WO2011012510A2 - Redox loop method using a composition comprising supported cerium oxide or supported cerium, zirconium and/or rare earth oxide as a redox mass - Google Patents

Redox loop method using a composition comprising supported cerium oxide or supported cerium, zirconium and/or rare earth oxide as a redox mass Download PDF

Info

Publication number
WO2011012510A2
WO2011012510A2 PCT/EP2010/060534 EP2010060534W WO2011012510A2 WO 2011012510 A2 WO2011012510 A2 WO 2011012510A2 EP 2010060534 W EP2010060534 W EP 2010060534W WO 2011012510 A2 WO2011012510 A2 WO 2011012510A2
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
cerium
composition
redox
mass
Prior art date
Application number
PCT/EP2010/060534
Other languages
French (fr)
Other versions
WO2011012510A3 (en
Inventor
Virginie Harle
Michael Lallemand
Original Assignee
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations filed Critical Rhodia Operations
Publication of WO2011012510A2 publication Critical patent/WO2011012510A2/en
Publication of WO2011012510A3 publication Critical patent/WO2011012510A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99008Unmixed combustion, i.e. without direct mixing of oxygen gas and fuel, but using the oxygen from a metal oxide, e.g. FeO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a looped oxidation-reduction method using as mass redox a mass comprising a composition based on an oxide supported cerium or a mixture of cerium oxide and at least one oxide another element selected from zirconium and rare earths other than cerium.
  • a combustion technique that facilitates the recovery of CO 2 consists in carrying out oxidation-reduction reactions of an active mass in order to decompose the combustion reaction into two successive reactions.
  • oxidation-reduction method in a loop will be referred to as any process of this type using an active mass or redox mass which thus alternately passes from its oxidized form to its reduced form and vice versa and describes a oxidation-reduction cycle according to the two reactions of the type above.
  • Such a method thus makes it possible to transmit fumes consisting mainly of CO2 and H 2 O and depleted in N 2 which facilitates the recovery of CO 2 .
  • Active molecules are therefore sought with significant capacity to release oxygen, thus high capacities to oxidize and reduce cyclically. It is also possible to search for active masses having the capacity to release oxygen at the lowest possible temperatures, such as 700 ° C., or even less.
  • the reactions of this process are also at high temperatures typically between 700 and 1100 0 C and therefore require that the active mass is stable over time at these temperatures.
  • the stability can result in a quantity of oxygen released during several oxidation-reducing cycles substantially stable as the cycles of these cycles.
  • Redox-reducing masses that can be used in such a process are known. They are generally based on a redox couple NiO / Ni type, CuO / Cu or CoO / Co associated with a binder such as alumina or yttrié zirconia.
  • these active masses have several defects. Thus, their oxygen transfer capacity can be limited, either because of the very amount of transferable oxygen or because of the kinetics of oxygen transfer.
  • performance losses are observed during oxidation-reduction cycles related to a modification of the active mass at high temperature.
  • the loop oxidation-reduction method of the invention is characterized in that a mass comprising a composition based on an oxide which is a cerium oxide or a mixture is used as the redox mass.
  • cerium oxide and at least one oxide of another element selected from zirconium and rare earths other than cerium said oxide being supported on a support based on silica, alumina, titanium or zirconia and this oxide being in the form of particles which are deposited on said support, in individualized form or in the form of aggregates, with a size of at most 500 nm, said composition having after calcination for 6 hours at a temperature of at least 800 ° C, a reducibility measured between 50 0 C and 900 ° C of at least 80%.
  • rare earth refers to the elements of the group consisting of the ytthum and the elements of the periodic classification of atomic number inclusive of between 57 and 71.
  • specific surface is also meant the specific surface area B. AND. determined by nitrogen adsorption according to ASTM D
  • the calcinations at which the surface values are given are calcinations under air.
  • the specific surface values which are indicated for a given temperature and duration correspond, unless otherwise indicated, to calcinations at a temperature step over the indicated time.
  • the contents are given in oxides unless otherwise indicated.
  • the cerium oxide is in the form of ceric oxide, the oxides of the other rare earths in Ln 2 ⁇ 3 form, except otherwise indicated and with the exception of praseodymium expressed in the form Pr 6 On, Ln denoting the rare earth.
  • the definition of the loop oxidation-reduction method also applies to a hydrogen production process implementing the oxidation-reduction cycle mentioned above.
  • the process of the invention is characterized by the use, as active mass or redox mass, of a specific composition which will be described more precisely below.
  • This composition comprises an oxide supported in the form of particles of nanometric dimensions, these particles being deposited on a support.
  • This supported oxide may first be a single oxide cerium oxide, usually in the form of ceric oxide CeO 2 .
  • It can also be a mixture of a cerium oxide and at least one oxide of another element which is selected from zirconium and rare earths other than cerium.
  • the rare earth may be more particularly ytthum, neodymium, lanthanum or praseodymium. According to a particular embodiment, lanthanum and praseodymium are present in combination.
  • the content of rare earth oxide is generally at most 25%, preferably when the rare earth is lanthanum, more particularly at most 20% and preferably at most 15% by weight.
  • the minimum content is not critical but generally it is at least 1%, more preferably at least 2% and preferably at least 5% by weight. This content is expressed as the rare earth oxide relative to the mass of all the cerium oxide and the rare earth oxide or rare earth oxides when several rare earths are present in combination.
  • the supported oxide of the composition of the active mass may also be based on a mixture of cerium oxide and zirconium oxide.
  • This oxide can meet the formula Cei _ x Zr x ⁇ 2.
  • x which defines an atomic proportion of the elements Ce and Zr, is less than 1 and may be more particularly between 0.8 and 0.2, and more particularly between 0.50 and 0.2.
  • the supported oxide of the composition of the active mass may also be based on a mixture of cerium oxide, zirconium oxide and at least one oxide of a rare earth other than cerium.
  • This oxide may correspond to the formula Ce x ZryM z ⁇ 2 in which M represents at least one element selected from the group consisting of rare earths with the exception of cerium and where x, y and z give the atomic proportions of elements Ce, Zr and M of the composition.
  • the supported oxide is in crystallized form.
  • the mixture of oxides is in the form of a solid solution (mixed oxide) of the rare earth element and / or zirconium, in cerium or in the form of a solid solution of cerium and, optionally, rare earth, in zirconium, this depending on the respective quantities of cerium and zirconium.
  • the supported oxide has a single phase which corresponds in fact to a crystalline structure of the fluorine type, just like the ceric oxide CeO 2 crystallized, and whose mesh parameters are more or less staggered with respect to a pure ceric oxide. , thus reflecting the incorporation of the other elements, rare earth and, possibly, zirconium, into the crystalline lattice of cerium oxide.
  • the supported oxide has a single phase corresponding to that of a zirconium oxide crystallized in the tetragonal system in particular, thus reflecting the incorporation of cerium and the other rare earth element into the crystal lattice of the zirconium oxide.
  • the supported oxide is present in the composition of the redox mass in the form of particles of nanometric dimensions.
  • the particles have a size of at most 500 nm.
  • these particles can be either individualized or in the form of aggregates.
  • the value of 500 nm applies either to the size of the particles when they are individualized or to the size of the aggregate when there are aggregated particles.
  • this size may be more particularly at most 50 nm and even more particularly at most 10 nm.
  • the highest size values given above correspond to the cases where the particles are most often in an aggregated form while the lowest values correspond to the cases where the particles are most often in an individualized form.
  • the particles are in individualized form with a size of approximately at most 50 nm, even more particularly at most 10 nm, or else between 10 nm and 5 nm, and in the case where the oxide is crystallized. They correspond to crystallites of this oxide.
  • the particles are in individualized form with a size of at most 5 nm, this embodiment corresponding to the case where the supported oxide content of the composition is relatively low, this low content being further specified below.
  • the size values given here and in the present description are determined either by transmission electron microscopy (TEM) or X-ray diffraction (XRD), particularly when the oxide is crystallized.
  • the particles are deposited on a support.
  • the particles are predominantly present on the surface of this support, it being understood that the particles may be present inside the pores of the support but remaining on the surface of these pores.
  • the support is based on silica, alumina, titanium oxide or zirconia.
  • this support must have a high and stable surface area, that is to say which remains at a sufficient value even after exposure to a high temperature.
  • the constituent oxides of the support which have just been mentioned are well known and used in the field of catalysis. The description below concerning these supports is therefore given for purely illustrative purposes and is not limiting.
  • silica-based support it may be a precipitated silica or a pyrogenation silica.
  • the silica may optionally be stabilized by a stabilizing element such as aluminum.
  • any type of alumina capable of having a specific surface area sufficient for an application in catalysis can be used here.
  • a composition in which the support is a stabilized alumina is used as the redox mass.
  • a stabilizing element mention may be made of rare earths, barium, strontium, silicon and zirconium.
  • a rare earth cerium, lanthanum or the lanthanum-neodymium mixture can be particularly mentioned. These elements can be used alone or in combination.
  • Advantageous combinations include La-Ba, Ba-Pr, La-Pr-Ba and La-Pr.
  • the stabilized alumina is prepared in a manner known per se, in particular by impregnation of the alumina with salt solutions, such as nitrates, with the aforementioned stabilizing elements or by co-drying an alumina precursor and salts of these elements then calcination.
  • alumina powder resulting from the rapid dehydration of an aluminum hydroxide or oxyhydroxide is subjected to a ripening operation in the presence of an agent.
  • stabilizer consisting of a lanthanum compound and, optionally, a neodymium compound, this compound may be more particularly a salt.
  • the ripening can be done by suspending the alumina in water and then heating to a temperature of, for example, between 70 and 110 ° C. After maturing, the alumina is subjected to a heat treatment.
  • Another preparation consists of a similar type of treatment but with barium or strontium.
  • the stabilizer content expressed as weight of stabilizer oxide relative to stabilized alumina is generally between 1.5% and 35%, or between 1.5% and 25%, especially between 1.5% and 15%. %. This content may be more particularly between 2.5% and 20%, more particularly between 2.5 and 11% or between 5% and 20%.
  • the stabilizer is barium and / or strontium in a content expressed by weight of stabilizer oxide relative to stabilized alumina of less than 10%.
  • the support of the composition of the redox mass is based on alumina stabilized by a stabilizing element of the group consisting of barium, strontium and lanthanum and the oxide supported is in the first case a mixture of cerium oxide, zirconium oxide and oxide of a rare earth other than cerium which may be more particularly praseodymium or lanthanum.
