmune diseases. Therefore, the immunosuppressive ⁇ T cells of the present invention have a very high immunosuppressive ability compared to CD4 + CD25 + Treg. By using the immunosuppressive ⁇ T cells of the present invention, an extremely small amount of cells can be used. It is possible to suppress the immune reaction efficiently.
  • a substance that promotes proliferation of CD4 + CD25 - T cells is screened using the immunosuppressive ⁇ T cells of the present invention, a drug useful for autoimmune diseases, etc., and proliferation of CD4 + CD25 - T cells can also be observed. Screening for a suppressive substance can provide a drug useful for infection immunity and tumor immunity.
  • ⁇ T cells having excellent immunosuppressive ability can be obtained by efficiently separating from a living body by using CD39 as a marker.
  • the expression of other major cell surface markers on ⁇ T cells expressing CD39 was analyzed in more detail and found to be CD4 ⁇ / low , CD25 + , CD73 + , and GITR + . Furthermore, almost no GITR high cells were present in the ⁇ T cells of the present invention. Furthermore, Foxp3 and CTLA-4, which are said to be regulatory T cell markers, were not expressed on the cell surface in the ⁇ T cells of the present invention.
  • the ⁇ T cells expressing CD39 of the present invention can be obtained by separating them from a living body. However, since such ⁇ T cells are present only in 0.1% or less in the lymph nodes, the number of cells necessary for immunosuppression can be increased in the living body. It may be difficult to obtain from. In the present invention, it is possible to induce CD39 + ⁇ T cells from CD39 ⁇ ⁇ T cells at a rate of almost 100% in vitro, and the number of CD39 + ⁇ T cells can be easily increased and used.
  • Example 4 It is a figure which shows the confirmation result of the dendritic cell (DC) dependence CD4 + CD25 - T cell proliferation inhibitory activity of a CD39 + ⁇ T cell or a CD39 - ⁇ T cell.
  • Example 5 It is a figure which shows the result of having confirmed the cytokine production by CD39 + (gamma) delta T cell.
  • Example 6 It is a figure which shows the analysis result of the cell surface marker about CD39 + ⁇ delta T cell obtained by inducing
  • Example 7) It is a figure which shows the analysis result of the cell surface marker about CD39 + ⁇ delta T cell obtained by inducing
  • Example 8 It is a figure which shows the confirmation result of CD4 + CD25 ⁇ - > T cell proliferation inhibitory activity of CD39 + (gamma) delta T cell obtained by in vitro induction
  • Example 9 It is a figure which shows the confirmation result of the inflammation inhibitory effect of CD39 + (gamma) delta T cell obtained by inducing
  • the immunosuppressive ⁇ T cells of the present invention are characterized in that CD39, which is a marker molecule (antigen), is expressed on the cell surface.
  • CD39 which is a marker molecule (antigen)
  • Cells expressing CD39 on the cell surface may be represented by the phenotype “CD39 + ”.
  • the phenotype of a cell when the phenotype of a cell is expressed by the presence / absence or strength of marker molecule expression, unless otherwise specified, the phenotype of the cell is expressed by the presence / absence or strength of specific binding by an antibody to the marker molecule. Determination of the phenotype of a cell based on the presence or absence of the marker molecule and its strength is usually carried out by flow cytometry (FACS) analysis using a specific antibody against the marker molecule. “The marker molecule is expressed on the cell surface” is used in a concept that can be generally judged by those skilled in the art, and the marker molecule is expressed on the cell surface (or in the cell). It means that specific binding by an antibody to the marker molecule can be confirmed.
  • “positive”, “strongly positive” is used in a concept that can be generally judged by those skilled in the art, and the expression of the marker molecule compared to other cells (or cell populations) as a comparative control.
  • “Weak positive” is a marker in which the expression level of the marker molecule is relatively low compared to other cells (or cell populations) that are comparative controls, and the cell population in which the expression level of the marker molecule is low is relatively high. This means that the proportion of the cell population expressing the molecule is relatively small, and can be expressed by, for example, CD39 low . “Negative” means that no marker molecule is expressed, and can be expressed as CD39 ⁇ .
  • the comparison of the expression level can be performed by FACS analysis, for example, comparing the expression intensity at the peak of the histogram in the graph with the number of cells on the vertical axis and the expression intensity (fluorescence intensity) on the horizontal axis. Can be performed.
  • the immunosuppressive ⁇ T cells of the present invention preferably further express CD25 or CD73 on the cell surface.
  • the immunosuppressive ⁇ T cell of the present invention has one or more cell phenotypes of CD4 ⁇ / low , CD25 + , CD73 + , Foxp3 ⁇ , CTLA-4 ⁇ and GITR + in addition to CD39 +. It is preferable. More preferably, the immunosuppressive ⁇ T cells of the present invention have a Foxp3 ⁇ CTLA-4 ⁇ GITR + phenotype, more preferably a CD39 + CD4 ⁇ / low CD25 + CD73 + Foxp3 ⁇ CTLA-4 ⁇ GITR + phenotype. is there.
  • the immunosuppressive ⁇ T cell of the present invention is a regulatory ⁇ T cell having a CD25 ⁇ phenotype reported in Non-Patent Document 4 or a GITR high cell reported in Non-Patent Document 3. Regulatory T cells occupying a large number are considered to be different cell populations.
  • the immunosuppressive ⁇ T cells of the present invention suppress dendritic cell-dependent proliferation of CD4 + CD25 ⁇ T cells, and have a much higher immunosuppressive ability than CD4 + CD25 + Treg. .
  • the immunosuppressive ⁇ T cells of the present invention have the property of secreting IL-10 to the same extent as CD4 + CD25 + Treg but not INF- ⁇ . Such characteristics can be confirmed by detecting the expression of IL-10 or IFN- ⁇ mRNA using the methods of Examples described later.
  • the immunosuppressive ⁇ T cells of the present invention can be obtained by isolating ⁇ T cells in which CD39 is expressed on the cell surface from a living body using CD39 as a marker. Specifically, it can be separated by a method for preparing immunosuppressive ⁇ T cells including the following steps. (I) treating lymphocytes with an anti- ⁇ T cell receptor antibody and an anti-CD39 antibody; (Ii) A step of separating and obtaining lymphocytes that bind to an anti- ⁇ T cell receptor antibody and an anti-CD39 antibody.
  • Lymphocytes are present in samples collected from living organisms (biological samples).
  • biological samples include blood such as spleen, lymph nodes, peripheral blood or umbilical cord blood collected from mammals including humans, mice, tissue fluid, bone marrow fluid, and the like.
  • the biological sample may be a sample obtained by collecting a biological sample such as the above lymph node from a living body, such as a cell suspension prepared using an appropriate medium or diluent, for example.
  • the ⁇ T cells of the present invention are differentiated from bone marrow stem cells in vivo and circulated to lymph nodes, and are derived from bone marrow.
  • step (i) it is preferable to further use an anti-CD25 antibody.
  • cells that bind to the anti- ⁇ T cell receptor antibody, the anti-CD25 antibody and the anti-CD39 antibody are used in the present invention. It is possible to isolate as immunosuppressive ⁇ T cells.
  • an anti-Thy1.2 antibody may be used in step (i), and cells that bind to the anti-Thy1.2 antibody can be separated in step (ii).
  • lymphocytes may be treated with all antibodies at the same time, but they may not be treated simultaneously, and the order of antibodies treating lymphocytes is not particularly limited.
  • the marker is expressed by adding magnetic beads to which an antibody is bound to a biological sample and collecting the magnetic beads with a magnet.
  • a method of separating living T cells magnetic bead method
  • FACS method cell sorter
  • antibody A well-known method such as a method (panning method) of culturing a biological sample on a plate coated with, and then binding marker-positive cells to the plate to separate them can be used. Commercially available separation kits using these principles may also be used.
  • Method 1 Axillary and / or inguinal lymph nodes are collected from a mammal, and a single cell suspension is isolated using a 70 ⁇ m mesh. Using BD FACSAria TM (Beckton Dickinson), lymphocyte fractionation is gated with FSC-A and SSC-A, and doublet is gated with SSC-H, SSC-W, FSC-H and FSC-W. Let it be out.
  • FITC fluorescein isothiocyanate
  • Pacific Blue TM labeled anti-Thy1.2 antibody
  • APC Allophycocyanine
  • Method 2 Axillary and / or inguinal lymph nodes are collected from a mammal, and a single cell suspension is isolated using a 70 ⁇ m mesh.
  • the lymphocyte fraction is gated with FSC-A and SSC-A with BD FACSAria TM, and the doublet is gated out with SSC-H, SSC-W and FSC-H, FSC-W.
  • FSC-A and SSC-A with BD FACSAria TM
  • FSC-H FSC-W
  • FSC-W FSC-W
  • FITC-labeled anti- ⁇ TCR antibody to separate ⁇ TCR positive cells
  • CD39 + ⁇ T cells were Isolate.
  • Method 3 Axillary and / or inguinal lymph nodes are collected from a mammal and a single cell suspension is isolated using a 70 ⁇ m mesh. Using autoMACS TM pro separator (Miltenyi Biotec), CD25 + cells are separated with Pe-labeled anti-CD25 antibody and MACS anti-Pe microbeads. Gate with APC-labeled anti-CD39 antibody on BD FACSAria TM, then gate with FITC-labeled anti- ⁇ TCR antibody and Pacific Blue-labeled anti-Thy1.2 antibody to isolate ⁇ TCR positive cells and isolate CD39 + ⁇ T cells .
  • autoMACS TM pro separator Miltenyi Biotec
  • ⁇ T cells obtained by the preparation method of the present invention have immunosuppressive ability can be confirmed by detecting dendritic cell-dependent CD4 + CD25 ⁇ T cell proliferation inhibitory action. It can be determined that the ⁇ T cell has an immunosuppressive ability when it has the same or higher growth suppressive ability than CD4 + CD25 + Treg.
  • a specific method a method described in Examples described later is exemplified.
  • An oral / parenteral medicament can be produced by mixing an effective amount of the ⁇ T cell of the present invention with a pharmaceutically acceptable solvent or the like.
  • the immunosuppressive ⁇ T cells of the present invention are expected to be applied as therapeutic agents for autoimmune diseases, allergic diseases, inflammatory diseases caused by excessive or abnormal immune reactions.
  • the immunosuppressive ⁇ T cells of the present invention are considered to be particularly useful for inflammatory diseases and pathologies caused by accumulation of inflammatory ATP.
  • Autoimmune diseases include, for example, multiple sclerosis, rheumatoid arthritis, Sjogren's syndrome, collagen disease, type I diabetes, uveitis, autoimmune myocarditis, myasthenia gravis, systemic lupus erythematosus, systemic scleroderma , Ulcerative colitis, Crohn's disease, autoimmune hepatitis, psoriasis, glomerulonephritis, pernicious anemia, Behcet's disease, autoimmune gastritis, Hashimoto's disease, Graves' disease, autoimmune myocarditis, autoimmune pancreatitis, autoimmunity Examples include pancreatic insulitis, autoimmune hemolytic anemia, Addison's disease, autoimmune varicella and the like.
  • inflammatory diseases include inflammatory keratosis, inflammatory bowel disease, viral hepatitis, drug-induced hepatitis, myositis and the like.
  • allergic diseases include contact hypersensitivity, allergic rhinitis, food allergy, asthma, atopic dermatitis, ultraviolet dermatitis and the like.
  • the immunosuppressive ⁇ T cells of the present invention are expected to be applied as an inhibitor of immune rejection during organ transplantation.
  • Organ transplantation is not particularly limited as long as rejection is a concern.
  • liver transplantation, small intestine transplantation, pancreas transplantation, islet transplantation, lung transplantation, renal transplantation, bone marrow transplantation, heart transplantation, corneal transplantation, graft Anti-host disease is mentioned.
  • the immunosuppressive ⁇ T cells of the present invention can be used to screen for substances that promote or suppress the proliferation of CD4 + CD25 ⁇ T cells. Specifically, the screening method includes the following steps:
  • a substance that promotes the proliferation of CD4 + CD25 ⁇ T cells obtained by this screening method is considered to have an immunopotentiating action, and may be a useful drug for infectious immunity and tumor immunity.
  • a substance that suppresses the proliferation of CD4 + CD25 ⁇ T cells obtained by this screening method is considered to have an immunosuppressive effect, and is used for the treatment of autoimmune disease, inflammatory disease or allergic disease, and immunity during organ transplantation. It is thought that it can be a useful drug for suppressing rejection.
  • CD39 + ⁇ T cells are present only in 0.1% or less in the lymph nodes of the living body, it may be difficult to obtain the number of cells necessary for immunosuppression from the living body. In the present invention, it is also possible to convert CD39 + ⁇ T cells from CD39 ⁇ ⁇ T cells in vitro.
  • the method for inducing CD39 + ⁇ T cells of the present invention in vitro is by culturing CD39 ⁇ ⁇ T cells in the presence of a T cell stimulating agent and IL-2.
  • any CD39 ⁇ ⁇ T cells may be used, but for example, those isolated from a biological sample can be used.
  • biological samples include spleen, lymph nodes, blood such as peripheral blood or umbilical cord blood, tissue fluid, or bone marrow fluid of mammals including humans and mice.
  • the biological sample containing lymphocytes is, for example, a sample obtained by collecting a biological sample such as the above lymph node from a living body such as a cell suspension prepared using an appropriate medium or diluent. May be.
  • CD39 ⁇ ⁇ T cells can be obtained by separating a cell population in which CD39 is not expressed on the cell surface from a biological sample using CD39 as a marker.
  • the method for obtaining CD39 ⁇ ⁇ T cells from a biological sample can be performed according to the method for preparing CD39 + ⁇ T cells.
  • CD39- ⁇ T cells can be obtained by the following method.
  • Axillary and / or inguinal lymph nodes are collected from a mammal and a single cell suspension is isolated using a 70 ⁇ m mesh.
  • autoMACS TM pro separator pre-sort ⁇ T cells with FITC-labeled anti- ⁇ TCR antibody and MACS anti-FITC microbeads.
  • the lymphocyte fraction is gated with FSC-A and SSC-A with BD FACSAria TM, and the doublet is gated out with SSC-H, SSC-W, FSC-H and FSC-W.
  • gate with FITC-labeled anti- ⁇ TCR antibody and PacificBlue-labeled anti-Thy1.2 antibody to obtain ⁇ TCR positive and Thy1.2 positive cells as ⁇ T cells.
  • a CD39 negative cell group is gated and separated with an APC-labeled anti-CD39 antibody to isolate CD39 ⁇ ⁇ T cells.
  • the T cell stimulant used in the induction method of the present invention refers to an agent having an activity capable of stimulating T cells to induce T cell activation.
  • T cell activation refers to, for example, cell proliferation, cytokine (IL-2, IL-4, IFN- ⁇ , etc.) production, intracellular calcium ion concentration increase, phosphorylation of proteins involved in T cell receptor signaling, etc. Although it can mention, it is not limited to these.
  • Induction of activation includes activating the cell when no cell activation is seen, and increasing the degree of activation when cell activation is already seen. .
  • T cell stimulants include soluble antigens, peptide fragments of antigens, alloantigens, anti-CD2 antibodies, anti-CD3 antibodies, anti-CD28 antibodies, anti- ⁇ TCR antibodies, LFA-3, staphylococcal enterotoxin B (SEB), etc.
  • SEB staphylococcal enterotoxin B
  • the In the induction method of the present invention at least one T cell stimulating agent selected from these T cell stimulating agents is used, and preferably an anti-CD3 antibody is used.
  • the amount of the T cell stimulating agent added at the time of induction is preferably 0.01 to 10 ⁇ g / ml.
  • IL-2 is used together with a T cell stimulant.
  • the amount of IL-2 added during induction is preferably 20 to 200 units / ml.
  • the T cell stimulant and IL-2 may be added simultaneously, or after stimulation with the T cell stimulant for 1 to 7 days, the T cell stimulant is removed, and IL-2 is removed. It may be added and induced for 1 to 21 days.
  • the concentration of CD39 ⁇ ⁇ T cells used in the induction method of the present invention is preferably 1 ⁇ 10 4 to 1 ⁇ 10 6 cells / ml, and more preferably 1 ⁇ 10 4 to 1 ⁇ 10 5 cells / ml. Further, the CO 2 concentration during induction is 5 to 20%, more preferably 5 to 15%.
  • the induction temperature is preferably 35 to 39 degrees (particularly 37 degrees).
  • the induction period is 2 days to 30 days, preferably 3 days to 21 days.
  • the induction ratio to immunosuppressive cells can be measured and confirmed using CD39 as a marker, and the optimal induction period can be determined. Even if CD39 - ⁇ T cells could not be completely induced into immunosuppressive ⁇ T cells at a rate of 100%, it is possible to isolate immunosuppressive ⁇ T cells by gating on CD39 with anti-CD39 antibody. it can.
  • CD4 low / neg CD25 + T cells with suppressive capacity after induction with CD4 low / neg CD25 + T cells without the ability of suppression before induction Therefore, it is difficult to determine how much the target inhibitory CD4 low / neg CD25 + T cells are induced.
  • CD39 + ⁇ T cells induced in vitro In the induction method of the present invention, for example, when CD39 ⁇ ⁇ T cells are cultured in the presence of an anti-CD3 antibody and then cultured with IL-2 added, almost 100% of CD39 ⁇ ⁇ T cells are changed in CD39 + ⁇ T cells. It is possible to make it.
  • the obtained CD39 + ⁇ T cells have CD4 + CD25 ⁇ T cell proliferation inhibitory ability similar to CD39 + ⁇ T cells isolated from a living body, and have acquired immunosuppressive ability.
  • the CD39 + ⁇ T cells induced by the present invention have one or more cell phenotypes of CD4 ⁇ , CD8 ⁇ , CD25 + , CD73 + , Foxp3 ⁇ in addition to CD39 + , preferably CD4 ⁇ .
  • CD39 + ⁇ T cells obtained by the induction method of the present invention are CD4 low / neg CD25 + T cells, which are the cell phenotype of CD8 + induced in Non-Patent Document 6, and Focp3 + induced in Patent Document 1.
  • the cell phenotype is different from the regulatory ⁇ T cells which are cell phenotypes.
  • ⁇ T cells obtained by the induction method of the present invention exert immunosuppressive ability in the same manner as immunosuppressive ⁇ T cells obtained from a living body, an effective amount of the ⁇ T cells is used as a pharmaceutically acceptable solvent, etc.
  • Oral / parenteral drugs can be produced, for example, by mixing.
  • Such a medicament containing immunosuppressive ⁇ T cells is expected to be applied as a therapeutic agent for autoimmune diseases, allergic diseases, inflammatory diseases and the like caused by excessive or abnormal immune reactions.
  • the immunosuppressive ⁇ T cells of the present invention are expected to be applied as an inhibitor of immune rejection during organ transplantation.
  • Example 1 Isolation of immunosuppressive ⁇ T cells Axillary and inguinal lymph nodes were collected from mice and a single cell suspension was isolated using a 70 ⁇ m mesh. Using autoMACS TM pro separator, CD25 positive cells were separated with Pe-labeled anti-CD25 antibody and MACS anti-Pe microbeads. The BD FACSAria TM was gated with an APC-labeled anti-CD39 antibody, and further gated with a FITC-labeled anti- ⁇ TCR antibody and a Pacific Blue-labeled anti-Thy1.2 antibody to separate ⁇ TCR-positive cells, and CD39 + ⁇ T cells were isolated.
  • Axillary and inguinal lymph nodes were collected from female C56BL / 6 mice (SLC) from 8 to 12 weeks of age.
  • a single cell suspension (a suspension in which each cell was dispersed) was isolated using a 70 ⁇ m mesh.
  • BD FACS Aria TM Becton Dickinson
  • gated with FITC-labeled anti- ⁇ TCR antibody and Pacific Blue-labeled anti-Thy1.2 antibody both from eBiocscience
  • ⁇ TCR-positive and Thy1.2-positive cells ⁇ T cells
  • the ⁇ T cells were gated with labeled CD39 antibody and labeled CD73 antibody. Similarly, gated with labeled anti-CD39 antibody and labeled anti-CTLA-4 antibody, anti-CD103 antibody, anti-CD25 antibody, anti-CD122 antibody, anti-CD27 antibody or anti-GITR antibody.
  • labeled antibodies APC-labeled anti-CD39 antibody, Pe-labeled anti-CD25 antibody, Pe-labeled anti-CD73 antibody, Pe-labeled anti-CTLA-4 antibody, Pe-labeled anti-GITR antibody (all of the above antibodies are eBiocscience) are used.
  • the sample was stained and analyzed with BD FACS Canto2 TM (Becton Dickinson). Each surface marker was examined by comparing the ⁇ TCR positive Thy1.2 positive CD39 positive group with CD39 + ⁇ T cells and comparing with Pe-labeled isotype control antibody.
  • CD39 + ⁇ T cells were CD25 + , CD73 + , CTLA-4 ⁇ and GITR + (FIG. 1).
  • GITR results third stage of FIG. 1
  • the portion surrounded by a circle is a portion corresponding to GITR high
  • GITR high of CD39 + [gamma] [delta] T cells were negative.
  • CD39 + ⁇ T cells were CD4 ⁇ / low and Foxp3 ⁇ (FIG. 2).
  • the CD39 + ⁇ T cells of the present invention were found to express Foxp3 in particular differently from CD4 + CD25 + Foxp3 + cells (corresponding to symbol a) widely known as regulatory T cells.
  • Example 3 Confirmation of dendritic cell (DC) -dependent CD4 + CD25 ⁇ T cell proliferation inhibitory activity of CD39 + ⁇ T cells
  • CD4 T cell isolation CD4 from CD57 T cell spleen using a CD4 T cell isolation kit (Miltenyi Biotec) After separating + T cells, CD4 + CD25 ⁇ T cells were separated using Pe-labeled anti-CD25 antibody and anti-Pe microbeads (Miltenyi Biotec). In addition, CD11c + cells were isolated from Balb / c mouse spleen using CD11c microbeads (Miltenyi Biotec).
  • CD4 + CD25 ⁇ T cells and 4 ⁇ 10 4 CD11c + cells were suspended in RPMI medium (Invitrogen) supplemented with 10% FCS.
  • RPMI medium Invitrogen
  • CD4 + CD25 - 1/10 amount of CD4 + CD25 + Treg or 1/100 volume of CD39 + [gamma] [delta] T cells was added 37 ° C. of T cells, in 10% CO 2 conditions For 3 days. Further, 0.5 ⁇ Ci 3 H was added and cultured for 18 hours, and then 3 H-thymidine incorporation in each well was measured with a cell harvester (Berthold).
  • CD4 + CD25 + Treg administration group CD4 + CD25 ⁇ T cell proliferation was suppressed by about 50%
  • CD39 + ⁇ T cell administration group CD4 + CD25 ⁇ T cell proliferation was suppressed by CD4 + More than 80% was suppressed with 1/10 of CD25 + Treg (FIG. 3).
  • CD39 + immunosuppressive ⁇ T cells of the present invention have a much higher immunosuppressive ability than CD4 + CD25 + Treg.
  • Example 4 Confirmation of dendritic cell (CD) -independent CD4 + CD25 ⁇ T cell proliferation inhibitory activity of CD39 + ⁇ T cells CD4 + CD25 from the spleen and lymph nodes of C57BL / 6 mice in the same manner as in Example 3. - T cells were isolated CD4 + CD25 + Treg and CD39 + [gamma] [delta] T cells.
  • CD4 + CD25 - T cells were added, and the cells were cultured at 37 ° C. under 10% CO 2 for 3 days. Further 0.5 ⁇ Ci 3 H-thymidine was added 18 hr cultured each cell harvester and 3 H-thymidine uptake in well after (Berthold Co.) was used.
  • CD4 + CD25 + Treg administration group CD4 + CD25 - T cell proliferation was suppressed by about 50%, whereas in the CD39 + ⁇ T cell administration group, 1/10 dose of CD4 + CD25 + Treg was There was no inhibition of CD4 + CD25 ⁇ T cell proliferation. Since CD39 + ⁇ T cells and CD4 + CD25 + Treg in the same ratio as in Example 3 were used, the proliferation inhibitory activity of the immunosuppressive CD39 + ⁇ T cells of the present invention was not directly CD4 + CD25 ⁇ T cells. It was revealed that it is strongly exerted in the presence of dendritic cells.
  • Example 5 Confirmation of dendritic cell (CD) -dependent CD4 + CD25 ⁇ T cell proliferation inhibitory activity of CD39 + ⁇ T cells and CD39 ⁇ ⁇ T cells Axillary and inguinal lymph nodes were collected from mice and singled using a 70 ⁇ m mesh. Cell suspension was isolated. Use autoMACS TM pro separator (Miltenyi Biotec) to separate CD25 positive cells with Pe-labeled anti-CD25 antibody and MACS anti-Pe microbeads, then gate with BD FACSAria TM with APC-labeled anti-CD39 antibody to CD39 ⁇ cells And CD39 + cells were isolated.
  • autoMACS TM pro separator Miltenyi Biotec
  • CD4 + CD25 - In the group administered with CD39 + [gamma] [delta] T cells 1/5 amount of T cells, CD4 + CD25 - whereas T-cell proliferation was about 65% inhibition, CD4 + CD25 - 1/5 amount of T cell The group administered with CD39 ⁇ ⁇ T cells showed no cytostatic activity (FIG. 5). From these results, it was confirmed that CD39 is useful as a marker for immunosuppressive ⁇ T cells.
  • Example 6 Confirmation of cytokines produced by CD39 + ⁇ T cells and CD39 - ⁇ T cells Axillary and inguinal lymph nodes were collected from mice and a single cell suspension was isolated using a 70 ⁇ m mesh. Using autoMACS TM pro separator, separation was performed using FITC-labeled anti- ⁇ TCR antibody and MACS anti-FITC microbeads. Pacific Blue-labeled anti-Thy1.2 antibody in BD FACSAria TM, and the gate at FITC-labeled anti- ⁇ TCR antibody, further APC labeled gates in anti CD39 antibody and CD39 + [gamma] [delta] T cells and CD39 - was isolated [gamma] [delta] T cells.
  • MRNA was collected from CD39 + ⁇ T cells or CD39 ⁇ ⁇ T cells using RNeasy Mini Kit (Qiagen) according to the attached protocol, and then cDNA was prepared using PrimeScriptRT reagent Kit (TAKARA) according to the attached protocol.
  • TAKARA PrimeScriptRT reagent Kit
  • the prepared cDNA and SYBR Green (Takara) were mixed, and the expression level of mRNA was quantified with LightCycler 480 (Roche Applied Science).
  • Example 7 In vitro induction method of CD39 + ⁇ T cells Axillary and inguinal lymph nodes were collected from mice and a single cell suspension was isolated using a 70 ⁇ m mesh. Using autoMACS TM pro separator, separation was performed using FITC-labeled anti- ⁇ TCR antibody and MACS anti-FITC microbeads (Miltenyi Biotec). And a gate at Pacific Blue-labeled anti-Thy1.2 antibody, FITC-labeled anti- ⁇ TCR antibody in BD FACSAria TM, further CD39-negative cells isolated, CD39 - [gamma] [delta] T cells were isolated.
  • Example 8 Analysis of surface markers for cells induced in vitro CD39 + ⁇ T cells induced by the method of Example 7 were treated with FITC-labeled anti- ⁇ TCR antibody, Pacific Blue-labeled anti-Thy1.2 antibody, APC-labeled anti-CD39. Staining with antibodies, Pe-labeled anti-CD4 antibody, Pe-labeled anti-CD8 antibody, Pe-labeled anti-CD25 antibody, Pe-labeled anti-CD73 antibody, Pe-labeled anti-Foxp3 antibody, and analysis with BD FACS Canto2 (Becton Dickinson) It was. Each surface marker was examined by comparing the ⁇ TCR positive Thy1.2 positive group with ⁇ T cells and comparing with Pe-labeled isotype control antibody.
  • CD39 + ⁇ T cells induced in vitro were CD4 ⁇ , CD8 ⁇ , CD25 + , CD73 + and Foxp3 ⁇ (FIG. 8, graph of symbol e).
  • a graph with a symbol d indicates control.
  • CD4 + CD25 - T confirmed cytostatic active agent C57BL / 6 mouse spleen than CD4 T cell Isolation Kit (Miltenyi Biotec Inc.) CD4 + T cells using the After separation, CD4 + CD25 ⁇ T cells were separated using Pe-labeled anti-CD25 antibody and anti-Pe microbeads (MiltenyiBiotec). In addition, CD11c + cells were isolated from Balb / c mouse spleen using CD11c microbeads (MiltenyiBiotec).
  • CD4 + CD25 - T under the conditions using a CD39 + [gamma] [delta] T cells in a cell the same amount, showed about 90% of the cytostatic activity, CD4 + CD25 - T cells against 1/4 weight CD39 + Even in the state using ⁇ T cells, it showed about 75% cytostatic activity.
  • CD39 + ⁇ T cells induced by the method of the present invention have a high immunosuppressive ability (FIG. 9).
  • Example 10 Confirmation of inflammation-inhibiting action of CD39 + ⁇ T cells induced in vitro
  • DNFB dinitrofluorobenzene
  • CD39 + CD25 - T cells or CD39 + ⁇ T cells were injected into the contact dermatitis model, the ear swelling was hated at the site where CD4 + CD25 - T cells were injected, At the site where CD39 + ⁇ T cells were injected, the exacerbation of ear swelling was significantly suppressed by about 50% (FIG. 10). It was revealed that CD39 + ⁇ T cells induced in vitro according to the present invention have an anti-inflammatory effect.
  • the CD39 + ⁇ T cells of the present invention have a stronger immunosuppressive ability than conventional regulatory T cells, and can effectively exert an immunosuppressive effect even with a small amount of cells. Therefore, the CD39 + ⁇ T cells of the present invention are used as therapeutic agents for autoimmune diseases, inflammatory diseases, allergic diseases and the like caused by excessive enhancement of immune responses, and as inhibitors of immune rejection during organ transplantation. Is expected to be applied. In addition, the CD39 + ⁇ T cells of the present invention can be used to screen for substances that selectively promote or suppress the proliferation of CD4 + CD25 ⁇ T cells in the presence of dendritic cells. Application as an inhibitor or immunostimulator is expected.
  • the CD39 + ⁇ T cells of the present invention are obtained from a living body, but also CD39 + ⁇ T cells having high immunosuppressive ability are easily and efficiently induced in vitro from ⁇ T cells not having immunosuppressive ability. can do.
  • the CD39 + ⁇ T cells of the present invention can be obtained and used effectively without imposing a burden on the patient, which is useful.