  • the supported oxide is a mixture of cerium oxide, praseodymium oxide and rare earth oxide other than cerium and praseodymium, which may be more particularly lanthanum.
  • the stabilizing element content, expressed as oxide may be at least 10% by weight relative to the stabilized alumina and may be more particularly between 10 and 30%, especially between 10 and 30% by weight. and 25%.
  • the support consists essentially of alumina (first mode) or consists essentially of alumina stabilized by at least one element chosen from rare earths, silicon and zirconium (second mode ).
  • first mode consists essentially of alumina stabilized by at least one element chosen from rare earths, silicon and zirconium
  • second mode alumina stabilized by at least one element chosen from rare earths, silicon and zirconium
  • first mode consists essentially of alumina stabilized by at least one element chosen from rare earths, silicon and zirconium
  • second mode the support contains only alumina and, as stabilizer, one or more elements in combination chosen only in the group consisting of rare earths, silicon and zirconium with, again, the possible presence of impurities usually bonded to the alumina and the aforementioned element.
  • a support based on alumina stabilized by a stabilizing element selected from rare earths, barium and strontium or consisting essentially of stabilized alumina with the same stabilizing element it may be noted here that the preparation stabilized alumina can be achieved during the actual preparation of the composition of the redox mass according to the invention.
  • the support may also be titanium oxide, more particularly titanium oxide in anatase form.
  • titanium oxide can be prepared for example by the methods described in EP-A-319365 or in EP-A-351270 and it can also comprise a rare earth or alkaline earth stabilizer.
  • the support may finally be a zirconia, tetragonal or monoclinic, optionally stabilized for example by a rare earth.
  • the support may consist of a combination of the abovementioned oxides, either in the form of mixtures of these oxides or in the form of mixed oxides (solid solutions), such as mixed silica / alumina, titanium / silica or zirconia / silica oxides.
  • the supported oxide content, cerium oxide for example, of the composition of the redox mass of the invention is generally at most 75% by weight of the entire composition. It may especially be at most 60%, more particularly at most 50% and even more particularly at most 30%. In the particular case of a zirconia support, the supported oxide content may correspond to the values that have just been given and it may also be more particularly at most 55%.
  • the minimum content of supported oxide is set according to the desired performance of the composition.
  • this minimum content is generally at least 3%, more particularly at least 4% by weight.
  • the particles of the supported oxide may be in individualized form with a size of at most 5 nm.
  • This embodiment preferably corresponds to compositions in which the supported oxide content is at most 20% by weight, more particularly at most
  • the support is based on barium-stabilized alumina and the supported oxides
  • mixtures of cerium oxide, zirconium oxide and oxide of earth rare other than cerium or cerium oxide, praseodymium oxide and rare earth oxide other than praseodymium the content of supported oxides may be more particularly equal to or greater than 15%, more particularly between 15 and 30%.
  • compositions of the redox masses of the invention are their reducibility.
  • the reducibility of the compositions is determined by measuring their hydrogen consumption measured between 50 ° C. and 700 ° C. or 900 ° C. This measurement is made by programmed temperature reduction using diluted hydrogen in argon. A signal is detected with a thermal conductivity detector. The consumption of hydrogen is calculated from the missing surface of the baseline hydrogen signal at 50 ° C at baseline at 700 ° C or 900 ° C.
  • the degree of reducibility represents the percentage of cerium reduced, it being understood that 1/2 mol of H 2 consumed and measured by the method described above corresponds to 1 mole of reduced Ce IV.
  • the compositions of the active mass may contain in addition to cerium another reducible element of the rare earth type such as praseodymium, the overall reducibility of cerium and of this element, praseodymium for example, is calculated.
  • the overall reducibility of cerium and this element is calculated by relating the experimental hydrogen consumption of the composition to the sum of the theoretical hydrogen consumptions corresponding to the complete reduction of the cerium and to the complete reduction of the other element such as praseodymium.
  • the experimental hydrogen consumption is calculated from the missing area of the hydrogen signal to baseline at 50 0 C to baseline at 900 ° C when measured reducibility between 50 ° C and 900 0 C.
  • the reducibility measured between 50 ° C and 700 ° C corresponds to the same measurement but made in the temperature range of 50 0 C to 700 ° C.
  • the theoretical hydrogen consumption for the complete reduction of cerium is calculated as above considering that all the cerium is initially at the degree + IV and that 1/2 mole of H 2 is consumed to reduce 1 mole of Ce IV.
  • the theoretical hydrogen consumption for the complete reduction of praseodymium for example, is calculated analogously considering that 2/3 of the praseodymium is present at the oxidation state + IV in Pr 6 On and that 1/2 mole of H 2 is consumed to reduce 1 mole of Pr IV.
  • the values which are given for the reducibility result from measurements made on compositions which have previously been calcined for 6 hours at a temperature of at least 800 ° C. in air.
  • the compositions reducing oxido masses of the invention exhibit reducibility measured between 50 0 C and
  • This reducibility thus measured can be more particularly at least 85% and even more particularly at least 90%.
  • a more particular embodiment of the invention relates to compositions whose reducibility is important even in a low temperature range, i.e. at most 700 ° C.
  • This embodiment corresponds to the case where the supported oxide is a mixture of a cerium oxide and a zirconium oxide, with an oxide of a rare earth other than cerium, and with a zirconium content such that the atomic ratio Ce / Zr is at least 1.
  • these compositions may have a reducibility measured between 50 ° C. and 700 ° C. (after also calcining for 6 hours at a temperature of at least 800 ° C.) at least 35%, more particularly at least 40%.
  • these compositions also have the same values of reducibility measured between 50 0 C and 900 ° C as those given above.
  • compositions of the redox compositions of the invention may have a high BET surface area which may, after calcination for 6 hours at 800 ° C., be at least 95 m 2 / g, more particularly at least 110 m 2 / g, this surface depending on the nature of the support used.
  • compositions which have been described above are known compositions. Reference can be made in particular to the entire description of the patent application WO 2008/025753 in which the characteristics of these compositions and their preparation process are described. It will be noted that the measurements of reducibility between 30 0 C and 900 ° C described in the application WO 2008/025753 give the same results as those made between 50 ° C and 900 0 C as in the present application.
  • the redox mass may further comprise, in addition to a composition of the type described above, at least one reducible oxide chosen from the group comprising the oxides of the elements nickel, copper, cobalt, iron and manganese, iron being preferred.
  • This reducible oxide may be present in an amount preferably of at most 40% by weight relative to the whole of the redox mass. This amount may be more particularly between 10% and 30%.
  • this reducible oxide can be present in the alumina itself and therefore it can be brought by the support to the composition of the mass.
  • this reducible oxide may be present in a quantity by weight of between 5 and 30% relative to the alumina.
  • the redox mass may further comprise a binder, especially in order to increase its mechanical strength.
  • a binder mention may be made of alumina, aluminate spinels, titanium dioxide, silica, zirconia, kaolin and yttria.
  • the proportion of binder in the redox mass can vary from 10% to 95% by weight, preferably from 20% to 80% by weight, and even more particularly from 30% to 70% by weight.
  • the compound comprising the cerium oxide composition, the reducible oxide and the binder optionally may be obtained by simple physical mixing of these components.
  • the redox mass may optionally be shaped to be in the form of powder, granules, balls, cylinders or honeycombs of varying sizes.
  • the size and shape of the redox mass are chosen according to the technological constraints of the process. In the case of a process employing a fluidized bed, it will advantageously be chosen to form in the form of micron-sized grains of between 10 and 100 ⁇ m in size.
  • the shaping can be carried out according to any technique known to those skilled in the art.
  • the method of the invention may in particular be implemented using the redox mass in a circulating bed or fluidized bed or in a rotary reactor.
  • This process can be used in the general field of energy production, (production of electricity, steam or heat) for example in gas turbines, boilers and furnaces, in the oil, chemical, glass industry and cement plant.
  • This process can also be used to produce hydrogen with simultaneous capture of CO2 for example by combustion of methane on the reducing mass forming a gas CO, CO2, H 2 and H 2 O. The latter is then enriched in H 2 , CO 2 by a water gas shift reaction between CO and H 2 O.
  • This example relates to the preparation of an oxide-reductive mass based on a cerium oxide on an alumina support.
  • a mixture containing 80% by weight of lanthanum stabilized Al 2 O 3 and 20% by weight of CeO 2 is produced by mixing in a beaker with stirring, 80 g of MI-386 alumina powder marketed by Rhodia dispersed in 500 ml of H 2 O at pH 0.5 with a colloidal solution of CeO 2 (pH 0.5) containing 20 g of CeO 2 (CeO 2 50 g / l).
  • the mixture is then spray-dried on a B ⁇ chi 190 mini Spray Drier type apparatus, with an inlet temperature of 230 ° C. and an outlet temperature of 115 ° C.
  • the powder obtained is calcined under air at 600 ° C. for 2 hours.
  • This example concerns the evaluation of the ability of a material to undergo oxidation-reduction cycles.
  • the consumption of hydrogen in the flow is measured via a katharometer type detector.
  • the degree of reducibility of the capture mass is calculated by the percentage of cerium reduced under these conditions by considering the following reaction:
  • This degree of reducibility or volume of hydrogen consumed reflects the ability of the material to give oxygen to a reducing agent, here hydrogen.
  • Example 1 By way of comparison, the redox mass of Example 1 is compared with pure cerine marketed by Rhodia under the name HSA5.
  • This oxide was first calcined in air at 600 ° C. for 2 hours and thus developed 159 m 2 / g.
  • This example concerns the evaluation of the ability of a material to undergo oxidation-reduction cycles and to maintain this capacity during a cycle.
  • Reoxidation the powder is then cooled to 50 ° C., still under a flux of H 2 10% in Ar (25 ml / min) and then heated in a ramp of 20 ° C./min up to 700 ° C. under a compound oxidizing stream 2.5% O 2 in Ar (25 ml / min). The powder is again cooled to 50 ° C. still under 2.5% O 2 flux in (25 ml / min).
  • Reduction No. 2 the powder is heated again at a ramp of 20 ° C./min up to 700 ° C. under a flow of H 2 in Ar and the consumption of hydrogen in the flow is measured again via a detector type catharometer.
  • the reduction rates of the first and second reductions are compared.
  • Table 2 below indicates that at 700 ° C. the reduction of the ceria-alumina active mass according to the invention is greater than that of pure cerine, both in terms of degree of cerium reduction and of volume. of hydrogen consumed (thus oxygen transferred). Moreover, the capacity to transfer oxygen is identical between the first and second reduction at

Abstract

The invention relates to a redox loop method which, by way of a redox mass, uses a mass comprising a composition containing an oxide consisting of a cerium oxide or a mixture of a cerium oxide and at least an oxide of one other element selected from zirconium and rare earths other than cerium, said oxide being supported on a on a substrate containing silica, alumina, oxide of titanium or zirconium and taking the form of particles deposited on the substrate individually or as aggregates, with a maximum size of 500 nm. Following calcination at a temperature of at least 800°C for 6 hours, the composition has a reducibility value of at least 80%, measured between 50°C et 900°C.

Description

PROCEDE D'OXYDO-REDUCTION EN BOUCLE UTILISANT COMME LOOP OXYDO-REDUCTION PROCESS USING THE SAME
MASSE OXYDO-REDUCTRICE UNE COMPOSITION A BASE D'OXYDEOXYDO-REDUCTIVE MASS OXIDE-BASED COMPOSITION
SUPPORTE DE CERIUM OU DE CERIUM, DE ZIRCONIUM ET/OU DE SUPPORTED BY CERIUM OR CERIUM, ZIRCONIUM AND / OR
TERRE RARE  RARE EARTH
La présente invention concerne un procédé d'oxydo-réduction en boucle utilisant comme masse oxydo-réductrice une masse comprenant une composition à base d'un oxyde supporté de cérium ou d'un mélange d'oxyde de cérium et d'au moins un oxyde d'un autre élément choisi parmi le zirconium et les terres rares autre que le cérium. The present invention relates to a looped oxidation-reduction method using as mass redox a mass comprising a composition based on an oxide supported cerium or a mixture of cerium oxide and at least one oxide another element selected from zirconium and rare earths other than cerium.
Dans la lutte contre les gaz à effet de serre, tout particulièrement contre le CO2, les techniques et procédés permettant de capturer et stocker les gaz à effet de serre comme le CO2 suscitent un fort intérêt.  In the fight against greenhouse gases, especially against CO2, the techniques and processes for capturing and storing greenhouse gases such as CO2 are of great interest.
Les procédés de combustion du charbon ou du gaz naturel, utilisés par exemple pour produire de l'énergie ou de l'électricité émettent des quantités importantes de CO2 et la capture du CO2 ainsi produit est maintenant clé pour le développement de tels procédés. On cherche en outre à récupérer du CO2 le plus pur possible pour permettre sa liquéfaction et ceci dans des conditions les plus favorables économiquement et énergétiquement. The combustion processes of coal or natural gas, used for example to produce energy or electricity, emit significant amounts of CO2 and the capture of CO2 thus produced is now key to the development of such processes. We also seek to recover CO 2 as pure as possible to allow liquefaction and this under the most favorable conditions economically and energetically.
Une technique de combustion permettant de faciliter la récupération du CO2 consiste à mettre en œuvre des réactions d'oxydo-réduction d'une masse active pour décomposer la réaction de combustion en deux réactions successives. A combustion technique that facilitates the recovery of CO 2 consists in carrying out oxidation-reduction reactions of an active mass in order to decompose the combustion reaction into two successive reactions.
Dans un premier réacteur de réduction, la masse active préalablement oxydée MxOy se réduit au contact d'un gaz réducteur CnH2m, entrainant ainsi sa combustion selon la réaction suivante : In a first reduction reactor, the previously oxidized active mass M x O y is reduced in contact with a reducing gas C n H 2m , thus causing its combustion according to the following reaction:
(1 ) CnH2m + MxOy— > nCO2 + m H2O + MxOy-2n-m (1) C n H 2m + M x O y -> nCO 2 + m H 2 O + M x O y-2n- m
Dans un second réacteur d'oxydation, on restaure la masse active réduite MxOy-2n-m dans son état oxydé par une réaction d'oxydation avec de l'air, éventuellement humide, selon l'autre réaction ci-dessous : In a second oxidation reactor, the reduced active mass M x O y-2n -m is restored in its oxidized state by an oxidation reaction with air, possibly wet, according to the other reaction below:
(2) MxO y-2n-m+ (n+m/2)O2 -> MxOy (2) M x O y-2n-m + (n + m / 2) O 2 -> M x O y
On appelera dans la suite de la présente description « procédé d'oxydo- réduction en boucle » tout procédé de ce type utilisant une masse active ou masse oxydo-réductrice qui passe donc alternativement de sa forme oxydée à sa forme réduite et inversement et décrit un cycle d'oxydo-réduction selon les deux réactions du type ci-dessus. Un tel procédé permet ainsi d'émettre des fumées essentiellement constituées de CO2 et H2O et appauvrie en N2 ce qui facilite la récupération du CO2. In the remainder of this description, the term "oxidation-reduction method in a loop" will be referred to as any process of this type using an active mass or redox mass which thus alternately passes from its oxidized form to its reduced form and vice versa and describes a oxidation-reduction cycle according to the two reactions of the type above. Such a method thus makes it possible to transmit fumes consisting mainly of CO2 and H 2 O and depleted in N 2 which facilitates the recovery of CO 2 .
On recherche donc des masses actives ayant des capacités importantes à libérer de l'oxygène donc des capacités à s'oxyder et à se réduire de façon cyclique élevées. On peut également rechercher des masses actives ayant la capacité à libérer de l'oxygène à des températures les plus basses possibles, telles que 7000C, voire moins. Active molecules are therefore sought with significant capacity to release oxygen, thus high capacities to oxidize and reduce cyclically. It is also possible to search for active masses having the capacity to release oxygen at the lowest possible temperatures, such as 700 ° C., or even less.
Les réactions de ce procédé se font par ailleurs à des températures élevées typiquement entre 700 et 11000C et imposent donc que la masse active soit stable dans le temps à ces températures. La stabilité peut se traduire par une quantité d'oxygène libéré au cours de plusieurs cycles oxydo- réducteurs sensiblement stable au fur et à mesure de l'enchainement de ces cycles. The reactions of this process are also at high temperatures typically between 700 and 1100 0 C and therefore require that the active mass is stable over time at these temperatures. The stability can result in a quantity of oxygen released during several oxidation-reducing cycles substantially stable as the cycles of these cycles.
On connaît des masses oxydo-réductrice susceptible d'être utilisées dans un tel procédé. Elles sont généralement à base d'un couple oxydo-réducteur de type NiO/Ni, CuO/Cu ou encore CoO/Co associé avec un liant tel que l'alumine ou la zircone yttriée. Toutefois, ces masses actives présentent plusieurs défauts. Ainsi, leur capacité de transfert de l'oxygène peut être limitée, soit du fait de la quantité même d'oxygène transférable soit du fait de la cinétique de transfert de l'oxygène. En outre, on observe des pertes de performance au cours des cycles oxydo-réducteurs liées à une modification de la masse active à haute température.  Redox-reducing masses that can be used in such a process are known. They are generally based on a redox couple NiO / Ni type, CuO / Cu or CoO / Co associated with a binder such as alumina or yttrié zirconia. However, these active masses have several defects. Thus, their oxygen transfer capacity can be limited, either because of the very amount of transferable oxygen or because of the kinetics of oxygen transfer. In addition, performance losses are observed during oxidation-reduction cycles related to a modification of the active mass at high temperature.
Il y a donc un besoin pour des masses dont les performances soient améliorées, notamment en ce qui concerne la stabilité.  There is therefore a need for masses whose performance is improved, especially as regards stability.
Dans ce but, le procédé d'oxydo-réduction en boucle de l'invention est caractérisé en ce qu'on utilise comme masse oxydo-réductrice une masse comprenant une composition à base d'un oxyde qui est un oxyde de cérium ou un mélange d'oxyde de cérium et d'au moins un oxyde d'un autre élément choisi parmi le zirconium et les terres rares autres que le cérium, ledit oxyde étant supporté sur un support à base de silice, d'alumine, d'oxyde de titane ou de zircone et cet oxyde étant sous forme de particules qui sont déposées sur ledit support, sous forme individualisées ou sous forme d'agrégats, avec une taille d'au plus 500 nm, ladite composition présentant après calcination de 6 heures à une température d'au moins 800°C, une réductibilité mesurée entre 500C et 900°C d'au moins 80%. For this purpose, the loop oxidation-reduction method of the invention is characterized in that a mass comprising a composition based on an oxide which is a cerium oxide or a mixture is used as the redox mass. cerium oxide and at least one oxide of another element selected from zirconium and rare earths other than cerium, said oxide being supported on a support based on silica, alumina, titanium or zirconia and this oxide being in the form of particles which are deposited on said support, in individualized form or in the form of aggregates, with a size of at most 500 nm, said composition having after calcination for 6 hours at a temperature of at least 800 ° C, a reducibility measured between 50 0 C and 900 ° C of at least 80%.
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer. Pour la présente description on entend par terre rare les éléments du groupe constitué par l'ytthum et les éléments de la classification périodique de numéro atomique compris inclusivement entre 57 et 71. Other features, details and advantages of the invention will appear even more fully on reading the description which follows, as well as various concrete but non-limiting examples intended to illustrate it. For the purposes of this description, the term "rare earth" refers to the elements of the group consisting of the ytthum and the elements of the periodic classification of atomic number inclusive of between 57 and 71.
On entend par ailleurs par surface spécifique, la surface spécifique B. ET. déterminée par adsorption d'azote conformément à la norme ASTM D By specific surface is also meant the specific surface area B. AND. determined by nitrogen adsorption according to ASTM D
3663-78 établie à partir de la méthode BRUNAUER - EMMETT- TELLER décrite dans le périodique "The Journal of the American Chemical Society, 60,3663-78 established from the method BRUNAUER - EMMETT-TELLER described in the journal "The Journal of the American Chemical Society, 60,
309 (1938)". 309 (1938) ".
En outre, les calcinations à l'issue desquelles sont données les valeurs de surface sont des calcinations sous air. Par ailleurs, les valeurs de surface spécifiques qui sont indiquées pour une température et une durée données correspondent, sauf indication contraire, à des calcinations à un palier de température sur la durée indiquée.  In addition, the calcinations at which the surface values are given are calcinations under air. Moreover, the specific surface values which are indicated for a given temperature and duration correspond, unless otherwise indicated, to calcinations at a temperature step over the indicated time.
Les teneurs sont données en oxydes sauf indication contraire. L'oxyde de cérium est sous forme d'oxyde cérique, les oxydes des autres terres rares sous forme Ln2θ3, sauf indication contraire et à l'exception du praséodyme exprimé sous la forme Pr6On, Ln désignant la terre rare. The contents are given in oxides unless otherwise indicated. The cerium oxide is in the form of ceric oxide, the oxides of the other rare earths in Ln 2 θ3 form, except otherwise indicated and with the exception of praseodymium expressed in the form Pr 6 On, Ln denoting the rare earth.