Abstract

Disclosed are: a γδT cell having immunosuppression capability; a novel marker for a γδT cell having immunosuppression capability; and a method for inducing a γδT cell having immunosuppression capability in vitro. Specifically disclosed is an immunosuppressive γδT cell having CD39 expressed on the surface thereof. The immunosuppressive γδT cell can be isolated from a biological sample by employing the expression of CD39 as a marker. Alternatively, the immunosuppressive γδT cell can be produced by culturing a CD39- γδT cell in the presence of a T cell-stimulating agent and IL-2 to induce a CD39+ γδT cell in vitro.

Description

免疫抑制性γδT細胞Immunosuppressive γδ T cells
 本発明は、免疫抑制能を有するγδT細胞に関するものであって、具体的には細胞表面にCD39を発現している免疫抑制性γδT細胞に関するものである。 The present invention relates to γδT cells having immunosuppressive ability, and specifically to immunosuppressive γδT cells expressing CD39 on the cell surface.
 本出願は、参照によりここに援用されるところの米国仮出願61/228667号、61/262303号および61/262291号の優先権を請求する。 This application claims the priority of US Provisional Applications 61/228667, 61/262303 and 61/262291, which are incorporated herein by reference.
 免疫反応は細菌感染や悪性腫瘍細胞に対する防御反応、すなわち、感染免疫や腫瘍免疫として重要である一方、免疫反応が過剰に亢進することなどにより、自己免疫疾患、アレルギー性疾患、炎症性疾患等が引き起こされる。リウマチや膠原病等の自己免疫疾患やアトピー性皮膚炎、喘息等のアレルギー性疾患の中には難治性のものが依然として数多くあり、その治療法の開発が求められている。また、臓器移植においては移植された臓器に対する免疫反応を抑制するための薬剤が必要となっている。 The immune response is important as a protective response against bacterial infections and malignant tumor cells, that is, infectious immunity and tumor immunity. Is caused. There are still many refractory autoimmune diseases such as rheumatism and collagen diseases, and allergic diseases such as atopic dermatitis and asthma, and the development of treatments for them is required. In organ transplantation, a drug for suppressing an immune response to the transplanted organ is required.
 免疫を抑制する機能をもつT細胞として、表面マーカーとしてFoxp3+を有する制御性CD4+CD25+T細胞(以下、「CD4+CD25+Treg」という。)(非特許文献1、2)が広く知られており、免疫寛容との関連性について多くの報告がなされている。また、CD4+CD25+TregではGITRhighの細胞が多数を占めており、GITRhighは制御性T細胞のマーカーの一つとされている(非特許文献3) 。 Regulatory CD4 + CD25 + T cells (hereinafter referred to as “CD4 + CD25 + Treg”) having Foxp3 + as a surface marker are widely known as T cells having a function of suppressing immunity (hereinafter referred to as “CD4 + CD25 + Treg”). Many reports have been made on the relationship with immune tolerance. In CD4 + CD25 + Treg, GITR high cells occupy a large number, and GITR high is regarded as one of the markers of regulatory T cells (Non-patent Document 3).
 ヒト末梢血中に含まれるT細胞の殆どはαβT細胞が占めているが、γδT細胞も数%の割合で存在している。このγδT細胞は、メバロチン酸代謝の中間生成物であるイソペンテニルピロリン酸(IPP)を細胞内や細胞表面に異常に蓄積している腫瘍細胞を抗原として認識して、細胞傷害活性を示すことから、癌の細胞免疫療法への適用が検討されている。 Most of the T cells contained in human peripheral blood are occupied by αβT cells, but γδT cells are also present at a rate of several percent. This γδT cell recognizes tumor cells that have abnormally accumulated isopentenyl pyrophosphate (IPP), an intermediate product of mevalotate metabolism, in the cell surface or cell surface as an antigen, and exhibits cytotoxic activity. Application to cancer cell immunotherapy is being studied.
 近年、γδT細胞の中に免疫抑制能を有する細胞集団が存在することを示唆するような報告が見られるようになってきた。非特許文献4には、ヒトの乳癌組織に免疫抑制能を有するγδT細胞が存在することが報告されており、疾病との関連が示唆されている。また、特許文献1には健常人の末梢血から分離したリンパ球をin vitroで増殖させて制御性γδT細胞を得る方法が開示されている。特許文献1では、IL-2、IL-15、TGF-β及びIPPのようなVγ9Vδ2T細胞活性化剤を用いて細胞を培養することにより、Foxp3が発現している制御性γδT細胞が得られたことが報告されている。また非特許文献5では、抗CD3抗体、IL-2を用いて11日間培養するとCD4low/negCD25+T細胞が免疫抑制能を獲得し、誘導されたCD4low/negCD25+T細胞がCD8を発現しており、CD4+CD25+Treg細胞と比較して約5倍のCD4+CD25-T細胞増殖抑制能を有することが報告されている。 In recent years, reports that suggest that there is a cell population having an immunosuppressive ability among γδ T cells have come to be seen. Non-Patent Document 4 reports that γδT cells having immunosuppressive ability are present in human breast cancer tissue, suggesting an association with diseases. Patent Document 1 discloses a method for obtaining regulatory γδ T cells by proliferating lymphocytes isolated from peripheral blood of healthy persons in vitro. In Patent Document 1, regulatory γδT cells expressing Foxp3 were obtained by culturing cells using Vγ9Vδ2 T cell activators such as IL-2, IL-15, TGF-β and IPP. It has been reported. In Non-Patent Document 5, CD4 low / neg CD25 + T cells acquire immunosuppressive ability when cultured for 11 days using an anti-CD3 antibody and IL-2, and the induced CD4 low / neg CD25 + T cells become CD8. Has been reported to have about five times the CD4 + CD25 T cell growth inhibitory capacity compared to CD4 + CD25 + Treg cells.
 免疫抑制能を有するγδT細胞の機能や表面マーカー等については研究がなされているものの、いまだ不明な点が多い。例えば、移植片対宿主病(graft-versus-host disease:GVHD)においてγδT細胞を投与すると、GVHDが悪化するという報告(非特許文献6~9)と、逆にGVHDの症状が改善するという報告(非特許文献10、11)の両者が混在している。これは免疫抑制能を有するγδT細胞の集団(サブセット)が適切に分離されていないことによると思われる。 Although research has been conducted on the functions and surface markers of γδT cells having immunosuppressive ability, there are still many unclear points. For example, reports that GVHD worsens when γδT cells are administered in graft-versus-host disease (GVHD) (Non-Patent Documents 6 to 9), and conversely, GVHD symptoms improve. (Non-Patent Documents 10 and 11) are mixed. This seems to be due to the fact that the population (subset) of γδT cells having immunosuppressive ability is not properly separated.
 したがって免疫疾患等の治療に有用な高い免疫抑制作用を有するγδT細胞の特定と取得が望まれている。 Therefore, it is desired to identify and acquire γδ T cells having high immunosuppressive action useful for treatment of immune diseases and the like.
 外部刺激やストレスによりATPが分泌されると、細胞表面にあるP2受容体を介して炎症反応が起こる。一方、ATPがCD39(ectonucleosidetriphosphate diphosphohydrolase-1; EC 3.6.1.5)によりAMPに分解された後、CD73(ecto-5'-nucleotidases; EC 3.1.3.5)によりアデノシンに分解されると、P1受容体を介して免疫が抑制される。CD4+CD25+Tregの免疫抑制機構の一つとして細胞表面CD39とCD73を介したメカニズムが働いていることが報告されている(非特許文献12)。しかしながら、高い免疫抑制作用を有するγδT細胞の特定におけるマーカーとしての、CD39の重要性に関する報告はない。 When ATP is secreted by an external stimulus or stress, an inflammatory reaction occurs via the P2 receptor on the cell surface. On the other hand, when ATP is degraded to AMP by CD39 (ectonucleosidetriphosphate diphosphohydrolase-1; EC 3.6.1.5) and then to adenosine by CD73 (ecto-5'-nucleotidases; EC 3.1.3.5), the P1 receptor is Immunity is suppressed. It has been reported that a mechanism via cell surface CD39 and CD73 works as one of the immunosuppressive mechanisms of CD4 + CD25 + Treg (Non-patent Document 12). However, there is no report on the importance of CD39 as a marker in the identification of γδT cells having a high immunosuppressive effect.
WO2009/037723号公報WO2009 / 037723 Publication
 本発明は、免疫抑制能を有するγδT細胞および免疫抑制能を有するγδT細胞の新規マーカー、さらに免疫抑制能を有するγδT細胞をin vitroで誘導する方法を提供することを課題とする。 An object of the present invention is to provide a γδT cell having immunosuppressive ability, a novel marker of γδT cell having immunosuppressive ability, and a method for inducing γδT cells having immunosuppressive ability in vitro.
 上記課題を解決するために鋭意検討した結果、本発明者らは、マウスのリンパ節及び脾臓から採取したγδT細胞中にCD39を発現している細胞集団が存在すること、およびCD39を発現しているγδT細胞(以下「CD39+γδT細胞」とも称する。)が、CD4+CD25+Tregの数十倍のCD4+CD25-T細胞増殖抑制活性を有していることを見出した。本願ではこれらの知見に基づき、CD39を発現している細胞が免疫抑制能を有すること、CD39が免疫抑制能を有するγδT細胞の新規マーカーと成り得ることに着目し、本発明を完成した。また本発明者らは、T細胞刺激剤とIL-2を用いることにより、CD39-γδT細胞をCD39+γδT細胞へとin vitroで誘導し得ることに着目し、本発明の免疫抑制能を有するγδT細胞を誘導する方法を完成した。 As a result of intensive studies to solve the above problems, the present inventors have found that there is a cell population expressing CD39 in γδ T cells collected from lymph nodes and spleens of mice, and that CD39 is expressed. It was found that the γδ T cells (hereinafter also referred to as “CD39 + γδ T cells”) have CD4 + CD25 T cell proliferation inhibitory activity several tens of times that of CD4 + CD25 + Treg. Based on these findings, the present application has completed the present invention, focusing on the fact that cells expressing CD39 have immunosuppressive ability and that CD39 can be a novel marker for γδT cells having immunosuppressive ability. In addition, the present inventors focused on the fact that CD39 γδT cells can be induced in vitro into CD39 + γδT cells by using a T cell stimulant and IL-2, and have the immunosuppressive ability of the present invention. A method for inducing γδ T cells was completed.
 すなわち、本発明は以下よりなる。
1.CD39を細胞表面に発現している免疫抑制性γδT細胞。
2.骨髄由来である、前項1に記載のγδT細胞。
3.細胞表面にCD25またはCD73を、さらに発現している、前項1または2に記載のγδT細胞。
4.細胞表現型が、Foxp3-CTLA-4-GITR+である、前項1~3のいずれか1に記載のγδT細胞。
5.細胞表現型が、CD39+CD4-/lowCD25+CD73+Foxp3-CTLA-4-GITR+である、前項1~4のいずれか1に記載のγδT細胞。
6.以下の工程を含む、前項1~5のいずれか1に記載の免疫抑制性γδT細胞を調製する方法:
(i)リンパ球を、標識した抗γδT細胞受容体抗体および標識した抗CD39抗体で処理する工程;
(ii)抗γδT細胞受容体抗体および抗CD39抗体と結合するリンパ球を分離取得する工程。
7.以下の工程を含む、前項3~5のいずれか1に記載の免疫抑制性γδT細胞を調製する方法:
(i)リンパ球を、標識した抗γδT細胞受容体抗体、標識した抗CD39抗体、および標識した抗CD25抗体で処理する工程;
(ii)抗γδT細胞受容体抗体、抗CD39抗体および抗CD25抗体と結合するリンパ球を分離取得する工程。
8.前項6または7に記載の方法により得られる、免疫抑制性γδT細胞。
9.前項1~5および8のいずれか1に記載の免疫抑制性γδT細胞を有効成分とする、過剰免疫反応によって惹起される免疫疾患の治療剤。
10.免疫疾患が、自己免疫疾患、アレルギー疾患または炎症疾患である、前項6に記載の免疫疾患の治療剤。
11.前項1~5および8のいずれか1に記載の免疫抑制性γδT細胞を有効成分とする、臓器移植時の免疫拒絶の抑制剤。
12.以下の工程を含む、CD4+CD25-T細胞の増殖を促進するまたは抑制する物質をスクリーニングする方法:
(1)前項1~5のいずれか1に記載の免疫抑制性γδT細胞およびCD4+CD25-T細胞と、被験物質とを樹状細胞の存在下で接触させる工程;
(2)CD4+CD25-T細胞の量を測定する工程;
(3)被験物質の非存在下と比較して、CD4+CD25-T細胞の量が増加または減少した場合に、被験物質を選択する工程。
13.CD39-γδT細胞を、T細胞刺激剤とIL-2の存在下に培養することにより、CD39+γδT細胞を誘導する方法。
14.T細胞刺激剤が、可溶性抗原、抗原のペプチドフラグメント、アロ抗原、抗CD2抗体、抗CD3抗体、抗CD28抗体、抗γδTCR抗体、LFA-3、ブドウ状球菌エンテロトキシンB (SEB)からなる群から選択される、前項13に記載の免疫抑制性γδT細胞を誘導する方法。
15.T細胞刺激剤が、抗CD3抗体である、前項13または14に記載の免疫抑制性γδT細胞を誘導する方法。
16.前項13~15のいずれか1に記載の方法により誘導される、免疫抑制性γδT細胞。
17.前項16に記載の免疫抑制性γδT細胞を有効成分とする、過剰免疫反応によって惹起される免疫疾患の治療剤。
18.免疫疾患が、自己免疫疾患、アレルギー疾患または炎症疾患である、前項17に記載の治療剤。
19.前項16に記載の免疫抑制性γδT細胞を有効成分とする、臓器移植時の免疫拒絶の抑制剤。
That is, this invention consists of the following.
1. Immunosuppressive γδ T cells expressing CD39 on the cell surface.
2. 2. The γδ T cell according to item 1, which is derived from bone marrow.
3. 3. The γδ T cell according to item 1 or 2, further expressing CD25 or CD73 on the cell surface.
4). 4. The γδ T cell according to any one of items 1 to 3, wherein the cell phenotype is Foxp3 CTLA-4 GITR + .
5. 5. The γδ T cell according to any one of 1 to 4 above, wherein the cell phenotype is CD39 + CD4 − / low CD25 + CD73 + Foxp3 CTLA-4 GITR + .
6). 6. A method for preparing an immunosuppressive γδ T cell according to any one of 1 to 5 above, which comprises the following steps:
(I) treating lymphocytes with a labeled anti-γδ T cell receptor antibody and a labeled anti-CD39 antibody;
(Ii) A step of separating and obtaining lymphocytes that bind to an anti-γδ T cell receptor antibody and an anti-CD39 antibody.
7). 6. A method for preparing an immunosuppressive γδ T cell according to any one of items 3 to 5 including the following steps:
(I) treating lymphocytes with a labeled anti-γδ T cell receptor antibody, a labeled anti-CD39 antibody, and a labeled anti-CD25 antibody;
(Ii) A step of separating and obtaining lymphocytes that bind to an anti-γδ T cell receptor antibody, an anti-CD39 antibody and an anti-CD25 antibody.
8). 8. An immunosuppressive γδ T cell obtained by the method according to 6 or 7 above.
9. 9. A therapeutic agent for an immune disease caused by an excessive immune reaction, comprising the immunosuppressive γδ T cell according to any one of 1 to 5 and 8 as an active ingredient.
10. 7. The therapeutic agent for an immune disease according to item 6 above, wherein the immune disease is an autoimmune disease, an allergic disease or an inflammatory disease.
11. 9. An inhibitor of immune rejection during organ transplantation, comprising the immunosuppressive γδ T cell according to any one of 1 to 5 and 8 as an active ingredient.
12 A method for screening for a substance that promotes or suppresses the proliferation of CD4 + CD25 T cells, comprising the following steps:
(1) contacting the immunosuppressive γδ T cell and CD4 + CD25 T cell according to any one of 1 to 5 above with a test substance in the presence of a dendritic cell;
(2) a step of measuring the amount of CD4 + CD25 T cells;
(3) A step of selecting a test substance when the amount of CD4 + CD25 T cells is increased or decreased compared to the absence of the test substance.
13. A method of inducing CD39 + γδ T cells by culturing CD39 γδ T cells in the presence of a T cell stimulating agent and IL-2.
14 T cell stimulant selected from the group consisting of soluble antigen, peptide fragment of antigen, alloantigen, anti-CD2 antibody, anti-CD3 antibody, anti-CD28 antibody, anti-γδTCR antibody, LFA-3, staphylococcal enterotoxin B (SEB) 14. A method for inducing immunosuppressive γδ T cells according to item 13 above.
15. 15. The method for inducing immunosuppressive γδ T cells according to item 13 or 14 above, wherein the T cell stimulating agent is an anti-CD3 antibody.
16. 16. An immunosuppressive γδ T cell induced by the method according to any one of 13 to 15 above.
17. 17. A therapeutic agent for an immune disease caused by an excessive immune reaction, comprising the immunosuppressive γδ T cell according to item 16 as an active ingredient.
18. 18. The therapeutic agent according to item 17 above, wherein the immune disease is an autoimmune disease, an allergic disease or an inflammatory disease.
19. An inhibitor of immune rejection at the time of organ transplantation, comprising the immunosuppressive γδ T cell according to item 16 as an active ingredient.
 本発明のCD39を発現するγδT細胞は優れた免疫抑制能を有するため、過剰または異常な免疫反応によって惹起される自己免疫疾患、アレルギー疾患、炎症性疾患などの治療剤や臓器移植の際の免疫抑制剤として有用である。
 本発明の免疫抑制性γδT細胞について、樹状細胞(DC)依存性のCD4+CD25-T細胞増殖抑制活性を測定したところ、CD4+CD25+TregがCD4+CD25-T細胞の1/10存在している場合には約50%CD4+CD25-T細胞増殖が抑制されたのに対し、本発明の免疫抑制性γδT細胞はCD4+CD25-T細胞に対する存在比が1/100の状態で80%以上のCD4+CD25-T細胞増殖を抑制した。CD4+CD25-T細胞は自己免疫疾患発症のエフェクター細胞として知られている。よって、本発明の免疫抑制性γδT細胞は、CD4+CD25+Tregに比べて非常に高い免疫抑制能を有するものであり、本発明の免疫抑制性γδT細胞を用いることにより、ごく少量の細胞で免疫反応を効率よく抑制することが可能である。