On précise aussi pour la suite de la description que, sauf indication contraire, dans toutes les gammes ou limites de valeurs qui sont données, les valeurs aux bornes sont incluses, les gammes ou limites de valeurs ainsi définies couvrant donc toute valeur au moins égale et supérieure à la borne inférieure et/ou au plus égale ou inférieure à la borne supérieure.  It is also specified for the remainder of the description that, unless otherwise indicated, in all ranges or limits of values that are given, the values at the terminals are included, the ranges or limits of values thus defined thus covering any value at least equal to and greater than the lower bound and / or at most equal to or less than the upper bound.
La définition du procédé d'oxydo-réduction en boucle s'applique aussi à un procédé de production d'hydrogène mettant en œuvre le cycle d'oxydo- réduction mentionné plus haut.  The definition of the loop oxidation-reduction method also applies to a hydrogen production process implementing the oxidation-reduction cycle mentioned above.
Le procédé de l'invention est caractérisé par l'utilisation, comme masse active ou masse oxydo-réductrice, d'une composition spécifique qui va être décrite plus précisément ci-dessous.  The process of the invention is characterized by the use, as active mass or redox mass, of a specific composition which will be described more precisely below.
Cette composition comprend un oxyde supporté sous forme de particules de dimensions nanométriques, ces particules étant déposées sur un support.  This composition comprises an oxide supported in the form of particles of nanometric dimensions, these particles being deposited on a support.
Cet oxyde supporté peut être tout d'abord un oxyde de cérium seul, oxyde simple, généralement sous forme d'oxyde cérique CeO2. This supported oxide may first be a single oxide cerium oxide, usually in the form of ceric oxide CeO 2 .
Ce peut être aussi un mélange d'un oxyde de cérium et d'au moins un oxyde d'un autre élément qui est choisi parmi le zirconium et les terres rares autres que le cérium.  It can also be a mixture of a cerium oxide and at least one oxide of another element which is selected from zirconium and rare earths other than cerium.
La terre rare peut être plus particulièrement l'ytthum, le néodyme, le lanthane ou le praséodyme. Selon un mode de réalisation particulier, le lanthane et le praséodyme sont présents en combinaison. La teneur en oxyde de terre rare est généralement d'au plus 25%, de préférence lorsque la terre rare est le lanthane, plus particulièrement d'au plus 20% et de préférence d'au plus 15% en masse. La teneur minimale n'est pas critique mais généralement elle est d'au moins 1 %, plus particulièrement d'au moins 2% et de préférence d'au moins 5% en masse. Cette teneur est exprimée en oxyde de la terre rare par rapport à la masse de l'ensemble de l'oxyde de cérium et de l'oxyde de terre rare ou des oxydes des terres rares lorsque plusieurs terres rares sont présentes en combinaison. The rare earth may be more particularly ytthum, neodymium, lanthanum or praseodymium. According to a particular embodiment, lanthanum and praseodymium are present in combination. The content of rare earth oxide is generally at most 25%, preferably when the rare earth is lanthanum, more particularly at most 20% and preferably at most 15% by weight. The minimum content is not critical but generally it is at least 1%, more preferably at least 2% and preferably at least 5% by weight. This content is expressed as the rare earth oxide relative to the mass of all the cerium oxide and the rare earth oxide or rare earth oxides when several rare earths are present in combination.
L'oxyde supporté de la composition de la masse active peut aussi être à base d'un mélange d'oxyde de cérium et d'oxyde de zirconium. Cet oxyde peut répondre à la formule Cei _xZrxθ2. Dans cette formule, x, qui définit une proportion atomique des éléments Ce et Zr, est inférieur à 1 et peut être plus particulièrement compris entre 0,8 et 0,2, et plus particulièrement entre 0,50 et 0,2. The supported oxide of the composition of the active mass may also be based on a mixture of cerium oxide and zirconium oxide. This oxide can meet the formula Cei _ x Zr x θ2. In this formula, x, which defines an atomic proportion of the elements Ce and Zr, is less than 1 and may be more particularly between 0.8 and 0.2, and more particularly between 0.50 and 0.2.
L'oxyde supporté de la composition de la masse active peut aussi être à base d'un mélange d'oxyde de cérium, d'oxyde de zirconium et d'au moins un oxyde d'une terre rare autre que le cérium. Cet oxyde peut répondre à la formule CexZryMzθ2 dans lequelle M représente au moins un élément choisi dans le groupe comprenant les terres rares à l'exception du cérium et où x, y et z donnent les proportions atomiques des éléments Ce, Zr et M de la composition. The supported oxide of the composition of the active mass may also be based on a mixture of cerium oxide, zirconium oxide and at least one oxide of a rare earth other than cerium. This oxide may correspond to the formula Ce x ZryM z θ2 in which M represents at least one element selected from the group consisting of rare earths with the exception of cerium and where x, y and z give the atomic proportions of elements Ce, Zr and M of the composition.
Dans cette formule z est différent de Oet présente de préférence une valeur d'au plus 0,3 et qui peut être plus particulièrement comprise entre 0,02 et 0,2 et le rapport x/y peut être compris entre 1 et 19, plus particulièrement entre 1 et 9 et encore plus particulièrement entre 1 ,5 et 4, et x, y et z étant liés par la relation x+y+z=1.  In this formula z is different from Oet and preferably has a value of at most 0.3 and which may be more particularly between 0.02 and 0.2 and the ratio x / y may be between 1 and 19, plus particularly between 1 and 9 and even more particularly between 1, 5 and 4, and x, y and z being linked by the relation x + y + z = 1.
Selon un mode de réalisation particulier, l'oxyde supporté est sous forme cristallisée.  According to a particular embodiment, the supported oxide is in crystallized form.
Selon un autre mode de réalisation particulier, le mélange d'oxydes se présente sous la forme d'une solution solide (oxyde mixte) de l'élément terre rare et/ou du zirconium, dans le cérium ou encore sous la forme d'une solution solide du cérium et, éventuellement, de la terre rare, dans le zirconium, ceci en fonction des quantités respectives du cérium et du zirconium. Dans le premier cas l'oxyde supporté présente une phase unique qui correspond en fait à une structure cristalline de type fluorine tout comme l'oxyde cérique Ceθ2 cristallisé, et dont les paramètres de mailles sont plus ou moins décalés par rapport à un oxyde cérique pur, traduisant ainsi l'incorporation des autres éléments, terre rare et, éventuellement, zirconium, dans le réseau cristallin de l'oxyde de cérium. Dans le second cas l'oxyde supporté présente une phase unique correspondant à celle d'un oxyde de zirconium cristallisé dans le système tétragonal notamment, traduisant ainsi l'incorporation du cérium et de l'autre élément terre rare dans le réseau cristallin de l'oxyde de zirconium. According to another particular embodiment, the mixture of oxides is in the form of a solid solution (mixed oxide) of the rare earth element and / or zirconium, in cerium or in the form of a solid solution of cerium and, optionally, rare earth, in zirconium, this depending on the respective quantities of cerium and zirconium. In the first case, the supported oxide has a single phase which corresponds in fact to a crystalline structure of the fluorine type, just like the ceric oxide CeO 2 crystallized, and whose mesh parameters are more or less staggered with respect to a pure ceric oxide. , thus reflecting the incorporation of the other elements, rare earth and, possibly, zirconium, into the crystalline lattice of cerium oxide. In the second case, the supported oxide has a single phase corresponding to that of a zirconium oxide crystallized in the tetragonal system in particular, thus reflecting the incorporation of cerium and the other rare earth element into the crystal lattice of the zirconium oxide.
L'oxyde supporté est présent dans la composition de la masse oxydo- réductrice sous forme de particules de dimensions nanométriques. On entend par là que les particules présentent une taille d'au plus 500 nm. On doit noter ici que ces particules peuvent être soit individualisées soit sous forme d'agrégats. La valeur de 500 nm s'applique soit à la taille des particules quand celles-ci sont individualisées soit à la taille de l'agrégat dès lors qu'il y a des particules agrégées. Par ailleurs, cette taille peut être plus particulièrement d'au plus 50 nm et encore plus particulièrement d'au plus 10 nm. Les valeurs de taille les plus élevées données ci-dessus correspondent aux cas où les particules sont le plus souvent sous une forme agrégée alors que les valeurs les plus faibles correspondent aux cas où les particules sont le plus souvent sous une forme individualisée. Plus particulièrement, les particules sont sous forme individualisée de taille d'environ au plus 50 nm, encore plus particulièrement d'au plus 10 nm ou encore de taille comprise entre 10 nm et 5 nm et, dans le cas où l'oxyde est cristallisé, elles correspondent à des cristallites de cet oxyde. Selon un mode de réalisation particulier les particules sont sous forme individualisée de taille d'au plus 5 nm, ce mode de réalisation correspondant au cas où la teneur en oxyde supporté de la composition est relativement faible, cette teneur faible étant précisée plus loin. Les valeurs de taille données ici et dans la présente description sont déterminées soit par microscopie électronique à transmission (MET) soit par diffraction des rayons X (DRX) en particulier lorsque l'oxyde est cristallisé.  The supported oxide is present in the composition of the redox mass in the form of particles of nanometric dimensions. By this is meant that the particles have a size of at most 500 nm. It should be noted here that these particles can be either individualized or in the form of aggregates. The value of 500 nm applies either to the size of the particles when they are individualized or to the size of the aggregate when there are aggregated particles. Moreover, this size may be more particularly at most 50 nm and even more particularly at most 10 nm. The highest size values given above correspond to the cases where the particles are most often in an aggregated form while the lowest values correspond to the cases where the particles are most often in an individualized form. More particularly, the particles are in individualized form with a size of approximately at most 50 nm, even more particularly at most 10 nm, or else between 10 nm and 5 nm, and in the case where the oxide is crystallized. they correspond to crystallites of this oxide. According to a particular embodiment, the particles are in individualized form with a size of at most 5 nm, this embodiment corresponding to the case where the supported oxide content of the composition is relatively low, this low content being further specified below. The size values given here and in the present description are determined either by transmission electron microscopy (TEM) or X-ray diffraction (XRD), particularly when the oxide is crystallized.
Ces valeurs de taille de particules de l'oxyde supporté sont données pour une composition ayant subi une calcination pendant 6 heures à une température d'au moins 5000C, plus particulièrement d'au moins 8000C. These particle size values of the supported oxide are given for a composition which has been calcined for 6 hours at a temperature of at least 500 ° C., more particularly at least 800 ° C.
Comme indiqué plus haut, les particules sont déposées sur un support. As indicated above, the particles are deposited on a support.
On entend par là que les particules sont majoritairement présentes sur la surface de ce support étant entendu que les particules peuvent être présentes à l'intérieur des pores du support mais en restant à la surface de ces pores. By this is meant that the particles are predominantly present on the surface of this support, it being understood that the particles may be present inside the pores of the support but remaining on the surface of these pores.