Since γδT cells expressing CD39 of the present invention have excellent immunosuppressive ability, therapeutic agents such as autoimmune diseases, allergic diseases and inflammatory diseases caused by excessive or abnormal immune reactions and immunity during organ transplantation Useful as an inhibitor.
The immunosuppressive γδ T cells of the present invention were measured for dendritic cell (DC) -dependent CD4 + CD25 T cell proliferation inhibitory activity. As a result, CD4 + CD25 + Treg was 1/10 of CD4 + CD25 T cells. In contrast, about 50% of the CD4 + CD25 T cell proliferation was suppressed, whereas the immunosuppressive γδ T cells of the present invention had an abundance ratio of 1/100 to CD4 + CD25 T cells of 80%. More than% CD4 + CD25 T cell proliferation was suppressed. CD4 + CD25 T cells are known as effector cells for the development of autoimmune diseases. Therefore, the immunosuppressive γδ T cells of the present invention have a very high immunosuppressive ability compared to CD4 + CD25 + Treg. By using the immunosuppressive γδ T cells of the present invention, an extremely small amount of cells can be used. It is possible to suppress the immune reaction efficiently.
 また本発明の免疫抑制性γδT細胞を使用してCD4+CD25-T細胞の増殖を促進する物質をスクリーニングすれば自己免疫疾患などに有用な薬剤が、また、CD4+CD25-T細胞の増殖を抑制する物質をスクリーニングすれば感染免疫や腫瘍免疫などに有用な薬剤が得られる。 In addition, if a substance that promotes proliferation of CD4 + CD25 - T cells is screened using the immunosuppressive γδ T cells of the present invention, a drug useful for autoimmune diseases, etc., and proliferation of CD4 + CD25 - T cells can also be observed. Screening for a suppressive substance can provide a drug useful for infection immunity and tumor immunity.
 本発明によれば、免疫抑制能に優れたγδT細胞を、CD39をマーカーとすることにより、生体から効率的に分離して得ることができる。CD39を発現するγδT細胞について他の主な細胞表面マーカーの発現を更に詳細に解析したところ、CD4-/low、CD25+、CD73+、GITR+であった。また本発明のγδT細胞にはGITRhighの細胞はほとんど存在していなかった。さらに、本発明のγδT細胞には、制御性T細胞のマーカーと言われているFoxp3、CTLA-4が細胞表面に発現していなかった。 According to the present invention, γδ T cells having excellent immunosuppressive ability can be obtained by efficiently separating from a living body by using CD39 as a marker. The expression of other major cell surface markers on γδT cells expressing CD39 was analyzed in more detail and found to be CD4 − / low , CD25 + , CD73 + , and GITR + . Furthermore, almost no GITR high cells were present in the γδT cells of the present invention. Furthermore, Foxp3 and CTLA-4, which are said to be regulatory T cell markers, were not expressed on the cell surface in the γδ T cells of the present invention.
 本発明のCD39を発現するγδT細胞は、生体から分離して得ることが可能であるが、かかるγδT細胞はリンパ節中に0.1%以下しか存在しないために、免疫抑制に必要な細胞数を生体から獲得することが困難である場合がある。本発明ではin vitroで、CD39-γδT細胞からCD39+γδT細胞をほぼ100%の割合で誘導することが可能であり、CD39+γδT細胞数を容易に増大させて、利用することができる。 The γδ T cells expressing CD39 of the present invention can be obtained by separating them from a living body. However, since such γδ T cells are present only in 0.1% or less in the lymph nodes, the number of cells necessary for immunosuppression can be increased in the living body. It may be difficult to obtain from. In the present invention, it is possible to induce CD39 + γδT cells from CD39 γδT cells at a rate of almost 100% in vitro, and the number of CD39 + γδT cells can be easily increased and used.
マウスCD39+γδT細胞における細胞表面マーカーの解析結果を示す図である。(実施例2)It is a figure which shows the analysis result of the cell surface marker in mouse | mouth CD39 + (gamma) delta T cell. (Example 2) マウスCD39+γδT細胞における細胞表面マーカーCD4およびFoxp3の解析結果を示す図である。(実施例2)It is a figure which shows the analysis result of the cell surface markers CD4 and Foxp3 in a mouse | mouth CD39 + gammadeltaT cell. (Example 2) CD39+γδT細胞の樹状細胞(DC)依存性CD4+CD25-T細胞増殖抑制活性の確認結果を示す図である。(実施例3)It is a figure which shows the confirmation result of the dendritic cell (DC) dependence CD4 + CD25 < - > T cell proliferation inhibitory activity of a CD39 + (gamma) delta T cell. (Example 3) CD39+γδT細胞の樹状細胞(DC)非依存性CD4+CD25-T細胞増殖抑制活性の確認結果を示す図である。(実施例4)CD39 + [gamma] [delta] T cells of dendritic cells (DC) -independent CD4 + CD25 - a diagram showing the check results of T cell growth inhibitory activity. Example 4 CD39+γδT細胞もしくはCD39-γδT細胞の樹状細胞(DC)依存性CD4+CD25-T細胞増殖抑制活性の確認結果を示す図である。(実施例5)It is a figure which shows the confirmation result of the dendritic cell (DC) dependence CD4 + CD25 - T cell proliferation inhibitory activity of a CD39 + γδT cell or a CD39 - γδT cell. (Example 5) CD39+γδT細胞によるサイトカイン産生を確認した結果を示す図である。(実施例6)It is a figure which shows the result of having confirmed the cytokine production by CD39 + (gamma) delta T cell. (Example 6) in vitroで誘導して得られたCD39+γδT細胞についての細胞表面マーカーの解析結果を示す図である。(実施例7)It is a figure which shows the analysis result of the cell surface marker about CD39 + γdelta T cell obtained by inducing | guiding | deriving in vitro. (Example 7) in vitroで誘導して得られたCD39+γδT細胞についての細胞表面マーカーの解析結果を示す図である。(実施例8)It is a figure which shows the analysis result of the cell surface marker about CD39 + γdelta T cell obtained by inducing | guiding | deriving in vitro. (Example 8) in vitroで誘導して得られたCD39+γδT細胞のCD4+CD25-T細胞増殖抑制活性の確認結果を示す図である。(実施例9)It is a figure which shows the confirmation result of CD4 + CD25 < - > T cell proliferation inhibitory activity of CD39 + (gamma) delta T cell obtained by in vitro induction | guidance | derivation. Example 9 in vitroで誘導して得られたCD39+γδT細胞の炎症抑制作用の確認結果を示す図である。(実施例10)It is a figure which shows the confirmation result of the inflammation inhibitory effect of CD39 + (gamma) delta T cell obtained by inducing | guiding | deriving in vitro. (Example 10)
(免疫抑制性γδT細胞)
 本発明の免疫抑制性γδT細胞は、マーカー分子(抗原)であるCD39を細胞表面に発現していることを特徴とする。CD39を細胞表面に発現している細胞は、「CD39+」という表現型で表記されることもある。
(Immunosuppressive γδ T cells)
The immunosuppressive γδ T cells of the present invention are characterized in that CD39, which is a marker molecule (antigen), is expressed on the cell surface. Cells expressing CD39 on the cell surface may be represented by the phenotype “CD39 + ”.
 本明細書において、細胞の表現型をマーカー分子発現の有無や強弱で表す場合、特に断りのない限り、当該マーカー分子に対する抗体による特異的結合の有無や強弱で細胞の表現型が表記される。マーカー分子の発現の有無や強弱による細胞の表現型の決定は、通常、当該マーカー分子に対する特異的抗体等を用いたフローサイトメトリー(FACS)解析等により行われる。「マーカー分子が細胞表面に発現している」とは、いわゆる当業者が一般的に判断しうる概念で用いられており、該マーカー分子が細胞表面上(或いは細胞内)に発現しており、当該マーカー分子に対する抗体による特異的結合が確認できることをいう。「マーカー分子が細胞表面に発現している」とは「陽性」とも称され、例えば、CD39をマーカー分子とする場合は、CD39+で表すことができ、CD39+にはCD39lowやCD39highが含まれていても良い。「陽性」のうち、「強陽性」については、いわゆる当業者が一般的に判断しうる概念で用いられており、比較対照である他の細胞(又は細胞集団)と比べて、マーカー分子の発現量が相対的に高い、マーカー分子の発現量の高い細胞集団が相対的に多い、マーカー分子を発現している細胞集団の割合が相対的に多いこと等をいい、例えばCD39highやCD39++などで表すことができる。また、場合によっては、CD39high+と表現する場合もある。「弱陽性」とは、比較対照である他の細胞(又は細胞集団)と比べて、マーカー分子の発現量が相対的に低い、マーカー分子の発現量の低い細胞集団が相対的に多い、マーカー分子を発現している細胞集団の割合が相対的に少ないこと等をいい、例えばCD39lowなどで表すことができる。また、「陰性」とは、マーカー分子の発現が認められないものをいい、CD39-で表すことができる。ここで、発現レベルの比較は、FACS解析により行なうことができ、例えば縦軸に細胞数を、横軸に発現強度(蛍光強度)を取ったグラフ中のヒストグラムのピークにおける発現強度を比較することにより行うことができる。 In the present specification, when the phenotype of a cell is expressed by the presence / absence or strength of marker molecule expression, unless otherwise specified, the phenotype of the cell is expressed by the presence / absence or strength of specific binding by an antibody to the marker molecule. Determination of the phenotype of a cell based on the presence or absence of the marker molecule and its strength is usually carried out by flow cytometry (FACS) analysis using a specific antibody against the marker molecule. “The marker molecule is expressed on the cell surface” is used in a concept that can be generally judged by those skilled in the art, and the marker molecule is expressed on the cell surface (or in the cell). It means that specific binding by an antibody to the marker molecule can be confirmed. A "marker molecule is expressed on the cell surface" also referred to as "positive", for example, the case of the CD39 marker molecule can be represented by CD39 +, the CD39 + is CD39 low or CD39 high It may be included. Among “positive”, “strongly positive” is used in a concept that can be generally judged by those skilled in the art, and the expression of the marker molecule compared to other cells (or cell populations) as a comparative control. A relatively high amount, a relatively large number of cell populations with a high level of marker molecule expression, a relatively large proportion of cell populations expressing a marker molecule, such as CD39 high and CD39 ++ Etc. In some cases, it may be expressed as CD39 high + . “Weak positive” is a marker in which the expression level of the marker molecule is relatively low compared to other cells (or cell populations) that are comparative controls, and the cell population in which the expression level of the marker molecule is low is relatively high. This means that the proportion of the cell population expressing the molecule is relatively small, and can be expressed by, for example, CD39 low . “Negative” means that no marker molecule is expressed, and can be expressed as CD39 . Here, the comparison of the expression level can be performed by FACS analysis, for example, comparing the expression intensity at the peak of the histogram in the graph with the number of cells on the vertical axis and the expression intensity (fluorescence intensity) on the horizontal axis. Can be performed.
 本発明の免疫抑制性γδT細胞は、細胞表面にCD25またはCD73を、さらに発現していることが好ましい。 The immunosuppressive γδT cells of the present invention preferably further express CD25 or CD73 on the cell surface.
 また本発明の免疫抑制性γδT細胞は、CD39+である以外に、CD4-/low、CD25+、CD73+、Foxp3-、CTLA-4-、GITR+のいずれか1以上の細胞表現型を有することが好ましい。より好ましくは、本発明の免疫抑制性γδT細胞はFoxp3-CTLA-4-GITR+の表現型、さらに好ましくはCD39+CD4-/lowCD25+CD73+Foxp3-CTLA-4-GITR+の表現型である。 Further, the immunosuppressive γδ T cell of the present invention has one or more cell phenotypes of CD4 − / low , CD25 + , CD73 + , Foxp3 , CTLA-4 and GITR + in addition to CD39 +. It is preferable. More preferably, the immunosuppressive γδ T cells of the present invention have a Foxp3 CTLA-4 GITR + phenotype, more preferably a CD39 + CD4 − / low CD25 + CD73 + Foxp3 CTLA-4 GITR + phenotype. is there.
 よって、本発明の免疫抑制性γδT細胞は、非特許文献4にて報告されているCD25-の表現型を有する制御性γδT細胞や、非特許文献3にて報告されているGITRhighの細胞が多数を占めている制御性T細胞とは、異なる細胞集団であると考えられる。 Therefore, the immunosuppressive γδT cell of the present invention is a regulatory γδT cell having a CD25 phenotype reported in Non-Patent Document 4 or a GITR high cell reported in Non-Patent Document 3. Regulatory T cells occupying a large number are considered to be different cell populations.
 本発明の免疫抑制性γδT細胞は、樹状細胞依存性のCD4+CD25-T細胞の増殖を抑制するものであり、CD4+CD25+Tregに比べて非常に高い免疫抑制能を有するものである。 The immunosuppressive γδ T cells of the present invention suppress dendritic cell-dependent proliferation of CD4 + CD25 T cells, and have a much higher immunosuppressive ability than CD4 + CD25 + Treg. .
 さらに、本発明の免疫抑制性γδT細胞は、IL-10をCD4+CD25+Tregと同程度分泌するが、INF-γは分泌しないという特性を有している。かかる特性は、後述する実施例の方法等を用いて、IL-10やIFN-γのmRNA発現を検出することにより確認することができる。 Furthermore, the immunosuppressive γδ T cells of the present invention have the property of secreting IL-10 to the same extent as CD4 + CD25 + Treg but not INF-γ. Such characteristics can be confirmed by detecting the expression of IL-10 or IFN-γ mRNA using the methods of Examples described later.
(生体試料から免疫抑制性γδT細胞を調製する方法)
 本発明の免疫抑制性γδT細胞はCD39をマーカーとし、生体よりCD39が細胞表面に発現しているγδT細胞を分離して得ることが可能である。具体的には、以下の工程を含む、免疫抑制性γδT細胞を調製する方法により、分離することが可能である。
(i)リンパ球を、抗γδT細胞受容体抗体および抗CD39抗体で処理する工程;
(ii)抗γδT細胞受容体抗体および抗CD39抗体と結合するリンパ球を分離取得する工程。
(Method for preparing immunosuppressive γδ T cells from biological samples)
The immunosuppressive γδ T cells of the present invention can be obtained by isolating γδ T cells in which CD39 is expressed on the cell surface from a living body using CD39 as a marker. Specifically, it can be separated by a method for preparing immunosuppressive γδ T cells including the following steps.
(I) treating lymphocytes with an anti-γδ T cell receptor antibody and an anti-CD39 antibody;
(Ii) A step of separating and obtaining lymphocytes that bind to an anti-γδ T cell receptor antibody and an anti-CD39 antibody.
 リンパ球は生体から採取した試料(生体試料)中に存在するものである。生体試料としては、ヒト、マウスなどを含む哺乳動物から採取された脾臓、リンパ節、末梢血もしくは臍帯血などの血液、組織液、または骨髄液などが例示される。また生体試料は、例えば、上記リンパ節等の生体試料を適切な培地もしくは希釈液を用いて調製した細胞の懸濁液等、生体から採取した後に何らかの処理を施したものであってもよい。本発明のγδT細胞は生体内で骨髄の幹細胞から分化し、リンパ節に循環したものであり、骨髄由来のものである。 Lymphocytes are present in samples collected from living organisms (biological samples). Examples of biological samples include blood such as spleen, lymph nodes, peripheral blood or umbilical cord blood collected from mammals including humans, mice, tissue fluid, bone marrow fluid, and the like. The biological sample may be a sample obtained by collecting a biological sample such as the above lymph node from a living body, such as a cell suspension prepared using an appropriate medium or diluent, for example. The γδ T cells of the present invention are differentiated from bone marrow stem cells in vivo and circulated to lymph nodes, and are derived from bone marrow.
 上記工程(i)においては、さらに抗CD25抗体を用いることが好ましく、その場合、工程(ii)においては、抗γδT細胞受容体抗体、抗CD25抗体および抗CD39抗体に結合する細胞を、本発明の免疫抑制性γδT細胞として分離することが可能である。さらに工程(i)においては抗Thy1.2抗体を用いてもよく、工程(ii)において抗Thy1.2抗体に結合する細胞を分離することができる。工程(i)においては、リンパ球を全ての抗体で同時に処理してもよいが、同時でなくてもよく、リンパ球を処理する抗体の順番は、特に限定されない。 In the step (i), it is preferable to further use an anti-CD25 antibody. In this case, in the step (ii), cells that bind to the anti-γδ T cell receptor antibody, the anti-CD25 antibody and the anti-CD39 antibody are used in the present invention. It is possible to isolate as immunosuppressive γδ T cells. Furthermore, an anti-Thy1.2 antibody may be used in step (i), and cells that bind to the anti-Thy1.2 antibody can be separated in step (ii). In step (i), lymphocytes may be treated with all antibodies at the same time, but they may not be treated simultaneously, and the order of antibodies treating lymphocytes is not particularly limited.
 工程(i)および(ii)による本発明の免疫抑制性γδT細胞を分離する方法には、抗体を結合したマグネティックビーズを生体試料に添加し、マグネティックビーズを磁石で集めることにより、マーカーを発現しているT細胞を分離する方法や(マグネティックビーズ法)、蛍光物質等の標識物質で標識した抗体を生体試料に添加し、標識物質の結合した細胞をセルソーターで分離する方法(FACS法)、抗体をコーティングしたプレートで生体試料を培養した後、マーカー陽性の細胞をプレートに結合させて分離する方法(パンニング法)など周知の方法を用いることができる。また、これらの原理を用いた市販の分離キットを用いてもよい。 In the method for isolating the immunosuppressive γδ T cells of the present invention according to the steps (i) and (ii), the marker is expressed by adding magnetic beads to which an antibody is bound to a biological sample and collecting the magnetic beads with a magnet. A method of separating living T cells (magnetic bead method), a method in which an antibody labeled with a fluorescent substance or other labeled substance is added to a biological sample, and a cell to which the labeled substance is bound is separated with a cell sorter (FACS method), antibody A well-known method such as a method (panning method) of culturing a biological sample on a plate coated with, and then binding marker-positive cells to the plate to separate them can be used. Commercially available separation kits using these principles may also be used.
 本発明の免疫抑制性γδT細胞を調製する方法を、以下の方法1~3として具体的に例示する。
 方法1:哺乳動物より、腋窩および/または鼠径リンパ節を採取し、70μmメッシュを用いてsingle cell suspensionを単離する。BD FACSAriaTM(Beckton Dickinson社)を用いて、FSC-A、SSC-Aにてリンパ球分画をゲートし、更にSSC-H、SSC-WおよびFSC-H、FSC-Wにてダブレットをゲートアウトとする。更にFITC(フルオレッセインイソチオシアナート)標識抗γδTCR抗体、Pacific BlueTM標識抗Thy1.2抗体でゲートし、γδTCR陽性、Thy1.2陽性細胞をγδT細胞として得る。得られたγδT細胞を、BD FACSAriaTMにてAPC(Allophycocyanine)標識抗CD39抗体でゲートし、CD39陽性細胞群を分離してCD39+γδT細胞を単離する。
The method for preparing the immunosuppressive γδ T cells of the present invention is specifically exemplified as the following methods 1 to 3.
Method 1: Axillary and / or inguinal lymph nodes are collected from a mammal, and a single cell suspension is isolated using a 70 μm mesh. Using BD FACSAria TM (Beckton Dickinson), lymphocyte fractionation is gated with FSC-A and SSC-A, and doublet is gated with SSC-H, SSC-W, FSC-H and FSC-W. Let it be out. Further, FITC (fluorescein isothiocyanate) labeled anti-γδTCR antibody and Pacific Blue labeled anti-Thy1.2 antibody are gated to obtain γδTCR positive and Thy1.2 positive cells as γδT cells. The obtained γδT cells are gated with APC (Allophycocyanine) -labeled anti-CD39 antibody on BD FACSAria , and the CD39 + cell group is separated to isolate CD39 + γδT cells.
 方法2:哺乳動物より腋窩および/または鼠径リンパ節を採取し、70μmメッシュを用いてsingle cell suspensionを単離する。BD FACSAriaTMにてFSC-A、SSC-Aにてリンパ球分画をゲートし更にSSC-H,SSC-WおよびFSC-H, FSC-Wにてダブレットをゲートアウトとする。更にAPC標識抗CD39抗体、Pe(Phycoerythrin)標識抗CD25抗体でゲートし、CD39+CD25+細胞を分離した後、FITC標識抗γδTCR抗体でゲートしてγδTCR陽性細胞を分離し、CD39+γδT細胞を単離する。 Method 2: Axillary and / or inguinal lymph nodes are collected from a mammal, and a single cell suspension is isolated using a 70 μm mesh. The lymphocyte fraction is gated with FSC-A and SSC-A with BD FACSAria ™, and the doublet is gated out with SSC-H, SSC-W and FSC-H, FSC-W. Furthermore, after gated with an APC-labeled anti-CD39 antibody and Pe (Phycoerythrin) -labeled anti-CD25 antibody to separate CD39 + CD25 + cells, it was gated with a FITC-labeled anti-γδTCR antibody to separate γδTCR positive cells, and CD39 + γδT cells were Isolate.
 方法3:哺乳動物より腋窩および/または鼠径リンパ節を採取し70μmメッシュを用いてsingle cell suspensionを単離する。autoMACSTM pro separator(Miltenyi Biotec社)を用いて、Pe標識抗CD25抗体とMACS抗PeマイクロビーズにてCD25+細胞を分離する。BD FACSAriaTMにてAPC標識抗CD39抗体にてゲートし、更にFITC標識抗γδTCR抗体およびPacific Blue標識抗Thy1.2抗体でゲートして、γδTCR陽性細胞を分離し、CD39+γδT細胞を単離する。 Method 3: Axillary and / or inguinal lymph nodes are collected from a mammal and a single cell suspension is isolated using a 70 μm mesh. Using autoMACS pro separator (Miltenyi Biotec), CD25 + cells are separated with Pe-labeled anti-CD25 antibody and MACS anti-Pe microbeads. Gate with APC-labeled anti-CD39 antibody on BD FACSAria TM, then gate with FITC-labeled anti-γδTCR antibody and Pacific Blue-labeled anti-Thy1.2 antibody to isolate γδTCR positive cells and isolate CD39 + γδT cells .
 上記の調製方法において用いられる各種抗体は、eBiocscience社、Beckton Dickinson社などから購入することができる。 Various antibodies used in the above preparation method can be purchased from eBiocscience, Beckton® Dickinson, and the like.
 本発明の調製方法より得たγδT細胞が免疫抑制能を有するかは、樹状細胞依存性のCD4+CD25-T細胞の増殖抑制作用を検出することにより確認可能である。CD4+CD25+Tregに比べて同程度もしくは高い増殖抑制能を有する場合に、当該γδT細胞が免疫抑制能を有すると判定することができる。具体的な方法として、後述の実施例に記載の方法が例示される。 Whether the γδ T cells obtained by the preparation method of the present invention have immunosuppressive ability can be confirmed by detecting dendritic cell-dependent CD4 + CD25 T cell proliferation inhibitory action. It can be determined that the γδ T cell has an immunosuppressive ability when it has the same or higher growth suppressive ability than CD4 + CD25 + Treg. As a specific method, a method described in Examples described later is exemplified.
(免疫抑制性γδT細胞を含む医薬)
 本発明のγδT細胞の有効量を、医薬として許容される溶剤等と混合するなどして、経口/非経口の医薬を製造することができる。
(Pharmaceuticals containing immunosuppressive γδ T cells)
An oral / parenteral medicament can be produced by mixing an effective amount of the γδ T cell of the present invention with a pharmaceutically acceptable solvent or the like.
 本発明の免疫抑制性γδT細胞は、過剰または異常な免疫反応によって惹起される自己免疫疾患、アレルギー疾患、炎症疾患などの治療剤としての適用が期待される。本発明の免疫抑制性γδT細胞は、炎症性ATPが蓄積することによって惹起される炎症疾患や病態に特に有用であると考えられる。 The immunosuppressive γδ T cells of the present invention are expected to be applied as therapeutic agents for autoimmune diseases, allergic diseases, inflammatory diseases caused by excessive or abnormal immune reactions. The immunosuppressive γδ T cells of the present invention are considered to be particularly useful for inflammatory diseases and pathologies caused by accumulation of inflammatory ATP.
 自己免疫疾患とは、例えば、多発性硬化症、関節リウマチ、シェーグレン症候群、膠原病、I型糖尿病、ぶどう膜炎、自己免疫性心筋炎、重症筋無力症、全身性エリテマトーデス、全身性強皮症、潰瘍性大腸炎、クローン病、自己免疫性肝炎、乾癬、糸球体腎炎、悪性貧血、ベーチェット病、自己免疫性胃炎、橋本病、バセドウ病、自己免疫性心筋炎、自己免疫性膵炎、自己免疫性膵島炎、自己免疫性溶血性貧血、アジソン病、自己免疫性水庖症などが例示される。 Autoimmune diseases include, for example, multiple sclerosis, rheumatoid arthritis, Sjogren's syndrome, collagen disease, type I diabetes, uveitis, autoimmune myocarditis, myasthenia gravis, systemic lupus erythematosus, systemic scleroderma , Ulcerative colitis, Crohn's disease, autoimmune hepatitis, psoriasis, glomerulonephritis, pernicious anemia, Behcet's disease, autoimmune gastritis, Hashimoto's disease, Graves' disease, autoimmune myocarditis, autoimmune pancreatitis, autoimmunity Examples include pancreatic insulitis, autoimmune hemolytic anemia, Addison's disease, autoimmune varicella and the like.
 炎症疾患とは、炎症性角化症、炎症性腸疾患、ウイルス性肝炎、薬物性肝炎、筋炎などが例示される。 Examples of inflammatory diseases include inflammatory keratosis, inflammatory bowel disease, viral hepatitis, drug-induced hepatitis, myositis and the like.
 アレルギー疾患とは、接触過敏症、アレルギー性鼻炎、食物アレルギー、喘息、アトピー性皮膚炎、紫外線皮膚炎などが例示される。 Examples of allergic diseases include contact hypersensitivity, allergic rhinitis, food allergy, asthma, atopic dermatitis, ultraviolet dermatitis and the like.
 さらに、本発明の免疫抑制性γδT細胞は、臓器移植時の免疫拒絶の抑制剤としての適用が期待される。臓器移植とは、拒絶反応が危惧される移植であれば特に限定されないが、例えば、肝臓移植、小腸移植、膵臓移植、膵島移植、肺移植、腎移植、骨髄移植、心臓移植、角膜移植、移植片対宿主病が挙げられる。 Furthermore, the immunosuppressive γδ T cells of the present invention are expected to be applied as an inhibitor of immune rejection during organ transplantation. Organ transplantation is not particularly limited as long as rejection is a concern. For example, liver transplantation, small intestine transplantation, pancreas transplantation, islet transplantation, lung transplantation, renal transplantation, bone marrow transplantation, heart transplantation, corneal transplantation, graft Anti-host disease is mentioned.
(本発明の免疫抑制性γδT細胞を用いた、CD4+CD25-T細胞増殖に影響する物質のスクリーニング方法)
 本発明の免疫抑制性γδT細胞を用いて、CD4+CD25-T細胞の増殖を促進するまたは抑制する物質をスクリーニングすることが可能である。具体的には本スクリーニング方法は以下の工程を含む:
(Screening method for substances affecting the proliferation of CD4 + CD25 T cells using the immunosuppressive γδ T cells of the present invention)
The immunosuppressive γδ T cells of the present invention can be used to screen for substances that promote or suppress the proliferation of CD4 + CD25 T cells. Specifically, the screening method includes the following steps:
(1)本発明の免疫抑制性γδT細胞およびCD4+CD25-T細胞と、被験物質とを樹状細胞の存在下で接触させる工程;
(2)CD4+CD25-T細胞の量を測定する工程;
(3)被験物質の非存在下と比較して、CD4+CD25-T細胞の量が増加または減少した場合に、被験物質を選択する工程。
(1) A step of bringing the immunosuppressive γδ T cell and CD4 + CD25 T cell of the present invention into contact with a test substance in the presence of a dendritic cell;
(2) a step of measuring the amount of CD4 + CD25 T cells;
(3) A step of selecting a test substance when the amount of CD4 + CD25 T cells is increased or decreased compared to the absence of the test substance.
 本スクリーニング方法により得られたCD4+CD25-T細胞の増殖を促進する物質は免疫亢進作用を有すると考えられ、感染免疫や腫瘍免疫などに有用な薬剤となり得ると考えられる。また、本スクリーニング方法により得られたCD4+CD25-T細胞の増殖を抑制する物質は、免疫抑制作用を有すると考えられ、自己免疫疾患、炎症疾患、もしくはアレルギー疾患の治療、臓器移植時の免疫拒絶の抑制などに有用な薬剤となり得ると考えられる。 A substance that promotes the proliferation of CD4 + CD25 T cells obtained by this screening method is considered to have an immunopotentiating action, and may be a useful drug for infectious immunity and tumor immunity. In addition, a substance that suppresses the proliferation of CD4 + CD25 T cells obtained by this screening method is considered to have an immunosuppressive effect, and is used for the treatment of autoimmune disease, inflammatory disease or allergic disease, and immunity during organ transplantation. It is thought that it can be a useful drug for suppressing rejection.
(CD39+γδT細胞をin vitroで誘導する方法)
 CD39+γδT細胞は、生体のリンパ節中に0.1%以下しか存在しないために、生体から免疫抑制に必要な細胞数を獲得することが困難である場合がある。本発明においては、in vitroでCD39-γδT細胞からCD39+γδT細胞を変換することも可能である。
(Method of inducing CD39 + γδ T cells in vitro)
Since CD39 + γδ T cells are present only in 0.1% or less in the lymph nodes of the living body, it may be difficult to obtain the number of cells necessary for immunosuppression from the living body. In the present invention, it is also possible to convert CD39 + γδT cells from CD39 γδT cells in vitro.
 本発明のCD39+γδT細胞をin vitroで誘導する方法は、CD39-γδT細胞を、T細胞刺激剤とIL-2の存在下に培養することによるものである。 The method for inducing CD39 + γδ T cells of the present invention in vitro is by culturing CD39 γδ T cells in the presence of a T cell stimulating agent and IL-2.
 CD39-γδT細胞は、いかなるものを用いてもよいが、例えば生体試料から分離したものを用いることができる。このような生体試料として、ヒト、マウスなどを含む哺乳動物の脾臓、リンパ節、末梢血もしくは臍帯血などの血液、組織液、または骨髄液などが例示される。またリンパ球を含む生体試料は、例えば、上記リンパ節等の生体試料を適切な培地もしくは希釈液を用いて調製した細胞の懸濁液等の生体から採取した後に何らかの処理を施したものであってもよい。 Any CD39 γδ T cells may be used, but for example, those isolated from a biological sample can be used. Examples of such biological samples include spleen, lymph nodes, blood such as peripheral blood or umbilical cord blood, tissue fluid, or bone marrow fluid of mammals including humans and mice. The biological sample containing lymphocytes is, for example, a sample obtained by collecting a biological sample such as the above lymph node from a living body such as a cell suspension prepared using an appropriate medium or diluent. May be.
 CD39-γδT細胞はCD39をマーカーとして、生体試料よりCD39が細胞表面に発現していない細胞集団を分離することにより、得ることが可能である。生体試料からのCD39-γδT細胞の取得方法は、CD39+γδT細胞を調製する方法に準じて行うことが可能である。具体的には以下の方法により、CD39-γδT細胞を取得することができる。 CD39 γδT cells can be obtained by separating a cell population in which CD39 is not expressed on the cell surface from a biological sample using CD39 as a marker. The method for obtaining CD39 γδT cells from a biological sample can be performed according to the method for preparing CD39 + γδT cells. Specifically, CD39-γδ T cells can be obtained by the following method.
 哺乳動物より腋窩および/または鼠径リンパ節を採取し70μmメッシュを用いてsingle cell suspensionを単離する。autoMACSTM pro separatorを用いて、FITC標識抗γδTCR抗体とMACS抗FITCマイクロビーズにてγδT細胞をpre-sortする。BD FACSAriaTMにてFSC-A、SSC-Aにてリンパ球分画をゲートし、更にSSC-H、SSC-WおよびFSC-H、FSC-Wにてダブレットをゲートアウトとする。更にFITC標識抗γδTCR抗体、PacificBlue標識抗Thy1.2抗体でゲートし、γδTCR陽性、Thy1.2陽性細胞をγδT細胞として得る。得られたγδT細について、APC標識抗CD39抗体にてCD39陰性細胞群をゲート、分離し、CD39-γδT細胞を単離する。 Axillary and / or inguinal lymph nodes are collected from a mammal and a single cell suspension is isolated using a 70 μm mesh. Using autoMACS pro separator, pre-sort γδT cells with FITC-labeled anti-γδTCR antibody and MACS anti-FITC microbeads. The lymphocyte fraction is gated with FSC-A and SSC-A with BD FACSAria ™, and the doublet is gated out with SSC-H, SSC-W, FSC-H and FSC-W. Further, gate with FITC-labeled anti-γδTCR antibody and PacificBlue-labeled anti-Thy1.2 antibody to obtain γδTCR positive and Thy1.2 positive cells as γδT cells. With respect to the obtained γδT cells, a CD39 negative cell group is gated and separated with an APC-labeled anti-CD39 antibody to isolate CD39 γδT cells.
 本発明の誘導方法において用いられるT細胞刺激剤は、T細胞を刺激してT細胞の活性化を誘導し得る活性を持つものを指す。T細胞の活性化とは、例えば細胞増殖、サイトカイン(IL-2、IL-4、IFN-γ等)産生、細胞内カルシウムイオン濃度上昇、T細胞受容体シグナリング等に関わるタンパク質のリン酸化等を挙げることが出来るが、これらに限定されない。活性化の誘導は、全く細胞の活性化が見られない場合にその細胞を活性化させること、及び既に細胞の活性化が見られている場合にその活性化の程度を増大させることを包含する。T細胞刺激剤としては、可溶性抗原、抗原のペプチドフラグメント、アロ抗原、抗CD2抗体、抗CD3抗体、抗CD28抗体、抗γδTCR抗体、LFA-3、ブドウ状球菌エンテロトキシンB (SEB)などが例示される。本発明の誘導方法においては、これらのT細胞刺激剤から選択される少なくとも1種のT細胞刺激剤が用いられ、好ましくは抗CD3抗体が用いられる。誘導の際に添加するT細胞刺激剤の量は、0.01~10μg/mlが好ましい。 The T cell stimulant used in the induction method of the present invention refers to an agent having an activity capable of stimulating T cells to induce T cell activation. T cell activation refers to, for example, cell proliferation, cytokine (IL-2, IL-4, IFN-γ, etc.) production, intracellular calcium ion concentration increase, phosphorylation of proteins involved in T cell receptor signaling, etc. Although it can mention, it is not limited to these. Induction of activation includes activating the cell when no cell activation is seen, and increasing the degree of activation when cell activation is already seen. . Examples of T cell stimulants include soluble antigens, peptide fragments of antigens, alloantigens, anti-CD2 antibodies, anti-CD3 antibodies, anti-CD28 antibodies, anti-γδTCR antibodies, LFA-3, staphylococcal enterotoxin B (SEB), etc. The In the induction method of the present invention, at least one T cell stimulating agent selected from these T cell stimulating agents is used, and preferably an anti-CD3 antibody is used. The amount of the T cell stimulating agent added at the time of induction is preferably 0.01 to 10 μg / ml.