Le support est à base de silice, d'alumine, d'oxyde de titane ou de zircone. De préférence, ce support doit présenter une surface spécifique élevée et stable, c'est-à-dire qui reste à une valeur suffisante même après exposition à une température élevée. Les oxydes constitutifs du support qui viennent d'être mentionnés sont bien connus et utilisés dans le domaine de la catalyse. La description ci- dessous concernant ces supports est donc donnée à titre purement illustratif et n'est pas limitative. The support is based on silica, alumina, titanium oxide or zirconia. Preferably, this support must have a high and stable surface area, that is to say which remains at a sufficient value even after exposure to a high temperature. The constituent oxides of the support which have just been mentioned are well known and used in the field of catalysis. The description below concerning these supports is therefore given for purely illustrative purposes and is not limiting.
Dans le cas d'un support à base de silice, celle-ci peut être une silice de précipitation ou une silice de pyrogénation. La silice peut éventuellement être stabilisée par un élément stabilisant comme l'aluminium.  In the case of a silica-based support, it may be a precipitated silica or a pyrogenation silica. The silica may optionally be stabilized by a stabilizing element such as aluminum.
Dans le cas d'un support à base d'alumine, on peut utiliser ici tout type d'alumine susceptible de présenter une surface spécifique suffisante pour une application en catalyse. On peut mentionner les alumines issues de la déshydratation rapide d'au moins un hydroxyde d'aluminium, tel que la bayérite, l'hydrargillite ou gibbsite, la nordstrandite, et/ou d'au moins un oxyhydroxyde d'aluminium tel que la boehmite, la pseudoboehmite et le diaspore.  In the case of an alumina-based support, any type of alumina capable of having a specific surface area sufficient for an application in catalysis can be used here. Mention may be made of aluminas resulting from the rapid dehydration of at least one aluminum hydroxide, such as bayerite, hydrargillite or gibbsite, nordstrandite, and / or at least one aluminum oxyhydroxide such as boehmite. , pseudoboehmite and diaspore.
Selon un mode de réalisation particulier de l'invention, on utilise comme masse oxydo-réductrice, une composition dans laquelle le support est une alumine stabilisée. Comme élément stabilisant on peut citer les terres rares, le baryum, le strontium, le silicium et le zirconium. Comme terre rare on peut mentionner tout particulièrement le cérium, le lanthane ou le mélange lanthane-néodyme. Ces éléments peuvent être utilisés seuls ou en combinaison. Comme combinaisons avantageuses, on peut citer La-Ba, Ba-Pr, La-Pr-Ba et La-Pr.  According to a particular embodiment of the invention, a composition in which the support is a stabilized alumina is used as the redox mass. As a stabilizing element, mention may be made of rare earths, barium, strontium, silicon and zirconium. As a rare earth, cerium, lanthanum or the lanthanum-neodymium mixture can be particularly mentioned. These elements can be used alone or in combination. Advantageous combinations include La-Ba, Ba-Pr, La-Pr-Ba and La-Pr.
La préparation de l'alumine stabilisée se fait d'une manière connue en soi, notamment par imprégnation de l'alumine par des solutions de sels, comme les nitrates, des éléments stabilisants précités ou encore par coséchage d'un précurseur d'alumine et de sels de ces éléments puis calcination.  The stabilized alumina is prepared in a manner known per se, in particular by impregnation of the alumina with salt solutions, such as nitrates, with the aforementioned stabilizing elements or by co-drying an alumina precursor and salts of these elements then calcination.
On peut citer par ailleurs une autre préparation de l'alumine stabilisée dans laquelle la poudre d'alumine issue de la déshydratation rapide d'un hydroxyde ou d'un oxyhydroxyde d'aluminium est soumise à une opération de mûrissement en présence d'un agent stabilisant constitué par un composé du lanthane et, éventuellement, un composé du néodyme, ce composé pouvant être plus particulièrement un sel. Le mûrissement peut se faire par mise en suspension de l'alumine dans l'eau puis chauffage à une température comprise par exemple entre 70 et 1100C. Après le mûrissement, l'alumine est soumise à un traitement thermique. There may also be mentioned another preparation of stabilized alumina in which the alumina powder resulting from the rapid dehydration of an aluminum hydroxide or oxyhydroxide is subjected to a ripening operation in the presence of an agent. stabilizer consisting of a lanthanum compound and, optionally, a neodymium compound, this compound may be more particularly a salt. The ripening can be done by suspending the alumina in water and then heating to a temperature of, for example, between 70 and 110 ° C. After maturing, the alumina is subjected to a heat treatment.
Une autre préparation consiste en un type de traitement similaire mais avec le baryum ou le strontium. La teneur en stabilisant exprimée en poids d'oxyde de stabilisant par rapport à l'alumine stabilisée est comprise généralement entre 1 ,5% et 35%, ou encore entre 1 ,5% et 25%, notamment entre 1 ,5% et 15%. Cette teneur peut être plus particulièrement comprise entre 2,5% et 20%, plus particulièrement entre 2,5 et 11 % ou encore entre 5% et 20%. Another preparation consists of a similar type of treatment but with barium or strontium. The stabilizer content expressed as weight of stabilizer oxide relative to stabilized alumina is generally between 1.5% and 35%, or between 1.5% and 25%, especially between 1.5% and 15%. %. This content may be more particularly between 2.5% and 20%, more particularly between 2.5 and 11% or between 5% and 20%.
Selon un mode de réalisation particulier, le stabilisant est le baryum et/ou le strontium dans une teneur exprimée en poids d'oxyde de stabilisant par rapport à l'alumine stabilisée inférieure à 10%.  According to a particular embodiment, the stabilizer is barium and / or strontium in a content expressed by weight of stabilizer oxide relative to stabilized alumina of less than 10%.
Selon deux autres modes de réalisation particuliers le support de la composition de la masse oxydo-réductrice est à base d'alumine stabilisée par un élément stabilisant du groupe constitué par le baryum, le strontium et le lanthane et l'oxyde supporté est dans le premier cas un mélange d'oxyde de cérium, d'oxyde de zirconium et d'oxyde d'une terre rare autre que le cérium qui peut être plus particulièrement le praséodyme ou le lanthane. Dans le second cas, l'oxyde supporté est un mélange d'oxyde de cérium, d'oxyde de praséodyme et d'oxyde d'une terre rare autre que le cérium et le praséodyme qui peut être plus particulièrement le lanthane. Pour ces deux modes de réalisation, la teneur en élément stabilisant, exprimée en oxyde, peut être égale à au moins 10% en masse par rapport à l'alumine stabilisée et elle peut être plus particulièrement comprise entre 10 et 30%, notamment entre 10 et 25%.  According to two other particular embodiments, the support of the composition of the redox mass is based on alumina stabilized by a stabilizing element of the group consisting of barium, strontium and lanthanum and the oxide supported is in the first case a mixture of cerium oxide, zirconium oxide and oxide of a rare earth other than cerium which may be more particularly praseodymium or lanthanum. In the second case, the supported oxide is a mixture of cerium oxide, praseodymium oxide and rare earth oxide other than cerium and praseodymium, which may be more particularly lanthanum. For these two embodiments, the stabilizing element content, expressed as oxide, may be at least 10% by weight relative to the stabilized alumina and may be more particularly between 10 and 30%, especially between 10 and 30% by weight. and 25%.
Selon d'autres modes de réalisation particuliers, le support consiste essentiellement en de l'alumine (premier mode) ou consiste essentiellement en de l'alumine stabilisée par au moins un élément choisi parmi les terres rares, le silicium et le zirconium (second mode). Par « consiste essentiellement en » on entend dans le cas du premier mode que le support ne contient que de l'alumine et pas d'autre élément susceptible de stabiliser celle-ci, l'alumine pouvant contenir éventuellement les impuretés habituelles. Dans le cas du second mode, on entend que le support ne contient que de l'alumine et, à titre de stabilisant, qu'un ou plusieurs éléments en combinaison choisi(s) uniquement dans le groupe constitué par les terres rares, le silicium et le zirconium avec, là aussi, la possible présence d'impuretés liées habituellement à l'alumine et à l'élément précité.  According to other particular embodiments, the support consists essentially of alumina (first mode) or consists essentially of alumina stabilized by at least one element chosen from rare earths, silicon and zirconium (second mode ). By "essentially consists of" is meant in the case of the first mode that the carrier contains only alumina and no other element capable of stabilizing it, the alumina may possibly contain the usual impurities. In the case of the second mode, it is understood that the support contains only alumina and, as stabilizer, one or more elements in combination chosen only in the group consisting of rare earths, silicon and zirconium with, again, the possible presence of impurities usually bonded to the alumina and the aforementioned element.
Dans le cas d'un support à base d'alumine stabilisée par un élément stabilisant choisi parmi les terres rares, le baryum et le strontium ou consistant essentiellement en de l'alumine stabilisée avec ce même élément stabilisant, on peut noter ici que la préparation de l'alumine stabilisée peut se faire lors de la préparation même de la composition de la masse oxydo-réductrice selon l'invention. In the case of a support based on alumina stabilized by a stabilizing element selected from rare earths, barium and strontium or consisting essentially of stabilized alumina with the same stabilizing element, it may be noted here that the preparation stabilized alumina can be achieved during the actual preparation of the composition of the redox mass according to the invention.
Le support peut aussi être en oxyde de titane, plus particulièrement en oxyde de titane sous forme anatase. Un tel oxyde peut être préparé par exemple par les procédés décrits dans EP-A-319365 ou dans EP-A-351270 et il peut comprendre aussi un stabilisant de type terre rare ou alcalino-terreux.  The support may also be titanium oxide, more particularly titanium oxide in anatase form. Such an oxide can be prepared for example by the methods described in EP-A-319365 or in EP-A-351270 and it can also comprise a rare earth or alkaline earth stabilizer.
Le support peut enfin être une zircone, tétragonale ou monoclinique, éventuellement stabilisée par exemple par une terre rare.  The support may finally be a zirconia, tetragonal or monoclinic, optionally stabilized for example by a rare earth.
On notera aussi que le support peut être constitué par une combinaison des oxydes précités soit sous forme de mélanges de ces oxydes soit sous forme d'oxydes mixtes (solutions solides) comme les oxydes mixtes silice/alumine, titane/silice ou zircone/silice.  It will also be noted that the support may consist of a combination of the abovementioned oxides, either in the form of mixtures of these oxides or in the form of mixed oxides (solid solutions), such as mixed silica / alumina, titanium / silica or zirconia / silica oxides.
On notera qu'il est aussi possible d'introduire les éléments stabilisants des différents supports qui ont été mentionnés après avoir préparé la composition (oxyde supporté sur support sans stabilisant) par exemple par une technique d'imprégnation.  It will be noted that it is also possible to introduce the stabilizing elements of the various supports which have been mentioned after having prepared the composition (support supported oxide without stabilizer) for example by an impregnation technique.
La teneur en oxyde supporté, oxyde de cérium par exemple, de la composition de la masse oxydo-réductrice de l'invention est généralement d'au plus 75% en masse de l'ensemble de la composition. Elle peut être notamment d'au plus 60%, plus particulièrement d'au plus 50% et encore plus particulièrement d'au plus 30%. Dans le cas particulier d'un support en zircone, la teneur en oxyde supporté peut correspondre aux valeurs qui viennent d'être données et elle peut être aussi plus particulièrement d'au plus 55%.  The supported oxide content, cerium oxide for example, of the composition of the redox mass of the invention is generally at most 75% by weight of the entire composition. It may especially be at most 60%, more particularly at most 50% and even more particularly at most 30%. In the particular case of a zirconia support, the supported oxide content may correspond to the values that have just been given and it may also be more particularly at most 55%.
La teneur minimale en oxyde supporté est fixée en fonction des performances recherchées de la composition. A titre d'exemple seulement, cette teneur minimale est généralement d'au moins 3%, plus particulièrement d'au moins 4% en masse.  The minimum content of supported oxide is set according to the desired performance of the composition. By way of example only, this minimum content is generally at least 3%, more particularly at least 4% by weight.
Comme indiqué plus haut, les particules de l'oxyde supporté peuvent être sous forme individualisée de taille d'au plus 5 nm. Ce mode de réalisation correspond de préférence aux compositions dans lesquelles la teneur en oxyde supportée est d'au plus 20% en masse, plus particulièrement d'au plus As indicated above, the particles of the supported oxide may be in individualized form with a size of at most 5 nm. This embodiment preferably corresponds to compositions in which the supported oxide content is at most 20% by weight, more particularly at most
15% et encore plus particulièrement d'au plus 10%. 15% and even more particularly at most 10%.
Dans le cas des modes de réalisation particuliers décrits plus haut pour lesquels le support est à base d'alumine stabilisée par du baryum et les oxydes supportés des mélanges d'oxyde de cérium, d'oxyde de zirconium et d'oxyde d'une terre rare autre que le cérium ou d'oxyde de cérium, d'oxyde de praséodyme et d'oxyde d'une terre rare autre que le praséodyme, la teneur en oxydes supportés peut être plus particulièrement égale ou supérieure à 15%, plus particulièrement comprise entre 15 et 30%. In the case of the particular embodiments described above for which the support is based on barium-stabilized alumina and the supported oxides, mixtures of cerium oxide, zirconium oxide and oxide of earth rare other than cerium or cerium oxide, praseodymium oxide and rare earth oxide other than praseodymium, the content of supported oxides may be more particularly equal to or greater than 15%, more particularly between 15 and 30%.
Une autre caractéristique des compositions des masses oxydo-réductrice de l'invention est leur réductibilité.  Another characteristic of the compositions of the redox masses of the invention is their reducibility.
La réductibilité des compositions est déterminée par la mesure de leur consommation d'hydrogène mesurée entre 500C et 7000C ou 900°C. Cette mesure est faite par réduction programmée en température en utilisant de l'hydrogène dilué dans l'argon. On détecte un signal avec un détecteur de conductivité thermique. La consommation de l'hydrogène est calculée à partir de la surface manquante du signal d'hydrogène de la ligne de base à 500C à la ligne de base à 700°C ou 900°C. Le taux de réductibilité représente le pourcentage de cérium réduit, étant entendu qu'1/2 mole d'H2 consommée et mesurée par la méthode décrite plus haut correspond à 1 mole de Ce IV réduit. The reducibility of the compositions is determined by measuring their hydrogen consumption measured between 50 ° C. and 700 ° C. or 900 ° C. This measurement is made by programmed temperature reduction using diluted hydrogen in argon. A signal is detected with a thermal conductivity detector. The consumption of hydrogen is calculated from the missing surface of the baseline hydrogen signal at 50 ° C at baseline at 700 ° C or 900 ° C. The degree of reducibility represents the percentage of cerium reduced, it being understood that 1/2 mol of H 2 consumed and measured by the method described above corresponds to 1 mole of reduced Ce IV.
Au sens de la présente invention, les compositions de la masse active pouvant contenir en plus du cérium un autre élément réductible du type terre rare tel que le praséodyme, on calcule la réductibilité globale du cérium et de cet élément, le praséodyme par exemple. La réductibilité globale du cérium et de cet élément est calculée en rapportant la consommation expérimentale d'hydrogène de la composition à la somme des consommations d'hydrogène théoriques correspondant à la réduction complète du cérium et à la réduction complète de l'autre élément comme le praséodyme. La consommation expérimentale d'hydrogène est calculée à partir de la surface manquante du signal d'hydrogène à la ligne de base à 500C à la ligne de base à 900°C lorsqu'on mesure la réductibilité entre 50°C et 9000C. La réductibilité mesurée entre 50°C et 700°C correspond à la même mesure mais faite dans la gamme de température de 500C à 700°C. For the purposes of the present invention, the compositions of the active mass may contain in addition to cerium another reducible element of the rare earth type such as praseodymium, the overall reducibility of cerium and of this element, praseodymium for example, is calculated. The overall reducibility of cerium and this element is calculated by relating the experimental hydrogen consumption of the composition to the sum of the theoretical hydrogen consumptions corresponding to the complete reduction of the cerium and to the complete reduction of the other element such as praseodymium. The experimental hydrogen consumption is calculated from the missing area of the hydrogen signal to baseline at 50 0 C to baseline at 900 ° C when measured reducibility between 50 ° C and 900 0 C. The reducibility measured between 50 ° C and 700 ° C corresponds to the same measurement but made in the temperature range of 50 0 C to 700 ° C.
La consommation d'hydrogène théorique pour la réduction complète du cérium se calcule comme précédemment en considérant que tout le cérium est initialement au degré +IV et qu'1/2 mole d'H2 est consommée pour réduire 1 mole de Ce IV. La consommation d'hydrogène théorique pour la réduction complète du praséodyme par exemple se calcule de manière analogue en considérant que 2/3 du praséodyme est présent au degré d'oxydation +IV dans Pr6On et qu'1/2 mole d'H2 est consommée pour réduire 1 mole de Pr IV. The theoretical hydrogen consumption for the complete reduction of cerium is calculated as above considering that all the cerium is initially at the degree + IV and that 1/2 mole of H 2 is consumed to reduce 1 mole of Ce IV. The theoretical hydrogen consumption for the complete reduction of praseodymium, for example, is calculated analogously considering that 2/3 of the praseodymium is present at the oxidation state + IV in Pr 6 On and that 1/2 mole of H 2 is consumed to reduce 1 mole of Pr IV.
Par ailleurs et pour l'ensemble de la description, les valeurs qui sont données pour la réductibilité résultent de mesures faites sur des compositions qui ont préalablement subi une calcination de 6 heures à une température d'au moins 800°C sous air. Comme indiqué plus haut, les compositions des masses oxydo- réductrices de l'invention présentent une réductibilité mesurée entre 500C etOn the other hand, and for the whole of the description, the values which are given for the reducibility result from measurements made on compositions which have previously been calcined for 6 hours at a temperature of at least 800 ° C. in air. As indicated above, the compositions reducing oxido masses of the invention exhibit reducibility measured between 50 0 C and
9000C d'au moins 80%. Cette réductibilité ainsi mesurée peut être plus particulièrement d'au moins 85% et encore plus particulièrement d'au moins 90%. 900 0 C of at least 80%. This reducibility thus measured can be more particularly at least 85% and even more particularly at least 90%.
Un mode de réalisation plus particulier de l'invention concerne des compositions dont la réductibilité est importante même dans une gamme de température peu élevée, c'est-à-dire d'au plus 700°C. Ce mode de réalisation correspond au cas où l'oxyde supporté est un mélange d'un oxyde de cérium et d'un oxyde de zirconium, avec un oxyde d'une terre rare autre que le cérium, et avec une teneur en zirconium telle que le rapport atomique Ce/Zr est d'au moins 1. Dans ce cas, ces compositions peuvent présenter une réductibilité mesurée entre 500C et 700°C (après aussi calcination 6 heures à une température d'au moins 800°C) d'au moins 35%, plus particulièrement d'au moins 40%. Bien entendu, ces compositions présentent aussi les mêmes valeurs de réductibilité mesurée entre 500C et 900°C que celles qui ont été données plus haut. A more particular embodiment of the invention relates to compositions whose reducibility is important even in a low temperature range, i.e. at most 700 ° C. This embodiment corresponds to the case where the supported oxide is a mixture of a cerium oxide and a zirconium oxide, with an oxide of a rare earth other than cerium, and with a zirconium content such that the atomic ratio Ce / Zr is at least 1. In this case, these compositions may have a reducibility measured between 50 ° C. and 700 ° C. (after also calcining for 6 hours at a temperature of at least 800 ° C.) at least 35%, more particularly at least 40%. Of course, these compositions also have the same values of reducibility measured between 50 0 C and 900 ° C as those given above.
Enfin, les compositions des masses oxydo-réductrices de l'invention peuvent présenter une surface spécifique BET élevée qui peut être, après calcination 6 heures à 800°C, d'au moins 95 m2/g, plus particulièrement d'au moins 110 m2/g, cette surface dépendant de la nature du support utilisé. Finally, the compositions of the redox compositions of the invention may have a high BET surface area which may, after calcination for 6 hours at 800 ° C., be at least 95 m 2 / g, more particularly at least 110 m 2 / g, this surface depending on the nature of the support used.
Les compositions qui ont été décrites ci-dessus sont des compositions connues. On pourra se référer notamment à l'ensemble de la description de la demande de brevet WO 2008/025753 dans laquelle sont décrites les caractéristiques de ces compositions ainsi que leur procédé de préparation. On notera que les mesures de réductibilité entre 300C et 900°C décrites dans la demande WO 2008/025753 donnent les mêmes résultats que celles faites entre 50°C et 9000C comme dans la présente demande. The compositions which have been described above are known compositions. Reference can be made in particular to the entire description of the patent application WO 2008/025753 in which the characteristics of these compositions and their preparation process are described. It will be noted that the measurements of reducibility between 30 0 C and 900 ° C described in the application WO 2008/025753 give the same results as those made between 50 ° C and 900 0 C as in the present application.
La masse oxydo-réductrice peut par ailleurs comprendre, outre une composition du type décrit ci-dessus, au moins un oxyde réductible choisi dans le groupe comprenant les oxydes des éléments nickel, cuivre, cobalt, fer et manganèse, le fer étant préféré.  The redox mass may further comprise, in addition to a composition of the type described above, at least one reducible oxide chosen from the group comprising the oxides of the elements nickel, copper, cobalt, iron and manganese, iron being preferred.