 本発明の誘導方法においては、T細胞刺激剤と共にIL-2が用いられる。誘導の際に添加するIL-2の量は20~200unit/mlが好ましい。 In the induction method of the present invention, IL-2 is used together with a T cell stimulant. The amount of IL-2 added during induction is preferably 20 to 200 units / ml.
 本発明の誘導方法において、T細胞刺激剤とIL-2の添加は同時に行っても良いし、T細胞刺激剤で1日~7日間刺激した後にT細胞刺激剤を除去し、IL-2を添加し1日~21日間誘導しても良い。 In the induction method of the present invention, the T cell stimulant and IL-2 may be added simultaneously, or after stimulation with the T cell stimulant for 1 to 7 days, the T cell stimulant is removed, and IL-2 is removed. It may be added and induced for 1 to 21 days.
 本発明の誘導方法において用いられる、CD39-γδT細胞の濃度は、1x104~1x106個/mlが好ましく、1x104~1x105個/mlであることがより好ましい。また誘導の際のCO2濃度は5~20%であり、より好ましくは5~15%である。誘導の際の温度は35~39度(特に37度)が好ましい。誘導期間は、2日間~30日間であり、好ましくは3日間~21日間である。 The concentration of CD39 γδ T cells used in the induction method of the present invention is preferably 1 × 10 4 to 1 × 10 6 cells / ml, and more preferably 1 × 10 4 to 1 × 10 5 cells / ml. Further, the CO 2 concentration during induction is 5 to 20%, more preferably 5 to 15%. The induction temperature is preferably 35 to 39 degrees (particularly 37 degrees). The induction period is 2 days to 30 days, preferably 3 days to 21 days.
 本発明の誘導方法においては、CD39をマーカーとして免疫抑制性の細胞への誘導割合を測定して確認することができ、最適な誘導期間を決定することができる。またCD39-γδT細胞を、100%の割合で完全に免疫抑制性γδT細胞に誘導できなかった場合でも、抗CD39抗体を用いてCD39でゲートすることにより、免疫抑制性γδT細胞を分離することができる。非特許文献6におけるCD4low/negCD25+T細胞の誘導方法では、誘導前の抑制能を持たないCD4low/negCD25+T細胞と誘導後の抑制能を持つCD4low/negCD25+T細胞を区別できないために、目的とする抑制性CD4low/negCD25+T細胞がどの程度誘導されたかを判断することが困難である。 In the induction method of the present invention, the induction ratio to immunosuppressive cells can be measured and confirmed using CD39 as a marker, and the optimal induction period can be determined. Even if CD39 - γδT cells could not be completely induced into immunosuppressive γδT cells at a rate of 100%, it is possible to isolate immunosuppressive γδT cells by gating on CD39 with anti-CD39 antibody. it can. The method for inducing CD4 low / neg CD25 + T cells in the non-patent document 6, CD4 low / neg CD25 + T cells with suppressive capacity after induction with CD4 low / neg CD25 + T cells without the ability of suppression before induction Therefore, it is difficult to determine how much the target inhibitory CD4 low / neg CD25 + T cells are induced.
(in vitro誘導されたCD39+γδT細胞)
 本発明の誘導方法において、例えばCD39-γδT細胞を抗CD3抗体存在下で培養した後、IL-2を添加して培養を行うと、ほぼ100%のCD39-γδT細胞をCD39+γδT細胞の変化させることが可能である。得られたCD39+γδT細胞は、生体から分離したCD39+γδT細胞と同様にCD4+CD25-T細胞増殖抑制能を有しており、免疫抑制能を獲得したものである。本発明により誘導されるCD39+γδT細胞は、CD39+である以外に、CD4-、CD8-、CD25+、CD73+、Foxp3-のいずれか1以上の細胞表現型を有し、好ましくはCD4-CD8-CD25+CD73+Foxp3-の表現型を有する。
(CD39 + γδ T cells induced in vitro)
In the induction method of the present invention, for example, when CD39 γδT cells are cultured in the presence of an anti-CD3 antibody and then cultured with IL-2 added, almost 100% of CD39 γδT cells are changed in CD39 + γδT cells. It is possible to make it. The obtained CD39 + γδ T cells have CD4 + CD25 T cell proliferation inhibitory ability similar to CD39 + γδ T cells isolated from a living body, and have acquired immunosuppressive ability. The CD39 + γδ T cells induced by the present invention have one or more cell phenotypes of CD4 , CD8 , CD25 + , CD73 + , Foxp3 in addition to CD39 + , preferably CD4 −. CD8 - CD25 + CD73 + Foxp3 - with a phenotype of.
 本発明の誘導方法において得られたCD39+γδT細胞は、非特許文献6において誘導されたCD8+の細胞表現型であるCD4low/negCD25+T細胞、特許文献1において誘導されたFocp3+の細胞表現型である制御性γδT細胞とは、細胞表現型が異なっている。 CD39 + γδ T cells obtained by the induction method of the present invention are CD4 low / neg CD25 + T cells, which are the cell phenotype of CD8 + induced in Non-Patent Document 6, and Focp3 + induced in Patent Document 1. The cell phenotype is different from the regulatory γδ T cells which are cell phenotypes.
(in vitroで誘導した免疫抑制性γδT細胞を含む医薬)
 本発明の誘導方法により得られたγδT細胞は、生体から得られた免疫抑制性γδT細胞と同様に、免疫抑制能を発揮するため、当該γδT細胞の有効量を医薬として許容される溶剤等と混合するなどして、経口/非経口の薬剤を製造することができる。かかる免疫抑制性γδT細胞を含む医薬は、過剰または異常な免疫反応によって惹起される自己免疫疾患、アレルギー疾患、炎症疾患などの治療剤としての適用が期待される。また、本発明の免疫抑制性γδT細胞は、臓器移植時の免疫拒絶の抑制剤としての適用が期待される。
(Medicine containing immunosuppressive γδ T cells induced in vitro)
Since the γδ T cells obtained by the induction method of the present invention exert immunosuppressive ability in the same manner as immunosuppressive γδ T cells obtained from a living body, an effective amount of the γδ T cells is used as a pharmaceutically acceptable solvent, etc. Oral / parenteral drugs can be produced, for example, by mixing. Such a medicament containing immunosuppressive γδ T cells is expected to be applied as a therapeutic agent for autoimmune diseases, allergic diseases, inflammatory diseases and the like caused by excessive or abnormal immune reactions. In addition, the immunosuppressive γδ T cells of the present invention are expected to be applied as an inhibitor of immune rejection during organ transplantation.
 以下、本発明の理解を深めるために実施例において発明内容を具体的に説明するが、これらは本発明の範囲を限定するものではないことはいうまでもない。 Hereinafter, in order to deepen the understanding of the present invention, the contents of the invention will be specifically described in Examples, but it is needless to say that these do not limit the scope of the present invention.
(実施例1)免疫抑制性γδT細胞の分離
 マウスより腋窩、鼠径リンパ節を採取し70μmメッシュを用いてsingle cell suspensionを単離した。autoMACSTM pro separatorを用いて、Pe標識抗CD25抗体とMACS抗PeマイクロビーズにてCD25陽性細胞を分離した。BD FACSAriaTMにてAPC標識抗CD39抗体にてゲートし、更にFITC標識抗γδTCR抗体およびPacific Blue標識抗Thy1.2抗体でゲートしてγδTCR陽性細胞を分離し、CD39+γδT細胞を単離した。
(Example 1) Isolation of immunosuppressive γδT cells Axillary and inguinal lymph nodes were collected from mice and a single cell suspension was isolated using a 70 µm mesh. Using autoMACS pro separator, CD25 positive cells were separated with Pe-labeled anti-CD25 antibody and MACS anti-Pe microbeads. The BD FACSAria ™ was gated with an APC-labeled anti-CD39 antibody, and further gated with a FITC-labeled anti-γδTCR antibody and a Pacific Blue-labeled anti-Thy1.2 antibody to separate γδTCR-positive cells, and CD39 + γδT cells were isolated.
(実施例2)γδT細胞の表面マーカー解析
 γδT細胞について、CD39+、CD4-/low、CD25+、CD73+、Foxp3-、CTLA-4-、GITR+の測定を以下のようにして行った。
(Example 2) [gamma] [delta] T surface marker analysis [gamma] [delta] T cells of the cell, CD39 +, CD4 - / low , CD25 +, CD73 +, Foxp3 -, CTLA-4 -, was performed as follows to measure the GITR +.
 8週齢から12週齢までのメスのC56BL/6マウス(SLC)より腋窩および鼠径リンパ節を回収した。70μmメッシュを用いてsingle cell suspension(細胞1つ1つが分散した状態の懸濁液)を単離した。BD FACS AriaTM(Becton Dickinson社)にて、FSC-A、SSC-Aにてリンパ球分画をゲートし、更にSSC-H、SSC-WおよびFSC-H、FSC-Wにてダブレットをゲートアウトとした。更にFITC標識抗γδTCR抗体、Pacific Blue標識抗Thy1.2抗体(共にeBiocscience社)でゲートし、γδTCR陽性、Thy1.2陽性細胞(γδT細胞)を得た。このγδT細胞を、標識したCD39抗体と標識したCD73抗体でゲートした。同様に、標識した抗CD39抗体と標識した抗CTLA-4抗体、抗CD103抗体、抗CD25抗体、抗CD122抗体、抗CD27抗体又は抗GITR抗体でゲートした。なお、標識抗体としては、APC標識抗CD39抗体、Pe標識抗CD25抗体、Pe標識抗CD73抗体、Pe標識抗CTLA-4抗体、Pe標識抗GITR抗体、(上記抗体は全てeBiocscience社)を用いて染色し、BD FACS Canto2TM(Becton Dickinson社)にて解析を行った。γδTCR陽性Thy1.2陽性CD39陽性群をCD39+γδT細胞とし、Pe標識isotype control抗体と比較することでおのおのの表面マーカーについて検討した。 Axillary and inguinal lymph nodes were collected from female C56BL / 6 mice (SLC) from 8 to 12 weeks of age. A single cell suspension (a suspension in which each cell was dispersed) was isolated using a 70 μm mesh. BD FACS Aria TM (Becton Dickinson) gates lymphocyte fractions with FSC-A and SSC-A, and gates doublets with SSC-H, SSC-W, FSC-H and FSC-W It was out. Further, gated with FITC-labeled anti-γδTCR antibody and Pacific Blue-labeled anti-Thy1.2 antibody (both from eBiocscience), γδTCR-positive and Thy1.2-positive cells (γδT cells) were obtained. The γδ T cells were gated with labeled CD39 antibody and labeled CD73 antibody. Similarly, gated with labeled anti-CD39 antibody and labeled anti-CTLA-4 antibody, anti-CD103 antibody, anti-CD25 antibody, anti-CD122 antibody, anti-CD27 antibody or anti-GITR antibody. As labeled antibodies, APC-labeled anti-CD39 antibody, Pe-labeled anti-CD25 antibody, Pe-labeled anti-CD73 antibody, Pe-labeled anti-CTLA-4 antibody, Pe-labeled anti-GITR antibody (all of the above antibodies are eBiocscience) are used. The sample was stained and analyzed with BD FACS Canto2 (Becton Dickinson). Each surface marker was examined by comparing the γδ TCR positive Thy1.2 positive CD39 positive group with CD39 + γδ T cells and comparing with Pe-labeled isotype control antibody.
 その結果CD39+γδT細胞は、CD25+、CD73+、CTLA-4-、GITR+であった(図1)。GITRの結果(図1の3段目)において、丸で囲った部分は、GITRhighに該当する箇所であるが、CD39+γδT細胞のGITRhighは陰性であった。 As a result, CD39 + γδ T cells were CD25 + , CD73 + , CTLA-4 and GITR + (FIG. 1). In GITR results (third stage of FIG. 1), the portion surrounded by a circle is a portion corresponding to GITR high, GITR high of CD39 + [gamma] [delta] T cells were negative.
 また、上記と同様の方法で得たsingle cell suspensionを、BD FACS AriaTM(Becton Dickinson社)にてAPC標識抗CD39抗体及びPe標識抗CD25抗体でゲートし、CD25陽性CD39陽性細胞を分離した後、FITC標識抗γδTCR抗体とPe標識抗Foxp3抗体(eBioscience社)でゲートし、CD39+γδT細胞(図2、四角で囲った箇所のうち符号cの箇所)を得た。この細胞を、Pe標識抗CD4抗体又はPe標識抗Foxp3抗体(共にeBioscience社)で染色し、FACSCantoII(Becton Dickinson社)で解析した。 After single cell suspension obtained by the same method as above was gated with BD FACS Aria (Becton Dickinson) with APC-labeled anti-CD39 antibody and Pe-labeled anti-CD25 antibody, CD25-positive CD39-positive cells were isolated. Then, gated with FITC-labeled anti-γδTCR antibody and Pe-labeled anti-Foxp3 antibody (eBioscience), CD39 + γδT cells (Fig. 2, location c in the portion surrounded by a square) were obtained. The cells were stained with Pe-labeled anti-CD4 antibody or Pe-labeled anti-Foxp3 antibody (both from eBioscience) and analyzed with FACSCantoII (Becton Dickinson).
 その結果CD39+γδT細胞はCD4-/low、Foxp3-であった(図2)。本発明のCD39+γδT細胞は、制御性T細胞として広く知られているCD4+CD25+Foxp3+細胞(符号aに該当)とは、特にFoxp3の発現が異なることが明らかとなった。 As a result, CD39 + γδ T cells were CD4 − / low and Foxp3 (FIG. 2). The CD39 + γδ T cells of the present invention were found to express Foxp3 in particular differently from CD4 + CD25 + Foxp3 + cells (corresponding to symbol a) widely known as regulatory T cells.
(実施例3)CD39+γδT細胞の樹状細胞(DC)依存性CD4+CD25-T細胞増殖抑制活性の確認
 C57BL/6マウス脾臓よりCD4 T cell アイソレーションキット(Miltenyi Biotec社)を用いてCD4+T細胞を分離後、Pe標識抗CD25抗体およびanti-Peマイクロビーズ(Miltenyi Biotec社)を用いてCD4+CD25-T細胞を分離した。またBalb/cマウス脾臓よりCD11cマイクロビーズ(Miltenyi Biotec社)を用いてCD11c+細胞を分離した。CD4+CD25-T細胞 2×105個およびCD11c+細胞 4×104個を、10%FCSを加えたRPMI培地(Invitrogen社)に懸濁した。そこにCD4+CD25-T細胞の1/10量のCD4+CD25+Tregもしくは1/100量のCD39+γδT細胞(実施例1の方法により調製)を加え37℃、10%CO2条件下にて3日間培養した。さらに0.5μCi 3Hを加え18時間培養した後、それぞれのwellにおける3H-thymidineの取り込みをセルハーベスタ(Berthold社)により測定した。
(Example 3) Confirmation of dendritic cell (DC) -dependent CD4 + CD25 T cell proliferation inhibitory activity of CD39 + γδT cells CD4 T cell isolation CD4 from CD57 T cell spleen using a CD4 T cell isolation kit (Miltenyi Biotec) After separating + T cells, CD4 + CD25 T cells were separated using Pe-labeled anti-CD25 antibody and anti-Pe microbeads (Miltenyi Biotec). In addition, CD11c + cells were isolated from Balb / c mouse spleen using CD11c microbeads (Miltenyi Biotec). 2 × 10 5 CD4 + CD25 T cells and 4 × 10 4 CD11c + cells were suspended in RPMI medium (Invitrogen) supplemented with 10% FCS. There CD4 + CD25 - 1/10 amount of CD4 + CD25 + Treg or 1/100 volume of CD39 + [gamma] [delta] T cells (prepared by the method of Example 1) was added 37 ° C. of T cells, in 10% CO 2 conditions For 3 days. Further, 0.5 μCi 3 H was added and cultured for 18 hours, and then 3 H-thymidine incorporation in each well was measured with a cell harvester (Berthold).
 その結果、CD4+CD25+Treg投与群では、CD4+CD25-T細胞増殖が、約50%抑制されたのに対し、CD39+γδT細胞投与群では、CD4+CD25-T細胞増殖が、CD4+CD25+Tregの1/10量で80%以上抑制された(図3)。このことから本発明のCD39+免疫抑制性γδT細胞がCD4+CD25+Tregに比べて非常に高い免疫抑制能を有することが明らかとなった。 As a result, in the CD4 + CD25 + Treg administration group, CD4 + CD25 T cell proliferation was suppressed by about 50%, whereas in the CD39 + γδ T cell administration group, CD4 + CD25 T cell proliferation was suppressed by CD4 + More than 80% was suppressed with 1/10 of CD25 + Treg (FIG. 3). This revealed that the CD39 + immunosuppressive γδ T cells of the present invention have a much higher immunosuppressive ability than CD4 + CD25 + Treg.
(実施例4)CD39+γδT細胞の樹状細胞(CD)非依存性CD4+CD25-T細胞増殖抑制活性の確認
 実施例3の方法と同様にC57BL/6マウス脾臓およびリンパ節よりCD4+CD25-T細胞、CD4+CD25+TregおよびCD39+γδT細胞を分離した。1μg/mlの抗CD3抗体(eBioscience社)にて固相化した96wellプレートに10%FCSを加えたRPMI培地に懸濁した2×104個のCD4+CD25-T細胞と1/2量のCD4+CD25+Tregもしくは1/20量のCD39+γδT細胞(実施例1の方法により調製)を加え、37℃、10%CO2条件下にて3日間培養した。さらに0.5μCi 3H-thymidineを加え18時間培養した後それぞれのwellにおける3H-thymidineの取り込みをセルハーベスタ(Berthold社)を用いて測定した。
(Example 4) Confirmation of dendritic cell (CD) -independent CD4 + CD25 T cell proliferation inhibitory activity of CD39 + γδ T cells CD4 + CD25 from the spleen and lymph nodes of C57BL / 6 mice in the same manner as in Example 3. - T cells were isolated CD4 + CD25 + Treg and CD39 + [gamma] [delta] T cells. 2 x 10 4 CD4 + CD25 - T cells and 1/2 volume suspended in RPMI medium supplemented with 10% FCS in a 96-well plate immobilized with 1 µg / ml anti-CD3 antibody (eBioscience) CD4 + CD25 + Treg or 1/20 amount of CD39 + γδ T cells (prepared by the method of Example 1) were added, and the cells were cultured at 37 ° C. under 10% CO 2 for 3 days. Further 0.5μCi 3 H-thymidine was added 18 hr cultured each cell harvester and 3 H-thymidine uptake in well after (Berthold Co.) was used.