Cet oxyde réductible peut être présent dans une quantité de préférence d'au plus 40% en masse par rapport à l'ensemble de la masse oxydo- réductrice. Cette quantité peut être plus particulièrement comprise entre 10% et 30%.  This reducible oxide may be present in an amount preferably of at most 40% by weight relative to the whole of the redox mass. This amount may be more particularly between 10% and 30%.
Selon un mode de réalisation particulier et dans le cas où le support de l'oxyde de la masse oxydo-réductrice est l'alumine, cet oxyde réductible peut être présent dans l'alumine même et donc il peut être apporté par le support à la composition de la masse. Dans ce cas, cet oxyde réductible peut être présent dans une quantité en masse comprise entre 5 et 30% par rapport à l'alumine. According to a particular embodiment and in the case where the support of the oxide of the redox mass is alumina, this reducible oxide can be present in the alumina itself and therefore it can be brought by the support to the composition of the mass. In this case, this reducible oxide may be present in a quantity by weight of between 5 and 30% relative to the alumina.
La masse oxydo-réductrice peut comprendre en outre un liant, notamment en vue d'augmenter sa résistance mécanique. Comme exemple de liant on peut citer l'alumine, les spinelles d'aluminate métallique, le dioxyde de titane, la silice, la zircone, le kaolin, la zircone yttriée.  The redox mass may further comprise a binder, especially in order to increase its mechanical strength. As an example of a binder, mention may be made of alumina, aluminate spinels, titanium dioxide, silica, zirconia, kaolin and yttria.
La proportion de liant dans la masse oxydo-réductrice peut varier de 10% à 95% poids, préférentiellement de 20 % à 80 % poids, et encore plus particulièrement de 30% à 70% poids.  The proportion of binder in the redox mass can vary from 10% to 95% by weight, preferably from 20% to 80% by weight, and even more particularly from 30% to 70% by weight.
Le composé comprenant la composition à base d'oxyde de cérium, l'oxyde réductible et le liant éventuellement peut être obtenu par simple mélange physique de ces composants.  The compound comprising the cerium oxide composition, the reducible oxide and the binder optionally may be obtained by simple physical mixing of these components.
La masse oxydo-réductrice peut éventuellement être mise en forme pour se présenter sous forme de poudre, de granulé, de bille, de cylindre ou de nids d'abeille de dimensions variables. La taille et la forme de la masse oxydo- réductrice sont choisies en fonction des contraintes technologiques du procédé. Dans le cas d'un procédé mettant en œuvre un lit fluidisé, on choisira avantageusement une mise en forme sous la forme de grains microniques de taille comprise entre 10 et 100 μm. La mise en forme peut être réalisée selon toute technique connue de l'homme de l'art.  The redox mass may optionally be shaped to be in the form of powder, granules, balls, cylinders or honeycombs of varying sizes. The size and shape of the redox mass are chosen according to the technological constraints of the process. In the case of a process employing a fluidized bed, it will advantageously be chosen to form in the form of micron-sized grains of between 10 and 100 μm in size. The shaping can be carried out according to any technique known to those skilled in the art.
Le procédé de l'invention pourra notamment être mis en œuvre en utilisant la masse oxydo-réductrice dans un lit circulant ou lit fluidisé ou encore en réacteur rotatif. Ce procédé peut être utilisé dans le domaine général de la production d'énergie, (production d'électricité, de vapeur ou de chaleur) par exemple dans les turbines à gaz, les chaudières et fours, dans l'industrie pétrolière, chimique, verrière et de cimenterie. Ce procédé peut être également utilisé pour produire de l'hydrogène avec capture simultannée du CO2 par exemple par combustion du méthane sur la masse réductrice formant un gaz CO, CO2, H2 et H2O. Ce dernier est ensuite enrichi en H2, CO2 par une réaction water gaz shift entre CO et H2O. The method of the invention may in particular be implemented using the redox mass in a circulating bed or fluidized bed or in a rotary reactor. This process can be used in the general field of energy production, (production of electricity, steam or heat) for example in gas turbines, boilers and furnaces, in the oil, chemical, glass industry and cement plant. This process can also be used to produce hydrogen with simultaneous capture of CO2 for example by combustion of methane on the reducing mass forming a gas CO, CO2, H 2 and H 2 O. The latter is then enriched in H 2 , CO 2 by a water gas shift reaction between CO and H 2 O.
Des exemples vont maintenant être donnés. Examples will now be given.
EXEMPLE 1 EXAMPLE 1
Cet exemple concerne la préparation d'une masse oxydo-réductrice à base d'un oxyde de cérium sur un support en alumine. Un mélange contenant 80% en poids de AI2O3 stabilisée par du lanthane et 20% en poids de CeÛ2 est réalisé en mélangeant dans un bêcher sous agitation, 80 g de poudre d'alumine MI-386 commercialisée par Rhodia dispersée dans 500 ml d'H2O à pH 0,5 avec une solution colloidale de CeO2 (pH 0,5) contenant 20 g de CeO2 (CeO2 50 g/l). This example relates to the preparation of an oxide-reductive mass based on a cerium oxide on an alumina support. A mixture containing 80% by weight of lanthanum stabilized Al 2 O 3 and 20% by weight of CeO 2 is produced by mixing in a beaker with stirring, 80 g of MI-386 alumina powder marketed by Rhodia dispersed in 500 ml of H 2 O at pH 0.5 with a colloidal solution of CeO 2 (pH 0.5) containing 20 g of CeO 2 (CeO 2 50 g / l).
Le mélange est ensuite séché par atomisation sur un appareil de type Bϋchi 190 mini Spray Drier, avec une température d'entrée de 2300C et une température de sortie de 115°C. The mixture is then spray-dried on a Bϋchi 190 mini Spray Drier type apparatus, with an inlet temperature of 230 ° C. and an outlet temperature of 115 ° C.
La poudre obtenue est calcinée sous air à 6000C pendant 2h. The powder obtained is calcined under air at 600 ° C. for 2 hours.
La surface spécifique de la masse oxydo-réductrice CeO2-AI2O3 est deThe specific surface of the redox mass CeO 2 -Al 2 O 3 is
161 m2/g. 161 m 2 / g.
EXEMPLE 2 EXAMPLE 2
Cet exemple concerne l'évaluation de la capacité d'un matériau à subir des cycles oxydo-réducteurs.  This example concerns the evaluation of the ability of a material to undergo oxidation-reduction cycles.
Pour cela, 200 mg de poudre sont chauffés selon une rampe de 20°C/min jusqu'à 9000C sous flux réducteur d'hydrogène à 10% dans Ar (25 ml/min). For this purpose, 200 mg of powder are heated in a ramp of 20 ° C./min up to 900 ° C. under a 10% hydrogen reducing flux in Ar (25 ml / min).
On mesure la consommation d'hydrogène dans le flux via un détecteur de type catharomètre.  The consumption of hydrogen in the flow is measured via a katharometer type detector.
On calcule le taux de réductibilité de la masse de captation par le pourcentage de cérium réduit dans ces conditions en considérant la réaction suivante :  The degree of reducibility of the capture mass is calculated by the percentage of cerium reduced under these conditions by considering the following reaction:
2 CeO2 + H2 - > Ce2O3 + H2O 2 CeO 2 + H 2 -> Ce 2 O 3 + H 2 O
Ce taux de réductibilité ou volume d'hydrogène consommé reflète la capacité du matériau à donner de l'oxygène à un réducteur, ici l'hydrogène.  This degree of reducibility or volume of hydrogen consumed reflects the ability of the material to give oxygen to a reducing agent, here hydrogen.
A titre de comparaison la masse oxydo-réductrice de l'exemple 1 est comparée à une cérine pure, commercialisée par Rhodia sous la nom de HSA5.  By way of comparison, the redox mass of Example 1 is compared with pure cerine marketed by Rhodia under the name HSA5.
Cet oxyde a été prélablement calciné sous air à 600°C pendant 2 heures et développe ainsi 159 m2/g. This oxide was first calcined in air at 600 ° C. for 2 hours and thus developed 159 m 2 / g.
Le tableau 1 suivant indique que dans ces conditions, la cérine de la masse cérine-alumine conforme à l'invention est réductible à hauteur de 100% à 9000C alors que la cérine pure n'est réductible qu'à hauteur de 24%. Tableau 1 The following Table 1 indicates that under these conditions, the cerine of the ceria-alumina mass according to the invention is 100% reducible at 900 ° C. whereas the pure cerine is only reducible at 24%. . Table 1
Figure imgf000014_0001
EXEMPLE 3
Figure imgf000014_0001
EXAMPLE 3
Cet exemple concerne l'évaluation de la capacité d'un matériau à subir des cycles oxydo-réducteurs et à maintenir cette capacité au cours d'un cycle.  This example concerns the evaluation of the ability of a material to undergo oxidation-reduction cycles and to maintain this capacity during a cycle.
Pour cela, on réalise le même type d'essai que dans l'exemple 2 à l'exception du fait que l'on enchaine les étapes suivantes :  For this, the same type of test is carried out as in Example 2 except that the following steps are followed:
Réduction N° 1 : on réalise la première réduction sous H2 dans Ar entreReduction N ° 1: we realize the first reduction under H 2 in Ar between
50 et 7000C : on mesure le volume d'hydrogène et on calcule le taux de réduction (25 ml/min). 50 and 700 ° C.: the volume of hydrogen is measured and the reduction ratio (25 ml / min) is calculated.
Réoxydation : la poudre est ensuite refroidie à 50°C toujours sous flux d'H2 10% dans Ar (25 ml/min) puis chauffée selon une rampe de 20°C/min jusqu'à 7000C sous un flux oxydant composé de 2.5% d'O2 dans Ar (25 ml/min). La poudre est de nouveau refroidie à 50°C toujours sous flux 2,5% d'O2dans (25 ml/min). Reoxidation: the powder is then cooled to 50 ° C., still under a flux of H 2 10% in Ar (25 ml / min) and then heated in a ramp of 20 ° C./min up to 700 ° C. under a compound oxidizing stream 2.5% O 2 in Ar (25 ml / min). The powder is again cooled to 50 ° C. still under 2.5% O 2 flux in (25 ml / min).
Réduction N°2 : la poudre est à nouveau chauffée selon une rampe de 20°C/min jusqu'à 7000C sous flux d'H2 dans Ar et on mesure à nouveau la consommation d'hydrogène dans le flux via un détecteur type catharomètre. Reduction No. 2: the powder is heated again at a ramp of 20 ° C./min up to 700 ° C. under a flow of H 2 in Ar and the consumption of hydrogen in the flow is measured again via a detector type catharometer.
Les taux de réduction de la première et de la deuxième réduction sont comparés.  The reduction rates of the first and second reductions are compared.
Le tableau 2 ci-dessous indique qu'à 700°C la réduction de la masse active cérine-alumine selon l'invention est plus importante que celle de la cérine pure, à la fois en terme de degré de réduction du cérium et de volume d'hydrogène consommé (donc d'oxygène transféré). Par ailleurs, la capacité à transférer de l'oxygène est identique entre la première et seconde réduction à Table 2 below indicates that at 700 ° C. the reduction of the ceria-alumina active mass according to the invention is greater than that of pure cerine, both in terms of degree of cerium reduction and of volume. of hydrogen consumed (thus oxygen transferred). Moreover, the capacity to transfer oxygen is identical between the first and second reduction at
7000C indiquant une bonne stabilité des capacités de la masse oxydo- réductrice au cours des cyclage oxydo-réducteurs. Dans les mêmes conditions, la capacité de la cérine pure a chuté de 22% passant de 9% de réduction du cérium à 7%. Cet exemple illustre donc la meilleure capacité des masses oxyde- réductrices proposées, notamment à basse température, ainsi que leur stabilité accrue. 700 0 C indicating a good stability of the capacities of the redox mass during oxidation-reduction cycling. Under the same conditions, the capacity of pure cerine fell by 22%, from 9% reduction of cerium to 7%. This example thus illustrates the better capacity of the oxide-reducing masses proposed, especially at low temperature, as well as their increased stability.
Tableau 2 Table 2
Figure imgf000015_0001
Figure imgf000015_0001