 その結果、CD4+CD25+Treg投与群では、CD4+CD25-T細胞増殖が、約50%抑制されたのに対し、CD39+γδT細胞投与群では、CD4+CD25+Tregの1/10量ではCD4+CD25-T細胞増殖の抑制がみられなかった。実施例3と同比のCD39+γδT細胞およびCD4+CD25+Tregを用いたことから、本発明の免疫抑制性CD39+γδT細胞の増殖抑制活性は、CD4+CD25-T細胞直接的なものではなく、樹状細胞の存在下において強く発揮されることが明らかとなった。 As a result, in the CD4 + CD25 + Treg administration group, CD4 + CD25 - T cell proliferation was suppressed by about 50%, whereas in the CD39 + γδ T cell administration group, 1/10 dose of CD4 + CD25 + Treg was There was no inhibition of CD4 + CD25 T cell proliferation. Since CD39 + γδT cells and CD4 + CD25 + Treg in the same ratio as in Example 3 were used, the proliferation inhibitory activity of the immunosuppressive CD39 + γδ T cells of the present invention was not directly CD4 + CD25 T cells. It was revealed that it is strongly exerted in the presence of dendritic cells.
(実施例5)CD39+γδT細胞及びCD39-γδT細胞の樹状細胞(CD)依存性CD4+CD25-T細胞増殖抑制活性の確認
 マウスより腋窩、鼠径リンパ節を採取し70μmメッシュを用いてsingle cell suspensionを単離した。autoMACSTM pro separator(Miltenyi Biotec社)を用いて、Pe標識抗CD25抗体とMACS抗PeマイクロビーズにてCD25陽性細胞を分離し、BD FACSAriaTMにてAPC標識抗CD39抗体にてゲートしCD39-細胞とCD39+細胞を分離した。両細胞について各々更にFITC標識抗γδTCR抗体およびPacificBlue標識抗Thy1.2抗体でゲートしてγδTCR陽性細胞を分離し、CD39-γδT細胞とCD39+γδT細胞をそれぞれ単離した(実施例1の方法により単離)。実施例4の方法と同様の方法で、樹状細胞依存性のCD4+CD25-T細胞の増殖抑制活性を測定した。
(Example 5) Confirmation of dendritic cell (CD) -dependent CD4 + CD25 T cell proliferation inhibitory activity of CD39 + γδT cells and CD39 γδT cells Axillary and inguinal lymph nodes were collected from mice and singled using a 70 μm mesh. Cell suspension was isolated. Use autoMACS pro separator (Miltenyi Biotec) to separate CD25 positive cells with Pe-labeled anti-CD25 antibody and MACS anti-Pe microbeads, then gate with BD FACSAria ™ with APC-labeled anti-CD39 antibody to CD39 cells And CD39 + cells were isolated. Both cells were further gated with FITC-labeled anti-γδTCR antibody and PacificBlue-labeled anti-Thy1.2 antibody to separate γδTCR-positive cells, and CD39 γδT cells and CD39 + γδT cells were isolated respectively (by the method of Example 1). Isolation). Dendritic cell-dependent CD4 + CD25 T cell proliferation inhibitory activity was measured in the same manner as in Example 4.
 CD4+CD25-T細胞の1/5量のCD39+γδT細胞を投与した群では、CD4+CD25-T細胞増殖を約65%抑制したのに対し、CD4+CD25-T細胞の1/5量のCD39-γδT細胞を投与した群では細胞増殖抑制活性を示さなかった(図5)。これらの結果から、CD39が免疫抑制性γδT細胞のマーカーとして有用であることが確認された。 CD4 + CD25 - In the group administered with CD39 + [gamma] [delta] T cells 1/5 amount of T cells, CD4 + CD25 - whereas T-cell proliferation was about 65% inhibition, CD4 + CD25 - 1/5 amount of T cell The group administered with CD39 γδ T cells showed no cytostatic activity (FIG. 5). From these results, it was confirmed that CD39 is useful as a marker for immunosuppressive γδ T cells.
(実施例6)CD39+γδT細胞及びCD39-γδT細胞が産生するサイトカインの確認
 マウスより腋窩、鼠径リンパ節を採取し70μmメッシュを用いてsingle cell suspensionを単離した。autoMACSTM pro separatorを用いて、FITC標識抗γδTCR抗体とMACS抗FITCマイクロビーズを用いて分離した。BD FACSAriaTMにてPacific Blue標識抗Thy1.2抗体、FITC標識抗γδTCR抗体にてゲートし、更にAPC標識抗CD39抗体にてゲートしCD39+γδT細胞とCD39-γδT細胞を単離した。
 CD39+γδT細胞またはCD39-γδT細胞から、RNeasy Mini Kit(Qiagen社)を用いて、添付プロトコールに従ってmRNAを回収した後、PrimeScriptRT reagent Kit(TAKARA)を用いて、添付プロトコールに従ってcDNAを作製した。作製したcDNAとSYBR Green(Takara)を混合しLightCycler 480(Roche Applied Science社)にてmRNAの発現量を定量した。
(Example 6) Confirmation of cytokines produced by CD39 + γδT cells and CD39 - γδT cells Axillary and inguinal lymph nodes were collected from mice and a single cell suspension was isolated using a 70 µm mesh. Using autoMACS pro separator, separation was performed using FITC-labeled anti-γδ TCR antibody and MACS anti-FITC microbeads. Pacific Blue-labeled anti-Thy1.2 antibody in BD FACSAria TM, and the gate at FITC-labeled anti-γδTCR antibody, further APC labeled gates in anti CD39 antibody and CD39 + [gamma] [delta] T cells and CD39 - was isolated [gamma] [delta] T cells.
MRNA was collected from CD39 + γδT cells or CD39 γδT cells using RNeasy Mini Kit (Qiagen) according to the attached protocol, and then cDNA was prepared using PrimeScriptRT reagent Kit (TAKARA) according to the attached protocol. The prepared cDNA and SYBR Green (Takara) were mixed, and the expression level of mRNA was quantified with LightCycler 480 (Roche Applied Science).
 その結果、CD39+γδT細胞のIL-10 mRNA量は、CD4+CD25+Treg細胞と同程度であり、CD39-γδT細胞より高いことがわかった(図6(a))。またCD39+γδT細胞のIFN-γ mRNA量は、CD39-γδT細胞では高かったのに対し、 CD39+γδT細胞では低いレベルであることがわかった(図6(b))。以上の結果から、CD39+γδT細胞は抑制系のサイトカインを産生しうることが示唆された。 As a result, it was found that the amount of IL-10 mRNA of CD39 + γδT cells was similar to that of CD4 + CD25 + Treg cells and higher than that of CD39 γδT cells (FIG. 6 (a)). The CD39 + γδT IFN-γ mRNA of cells, CD39 - while higher than [gamma] [delta] T cells, it was found that the CD39 + [gamma] [delta] T cells at a low level (Figure 6 (b)). These results suggest that CD39 + γδT cells can produce suppressor cytokines.
(実施例7)CD39+γδT細胞のin vitro誘導方法
 マウスより腋窩、鼠径リンパ節を採取し70μmメッシュを用いてsingle cell suspensionを単離した。autoMACSTM pro separatorを用いて、FITC標識抗γδTCR抗体とMACS抗FITCマイクロビーズ(Miltenyi Biotec社)を用いて分離した。BD FACSAriaTMにてPacific Blue標識抗Thy1.2抗体、FITC標識抗γδTCR抗体にてゲートし、更にCD39陰性細胞を分離、CD39-γδT細胞を単離した。
 CD39-γδT細胞をマウス抗CD3抗体0.5μg/ml(eBioscience社)を固相化した96ウェルプレートにて10%FCSを加えたRPMI培地(Invitrogen社)、37℃、10%CO2条件下にて3日間培養し、その後ヒトrIL-2 100 unit/ml(Peprotech社)にて培養開始し、2、3日おきに培地を交換した。
(Example 7) In vitro induction method of CD39 + γδT cells Axillary and inguinal lymph nodes were collected from mice and a single cell suspension was isolated using a 70 µm mesh. Using autoMACS pro separator, separation was performed using FITC-labeled anti-γδTCR antibody and MACS anti-FITC microbeads (Miltenyi Biotec). And a gate at Pacific Blue-labeled anti-Thy1.2 antibody, FITC-labeled anti-γδTCR antibody in BD FACSAria TM, further CD39-negative cells isolated, CD39 - [gamma] [delta] T cells were isolated.
CD39 - γδ T cells in 96-well plate with mouse anti-CD3 antibody 0.5μg / ml (eBioscience) immobilized on RPMI medium (Invitrogen) with 10% FCS, 37 ° C, 10% CO 2 Then, the culture was started with human rIL-2 100 unit / ml (Peprotech), and the medium was changed every 2 or 3 days.
 培養11日後の細胞をBD FACS Canto2(Becton Dickinson社)にて解析を行ったところ、100%の細胞がCD39陽性(CD39+)となっていることがわかった(図7、符号eのグラフ)。なお、CD25の発現は誘導前後で変化はなく、陽性であった。図中、符号dのグラフはコントロールを示す。 Analysis of the cells after 11 days of culture with BD FACS Canto2 (Becton Dickinson) revealed that 100% of the cells were CD39 positive (CD39 + ) (FIG. 7, symbol e). . CD25 expression was positive before and after induction, and was positive. In the figure, a graph with a symbol d indicates control.
(実施例8)in vitro誘導された細胞に関する表面マーカーの解析
 実施例7の方法により誘導されたCD39+γδT細胞を、FITC標識抗γδTCR抗体、Pacific Blue標識抗Thy1.2抗体、APC標識抗CD39抗体、Pe標識抗CD4抗体、Pe標識抗CD8抗体、Pe標識抗CD25抗体、Pe標識抗CD73抗体、Pe標識抗Foxp3抗体を用いて染色し、BD FACS Canto2(Becton Dickinson社)にて解析を行った。γδTCR陽性Thy1.2陽性群をγδT細胞とし、Pe標識isotype control抗体と比較することでおのおのの表面マーカーについて検討した。
(Example 8) Analysis of surface markers for cells induced in vitro CD39 + γδT cells induced by the method of Example 7 were treated with FITC-labeled anti-γδTCR antibody, Pacific Blue-labeled anti-Thy1.2 antibody, APC-labeled anti-CD39. Staining with antibodies, Pe-labeled anti-CD4 antibody, Pe-labeled anti-CD8 antibody, Pe-labeled anti-CD25 antibody, Pe-labeled anti-CD73 antibody, Pe-labeled anti-Foxp3 antibody, and analysis with BD FACS Canto2 (Becton Dickinson) It was. Each surface marker was examined by comparing the γδ TCR positive Thy1.2 positive group with γδ T cells and comparing with Pe-labeled isotype control antibody.
 その結果、in vitroで誘導されたCD39+γδT細胞は CD4-、CD8-、CD25+、CD73+、Foxp3-であった(図8、符号eのグラフ)。図中、符号dのグラフはコントロールを示す。 As a result, the CD39 + γδ T cells induced in vitro were CD4 , CD8 , CD25 + , CD73 + and Foxp3 (FIG. 8, graph of symbol e). In the figure, a graph with a symbol d indicates control.
(実施例9)in vitro誘導されたCD39+γδT細胞のCD4+CD25-T細胞増殖抑制活性作用の確認
 C57BL/6マウス脾臓よりCD4T cell アイソレーションキット(Miltenyi Biotec社)を用いてCD4+T細胞を分離後、Pe標識抗CD25抗体およびanti-Peマイクロビーズ(MiltenyiBiotec社)を用いてCD4+ CD25-T細胞を分離した。またBalb/cマウス脾臓よりCD11cマイクロビーズ(MiltenyiBiotec社)を用いてCD11c+細胞を分離した。CD4+ CD25-T細胞 2×104個およびCD11c+細胞 2×103個を10%FCSを加えたRPMI培地(Invitrogen社)に懸濁した。そこに実施例7の方法により誘導したCD39+γδT細胞および0.25μg/mlの抗CD3抗体を加え、37℃、10%CO2条件下にて3日間培養した。3日目の最後6時間に0.5μCi 3Hを加え培養した後、それぞれのwellにおける3H-thymidineの取り込みをセルハーベスタ(Berthold社)で測定した。
(Example 9) in vitro induced CD39 + [gamma] [delta] T cells CD4 + CD25 - T confirmed cytostatic active agent C57BL / 6 mouse spleen than CD4 T cell Isolation Kit (Miltenyi Biotec Inc.) CD4 + T cells using the After separation, CD4 + CD25 T cells were separated using Pe-labeled anti-CD25 antibody and anti-Pe microbeads (MiltenyiBiotec). In addition, CD11c + cells were isolated from Balb / c mouse spleen using CD11c microbeads (MiltenyiBiotec). 2 × 10 4 CD4 + CD25 T cells and 2 × 10 3 CD11c + cells were suspended in RPMI medium (Invitrogen) supplemented with 10% FCS. Thereto were added CD39 + γδT cells induced by the method of Example 7 and 0.25 μg / ml of anti-CD3 antibody, and the cells were cultured at 37 ° C. under 10% CO 2 for 3 days. After culturing by adding 0.5 μCi 3 H for the last 6 hours on the third day, the uptake of 3 H-thymidine in each well was measured with a cell harvester (Berthold).
 その結果、CD4+CD25-T細胞と同量のCD39+γδT細胞を用いた条件では、約90%の細胞増殖抑制活性を示し、CD4+CD25-T細胞に対して1/4量のCD39+γδT細胞を用いた状態でも約75%の細胞増殖抑制活性を示した。このことから本発明の方法で誘導したCD39+γδT細胞が高い免疫抑制能を有することが明らかとなった(図9)。 As a result, CD4 + CD25 - T under the conditions using a CD39 + [gamma] [delta] T cells in a cell the same amount, showed about 90% of the cytostatic activity, CD4 + CD25 - T cells against 1/4 weight CD39 + Even in the state using γδT cells, it showed about 75% cytostatic activity. This revealed that CD39 + γδT cells induced by the method of the present invention have a high immunosuppressive ability (FIG. 9).
(実施例10)in vitro誘導されたCD39+γδT細胞の炎症抑制作用の確認
 C57BL6マウスメス8から10週齢をSPF環境下で飼育し、以下の実験を行った。
 腹部の毛をバリカンで剃った後、0.5% dinitrofluorobenzene(DNFB)(アセトン:オリーブオイル=4:1で溶解したもの)50μlで感作を行い、接触皮膚炎モデルを作製した。5日後、接触皮膚炎モデルの耳介に0.3% DNFB(アセトン:オリーブオイル=4:1で溶解したもの)10μlを塗布した。0.3% DNFB塗布直前にPBSのみ10μl、CD4+CD25-T細胞(5000個)をPBS 10μlで懸濁したもの、CD39+γδT細胞(5000個)をPBS10μlで懸濁したものをそれぞれ耳介の皮下に注射した。24時間後、それぞれの腫れを計測した。
(Example 10) Confirmation of inflammation-inhibiting action of CD39 + γδT cells induced in vitro A C57BL6 mouse female 8 to 10 weeks old was bred in an SPF environment, and the following experiment was conducted.
After shaving the abdomen hair with a clipper, sensitization was performed with 50 μl of 0.5% dinitrofluorobenzene (DNFB) (dissolved in acetone: olive oil = 4: 1) to prepare a contact dermatitis model. Five days later, 10 μl of 0.3% DNFB (dissolved in acetone: olive oil = 4: 1) was applied to the pinna of the contact dermatitis model. Immediately before application of 0.3% DNFB, 10 μl of PBS alone, CD4 + CD25 T cells (5000 cells) suspended in 10 μl of PBS, and CD39 + γδ T cells (5000 cells) suspended in 10 μl of PBS subcutaneously in the auricle. Injected. After 24 hours, each swelling was measured.
 その結果、接触皮膚炎モデルにPBS、CD4+CD25-T細胞もしくはCD39+γδT細胞を注射した24時間後、CD4+CD25-T細胞を注射した部位では、耳の腫れが憎悪したのに対し、CD39+γδT細胞を注射した部位では有意に耳の腫れの憎悪が約50%抑制されていた(図10)。本発明によりin vitroで誘導されたCD39+γδT細胞は、抗炎症作用を有することが明らかとなった。  As a result, 24 hours after PBS, CD4 + CD25 - T cells or CD39 + γδ T cells were injected into the contact dermatitis model, the ear swelling was hated at the site where CD4 + CD25 - T cells were injected, At the site where CD39 + γδT cells were injected, the exacerbation of ear swelling was significantly suppressed by about 50% (FIG. 10). It was revealed that CD39 + γδ T cells induced in vitro according to the present invention have an anti-inflammatory effect.
 本発明のCD39+γδT細胞は、従来の制御性T細胞と比較して、強い免疫抑制能を有しており、少量の細胞でも効率的に免疫抑制効果を発揮することができる。このため本発明のCD39+γδT細胞は、免疫反応が過剰に亢進することにより惹起される、自己免疫疾患、炎症疾患、アレルギー疾患等の治療薬として、また臓器移植時における免疫拒絶の抑制剤としての応用が期待される。また、本発明のCD39+γδT細胞を用いて、樹状細胞存在下でCD4+CD25-T細胞の増殖を選択的に促進するまたは抑制する物質をスクリーニングすることができ、スクリーニングされた物質は免疫抑制剤又は免疫賦活剤としての応用が期待される。さらに本発明では、生体から本発明のCD39+γδT細胞を取得するのみならず、in vitroで、免疫抑制能を持たないγδT細胞から高い免疫抑制能を有するCD39+γδT細胞を簡便に効率良く誘導することができる。これにより本発明のCD39+γδT細胞を、患者に負担をかけることなく、有効量取得して利用することができ、有用である。 The CD39 + γδ T cells of the present invention have a stronger immunosuppressive ability than conventional regulatory T cells, and can effectively exert an immunosuppressive effect even with a small amount of cells. Therefore, the CD39 + γδ T cells of the present invention are used as therapeutic agents for autoimmune diseases, inflammatory diseases, allergic diseases and the like caused by excessive enhancement of immune responses, and as inhibitors of immune rejection during organ transplantation. Is expected to be applied. In addition, the CD39 + γδ T cells of the present invention can be used to screen for substances that selectively promote or suppress the proliferation of CD4 + CD25 T cells in the presence of dendritic cells. Application as an inhibitor or immunostimulator is expected. Furthermore, in the present invention, not only the CD39 + γδ T cells of the present invention are obtained from a living body, but also CD39 + γδ T cells having high immunosuppressive ability are easily and efficiently induced in vitro from γδ T cells not having immunosuppressive ability. can do. Thus, the CD39 + γδ T cells of the present invention can be obtained and used effectively without imposing a burden on the patient, which is useful.