Claims

REVENDICATIONS
1 - Procédé d'oxydo-réduction en boucle, caractérisé en ce qu'on utilise comme masse oxydo-réductrice une masse comprenant une composition à base d'un oxyde qui est un oxyde de cérium ou un mélange d'oxyde de cérium et d'au moins un oxyde d'un autre élément choisi parmi le zirconium et les terres rares autres que le cérium, ledit oxyde étant supporté sur un support à base de silice, d'alumine, d'oxyde de titane ou de zircone et cet oxyde étant sous forme de particules qui sont déposées sur ledit support, sous forme individualisées ou sous forme d'agrégats, avec une taille d'au plus 500 nm, ladite composition présentant après calcination de 6 heures à une température d'au moins 8000C, une réductibilité mesurée entre 500C et 900°C d'au moins 80%. 1 - Redox oxidation-reduction process, characterized in that the oxide-reducing mass used comprises a composition based on an oxide which is a cerium oxide or a mixture of cerium oxide and at least one oxide of another element selected from zirconium and rare earths other than cerium, said oxide being supported on a support based on silica, alumina, titanium oxide or zirconia and this oxide being in the form of particles which are deposited on said support, in individualized form or in the form of aggregates, with a size of at most 500 nm, said composition having after calcination for 6 hours at a temperature of at least 800 ° C. a reducibility measured between 50 0 C and 900 ° C of at least 80%.
2- Procédé selon la revendication 1 , caractérisé en ce qu'on utilise une masse oxydo-réductrice comprenant la composition précitée dans laquelle les particules individualisées ou sous forme d'agrégats de l'oxyde supporté ont une taille d'au plus 50 nm. 2. Process according to claim 1, characterized in that an oxido-reducing mass comprising the abovementioned composition in which the individualized particles or in the form of aggregates of the supported oxide have a size of at most 50 nm is used.
3- Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on utilise une masse oxydo-réductrice comprenant la composition précitée dans laquelle les particules individualisées ou sous forme d'agrégats de l'oxyde supporté ont une taille d'au plus 10 nm, plus particulièrement d'au plus 5 nm. 3- A method according to claim 1 or 2, characterized in that a redox mass comprising the aforementioned composition wherein the individualized particles or aggregates of the supported oxide have a size of at most 10 nm, more particularly at most 5 nm.
4- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise une masse oxydo-réductrice dans laquelle la composition précitée présente une réductibilité d'au moins 85%, plus particulièrement d'au moins 90%. 4. Method according to one of the preceding claims, characterized in that a redox mass is used in which the aforementioned composition has a reducibility of at least 85%, more particularly at least 90%.
5- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise une masse oxydo-réductrice dans laquelle l'oxyde supporté de la composition précitée est un mélange d'oxyde de cérium, d'oxyde de zirconium et d'au moins un oxyde d'une terre rare autre que le cérium, avec une teneur en zirconium telle que le rapport atomique Ce/Zr est d'au moins 1 , et en ce que ladite composition présente après calcination de 6 heures à une température d'au moins 8000C, une réductibilité mesurée entre 50°C et 700°C d'au moins 35%, plus particulièrement d'au moins 40%. 6- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise une masse oxydo-réductrice dans laquelle le support de l'oxyde de la composition précitée consiste essentiellement en de l'alumine ou de l'alumine stabilisée par au moins un élément choisi parmi les terres rares, le silicium et le zirconium. 5. Method according to one of the preceding claims, characterized in that a redox mass is used in which the supported oxide of the aforementioned composition is a mixture of cerium oxide, zirconium oxide and at least one oxide of a rare earth other than cerium, with a zirconium content such that the Ce / Zr atomic ratio is at least 1, and in that said composition has after calcination for 6 hours at a temperature of at least 800 ° C., a reducibility measured between 50 ° C. and 700 ° C. of at least 35%, more particularly at least 40%. 6. Process according to one of the preceding claims, characterized in that a redox mass is used in which the support of the oxide of the aforementioned composition consists essentially of alumina or alumina stabilized with least one element selected from rare earths, silicon and zirconium.
7- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise une masse oxydo-réductrice dans laquelle l'oxyde supporté de la composition précitée est un mélange d'un oxyde de cérium, d'un oxyde de zirconium et d'un oxyde d'une terre rare autre que le cérium, et en ce que le support de l'oxyde de ladite composition est à base d'alumine stabilisée par un élément du groupe constitué par le baryum, le strontium et le lanthane. 8- Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'on utilise une masse oxydo-réductrice dans laquelle l'oxyde supporté de la composition précitée est un mélange d'un oxyde de cérium, d'un oxyde de praséodyme et d'un oxyde d'une terre rare autre que le cérium et le praséodyme, et en ce que le support de l'oxyde de ladite composition est à base d'alumine stabilisée par un élément du groupe constitué par le baryum, le strontium et le lanthane. 7- Method according to one of the preceding claims, characterized in that a redox mass is used in which the supported oxide of the aforementioned composition is a mixture of a cerium oxide, a zirconium oxide and an oxide of a rare earth other than cerium, and in that the support of the oxide of said composition is based on alumina stabilized by a member of the group consisting of barium, strontium and lanthanum. 8- Method according to one of claims 1 to 6, characterized in that a redox mass is used in which the supported oxide of the aforementioned composition is a mixture of a cerium oxide, an oxide of praseodymium and an oxide of a rare earth other than cerium and praseodymium, and in that the support of the oxide of said composition is based on alumina stabilized by an element of the group consisting of barium, strontium and lanthanum.
9- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise une masse oxydo-réductrice dans laquelle la composition précitée présente une proportion en oxyde supporté d'au plus 75% en masse, plus particulièrement d'au plus 50% et encore plus particulièrement d'au plus 30%. 9- Method according to one of the preceding claims, characterized in that a redox mass is used in which the aforementioned composition has a supported oxide proportion of at most 75% by weight, more particularly at most 50 % and even more particularly at most 30%.
10- Procédé selon l'une des revendications précédentes, caractérisé en ce la masse oxydo-réductrice utilisée comprend en outre au moins un oxyde réductible choisi dans le groupe comprenant les oxydes des éléments nickel, cuivre, cobalt, fer et manganèse. 10- Method according to one of the preceding claims, characterized in that the redox mass used comprises in addition at least one reducible oxide selected from the group comprising the oxides of the elements nickel, copper, cobalt, iron and manganese.
PCT/EP2010/060534 2009-07-31 2010-07-21 Redox loop method using a composition comprising supported cerium oxide or supported cerium, zirconium and/or rare earth oxide as a redox mass WO2011012510A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0903777 2009-07-31
FR0903777A FR2948748B1 (en) 2009-07-31 2009-07-31 BUCKET OXYDO-REDUCTION PROCESS USING AS OXYDO-REDUCTIVE MASS COMPOSITION BASED ON OXIDE SUPPORTED WITH CERIUM OR CERIUM, ZIRCONIUM AND / OR RARE EARTH

Publications (2)

Publication Number Publication Date
WO2011012510A2 true WO2011012510A2 (en) 2011-02-03
WO2011012510A3 WO2011012510A3 (en) 2012-03-29

Family

ID=41479400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/060534 WO2011012510A2 (en) 2009-07-31 2010-07-21 Redox loop method using a composition comprising supported cerium oxide or supported cerium, zirconium and/or rare earth oxide as a redox mass

Country Status (2)

Country Link
FR (1) FR2948748B1 (en)
WO (1) WO2011012510A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012101729A1 (en) * 2012-03-01 2013-09-05 Institut für Energie- und Umwelttechnik e.V. Burning gaseous fuel by chemical looping, comprises oxidizing the gaseous fuel using nano-scale oxygen carriers, which are mounted on a fixed-bed reactor
FR2997318A1 (en) * 2012-10-31 2014-05-02 IFP Energies Nouvelles CHEMICAL LOOP COMBUSTION PROCESS USING OXYDO-REDUCTIVE MASS COMPRISING PYROLUSITE ENRICHED WITH NICKEL OXIDE
FR3001400A1 (en) * 2013-01-29 2014-08-01 IFP Energies Nouvelles ACTIVE OXYDO REDUCTION MASS COMPRISING ENRICHED NICKEL PYROLUSITE AND A SPINEL STRUCTURE COMPOUND AND USE IN A CHEMICAL LOOP COMBUSTION PROCESS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319365A1 (en) 1987-11-30 1989-06-07 Rhone-Poulenc Chimie Process for the preparation of titanium oxide, zirconium oxide or cerium oxide, and products therefrom
EP0351270A1 (en) 1988-07-01 1990-01-17 Rhone-Poulenc Chimie Process for the preparation of titanium oxide and articles based on titanium oxide
WO2008025753A2 (en) 2006-08-31 2008-03-06 Rhodia Operations Composition with high reducibility made of a nanometric cerium oxide on a support, method of preparation and use as catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846710B1 (en) * 2002-11-06 2006-08-04 Inst Francais Du Petrole DEVICE AND METHOD FOR THE PRODUCTION OF A HOT GAS BY OXIDATION OF AN ACTIVE MATERIAL
FR2924708B1 (en) * 2007-12-10 2012-02-17 Inst Francais Du Petrole USE OF AN OXYDO-REDUCTIVE MASS WITH A SPINEL TYPE STRUCTURE FOR A LOOP OXYDO-REDUCTION PROCESS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319365A1 (en) 1987-11-30 1989-06-07 Rhone-Poulenc Chimie Process for the preparation of titanium oxide, zirconium oxide or cerium oxide, and products therefrom
EP0351270A1 (en) 1988-07-01 1990-01-17 Rhone-Poulenc Chimie Process for the preparation of titanium oxide and articles based on titanium oxide
WO2008025753A2 (en) 2006-08-31 2008-03-06 Rhodia Operations Composition with high reducibility made of a nanometric cerium oxide on a support, method of preparation and use as catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, 1938, pages 309

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012101729A1 (en) * 2012-03-01 2013-09-05 Institut für Energie- und Umwelttechnik e.V. Burning gaseous fuel by chemical looping, comprises oxidizing the gaseous fuel using nano-scale oxygen carriers, which are mounted on a fixed-bed reactor
FR2997318A1 (en) * 2012-10-31 2014-05-02 IFP Energies Nouvelles CHEMICAL LOOP COMBUSTION PROCESS USING OXYDO-REDUCTIVE MASS COMPRISING PYROLUSITE ENRICHED WITH NICKEL OXIDE
WO2014068205A1 (en) * 2012-10-31 2014-05-08 IFP Energies Nouvelles Chemical looping combustion process using an oxidation/reduction mass comprising pyrolusite enriched with nickel oxide
FR3001400A1 (en) * 2013-01-29 2014-08-01 IFP Energies Nouvelles ACTIVE OXYDO REDUCTION MASS COMPRISING ENRICHED NICKEL PYROLUSITE AND A SPINEL STRUCTURE COMPOUND AND USE IN A CHEMICAL LOOP COMBUSTION PROCESS
WO2014118453A1 (en) * 2013-01-29 2014-08-07 IFP Energies Nouvelles Oxidation-reduction active mass comprising nickel-enriched pyrolusite and a compound with a spinel structure, and use thereof in a chemical-looping combustion method

Also Published As

Publication number Publication date
WO2011012510A3 (en) 2012-03-29
FR2948748B1 (en) 2011-07-22
FR2948748A1 (en) 2011-02-04

Similar Documents

Publication Publication Date Title
EP2566617B1 (en) Composition containing oxides of zirconium, cerium and at least one other rare earth and having a specific porosity, method for preparing same and use thereof in catalysis
EP2296782B1 (en) Method for processing a gas for reducing the carbon dioxide content thereof
CA2660002C (en) Composition with high reducibility made of a nanometric cerium oxide on a support, method of preparation and use as catalyst
EP1603667B1 (en) Reduced maximum reductibility temperature zirconium oxide and cerium oxide based composition, method for the production and use thereof as a catalyst
CA2310123C (en) Support composition based on a cerium oxide, a zirconium oxide and a scandium or rare earth oxide and use for treating exhaust gas
EP2646370B1 (en) Composition based on zirconium oxide and on at least one oxide of a rare earth other than cerium, having a specific porosity, process for preparing same and use thereof in catalysis
EP2024081A2 (en) Compositions used especially for trapping nitrogen oxides (nox)
FR2973793A1 (en) COMPOSITION BASED ON ZIRCONIUM OXIDES, CERIUM, AT LEAST ONE RARE EARTH OTHER THAN CERIUM AND SILICON, PROCESSES FOR PREPARATION AND USE IN CATALYSIS
WO1999026715A1 (en) COMPOSITION BASED ON MANGANESE AND USE FOR TRAPPING NOx FOR TREATING EXHAUST GASES
WO2000061289A1 (en) Compositions used as nox trap, based on manganese and an alkaline or alkaline-earth and use for treating exhaust gases
WO2011012510A2 (en) Redox loop method using a composition comprising supported cerium oxide or supported cerium, zirconium and/or rare earth oxide as a redox mass
EP2334408A1 (en) Method of decomposing n2o using a catalyst based on a cerium lanthanum oxide
FR2867769A1 (en) COMPOSITION BASED ON ZIRCONIUM, CERIUM AND TIN OXIDES, PREPARATION AND USE AS CATALYST
EP2331248A1 (en) Redox masses having a axa'x'byb'y'o4 spinel type structure and use thereof in a chemical-loop redox process
FR2793161A1 (en) EXHAUST GAS PURIFYING DEVICE FOR INTERNAL COMBUSTION ENGINE
EP4188595A1 (en) Oxygen-carrier solid with sub-stoichiometric spinel for a chemical-looping redox process
WO2011012509A2 (en) Redox loop method in which a composition comprising oxides of cerium, of a rare earth other than cerium and, optionally, of zirconium is used as a redox mass
FR3132093A1 (en) SOLID OXYGEN CARRIER BASED ON IRON AND SUB-STOICHIOMETRIC SPINEL FOR AN OXYDO-REDUCTION PROCESS IN A CHEMICAL LOOP

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10737535

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10737535

Country of ref document: EP

Kind code of ref document: A2