Claims (19)

  1. CD39を細胞表面に発現している免疫抑制性γδT細胞。 Immunosuppressive γδ T cells expressing CD39 on the cell surface.
  2. 骨髄由来である、請求項1に記載のγδT細胞。 The γδ T cell according to claim 1, which is derived from bone marrow.
  3. 細胞表面にCD25またはCD73を、さらに発現している、請求項1または2に記載のγδT細胞。 The γδ T cell according to claim 1 or 2, further expressing CD25 or CD73 on the cell surface.
  4. 細胞表現型が、Foxp3-CTLA-4-GITR+である、請求項1~3のいずれか1に記載のγδT細胞。 The γδ T cell according to any one of claims 1 to 3, wherein the cell phenotype is Foxp3 - CTLA-4 - GITR + .
  5. 細胞表現型が、CD39+CD4-/lowCD25+CD73+Foxp3-CTLA-4-GITR+である、請求項1~4のいずれか1に記載のγδT細胞。 The γδT cell according to any one of claims 1 to 4, wherein the cell phenotype is CD39 + CD4- / low CD25 + CD73 + Foxp3 - CTLA-4 - GITR + .
  6. 以下の工程を含む、請求項1~5のいずれか1に記載の免疫抑制性γδT細胞を調製する方法:
    (i)リンパ球を、標識した抗γδT細胞受容体抗体および標識した抗CD39抗体で処理する工程;
    (ii)抗γδT細胞受容体抗体および抗CD39抗体と結合するリンパ球を分離取得する工程。
    A method for preparing an immunosuppressive γδ T cell according to any one of claims 1 to 5, comprising the following steps:
    (I) treating lymphocytes with a labeled anti-γδ T cell receptor antibody and a labeled anti-CD39 antibody;
    (Ii) A step of separating and obtaining lymphocytes that bind to an anti-γδ T cell receptor antibody and an anti-CD39 antibody.
  7. 以下の工程を含む、請求項3~5のいずれか1に記載の免疫抑制性γδT細胞を調製する方法:
    (i)リンパ球を、標識した抗γδT細胞受容体抗体、標識した抗CD39抗体、および標識した抗CD25抗体で処理する工程;
    (ii)抗γδT細胞受容体抗体、抗CD39抗体および抗CD25抗体と結合するリンパ球を分離取得する工程。
    A method for preparing an immunosuppressive γδ T cell according to any one of claims 3 to 5, comprising the following steps:
    (I) treating lymphocytes with a labeled anti-γδ T cell receptor antibody, a labeled anti-CD39 antibody, and a labeled anti-CD25 antibody;
    (Ii) A step of separating and obtaining lymphocytes that bind to an anti-γδ T cell receptor antibody, an anti-CD39 antibody and an anti-CD25 antibody.
  8. 請求項6または7に記載の方法により得られる、免疫抑制性γδT細胞。 An immunosuppressive γδ T cell obtained by the method according to claim 6 or 7.
  9. 請求項1~5および8のいずれか1に記載の免疫抑制性γδT細胞を有効成分とする、過剰免疫反応によって惹起される免疫疾患の治療剤。 A therapeutic agent for an immune disease caused by an excessive immune reaction, comprising the immunosuppressive γδ T cell according to any one of claims 1 to 5 and 8 as an active ingredient.
  10. 免疫疾患が、自己免疫疾患、アレルギー疾患または炎症疾患である、請求項6に記載の免疫疾患の治療剤。 The therapeutic agent for an immune disease according to claim 6, wherein the immune disease is an autoimmune disease, an allergic disease or an inflammatory disease.
  11. 請求項1~5および8のいずれか1に記載の免疫抑制性γδT細胞を有効成分とする、臓器移植時の免疫拒絶の抑制剤。 An inhibitor of immune rejection during organ transplantation, comprising the immunosuppressive γδ T cell according to any one of claims 1 to 5 and 8 as an active ingredient.
  12. 以下の工程を含む、CD4+CD25-T細胞の増殖を促進するまたは抑制する物質をスクリーニングする方法:
    (1)請求項1~5のいずれか1に記載の免疫抑制性γδT細胞およびCD4+CD25-T細胞と、被験物質とを樹状細胞の存在下で接触させる工程;
    (2)CD4+CD25-T細胞の量を測定する工程;
    (3)被験物質の非存在下と比較して、CD4+CD25-T細胞の量が増加または減少した場合に、被験物質を選択する工程。
    A method for screening for a substance that promotes or suppresses the proliferation of CD4 + CD25 T cells, comprising the following steps:
    (1) a step of contacting the immunosuppressive γδ T cell and CD4 + CD25 T cell according to any one of claims 1 to 5 with a test substance in the presence of a dendritic cell;
    (2) a step of measuring the amount of CD4 + CD25 T cells;
    (3) A step of selecting a test substance when the amount of CD4 + CD25 T cells is increased or decreased compared to the absence of the test substance.
  13. CD39-γδT細胞を、T細胞刺激剤とIL-2の存在下に培養することにより、CD39+γδT細胞を誘導する方法。 A method of inducing CD39 + γδ T cells by culturing CD39 γδ T cells in the presence of a T cell stimulating agent and IL-2.
  14. T細胞刺激剤が、可溶性抗原、抗原のペプチドフラグメント、アロ抗原、抗CD2抗体、抗CD3抗体、抗CD28抗体、抗γδTCR抗体、LFA-3、ブドウ状球菌エンテロトキシンB (SEB)からなる群から選択される、請求項13に記載の免疫抑制性γδT細胞を誘導する方法。 T cell stimulant selected from the group consisting of soluble antigen, peptide fragment of antigen, alloantigen, anti-CD2 antibody, anti-CD3 antibody, anti-CD28 antibody, anti-γδTCR antibody, LFA-3, staphylococcal enterotoxin B (SEB) The method for inducing immunosuppressive γδ T cells according to claim 13.
  15. T細胞刺激剤が、抗CD3抗体である、請求項13または14に記載の免疫抑制性γδT細胞を誘導する方法。 The method for inducing immunosuppressive γδ T cells according to claim 13 or 14, wherein the T cell stimulating agent is an anti-CD3 antibody.
  16. 請求項13~15のいずれか1に記載の方法により誘導される、免疫抑制性γδT細胞。 An immunosuppressive γδ T cell induced by the method according to any one of claims 13 to 15.
  17. 請求項16に記載の免疫抑制性γδT細胞を有効成分とする、過剰免疫反応によって惹起される免疫疾患の治療剤。 A therapeutic agent for an immune disease caused by an excessive immune reaction, comprising the immunosuppressive γδ T cell according to claim 16 as an active ingredient.
  18. 免疫疾患が、自己免疫疾患、アレルギー疾患または炎症疾患である、請求項17に記載の治療剤。 The therapeutic agent according to claim 17, wherein the immune disease is an autoimmune disease, an allergic disease or an inflammatory disease.
  19. 請求項16に記載の免疫抑制性γδT細胞を有効成分とする、臓器移植時の免疫拒絶の抑制剤。 An inhibitor of immune rejection during organ transplantation, comprising the immunosuppressive γδ T cell according to claim 16 as an active ingredient.
PCT/JP2010/062335 2009-07-27 2010-07-22 Immunosuppressive γδt cell WO2011013568A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US22866709P 2009-07-27 2009-07-27
US61/228,667 2009-07-27
US26230309P 2009-11-18 2009-11-18
US26229109P 2009-11-18 2009-11-18
US61/262,291 2009-11-18
US61/262,303 2009-11-18

Publications (1)

Publication Number Publication Date
WO2011013568A1 true WO2011013568A1 (en) 2011-02-03

Family

ID=43529226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062335 WO2011013568A1 (en) 2009-07-27 2010-07-22 Immunosuppressive γδt cell

Country Status (1)

Country Link
WO (1) WO2011013568A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195086A1 (en) * 2015-06-05 2016-12-08 医療法人社団 滉志会 Therapeutic agent for allergic diseases
CN108795858A (en) * 2017-04-28 2018-11-13 深圳宾德生物技术有限公司 The screening technique of high anti-cancer activity T cell and application
CN116593699A (en) * 2023-07-13 2023-08-15 天津市肿瘤医院空港医院 Antibody composition for detecting CD39 molecules on surface of T cells by flow cytometry
CN117106846A (en) * 2020-03-09 2023-11-24 山东大学齐鲁医院 Method for evaluating immune regulation function of stem cell preparation with high reliability

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOEK A ET AL.: "Subpopulation of bovine WC1+ gammadelta T cells rather than CD4+CD25highFoxp3+ T cells act as immune regulatory cells ex vivo.", VET. RES., vol. 40, no. 06, 18 October 2008 (2008-10-18), Retrieved from the Internet <URL:http://dx.doi.org/10.1051/vetres:2008044> *
PENG G ET AL.: "Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisims controlled by a unique toll-like receptor signaling pathway.", IMMUNITY, vol. 27, 2007, pages 334 - 348 *
TRAXLMAYR M W ET AL.: "Expansion of immune-suppressive Vgamma9Vdelta2 T cells as a novel regulatory mechanism of IL-12 secreting dendritic cells.", WIENER KLINISCHE WOCHENSCHRIFT, vol. 120, no. 1, 2008, pages 46 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195086A1 (en) * 2015-06-05 2016-12-08 医療法人社団 滉志会 Therapeutic agent for allergic diseases
CN108795858A (en) * 2017-04-28 2018-11-13 深圳宾德生物技术有限公司 The screening technique of high anti-cancer activity T cell and application
CN117106846A (en) * 2020-03-09 2023-11-24 山东大学齐鲁医院 Method for evaluating immune regulation function of stem cell preparation with high reliability
CN116593699A (en) * 2023-07-13 2023-08-15 天津市肿瘤医院空港医院 Antibody composition for detecting CD39 molecules on surface of T cells by flow cytometry
CN116593699B (en) * 2023-07-13 2023-10-03 天津市肿瘤医院空港医院 Detection method applied to flow cytometry for detecting CD39 molecules on surface of T cells

Similar Documents

Publication Publication Date Title
Sivanathan et al. Interleukin-17A-induced human mesenchymal stem cells are superior modulators of immunological function
AU2016274633B2 (en) Methods for the production of TCR gamma delta+ T cells
Luan et al. Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4+ Foxp3+ Treg expansion
AU2008201685B2 (en) CD4+CD25+ regulatory T cells from human blood
AU2019215034B2 (en) Method of producing natural killer cells and composition for treating cancer
García-González et al. A short protocol using dexamethasone and monophosphoryl lipid A generates tolerogenic dendritic cells that display a potent migratory capacity to lymphoid chemokines
WO2018207900A1 (en) Highly active nk cell and use thereof
Sawitzki et al. Prevention of graft-versus-host disease by adoptive T regulatory therapy is associated with active repression of peripheral blood Toll-like receptor 5 mRNA expression
KR20180054663A (en) Novel populations of CD8 + CD45RClow TREGS and their uses
Plessers et al. Clinical-grade human multipotent adult progenitor cells block CD8+ cytotoxic T lymphocytes
WO2011013568A1 (en) Immunosuppressive γδt cell
Litjens et al. Natural regulatory T cells from patients with end-stage renal disease can be used for large-scale generation of highly suppressive alloantigen-specific Tregs
JP3904374B2 (en) Lymphocytes with enhanced killer activity
RU2391401C2 (en) METHOD OF OBTAINING POPULATION OF HUMAN CD4+CD25+Foxp3+ T-LYMPHOCYTES ex vivo, DISEASE TREATMENT METHOD
Canto et al. Distinctive response of naive lymphocytes from cord blood to primary activation via TCR
US11072779B2 (en) Method for ex vivo expansion of regulatory T cells
JP6838750B2 (en) Method for producing a cell population containing NK cells
KR102265437B1 (en) Composition for culturing NK cell and method for culturing NK cell using the same
US20210348126A1 (en) Method for ex vivo expansion of regulatory t cells
WO2010129770A1 (en) Methods for expanding human t regulatory cells and uses of same
WO2013076181A1 (en) Methods of enrichment and isolation of regulatory t-cells and use of the same
Ho et al. Identification of a CD4+ T cell line with Treg-like activity
US20220333072A1 (en) The process for manufacturing of antigen-specific t lymphocytes
RU2437933C1 (en) METHOD OF HUMAN REGULATORY CD4+CD25+FOXP3+T-CELL ENRICHMENT ex vivo
Sasaki et al. Combined GM-CSF and G-CSF administration mobilizes CD4+ CD25hiFoxp3hi Treg in leukapheresis products of rhesus monkeys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP