WO2011010649A1 - Mass spectrometry method and ion dissociation device - Google Patents

Mass spectrometry method and ion dissociation device Download PDF

Info

Publication number
WO2011010649A1
WO2011010649A1 PCT/JP2010/062207 JP2010062207W WO2011010649A1 WO 2011010649 A1 WO2011010649 A1 WO 2011010649A1 JP 2010062207 W JP2010062207 W JP 2010062207W WO 2011010649 A1 WO2011010649 A1 WO 2011010649A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
spectrum
ions
dissociation
precursor
Prior art date
Application number
PCT/JP2010/062207
Other languages
French (fr)
Japanese (ja)
Inventor
直己 万里
宏之 佐竹
集 平林
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2011523665A priority Critical patent/JP5362009B2/en
Publication of WO2011010649A1 publication Critical patent/WO2011010649A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn

Definitions

  • the present invention relates to a mass spectrometry method and an ion dissociation apparatus suitable for use in mass spectrometry.
  • the present invention can be used, for example, for dissociation analysis of biopolymers.
  • mass spectrometry mass spectrometry
  • mass spectrometry By using mass spectrometry, it is possible to obtain sequence information and post-translational modification information of a polypeptide (peptide or protein) in which amino acids constituting a biopolymer are connected by peptide bonds.
  • mass spectrometry using ion traps using a high-frequency electric field or quadrupole mass filter and time-of-flight mass spectrometry (Time-of-Flight mass spectrometry) (TOF-MS) are high-speed analytical methods.
  • Liquid-chromatography: LC Good connectivity with a pretreatment means for separating a sample represented by an apparatus or the like. For this reason, these high-speed mass spectrometry methods are widely used because they meet the purpose of proteome analysis and the like that require continuous analysis of many types of samples.
  • mass spectrometry In general, in mass spectrometry, a sample molecule is ionized and introduced into a vacuum (or ionized in a vacuum), and the mass-to-charge ratio (m / Z) is measured. Since the information to be obtained is a macroscopic quantity, that is, the ratio of mass to charge, it is not possible to obtain information on the internal structure of the mass analysis operation by simply executing it once. Therefore, a method called tandem mass spectrometry is used.
  • sample molecular ions are first identified or isolated in the first mass spectrometry operation. Specific or isolated ions are referred to as “precursor ions”. Subsequently, the precursor ions are dissociated by some method. The dissociated ions are called “fragment ions”. If this fragment ion is further subjected to mass analysis, information on the generation pattern of the fragment ion can be obtained.
  • the dissociation pattern has laws due to the dissociation method. For this reason, it becomes possible to infer the arrangement structure of the precursor ions.
  • CID collision-induced-dissociation
  • IRMPD infrared multi-photon absorption
  • ECD Electron-capture-dissociation
  • ETD electron-transfer-dissociation
  • the most widely used method at present is the CID method in which a precursor ion is given kinetic energy and collides with a gas.
  • CID method molecular vibration of a precursor ion is excited by collision with a gas, and dissociation occurs at a portion where the molecular chain is easily broken.
  • a method that has recently been used is the IRMPD method in which a precursor ion is irradiated with infrared laser light to absorb a large number of photons.
  • IRMPD method molecular vibration of the precursor ion is excited, and dissociation occurs at a site where the molecular chain is easily broken.
  • the dissociation site of the polypeptide is shown in FIG.
  • a, b, and c are molecules including the NH 2 terminal side
  • x, y, and z are molecules including the COOH terminal side.
  • the site that is easily cleaved by the CID method or IRMPD method is the site named by by in the main chain consisting of the amino acid sequence. Even the site of by may be difficult to cut depending on the amino acid sequence pattern. For this reason, it is known that structural analysis cannot be performed only by the CID method or the IRMPD method. Also, biopolymers that have undergone post-translational modification tend to break post-translational modifications that are present in the side chains of polypeptides when using the CID method or IRMPD method. Therefore, it is possible to determine whether or not the modified molecular species is modified from the lost mass. However, important information regarding the modification site indicating which amino acid moiety was modified is lost.
  • the ECD method and the ETD method do not depend on the amino acid sequence (except that the N-terminal side of the proline residue which is a cyclic structure is not cleaved), and one of the cz sites on the main chain of the amino acid sequence. Cut the point. For this reason, if ECD method or ETD method is used, a protein molecule can be analyzed only by mass spectrometry. In addition, since the ECD method and the ETD method have a feature that side chains are difficult to cleave, an amino acid sequence and a modified position can be identified even with a biopolymer subjected to post-translational modification. For this reason, dissociation techniques such as the ECD method and the ETD method have recently received particular attention as a means for research and analysis of post-translational modification.
  • EDD electron desorption-dissociation
  • the method of reacting positively charged precursor ions with electrons is called the ECD method.
  • a technique that causes a positively charged precursor ion to react with a negatively charged ion and causes dissociation similar to the ECD method through transfer of electrons is called an ETD method.
  • FIG. 3 shows the ECD reaction time dependence of a divalent peptide ion called substance P (Non-patent Document 4).
  • the vertical axis represents relative ionic strength
  • the horizontal axis represents ECD reaction time. While the amount of precursor ions decreases as the reaction time increases, fragment ions peak at around 7 ms. That is, if the precursor ion is reduced by the ECD reaction, the fragment ion is not produced accordingly.
  • substance P when the amount of precursor ion at the reaction time of 0 is 1, fragment ions necessary for peptide identification are most produced when about 0.3 precursor ions remain.
  • FIG. 4 shows schematic diagrams of ECD spectra acquired with various amounts of electrons.
  • the vertical axis represents ionic strength
  • the horizontal axis represents the mass-to-charge ratio (m / z) of molecular ions. If the amount of electrons is optimal, the precursor ion 200, the charge-reducing species 201, and the fragment ion 202 are detected, and the amino acid sequence, the kind of modified product, and the modification site can be identified from the m / z of the fragment ion 202 (FIG. 4). (A)).
  • the charge reduce species 201 is a precursor ion 200 in which the precursor ion 200 has reacted with electrons but has not dissociated, and has a valence lower than that of the precursor ion.
  • a spectrum in which only the precursor ion 200 remains is obtained (FIG. 4B).
  • fragment ions produced by the ECD method receive electrons again, and fragment ions having a reduced valence are produced. Due to the occurrence of such a multistage reaction, the ions are finally lost and cannot be detected by the mass spectrometer (FIG. 4C).
  • the Hot) ECD (HECD) method and the Activated IonEECD (AI-ECD) method are used.
  • the HECD method is a dissociation method that uses electrons (2 eV or more) with higher energy than ordinary ECD (especially, the cold ECD (CECD) method is about 2 eV or less) and improves dissociation efficiency. Can be made.
  • secondary dissociation other than cz may be induced, making subsequent identification difficult (Non-Patent Document 5).
  • the AI-ECD method is a method in which precursor ions are excited with a high-frequency electric field during or before and after the ECD reaction to facilitate dissociation (Non-patent Document 6).
  • dissociation other than cz is likely to occur as in the HECD method.
  • the ETD method cannot increase the electron energy in principle.
  • the CID method is implemented for charge-reducing species to improve the dissociation efficiency (ETcaD method: Non-Patent Document 7). Fragment ions produced from Charge Reduce species are also mainly cz ions.
  • 5A and 5B show spectra obtained as a result of analyzing a pentavalent neuropeptide Y consisting of 36 amino acids by the CECD (1.25 eV) method and the HECD (10 eV) method.
  • the vertical axis represents ionic strength
  • the horizontal axis represents the mass-to-charge ratio (m / z) of molecular ions.
  • the reaction time was set so that the precursor ion residual ratio I was 0.3.
  • ECD method is performed on neuropeptide Y pentavalent and hexavalent ions with various electron energies, and the sequence coverage, charge-reduced species ratio of all ions, and fragment ion ratio depend on electron energy (Fig. 6).
  • shaft of FIG. 6 (A) is a sequence coverage
  • a horizontal axis is electron energy.
  • the vertical axis in FIG. 6B represents the relative ion intensity occupied by all ions
  • the horizontal axis represents the electron energy.
  • the CECD method is optimal because it provides a high sequence coverage without causing secondary dissociation.
  • the sequence coverage is low in the CECD method, and therefore it is desirable to use the HECD method that provides a high sequence coverage.
  • Non-Patent Document 2 describes that the amount of negative ions and reaction time are optimized using a typical glycopeptide as a preliminary study for attempting analysis of various glycopeptides.
  • Thermo Scientific website discloses that the ACE (Automated Collision Energy) method is used as a function of the gas chromatograph mass spectrometer. It is described that, in order to obtain a fragment ion spectrum with a large amount of information with high sensitivity, the dissociation energy is changed in three stages in one scan, enabling the setting of optimal dissociation conditions and fragment ion generation. (Non-patent Document 8).
  • ACE Automatic Collision Energy
  • the type of post-translational modification and the structure of the modified product can be identified.
  • the ion dissociation efficiency when the ECD method or the ETD method is used depends on the valence of the precursor ion, the presence / absence of modification, the type of modification, and the number of modification, but information on the precursor ion is only the molecular weight and valence. Therefore, it is difficult to set the amount of electrons, the amount of negative ions, and the reaction time suitable for each precursor ion based only on this information.
  • the dissociation efficiency can be improved by applying an HECD method, an AI-ECD method, an ETcaD method, or the like to these ions.
  • the AI-ECD method and the ETcaD method require excitation using a high-frequency electric field in addition to the ECD method and the ETD reaction. For this reason, the throughput decreases. Therefore, when it can be identified by the CECD method or the ETD method, it is desirable to use the CECD method or the ETD method and use the HECD method, the AI-ECD method, or the ETcaD method only for a precursor ion having a low dissociation efficiency. .
  • Patent Document 1 describes that the optimum dissociation energy in the CID method is proportional to the charge-to-mass ratio (m / z) of molecular ions. Therefore, the dissociation energy is set from the m / z value of the precursor ion.
  • the energy is changed in three stages, but it is not known whether the optimum dissociation energy has been set.
  • the present invention aims to solve the technical problems described above and provide a mass spectrometric method for improving the acquisition efficiency of information related to the structure of a substance and an apparatus suitable for ion dissociation during mass spectrometry. To do.
  • the mass spectrometry method includes a step of separating a sample by a separation unit provided in a previous stage of an ion source for ionizing the sample, a step of ionizing the separated sample by an ion source, Obtaining a non-fragmented spectrum, selecting a precursor ion, measuring a precursor ion intensity, dissociating the generated sample ion at a desired intensity, and obtaining a fragmented spectrum of the sample ion And a step of calculating a ratio of the precursor ion intensity of the fragmentation spectrum to the precursor ion intensity of the non-fragmentation spectrum, and a desired ratio is obtained based on the calculated ratio and the set value of the ion dissociation intensity.
  • the process of calculating the optimum value of ion dissociation intensity and ion dissociation of the generated sample ions A step of dissociating in degrees optimum value.
  • the ion dissociation apparatus includes an electron source, a ring-shaped first end electrode disposed on the far end side of the ion trap region with respect to the electron source, and a position near the ion trap region with respect to the electron source.
  • An ion dissociation part having a ring-shaped second end electrode disposed on the end side and a ring-shaped electron amount control electrode disposed on the electron source side with respect to the second end electrode; and an electron amount control electrode
  • a control unit that variably controls the voltage applied to the.
  • the mass spectrometry method includes a step of registering analysis conditions of desired ions in a database, a step of separating a sample by a separation unit provided in a previous stage of an ion source for ionizing the sample, and a separated sample.
  • a step of ionizing with an ion source a step of obtaining a non-fragmentation spectrum of the generated sample ions, a step of selecting a precursor ion, a step of measuring a precursor ion intensity, a step of measuring an electron current value, The step of calculating the ECD reaction time from the precursor ion intensity of the non-fragmented spectrum, the step of calculating the ECD reaction time from the electron current value, the step of updating the database, and the optimal value of the ion dissociation strength of the generated sample ions And a step of dissociating.
  • the ion dissociation apparatus includes an electron source, a ring-shaped first end electrode disposed on the far end side of the ion trap region with respect to the electron source, and a position near the ion trap region with respect to the electron source.
  • An ion dissociation part having a ring-shaped second end electrode disposed on the end side and a ring-shaped electron amount control electrode disposed on the electron source side with respect to the second end electrode; and an electron amount control electrode
  • a control unit that variably controls the voltage applied to the.
  • the present invention it is possible to obtain a fragmentation spectrum in which a dissociation intensity suitable for each precursor ion is set. Thereby, a fragmentation spectrum with high identification accuracy can be acquired. Further, in the identification of a substance by mass spectrometry, the efficiency of acquiring information related to the structure of the substance is improved, and the time for measurement and substance identification is shortened.
  • the figure explaining the ECD reaction control flow in Embodiment 1 of invention The figure explaining the dissociation pattern of polypeptide.
  • the experiment figure which shows the dependence of the amount of electrons and the amount control voltage of electrons when the ion trap voltage is 20V (A) and when it is 28V (B).
  • the figure explaining the ECD reaction control flow based on Embodiment 6 of invention.
  • the experimental figure which shows the relationship between the time constant (tau) by the ECD reaction using the substance P, and precursor ion intensity
  • the schematic diagram which shows the reaction time in the predicted ion chromatogram and each ion intensity
  • the schematic diagram of the ion chromatogram estimated by the actual measurement ion intensity and Gaussian function of a certain ion.
  • the figure which shows the structural example of the mass spectrometry system which uses the CID method based on Embodiment 7 of invention as an ion dissociation means.
  • the figure of the database mode control flow based on Embodiment 5 of invention.
  • Embodiment 1 When ECD method is used as an ion dissociation method (part 1) (Configuration of mass spectrometry system)
  • FIG. 7 shows a configuration example of a mass spectrometry system that uses the ECD method for ion dissociation.
  • the sample 1 to be analyzed is separated by pretreatment by a sample separation device 2 (in the figure, liquid chromatography (LC)).
  • a gas chromatogram (GC) can also be used for the sample separation device 2.
  • the separated sample is ionized in the ion source 3 and introduced into the mass spectrometer.
  • the introduced ions are accumulated in a linear ion trap (LIT) 4 and discharged in a state where all ions (or a specific ion) are isolated.
  • the discharged ions are detected by the TOF detector 8.
  • a TOF 7 having a high resolution is present in front of the TOF detector 8.
  • ions introduced into the mass spectrometry system are accumulated in LIT4, and certain ions are discharged in an isolated state.
  • the discharged ions enter the ECD cell 6 via the Q deflector 5.
  • the ECD reaction is performed at a specific ion dissociation intensity, and the ions are ejected.
  • the discharged ions again pass through the Q deflector 5 and are separated by the TOF 7 according to the mass-to-charge ratio m / z of the ions.
  • the ion source 3 is selected from an electrospray ion source, an ion source based on atmospheric pressure chemical ionization, a matrix-assisted laser desorption ion source, an electric impact ion source, an ion source based on chemical ionization, and an ion source based on field ionization.
  • LIT4 can accumulate a large number of ions and can be detected with high sensitivity.
  • LIT4 instead of LIT4, a three-dimensional quadrupole ion trap, a quadrupole mass filter, a collision cell, or a Fourier transform ion cyclotron resonance mass separation unit may be used.
  • the ECD cell 6 is selected from LIT, a three-dimensional quadrupole ion trap, a collision cell, a quadrupole mass filter, and a Fourier transform ion cyclotron resonance mass spectrometer.
  • the ECD method is used as the ion dissociation method, but the EDD method may be used. In this case, ionization is performed in the negative ion mode.
  • TOF7 is preferable because of its high resolution and high mass accuracy, but it may be a quadrupole mass filter, ion trap, magnetic field type mass analyzer, Fourier transform ion cyclotron resonance mass analyzer, or orbitrap type analyzer.
  • the electron source for supplying electrons may be a filament or a dispenser cathode.
  • the overall processing unit 10 performs data organization and / or data processing as will be described later.
  • the overall processing unit 10 can be realized not only when it has a hardware circuit structure but also through a processing function of a program that operates on a computer system.
  • the ion dissociation parameter determination unit 12, which is one of the processing functions of the overall processing unit 10, includes an ion dissociation intensity determination unit 13, a precursor ion intensity measurement unit 15, a precursor ion residual rate calculation unit 16, and a reaction time calculation unit 1000.
  • the entire processing unit 10 corresponds to a “calculation processing unit” in the claims.
  • the precursor ion intensity measuring unit 15 measures the intensity of each precursor ion in the non-fragmented spectrum and the fragmented spectrum.
  • the precursor ion residual ratio calculation unit 16 calculates a precursor ion residual ratio based on the measured precursor ion intensity.
  • the precursor ion residual ratio is a ratio of the precursor ion intensity of the fragmentation spectrum to the precursor ion intensity of the non-fragmentation spectrum.
  • the reaction time calculation unit 1000 calculates the optimum reaction time based on the precursor ion residual ratio and the user desired setting value.
  • the ion dissociation strength determination unit 13 determines the ion dissociation strength according to the calculated optimum reaction time.
  • a signal giving the determined intensity is given from the ion dissociation intensity determining unit 13 to the ECD cell 6 via the control unit 9. That is, the ECD cell 6 is controlled to the determined strength.
  • the amount of precursor ions can be adjusted by controlling the ion accumulation time in LIT4.
  • Mass spectrometry spectrum, precursor ion intensity in unfragmented spectrum and fragmented spectrum, precursor ion residual ratio, ECD reaction time, electron energy, parameters controlling ECD cell 6, control parameters of LIT4, solvent mixing of sample separation apparatus 2 The ratio, flow rate, and the like are displayed on the data display unit 18.
  • the residual ratio of the desired precursor ion intensity with respect to the overall processing unit 10 is input through the parameter input unit 19.
  • FIG. 1 shows an ECD reaction control flow based on Embodiment 1 of the present invention.
  • a sample 1 which is a mixture of a plurality of substances is introduced into a sample separation device 2 (liquid chromatography in the figure). Chromatography is equipped with a separation column for separation according to the nature of the substance, and the sample that has passed through the separation column elutes at different times for each component.
  • Each component of the eluted sample is ionized by the ion source 3 (302).
  • the ions are introduced into the LIT 4 in the mass spectrometer and accumulated (303) and discharged from the outlet.
  • the ejected ions are detected by the TOF detector 8 to obtain a non-fragmented spectrum with the horizontal axis representing m / z and the vertical axis representing ion intensity (304).
  • the overall processing unit 10 selects a precursor ion from the total ion spectrum (non-fragmented spectrum) (305).
  • the total ion spectrum is generally called the MS1 spectrum.
  • the precursor ions are selected in the order of ionic strength. However, the precursor ion may be selected in consideration of the valence and molecular weight.
  • the overall processing unit 10 specifies the valence and m / z value of the selected precursor ion, and calculates the molecular weight from the valence and m / z value (306). Details of this calculation operation will be described later. In parallel with this calculation operation, the overall processing unit 10 also measures the ion intensity of the precursor ions (308).
  • the overall processing unit 10 sets the electron energy, ECD reaction time, and electron amount control voltage that are estimated to be suitable for each precursor ion based on the m / z value, valence, and molecular weight. (307).
  • a predetermined specific value may be given as a set value for the precursor ion analyzed for the first time.
  • the electron energy is set to 1 eV
  • the reaction time is set to 10 ms
  • the electron amount control voltage is set to 20V. The electron voltage control voltage will be described later.
  • a precursor ion is isolated with LIT4 (309), an ECD reaction (310) is performed on the isolated precursor ion, and then an ECD spectrum is acquired in the overall processing unit 10 (311).
  • the overall processing unit 10 measures the precursor ion intensity existing in the ECD spectrum (308).
  • the overall processing unit 10 compares the precursor ion intensity in the non-fragmented spectrum with the precursor ion intensity in the ECD spectrum, and obtains the residual ratio of precursor ions (312). Details of this operation will be described later. When the remaining value of the precursor ion is outside the desired range (314), the overall processing unit 10 calculates and sets the optimum ion dissociation intensity (313), and acquires the ECD spectrum again. On the other hand, when the remaining rate of the precursor ions is within a desired range, the overall processing unit 10 determines that the ion dissociation strength is optimal.
  • the overall processing unit 10 returns to the acquisition of the non-fragmented spectrum. But you may continue acquisition of the ECD spectrum of the same ion. Note that the precursor ion residual ratio calculation, reaction time calculation, electron quantity control voltage calculation, and parameter setting by the overall processing unit 10 need to be performed in real time so as not to disturb the analysis.
  • FIG. 9 shows a schematic diagram of a protonated [H + ] ion peak observed by mass spectrometry.
  • the vertical axis represents ionic strength, and the horizontal axis represents m / z.
  • the constituent atoms of proteins are mainly carbon, hydrogen, oxygen, and nitrogen.
  • 13 C In addition to 12 C with a mass number of 12 in natural carbon, 13 C with a mass number of about 1% 13 exists. Therefore, the protein is a mixture containing 12 C and 13 C at a constant ratio.
  • the proton addition number corresponds to the valence z.
  • the m / z value of the monoisotopic peak 400 is (M + z) / z
  • the m / z value of the isotope peak 401 is (M + 1 + z) / z and (M + 2 + z), respectively, where the molecular weight of the 12 C isomer is M. / Z, (M + 3 + z) / z.
  • the difference between these peaks is 1 / z. That is, the peak interval in the case of monovalent is 0.5 in the case of 1 and 2. Therefore, the valence can be determined from the peak interval. If the valence is known, the molecular weight can be calculated from the valence and the m / z value.
  • a precursor ion 200 (FIG. 10A) having an ionic strength x in an unfragmented spectrum was isolated and subjected to an ECD reaction for t [ms].
  • the precursor ion 201 having an ionic strength Ix (FIG. 10 ( Assume that an ECD spectrum in which B)) remains is obtained.
  • the precursor ion residual ratio I can be expressed by the following equation using the time constant ⁇ determined by the properties of the sample and the reaction time t [ms].
  • the reaction time t required to obtain a desired precursor ion residual rate (for example, 0.3) is obtained from the relationship between the obtained time constant ⁇ and the precursor ion residual rate. Can do.
  • an ECD spectrum of a desired precursor ion residual ratio can be obtained. It is also possible to control the control voltage of the amount of electrons instead of controlling the reaction time.
  • FIG. 11 shows an apparatus configuration example of the ECD cell 6 using a linear ion trap.
  • the ECD cell 6 corresponds to the ion dissociation apparatus in the claims.
  • the ECD cell 6 has a configuration in which a first end electrode 100 and a second end electrode 101 are arranged at both ends of a quadrupole LIT4.
  • the 1st end electrode 100 and the 2nd end electrode 101 are comprised by the flat electrode which has a ring shape. That is, a pore is formed in the center of the substrate of each end electrode.
  • the precursor ion 102 is held along the central axis of the LIT4.
  • a plate-shaped electron quantity control electrode 103 having a ring shape is disposed between the electron source 104 and the second end electrode 101.
  • the electrons irradiated from the electron source 104 sequentially pass through the pores of the electron control electrode 103 and the second end electrode 101 and reach the LIT 4 to generate an ECD reaction.
  • the control unit 9 adjusts the amount of electrons introduced by controlling the voltage applied to the electron amount control electrode 103.
  • FIG. 11 shows that a voltage of 20V is applied as the electron source voltage 105, and the ion trap voltage 106 is adjusted in the range of 20V to 28V. By raising the ion trap voltage 106, high-energy electrons can be irradiated (corresponding to HECD).
  • FIG. 12A shows an example in which the ion trap voltage 106 is 20V
  • FIG. 12B shows an example in which the ion trap voltage 106 is 28V.
  • electrons are not incident on the ion trap while the applied voltage to the electron amount control electrode 103 is up to 14V.
  • the ion trap voltage is 20V
  • the maximum current flows when the electron amount control voltage is around 20V.
  • the ion trap voltage is 28V
  • the maximum current flows when the electron amount control voltage is 23V.
  • the amount of electrons incident on the LIT 4 can be adjusted by controlling the electron amount control electrode 103.
  • the amount of electrons used for the reaction can be controlled not only by the reaction time t but also by the voltage value applied to the electron amount control electrode 103.
  • the DC voltage applied to the electron quantity control electrode 103 is varied, but the control method differs depending on the ion dissociation part.
  • the ion dissociation intensity can be adjusted by variable control of the frequency and amplitude of the high-frequency voltage.
  • FIG. 8 shows examples of ion dissociation strength parameters for two examples of the invention that incorporates the conventional method and the electron quantity control electrode 103.
  • the electron amount control voltage 103 is fixed at 23 V, and the amount of electrons is adjusted only by the reaction time.
  • the reaction time is fixed at 3 ms, and the voltage applied to the electron quantity control electrode 103 may be variably set according to the required quantity of electrons.
  • sequence example when ECD is executed multiple times show sequence examples according to Embodiment 1 of the present invention.
  • a precursor ion is selected after acquisition of a non-fragmented spectrum (indicated as “MS1” in FIG. 18), and the pre-reaction is performed with a reaction time corresponding to the valence and molecular weight.
  • Perform ECD Thereafter, the optimum reaction time is calculated by comparing the precursor ion intensities contained in the non-fragmented spectrum and the pre-ECD spectrum, respectively, and the ECD spectrum is obtained at the optimum reaction time.
  • pre-ECD is an ECD spectrum used for determining conditions in order to obtain a real ECD spectrum under optimum ion dissociation conditions.
  • the sequence example shown in FIG. 18B is used when the liquid chromatography is arranged in the front stage of the mass spectrometer.
  • the precursor ion intensity varies with time. Therefore, after the pre-ECD reaction, the MS1 spectrum is obtained again, and the average value of the precursor ion intensity in the MS1 spectrum before and after the pre-ECD is used for calculating the optimum reaction time.
  • the spectrum after the ECD reaction needs only the precursor ion intensity, it is not necessary to acquire the spectrum of all ions. Thereby, shortening of the measurement time is expected. That is, only the precursor ion is isolated from the spectrum after the ECD reaction. In this case, losses that occur during the isolation process and ion transport are also taken into account.
  • the time constant ⁇ can be calculated by executing pre-ECD only once, that is, by obtaining data of one reaction time. However, in order to further improve the accuracy, it is preferable to acquire a plurality of points of data while changing the reaction time.
  • FIG. 18C shows a sequence in which independent pre-ECD is executed a plurality of times, the time constant ⁇ is calculated each time, and the optimum reaction time is calculated from the averaged value. This makes it possible to calculate a reaction time that is more reliable than a single pre-ECD measurement. In addition, it is possible to calculate a highly reliable precursor ion residual ratio by acquiring the MS1 spectrum (or only isolation of precursor ions) without fail (that is, every time) before each pre-ECD.
  • FIG. 18D shows a sequence in which the pre-ECD is executed a plurality of times with a plurality of predetermined reaction times, and an actual ECD spectrum is acquired under the condition closest to the desired precursor ion residual rate.
  • FIG. 18 (E) obtains a pre-ECD spectrum of each ion in the first liquid chromatography analysis, calculates an optimal reaction time for each ion, and creates a database.
  • the second liquid chromatography analysis shows a sequence example in which only pre-ECD is not performed and only the ECD spectrum is acquired.
  • FIG. 19 is a graph showing the results of pre-ECD performed at various ionic strengths using substance P and the time constant ⁇ obtained.
  • the optimal reaction time can be calculated if the ion amount can be predicted.
  • pre-ECD is performed a plurality of times with different ion intensities for each ion, and a function (primary equation) of ion amount and time constant ⁇ .
  • a function primary equation
  • the relationship between the ion intensity and the optimum reaction time for each ion is compiled into a database.
  • the profile of each ion can be predicted to be approximately the same, so ECD is performed with the optimal reaction time corresponding to each ion intensity.
  • Fig. 20 shows the processing image.
  • the vertical axis represents ionic strength and the horizontal axis represents retention time. Moreover, each peak is symmetric in many cases. Therefore, even in the first chromatographic analysis, if several points of ion intensity can be measured in the first half of the ion chromatograph, the subsequent ion intensity can be predicted by a Gaussian function or the like (FIG. 21).
  • shaft of FIG. 21 is ionic strength, and a horizontal axis is holding time.
  • the sequence example shown in FIG. 18 (G) is an example in which the MS1 spectrum is acquired before acquiring the ECD spectrum when the optimum time is calculated with the ion amount for which pre-ECD has been acquired.
  • the amount of precursor ions per unit accumulation time in LIT4 is calculated and the accumulation time in LIT4 is adjusted, the precursor ions that undergo ECD reaction can be made constant. Thereby, even when the ion amount of the precursor ion changes with time as in liquid chromatography, ECD analysis can be performed with an optimum reaction time for each ion.
  • the storage time may be adjusted by the ECD cell 6 instead of the LIT4.
  • optimum ion dissociation intensity data can be accumulated for each precursor ion. These data can be stored as data for each mass, valence, and electron energy. This is an index of the ion dissociation intensity of ions to be analyzed for the first time. Thereby, the time required to derive the optimum ion dissociation strength can be shortened.
  • the reaction time is expected to increase over time due to the exhaustion of the electron source filament. Since the throughput decreases when the reaction time is extended, a threshold value for the reaction time may be set, and when the threshold value is exceeded, the operator may be prompted to replace the electron source filament using an alarm sound or other notification technology.
  • FIG. 13 shows an ECD reaction control flow based on the second embodiment of the present invention.
  • the same reference numerals are given to the portions corresponding to those in FIG. 1.
  • the charge-reduced species ratio was about 0.2.
  • the reaction time is set so that the precursor ion residual rate becomes 0.3 and HECD (10 eV) is performed
  • the charge-reducing species ratio is reduced to about 0.1 for the pentavalent ion of neuropeptide Y. Coverage increased to 86%.
  • the charge-reduced species ratio was reduced to about 0.01 and the sequence coverage was 100%.
  • the overall processing unit 10 has a desired charge-reduced species ratio (a ratio of charge-reduced species occupying all ions in the ECD spectrum). It is determined whether or not.
  • the m / z value of the charge-reducing species is [M + z] (z ⁇ 1) + , [M + z] (z ⁇ , where M is the molecular weight of the precursor ion and z is the valence of protonation [H + ]. 2)
  • the charge-reduced species ratio can be calculated by dividing the sum of the amounts of ions present at this position by the total amount of ions.
  • the overall processing unit 10 When the charge reduce species ratio is equal to or less than a specific value (316), the overall processing unit 10 returns to the acquisition of the non-fragmented spectrum. If the charge-reduced species ratio is not less than or equal to a specific value (317), the overall processing unit 10 raises a specific value ion trap voltage and executes an HECD analysis (318). Further, AI-ECD may be used instead of HECD. Other control flows are the same as those in the first embodiment.
  • FIG. 14 shows an ECD reaction control flow based on Embodiment 3 of the present invention.
  • the same reference numerals are given to the portions corresponding to FIG. 1.
  • the electron energy is increased using the charge-reduced species ratio as an index.
  • the electron energy may be increased by using one or both of the fragment ion ratio and the fragment type as an index.
  • the overall processing unit 10 When the fragment ion ratio or the fragment type is a certain value or more (319), the overall processing unit 10 returns to the acquisition of the non-fragmented spectrum. If the fragment ion ratio or the fragment type is not greater than a certain value (320), the overall processing unit 10 increases the ion trap voltage at a certain value and performs analysis by the HECD method (318). Further, the AI-ECD method may be used instead of the HECD method. If post-translational modification is not envisaged, the type of fragment is proportional to the number of peptide bonds. For example, a peptide consisting of 10 amino acids has 9 peptide bonds.
  • FIG. 15 shows an ECD reaction control flow based on the fourth embodiment of the present invention.
  • the electron energy is increased using one or both of the fragment ion ratio and the fragment type as an index.
  • amino acid sequence analysis de novo analysis
  • the electron energy may be increased using as an index whether or not an amino acid sequence greater than a specific value can be analyzed.
  • the overall processing unit 10 When the amino acid sequence analysis of a certain specific value or more has been completed (321), the overall processing unit 10 returns to the acquisition of the non-fragmented spectrum. On the other hand, when the amino acid sequence analysis of a certain specific value or more has not been completed (322), the overall processing unit 10 increases the ion trap voltage to a certain specific value, and executes analysis by the HECD method (318). Further, the AI-ECD method may be used instead of the HECD method. Other control flows are the same as those in the first embodiment.
  • Embodiment 5 ECD method is used as an ion dissociation method (part 5)
  • each ion is dissociated by ECD, and the reaction time, the electron amount control voltage, and the electron energy are controlled based on the dissociation state.
  • these analysis conditions are determined in advance, and mass spectrometry is executed based on these analysis conditions.
  • FIG. 27 shows a configuration example of a mass spectrometry system that uses the ECD method for ion dissociation.
  • the sample 1 to be analyzed is separated by a pretreatment of a sample separation device 2 (in the figure, liquid chromatography (LC)).
  • a gas chromatogram (GC) can also be used for the sample separation device 2.
  • the separated sample is ionized in the ion source 3 and introduced into the mass spectrometer.
  • the introduced ions are accumulated in a linear ion trap (LIT) 4 and all ions (or certain ions) are isolated and ejected.
  • LIT linear ion trap
  • the discharged ions are detected by the TOF detector 8.
  • a TOF 7 having a high resolution is present in front of the TOF detector 8.
  • ions introduced into the mass spectrometry system are accumulated in LIT4, and certain ions are discharged in an isolated state.
  • the discharged ions enter the ECD cell 6 via the Q deflector 5.
  • the ECD reaction is performed at a specific ion dissociation intensity by the electrons irradiated from the electron source 104, and the ions are ejected.
  • the discharged ions again pass through the Q deflector 5 and are separated by the TOF 7 according to the mass-to-charge ratio m / z of the ions.
  • the ion guide 2001 measures the irradiated electron current value. Further, the amount of electrons incident on the ECD cell 6 is adjusted by controlling the electron amount control voltage 103.
  • the ion source 3 is selected from an electrospray ion source, an ion source based on atmospheric pressure chemical ionization, a matrix-assisted laser desorption ion source, an electric impact ion source, an ion source based on chemical ionization, and an ion source based on field ionization.
  • LIT4 can accumulate a large number of ions and can be detected with high sensitivity.
  • LIT4 instead of LIT4, a three-dimensional quadrupole ion trap, a quadrupole mass filter, a collision cell, or a Fourier transform ion cyclotron resonance mass separation unit may be used.
  • the ECD cell 6 is selected from LIT, a three-dimensional quadrupole ion trap, a collision cell, a quadrupole mass filter, and a Fourier transform ion cyclotron resonance mass spectrometer.
  • the ECD method is used as the ion dissociation method, but the EDD method may be used. In this case, ionization is performed in the negative ion mode.
  • TOF7 is preferable because it has high resolution and high mass accuracy, but a quadrupole mass filter, ion trap, magnetic field type mass analyzer, Fourier transform ion cyclotron resonance mass analyzer, or orbitrap type analyzer may be used.
  • the electron source for supplying electrons may be a filament or a dispenser cathode.
  • the overall processing unit 10 performs data organization and / or data processing as will be described later.
  • the overall processing unit 10 can be realized not only when it has a hardware circuit structure but also through a processing function of a program that operates on a computer system.
  • the ion dissociation parameter determination unit 12 that is one of the processing functions of the overall processing unit 10 includes a database 2102, a database update unit 2101, a precursor ion intensity measurement unit 15, an electron current measurement unit 2100, and a reaction time calculation unit 1000. .
  • the entire processing unit 10 corresponds to a “calculation processing unit” in the claims.
  • the precursor ion intensity measuring unit 15 measures each precursor ion intensity in the non-fragmented spectrum or the isolated precursor ion intensity.
  • the electron current measuring unit 2100 measures the value of the electron current irradiated from the electron source 104.
  • the reaction time calculation unit 1000 calculates the optimum reaction time based on the information on the electron current value and the precursor ion intensity.
  • the database update unit 2101 rewrites (updates) the reaction time described in the database 2102 to the optimum reaction time calculated by the reaction time calculation unit 1000.
  • ECD reaction conditions associated with the ions are given to the ECD cell 6 from the database 2102 via the control unit 9 prior to the start of mass analysis. That is, the ECD cell 6 is controlled to a predetermined analysis condition.
  • Mass spectrometry spectrum, non-fragmentation spectrum and precursor ion intensity in fragmentation spectrum, ECD reaction time, electron energy, parameters for controlling ECD cell 6, control parameters for LIT4, database, etc. are displayed on data display section 18. Desired parameters for the overall processing unit 10 are input through the parameter input unit 19.
  • FIG. 28 is a display example of an operation screen.
  • the operator selects the data dependence analysis mode through an input device (not shown).
  • the operator selects the valence (z) to be analyzed (selects from 2 to 4 in FIG. 28), and sets the ECD reaction time, electron energy, and electron quantity control voltage for each valence. .
  • the set parameters are stored in the database 2102, analysis by the mass spectrometer is started.
  • the ECD reaction is performed according to the set ECD analysis conditions.
  • FIG. 29 is a display example of an operation screen.
  • the operator selects a database (DB) mode through an input device (not shown).
  • DB database
  • the operator selects a DB to be used (selects mouse_plasma_Trp_f3 in FIG. 29).
  • the contents of the parameter of the selected DB are displayed on the data display unit 18.
  • DB the retention time in chromatography of each ion, m / z value, valence (z), ionic strength, ECD reaction time, electron energy, electron amount control voltage, and electron current reference value are described.
  • ECD reaction time, electron energy, and electron quantity control voltage are items that define ECD reaction conditions. That is, DB describes the ECD reaction conditions that are applied when a certain ion has a previously described ionic strength. The electron current reference value will be described later.
  • the operator inputs a desired value for the ECD reaction condition displayed on the data display unit 18. When the changed value is stored, an ion analysis process is performed by the mass spectrometer.
  • FIG. 30 shows a processing flow when the database shown in FIG. 29 is used.
  • the database to be used is selected on the screen of the data display unit 18, and after changing the value, it is stored in the database 2102 (3000). Thereafter, analysis of ions by the mass spectrometer is started (3001). Simultaneously with the start of analysis, a total ion spectrum is acquired (304). Based on the acquired information, the overall processing unit 10 creates a peak list including the retention time, m / z, valence, and ion intensity (3003).
  • the overall processing unit 10 executes an inclusion DB search (3005).
  • the overall processing unit 10 collates the created peak list with the database 2102 and searches whether or not there is an ion whose retention time, m / z, and valence match. If there is no matching ion (3007), the overall processing unit 10 returns to the acquisition process (304) of the total ion spectrum. If there is a matching ion (3006), the overall processing unit 10 compares the ion intensity in the peak list with the ion intensity described in the database 2102 and compares whether or not a certain value has deviated. The constant value here is determined by the operator before the analysis is executed.
  • the overall processing unit 10 gives the ECD reaction conditions described in the database 2102 to the control unit 9.
  • the control unit 9 controls the ECD cell based on the ECD reaction conditions.
  • the overall processing unit 10 acquires an ECD spectrum through the TOF detector 8 (311). Thereafter, the overall processing unit 10 returns to the acquisition process (304) of the total ion spectrum.
  • the ECD spectrum may be acquired multiple times.
  • the overall processing unit 10 corrects the ECD reaction time using the graph of FIG. 19 as an example, or uses the graph of FIG. 12 as an example.
  • the electron quantity control voltage is corrected (3002).
  • the overall processing unit 10 gives the corrected ECD reaction condition to the control unit 9.
  • the control unit 9 controls the ECD cell based on the ECD reaction conditions.
  • the overall processing unit 10 acquires an ECD spectrum through the TOF detector 8 (311). Thereafter, the overall processing unit 10 returns to the acquisition process (304) of the total ion spectrum.
  • FIG. 31 An example of this type of database 2102 is shown in FIG. In the case of FIG. 31, three types of ion intensity and three types of ECD reaction conditions (here, ECD reaction time) corresponding to each of ions having an m / z value of 1110.3 are registered.
  • 3 ms is registered as the ECD reaction time applied when the ionic strength is 1000 or less. Further, 5 ms is registered as an ECD reaction time to be applied when the ionic strength is 1000 to 3000. Further, 8 ms is registered as an ECD reaction time applied when the ion intensity is 3000 or more.
  • the electron control voltage is set to a fixed value, and different values of ECD reaction time are set according to the ion intensity.
  • the ECD reaction time is set to a fixed value and varies depending on the ion intensity.
  • a value electron quantity control voltage may be set.
  • FIG. 32 shows a processing flow when the database 2102 having the data structure shown in FIG. 31 is used.
  • the database to be used is selected on the screen of the data display unit 18, and after changing the value, it is stored in the database 2102 (3000). Thereafter, analysis of ions by the mass spectrometer is started (3001). Simultaneously with the start of analysis, a total ion spectrum is acquired (304). Based on the acquired information, the overall processing unit 10 creates a peak list including the retention time, m / z, valence, and ion intensity (3003).
  • the overall processing unit 10 executes an inclusion DB search (3005).
  • the overall processing unit 10 collates the created peak list with the database 2102 and searches whether or not there is an ion whose retention time, m / z, and valence match. If there is no matching ion (3007), the overall processing unit 10 returns to the acquisition process (304) of the total ion spectrum. If there is a matching ion (3006), the overall processing unit 10 determines which ion intensity range in which the ion intensity in the peak list corresponds to the database 2102 as well as the ECD reaction time to be applied to the control unit 9. give.
  • the control unit 9 controls the ECD cell based on the ECD reaction conditions.
  • the overall processing unit 10 acquires an ECD spectrum through the TOF detector 8 (3006). Thereafter, the overall processing unit 10 returns to the acquisition process (304) of the total ion spectrum.
  • FIG. 33 shows a device configuration example of an electron current measuring unit 2100 (FIG. 27) that monitors the amount of electrons (electron current value).
  • LIT2001 having an ion guide function is used as the electron current measuring unit 2100.
  • the LIT 2001 is installed outside the end electrode 100 when viewed from the electron source 104.
  • Some of the electrons that have passed through LIT4 change their trajectory from the central axis due to the influence of the high-frequency electric field formed in LIT2001, and collide with one of the electrodes.
  • the voltage of the electrodes constituting the LIT 2001 varies due to the collision of electrons. By measuring the fluctuation of the electrode voltage, the amount of electron current irradiated from the electron source 104 can be estimated (2002).
  • other methods may be used for measuring the electron current.
  • the ECD reaction time and the voltage value of the electron amount control electrode 103 are changed according to the electron current value during the ECD reaction.
  • FIG. 34 shows a processing flow for correcting the ECD reaction time based on the monitored electron current value and realizing a highly reproducible ECD reaction.
  • the database to be used is selected on the screen of the data display unit 18, and after changing the value, it is stored in the database 2102 (3000). Thereafter, analysis of ions by the mass spectrometer is started (3001).
  • the LIT 2001 measures the value of the electron current irradiated from the electron source 104 (3010).
  • the overall processing unit 10 determines whether or not the measured value is different from the electronic current reference value (for example, 0.6 ⁇ A) described in the database by a certain value (for example, ⁇ 0.02 ⁇ A) or more. When not deviating more than a certain value (3011), the overall processing unit 10 returns to the measurement 3010 of the electronic current value. When it deviates more than a certain value (3011), the overall processing unit 10 automatically corrects the ECD reaction time (3013). For example, when 0.05 ⁇ A is higher than the electronic current reference value, the overall processing unit 10 corrects the value by subtracting a predetermined value (for example, 1 ms) from the ECD reaction time described in the database 2102. On the other hand, when the value is 0.05 ⁇ A lower than the electronic current reference value, the overall processing unit 10 corrects the ECD reaction time described in the database 2102 to a value obtained by adding a predetermined value (for example, 1 ms).
  • a predetermined value for example, 1 ms
  • the ECD reaction time is corrected based on the measured electron current value, but the electron quantity control voltage 103 may be corrected instead of the ECD reaction time.
  • the operator selects the database to be used on the screen of the data display unit 18, changes the value, and saves it in the database 2102 (3000). Thereafter, analysis of ions by the mass spectrometer is started (3001).
  • the LIT 2001 measures the value of the electron current irradiated from the electron source 104 (3010).
  • the overall processing unit 10 determines whether or not the measured value is different from the electronic current reference value (for example, 0.6 ⁇ A) described in the database by a certain value (for example, ⁇ 0.02 ⁇ A) or more. If there is no deviation beyond a certain value (3011), the overall processing unit 10 proceeds to the acquisition process of the total ion spectrum (304). On the other hand, when there is a deviation from a certain value (3012), the overall processing unit 10 automatically corrects the ECD reaction time or the electron quantity control voltage described in the database 2102 (3013). The process proceeds to the spectrum acquisition process (304).
  • the overall processing unit 10 creates a peak list including the retention time, m / z, valence, and ion intensity (3003).
  • the overall processing unit 10 executes an inclusion DB search (3005).
  • the overall processing unit 10 collates the created peak list with the database 2102 and searches whether or not there is an ion whose retention time, m / z, and valence match. If there is no matching ion (3007), the overall processing unit 10 returns to the electron current value measurement process (3010). If there is a matching ion (3006), the overall processing unit 10 compares the ion intensity in the peak list with the ion intensity described in the database 2102 and compares whether or not a certain value has deviated. The constant value here is determined by the operator before the analysis is executed.
  • the overall processing unit 10 acquires an ECD spectrum (311). Then, the whole process part 10 returns to the acquisition process (304) of a total ion spectrum.
  • the ECD spectrum may be acquired multiple times.
  • the overall processing unit 10 corrects the ECD reaction time using the graph of FIG. 19 as an example, or uses the graph of FIG. 12 as an example.
  • the electron quantity control voltage is corrected (3002).
  • the overall processing unit 10 gives the corrected ECD reaction condition to the control unit 9.
  • the control unit 9 controls the ECD cell based on the ECD reaction conditions.
  • the overall processing unit 10 acquires an ECD spectrum through the TOF detector 8 (311). Thereafter, the overall processing unit 10 returns to the acquisition process (304) of the total ion spectrum.
  • FIG. 36 shows a processing flow executed when correcting the time.
  • the operator selects the database to be used on the screen of the data display unit 18, changes the value, and saves it in the database 2102 (3000). Thereafter, analysis of ions by the mass spectrometer is started (3001).
  • the LIT 2001 measures the value of the electron current irradiated from the electron source 104 (3010).
  • the overall processing unit 10 determines whether or not the measured value is different from the electronic current reference value (for example, 0.6 ⁇ A) described in the database by a certain value (for example, ⁇ 0.02 ⁇ A) or more. If there is no deviation beyond a certain value (3011), the overall processing unit 10 proceeds to the acquisition process of the total ion spectrum (304). On the other hand, when there is a deviation from a certain value (3012), the overall processing unit 10 automatically corrects the ECD reaction time or the electron quantity control voltage described in the database 2102 (3013). The process proceeds to the spectrum acquisition process (304).
  • the overall processing unit 10 creates a peak list including the retention time, m / z, valence, and ion intensity (3003).
  • the overall processing unit 10 executes an inclusion DB search (3005).
  • the overall processing unit 10 collates the created peak list with the database 2102 and searches whether or not there is an ion whose retention time, m / z, and valence match. If there is no matching ion (3007), the overall processing unit 10 returns to the electron current value measurement process (3010).
  • the overall processing unit 10 determines which ion intensity range described in the database 2102 the ion intensity in the peak list is, and the corresponding ion intensity range is set.
  • An ECD spectrum is acquired based on the ECD reaction time (311), and the process returns to the measurement 3010 of the electron current value.
  • the ECD spectrum may be acquired multiple times.
  • FIG. 16 shows a mass spectrometry system using the ETD method for ion dissociation.
  • the same reference numerals are given to portions corresponding to FIG. 7.
  • the sample 1 as an analysis target is separated by the pretreatment of the sample separation device 2 (in the figure, liquid chromatography (LC)).
  • LC liquid chromatography
  • GC gas chromatogram
  • the separated sample is ionized in the ion source 3 and then introduced into the mass spectrometer.
  • the introduced positive ions When acquiring a non-fragmented spectrum, the introduced positive ions are accumulated in the middle stage 601 of the LIT or the front stage 600 of the LIT, and are discharged in a state where all ions (or a specific ion) are isolated.
  • the discharged positive ions are separated by the LIT detector 606 according to the mass-to-charge ratio m / z of the ions.
  • the introduced positive ions are accumulated in the middle stage 601 of LIT or the front stage 600 of LIT, and are held in the front stage 600 of LIT in an isolated state.
  • negative ions used for the ETD reaction are generated by ionization of the negative ion reagent 604 by the ion source 603 and introduced into the mass spectrometer.
  • the introduced negative ions are accumulated and isolated in the middle stage 601 of LIT (or the latter stage 602 of LIT) for a certain period of time.
  • the precursor ions accumulated in the front stage 600 of the LIT and the negative ions accumulated in the middle stage 601 of the LIT undergo an ETD reaction in the entire LIT for a certain period of time, and after removing excess negative ions, the LIT detector 606 Is separated according to the mass-to-charge ratio m / z of ions.
  • the ion source is selected from an electrospray ion source, an ion source by atmospheric pressure chemical ionization, a matrix-assisted laser desorption ion source, an electric impact ion source, an ion source by chemical ionization, and an ion source by field ionization.
  • LIT low-density organic compound
  • a three-dimensional quadrupole ion trap, a quadrupole mass filter, a collision cell, or a Fourier transform ion cyclotron resonance mass separation unit may be used.
  • a plurality of LIT detectors 606 may be installed.
  • isolation of precursor ions and negative ions may be performed by installing a Q mass filter in the front stage of the front stage 600 of the LIT or the rear stage of the rear stage 602 of the LIT.
  • the detection is performed by the LIT detector 606, but the TOF, the three-dimensional quadrupole ion trap, the quadrupole mass filter, the magnetic field type mass analyzer, the Fourier transform ion cyclotron resonance mass spectrometry. Or an orbit trap type.
  • the ion dissociation parameter determination unit 12 of the overall processing unit 10 includes an ion dissociation intensity determination unit 13, a precursor ion intensity measurement unit 15, a precursor ion residual ratio calculation unit 16, and a reaction time calculation unit 1000.
  • the precursor ion intensity measurement unit 15 measures the non-fragmented spectrum and the precursor ion intensity in the fragmented spectrum.
  • Precursor ion residual ratio calculation unit 16 calculates a precursor ion residual ratio.
  • the reaction time calculation unit 1000 calculates the optimal reaction time based on the precursor ion residual ratio and the set value desired by the user. The method for calculating the reaction time is the same as the method described in the first embodiment.
  • the signal giving the determined intensity calculated by the ion dissociation intensity determining unit 13 controls the middle stage 601 of the LIT via the control unit 9.
  • the mass display spectrum, the non-fragmented spectrum, the precursor ion intensity in the fragmented spectrum, the precursor ion residual rate, and the like are displayed on the data display unit 18. Further, the remaining rate of the precursor ion intensity is input from the parameter input unit 19 to the overall processing unit 10.
  • FIG. 17 shows an ETD reaction control flow based on the sixth embodiment of the present invention.
  • a sample 1 which is a mixture of a plurality of substances is introduced into a sample separation device 2 (liquid chromatography in the figure). Chromatography is equipped with a separation column for separation according to the nature of the substance. The sample that has passed through the separation column elutes at different times for each component. Each component of the eluted sample is ionized by an ion source (302). The ions are introduced and accumulated in the middle stage 601 of the LIT in the mass spectrometer, and then discharged (702). The ejected ions are detected by the LIT detector 606, and a non-fragmented spectrum is obtained with the horizontal axis being m / z and the vertical axis being the ion intensity (304).
  • a precursor ion is selected from the unfragmented spectrum (305).
  • Precursor ions are generally selected in order of ionic strength. However, depending on the nature of the ion dissociation technique, the valence and molecular weight may be taken into consideration.
  • the valence and m / z value of the selected precursor ion are specified, and the molecular weight is calculated from the valence and m / z value (306). In parallel with this calculation operation, the ion intensity of the precursor ion is also measured (308).
  • a precursor ion is isolated in the front stage 600 of LIT (704).
  • the negative ion reagent 604 is ionized by the ion source (603) and accumulated in the middle stage 601 of the LIT for a desired time (706).
  • the precursor ion isolated in the front stage 600 of the LIT performs an ETD reaction for a desired time with the negative ions accumulated in the middle stage 601 of the LIT in the LIT (705), and acquires an ETD spectrum (708). .
  • the precursor ion intensity present in the ETD spectrum is measured (308).
  • the precursor ion intensity in the non-fragmented spectrum and the precursor ion intensity in the ETD spectrum are compared to determine the remaining ratio of precursor ions (312). If this value is outside the desired range, the optimal ETD reaction time is calculated and set (313), and the ETD spectrum is acquired again. At this time, the amount of negative ions may be adjusted. It can be said that the ion dissociation strength was optimal when the remaining proportion of precursor ions was within a desired range. In this case (315), the process returns to the acquisition of the non-fragmented spectrum.
  • ETcaD may be performed using the charge-reducing species ratio, the fragment ion ratio, the fragment type, and the real-time amino acid sequence analysis as indices. .
  • CID is performed by exciting only the charge-reducing species.
  • IRMPD may be used instead of CID.
  • calculation of precursor ion residual rate, calculation of reaction time, charge reduction species ratio, calculation of fragment ion ratio and fragment type, de novo analysis, and setting of various parameters are all performed in real time. Need not interfere with the analysis.
  • FIG. 22 shows a mass spectrometry system using the CID method for ion dissociation.
  • the same reference numerals are given to the portions corresponding to FIG. 7.
  • Sample 1 as an analysis target is separated by a pretreatment of a sample separation device 2 (in the figure, liquid chromatography (LC)). Note that a gas chromatogram (GC) can also be used for the sample separation device 2.
  • a sample separation device 2 in the figure, liquid chromatography (LC)
  • LC liquid chromatography
  • GC gas chromatogram
  • the separated sample is ionized in the ion source 3 and introduced into the mass spectrometer.
  • the introduced ions are accumulated in a linear ion trap (LIT) 4 and all ions (or a specific ion) are discharged in an isolated state.
  • the discharged ions are detected by the TOF detector 8.
  • a TOF 7 having a high resolution is present in front of the TOF detector 8.
  • the introduced ions are accumulated in LIT4, and are discharged after isolation of certain specific ions and execution of the CID method.
  • the discharged ions are separated by the TOF detector 8 according to the mass-to-charge ratio m / z of the ions.
  • the ion source is selected from an electrospray ion source, an ion source by atmospheric pressure chemical ionization, a matrix-assisted laser desorption ion source, an electric impact ion source, an ion source by chemical ionization, and an ion source by field ionization.
  • LIT4 can accumulate many ions. For this reason, highly sensitive detection is possible.
  • a three-dimensional quadrupole ion trap, a quadrupole mass filter, a collision cell, or a Fourier transform ion cyclotron resonance mass separation unit may be used.
  • the CID method is used as the ion dissociation method, but the IRMPD method may be used.
  • TOF7 is preferable because it has high resolution and high mass accuracy, but it is preferable to use three-dimensional quadrupole ion trap, LIT, quadrupole mass filter, magnetic field mass analyzer, Fourier transform ion cyclotron resonance mass analyzer, orbitrap mass analysis.
  • a vessel may be used.
  • the overall processing unit 10 can be realized not only when it has a hardware circuit structure but also through a processing function of a program that operates on a computer system.
  • the ion dissociation parameter determination unit 12 of the overall processing unit 10 includes an ion dissociation intensity determination unit 13, a precursor ion intensity measurement unit 15, a precursor ion residual ratio calculation unit 16, and an ion dissociation strength calculation determination unit 1001.
  • the precursor ion intensity measuring unit 15 measures the intensity of each precursor ion in the non-fragmented spectrum and the fragmented spectrum.
  • the precursor ion residual ratio calculation unit 16 calculates a precursor ion residual ratio based on the measured precursor ion intensity. In the case of the CID method, the amount of fragment ions takes a peak value at the lowest ion dissociation intensity at which the precursor ion residual ratio is 0 (zero). Details will be described later.
  • the ion dissociation strength calculation constant unit 1001 calculates the ion dissociation strength when the precursor ion residual ratio becomes 0 (zero).
  • the ion dissociation strength determining unit 13 is supplied with a control signal corresponding to the calculated ion dissociation strength to the LIT 4 via the control unit 9. That is, LIT4 is controlled to the determined intensity.
  • the mass spectrum, the non-fragmented spectrum and the precursor ion intensity, precursor ion residual ratio, ion dissociation intensity, etc. in the fragmented spectrum are displayed on the data display unit 18.
  • FIG. 23 shows a CID reaction control flow based on the seventh embodiment of the present invention.
  • a sample 1 which is a mixture of a plurality of substances is introduced into a sample separation device 2 (liquid chromatography in the figure). Chromatography is equipped with a separation column for separation according to the nature of the substance, and the sample that has passed through the separation column elutes at different times for each component.
  • Each component of the eluted sample is ionized by the ion source 3 (302).
  • the ions are introduced into the LIT 4 in the mass spectrometer, accumulated, and discharged (303).
  • the ejected ions are detected by the TOF detector 8 to obtain a non-fragmented spectrum in which the horizontal axis is m / z and the vertical axis is the ion intensity (304).
  • a precursor ion is selected from the unfragmented spectrum (305).
  • the precursor ions are selected in the order of ionic strength. However, as described above, it may be selected in consideration of the valence and molecular weight.
  • the ion intensity of the precursor ion selected at this time is measured (308).
  • precursor ions are isolated with LIT4 (309), CID is performed on the isolated precursor ions at various ion dissociation intensities (800), and a CID spectrum for each dissociation intensity is acquired (311). Next, the precursor ion intensity present in the CID spectrum is measured (308).
  • the residual ratio of the precursor ions is obtained based on the precursor ion intensity in the non-fragmented spectrum and the precursor ion intensity in the CID spectrum (801). Furthermore, the calculated residual rate is plotted on a chart with the horizontal axis representing the ion dissociation strength and the vertical axis representing the precursor ion residual rate, and the lowest ion dissociation strength at which the precursor ion residual rate is 0 is estimated (802) Then, CID is performed with the ion dissociation strength (803).
  • FIG. 24 shows the dependence of precursor ions and fragment ions on the ion dissociation strength.
  • the precursor ion decreases with increasing ion dissociation intensity almost without depending on the ion intensity.
  • the amount of fragment ions becomes maximum when the precursor ions first become zero.
  • the ion dissociation strength is further increased, the amount of fragment ions decreases.
  • the precursor ion residual ratio is measured under various ion dissociation strength conditions, the ion dissociation strength at which the precursor ions become 0 can be estimated (FIG. 25).
  • the vertical axis represents the precursor ion residual rate
  • the horizontal axis represents the ion dissociation strength.
  • the calculation of the precursor ion residual ratio, the estimation of the optimum ion dissociation intensity, and the setting of various parameters are performed in real time and do not hinder the analysis.
  • FIGS. 26A to 26C show sequence examples according to Embodiment 7 of the present invention.
  • a precursor ion is selected and pre-CID is performed a plurality of times with various ion dissociation intensities.
  • the precursor ion residual rate is calculated independently, the ion dissociation intensity estimated to be 0 when the precursor ion residual rate is zero, and CID is performed under the conditions.
  • the ion dissociation intensity for executing CID is such that when the vertical axis is the precursor ion residual rate and the horizontal axis is the ion dissociation intensity, two adjacent points are connected by a straight line, the slope is negative, and the line is closest to zero. And the ion dissociation intensity at which the precursor ion residual ratio becomes 0 on the straight line is selected.
  • the precursor ion in the non-fragmentation spectrum there may be a step of isolating the precursor ion alone and measuring the precursor ion intensity. In this case, since loss occurring during the isolation process or ion transport is also taken into account, more accurate ionic strength can be measured.
  • the sequence example shown in FIG. 26B is common to FIG. 26A in that a plurality of pre-CIDs are acquired at various ion dissociation intensities. However, in the case of this sequence example, a CID spectrum is acquired for the ion dissociation intensity calculated with the largest amount of fragment ions. Or you may select the lowest ion dissociation intensity
  • the sequence example shown in FIG. 26C is an example in which the sequence is divided into two times. That is, in the first analysis, only the pre-CID spectrum of each ion is acquired, and the ion dissociation intensity estimated to be optimal for each ion is calculated and databased. In the second analysis, pre-CID is not performed and only the CID spectrum is acquired.
  • optimum ion dissociation intensity data can be accumulated for each precursor ion. These data can be stored for each mass, valence, and m / z value. This is an index of the ion dissociation intensity of ions to be analyzed for the first time. Using these data, pre-CID may be performed with the ion dissociation intensity from the lower limit to the upper limit of the optimum ion dissociation intensity at a certain m / z value. Thereby, the time required to derive the optimum ion dissociation strength can be shortened.
  • the calculation of the precursor ion residual ratio and the estimation and setting of the optimum ion dissociation intensity are carried out in real time and need not interfere with the analysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

Disclosed is a mass spectrometry method whereby information regarding to the structure of a substance can be acquired at an improved efficiency and the time required for measuring and identifying the substance can be shortened. Specifically disclosed is a mass spectrometry method characterized by comprising, in the course of ion dissociation in mass spectrometry, comparing the amount of ions measured before the reaction with the amount of ions measured after the dissociation and thus estimating the optimum ion dissociation strength.

Description

質量分析方法及びイオン解離装置Mass spectrometry method and ion dissociation apparatus
 本発明は、質量分析方法と質量分析に使用して好適なイオン解離装置に関する。本発明は、例えば生体高分子の解離分析に使用できる。 The present invention relates to a mass spectrometry method and an ion dissociation apparatus suitable for use in mass spectrometry. The present invention can be used, for example, for dissociation analysis of biopolymers.
 ヒトにはおよそ10万種のタンパク質が存在すると言われている。タンパク質の機能は、プロテアーゼによる切断、糖鎖やリン酸基などの付加による活性・相互作用調節、ミリスチル化やパルミチル化などのアシル化による膜への局在化など、様々な翻訳後修飾により巧妙な調節を受けている。特に真核生物においては、遺伝子配列に基づいて合成されたタンパク質がそのままの状態で機能を発揮することはむしろまれであり、例えばリボソーム上での合成後は、その場で又は細胞内での最終的な局在が決まるまでの様々の段階で多種多様な修飾を受ける。時間的空間的に変化するこれらの生体高分子の構造は、単にゲノム情報のみによっては決定することができず、タンパク質を直接解析する必要がある。 It is said that there are about 100,000 kinds of proteins in humans. Protein functions are clever by various post-translational modifications such as cleavage by protease, regulation of activity and interaction by addition of sugar chains and phosphate groups, localization to membranes by acylation such as myristylation and palmitylation Have undergone various adjustments. In eukaryotes in particular, it is rare that a protein synthesized based on a gene sequence exerts its function as it is. For example, after synthesis on a ribosome, the final synthesis in a cell or in a cell is performed. Undergo various modifications at various stages until specific localization is determined. The structures of these biopolymers that change in time and space cannot be determined solely by genome information, but proteins must be directly analyzed.
 その構造解析手段の1つとして、質量分析法(mass spectrometry: MS)がある。質量分析法を用いれば、生体高分子を構成するアミノ酸がペプチド結合でつながったポリペプチド(ペプチドやタンパク質)の配列情報や翻訳後修飾情報を得ることができる。特に高周波電場を用いたイオントラップや四重極質量フィルターを用いた質量分析法や飛行時間型質量分析法(Time-of-Flight mass spectrometer : TOF-MS)は高速分析法のため、液体クロマトグラフィー(Liquid chromatography :LC)装置等に代表される試料を分離する前処理手段との結合性が良い。このため、これらの高速質量分析法では、多種類の試料を連続解析することが求められるプロテオーム解析等の目的に合致しており、幅広く利用されている。 One of the structural analysis means is mass spectrometry (mass spectrometry: MS). By using mass spectrometry, it is possible to obtain sequence information and post-translational modification information of a polypeptide (peptide or protein) in which amino acids constituting a biopolymer are connected by peptide bonds. In particular, mass spectrometry using ion traps using a high-frequency electric field or quadrupole mass filter and time-of-flight mass spectrometry (Time-of-Flight mass spectrometry) (TOF-MS) are high-speed analytical methods. (Liquid-chromatography: LC) Good connectivity with a pretreatment means for separating a sample represented by an apparatus or the like. For this reason, these high-speed mass spectrometry methods are widely used because they meet the purpose of proteome analysis and the like that require continuous analysis of many types of samples.
 一般に質量分析法では、試料分子をイオン化して真空中に導入し(又は真空中でイオン化し)、電磁場中におけるそのイオンの運動を測定することにより、対象とする分子イオンの質量電荷比(m/z)が測定される。得られる情報が質量と電荷の比という巨視的な量であるため、質量分析操作を単に1回実行するだけでは、その内部構造の情報までは得ることができない。そこで、タンデム質量分析法と呼ばれる方法が用いられる。 In general, in mass spectrometry, a sample molecule is ionized and introduced into a vacuum (or ionized in a vacuum), and the mass-to-charge ratio (m / Z) is measured. Since the information to be obtained is a macroscopic quantity, that is, the ratio of mass to charge, it is not possible to obtain information on the internal structure of the mass analysis operation by simply executing it once. Therefore, a method called tandem mass spectrometry is used.
 タンデム質量分析法では、まず1回目の質量分析操作において、試料分子イオンを特定する又は単離する。特定又は単離されたイオンを「プリカーサイオン」と呼ぶ。続いて、プリカーサイオンを何らかの手法で解離する。解離したイオンを「フラグメントイオン」と呼ぶ。このフラグメントイオンを更に質量分析すると、フラグメントイオンの生成パターンの情報が得られる。 In tandem mass spectrometry, sample molecular ions are first identified or isolated in the first mass spectrometry operation. Specific or isolated ions are referred to as “precursor ions”. Subsequently, the precursor ions are dissociated by some method. The dissociated ions are called “fragment ions”. If this fragment ion is further subjected to mass analysis, information on the generation pattern of the fragment ion can be obtained.
 なお、解離手法により、解離パターンには法則性がある。このため、プリカーサイオンの配列構造を推察することが可能となる。特にアミノ酸を骨格とする生体分子の分析分野では、イオン解離手法として衝突励起解離(Collision-Induced-Dissociation:CID)法、赤外多光子吸収(Infra-Red-Multi-Photon-Dissociation:IRMPD)法、電子捕獲解離(Electron-Capture-Dissociation:ECD)法、電子移動解離(Electron-Transfer-Dissociation:ETD)法が用いられる。 It should be noted that the dissociation pattern has laws due to the dissociation method. For this reason, it becomes possible to infer the arrangement structure of the precursor ions. Especially in the field of analysis of biomolecules with amino acid skeletons, collision-induced-dissociation (CID) method and infrared multi-photon absorption (IRMPD) method are used as ion dissociation methods. Electron-capture-dissociation (ECD) method and electron-transfer-dissociation (ETD) method are used.
 タンパク質の解析分野において、現在もっとも広く使われている手法は、プリカーサイオンに運動エネルギーを与えてガスと衝突させるCID法である。CID法では、ガスとの衝突によりプリカーサイオンの分子振動が励起され、分子鎖の切れやすい部分で解離が起こる。 In the field of protein analysis, the most widely used method at present is the CID method in which a precursor ion is given kinetic energy and collides with a gas. In the CID method, molecular vibration of a precursor ion is excited by collision with a gas, and dissociation occurs at a portion where the molecular chain is easily broken.
 また、最近使われるようになった方法が、プリカーサイオンに赤外レーザ光を照射して多数の光子を吸収させるIRMPD法である。IRMPD法では、プリカーサイオンの分子振動が励起され、分子鎖の切れやすい部位で解離が起こる。ポリペプチドの解離部位を図2に示す。図中のa、b、cは、NH2 末端側を含む分子、x,y,zはCOOH末端側を含む分子である。 A method that has recently been used is the IRMPD method in which a precursor ion is irradiated with infrared laser light to absorb a large number of photons. In the IRMPD method, molecular vibration of the precursor ion is excited, and dissociation occurs at a site where the molecular chain is easily broken. The dissociation site of the polypeptide is shown in FIG. In the figure, a, b, and c are molecules including the NH 2 terminal side, and x, y, and z are molecules including the COOH terminal side.
 CID法やIRMPD法で切れ易い部位は、アミノ酸配列からなる主鎖のうち、b-yで命名されている部位である。b-yの部位であっても、アミノ酸配列パターンによっては切れ難い場合がある。このため、CID法やIRMPD法のみでは、構造解析ができないことが知られている。また、翻訳後修飾を受けた生体高分子では、CID法やIRMPD法を用いると、ポリペプチド側鎖に存在する翻訳後修飾が切れやすい傾向がある。このため、失われた質量から修飾分子種と修飾されているかどうかの判定は可能である。ただし、どのアミノ酸部分で修飾されていたかという修飾部位に関する重要な情報は失われる。 The site that is easily cleaved by the CID method or IRMPD method is the site named by by in the main chain consisting of the amino acid sequence. Even the site of by may be difficult to cut depending on the amino acid sequence pattern. For this reason, it is known that structural analysis cannot be performed only by the CID method or the IRMPD method. Also, biopolymers that have undergone post-translational modification tend to break post-translational modifications that are present in the side chains of polypeptides when using the CID method or IRMPD method. Therefore, it is possible to determine whether or not the modified molecular species is modified from the lost mass. However, important information regarding the modification site indicating which amino acid moiety was modified is lost.
 一方、ECD法やETD法は、アミノ酸配列に依存せず(ただし、例外として環状構造であるプロリン残基のN末端側は切断しない。)、アミノ酸配列の主鎖上のc-z部位の1箇所を切断する。このため、ECD法やETD法を用いれば、タンパク質分子を質量分析的手法のみで解析することができる。また、ECD法やETD法は、側鎖を切断し難いという特徴をもっているので、翻訳後修飾を受けた生体高分子でもアミノ酸配列や修飾位置を同定することができる。このため、翻訳後修飾の研究・解析の手段として近年特に注目を受けているのがこのECD法やETD法という解離手法である。 On the other hand, the ECD method and the ETD method do not depend on the amino acid sequence (except that the N-terminal side of the proline residue which is a cyclic structure is not cleaved), and one of the cz sites on the main chain of the amino acid sequence. Cut the point. For this reason, if ECD method or ETD method is used, a protein molecule can be analyzed only by mass spectrometry. In addition, since the ECD method and the ETD method have a feature that side chains are difficult to cleave, an amino acid sequence and a modified position can be identified even with a biopolymer subjected to post-translational modification. For this reason, dissociation techniques such as the ECD method and the ETD method have recently received particular attention as a means for research and analysis of post-translational modification.
 また、最近新たな解離法として注目されているのが電子脱離解離(Electron-Detachment-Dissociation :EDD)法である。EDD法は、ECD法と類似の装置構成で実施される。EDD法は、負に帯電したプリカーサイオンを電子と反応させ、アミノ酸配列の主鎖上のa-x部位の1箇所を切断する。EDD法は、ペプチドだけでなく、オリゴヌクレオチドや糖鎖の構造解析に利用され始めている(非特許文献1)。 Recently, an electron desorption-dissociation (EDD) method is attracting attention as a new dissociation method. The EDD method is implemented with an apparatus configuration similar to the ECD method. In the EDD method, a negatively charged precursor ion is reacted with an electron to cleave one of the ax sites on the main chain of the amino acid sequence. The EDD method has begun to be used for structural analysis of not only peptides but also oligonucleotides and sugar chains (Non-patent Document 1).
 なお、正に帯電したプリカーサイオンと電子を反応させる手法はECD法と呼ばれる。また、正に帯電したプリカーサイオンと負に帯電したイオンを反応させ、電子の授受を経由して、ECD法と同様の解離を引き起こす手法はETD法と呼ばれる。これらの反応効率はプリカーサイオンのイオン量、価数、修飾有無、修飾の種類や修飾数に依存することが知られており(非特許文献2、3)、各プリカーサイオンに適した電子量、負イオン量及び反応時間を設定する必要がある。 Note that the method of reacting positively charged precursor ions with electrons is called the ECD method. In addition, a technique that causes a positively charged precursor ion to react with a negatively charged ion and causes dissociation similar to the ECD method through transfer of electrons is called an ETD method. These reaction efficiencies are known to depend on the ion amount, valence, presence / absence of modification, type of modification and number of modifications (Non-Patent Documents 2 and 3), and the amount of electrons suitable for each precursor ion, It is necessary to set the amount of negative ions and the reaction time.
 ここで、サブスタンスPという2価のペプチドイオンのECD反応時間依存性を図3に示す(非特許文献4)。図中縦軸は相対イオン強度であり、横軸はECD反応時間である。反応時間の増加に伴ってプリカーサイオン量は減少するのに対し、フラグメントイオンは7ms付近でピークを迎える。つまり、プリカーサイオンがECD反応によって減少すれば、その分だけフラグメントイオンが産生されるわけではない。サブスタンスPでは、反応時間0のときのプリカーサイオン量を1とすると、プリカーサイオンが約0.3残存している状態のとき、ペプチド同定に必要なフラグメントイオンが最も産生される。ここで、プリカーサイオン残存率Iは、反応時間t、サンプルの性質によって決まる時定数τを用いてI=1/e^(t/τ)で示すことができる。 Here, FIG. 3 shows the ECD reaction time dependence of a divalent peptide ion called substance P (Non-patent Document 4). In the figure, the vertical axis represents relative ionic strength, and the horizontal axis represents ECD reaction time. While the amount of precursor ions decreases as the reaction time increases, fragment ions peak at around 7 ms. That is, if the precursor ion is reduced by the ECD reaction, the fragment ion is not produced accordingly. In substance P, when the amount of precursor ion at the reaction time of 0 is 1, fragment ions necessary for peptide identification are most produced when about 0.3 precursor ions remain. Here, the precursor ion residual ratio I can be expressed by I = 1 / e ^ (t / τ) using a reaction time t and a time constant τ determined by the properties of the sample.
 図4に、様々な電子量で獲得したECDスペクトルの模式図を示す。図中縦軸はイオン強度であり、横軸は分子イオンの質量電荷比(m/z)である。最適な電子量であれば、プリカーサイオン200、チャージリデューススピーシーズ201、フラグメントイオン202が検出され、フラグメントイオン202のm/zからアミノ酸配列や修飾物の種類や修飾部位が同定可能となる(図4(A))。チャージリデューススピーシーズ201とは、プリカーサイオン200が電子と反応したが解離しなかったプリカーサイオン200のことであり、プリカーサイオンの価数よりも低い価数となる。しかし、反応させる電子量が少なすぎた場合、プリカーサイオン200が残存するのみのスペクトルを得ることになる(図4(B))。また、反応させる電子量が多すぎた場合、ECD法によって産生されたフラグメントイオンは再度電子を受け取り、価数が低下したフラグメントイオンが産生される。このような多段的な反応の発生により、最終的にはイオンではなくなり、質量分析装置で検出できなくなる(図4(C))。 FIG. 4 shows schematic diagrams of ECD spectra acquired with various amounts of electrons. In the figure, the vertical axis represents ionic strength, and the horizontal axis represents the mass-to-charge ratio (m / z) of molecular ions. If the amount of electrons is optimal, the precursor ion 200, the charge-reducing species 201, and the fragment ion 202 are detected, and the amino acid sequence, the kind of modified product, and the modification site can be identified from the m / z of the fragment ion 202 (FIG. 4). (A)). The charge reduce species 201 is a precursor ion 200 in which the precursor ion 200 has reacted with electrons but has not dissociated, and has a valence lower than that of the precursor ion. However, when the amount of electrons to be reacted is too small, a spectrum in which only the precursor ion 200 remains is obtained (FIG. 4B). When the amount of electrons to be reacted is too large, fragment ions produced by the ECD method receive electrons again, and fragment ions having a reduced valence are produced. Due to the occurrence of such a multistage reaction, the ions are finally lost and cannot be detected by the mass spectrometer (FIG. 4C).
 また、反応条件が最適であったとしても、価数が低い場合、修飾部位が多い場合、修飾物が大きい場合等では、解離効率が低いことが知られている。この場合、イオン強度の高いチャージリデューススピーシーズが観察される。 Even when the reaction conditions are optimal, it is known that the dissociation efficiency is low when the valence is low, the number of modification sites is large, or the modification is large. In this case, charge-reducing species with high ionic strength are observed.
 その解決手段として、ECD法では、Hot ECD(HECD)法やActivated Ion ECD(AI-ECD)法が用いられる。HECD法とは、通常のECD(特に、2eV以下程度のものをcold ECD(CECD)法という。)法よりも高いエネルギーをもつ電子(2eV以上)を利用する解離方法であり、解離効率を向上させることができる。しかし、c-z以外の2次的な解離が誘発され、その後の同定が難しくなる場合がある(非特許文献5)。 As a means for solving the problem, in the ECD method, the Hot) ECD (HECD) method and the Activated IonEECD (AI-ECD) method are used. The HECD method is a dissociation method that uses electrons (2 eV or more) with higher energy than ordinary ECD (especially, the cold ECD (CECD) method is about 2 eV or less) and improves dissociation efficiency. Can be made. However, secondary dissociation other than cz may be induced, making subsequent identification difficult (Non-Patent Document 5).
 AI-ECD法は、ECD反応中又はその前後にプリカーサイオンを高周波電場で励起し、解離を起こり易くする方法である(非特許文献6)。AI-ECD法でもHECD法と同様にc-z以外の解離が起こり易い。一方、ETD法では原理上電子エネルギーを上げることはできない。このため、チャージリデューススピーシーズに対し、CID法を実施し、解離効率を向上させている(ETcaD法:非特許文献7)。チャージリデューススピーシーズから産生されるフラグメントイオンも主にc-zイオンである。 The AI-ECD method is a method in which precursor ions are excited with a high-frequency electric field during or before and after the ECD reaction to facilitate dissociation (Non-patent Document 6). In the AI-ECD method, dissociation other than cz is likely to occur as in the HECD method. On the other hand, the ETD method cannot increase the electron energy in principle. For this reason, the CID method is implemented for charge-reducing species to improve the dissociation efficiency (ETcaD method: Non-Patent Document 7). Fragment ions produced from Charge Reduce species are also mainly cz ions.
 図5(A)及び(B)に、36アミノ酸からなる5価のニューロペプチドYをCECD(1.25eV)法とHECD(10eV)法で分析した結果得られたスペクトルを示す。なお図中縦軸はイオン強度であり、横軸は分子イオンの質量電荷比(m/z)である。また、プリカーサイオン残存率Iは、0.3になるように反応時間を設定した。 5A and 5B show spectra obtained as a result of analyzing a pentavalent neuropeptide Y consisting of 36 amino acids by the CECD (1.25 eV) method and the HECD (10 eV) method. In the figure, the vertical axis represents ionic strength, and the horizontal axis represents the mass-to-charge ratio (m / z) of molecular ions. The reaction time was set so that the precursor ion residual ratio I was 0.3.
 CECD法では解離可能な35ペプチド結合のうち21箇所が解離した(シーケンスカバー率60%)。一方、HECD法では、30箇所解離した(シーケンスカバー率86%)。HECD法ではチャージリデューススピーシーズ([M+5H]4+と[M+5H]3+)のイオン強度が低下し、フラグメントイオンの種類が増加していることが分かる。しかし、2次的な解離によるwイオンが観察されている。次に、ニューロペプチドYの5価イオンと6価イオンを様々な電子エネルギーでECD法を行い、シーケンスカバー率、全イオンに占めるチャージリデューススピーシーズ比、フラグメントイオン比の電子エネルギー依存性を示す(図6)。なお、図6(A)の縦軸はシーケンスカバー率であり、横軸は電子エネルギーである。一方、図6(B)の縦軸は全イオンに占める相対イオン強度であり、横軸は電子エネルギーである。 In the CECD method, 21 of the 35 peptide bonds that can be dissociated were dissociated (sequence coverage: 60%). On the other hand, in the HECD method, 30 sites were dissociated (sequence coverage 86%). It can be seen that in the HECD method, the ionic strength of charge-reduced species ([M + 5H] 4+ and [M + 5H] 3+ ) is decreased and the types of fragment ions are increased. However, w ions due to secondary dissociation have been observed. Next, ECD method is performed on neuropeptide Y pentavalent and hexavalent ions with various electron energies, and the sequence coverage, charge-reduced species ratio of all ions, and fragment ion ratio depend on electron energy (Fig. 6). In addition, the vertical axis | shaft of FIG. 6 (A) is a sequence coverage, and a horizontal axis is electron energy. On the other hand, the vertical axis in FIG. 6B represents the relative ion intensity occupied by all ions, and the horizontal axis represents the electron energy.
 図6に示すように、6価イオンでは電子エネルギーに関わらず、86%のシーケンスカバー率が得られ、チャージリデューススピーシーズ比とフラグメントイオン比はほぼ変化しない。一方、5価イオンの場合、CECD(1.25eV)法で60%であったシーケンスカバー率が電子エネルギーを上昇させるに従って向上し、HECD(10eV)法では86%になった。更に、CECD法では、チャージリデューススピーシーズ比が0.2であったが、電子エネルギーを上昇させるに従い減少し、10eVで約0.1のチャージリデューススピーシーズ比になった。ニューロペプチドYの6価イオンでは2次的な解離も起こすことなく高いシーケンスカバー率が得られるCECD法が最適である。一方、5価イオンではCECD法ではシーケンスカバー率が低いため、高いシーケンスカバー率が得られるHECD法を用いることが望ましい。 As shown in FIG. 6, with hexavalent ions, a sequence coverage of 86% is obtained regardless of the electron energy, and the charge-reduced species ratio and the fragment ion ratio are almost unchanged. On the other hand, in the case of pentavalent ions, the sequence coverage, which was 60% in the CECD (1.25 eV) method, was improved as the electron energy was increased, and was 86% in the HECD (10 eV) method. Further, in the CECD method, the charge-reduced species ratio was 0.2. However, the charge-reduced species ratio decreased with increasing electron energy to a charge-reduced species ratio of about 0.1 at 10 eV. For the hexavalent ion of neuropeptide Y, the CECD method is optimal because it provides a high sequence coverage without causing secondary dissociation. On the other hand, in the case of pentavalent ions, the sequence coverage is low in the CECD method, and therefore it is desirable to use the HECD method that provides a high sequence coverage.
 また、ETD法でも負イオン量や反応時間の最適化は必要である。非特許文献2では、様々な糖ペプチドの分析を試みるための予備検討として代表的な糖ペプチドを用いて負イオン量や反応時間を最適化したことが記述されている。 Also in the ETD method, it is necessary to optimize the amount of negative ions and reaction time. Non-Patent Document 2 describes that the amount of negative ions and reaction time are optimized using a typical glycopeptide as a preliminary study for attempting analysis of various glycopeptides.
 CID法でもプリカーサイオン固有の解離エネルギーを設定する必要がある。特許文献1によれば、分子イオンの質量電荷比(m/z)に比例したイオン解離エネルギーを設定する必要がある。しかも、ヘリウム等のガス圧や電子機器等装置固有の誤差があるため、較正する必要性が記載されている。 It is necessary to set the dissociation energy specific to the precursor ion even in the CID method. According to Patent Document 1, it is necessary to set ion dissociation energy proportional to the mass-to-charge ratio (m / z) of molecular ions. In addition, since there is a gas pressure such as helium or an error inherent to a device such as an electronic device, the necessity of calibration is described.
 また、サーモサイエンティフィック社のホームページには、ガスクロマトグラフ質量分析装置の一機能としてACE(Automated Collision Energy)法を採用するものが開示されている。これは、情報量が多いフラグメントイオンスペクトルを感度良く得るため、1回のスキャン中で3段階に解離エネルギーを変化させ、最適な解離条件の設定とフラグメントイオン生成を可能にしていることが記載されている(非特許文献8)。 The Thermo Scientific website discloses that the ACE (Automated Collision Energy) method is used as a function of the gas chromatograph mass spectrometer. It is described that, in order to obtain a fragment ion spectrum with a large amount of information with high sensitivity, the dissociation energy is changed in three stages in one scan, enabling the setting of optimal dissociation conditions and fragment ion generation. (Non-patent Document 8).
No.US6124591No.US6124591
 タンパク質やペプチドの定性解析では、アミノ酸配列の同定だけでなく、翻訳後修飾の種類や修飾物の構造又は修飾部位の同定が求められる。前述したように、イオン解離手法としてECD法やETD法を用いれば、アミノ酸配列の同定だけでなく、翻訳後修飾物の修飾部位の同定が可能である。 Qualitative analysis of proteins and peptides requires not only the identification of amino acid sequences, but also the type of post-translational modification, the structure of the modified product, or the identification of the modification site. As described above, if the ECD method or the ETD method is used as the ion dissociation method, not only the amino acid sequence but also the modified site of the post-translationally modified product can be identified.
 また、CID法を用いた場合、翻訳後修飾の種類や修飾物の構造を同定することができる。ECD法やETD法を用いた場合のイオン解離効率は、プリカーサイオンの価数、修飾有無、修飾の種類や修飾数に依存するが、プリカーサイオンの情報は分子量と価数だけである。従って、これらの情報だけに基づいて、各プリカーサイオンに適した電子量、負イオン量及び反応時間を設定することは困難である。 Also, when the CID method is used, the type of post-translational modification and the structure of the modified product can be identified. The ion dissociation efficiency when the ECD method or the ETD method is used depends on the valence of the precursor ion, the presence / absence of modification, the type of modification, and the number of modification, but information on the precursor ion is only the molecular weight and valence. Therefore, it is difficult to set the amount of electrons, the amount of negative ions, and the reaction time suitable for each precursor ion based only on this information.
 しかも、電子量、負イオン量及び反応時間は最適であったとしても、プリカーサイオンによっては十分に解離しないことがある。その場合、これらのイオンに対してHECD法、AI-ECD法、ETcaD法等の適用により、解離効率を向上させることができる。 Moreover, even if the amount of electrons, the amount of negative ions, and the reaction time are optimal, some precursor ions may not be sufficiently dissociated. In that case, the dissociation efficiency can be improved by applying an HECD method, an AI-ECD method, an ETcaD method, or the like to these ions.
 しかし、これらの解離方法では、2次的な解離によって帰属できないフラグメントイオンが増加する。このため、アミノ酸配列や修飾部位の同定を困難にさせる。さらに、AI-ECD法やETcaD法では、ECD法、ETD反応に加え、高周波電場を用いた励起が必要になる。このため、スループットが低下する。そこで、CECD法やETD法で同定可能である場合、CECD法やETD法を利用し、解離効率の低いプリカーサイオンに対してのみHECD法、AI-ECD法、ETcaD法を利用することが望まれる。 However, in these dissociation methods, fragment ions that cannot be assigned due to secondary dissociation increase. This makes it difficult to identify amino acid sequences and modification sites. Furthermore, the AI-ECD method and the ETcaD method require excitation using a high-frequency electric field in addition to the ECD method and the ETD reaction. For this reason, the throughput decreases. Therefore, when it can be identified by the CECD method or the ETD method, it is desirable to use the CECD method or the ETD method and use the HECD method, the AI-ECD method, or the ETcaD method only for a precursor ion having a low dissociation efficiency. .
 特許文献1には、CID法における最適な解離エネルギーは、分子イオンの電荷と質量の比(m/z)に比例することが記載されている。そのため、プリカーサイオンのm/z値から解離エネルギーを設定している。 Patent Document 1 describes that the optimum dissociation energy in the CID method is proportional to the charge-to-mass ratio (m / z) of molecular ions. Therefore, the dissociation energy is set from the m / z value of the precursor ion.
 しかし、プリカーサイオンのm/z値が大きくなるのに従い、推測した最適解離エネルギーでは最適値を設定できない例外があり、そのデータも記載されている。つまり、m/z値だけでは最適な解離エネルギーを設定することが困難である。 However, as the m / z value of the precursor ion increases, there is an exception that the optimum value cannot be set with the estimated optimum dissociation energy, and the data is also described. That is, it is difficult to set an optimal dissociation energy only by the m / z value.
 また、前述したACE法では3段階にエネルギーを変化させているが、最適な解離エネルギーを設定できているかは分からない。 In the ACE method described above, the energy is changed in three stages, but it is not known whether the optimum dissociation energy has been set.
 そこで、本発明は、以上説明した技術的な課題を解決し、物質の構造に関する情報の取得効率を向上させる質量分析方法と、質量分析時のイオン解離に適した装置を提供することを目的とする。 Accordingly, the present invention aims to solve the technical problems described above and provide a mass spectrometric method for improving the acquisition efficiency of information related to the structure of a substance and an apparatus suitable for ion dissociation during mass spectrometry. To do.
(手段1)
 本発明による質量分析方法は、試料をイオン化するイオン源の前段階に設けられた分離部によって試料を分離する工程と、分離された試料をイオン源によりイオン化する工程と、生成された試料イオンの非フラグメント化スペクトルを取得する工程と、プリカーサイオンを選択する工程と、プリカーサイオン強度を測定する工程と、生成された試料イオンを所望の強度で解離する工程と、試料イオンのフラグメント化スペクトルを取得する工程と、非フラグメント化スペクトルのプリカーサイオン強度に対する、フラグメント化スペクトルのプリカーサイオン強度の比を算出する工程と、算出された比とイオン解離強度の設定値に基づいて、所望の比が得られるイオン解離強度の最適値を算出する工程と、生成された試料イオンをイオン解離強度の最適値で解離する工程を有する。
(Means 1)
The mass spectrometry method according to the present invention includes a step of separating a sample by a separation unit provided in a previous stage of an ion source for ionizing the sample, a step of ionizing the separated sample by an ion source, Obtaining a non-fragmented spectrum, selecting a precursor ion, measuring a precursor ion intensity, dissociating the generated sample ion at a desired intensity, and obtaining a fragmented spectrum of the sample ion And a step of calculating a ratio of the precursor ion intensity of the fragmentation spectrum to the precursor ion intensity of the non-fragmentation spectrum, and a desired ratio is obtained based on the calculated ratio and the set value of the ion dissociation intensity. The process of calculating the optimum value of ion dissociation intensity and ion dissociation of the generated sample ions A step of dissociating in degrees optimum value.
 また、本発明によるイオン解離装置は、電子源と、電子源に対してイオントラップ領域の遠端側に配置されるリング形状の第1の端電極と、電子源に対してイオントラップ領域の近端側に配置されるリング形状の第2の端電極と、第2の端電極に対して電子源側に配置されるリング形状の電子量制御電極とを有するイオン解離部と、電子量制御電極に印加する電圧を可変制御する制御部とを有する。 The ion dissociation apparatus according to the present invention includes an electron source, a ring-shaped first end electrode disposed on the far end side of the ion trap region with respect to the electron source, and a position near the ion trap region with respect to the electron source. An ion dissociation part having a ring-shaped second end electrode disposed on the end side and a ring-shaped electron amount control electrode disposed on the electron source side with respect to the second end electrode; and an electron amount control electrode And a control unit that variably controls the voltage applied to the.
(手段2)
 本発明による質量分析方法は、データベースに所望のイオンの分析条件を登録する工程と、試料をイオン化するイオン源の前段階に設けられた分離部によって試料を分離する工程と、分離された試料をイオン源によりイオン化する工程と、生成された試料イオンの非フラグメント化スペクトルを取得する工程と、プリカーサイオンを選択する工程と、プリカーサイオン強度を測定する工程と、電子電流値を測定する工程と、非フラグメント化スペクトルのプリカーサイオン強度からECD反応時間を算出する工程と、電子電流値からECD反応時間を算出する工程と、データベースを更新する工程と、生成された試料イオンをイオン解離強度の最適値で解離する工程を有する。
(Means 2)
The mass spectrometry method according to the present invention includes a step of registering analysis conditions of desired ions in a database, a step of separating a sample by a separation unit provided in a previous stage of an ion source for ionizing the sample, and a separated sample. A step of ionizing with an ion source, a step of obtaining a non-fragmentation spectrum of the generated sample ions, a step of selecting a precursor ion, a step of measuring a precursor ion intensity, a step of measuring an electron current value, The step of calculating the ECD reaction time from the precursor ion intensity of the non-fragmented spectrum, the step of calculating the ECD reaction time from the electron current value, the step of updating the database, and the optimal value of the ion dissociation strength of the generated sample ions And a step of dissociating.
 また、本発明によるイオン解離装置は、電子源と、電子源に対してイオントラップ領域の遠端側に配置されるリング形状の第1の端電極と、電子源に対してイオントラップ領域の近端側に配置されるリング形状の第2の端電極と、第2の端電極に対して電子源側に配置されるリング形状の電子量制御電極とを有するイオン解離部と、電子量制御電極に印加する電圧を可変制御する制御部とを有する。 The ion dissociation apparatus according to the present invention includes an electron source, a ring-shaped first end electrode disposed on the far end side of the ion trap region with respect to the electron source, and a position near the ion trap region with respect to the electron source. An ion dissociation part having a ring-shaped second end electrode disposed on the end side and a ring-shaped electron amount control electrode disposed on the electron source side with respect to the second end electrode; and an electron amount control electrode And a control unit that variably controls the voltage applied to the.
 本発明により、各プリカーサイオンに適した解離強度を設定したフラグメント化スペクトルを獲得することが可能となる。これにより、同定精度の高いフラグメント化スペクトルを獲得することができる。また、質量分析による物質の同定において、物質の構造に関する情報を取得する効率が向上し、測定及び物質同定の時間が短縮する。 According to the present invention, it is possible to obtain a fragmentation spectrum in which a dissociation intensity suitable for each precursor ion is set. Thereby, a fragmentation spectrum with high identification accuracy can be acquired. Further, in the identification of a substance by mass spectrometry, the efficiency of acquiring information related to the structure of the substance is improved, and the time for measurement and substance identification is shortened.
発明の実施の形態1におけるECD反応制御フローを説明する図。The figure explaining the ECD reaction control flow in Embodiment 1 of invention. ポリペプチドの解離パターンを説明する図。The figure explaining the dissociation pattern of polypeptide. サブスタンスPを用いたECD反応によるフラグメントイオン総量とプリカーサイオン量の反応時間依存性を説明する実験図。The experimental figure explaining the reaction time dependence of the fragment ion total amount by the ECD reaction using substance P, and the precursor ion amount. 最適な電子量(A)、電子量不足(B)、電子量過剰(C)におけるECDスペクトルの模式図。The schematic diagram of the ECD spectrum in the optimal amount of electrons (A), insufficient amount of electrons (B), and excess amount of electrons (C). ニューロペプチドY(5価)を電子エネルギー1.25eVで解離させたECDスペクトル実験図(A)と電子エネルギー10eV(B)で解離させたECDスペクトル実験図。The ECD spectrum experiment figure which dissociated neuropeptide Y (pentavalent) with the electron energy of 1.25 eV (A), and the ECD spectrum experiment figure which made it dissociate with the electron energy of 10 eV (B). ニューロペプチドY(5価、6価)のシーケンスカバー率(A)とフラグメント総量とチャージリデューススピーシーズ総量(B)の電子エネルギー依存性の実験図。The experimental figure of electron energy dependence of the sequence coverage (A) of neuropeptide Y (pentavalent and hexavalent), the total amount of fragments, and the total amount of charge-reducing species (B). 発明の実施の形態1に基づくECDセルを含む質量分析システムの構成例を示す図。The figure which shows the structural example of the mass spectrometry system containing the ECD cell based on Embodiment 1 of invention. 電子量制御電圧を制御した場合と制御しない場合の各プリカーサイオン価数における反応時間と制御電圧値を示す図表。The table | surface which shows the reaction time and control voltage value in each precursor ion valence when the amount control voltage of an electron is controlled and not controlling. イオンピークを説明する模式図。The schematic diagram explaining an ion peak. 非フラグメント化スペクトル(A)とフラグメント化スペクトル(B)の模式図。The schematic diagram of a non-fragmentation spectrum (A) and a fragmentation spectrum (B). リニアイオントラップECDセルと電子源の構成図。The lineblock diagram of a linear ion trap ECD cell and an electron source. イオントラップ電圧が20Vの場合(A)と28Vの場合(B)における電子量と電子量制御電圧の依存性を示す実験図。The experiment figure which shows the dependence of the amount of electrons and the amount control voltage of electrons when the ion trap voltage is 20V (A) and when it is 28V (B). 発明の実施の形態2に基づくECD反応制御フローを説明する図。The figure explaining the ECD reaction control flow based on Embodiment 2 of invention. 発明の実施の形態3に基づくECD反応制御フローを説明する図。The figure explaining the ECD reaction control flow based on Embodiment 3 of invention. 発明の実施の形態4に基づくECD反応制御フローを説明する図。The figure explaining the ECD reaction control flow based on Embodiment 4 of invention. 発明の実施の形態6に基づくETDをイオン解離手段とする質量分析システムの構成例を示す図。The figure which shows the structural example of the mass spectrometry system which uses ETD based on Embodiment 6 of invention as an ion dissociation means. 発明の実施の形態6に基づくECD反応制御フローを説明する図。The figure explaining the ECD reaction control flow based on Embodiment 6 of invention. 発明の実施の形態1に基づくデータ取得シーケンス例を示す図。The figure which shows the example of a data acquisition sequence based on Embodiment 1 of invention. サブスタンスPを用いたECD反応による時定数τとプリカーサイオン強度の関係を示す実験図。The experimental figure which shows the relationship between the time constant (tau) by the ECD reaction using the substance P, and precursor ion intensity | strength. 予測されたイオンクロマトグラムと各イオン強度での反応時間を示す模式図。The schematic diagram which shows the reaction time in the predicted ion chromatogram and each ion intensity | strength. あるイオンの実測イオン強度とガウシアン関数によって予測されるイオンクロマトグラムの模式図。The schematic diagram of the ion chromatogram estimated by the actual measurement ion intensity and Gaussian function of a certain ion. 発明の実施の形態7に基づくCID法をイオン解離手段とする質量分析システムの構成例を示す図。The figure which shows the structural example of the mass spectrometry system which uses the CID method based on Embodiment 7 of invention as an ion dissociation means. 発明の実施の形態7に基づくCID反応制御フローの図。The figure of the CID reaction control flow based on Embodiment 7 of invention. サブスタンスPを用いたプリカーサイオン強度とフラグメントイオン総量の相対強度とイオン解離強度との関係を示す実験図Experimental diagram showing the relationship between the precursor ionic strength using substance P, the relative strength of the total amount of fragment ions, and the ionic dissociation strength 様々なイオン解離強度で解離させたプリカーサイオン残存率の実測値と最適イオン解離強度を示す模式図。The schematic diagram which shows the actual value of the precursor ion residual rate dissociated by various ion dissociation intensity | strength, and optimal ion dissociation intensity | strength. 発明の実施の形態7に基づくデータ取得シーケンス例を示す図。The figure which shows the example of a data acquisition sequence based on Embodiment 7 of invention. 発明の実施の形態5に基づくECDセルを含む質量分析システムの構成例を示す図。The figure which shows the structural example of the mass spectrometry system containing the ECD cell based on Embodiment 5 of invention. 発明の実施の形態5に基づくデータ依存解析モードの操作画面を示す図。The figure which shows the operation screen of the data dependence analysis mode based on Embodiment 5 of invention. 発明の実施の形態5に基づくデータベースモードの操作画面を示す図。The figure which shows the operation screen of the database mode based on Embodiment 5 of invention. 発明の実施の形態5に基づくデータベースモード制御フローの図。The figure of the database mode control flow based on Embodiment 5 of invention. イオン強度ごとにECD反応時間を設定するデータベース例を示す図。The figure which shows the example of a database which sets ECD reaction time for every ionic strength. イオン強度ごとにECD反応時間を設定するデータベースを使用した場合の制御フローの図。The figure of a control flow at the time of using the database which sets ECD reaction time for every ionic strength. リニアイオントラップECDセルと電子電流測定の構成図。The block diagram of a linear ion trap ECD cell and electron current measurement. 電子電流依存的にECD反応時間や電子量制御電圧を補正するフローの図。The figure of the flow which correct | amends ECD reaction time and an electron amount control voltage dependently on an electronic current. 電子電流値とイオン強度依存的にECD反応時間や電子量制御電圧を補正するデータベースモード制御フローの図。The figure of the database mode control flow which correct | amends an ECD reaction time and an electron amount control voltage depending on an electron current value and ion intensity. イオン強度ごとにECD反応時間を設定するデータベースを使用した場合の電子電流値とイオン強度依存的にECD反応時間や電子量制御電圧を補正する制御フローの図。The figure of the control flow which correct | amends an ECD reaction time and an electron amount control voltage dependently on an electron current value and ion intensity at the time of using the database which sets ECD reaction time for every ion intensity.
 以下、図面を参照して、本発明の実施の形態を説明する。なお、後述する本発明の実施の形態は一例であって、公知又は周知の技術との組み合わせや置換によって他の形態を実現することもできる。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The embodiment of the present invention to be described later is merely an example, and other embodiments can be realized by a combination or replacement with a known or well-known technique.
(A)実施の形態1:イオン解離手法としてECD法を用いる場合(その1)
(質量分析システムの構成)
 図7に、イオンの解離にECD法を用いる質量分析システムの構成例を示す。分析対象となる試料1は、試料分離装置2(図では、液体クロマトグラフィー(LC))の前処理により分離される。なお、試料分離装置2には、ガスクロマトグラム(GC)を用いることもできる。
(A) Embodiment 1: When ECD method is used as an ion dissociation method (part 1)
(Configuration of mass spectrometry system)
FIG. 7 shows a configuration example of a mass spectrometry system that uses the ECD method for ion dissociation. The sample 1 to be analyzed is separated by pretreatment by a sample separation device 2 (in the figure, liquid chromatography (LC)). Note that a gas chromatogram (GC) can also be used for the sample separation device 2.
 分離された試料は、イオン源3においてイオン化され、質量分析装置に導入される。非フラグメント化スペクトル取得の場合、導入されたイオンは、リニアイオントラップ(LIT)4に蓄積され、全イオン(又はある特定のイオン)が単離された状態で排出される。排出されたイオンは、TOF検出器8で検出される。TOF検出器8の前段には高分解能であるTOF7が存在する。 The separated sample is ionized in the ion source 3 and introduced into the mass spectrometer. In the case of non-fragmented spectrum acquisition, the introduced ions are accumulated in a linear ion trap (LIT) 4 and discharged in a state where all ions (or a specific ion) are isolated. The discharged ions are detected by the TOF detector 8. A TOF 7 having a high resolution is present in front of the TOF detector 8.
 フラグメント化スペクトル取得の場合、質量分析システムに導入されたイオンはLIT4に蓄積され、ある特定のイオンが単離された状態で排出される。排出されたイオンはQディフレクター5を経由し、ECDセル6に入る。ここで、ある特定のイオン解離強度でECD反応が行われ、イオンは排出される。排出されたイオンは再びQディフレクター5を経由し、TOF7でイオンの質量電荷比m/zに応じて分離される。 In the case of fragmentation spectrum acquisition, ions introduced into the mass spectrometry system are accumulated in LIT4, and certain ions are discharged in an isolated state. The discharged ions enter the ECD cell 6 via the Q deflector 5. Here, the ECD reaction is performed at a specific ion dissociation intensity, and the ions are ejected. The discharged ions again pass through the Q deflector 5 and are separated by the TOF 7 according to the mass-to-charge ratio m / z of the ions.
 イオン源3は、エレクトロスプレイイオン源、大気圧化学イオン化によるイオン源、マトリックス支援レーザ脱離イオン源、電気衝撃イオン源、化学イオン化によるイオン源、フィールドイオン化によるイオン源から選択される。 The ion source 3 is selected from an electrospray ion source, an ion source based on atmospheric pressure chemical ionization, a matrix-assisted laser desorption ion source, an electric impact ion source, an ion source based on chemical ionization, and an ion source based on field ionization.
 LIT4は多くのイオンを蓄積でき、高感度検出が可能である。しかし、LIT4に代えて、三次元四重極イオントラップ、四重極質量フィルター、コリジョンセル、フーリエ変換イオンサイクロトロン共鳴質量分離部を用いても良い。 LIT4 can accumulate a large number of ions and can be detected with high sensitivity. However, instead of LIT4, a three-dimensional quadrupole ion trap, a quadrupole mass filter, a collision cell, or a Fourier transform ion cyclotron resonance mass separation unit may be used.
 ECDセル6は、LIT、三次元四重極イオントラップ、コリジョンセル、四重極質量フィルター、フーリエ変換イオンサイクロトロン共鳴質量分析部の中から選択される。また、本装置構成では、イオン解離方法としてECD法を用いているが、EDD法を用いても良い。この場合、イオン化は負イオンモードで実施する。 The ECD cell 6 is selected from LIT, a three-dimensional quadrupole ion trap, a collision cell, a quadrupole mass filter, and a Fourier transform ion cyclotron resonance mass spectrometer. In this apparatus configuration, the ECD method is used as the ion dissociation method, but the EDD method may be used. In this case, ionization is performed in the negative ion mode.
 TOF7は高分解能で質量精度も高いので好ましいが、四重極質量フィルター、イオントラップ、磁場型質量分析器、フーリエ変換イオンサイクロトロン共鳴質量分析器、オービトラップ型分析器でも構わない。電子を供給するための電子源は、フィラメントでもディスペンサーカソードでも構わない。 TOF7 is preferable because of its high resolution and high mass accuracy, but it may be a quadrupole mass filter, ion trap, magnetic field type mass analyzer, Fourier transform ion cyclotron resonance mass analyzer, or orbitrap type analyzer. The electron source for supplying electrons may be a filament or a dispenser cathode.
 TOF検出器8で検出された各イオンは、m/z値と共に全体処理部10に与えられる。全体処理部10は、後述するようなデータ整理及び又はデータ処理を実行する。なお、全体処理部10は、ハードウェア的な回路構造を有する場合だけでなく、コンピュータシステム上で動作するプログラムの処理機能を通じても実現することができる。全体処理部10の処理機能の一つであるイオン解離パラメータ決定部12は、イオン解離強度決定部13、プリカーサイオン強度測定部15、プリカーサイオン残存率算出部16、反応時間算出部1000で構成される。この全体処理部10が、特許請求の範囲における「計算処理部」に対応する。 Each ion detected by the TOF detector 8 is given to the overall processing unit 10 together with the m / z value. The overall processing unit 10 performs data organization and / or data processing as will be described later. The overall processing unit 10 can be realized not only when it has a hardware circuit structure but also through a processing function of a program that operates on a computer system. The ion dissociation parameter determination unit 12, which is one of the processing functions of the overall processing unit 10, includes an ion dissociation intensity determination unit 13, a precursor ion intensity measurement unit 15, a precursor ion residual rate calculation unit 16, and a reaction time calculation unit 1000. The The entire processing unit 10 corresponds to a “calculation processing unit” in the claims.
 プリカーサイオン強度測定部15は、非フラグメント化スペクトルとフラグメント化スペクトル内の各プリカーサイオン強度を測定する。プリカーサイオン残存率算出部16は、測定されたプリカーサイオン強度に基づいてプリカーサイオン残存率を算出する。プリカーサイオン残存率とは、非フラグメント化スペクトルのプリカーサイオン強度に対する、フラグメント化スペクトルのプリカーサイオン強度の割合とする。 The precursor ion intensity measuring unit 15 measures the intensity of each precursor ion in the non-fragmented spectrum and the fragmented spectrum. The precursor ion residual ratio calculation unit 16 calculates a precursor ion residual ratio based on the measured precursor ion intensity. The precursor ion residual ratio is a ratio of the precursor ion intensity of the fragmentation spectrum to the precursor ion intensity of the non-fragmentation spectrum.
 反応時間算出部1000は、プリカーサイオン残存率とユーザー所望の設定値とに基づいて最適反応時間を算出する。イオン解離強度決定部13は、算出された最適反応時間に応じてイオン解離強度を決定する。決定強度を与える信号は、イオン解離強度決定部13から制御部9を介してECDセル6に与えられる。すなわち、ECDセル6が決定強度に制御される。 The reaction time calculation unit 1000 calculates the optimum reaction time based on the precursor ion residual ratio and the user desired setting value. The ion dissociation strength determination unit 13 determines the ion dissociation strength according to the calculated optimum reaction time. A signal giving the determined intensity is given from the ion dissociation intensity determining unit 13 to the ECD cell 6 via the control unit 9. That is, the ECD cell 6 is controlled to the determined strength.
 また、図中に破線で示すように、LIT4におけるイオン蓄積時間を制御することによってプリカーサイオン量を調節することも可能である。同じく、図中に破線で示すように、試料分離装置2を制御することによって試料1の流量を変化させ、イオンの溶出プロファイルを調節することも可能である。 Also, as indicated by a broken line in the figure, the amount of precursor ions can be adjusted by controlling the ion accumulation time in LIT4. Similarly, as shown by a broken line in the figure, it is possible to adjust the ion elution profile by controlling the sample separation device 2 to change the flow rate of the sample 1.
 質量分析スペクトル、非フラグメント化スペクトルとフラグメント化スペクトル内のプリカーサイオン強度、プリカーサイオン残存率、ECD反応時間、電子エネルギー、ECDセル6を制御するパラメータ、LIT4の制御パラメータ、試料分離装置2の溶媒混合比、流量等はデータ表示部18で表示される。全体処理部10に対する所望のプリカーサイオン強度の残存率は、パラメータ入力部19を通じて入力する。 Mass spectrometry spectrum, precursor ion intensity in unfragmented spectrum and fragmented spectrum, precursor ion residual ratio, ECD reaction time, electron energy, parameters controlling ECD cell 6, control parameters of LIT4, solvent mixing of sample separation apparatus 2 The ratio, flow rate, and the like are displayed on the data display unit 18. The residual ratio of the desired precursor ion intensity with respect to the overall processing unit 10 is input through the parameter input unit 19.
(処理動作の概要)
 図1に、本発明の実施の形態1に基づくECD反応制御フローを示す。複数物質の混合物である試料1は、試料分離装置2(図では、液体クロマトグラフィー)に導入される。クロマトグラフィーには、物質の性質によって分離させるための分離カラムが装着されており、分離カラムを通過した試料は、成分ごとに異なる時間に溶出する。溶出した試料の各成分は、イオン源3にてイオン化される(302)。イオンは質量分析装置内のLIT4に導入されて蓄積され(303)、排出口から排出される。排出されたイオンはTOF検出器8において検出され、横軸をm/z、縦軸をイオン強度とする非フラグメント化スペクトルを得る(304)。
(Outline of processing operation)
FIG. 1 shows an ECD reaction control flow based on Embodiment 1 of the present invention. A sample 1 which is a mixture of a plurality of substances is introduced into a sample separation device 2 (liquid chromatography in the figure). Chromatography is equipped with a separation column for separation according to the nature of the substance, and the sample that has passed through the separation column elutes at different times for each component. Each component of the eluted sample is ionized by the ion source 3 (302). The ions are introduced into the LIT 4 in the mass spectrometer and accumulated (303) and discharged from the outlet. The ejected ions are detected by the TOF detector 8 to obtain a non-fragmented spectrum with the horizontal axis representing m / z and the vertical axis representing ion intensity (304).
 次に、全体処理部10は、全イオンスペクトル(非フラグメント化スペクトル)からプリカーサイオンを選択する(305)。全イオンスペクトルは一般的にはMS1スペクトルと呼ばれている。プリカーサイオンはイオン強度順に選択されるのが一般的である。しかし、価数や分子量を考慮に入れてプリカーサイオンを選択しても良い。この後、全体処理部10は、選択したプリカーサイオンの価数とm/z値を特定し、価数とm/z値から分子量を算出する(306)。この算出動作の詳細については後述する。この算出動作と並行して、全体処理部10は、プリカーサイオンのイオン強度も測定する(308)。 Next, the overall processing unit 10 selects a precursor ion from the total ion spectrum (non-fragmented spectrum) (305). The total ion spectrum is generally called the MS1 spectrum. In general, the precursor ions are selected in the order of ionic strength. However, the precursor ion may be selected in consideration of the valence and molecular weight. Thereafter, the overall processing unit 10 specifies the valence and m / z value of the selected precursor ion, and calculates the molecular weight from the valence and m / z value (306). Details of this calculation operation will be described later. In parallel with this calculation operation, the overall processing unit 10 also measures the ion intensity of the precursor ions (308).
 例えば初めて分析されるプリカーサイオンに対し、全体処理部10は、m/z値、価数、分子量に基づいて各プリカーサイオンに適すると推定される電子エネルギー、ECD反応時間、電子量制御電圧を設定する(307)。もっとも、予め定めておいた特定値を、初めて分析されるプリカーサイオンに対する設定値として与えても構わない。例えば電子エネルギーを1eV、反応時間を10ms、電子量制御電圧を20Vに設定する。電子量の制御電圧については後述する。 For example, for the precursor ion analyzed for the first time, the overall processing unit 10 sets the electron energy, ECD reaction time, and electron amount control voltage that are estimated to be suitable for each precursor ion based on the m / z value, valence, and molecular weight. (307). Of course, a predetermined specific value may be given as a set value for the precursor ion analyzed for the first time. For example, the electron energy is set to 1 eV, the reaction time is set to 10 ms, and the electron amount control voltage is set to 20V. The electron voltage control voltage will be described later.
 次に、LIT4でプリカーサイオンを単離し(309)、単離したプリカーサイオンに対してECD反応(310)を実施し、その後、全体処理部10においてECDスペクトルを取得する(311)。次に、全体処理部10は、ECDスペクトル中に存在するプリカーサイオン強度を測定する(308)。 Next, a precursor ion is isolated with LIT4 (309), an ECD reaction (310) is performed on the isolated precursor ion, and then an ECD spectrum is acquired in the overall processing unit 10 (311). Next, the overall processing unit 10 measures the precursor ion intensity existing in the ECD spectrum (308).
 全体処理部10は、非フラグメント化スペクトル中のプリカーサイオン強度とECDスペクトル中のプリカーサイオン強度とを比較し、プリカーサイオンの残存率を求める(312)。この動作の詳細については後述する。なお、プリカーサイオンの残存率の値が所望の範囲外の場合(314)、全体処理部10は、最適なイオン解離強度を算出して設定し(313)、再度ECDスペクトルを取得する。一方、プリカーサイオンの残存率が所望の範囲内の場合、全体処理部10は、イオン解離強度は最適だったと判定する。 The overall processing unit 10 compares the precursor ion intensity in the non-fragmented spectrum with the precursor ion intensity in the ECD spectrum, and obtains the residual ratio of precursor ions (312). Details of this operation will be described later. When the remaining value of the precursor ion is outside the desired range (314), the overall processing unit 10 calculates and sets the optimum ion dissociation intensity (313), and acquires the ECD spectrum again. On the other hand, when the remaining rate of the precursor ions is within a desired range, the overall processing unit 10 determines that the ion dissociation strength is optimal.
 この場合(315)、全体処理部10は、非フラグメント化スペクトルの取得に戻る。もっとも、同一イオンのECDスペクトルの取得を継続しても良い。なお、全体処理部10によるプリカーサイオン残存率の算出、反応時間の算出、電子量制御電圧の算出、パラメータの設定は、いずれも分析を妨げないように、実時間で実施される必要がある。 In this case (315), the overall processing unit 10 returns to the acquisition of the non-fragmented spectrum. But you may continue acquisition of the ECD spectrum of the same ion. Note that the precursor ion residual ratio calculation, reaction time calculation, electron quantity control voltage calculation, and parameter setting by the overall processing unit 10 need to be performed in real time so as not to disturb the analysis.
(価数と分子量の算出)
 ここでは、イオンの価数と分子量の算出方法について説明する。図9に、質量分析で観測されるプロトン化[H]したイオンピークの模式図を示す。縦軸はイオン強度であり、横軸はm/zである。タンパク質の構成原子は主に炭素、水素、酸素、窒素である。自然界の炭素には質量数12の12Cの他に、約1%質量数13の13Cが存在する。そのため、タンパク質は、12Cと一定の割合で13Cを含有する混合物である。質量分析では、12Cのみで構成されるモノアイソトピックピーク400のほかに13Cが混合した同位体が存在する。13Cを1つ含む同位体、13Cを2つ含む同位体、13Cを3つ含む同位体はそれぞれ12C体分子量+1、12C体分子量+2、12C体分子量+3となり、同位体ピーク401と呼ばれている。
(Calculation of valence and molecular weight)
Here, a method for calculating the valence and molecular weight of ions will be described. FIG. 9 shows a schematic diagram of a protonated [H + ] ion peak observed by mass spectrometry. The vertical axis represents ionic strength, and the horizontal axis represents m / z. The constituent atoms of proteins are mainly carbon, hydrogen, oxygen, and nitrogen. In addition to 12 C with a mass number of 12 in natural carbon, 13 C with a mass number of about 1% 13 exists. Therefore, the protein is a mixture containing 12 C and 13 C at a constant ratio. In mass spectrometry, there is an isotope mixed with 13 C in addition to the monoisotopic peak 400 composed only of 12 C. Isotope 13 C containing one, 13 containing two isotopes C, 13 isotope respectively 12 C molecule weight +1 C including three, 12 C molecule weight +2, 12 C molecule weight +3, and the isotope peaks 401 is called.
 プロトン化イオンの場合、プロトン付加数が価数zに対応する。質量分析では、m/zで表示される。このため、モノアイソトピックピーク400のm/z値は12C体の分子量をMとすると、(M+z)/z、同位体ピーク401のm/z値はそれぞれ(M+1+z)/z、(M+2+z)/z、(M+3+z)/zとなる。これらのピークの差は1/zとなる。つまり、1価の場合のピーク間隔は1、2価の場合のピーク間隔は0.5となる。従って、ピークの間隔から価数を判定することが可能である。また、価数が判明すれば、価数とm/z値から分子量を算出することが可能である。 In the case of protonated ions, the proton addition number corresponds to the valence z. In mass spectrometry, it is displayed in m / z. Therefore, the m / z value of the monoisotopic peak 400 is (M + z) / z, and the m / z value of the isotope peak 401 is (M + 1 + z) / z and (M + 2 + z), respectively, where the molecular weight of the 12 C isomer is M. / Z, (M + 3 + z) / z. The difference between these peaks is 1 / z. That is, the peak interval in the case of monovalent is 0.5 in the case of 1 and 2. Therefore, the valence can be determined from the peak interval. If the valence is known, the molecular weight can be calculated from the valence and the m / z value.
(最適反応時間の算出)
 図7の装置構成の場合、ECDセル6に導入される電子量は反応時間に比例する。このため、反応時間を操作することによってプリカーサイオンと反応する電子量を調節することができる。最適反応時間の算出方法を以下に説明する。最適反応時間の算出は、全体処理部10が実行する。図10(A)及び(B)に、非フラグメント化スペクトルとフラグメント化スペクトルの模式図を示す。なお、縦軸はイオン強度であり、横軸はm/zである。
(Calculation of optimal reaction time)
In the case of the apparatus configuration of FIG. 7, the amount of electrons introduced into the ECD cell 6 is proportional to the reaction time. For this reason, the amount of electrons reacting with the precursor ion can be adjusted by manipulating the reaction time. A method for calculating the optimum reaction time will be described below. The calculation of the optimal reaction time is executed by the overall processing unit 10. 10A and 10B are schematic diagrams of a non-fragmentation spectrum and a fragmentation spectrum. In addition, a vertical axis | shaft is an ionic strength and a horizontal axis is m / z.
 ここでは、非フラグメント化スペクトルでイオン強度xのプリカーサイオン200(図10(A))を単離し、t[ms]の間、ECD反応をした結果、イオン強度Ixのプリカーサイオン201(図10(B))が残存したECDスペクトルが得られた場合を想定する。この場合、プリカーサイオン残存率Iは、サンプルの性質によって決まる時定数τと反応時間t[ms]とを用いて、次式で示すことができる。 Here, a precursor ion 200 (FIG. 10A) having an ionic strength x in an unfragmented spectrum was isolated and subjected to an ECD reaction for t [ms]. As a result, the precursor ion 201 having an ionic strength Ix (FIG. 10 ( Assume that an ECD spectrum in which B)) remains is obtained. In this case, the precursor ion residual ratio I can be expressed by the following equation using the time constant τ determined by the properties of the sample and the reaction time t [ms].
 I=1/e^(t/τ)
 この方程式から時定数τを求めれば、求めた時定数τとプリカーサイオン残存率との関係から、所望のプリカーサイオン残存率(例えば0.3)が得られるのに必要な反応時間tを求めることができる。この反応時間でECD反応を実施すれば、所望のプリカーサイオン残存率のECDスペクトルが得られる。また、反応時間を制御するのではなく、電子量の制御電圧を制御することも可能である。
I = 1 / e ^ (t / τ)
If the time constant τ is obtained from this equation, the reaction time t required to obtain a desired precursor ion residual rate (for example, 0.3) is obtained from the relationship between the obtained time constant τ and the precursor ion residual rate. Can do. When the ECD reaction is carried out with this reaction time, an ECD spectrum of a desired precursor ion residual ratio can be obtained. It is also possible to control the control voltage of the amount of electrons instead of controlling the reaction time.
(ECDセルの装置構成)
 図11に、リニアイオントラップを用いたECDセル6の装置構成例を示す。このECDセル6が、特許請求の範囲におけるイオン解離装置に対応する。
(ECD cell equipment configuration)
FIG. 11 shows an apparatus configuration example of the ECD cell 6 using a linear ion trap. The ECD cell 6 corresponds to the ion dissociation apparatus in the claims.
 ECDセル6は、四重極形のLIT4の両端部に第1の端電極100と第2の端電極101を配置した構成を有している。ここで、第1の端電極100と第2の端電極101は、リング形状を有する平板状の電極で構成される。すなわち、各端電極の基板中央には細孔が形成される。 The ECD cell 6 has a configuration in which a first end electrode 100 and a second end electrode 101 are arranged at both ends of a quadrupole LIT4. Here, the 1st end electrode 100 and the 2nd end electrode 101 are comprised by the flat electrode which has a ring shape. That is, a pore is formed in the center of the substrate of each end electrode.
 図に示すように、LIT4の中心軸に沿うようにプリカーサイオン102が保持される。また、電子源104と第2の端電極101との中間には、やはりリング形状を有する平板状の電子量制御電極103が配置される。電子源104から照射された電子は、電子制御電極103の細孔、第2の端電極101の細孔を順番に通過してLIT4内に到達し、ECD反応を発生させる。後述するように、制御部9は、電子量制御電極103に対する印加電圧の制御によって導入する電子量を調整する。 As shown in the figure, the precursor ion 102 is held along the central axis of the LIT4. In addition, a plate-shaped electron quantity control electrode 103 having a ring shape is disposed between the electron source 104 and the second end electrode 101. The electrons irradiated from the electron source 104 sequentially pass through the pores of the electron control electrode 103 and the second end electrode 101 and reach the LIT 4 to generate an ECD reaction. As will be described later, the control unit 9 adjusts the amount of electrons introduced by controlling the voltage applied to the electron amount control electrode 103.
 図11の例では、電子源電圧105として20Vの電圧が印加され、イオントラップ電圧106が20Vから28Vの範囲で調節されることを示している。イオントラップ電圧106を上昇させることによって、高いエネルギーの電子を照射することができる(HECDに相当)。 11 shows that a voltage of 20V is applied as the electron source voltage 105, and the ion trap voltage 106 is adjusted in the range of 20V to 28V. By raising the ion trap voltage 106, high-energy electrons can be irradiated (corresponding to HECD).
 ここで、イオントラップ電圧106を20V又は28Vに固定し、電子量制御電極103を10Vから23Vまで変化させたときに得られた電流値を図12に示す。図12(A)は、イオントラップ電圧106が20Vの例であり、図12(B)は、イオントラップ電圧106が28Vの例である。どちらのグラフも、電子量制御電極103に対する印加電圧が14Vまでの間は、電子がイオントラップ内に入射されていない。また、イオントラップ電圧が20Vの場合、電子量制御電圧が20V付近で最大電流が流れる。一方、イオントラップ電圧が28Vの場合、電子量制御電圧が23Vで最大電流が流れる。つまり、電子量制御電極103を制御することによってLIT4に入射される電子量を調節することができる。このように、反応に使用する電子量は、反応時間tだけでなく、電子量制御電極103に印加する電圧値によっても制御することができる。 Here, the current value obtained when the ion trap voltage 106 is fixed at 20 V or 28 V and the electron quantity control electrode 103 is changed from 10 V to 23 V is shown in FIG. 12A shows an example in which the ion trap voltage 106 is 20V, and FIG. 12B shows an example in which the ion trap voltage 106 is 28V. In both graphs, electrons are not incident on the ion trap while the applied voltage to the electron amount control electrode 103 is up to 14V. When the ion trap voltage is 20V, the maximum current flows when the electron amount control voltage is around 20V. On the other hand, when the ion trap voltage is 28V, the maximum current flows when the electron amount control voltage is 23V. That is, the amount of electrons incident on the LIT 4 can be adjusted by controlling the electron amount control electrode 103. Thus, the amount of electrons used for the reaction can be controlled not only by the reaction time t but also by the voltage value applied to the electron amount control electrode 103.
 なお、この実施の形態の場合には、電子量制御電極103に印加する直流電圧を可変しているが、制御方法は、イオン解離部によって異なる。例えば高周波電圧の周波数と振幅の可変制御によってイオン解離強度を調整することもできる。 In this embodiment, the DC voltage applied to the electron quantity control electrode 103 is varied, but the control method differs depending on the ion dissociation part. For example, the ion dissociation intensity can be adjusted by variable control of the frequency and amplitude of the high-frequency voltage.
 図8に、従来法と電子量制御電極103を取り入れた発明案の2例についてのイオン解離強度パラメータの例を示す。2価から12価のイオンをECD分析する場合、従来法では、電子量制御電圧103を23Vに固定し、反応時間のみで電子量を調節する。しかし、反応時間を小数点第1位以下で制御することは困難であり、9価から12価までのイオンについては電子量を正確に制御することができない。一方、発明案の場合、反応時間は3msに固定し、電子量制御電極103の印加電圧を必要な電子量に合わせて可変的に設定すれば良い。これにより、実施の形態で使用するECDセル6においては、従来方式に比べて正確な電子量制御が可能になる。 FIG. 8 shows examples of ion dissociation strength parameters for two examples of the invention that incorporates the conventional method and the electron quantity control electrode 103. When ECD analysis of divalent to 12-valent ions is performed, in the conventional method, the electron amount control voltage 103 is fixed at 23 V, and the amount of electrons is adjusted only by the reaction time. However, it is difficult to control the reaction time at the first decimal place, and the amount of electrons cannot be accurately controlled for ions from 9 to 12 valences. On the other hand, in the case of the invention, the reaction time is fixed at 3 ms, and the voltage applied to the electron quantity control electrode 103 may be variably set according to the required quantity of electrons. Thereby, in the ECD cell 6 used in the embodiment, it is possible to control the amount of electrons more accurately than in the conventional method.
(ECDを複数回実行する場合のシーケンス例)
 図18(A)~(G)に、本発明の実施の形態1に係るシーケンス例を示す。図18(A)に示すシーケンス例の場合、非フラグメント化スペクトルの取得(図18では、「MS1」と表記する。)後にプリカーサイオンを選択し、価数や分子量に応じた反応時間でpre-ECDを実施する。その後、非フラグメント化スペクトルとpre-ECDスペクトルにそれぞれ含まれる各プリカーサイオン強度の比較により最適反応時間を算出し、その最適反応時間でECDスペクトルを取得する。ここで、pre-ECDとは最適なイオン解離条件で実ECDスペクトルを取得するために、条件決めに利用するECDスペクトルである。
(Sequence example when ECD is executed multiple times)
18A to 18G show sequence examples according to Embodiment 1 of the present invention. In the case of the sequence example shown in FIG. 18 (A), a precursor ion is selected after acquisition of a non-fragmented spectrum (indicated as “MS1” in FIG. 18), and the pre-reaction is performed with a reaction time corresponding to the valence and molecular weight. Perform ECD. Thereafter, the optimum reaction time is calculated by comparing the precursor ion intensities contained in the non-fragmented spectrum and the pre-ECD spectrum, respectively, and the ECD spectrum is obtained at the optimum reaction time. Here, pre-ECD is an ECD spectrum used for determining conditions in order to obtain a real ECD spectrum under optimum ion dissociation conditions.
 図18(B)に示すシーケンス例は、液体クロマトグラフィーが質量分析装置の前段に配置される場合に使用する。この装置構成の場合、時間と共にプリカーサイオン強度が変動する。そこで、pre-ECD反応後に、MS1スペクトルを再び取得し、pre-ECD前後のMS1スペクトル中のプリカーサイオン強度の平均値を最適反応時間の算出に利用する。また、ECD反応後のスペクトルは、プリカーサイオン強度のみが必要であるので、全イオンのスペクトルを取得する必要はない。これにより、測定時間の短縮が見込まれる。すなわち、ECD反応後のスペクトルは、プリカーサイオンのみを単離する。この場合、単離過程やイオン輸送の際に起きるロスも考慮される。従って、より正確なイオン強度を測定できる。図18(A)や図18(B)の例のように、時定数τは、pre-ECDを1回だけ実行すれば、すなわち1点の反応時間のデータを取得すれば算出可能である。しかし、精度をより高めるには、反応時間を変えながら複数点のデータを取得すると良い。 The sequence example shown in FIG. 18B is used when the liquid chromatography is arranged in the front stage of the mass spectrometer. In the case of this apparatus configuration, the precursor ion intensity varies with time. Therefore, after the pre-ECD reaction, the MS1 spectrum is obtained again, and the average value of the precursor ion intensity in the MS1 spectrum before and after the pre-ECD is used for calculating the optimum reaction time. In addition, since the spectrum after the ECD reaction needs only the precursor ion intensity, it is not necessary to acquire the spectrum of all ions. Thereby, shortening of the measurement time is expected. That is, only the precursor ion is isolated from the spectrum after the ECD reaction. In this case, losses that occur during the isolation process and ion transport are also taken into account. Therefore, more accurate ionic strength can be measured. As in the examples of FIGS. 18A and 18B, the time constant τ can be calculated by executing pre-ECD only once, that is, by obtaining data of one reaction time. However, in order to further improve the accuracy, it is preferable to acquire a plurality of points of data while changing the reaction time.
 図18(C)は、独立したpre-ECDを複数回実行して各回の時定数τを算出し、平均値化した値から最適な反応時間を算出するシーケンスを示している。これにより、1回のpre-ECD測定よりも信頼性の高い反応時間を算出することができる。また、各pre-ECDの前に必ず(すなわち毎回)、MS1スペクトル(又はプリカーサイオンの単離のみ)を取得することで、信頼性の高いプリカーサイオン残存率を算出することも可能になる。 FIG. 18C shows a sequence in which independent pre-ECD is executed a plurality of times, the time constant τ is calculated each time, and the optimum reaction time is calculated from the averaged value. This makes it possible to calculate a reaction time that is more reliable than a single pre-ECD measurement. In addition, it is possible to calculate a highly reliable precursor ion residual ratio by acquiring the MS1 spectrum (or only isolation of precursor ions) without fail (that is, every time) before each pre-ECD.
 図18(D)は、予め決められた複数の反応時間によってpre-ECDを複数回実行し、所望のプリカーサイオン残存率に最も近い条件で実ECDスペクトルを取得するシーケンスが示してある。 FIG. 18D shows a sequence in which the pre-ECD is executed a plurality of times with a plurality of predetermined reaction times, and an actual ECD spectrum is acquired under the condition closest to the desired precursor ion residual rate.
 図18(E)は、1回目の液体クロマトグラフィー分析において、各イオンのpre-ECDスペクトルを取得し、各イオンに最適な反応時間を算出してデータベース化する。2回目の液体クロマトグラフィー分析ではpre-ECDを実施せず、ECDスペクトルのみを取得するシーケンス例を示している。 FIG. 18 (E) obtains a pre-ECD spectrum of each ion in the first liquid chromatography analysis, calculates an optimal reaction time for each ion, and creates a database. The second liquid chromatography analysis shows a sequence example in which only pre-ECD is not performed and only the ECD spectrum is acquired.
 図19に、サブスタンスPを用いて様々なイオン強度でpre-ECDを実施し、時定数τを求めた結果のグラフを示す。図19の場合、プリカーサイオン量と複数の時定数τとの間には比例関係が認められる(R2 =0.9949)。すなわち、イオン強度の異なるイオンを用い、それぞれpre-ECDスペクトルを取得して時定数τを算出すれば、関数(1次方程式)を求めることができる。これにより、液体クロマトグラフィーのように、プリカーサイオンのイオン量が時間と共に変化する場合でも、イオン量が予測できれば最適な反応時間を算出することができる。 FIG. 19 is a graph showing the results of pre-ECD performed at various ionic strengths using substance P and the time constant τ obtained. In the case of FIG. 19, a proportional relationship is recognized between the amount of precursor ions and a plurality of time constants τ (R 2 = 0.9949). That is, a function (linear equation) can be obtained by using ions having different ionic strengths and obtaining pre-ECD spectra and calculating the time constant τ. Thus, even when the ion amount of the precursor ion changes with time as in liquid chromatography, the optimal reaction time can be calculated if the ion amount can be predicted.
 図18(F)のシーケンスでは、1回目のクロマトグラフィー分析において、各イオンに対して異なるイオン強度で複数回のpre-ECDが実施され、イオン量と時定数τとの関数(1次方程式)の算出に続いて各イオンにおけるイオン強度と最適反応時間との関係をデータベース化する。2回目のクロマトグラフィー分析では、各イオンのプロファイルはほぼ同じになると予測できるので、各イオン強度に対応する最適な反応時間でECDを実施する。 In the sequence of FIG. 18 (F), in the first chromatographic analysis, pre-ECD is performed a plurality of times with different ion intensities for each ion, and a function (primary equation) of ion amount and time constant τ. Following the calculation, the relationship between the ion intensity and the optimum reaction time for each ion is compiled into a database. In the second chromatographic analysis, the profile of each ion can be predicted to be approximately the same, so ECD is performed with the optimal reaction time corresponding to each ion intensity.
 図20に、処理イメージを示す。なお、縦軸はイオン強度であり、横軸は保持時間である。また、各ピークは、多くの場合、左右対称である。このため、1回目のクロマトグラフィー分析でも、イオンクロマトグラフの前半で数点イオン強度が測定できれば、ガウシアン関数等によってそれ以降のイオン強度を予測することは可能である(図21)。なお、図21の縦軸はイオン強度であり、横軸は保持時間である。 Fig. 20 shows the processing image. The vertical axis represents ionic strength and the horizontal axis represents retention time. Moreover, each peak is symmetric in many cases. Therefore, even in the first chromatographic analysis, if several points of ion intensity can be measured in the first half of the ion chromatograph, the subsequent ion intensity can be predicted by a Gaussian function or the like (FIG. 21). In addition, the vertical axis | shaft of FIG. 21 is ionic strength, and a horizontal axis is holding time.
 図18(G)に示すシーケンス例は、まずpre-ECDを取得してあるイオン量での最適時間を算出すると、ECDスペクトルを取得する前にMS1スペクトルを取得する例である。ここで、LIT4での単位蓄積時間当たりのプリカーサイオン量を算出してLIT4における蓄積時間を調節すれば、ECD反応するプリカーサイオンを一定にすることができる。これにより、液体クロマトグラフィーのように、プリカーサイオンのイオン量が時間と共に変化する場合でも、各イオンに最適な反応時間でECD分析することができる。もっとも、LIT4の代わりに、ECDセル6で蓄積時間を調節しても良い。 The sequence example shown in FIG. 18 (G) is an example in which the MS1 spectrum is acquired before acquiring the ECD spectrum when the optimum time is calculated with the ion amount for which pre-ECD has been acquired. Here, if the amount of precursor ions per unit accumulation time in LIT4 is calculated and the accumulation time in LIT4 is adjusted, the precursor ions that undergo ECD reaction can be made constant. Thereby, even when the ion amount of the precursor ion changes with time as in liquid chromatography, ECD analysis can be performed with an optimum reaction time for each ion. However, the storage time may be adjusted by the ECD cell 6 instead of the LIT4.
(実施の形態の効果)
 前述した実施の形態に係る質量分析方法の適用により、各プリカーサイオンに対して最適なイオン解離強度データを蓄積することができる。これらのデータは、質量、価数、電子エネルギー毎にデータとして格納することができる。これは初めて分析するイオンのイオン解離強度の指標となる。これにより、最適イオン解離強度を導き出すまでの時間を短縮することができる。
(Effect of embodiment)
By applying the mass spectrometry method according to the above-described embodiment, optimum ion dissociation intensity data can be accumulated for each precursor ion. These data can be stored as data for each mass, valence, and electron energy. This is an index of the ion dissociation intensity of ions to be analyzed for the first time. Thereby, the time required to derive the optimum ion dissociation strength can be shortened.
 また、これらのデータを、横軸に日付、縦軸に反応時間とする図表にプロットした場合、電子源フィラメントの消耗によって時間の経過とともに反応時間の増加が見込まれる。反応時間が延びるとスループットが落ちるので、反応時間にある閾値を設定し、閾値を超えた時点で電子源フィラメントの交換時期を、警報音その他の報知技術を使用してオペレータに促しても良い。 Also, when these data are plotted in a chart with the date on the horizontal axis and the reaction time on the vertical axis, the reaction time is expected to increase over time due to the exhaustion of the electron source filament. Since the throughput decreases when the reaction time is extended, a threshold value for the reaction time may be set, and when the threshold value is exceeded, the operator may be prompted to replace the electron source filament using an alarm sound or other notification technology.
(B)実施の形態2:イオン解離手法としてECD法を用いる場合(その2)
 図13に、本発明の実施の形態2に基づくECD反応制御フローを示す。なお、図13には、図1との対応部分に同一符号を付して示している。
(B) Embodiment 2: When using an ECD method as an ion dissociation method (part 2)
FIG. 13 shows an ECD reaction control flow based on the second embodiment of the present invention. In FIG. 13, the same reference numerals are given to the portions corresponding to those in FIG. 1.
 前述した実施の形態1では、測定中に電子エネルギーを変化させない場合を想定する。しかし、図6で示したように、物質の性質によっては、高エネルギー電子を用いなければ、解離できない場合がある。例えばニューロペプチドY(5価)は、所望のプリカーサイオン残存率0.3になるように反応時間を設定してCECDを実施しても、60%のシーケンスカバー率しか得られない。同様に、2価のリン酸化ペプチドVNQIGTLSESIK(Sがリン酸化修飾部位)をプリカーサイオン残存率0.3になるように反応時間を設定し、CECDを実施した場合、55%のシーケンスカバー率しか得られなかった。 In the first embodiment described above, it is assumed that the electron energy is not changed during the measurement. However, as shown in FIG. 6, depending on the nature of the substance, it may not be dissociated unless high-energy electrons are used. For example, for neuropeptide Y (pentavalent), only 60% sequence coverage can be obtained even if CECD is performed with the reaction time set to a desired precursor ion residual rate of 0.3. Similarly, when the reaction time was set so that the remaining amount of precursor ion remaining 0.3 for the divalent phosphorylated peptide VNQIGTLSESIK (S is the phosphorylated modification site) and CECD was performed, only 55% sequence coverage was obtained. I couldn't.
 どちらのサンプルでも、チャージリデューススピーシーズ比は約0.2であった。しかし、プリカーサイオン残存率0.3になるように反応時間を設定し、HECD(10eV)を実施すると、ニューロペプチドYの5価イオンでは、チャージリデューススピーシーズ比は約0.1に減少し、シーケンスカバー率は86%に上昇した。一方、リン酸化ペプチドでは、チャージリデューススピーシーズ比は約0.01に減少し、シーケンスカバー率は100%になった。 In both samples, the charge-reduced species ratio was about 0.2. However, when the reaction time is set so that the precursor ion residual rate becomes 0.3 and HECD (10 eV) is performed, the charge-reducing species ratio is reduced to about 0.1 for the pentavalent ion of neuropeptide Y. Coverage increased to 86%. On the other hand, with the phosphorylated peptide, the charge-reduced species ratio was reduced to about 0.01 and the sequence coverage was 100%.
 このようにCECDでは、チャージリデューススピーシーズが多く残存し、十分に解離できない場合があるため、チャージリデューススピーシーズ比を指標に電子エネルギーを上昇させ、データを取得しても良い。 As described above, in the CECD, there are cases where a large amount of charge-reducing species remains and cannot be sufficiently dissociated. Therefore, data may be acquired by increasing the electron energy using the charge-reducing species ratio as an index.
 ここで、プリカーサイオンの残存率が所望の範囲内であった場合(315)、全体処理部10は、所望のチャージリデューススピーシーズ比(ECDスペクトルにおいて、全イオンに占めるチャージリデューススピーシーズの割合)であるか否かを判定する。ここで、チャージリデューススピーシーズのm/z値は、プリカーサイオンの分子量をM、プロトン化[H]した価数をzとすると、[M+z](z-1)+、[M+z](z-2)+と続く。従って、この位置に存在するイオン量の和を全イオン量で割れば、チャージリデューススピーシーズ比を算出できる。 Here, when the remaining ratio of the precursor ions is within a desired range (315), the overall processing unit 10 has a desired charge-reduced species ratio (a ratio of charge-reduced species occupying all ions in the ECD spectrum). It is determined whether or not. Here, the m / z value of the charge-reducing species is [M + z] (z−1) + , [M + z] (z− , where M is the molecular weight of the precursor ion and z is the valence of protonation [H + ]. 2) Continue with + . Therefore, the charge-reduced species ratio can be calculated by dividing the sum of the amounts of ions present at this position by the total amount of ions.
 チャージリデューススピーシーズ比がある特定値以下である場合(316)、全体処理部10は、非フラグメント化スペクトルの取得に戻る。チャージリデューススピーシーズ比がある特定値以下でない場合(317)、全体処理部10は、ある特定値イオントラップ電圧を上昇させ、HECDでの分析を実行する(318)。また、HECDの代わりにAI-ECDを用いても構わない。その他の制御フローは実施の形態1と同様である。 When the charge reduce species ratio is equal to or less than a specific value (316), the overall processing unit 10 returns to the acquisition of the non-fragmented spectrum. If the charge-reduced species ratio is not less than or equal to a specific value (317), the overall processing unit 10 raises a specific value ion trap voltage and executes an HECD analysis (318). Further, AI-ECD may be used instead of HECD. Other control flows are the same as those in the first embodiment.
(C)実施の形態3:イオン解離手法としてECD法を用いる場合(その3)
 図14に、本発明の実施の形態3に基づくECD反応制御フローを示す。なお、図14には、図1との対応部分に同一符号を付して示している。
(C) Embodiment 3: When ECD method is used as an ion dissociation method (part 3)
FIG. 14 shows an ECD reaction control flow based on Embodiment 3 of the present invention. In FIG. 14, the same reference numerals are given to the portions corresponding to FIG. 1.
 前述した実施の形態2では、チャージリデューススピーシーズ比を指標に、電子エネルギーを上昇させる場合について説明した。しかし、フラグメントイオン比とフラグメント種類のどちらか一方、又は両方を指標として、電子エネルギーを上昇させても良い。 In the second embodiment described above, the case where the electron energy is increased using the charge-reduced species ratio as an index has been described. However, the electron energy may be increased by using one or both of the fragment ion ratio and the fragment type as an index.
 フラグメントイオン比やフラグメント種類がある特定値以上である場合(319)、全体処理部10は、非フラグメント化スペクトルの取得に戻る。フラグメントイオン比やフラグメント種類がある特定値以上でない場合(320)、全体処理部10は、ある特定値におけるイオントラップ電圧を上昇させ、HECD法による分析を実行する(318)。また、HECD法の代わりにAI-ECD法を用いても構わない。翻訳後修飾が想定されない場合、フラグメントの種類はペプチド結合の数に比例する。例えば10アミノ酸からなるペプチドでは、ペプチド結合は9箇所存在する。従って、全てのペプチド結合が解離した場合、cフラグメントが9つとzフラグメントが9つの計18個のフラグメントイオンが想定される。平均アミノ酸分子量は110なので、プリカーサイオンの分子量からおよそのアミノ酸数を算出させることによって、所望のフラグメント種類をプリカーサイオンの分子量ごとに設定するのが望ましい。HECD法やAI-ECD法の場合は、wやuイオンが検出される場合があるので、その可能性も考慮に入れるのが望ましい。その他の制御フローは実施の形態1と同様である。 When the fragment ion ratio or the fragment type is a certain value or more (319), the overall processing unit 10 returns to the acquisition of the non-fragmented spectrum. If the fragment ion ratio or the fragment type is not greater than a certain value (320), the overall processing unit 10 increases the ion trap voltage at a certain value and performs analysis by the HECD method (318). Further, the AI-ECD method may be used instead of the HECD method. If post-translational modification is not envisaged, the type of fragment is proportional to the number of peptide bonds. For example, a peptide consisting of 10 amino acids has 9 peptide bonds. Therefore, when all the peptide bonds are dissociated, a total of 18 fragment ions with 9 c fragments and 9 z fragments are assumed. Since the average amino acid molecular weight is 110, it is desirable to set the desired fragment type for each precursor ion molecular weight by calculating the approximate number of amino acids from the molecular weight of the precursor ion. In the case of the HECD method or the AI-ECD method, w or u ions may be detected, so it is desirable to take that possibility into consideration. Other control flows are the same as those in the first embodiment.
(D)実施の形態4:イオン解離手法としてECD法を用いた場合(その4)
 図15に、本発明の実施の形態4に基づくECD反応制御フローを示す。図15には、図1との対応部分に同一符号を付して示している。
(D) Embodiment 4: When ECD method is used as an ion dissociation method (part 4)
FIG. 15 shows an ECD reaction control flow based on the fourth embodiment of the present invention. In FIG. 15, parts corresponding to those in FIG.
 前述した実施の形態3の場合には、フラグメントイオン比とフラグメント種類のどちらか一方、又は両方を指標として電子エネルギーを上昇させる場合について説明した。しかし、リアルタイムでアミノ酸配列解析(デノボ解析)を実施し、ある特定値以上のアミノ酸配列の解析ができているかを指標に用いて、電子エネルギーを上昇させても良い。 In the case of the above-described third embodiment, the case where the electron energy is increased using one or both of the fragment ion ratio and the fragment type as an index has been described. However, amino acid sequence analysis (de novo analysis) may be performed in real time, and the electron energy may be increased using as an index whether or not an amino acid sequence greater than a specific value can be analyzed.
 ある特定値以上のアミノ酸配列解析が出来ている場合(321)、全体処理部10は、非フラグメント化スペクトルの取得に戻る。一方、ある特定値以上のアミノ酸配列解析が出来ていない場合(322)、全体処理部10は、ある特定値にイオントラップ電圧を上昇させ、HECD法による分析を実行する(318)。また、HECD法の代わりにAI-ECD法を用いても構わない。その他の制御フローは、実施の形態1と同様である。 When the amino acid sequence analysis of a certain specific value or more has been completed (321), the overall processing unit 10 returns to the acquisition of the non-fragmented spectrum. On the other hand, when the amino acid sequence analysis of a certain specific value or more has not been completed (322), the overall processing unit 10 increases the ion trap voltage to a certain specific value, and executes analysis by the HECD method (318). Further, the AI-ECD method may be used instead of the HECD method. Other control flows are the same as those in the first embodiment.
(E)実施の形態5:イオン解離手法としてECD法を用いた場合(その5)
 前述した実施形態1~4では、各イオンをECDで解離し、その解離状況から反応時間、電子量制御電圧、電子エネルギーを制御する実施形態を示した。本実施形態では、予めこれらの分析条件を決定し、これらの分析条件に基づいて質量分析を実行する。
(E) Embodiment 5: ECD method is used as an ion dissociation method (part 5)
In the first to fourth embodiments described above, the embodiments are described in which each ion is dissociated by ECD, and the reaction time, the electron amount control voltage, and the electron energy are controlled based on the dissociation state. In this embodiment, these analysis conditions are determined in advance, and mass spectrometry is executed based on these analysis conditions.
(質量分析システムの構成)
 図27に、イオンの解離にECD法を用いる質量分析システムの構成例を示す。分析対象となる試料1は、試料分離装置2(図では、液体クロマトグラフィー(LC))の前処理により分離される。なお、試料分離装置2には、ガスクロマトグラム(GC)を用いることもできる。
(Configuration of mass spectrometry system)
FIG. 27 shows a configuration example of a mass spectrometry system that uses the ECD method for ion dissociation. The sample 1 to be analyzed is separated by a pretreatment of a sample separation device 2 (in the figure, liquid chromatography (LC)). Note that a gas chromatogram (GC) can also be used for the sample separation device 2.
 分離された試料は、イオン源3においてイオン化され、質量分析装置に導入される。非フラグメント化スペクトル取得の場合、導入されたイオンは、リニアイオントラップ(LIT)4に蓄積され、全イオン(又はある特定のイオン)が単離され、排出される。排出されたイオンは、TOF検出器8で検出される。TOF検出器8の前段には高分解能であるTOF7が存在する。 The separated sample is ionized in the ion source 3 and introduced into the mass spectrometer. In the case of non-fragmented spectrum acquisition, the introduced ions are accumulated in a linear ion trap (LIT) 4 and all ions (or certain ions) are isolated and ejected. The discharged ions are detected by the TOF detector 8. A TOF 7 having a high resolution is present in front of the TOF detector 8.
 フラグメント化スペクトル取得の場合、質量分析システムに導入されたイオンはLIT4に蓄積され、ある特定のイオンが単離された状態で排出される。排出されたイオンはQディフレクター5を経由し、ECDセル6に入る。ここで、電子源104から照射された電子によりある特定のイオン解離強度でECD反応が行われ、イオンは排出される。排出されたイオンは再びQディフレクター5を経由し、TOF7でイオンの質量電荷比m/zに応じて分離される。イオンガイド2001では照射された電子電流値を測定する。また電子量制御電圧103を制御することでECDセル6に入射する電子量を調節する。 In the case of fragmentation spectrum acquisition, ions introduced into the mass spectrometry system are accumulated in LIT4, and certain ions are discharged in an isolated state. The discharged ions enter the ECD cell 6 via the Q deflector 5. Here, the ECD reaction is performed at a specific ion dissociation intensity by the electrons irradiated from the electron source 104, and the ions are ejected. The discharged ions again pass through the Q deflector 5 and are separated by the TOF 7 according to the mass-to-charge ratio m / z of the ions. The ion guide 2001 measures the irradiated electron current value. Further, the amount of electrons incident on the ECD cell 6 is adjusted by controlling the electron amount control voltage 103.
 イオン源3は、エレクトロスプレイイオン源、大気圧化学イオン化によるイオン源、マトリックス支援レーザ脱離イオン源、電気衝撃イオン源、化学イオン化によるイオン源、フィールドイオン化によるイオン源から選択される。 The ion source 3 is selected from an electrospray ion source, an ion source based on atmospheric pressure chemical ionization, a matrix-assisted laser desorption ion source, an electric impact ion source, an ion source based on chemical ionization, and an ion source based on field ionization.
 LIT4は多くのイオンを蓄積でき、高感度検出が可能である。しかし、LIT4に代えて、三次元四重極イオントラップ、四重極質量フィルター、コリジョンセル、フーリエ変換イオンサイクロトロン共鳴質量分離部を用いても良い。 LIT4 can accumulate a large number of ions and can be detected with high sensitivity. However, instead of LIT4, a three-dimensional quadrupole ion trap, a quadrupole mass filter, a collision cell, or a Fourier transform ion cyclotron resonance mass separation unit may be used.
 ECDセル6は、LIT、三次元四重極イオントラップ、コリジョンセル、四重極質量フィルター、フーリエ変換イオンサイクロトロン共鳴質量分析部の中から選択される。また、本装置構成では、イオン解離方法としてECD法を用いているが、EDD法を用いても良い。この場合、イオン化は負イオンモードで実施する。 The ECD cell 6 is selected from LIT, a three-dimensional quadrupole ion trap, a collision cell, a quadrupole mass filter, and a Fourier transform ion cyclotron resonance mass spectrometer. In this apparatus configuration, the ECD method is used as the ion dissociation method, but the EDD method may be used. In this case, ionization is performed in the negative ion mode.
 TOF7は高分解能で質量精度も高いので好ましいが、四重極質量フィルター、イオントラップ、磁場型質量分析器、フーリエ変換イオンサイクロトロン共鳴質量分析器、オービトラップ型分析器でも構わない。電子を供給するための電子源は、フィラメントでもディスペンサーカソードでも構わない。 TOF7 is preferable because it has high resolution and high mass accuracy, but a quadrupole mass filter, ion trap, magnetic field type mass analyzer, Fourier transform ion cyclotron resonance mass analyzer, or orbitrap type analyzer may be used. The electron source for supplying electrons may be a filament or a dispenser cathode.
 TOF検出器8で検出された各イオンは、m/z値と共に全体処理部10に与えられる。全体処理部10は、後述するようなデータ整理及び又はデータ処理を実行する。なお、全体処理部10は、ハードウェア的な回路構造を有する場合だけでなく、コンピュータシステム上で動作するプログラムの処理機能を通じても実現することができる。全体処理部10の処理機能の一つであるイオン解離パラメータ決定部12は、データベース2102、データベース更新部2101、プリカーサイオン強度測定部15、電子電流測定部2100、反応時間算出部1000で構成される。この全体処理部10が、特許請求の範囲における「計算処理部」に対応する。 Each ion detected by the TOF detector 8 is given to the overall processing unit 10 together with the m / z value. The overall processing unit 10 performs data organization and / or data processing as will be described later. The overall processing unit 10 can be realized not only when it has a hardware circuit structure but also through a processing function of a program that operates on a computer system. The ion dissociation parameter determination unit 12 that is one of the processing functions of the overall processing unit 10 includes a database 2102, a database update unit 2101, a precursor ion intensity measurement unit 15, an electron current measurement unit 2100, and a reaction time calculation unit 1000. . The entire processing unit 10 corresponds to a “calculation processing unit” in the claims.
 プリカーサイオン強度測定部15は、非フラグメント化スペクトル内の各プリカーサイオン強度、あるいは単離後のプリカーサイオン強度を測定する。 The precursor ion intensity measuring unit 15 measures each precursor ion intensity in the non-fragmented spectrum or the isolated precursor ion intensity.
 電子電流測定部2100では、電子源104から照射された電子電流値を測定する。 The electron current measuring unit 2100 measures the value of the electron current irradiated from the electron source 104.
 反応時間算出部1000は、電子電流値とプリカーサイオン強度の情報に基づいて最適反応時間を算出する。 The reaction time calculation unit 1000 calculates the optimum reaction time based on the information on the electron current value and the precursor ion intensity.
 データベース更新部2101は、データベース2102に記載の反応時間を、反応時間算出部1000で算出された最適反応時間に書き換える(更新する)。分析対象のイオンがデータベース2102に記載されている場合、質量分析の開始に先立って、当該イオンに対応付けられたECD反応条件が、データベース2102から制御部9を介してECDセル6に与えられる。すなわち、ECDセル6が予め定めた分析条件に制御される。 The database update unit 2101 rewrites (updates) the reaction time described in the database 2102 to the optimum reaction time calculated by the reaction time calculation unit 1000. When ions to be analyzed are described in the database 2102, ECD reaction conditions associated with the ions are given to the ECD cell 6 from the database 2102 via the control unit 9 prior to the start of mass analysis. That is, the ECD cell 6 is controlled to a predetermined analysis condition.
 質量分析スペクトル、非フラグメント化スペクトルとフラグメント化スペクトル内のプリカーサイオン強度、ECD反応時間、電子エネルギー、ECDセル6を制御するパラメータ、LIT4の制御パラメータ、データベース等はデータ表示部18に表示される。全体処理部10に対する所望のパラメータは、パラメータ入力部19を通じて入力される。 Mass spectrometry spectrum, non-fragmentation spectrum and precursor ion intensity in fragmentation spectrum, ECD reaction time, electron energy, parameters for controlling ECD cell 6, control parameters for LIT4, database, etc. are displayed on data display section 18. Desired parameters for the overall processing unit 10 are input through the parameter input unit 19.
(処理動作の概要)
 ここで、分析対象となるイオンが分析前に決定していない場合における操作方法を、操作画面の表示例である図28を用いて説明する。この場合、オペレータは、不図示の入力装置を通じてデータ依存解析モードを選択する。次に、オペレータは、分析対象とする価数(z)を選択し(図28では2価から4価までを選択)、価数ごとにECD反応時間、電子エネルギー、電子量制御電圧を設定する。設定されたパラメータがデータベース2102に保存された後、質量分析装置による分析が開始される。分析中に選択された価数のイオンが出現した場合、設定されたECD分析条件に従ってECD反応が実行される。
(Outline of processing operation)
Here, an operation method when ions to be analyzed are not determined before analysis will be described with reference to FIG. 28 which is a display example of an operation screen. In this case, the operator selects the data dependence analysis mode through an input device (not shown). Next, the operator selects the valence (z) to be analyzed (selects from 2 to 4 in FIG. 28), and sets the ECD reaction time, electron energy, and electron quantity control voltage for each valence. . After the set parameters are stored in the database 2102, analysis by the mass spectrometer is started. When ions of the selected valence appear during the analysis, the ECD reaction is performed according to the set ECD analysis conditions.
 次に、分析対象とするイオンが分析前に決定している場合における操作方法を、操作画面の表示例である図29を用いて説明する。この場合、オペレータは、不図示の入力装置を通じてデータベース(DB)モードを選択する。次に、オペレータは、使用するDBを選択(図29ではmouse_plasma_Trp_f3を選択)する。このとき、選択されたDBのパラメータの内容が、データ表示部18に表示される。DBには、各イオンのクロマトグラフィーでの保持時間、m/z値、価数(z)、イオン強度、ECD反応時間、電子エネルギー、電子量制御電圧、電子電流基準値が記載されている。このうち、ECD反応時間、電子エネルギー、電子量制御電圧は、ECD反応条件を規定する項目である。すなわち、DBは、あるイオンが予め記載したイオン強度である場合に適用されるECD反応条件を記載する。電子電流基準値については後述する。オペレータは、データ表示部18に表示されたECD反応条件に所望の値を入力する。変更後の値が保存されると、質量分析装置によるイオンの分析処理が実行される。 Next, an operation method when ions to be analyzed are determined before analysis will be described with reference to FIG. 29 which is a display example of an operation screen. In this case, the operator selects a database (DB) mode through an input device (not shown). Next, the operator selects a DB to be used (selects mouse_plasma_Trp_f3 in FIG. 29). At this time, the contents of the parameter of the selected DB are displayed on the data display unit 18. In DB, the retention time in chromatography of each ion, m / z value, valence (z), ionic strength, ECD reaction time, electron energy, electron amount control voltage, and electron current reference value are described. Among these, ECD reaction time, electron energy, and electron quantity control voltage are items that define ECD reaction conditions. That is, DB describes the ECD reaction conditions that are applied when a certain ion has a previously described ionic strength. The electron current reference value will be described later. The operator inputs a desired value for the ECD reaction condition displayed on the data display unit 18. When the changed value is stored, an ion analysis process is performed by the mass spectrometer.
 ところで、イオン強度が図19で示したように変化する場合、変化に対応させて反応時間や電子量制御電圧を変化させる必要がある。図29に示すデータベースを用いる場合の処理フローを図30に示す。 Incidentally, when the ionic strength changes as shown in FIG. 19, it is necessary to change the reaction time and the electron amount control voltage in accordance with the change. FIG. 30 shows a processing flow when the database shown in FIG. 29 is used.
 まず、使用するデータベースをデータ表示部18の画面上で選択し、値の変更を行った後にデータベース2102に保存する(3000)。この後、質量分析装置によるイオンの分析が開始される(3001)。分析開始と同時に、全イオンスペクトルが取得される(304)。取得された情報に基づいて、全体処理部10は、保持時間、m/z、価数、イオン強度を含むピークリストを作成する(3003)。 First, the database to be used is selected on the screen of the data display unit 18, and after changing the value, it is stored in the database 2102 (3000). Thereafter, analysis of ions by the mass spectrometer is started (3001). Simultaneously with the start of analysis, a total ion spectrum is acquired (304). Based on the acquired information, the overall processing unit 10 creates a peak list including the retention time, m / z, valence, and ion intensity (3003).
 次に、全体処理部10は、インクルージョンDB検索を実行する(3005)。全体処理部10は、作成されたピークリストとデータベース2102を照合し、保持時間、m/z、価数のすべてが一致するイオンが存在するか否かを検索する。一致するイオンが存在しない場合(3007)、全体処理部10は、全イオンスペクトルの取得処理(304)に戻る。一致するイオンが存在した場合(3006)、全体処理部10は、ピークリスト内のイオン強度とデータベース2102に記載されているイオン強度を比較し、ある一定値以上ずれているか否かを比較する。ここでの一定値は、オペレータが、分析実行前に決定する。 Next, the overall processing unit 10 executes an inclusion DB search (3005). The overall processing unit 10 collates the created peak list with the database 2102 and searches whether or not there is an ion whose retention time, m / z, and valence match. If there is no matching ion (3007), the overall processing unit 10 returns to the acquisition process (304) of the total ion spectrum. If there is a matching ion (3006), the overall processing unit 10 compares the ion intensity in the peak list with the ion intensity described in the database 2102 and compares whether or not a certain value has deviated. The constant value here is determined by the operator before the analysis is executed.
 ここで、値が一定値以上ずれていなかった場合(3008)、全体処理部10は、データベース2102に記載されているECD反応条件を制御部9に与える。制御部9は、当該ECD反応条件に基づいてECDセルを制御する。全体処理部10は、TOF検出器8を通じてECDスペクトルを取得する(311)。この後、全体処理部10は、全イオンスペクトルの取得処理(304)に戻る。ECDスペクトルの取得は複数回でも構わない。 Here, when the value does not deviate more than a certain value (3008), the overall processing unit 10 gives the ECD reaction conditions described in the database 2102 to the control unit 9. The control unit 9 controls the ECD cell based on the ECD reaction conditions. The overall processing unit 10 acquires an ECD spectrum through the TOF detector 8 (311). Thereafter, the overall processing unit 10 returns to the acquisition process (304) of the total ion spectrum. The ECD spectrum may be acquired multiple times.
 一方、値が一定値以上ずれていた場合(3009)、全体処理部10は、図19を一例とするグラフを用いてECD反応時間を補正する、又は、図12を一例とするグラフを用いて電子量制御電圧を補正する(3002)。全体処理部10は、補正後のECD反応条件を制御部9に与える。制御部9は、当該ECD反応条件に基づいてECDセルを制御する。全体処理部10は、TOF検出器8を通じてECDスペクトルを取得する(311)。この後、全体処理部10は、全イオンスペクトルの取得処理(304)に戻る。 On the other hand, when the value has deviated by a certain value or more (3009), the overall processing unit 10 corrects the ECD reaction time using the graph of FIG. 19 as an example, or uses the graph of FIG. 12 as an example. The electron quantity control voltage is corrected (3002). The overall processing unit 10 gives the corrected ECD reaction condition to the control unit 9. The control unit 9 controls the ECD cell based on the ECD reaction conditions. The overall processing unit 10 acquires an ECD spectrum through the TOF detector 8 (311). Thereafter, the overall processing unit 10 returns to the acquisition process (304) of the total ion spectrum.
 図29の場合には、あるイオンについて1つのイオン強度が登録され、当該組み合わせについて1つのECD反応条件が登録されたデータベース2102を利用する場合について説明した。しかし、あるイオンにおいて複数のイオン強度が登録され、各イオン強度についてそれぞれ固有のECD反応条件が登録されたデータベース2102を利用することもできる。この場合、イオン強度の変化に応じて、反応時間や電子量制御電圧の補正を行う必要はない。 In the case of FIG. 29, the case where the database 2102 in which one ion intensity is registered for a certain ion and one ECD reaction condition is registered for the combination has been described. However, it is also possible to use a database 2102 in which a plurality of ion intensities are registered for a certain ion and unique ECD reaction conditions are registered for each ion intensity. In this case, it is not necessary to correct the reaction time and the electron amount control voltage in accordance with the change in ionic strength.
 この種のデータベース2102の一例を図31に示す。図31の場合、m/z値が1110.3のイオンについて、3種類のイオン強度とそれぞれに対応する3種類のECD反応条件(ここでは、ECD反応時間)とが登録されている。 An example of this type of database 2102 is shown in FIG. In the case of FIG. 31, three types of ion intensity and three types of ECD reaction conditions (here, ECD reaction time) corresponding to each of ions having an m / z value of 1110.3 are registered.
 この例の場合、イオン強度が1000以下の場合に適用するECD反応時間として3msが登録されている。また、イオン強度が1000~3000の場合に適用するECD反応時間として5msが登録されている。また、イオン強度が3000以上の場合に適用するECD反応時間として8msが登録されている。 In this example, 3 ms is registered as the ECD reaction time applied when the ionic strength is 1000 or less. Further, 5 ms is registered as an ECD reaction time to be applied when the ionic strength is 1000 to 3000. Further, 8 ms is registered as an ECD reaction time applied when the ion intensity is 3000 or more.
 なお、図31の場合には、電子量制御電圧を固定値とし、イオン強度に応じて異なる値のECD反応時間を設定しているが、ECD反応時間を固定値とし、イオン強度に応じて異なる値の電子量制御電圧を設定しても良い。 In the case of FIG. 31, the electron control voltage is set to a fixed value, and different values of ECD reaction time are set according to the ion intensity. However, the ECD reaction time is set to a fixed value and varies depending on the ion intensity. A value electron quantity control voltage may be set.
 この図31に示すデータ構造のデータベース2102を使用する場合の処理フローを図32に示す。 FIG. 32 shows a processing flow when the database 2102 having the data structure shown in FIG. 31 is used.
 まず、使用するデータベースをデータ表示部18の画面上で選択し、値の変更を行った後にデータベース2102に保存する(3000)。この後、質量分析装置によるイオンの分析が開始される(3001)。分析開始と同時に、全イオンスペクトルが取得される(304)。取得された情報に基づいて、全体処理部10は、保持時間、m/z、価数、イオン強度を含むピークリストを作成する(3003)。 First, the database to be used is selected on the screen of the data display unit 18, and after changing the value, it is stored in the database 2102 (3000). Thereafter, analysis of ions by the mass spectrometer is started (3001). Simultaneously with the start of analysis, a total ion spectrum is acquired (304). Based on the acquired information, the overall processing unit 10 creates a peak list including the retention time, m / z, valence, and ion intensity (3003).
 次に、全体処理部10は、インクルージョンDB検索を実行する(3005)。全体処理部10は、作成されたピークリストとデータベース2102を照合し、保持時間、m/z、価数のすべてが一致するイオンが存在するか否かを検索する。一致するイオンが存在しない場合(3007)、全体処理部10は、全イオンスペクトルの取得処理(304)に戻る。一致するイオンが存在した場合(3006)、全体処理部10は、ピークリスト内のイオン強度がデータベース2102も予め記載されたどのイオン強度範囲に当たるかを判定し、当てはまるECD反応時間を制御部9に与える。制御部9は、当該ECD反応条件に基づいてECDセルを制御する。全体処理部10は、TOF検出器8を通じてECDスペクトルを取得する(3006)。この後、全体処理部10は、全イオンスペクトルの取得処理(304)に戻る。 Next, the overall processing unit 10 executes an inclusion DB search (3005). The overall processing unit 10 collates the created peak list with the database 2102 and searches whether or not there is an ion whose retention time, m / z, and valence match. If there is no matching ion (3007), the overall processing unit 10 returns to the acquisition process (304) of the total ion spectrum. If there is a matching ion (3006), the overall processing unit 10 determines which ion intensity range in which the ion intensity in the peak list corresponds to the database 2102 as well as the ECD reaction time to be applied to the control unit 9. give. The control unit 9 controls the ECD cell based on the ECD reaction conditions. The overall processing unit 10 acquires an ECD spectrum through the TOF detector 8 (3006). Thereafter, the overall processing unit 10 returns to the acquisition process (304) of the total ion spectrum.
(電子電流基準値の説明とフロー)
 図11で説明したように、ECDでは、電子源104から電子が照射される。この電子量の供給が常に一定でなければ、再現性の高いECD反応を実行することができない。例えば分析毎に照射される電子量が変動する場合、以前の分析に使用したデータベース2102の条件を適用しても反応時間の過多や不足が発生し、以前と同様のデータ取得は困難となる。従って、照射される電子量のモニターは、データベースを利用する実施例において必須の条件である。
(Description and flow of electronic current reference value)
As described with reference to FIG. 11, electrons are irradiated from the electron source 104 in the ECD. If the supply of the amount of electrons is not always constant, highly reproducible ECD reaction cannot be performed. For example, when the amount of electrons irradiated for each analysis varies, even if the conditions of the database 2102 used for the previous analysis are applied, excessive or insufficient reaction time occurs, making it difficult to obtain the same data as before. Therefore, the monitoring of the amount of electrons irradiated is an essential condition in the embodiment using the database.
 図33に、電子量(電子電流値)をモニターする電子電流測定部2100(図27)の装置構成例を示す。この形態の場合、電子電流測定部2100として、イオンガイドの機能を有するLIT2001を使用する。図33に示すように、LIT2001は、電子源104から見て端電極100の外側に設置する。LIT4を通過した一部の電子は、LIT2001内に形成される高周波電場の影響により中心軸から軌道を変え、いずれかの電極に衝突する。電子の衝突により、LIT2001を構成する電極の電圧が変動する。この電極電圧の変動を測定することにより、電子源104から照射された電子電流量を見積もることができる(2002)。もっとも、電子電流の測定は、他の方法を用いても構わない。 FIG. 33 shows a device configuration example of an electron current measuring unit 2100 (FIG. 27) that monitors the amount of electrons (electron current value). In the case of this embodiment, LIT2001 having an ion guide function is used as the electron current measuring unit 2100. As shown in FIG. 33, the LIT 2001 is installed outside the end electrode 100 when viewed from the electron source 104. Some of the electrons that have passed through LIT4 change their trajectory from the central axis due to the influence of the high-frequency electric field formed in LIT2001, and collide with one of the electrodes. The voltage of the electrodes constituting the LIT 2001 varies due to the collision of electrons. By measuring the fluctuation of the electrode voltage, the amount of electron current irradiated from the electron source 104 can be estimated (2002). However, other methods may be used for measuring the electron current.
 分析中に電子電流を絶えずモニターすることにより、一定量の電子が供給されているか否かを判定することが可能である。電子源104から照射される電子量を一定に保つ方法には、電子源104に印加する電圧を調節する方法がある。しかし、電子源104に印加する電圧を変化させると、電子電流が安定するまでに10分以上かかることがある。一方、クロマトグラフィーでは、数10秒の間に溶出されるイオンが切り替わる。従って、試料分離装置2にクロマトグラフィーを用いる場合には、電子源104の印加電圧を変化させる方法を適用しても再現性を高めることはできない。 電子 It is possible to determine whether or not a certain amount of electrons is being supplied by constantly monitoring the electron current during analysis. As a method of keeping the amount of electrons irradiated from the electron source 104 constant, there is a method of adjusting a voltage applied to the electron source 104. However, when the voltage applied to the electron source 104 is changed, it may take 10 minutes or more for the electron current to stabilize. On the other hand, in chromatography, ions eluted in several tens of seconds are switched. Therefore, when chromatography is used for the sample separation device 2, the reproducibility cannot be improved even if a method of changing the applied voltage of the electron source 104 is applied.
 そこで、本形態例の場合には、再現性の高いECD反応を実現するために、ECD反応時の電子電流値に応じてECD反応時間や電子量制御電極103の電圧値を変化させる。 Therefore, in the case of this embodiment, in order to realize a highly reproducible ECD reaction, the ECD reaction time and the voltage value of the electron amount control electrode 103 are changed according to the electron current value during the ECD reaction.
 図34に、モニターされた電子電流値に基づいてECD反応時間を補正し、再現性の高いECD反応を実現させるための処理フローを示す。 FIG. 34 shows a processing flow for correcting the ECD reaction time based on the monitored electron current value and realizing a highly reproducible ECD reaction.
 まず、使用するデータベースをデータ表示部18の画面上で選択し、値の変更を行った後にデータベース2102に保存する(3000)。この後、質量分析装置によるイオンの分析が開始される(3001)。 First, the database to be used is selected on the screen of the data display unit 18, and after changing the value, it is stored in the database 2102 (3000). Thereafter, analysis of ions by the mass spectrometer is started (3001).
 分析の開始と同時に、LIT2001は、電子源104から照射される電子電流値を測定する(3010)。 Simultaneously with the start of the analysis, the LIT 2001 measures the value of the electron current irradiated from the electron source 104 (3010).
 全体処理部10は、測定値がデータベースに記載の電子電流基準値(例えば0.6μA)とある一定値(例えば±0.02μA)以上ずれているか否かを判定する。ある一定値以上ずれていない場合(3011)、全体処理部10は、電子電流値の測定3010に戻る。ある一定値以上ずれていた場合(3011)、全体処理部10は、ECD反応時間を自動的に補正する(3013)。例えば電子電流基準値よりも0.05μA高い場合、全体処理部10は、データベース2102に記載のECD反応時間から事前に定めた値(例えば1ms)を差し引いた値に補正する。反対に、電子電流基準値よりも0.05μA低い高い場合、全体処理部10は、データベース2102に記載のECD反応時間に対して事前に定めた値(例えば1ms)を加えた値に補正する。 The overall processing unit 10 determines whether or not the measured value is different from the electronic current reference value (for example, 0.6 μA) described in the database by a certain value (for example, ± 0.02 μA) or more. When not deviating more than a certain value (3011), the overall processing unit 10 returns to the measurement 3010 of the electronic current value. When it deviates more than a certain value (3011), the overall processing unit 10 automatically corrects the ECD reaction time (3013). For example, when 0.05 μA is higher than the electronic current reference value, the overall processing unit 10 corrects the value by subtracting a predetermined value (for example, 1 ms) from the ECD reaction time described in the database 2102. On the other hand, when the value is 0.05 μA lower than the electronic current reference value, the overall processing unit 10 corrects the ECD reaction time described in the database 2102 to a value obtained by adding a predetermined value (for example, 1 ms).
 本処理フローでは、測定された電子電流値に基づいてECD反応時間を補正しているが、ECD反応時間の代わりに電子量制御電圧103を補正しても良い。 In this processing flow, the ECD reaction time is corrected based on the measured electron current value, but the electron quantity control voltage 103 may be corrected instead of the ECD reaction time.
 次に、図29に示すデータベース(各プリカーサイオンに対し、イオン強度を1つ設定する場合)を用いる場合において、測定された電子電流値とプリカーサイオン強度に基づいてECD反応時間を補正する際に実行される処理フローを図35に示す。 Next, when using the database shown in FIG. 29 (when one ion intensity is set for each precursor ion), the ECD reaction time is corrected based on the measured electron current value and the precursor ion intensity. The processing flow to be executed is shown in FIG.
 この場合も、オペレータは、使用するデータベースをデータ表示部18の画面上で選択し、値の変更を行った後にデータベース2102に保存する(3000)。この後、質量分析装置によるイオンの分析が開始される(3001)。 In this case as well, the operator selects the database to be used on the screen of the data display unit 18, changes the value, and saves it in the database 2102 (3000). Thereafter, analysis of ions by the mass spectrometer is started (3001).
 分析の開始と同時に、LIT2001は、電子源104から照射される電子電流値を測定する(3010)。 Simultaneously with the start of the analysis, the LIT 2001 measures the value of the electron current irradiated from the electron source 104 (3010).
 全体処理部10は、測定値がデータベースに記載の電子電流基準値(例えば0.6μA)とある一定値(例えば±0.02μA)以上ずれているか否かを判定する。ある一定値以上ずれていない場合(3011)、全体処理部10は、全イオンスペクトルの取得処理に進む(304)。一方、ある一定値以上ずれていた場合(3012)、全体処理部10は、データベース2102に記載されているECD反応時間又は電子量制御電圧を自動的に補正し(3013)、この後、全イオンスペクトルの取得処理に進む(304)。 The overall processing unit 10 determines whether or not the measured value is different from the electronic current reference value (for example, 0.6 μA) described in the database by a certain value (for example, ± 0.02 μA) or more. If there is no deviation beyond a certain value (3011), the overall processing unit 10 proceeds to the acquisition process of the total ion spectrum (304). On the other hand, when there is a deviation from a certain value (3012), the overall processing unit 10 automatically corrects the ECD reaction time or the electron quantity control voltage described in the database 2102 (3013). The process proceeds to the spectrum acquisition process (304).
 全てのイオンスペクトルが取得されると、全体処理部10は、保持時間、m/z、価数、イオン強度を含むピークリストを作成する(3003)。 When all the ion spectra are acquired, the overall processing unit 10 creates a peak list including the retention time, m / z, valence, and ion intensity (3003).
 次に、全体処理部10は、インクルージョンDB検索を実行する(3005)。全体処理部10は、作成されたピークリストとデータベース2102を照合し、保持時間、m/z、価数のすべてが一致するイオンが存在するか否かを検索する。一致するイオンが存在しない場合(3007)、全体処理部10は、電子電流値の測定処理(3010)に戻る。一致するイオンが存在した場合(3006)、全体処理部10は、ピークリスト内のイオン強度とデータベース2102に記載されているイオン強度を比較し、ある一定値以上ずれているか否かを比較する。ここでの一定値は、オペレータが、分析実行前に決定する。 Next, the overall processing unit 10 executes an inclusion DB search (3005). The overall processing unit 10 collates the created peak list with the database 2102 and searches whether or not there is an ion whose retention time, m / z, and valence match. If there is no matching ion (3007), the overall processing unit 10 returns to the electron current value measurement process (3010). If there is a matching ion (3006), the overall processing unit 10 compares the ion intensity in the peak list with the ion intensity described in the database 2102 and compares whether or not a certain value has deviated. The constant value here is determined by the operator before the analysis is executed.
 ここで、値が一定値以上ずれていなかった場合(3008)、全体処理部10は、ECDスペクトルを取得する(311)。その後、全体処理部10は、全イオンスペクトルの取得処理(304)に戻る。ECDスペクトルの取得は複数回でも構わない。 Here, when the value does not deviate more than a certain value (3008), the overall processing unit 10 acquires an ECD spectrum (311). Then, the whole process part 10 returns to the acquisition process (304) of a total ion spectrum. The ECD spectrum may be acquired multiple times.
 一方、値が一定値以上ずれていた場合(3009)、全体処理部10は、図19を一例とするグラフを用いてECD反応時間を補正する、又は、図12を一例とするグラフを用いて電子量制御電圧を補正する(3002)。全体処理部10は、補正後のECD反応条件を制御部9に与える。制御部9は、当該ECD反応条件に基づいてECDセルを制御する。全体処理部10は、TOF検出器8を通じてECDスペクトルを取得する(311)。この後、全体処理部10は、全イオンスペクトルの取得処理(304)に戻る。 On the other hand, when the value has deviated by a certain value or more (3009), the overall processing unit 10 corrects the ECD reaction time using the graph of FIG. 19 as an example, or uses the graph of FIG. 12 as an example. The electron quantity control voltage is corrected (3002). The overall processing unit 10 gives the corrected ECD reaction condition to the control unit 9. The control unit 9 controls the ECD cell based on the ECD reaction conditions. The overall processing unit 10 acquires an ECD spectrum through the TOF detector 8 (311). Thereafter, the overall processing unit 10 returns to the acquisition process (304) of the total ion spectrum.
 次に、図31に示すデータベース(各プリカーサイオンに対し、イオン強度ごとに複数個のECD反応時間を設定する場合)を用いる場合において、測定された電子電流値とプリカーサイオン強度に基づいてECD反応時間を補正する際に実行される処理フローを図36に示す。 Next, in the case of using the database shown in FIG. 31 (when a plurality of ECD reaction times are set for each ion intensity for each precursor ion), an ECD reaction is performed based on the measured electron current value and the precursor ion intensity. FIG. 36 shows a processing flow executed when correcting the time.
 この場合も、オペレータは、使用するデータベースをデータ表示部18の画面上で選択し、値の変更を行った後にデータベース2102に保存する(3000)。この後、質量分析装置によるイオンの分析が開始される(3001)。 In this case as well, the operator selects the database to be used on the screen of the data display unit 18, changes the value, and saves it in the database 2102 (3000). Thereafter, analysis of ions by the mass spectrometer is started (3001).
 分析の開始と同時に、LIT2001は、電子源104から照射される電子電流値を測定する(3010)。 Simultaneously with the start of the analysis, the LIT 2001 measures the value of the electron current irradiated from the electron source 104 (3010).
 全体処理部10は、測定値がデータベースに記載の電子電流基準値(例えば0.6μA)とある一定値(例えば±0.02μA)以上ずれているか否かを判定する。ある一定値以上ずれていない場合(3011)、全体処理部10は、全イオンスペクトルの取得処理に進む(304)。一方、ある一定値以上ずれていた場合(3012)、全体処理部10は、データベース2102に記載されているECD反応時間又は電子量制御電圧を自動的に補正し(3013)、この後、全イオンスペクトルの取得処理に進む(304)。 The overall processing unit 10 determines whether or not the measured value is different from the electronic current reference value (for example, 0.6 μA) described in the database by a certain value (for example, ± 0.02 μA) or more. If there is no deviation beyond a certain value (3011), the overall processing unit 10 proceeds to the acquisition process of the total ion spectrum (304). On the other hand, when there is a deviation from a certain value (3012), the overall processing unit 10 automatically corrects the ECD reaction time or the electron quantity control voltage described in the database 2102 (3013). The process proceeds to the spectrum acquisition process (304).
 全てのイオンスペクトルが取得されると、全体処理部10は、保持時間、m/z、価数、イオン強度を含むピークリストを作成する(3003)。 When all the ion spectra are acquired, the overall processing unit 10 creates a peak list including the retention time, m / z, valence, and ion intensity (3003).
 次に、全体処理部10は、インクルージョンDB検索を実行する(3005)。全体処理部10は、作成されたピークリストとデータベース2102を照合し、保持時間、m/z、価数のすべてが一致するイオンが存在するか否かを検索する。一致するイオンが存在しない場合(3007)、全体処理部10は、電子電流値の測定処理(3010)に戻る。一致するイオンが存在した場合(3006)、全体処理部10は、ピークリスト内のイオン強度がデータベース2102に記載されているどのイオン強度範囲であるかを判定し、当てはまるイオン強度範囲について設定されたECD反応時間でECDスペクトルを取得し(311)、電子電流値の測定3010に戻る。ECDスペクトルの取得は複数回でも構わない。 Next, the overall processing unit 10 executes an inclusion DB search (3005). The overall processing unit 10 collates the created peak list with the database 2102 and searches whether or not there is an ion whose retention time, m / z, and valence match. If there is no matching ion (3007), the overall processing unit 10 returns to the electron current value measurement process (3010). When there is a matching ion (3006), the overall processing unit 10 determines which ion intensity range described in the database 2102 the ion intensity in the peak list is, and the corresponding ion intensity range is set. An ECD spectrum is acquired based on the ECD reaction time (311), and the process returns to the measurement 3010 of the electron current value. The ECD spectrum may be acquired multiple times.
(F)実施の形態6:イオン解離手法としてETD法を用いた場合
(質量分析システムの構成)
 図16に、イオンの解離にETD法を用いる質量分析システムを示す。なお、図16には、図7との対応部分に同一符号を付して示す。この質量分析システムの場合も、分析対象としての試料1は、試料分離装置2(図では、液体クロマトグラフィー(LC))の前処理により分離される。なお、試料分離装置2には、ガスクロマトグラム(GC)を用いることもできる。
(F) Embodiment 6: When ETD method is used as ion dissociation method (configuration of mass spectrometry system)
FIG. 16 shows a mass spectrometry system using the ETD method for ion dissociation. In FIG. 16, the same reference numerals are given to portions corresponding to FIG. 7. Also in the case of this mass spectrometry system, the sample 1 as an analysis target is separated by the pretreatment of the sample separation device 2 (in the figure, liquid chromatography (LC)). Note that a gas chromatogram (GC) can also be used for the sample separation device 2.
 分離された試料は、イオン源3においてイオン化された後、質量分析装置に導入される。 The separated sample is ionized in the ion source 3 and then introduced into the mass spectrometer.
 非フラグメント化スペクトルを取得する場合、導入された正イオンは、LITの中段601又はLITの前段600に蓄積され、全イオン(又はある特定のイオン)が単離された状態で排出される。排出された正イオンは、LIT検出器606でイオンの質量電荷比m/zに応じて分離される。なお、フラグメント化スペクトルを取得する場合、導入された正イオンは、LITの中段601又はLITの前段600に蓄積され、単離された状態でLITの前段600に保持される。 When acquiring a non-fragmented spectrum, the introduced positive ions are accumulated in the middle stage 601 of the LIT or the front stage 600 of the LIT, and are discharged in a state where all ions (or a specific ion) are isolated. The discharged positive ions are separated by the LIT detector 606 according to the mass-to-charge ratio m / z of the ions. In addition, when acquiring a fragmentation spectrum, the introduced positive ions are accumulated in the middle stage 601 of LIT or the front stage 600 of LIT, and are held in the front stage 600 of LIT in an isolated state.
 一方、ETD反応に利用される負イオンは、イオン源603による負イオン試薬604のイオン化により生成され、質量分析装置に導入される。導入された負イオンは、LITの中段601(又はLITの後段602)に、ある一定時間蓄積され、単離される。 On the other hand, negative ions used for the ETD reaction are generated by ionization of the negative ion reagent 604 by the ion source 603 and introduced into the mass spectrometer. The introduced negative ions are accumulated and isolated in the middle stage 601 of LIT (or the latter stage 602 of LIT) for a certain period of time.
 LITの前段600に蓄積されたプリカーサイオンとLITの中段601に蓄積された負イオンは、ある一定時間、LITの全体においてETD反応が行われ、余剰の負イオンを排除した後、LIT検出器606でイオンの質量電荷比m/zに応じて分離される。イオン源は、エレクトロスプレイイオン源、大気圧化学イオン化によるイオン源、マトリックス支援レーザ脱離イオン源、電気衝撃イオン源、化学イオン化によるイオン源、フィールドイオン化によるイオン源から選択される。 The precursor ions accumulated in the front stage 600 of the LIT and the negative ions accumulated in the middle stage 601 of the LIT undergo an ETD reaction in the entire LIT for a certain period of time, and after removing excess negative ions, the LIT detector 606 Is separated according to the mass-to-charge ratio m / z of ions. The ion source is selected from an electrospray ion source, an ion source by atmospheric pressure chemical ionization, a matrix-assisted laser desorption ion source, an electric impact ion source, an ion source by chemical ionization, and an ion source by field ionization.
 LITには多くのイオンを蓄積できる。このため、高感度検出が可能である。もっとも、三次元四重極イオントラップ、四重極質量フィルター、コリジョンセル、フーリエ変換イオンサイクロトロン共鳴質量分離部でも構わない。また、感度向上が期待できるため、複数のLIT検出器606を設置しても良い。また、プリカーサイオンや負イオンの単離は、LITの前段600の前段やLITの後段602の後段にQマスフィルターを設置して行っても良い。また、実施の形態の場合には、LIT検出器606で検出しているが、TOF、三次元四重極イオントラップ、四重極質量フィルター、磁場型質量分析器、フーリエ変換イオンサイクロトロン共鳴質量分析器、オービトラップ型でも構わない。 A lot of ions can be stored in LIT. For this reason, highly sensitive detection is possible. However, a three-dimensional quadrupole ion trap, a quadrupole mass filter, a collision cell, or a Fourier transform ion cyclotron resonance mass separation unit may be used. Further, since improvement in sensitivity can be expected, a plurality of LIT detectors 606 may be installed. In addition, isolation of precursor ions and negative ions may be performed by installing a Q mass filter in the front stage of the front stage 600 of the LIT or the rear stage of the rear stage 602 of the LIT. Further, in the case of the embodiment, the detection is performed by the LIT detector 606, but the TOF, the three-dimensional quadrupole ion trap, the quadrupole mass filter, the magnetic field type mass analyzer, the Fourier transform ion cyclotron resonance mass spectrometry. Or an orbit trap type.
 LIT検出器606で検出された各イオンは、m/z値と共に全体処理部10でデータ整理及び又は処理される。全体処理部10のイオン解離パラメータ決定部12には、イオン解離強度決定部13、プリカーサイオン強度測定部15、プリカーサイオン残存率算出部16、反応時間算出部1000で構成される。 Each ion detected by the LIT detector 606 is arranged and / or processed by the overall processing unit 10 together with the m / z value. The ion dissociation parameter determination unit 12 of the overall processing unit 10 includes an ion dissociation intensity determination unit 13, a precursor ion intensity measurement unit 15, a precursor ion residual ratio calculation unit 16, and a reaction time calculation unit 1000.
 プリカーサイオン強度測定部15は、非フラグメント化スペクトルとフラグメント化スペクトル内のプリカーサイオン強度を測定する。プリカーサイオン残存率算出部16は、プリカーサイオン残存率を算出する。反応時間算出部1000は、プリカーサイオン残存率とユーザー所望の設定値とに基づいて最適反応時間を算出する。反応時間の算出方法は実施の形態1に記載した方法と同様である。イオン解離強度決定部13で算出された決定強度を与える信号は、制御部9を介してLITの中段601を制御する。 The precursor ion intensity measurement unit 15 measures the non-fragmented spectrum and the precursor ion intensity in the fragmented spectrum. Precursor ion residual ratio calculation unit 16 calculates a precursor ion residual ratio. The reaction time calculation unit 1000 calculates the optimal reaction time based on the precursor ion residual ratio and the set value desired by the user. The method for calculating the reaction time is the same as the method described in the first embodiment. The signal giving the determined intensity calculated by the ion dissociation intensity determining unit 13 controls the middle stage 601 of the LIT via the control unit 9.
 質量分析スペクトル、非フラグメント化スペクトルとフラグメント化スペクトル内の各プリカーサイオン強度、プリカーサイオン残存率等は、データ表示部18で表示される。また、パラメータ入力部19から全体処理部10に、プリカーサイオン強度の残存率が入力される。 The mass display spectrum, the non-fragmented spectrum, the precursor ion intensity in the fragmented spectrum, the precursor ion residual rate, and the like are displayed on the data display unit 18. Further, the remaining rate of the precursor ion intensity is input from the parameter input unit 19 to the overall processing unit 10.
(処理動作の概要)
 図17に、本発明の実施の形態6に基づくETD反応制御フローを示す。複数物質の混合物である試料1は、試料分離装置2(図では、液体クロマトグラフィー)に導入される。クロマトグラフィーには、物質の性質に応じて分離させるための分離カラムが装着されている。分離カラムを通過した試料は、成分ごとに異なる時間に溶出する。溶出した試料の各成分は、イオン源にてイオン化される(302)。イオンは、質量分析装置内のLITの中段601に導入されて蓄積され、その後、排出される(702)。排出されたイオンは、LIT検出器606にて検出され、横軸をm/z、縦軸をイオン強度とする非フラグメント化スペクトルを得る(304)。
(Outline of processing operation)
FIG. 17 shows an ETD reaction control flow based on the sixth embodiment of the present invention. A sample 1 which is a mixture of a plurality of substances is introduced into a sample separation device 2 (liquid chromatography in the figure). Chromatography is equipped with a separation column for separation according to the nature of the substance. The sample that has passed through the separation column elutes at different times for each component. Each component of the eluted sample is ionized by an ion source (302). The ions are introduced and accumulated in the middle stage 601 of the LIT in the mass spectrometer, and then discharged (702). The ejected ions are detected by the LIT detector 606, and a non-fragmented spectrum is obtained with the horizontal axis being m / z and the vertical axis being the ion intensity (304).
 次に、非フラグメント化スペクトルからプリカーサイオンを選択する(305)。プリカーサイオンは、イオン強度順に選択されるのが一般的である。しかしながら、イオン解離手法の性質により、価数や分子量を考慮に入れて選択しても良い。選択したプリカーサイオンの価数とm/z値を特定し、価数とm/z値から分子量を算出する(306)。この算出動作と並行して、プリカーサイオンのイオン強度も測定する(308)。 Next, a precursor ion is selected from the unfragmented spectrum (305). Precursor ions are generally selected in order of ionic strength. However, depending on the nature of the ion dissociation technique, the valence and molecular weight may be taken into consideration. The valence and m / z value of the selected precursor ion are specified, and the molecular weight is calculated from the valence and m / z value (306). In parallel with this calculation operation, the ion intensity of the precursor ion is also measured (308).
 初めて分析されるプリカーサイオンに対しては、価数と分子量から各プリカーサイオンに適すると推定される負イオン量、ETD反応時間を設定することが望ましい(703)。次に、LITの前段600でプリカーサイオンを単離する(704)。一方、ETD反応に必要な負イオンについて、負イオン試薬604はイオン源にてイオン化され(603)、LITの中段601で所望の時間蓄積される(706)。LITの前段600内に単離しているプリカーサイオンは、LITにて、LITの中段601内に蓄積している負イオンと所望の時間ETD反応を行い(705)、ETDスペクトルを取得する(708)。 For precursor ions analyzed for the first time, it is desirable to set the amount of negative ions and ETD reaction time estimated to be suitable for each precursor ion from the valence and molecular weight (703). Next, a precursor ion is isolated in the front stage 600 of LIT (704). On the other hand, for the negative ions necessary for the ETD reaction, the negative ion reagent 604 is ionized by the ion source (603) and accumulated in the middle stage 601 of the LIT for a desired time (706). The precursor ion isolated in the front stage 600 of the LIT performs an ETD reaction for a desired time with the negative ions accumulated in the middle stage 601 of the LIT in the LIT (705), and acquires an ETD spectrum (708). .
 次に、ETDスペクトル中に存在するプリカーサイオン強度を測定する(308)。非フラグメント化スペクトル中のプリカーサイオン強度とETDスペクトル中のプリカーサイオン強度を比較し、プリカーサイオンの残存率を求める(312)。この値が所望の範囲外の場合は、最適なETD反応時間を算出して設定し(313)、再度、ETDスペクトルを取得する。このとき、負イオン量を調節しても良い。プリカーサイオンの残存率が所望の範囲内であれば、イオン解離強度は最適だったといえる。この場合(315)、非フラグメント化スペクトルの取得に戻る。 Next, the precursor ion intensity present in the ETD spectrum is measured (308). The precursor ion intensity in the non-fragmented spectrum and the precursor ion intensity in the ETD spectrum are compared to determine the remaining ratio of precursor ions (312). If this value is outside the desired range, the optimal ETD reaction time is calculated and set (313), and the ETD spectrum is acquired again. At this time, the amount of negative ions may be adjusted. It can be said that the ion dissociation strength was optimal when the remaining proportion of precursor ions was within a desired range. In this case (315), the process returns to the acquisition of the non-fragmented spectrum.
 この実施の形態6の場合も、前述した実施の形態2、3及び4の場合と同様、チャージリデューススピーシーズ比、フラグメントイオン比、フラグメント種類、リアルタイムアミノ酸配列解析を指標にETcaDを実施しても良い。この場合、ETD反応を実施した後、チャージリデューススピーシーズのみを励起することによってCIDを実施する。また、CIDの代わりに、IRMPDを用いても良い。 In the case of the sixth embodiment, as in the case of the second, third and fourth embodiments described above, ETcaD may be performed using the charge-reducing species ratio, the fragment ion ratio, the fragment type, and the real-time amino acid sequence analysis as indices. . In this case, after performing the ETD reaction, CID is performed by exciting only the charge-reducing species. Further, IRMPD may be used instead of CID.
 また、この実施の形態6の場合も、使用するシーケンス例(図18)やイオン量が変化するプリカーサイオンの実施例(図20、21)は、実施の形態1と同様である。 Also in the case of the sixth embodiment, the sequence example to be used (FIG. 18) and the precursor ion examples (FIGS. 20 and 21) in which the ion amount changes are the same as those in the first embodiment.
 この実施の形態6の場合にも、プリカーサイオン残存率の算出、反応時間算出、チャージリデューススピーシーズ比、フラグメントイオン比及びフラグメント種類の算出、デノボ解析、各種パラメータの設定は、いずれも実時間で実施され、分析を妨げない必要がある。 Also in the case of the sixth embodiment, calculation of precursor ion residual rate, calculation of reaction time, charge reduction species ratio, calculation of fragment ion ratio and fragment type, de novo analysis, and setting of various parameters are all performed in real time. Need not interfere with the analysis.
(実施の形態の効果)
 前述した実施の形態に係る質量分析方法の適用により、各プリカーサイオンに対して最適なイオン解離強度データを蓄積することができる。これらのデータは、質量、価数毎に格納することができる。これらのデータを利用することにより、初めて分析するイオンでは、最適なイオン解離強度が導き出されるまでの時間を短縮することができる。
(Effect of embodiment)
By applying the mass spectrometry method according to the above-described embodiment, optimum ion dissociation intensity data can be accumulated for each precursor ion. These data can be stored for each mass and valence. By using these data, it is possible to shorten the time until the optimum ion dissociation intensity is derived for the ions analyzed for the first time.
 また、これらのデータを横軸に日付、縦軸に反応時間とする図表にプロットした場合、時間の経過とともに反応時間の変化が観察されることがある。この場合、負イオン量が安定して供給されていない可能性がある。従って、予め設定した反応時間に対する範囲を定めておき、当該範囲を越えた場合には、アラーム等を発して負イオン試薬604やイオン源603を観察するシステムを採用しても良い。 In addition, when these data are plotted on a chart with the date on the horizontal axis and the reaction time on the vertical axis, changes in the reaction time may be observed over time. In this case, the negative ion amount may not be supplied stably. Accordingly, a system may be adopted in which a range for a preset reaction time is determined, and when the range is exceeded, an alarm or the like is issued and the negative ion reagent 604 or the ion source 603 is observed.
(G)実施の形態7:イオン解離手法としてCID法を用いる場合
(質量分析システムの構成)
 図22に、イオンの解離にCID法を用いる質量分析システムを示す。なお、図22には、図7との対応部分に同一符号を付して示す。
(G) Embodiment 7: When CID method is used as an ion dissociation method (configuration of mass spectrometry system)
FIG. 22 shows a mass spectrometry system using the CID method for ion dissociation. In FIG. 22, the same reference numerals are given to the portions corresponding to FIG. 7.
 分析対象としての試料1は、試料分離装置2(図では、液体クロマトグラフィー(LC))の前処理により分離される。なお、試料分離装置2には、ガスクロマトグラム(GC)を用いることもできる。 Sample 1 as an analysis target is separated by a pretreatment of a sample separation device 2 (in the figure, liquid chromatography (LC)). Note that a gas chromatogram (GC) can also be used for the sample separation device 2.
 分離された試料は、イオン源3においてイオン化され、質量分析装置に導入される。非フラグメント化スペクトル取得の場合、導入されたイオンはリニアイオントラップ(LIT)4で蓄積され、全イオン(又は、ある特定のイオン)を単離した状態で排出する。排出されたイオンは、TOF検出器8で検出される。TOF検出器8の前段には高分解能であるTOF7が存在する。 The separated sample is ionized in the ion source 3 and introduced into the mass spectrometer. In the case of non-fragmented spectrum acquisition, the introduced ions are accumulated in a linear ion trap (LIT) 4 and all ions (or a specific ion) are discharged in an isolated state. The discharged ions are detected by the TOF detector 8. A TOF 7 having a high resolution is present in front of the TOF detector 8.
 フラグメント化スペクトル取得の場合、導入されたイオンはLIT4に蓄積され、ある特定のイオンの単離とCID法の実施後、排出される。排出されたイオンは、TOF検出器8でイオンの質量電荷比m/zに応じて分離される。イオン源は、エレクトロスプレイイオン源、大気圧化学イオン化によるイオン源、マトリックス支援レーザ脱離イオン源、電気衝撃イオン源、化学イオン化によるイオン源、フィールドイオン化によるイオン源から選択される。LIT4は多くのイオンを蓄積できる。このため、高感度検出が可能である。しかし、LIT4に代えて、三次元四重極イオントラップ、四重極質量フィルター、コリジョンセル、フーリエ変換イオンサイクロトロン共鳴質量分離部を用いても構わない。 In the case of fragmentation spectrum acquisition, the introduced ions are accumulated in LIT4, and are discharged after isolation of certain specific ions and execution of the CID method. The discharged ions are separated by the TOF detector 8 according to the mass-to-charge ratio m / z of the ions. The ion source is selected from an electrospray ion source, an ion source by atmospheric pressure chemical ionization, a matrix-assisted laser desorption ion source, an electric impact ion source, an ion source by chemical ionization, and an ion source by field ionization. LIT4 can accumulate many ions. For this reason, highly sensitive detection is possible. However, instead of LIT4, a three-dimensional quadrupole ion trap, a quadrupole mass filter, a collision cell, or a Fourier transform ion cyclotron resonance mass separation unit may be used.
 また、本装置構成では、イオン解離方法としてCID法を用いているが、IRMPD法を用いても良い。TOF7は、高分解能で質量精度も高いので好ましいが、三次元四重極イオントラップ、LIT、四重極質量フィルター、磁場型質量分析器、フーリエ変換イオンサイクロトロン共鳴質量分析器、オービトラップ型質量分析器を用いても構わない。 In this apparatus configuration, the CID method is used as the ion dissociation method, but the IRMPD method may be used. TOF7 is preferable because it has high resolution and high mass accuracy, but it is preferable to use three-dimensional quadrupole ion trap, LIT, quadrupole mass filter, magnetic field mass analyzer, Fourier transform ion cyclotron resonance mass analyzer, orbitrap mass analysis. A vessel may be used.
 TOF検出器8で検出された各イオンは、m/z値と共に、全体処理部10でデータ整理及び又は処理される。なお、全体処理部10は、ハードウェア的な回路構造を有する場合だけでなく、コンピュータシステム上で動作するプログラムの処理機能を通じて実現できる。全体処理部10のイオン解離パラメータ決定部12には、イオン解離強度決定部13、プリカーサイオン強度測定部15、プリカーサイオン残存率算出部16、イオン解離強度算出定部1001で構成される。 Each ion detected by the TOF detector 8 is arranged and / or processed by the overall processing unit 10 together with the m / z value. The overall processing unit 10 can be realized not only when it has a hardware circuit structure but also through a processing function of a program that operates on a computer system. The ion dissociation parameter determination unit 12 of the overall processing unit 10 includes an ion dissociation intensity determination unit 13, a precursor ion intensity measurement unit 15, a precursor ion residual ratio calculation unit 16, and an ion dissociation strength calculation determination unit 1001.
 プリカーサイオン強度測定部15は、非フラグメント化スペクトルとフラグメント化スペクトル内の各プリカーサイオン強度を測定する。プリカーサイオン残存率算出部16は、測定されたプリカーサイオン強度に基づいてプリカーサイオン残存率を算出する。CID法の場合、プリカーサイオン残存率が0(ゼロ)になる最も低いイオン解離強度の時に、フラグメントイオン量がピーク値を採る。詳細については後述する。イオン解離強度算出定部1001は、プリカーサイオン残存率が0(ゼロ)になる時のイオン解離強度を算出する。イオン解離強度決定部13は、算出されたイオン解離強度に応じた制御信号を、制御部9を介してLIT4に与えられる。すなわち、LIT4が決定強度に制御される。質量分析スペクトル、非フラグメント化スペクトルとフラグメント化スペクトル内の各プリカーサイオン強度、プリカーサイオン残存率、イオン解離強度等はデータ表示部18に表示される。 The precursor ion intensity measuring unit 15 measures the intensity of each precursor ion in the non-fragmented spectrum and the fragmented spectrum. The precursor ion residual ratio calculation unit 16 calculates a precursor ion residual ratio based on the measured precursor ion intensity. In the case of the CID method, the amount of fragment ions takes a peak value at the lowest ion dissociation intensity at which the precursor ion residual ratio is 0 (zero). Details will be described later. The ion dissociation strength calculation constant unit 1001 calculates the ion dissociation strength when the precursor ion residual ratio becomes 0 (zero). The ion dissociation strength determining unit 13 is supplied with a control signal corresponding to the calculated ion dissociation strength to the LIT 4 via the control unit 9. That is, LIT4 is controlled to the determined intensity. The mass spectrum, the non-fragmented spectrum and the precursor ion intensity, precursor ion residual ratio, ion dissociation intensity, etc. in the fragmented spectrum are displayed on the data display unit 18.
(処理動作の概要)
 図23に、本発明の実施の形態7に基づくCID反応制御フローを示す。複数物質の混合物である試料1は、試料分離装置2(図では、液体クロマトグラフィー)に導入される。クロマトグラフィーには物質の性質によって分離させるための分離カラムが装着されており、分離カラムを通過した試料は、成分ごとに異なる時間に溶出する。溶出した試料の各成分は、イオン源3にてイオン化される(302)。イオンは質量分析装置内のLIT4に導入されて蓄積され、排出される(303)。排出されたイオンはTOF検出器8で検出され、横軸をm/z、縦軸をイオン強度とする非フラグメント化スペクトルを得る(304)。
(Outline of processing operation)
FIG. 23 shows a CID reaction control flow based on the seventh embodiment of the present invention. A sample 1 which is a mixture of a plurality of substances is introduced into a sample separation device 2 (liquid chromatography in the figure). Chromatography is equipped with a separation column for separation according to the nature of the substance, and the sample that has passed through the separation column elutes at different times for each component. Each component of the eluted sample is ionized by the ion source 3 (302). The ions are introduced into the LIT 4 in the mass spectrometer, accumulated, and discharged (303). The ejected ions are detected by the TOF detector 8 to obtain a non-fragmented spectrum in which the horizontal axis is m / z and the vertical axis is the ion intensity (304).
 次に、非フラグメント化スペクトルからプリカーサイオンを選択する(305)。プリカーサイオンはイオン強度順に選択されるのが一般的である。しかし、前述したように、価数や分子量を考慮に入れて選択しても良い。このとき選択したプリカーサイオンのイオン強度を測定する(308)。 Next, a precursor ion is selected from the unfragmented spectrum (305). In general, the precursor ions are selected in the order of ionic strength. However, as described above, it may be selected in consideration of the valence and molecular weight. The ion intensity of the precursor ion selected at this time is measured (308).
 次に、LIT4でプリカーサイオンを単離し(309)、単離したプリカーサイオンに対して様々なイオン解離強度でCIDを実施し(800)、各解離強度についてのCIDスペクトルを取得する(311)。次に、CIDスペクトル中に存在するプリカーサイオン強度を測定する(308)。 Next, precursor ions are isolated with LIT4 (309), CID is performed on the isolated precursor ions at various ion dissociation intensities (800), and a CID spectrum for each dissociation intensity is acquired (311). Next, the precursor ion intensity present in the CID spectrum is measured (308).
 次に、非フラグメント化スペクトル中のプリカーサイオン強度とCIDスペクトル中のプリカーサイオン強度に基づいてプリカーサイオンの残存率を求める(801)。更に、横軸にイオン解離強度、縦軸にプリカーサイオン残存率とする図表の上に、算出された残存率をプロットし、プリカーサイオン残存率が0となる最も低いイオン解離強度を推定(802)し、そのイオン解離強度でCIDを実施する(803)。 Next, the residual ratio of the precursor ions is obtained based on the precursor ion intensity in the non-fragmented spectrum and the precursor ion intensity in the CID spectrum (801). Furthermore, the calculated residual rate is plotted on a chart with the horizontal axis representing the ion dissociation strength and the vertical axis representing the precursor ion residual rate, and the lowest ion dissociation strength at which the precursor ion residual rate is 0 is estimated (802) Then, CID is performed with the ion dissociation strength (803).
 ここで、イオン強度1000、4000、12000のサブスタンスPを用いて様々なイオン解離強度(CID gain)でCIDを実施した。図24に、プリカーサイオンとフラグメントイオンのイオン解離強度依存性を示す。図24に示すように、ほとんどイオン強度に依存することなく、イオン解離強度の上昇に伴ってプリカーサイオンは減少する。そして、プリカーサイオンが最初に0になった時点でフラグメントイオン量は最大となる。それ以上、イオン解離強度を上昇させると、フラグメントイオン量は減少する。このように様々なイオン解離強度条件でプリカーサイオン残存率を測定すれば、プリカーサイオンが0になるイオン解離強度を推定することができる(図25)。なお、図25の縦軸はプリカーサイオン残存率、横軸はイオン解離強度である。 Here, CID was carried out at various ion dissociation strengths (CID gain) using substance P with ion strengths of 1000, 4000 and 12000. FIG. 24 shows the dependence of precursor ions and fragment ions on the ion dissociation strength. As shown in FIG. 24, the precursor ion decreases with increasing ion dissociation intensity almost without depending on the ion intensity. The amount of fragment ions becomes maximum when the precursor ions first become zero. When the ion dissociation strength is further increased, the amount of fragment ions decreases. Thus, if the precursor ion residual ratio is measured under various ion dissociation strength conditions, the ion dissociation strength at which the precursor ions become 0 can be estimated (FIG. 25). In FIG. 25, the vertical axis represents the precursor ion residual rate, and the horizontal axis represents the ion dissociation strength.
 この実施の形態の場合も、プリカーサイオン残存率の算出、最適イオン解離強度の推定、各種パラメータ設定は、実時間で実施され、分析を妨げない必要がある。 Also in this embodiment, the calculation of the precursor ion residual ratio, the estimation of the optimum ion dissociation intensity, and the setting of various parameters are performed in real time and do not hinder the analysis.
(CIDを複数回実行する場合のシーケンス例)
 図26(A)~(C)に、本発明の実施の形態7に係るシーケンス例を示す。図26(A)に示すシーケンス例の場合、非フラグメント化スペクトルの取得後(MS1取得後)、プリカーサイオンを選択し、様々なイオン解離強度により複数回のpre-CIDを実施する。次に、独立にプリカーサイオン残存率を算出し、プリカーサイオン残存率が0になると推定されるイオン解離強度を推定し、その条件でCIDを実施する。
(Sequence example when CID is executed multiple times)
FIGS. 26A to 26C show sequence examples according to Embodiment 7 of the present invention. In the case of the sequence example shown in FIG. 26A, after obtaining a non-fragmented spectrum (after obtaining MS1), a precursor ion is selected and pre-CID is performed a plurality of times with various ion dissociation intensities. Next, the precursor ion residual rate is calculated independently, the ion dissociation intensity estimated to be 0 when the precursor ion residual rate is zero, and CID is performed under the conditions.
 例えばCIDを実行するイオン解離強度は、縦軸をプリカーサイオン残存率、横軸をイオン解離強度とした場合、隣り合う2点を直線で結び、その傾きが負であり、しかも最も0に近い直線を選択し、その直線においてプリカーサイオン残存率が0となるイオン解離強度を選択することにより推定する。 For example, the ion dissociation intensity for executing CID is such that when the vertical axis is the precursor ion residual rate and the horizontal axis is the ion dissociation intensity, two adjacent points are connected by a straight line, the slope is negative, and the line is closest to zero. And the ion dissociation intensity at which the precursor ion residual ratio becomes 0 on the straight line is selected.
 CIDによるイオン解離効率はイオン量に依存しないので、液体クロマトグラフィー分析にも、このシーケンスを適用することができる。 Since the ion dissociation efficiency by CID does not depend on the amount of ions, this sequence can also be applied to liquid chromatography analysis.
 また、非フラグメント化スペクトルでプリカーサイオンの選択後、プリカーサイオンのみを単離し、プリカーサイオン強度を測定する工程が存在しても良い。この場合、単離過程やイオン輸送の際に起きるロスも考慮されるため、より正確なイオン強度を測定することができる。 Further, after selecting a precursor ion in the non-fragmentation spectrum, there may be a step of isolating the precursor ion alone and measuring the precursor ion intensity. In this case, since loss occurring during the isolation process or ion transport is also taken into account, more accurate ionic strength can be measured.
 図26(B)に示すシーケンス例は、様々なイオン解離強度で複数回のpre-CIDを取得する点において、図26(A)と共通する。ただし、このシーケンス例の場合には、最もフラグメントイオン量が多く算出されたイオン解離強度についてCIDスペクトルを取得する。又は、プリカーサイオン残存率が0となったイオン解離強度のうち最も低いイオン解離強度を選択しても良い。 The sequence example shown in FIG. 26B is common to FIG. 26A in that a plurality of pre-CIDs are acquired at various ion dissociation intensities. However, in the case of this sequence example, a CID spectrum is acquired for the ion dissociation intensity calculated with the largest amount of fragment ions. Or you may select the lowest ion dissociation intensity | strength among the ion dissociation intensity | strengths in which the precursor ion residual rate became zero.
 図26(C)に示すシーケンス例は、シーケンスを2回に分ける例である。すなわち、1回目の分析では各イオンのpre-CIDスペクトルだけを取得し、各イオンの最適だと推定されるイオン解離強度を算出してデータベース化する。2回目の分析では、pre-CIDは実施せず、CIDスペクトルのみを取得する。 The sequence example shown in FIG. 26C is an example in which the sequence is divided into two times. That is, in the first analysis, only the pre-CID spectrum of each ion is acquired, and the ion dissociation intensity estimated to be optimal for each ion is calculated and databased. In the second analysis, pre-CID is not performed and only the CID spectrum is acquired.
(実施の形態の効果)
 前述した実施の形態に係る質量分析方法の適用により、プリカーサイオン毎に最適なイオン解離強度データを蓄積することができる。これらのデータは、質量、価数、m/z値毎にデータを格納することができる。これは初めて分析するイオンのイオン解離強度の指標となる。これらのデータを用いてあるm/z値の最適イオン解離強度の下限から上限までのイオン解離強度でpre-CIDを実施しても良い。これにより、最適イオン解離強度を導き出すまでの時間を短縮することができる。
(Effect of embodiment)
By applying the mass spectrometry method according to the above-described embodiment, optimum ion dissociation intensity data can be accumulated for each precursor ion. These data can be stored for each mass, valence, and m / z value. This is an index of the ion dissociation intensity of ions to be analyzed for the first time. Using these data, pre-CID may be performed with the ion dissociation intensity from the lower limit to the upper limit of the optimum ion dissociation intensity at a certain m / z value. Thereby, the time required to derive the optimum ion dissociation strength can be shortened.
 また、プリカーサイオン残存率の算出、最適イオン解離強度の推定と設定は、実時間で実施され、分析を妨げない必要がある。 Also, the calculation of the precursor ion residual ratio and the estimation and setting of the optimum ion dissociation intensity are carried out in real time and need not interfere with the analysis.
 1…試料、2…試料分離装置(LC又はGC)、3…イオン源、4…リニアイオントラップ、5…Qディフレクター、6…ECDセル、7…TOF、8…TOF検出器、9…制御部、10…全体処理部、12…イオン解離パラメータ決定部、13…イオン解離強度決定部、15…プリカーサイオン強度測定部、16…プリカーサイオン残存率算出部、18…データ表示部、19…パラメータ入力部、100…端電極1、101…端電極2、102…リニアイオントラップにトラップされたプリカーサイオン、103…電子量制御電極、104…電子源、105…電子源電圧、106…リニアトラップ電圧、200…プリカーサイオン、201…チャージリデューススピーシーズ、202…フラグメントイオン、400…モノアイソトピクピーク、401…同位体イオンシリーズ、600…リニアイオントラップ前段、601…リニアイオントラップ中段、602…リニアイオントランプ後段、603…イオン源、604…負イオン試薬、606…リニアイオントラップ検出器、607…負イオン量決定部、1000…反応時間算出部、1001…イオン解離強度算出部。2001…リニアトラップ DESCRIPTION OF SYMBOLS 1 ... Sample, 2 ... Sample separation apparatus (LC or GC), 3 ... Ion source, 4 ... Linear ion trap, 5 ... Q deflector, 6 ... ECD cell, 7 ... TOF, 8 ... TOF detector, 9 ... Control part DESCRIPTION OF SYMBOLS 10 ... Whole process part, 12 ... Ion dissociation parameter determination part, 13 ... Ion dissociation intensity determination part, 15 ... Precursor ion intensity measurement part, 16 ... Precursor ion residual ratio calculation part, 18 ... Data display part, 19 ... Parameter input 100, end electrode 1, 101 ... end electrode 2, 102 ... precursor ion trapped in a linear ion trap, 103 ... electron quantity control electrode, 104 ... electron source, 105 ... electron source voltage, 106 ... linear trap voltage, 200 ... Precursor ion, 201 ... Charge reduction species, 202 ... Fragment ion, 400 ... Monoisotopic 401 ... isotope ion series, 600 ... linear ion trap first stage, 601 ... linear ion trap middle stage, 602 ... linear ion trump latter stage, 603 ... ion source, 604 ... negative ion reagent, 606 ... linear ion trap detector, 607 ... negative ion amount determination unit, 1000 ... reaction time calculation unit, 1001 ... ion dissociation intensity calculation unit. 2001 ... Linear trap

Claims (24)

  1.  試料をイオン化するイオン源と、特定の質量電荷比を有するイオンを単離する単離部と、電子を供給する電子源と、イオンを解離するイオン解離部と、イオンを質量分析する質量分析部と、イオンの解離を制御する制御部と、計算処理部を有する質量分析装置を用いた質量分析方法であって、
     イオンを解離させることなく取得した非フラグメント化スペクトルを取得する工程と、
     あるイオン解離強度でイオンを解離させたフラグメント化スペクトルを取得する工程と、
     前記計算処理部において、非フラグメント化スペクトルとフラグメント化スペクトルスペクトルに存在する各プリカーサイオン強度を測定する工程と、
     前記計算処理部において、非フラグメント化スペクトルのプリカーサイオン強度に対する、フラグメント化スペクトルのプリカーサイオン強度の比を算出する工程と、
     前記計算処理部において、算出された前記比とイオン解離強度の設定値に基づいて、所望の比が得られるイオン解離強度の最適値を算出する工程と、
     前記計算処理部において、算出されたイオン解離強度の最適値に基づいて実フラグメント化スペクトルを取得する工程と
     を有する質量分析方法。
    An ion source that ionizes a sample, an isolation unit that isolates ions having a specific mass-to-charge ratio, an electron source that supplies electrons, an ion dissociation unit that dissociates ions, and a mass analysis unit that performs mass analysis of ions A mass spectrometric method using a mass spectrometer having a control unit for controlling ion dissociation and a calculation processing unit,
    Obtaining a non-fragmented spectrum obtained without dissociating ions;
    Obtaining a fragmentation spectrum in which ions are dissociated at a certain ion dissociation intensity;
    In the calculation processing unit, measuring each precursor ion intensity existing in the unfragmented spectrum and the fragmented spectrum spectrum,
    Calculating a ratio of a precursor ion intensity of a fragmented spectrum to a precursor ion intensity of a non-fragmented spectrum in the calculation processing unit;
    In the calculation processing unit, based on the calculated ratio and the set value of the ion dissociation strength, calculating an optimum value of the ion dissociation strength for obtaining a desired ratio;
    A step of acquiring an actual fragmentation spectrum based on the calculated optimum value of the ion dissociation intensity in the calculation processing unit.
  2.  前記イオン解離強度の最適値を算出する工程は、
     前記比Iaと設定した反応時間taをI=e^(t/τ)に与えて、プリカーサイオンに固有の時定数τを算出する工程と、
     算出された時定数τと前記所望の比IbをI=e^(t/τ)に与えて、所望の比Ibを求めるために必要な反応時間tbを算出する工程と
     を有することを特徴とする請求項1に記載の質量分析方法。
    Calculating the optimum value of the ion dissociation intensity,
    Giving the reaction time ta set to the ratio Ia to I = e ^ (t / τ) and calculating a time constant τ specific to the precursor ion;
    Providing the calculated time constant τ and the desired ratio Ib to I = e ^ (t / τ), and calculating the reaction time tb necessary to obtain the desired ratio Ib. The mass spectrometric method according to claim 1.
  3.  前記イオン解離部のイオン解離領域と前記電子源との間に配置される細孔を有する電極に印加する電圧の制御により反応に使用する電子量を制御する
     ことを特徴とする請求項1又は2に記載の質量分析方法。
    The amount of electrons used for the reaction is controlled by controlling a voltage applied to an electrode having pores arranged between the ion dissociation region of the ion dissociation part and the electron source. The mass spectrometric method described in 1.
  4.  初めて分析するプリカーサイオンの反応時間には、事前に設定された特定の反応時間によって与える
     ことを特徴とする請求項1又は2に記載の質量分析方法。
    The mass spectrometry method according to claim 1 or 2, wherein the reaction time of the precursor ion to be analyzed for the first time is given by a specific reaction time set in advance.
  5.  初めて分析するプリカーサイオンのイオン解離強度は、事前に設定された特定の電極電圧によって与える
     ことを特徴とする請求項1又は2に記載の質量分析方法。
    The mass spectrometric method according to claim 1 or 2, wherein the ion dissociation strength of the precursor ion analyzed for the first time is given by a specific electrode voltage set in advance.
  6.  イオン解離の制御を測定中に実行する
     ことを特徴とする請求項1又は2に記載の質量分析方法。
    The mass spectrometry method according to claim 1, wherein the ion dissociation is controlled during the measurement.
  7.  同一のプリカーサイオンに対し、複数回のフラグメント化スペクトルを取得する
     ことを特徴とする請求項1又は2に記載の質量分析方法。
    The mass spectrometry method according to claim 1, wherein a plurality of fragmentation spectra are acquired for the same precursor ion.
  8.  プリカーサイオン強度の前記比が設定範囲外の場合、前記所望の比が得られる反応時間を算出し、算出された反応時間でイオン解離を実施し、
     プリカーサイオン強度の前記比が設定範囲内の場合、フラグメント化スペクトルを取得した反応時間で実フラグメント化スペクトルを取得する
     ことを特徴とする請求項1~3のいずれか1項に記載の質量分析方法。
    When the ratio of the precursor ionic strength is out of the setting range, calculate the reaction time to obtain the desired ratio, perform ion dissociation with the calculated reaction time,
    The mass spectrometric method according to any one of claims 1 to 3, wherein when the ratio of precursor ion intensities is within a set range, an actual fragmentation spectrum is acquired with a reaction time in which the fragmentation spectrum is acquired. .
  9.  非フラグメント化スペクトル中のプリカーサイオン強度と算出された複数の時定数とに基づいて、前記プリカーサイオン強度と時定数との間に認められる相関特性を1次方程式として算出する
     ことを特徴とする請求項1、2又は7に記載の質量分析方法。
    The correlation characteristic recognized between the precursor ion intensity and the time constant is calculated as a linear equation based on the precursor ion intensity in the unfragmented spectrum and the calculated time constants. Item 8. The mass spectrometry method according to Item 1, 2 or 7.
  10.  フラグメント化スペクトルに存在する全イオン量を算出する工程と、
     チャージリデューススピーシーズ量を算出する工程と、
     全イオン量に対するチャージリデューススピーシーズ量の比を算出する工程とを有し、
     チャージリデューススピーシーズ量の比が設定された閾値よりも小さい場合には、別のプリカーサイオンの分析に切り替え、
     チャージリデューススピーシーズ量の比が設定された閾値よりも大きい場合には、電子エネルギーを変化させる
     ことを特徴とする請求項1又は2に記載の質量分析方法。
    Calculating the total amount of ions present in the fragmentation spectrum;
    Calculating the amount of charge reduce species;
    A step of calculating a ratio of the charge-reducing species amount to the total ion amount,
    If the ratio of charge-reduced species amount is smaller than the set threshold, switch to analysis of another precursor ion,
    The mass spectrometry method according to claim 1, wherein the electron energy is changed when the ratio of the charge-reducing species amount is larger than a set threshold value.
  11.  フラグメント化スペクトルに存在する全イオン量を算出する工程と、
     チャージリデューススピーシーズ量を算出する工程と、
     全イオン量からチャージリデューススピーシーズ量とプリカーサイオン量の和の差分を算出し、フラグメントイオン量を算出する工程と、
     全イオン量に対するフラグメントイオン量の比を算出する工程を有し、
     フラグメントイオン量の比が設定された閾値よりも大きい場合には、別のプリカーサイオンの分析に切り替え、
     フラグメントイオン量の比が設定された閾値よりも小さい場合には、電子エネルギーを変化させる
     ことを特徴とする請求項1又は2に記載の質量分析方法。
    Calculating the total amount of ions present in the fragmentation spectrum;
    Calculating the amount of charge reduce species;
    Calculating the difference of the sum of the charge reduce species amount and the precursor ion amount from the total ion amount, and calculating the fragment ion amount;
    Calculating the ratio of the fragment ion amount to the total ion amount,
    If the fragment ion ratio is greater than the set threshold, switch to another precursor ion analysis,
    The mass spectrometry method according to claim 1, wherein the electron energy is changed when the ratio of fragment ion amounts is smaller than a set threshold value.
  12.  フラグメント化スペクトルの取得後も非フラグメント化スペクトルを取得して、各非フラグメント化スペクトルに存在するプリカーサイオン強度の平均値を算出し、当該平均値について前記所望の比が得られる反応時間を算出する
     ことを特徴とする請求項1又は2に記載の質量分析方法。
    After obtaining a fragmented spectrum, obtain a non-fragmented spectrum, calculate an average value of the precursor ion intensity existing in each non-fragmented spectrum, and calculate a reaction time for obtaining the desired ratio for the average value. The mass spectrometric method according to claim 1 or 2, wherein
  13.  前記イオン源の前段に液体クロマトグラフ又はガスクロマトグラフを配置する場合に、 所望のプリカーサイオンが検出されると、前記液体クロマトグラフ又はガスクロマトグラフの流量を低減させる工程
     を更に有することを特徴とする請求項1又は2に記載の質量分析方法。
    In the case where a liquid chromatograph or a gas chromatograph is disposed in front of the ion source, the method further comprises a step of reducing the flow rate of the liquid chromatograph or the gas chromatograph when a desired precursor ion is detected. Item 3. The mass spectrometry method according to Item 1 or 2.
  14.  1回目の質量分析処理の実行時には、各プリカーサイオンのイオン強度と時定数τで与えられる1次方程式を算出し、算出された1次方程式と、各プリカーサイオンの質量電荷比と、保持時間と、イオン強度とを記録し、
     2回目以降における質量分析処理の実行時では、各プリカーサイオンのイオン強度に適した反応時間で実フラグメント化スペクトルを取得する
     ことを特徴とする請求項1、2又は13に記載の質量分析方法。
    When the first mass analysis process is executed, a linear equation given by the ion intensity and time constant τ of each precursor ion is calculated, the calculated primary equation, the mass-to-charge ratio of each precursor ion, the retention time, Record ionic strength and
    The mass spectrometry method according to claim 1, 2, or 13, wherein an actual fragmentation spectrum is acquired with a reaction time suitable for the ionic strength of each precursor ion at the time of execution of mass spectrometry processing for the second time and thereafter.
  15.  複数のイオン解離条件でフラグメント化スペクトルを取得し、前記所望の比に最も近いイオン解離条件にて実フラグメント化スペクトルを取得する
     ことを特徴とする請求項1、2又は7に記載の質量分析方法。
    The mass spectrometry method according to claim 1, 2, or 7, wherein a fragmentation spectrum is obtained under a plurality of ion dissociation conditions, and an actual fragmentation spectrum is obtained under an ion dissociation condition closest to the desired ratio. .
  16.  質量分析処理の実行時には、プリカーサイオンの質量電荷比、価数、質量数、算出された反応時間、電子エネルギーを記録し、以降の質量分析処理の実行時には、プリカーサイオンのイオン解離強度を記録情報から抽出する
     ことを特徴とする請求項1又は2に記載の質量分析方法。
    When performing mass analysis processing, record the mass-to-charge ratio, valence, mass number, calculated reaction time, and electron energy of the precursor ion. When performing subsequent mass analysis processing, record the ion dissociation strength of the precursor ion. The mass spectrometry method according to claim 1, wherein the mass spectrometry method is extracted from
  17.  イオン解離強度は、高周波電圧の周波数、振幅、又は直流電圧の変化により調節する
     ことを特徴とする請求項1又は2に記載の質量分析方法。
    The mass spectrometry method according to claim 1, wherein the ion dissociation intensity is adjusted by a change in frequency, amplitude, or direct current voltage of the high-frequency voltage.
  18.  プリカーサイオンの前記比が0となった印加電圧値のうち最も低い印加電圧を用いて実フラグメント化スペクトルを取得する
     ことを特徴とする請求項1、2又は7に記載の質量分析方法。
    8. The mass spectrometry method according to claim 1, wherein an actual fragmentation spectrum is acquired using the lowest applied voltage among the applied voltage values at which the ratio of precursor ions is zero.
  19.  縦軸をプリカーサイオン強度の前記比とし、かつ、横軸を印加電圧値とする場合において、隣り合う2つのサンプリング点同士を直線で結ぶとき、当該直線の傾きが負であり、かつ、前記直線の中で最も0に近い直線を選択する工程と、
     選択された直線を用い、プリカーサイオン強度の前記比が0となる電圧値を算出する工程と
     を有することを特徴とする請求項1、2又は7に記載の質量分析方法。
    When the vertical axis is the ratio of the precursor ion intensity and the horizontal axis is the applied voltage value, when two adjacent sampling points are connected by a straight line, the slope of the straight line is negative and the straight line Selecting the straight line closest to 0 among
    The method of mass spectrometry according to claim 1, 2 or 7, further comprising: calculating a voltage value at which the ratio of the precursor ion intensities is 0 using a selected straight line.
  20.  電子源と、前記電子源に対してイオントラップ領域の遠端側に配置されるリング形状の第1の端電極と、前記電子源に対してイオントラップ領域の近端側に配置されるリング形状の第2の端電極と、前記第2の端電極に対して前記電子源側に配置されるリング形状の電子量制御電極とを有するイオン解離部と、
     前記電子制御電極に印加する電圧を可変制御する制御部と
     を有するイオン解離装置。
    An electron source, a ring-shaped first end electrode disposed on the far end side of the ion trap region with respect to the electron source, and a ring shape disposed on the near end side of the ion trap region with respect to the electron source An ion dissociation part having a second end electrode of the first electrode and a ring-shaped electron quantity control electrode disposed on the electron source side with respect to the second end electrode;
    An ion dissociation apparatus comprising: a control unit that variably controls a voltage applied to the electronic control electrode.
  21.  試料をイオン化するイオン源と、特定の質量電荷比を有するイオンを単離する単離部と、電子を供給する電子源と、電子の電流量を計測する電子電流測定部と、イオンを解離するイオン解離部と、イオンを質量分析する質量分析部と、イオンの解離を制御する制御部と、計算処理部を有する質量分析装置を用いた質量分析方法であって、
     データベースを登録する工程と、
     イオンを解離させることなく取得した非フラグメント化スペクトルを取得する工程と、
     前記計算処理部において、データベースに記載のイオンが存在するか否かを検索する工程と、
     データベースに記載のイオンが存在しなかった場合は、非フラグメント化スペクトルを取得する工程に戻り、データベースに記載のイオンが存在した場合は、データベースに記載のイオン解離強度で実フラグメント化スペクトルを取得する工程と
     を有する質量分析方法。
    An ion source that ionizes a sample, an isolation unit that isolates ions having a specific mass-to-charge ratio, an electron source that supplies electrons, an electron current measurement unit that measures the amount of electron current, and an ion dissociation A mass spectrometry method using a mass spectrometer having an ion dissociation part, a mass analysis part for mass analysis of ions, a control part for controlling ion dissociation, and a calculation processing part,
    Registering the database;
    Obtaining a non-fragmented spectrum obtained without dissociating ions;
    In the calculation processing unit, searching for whether or not ions described in a database exist;
    If the ion described in the database does not exist, the process returns to the step of acquiring the non-fragmented spectrum. If the ion described in the database exists, the actual fragmented spectrum is acquired with the ion dissociation intensity described in the database. A mass spectrometry method comprising the steps of:
  22.  前記データベースは、質量電荷比、保持時間、価数、イオン強度、反応時間、電子エネルギー、電子量制御電圧、電子電流基準値で構成される
     ことを特徴とする請求項21に記載の質量分析方法。
    The mass spectrometry method according to claim 21, wherein the database includes a mass-to-charge ratio, a retention time, a valence, an ionic strength, a reaction time, electron energy, an electron amount control voltage, and an electron current reference value. .
  23.  イオン強度に応じて反応時間を変更し、実フラグメント化スペクトルを取得する
     ことを特徴とする請求項14又は21に記載の質量分析方法。
    The mass spectrometry method according to claim 14 or 21, wherein an actual fragmentation spectrum is obtained by changing a reaction time according to ionic strength.
  24.  電子電流測定部で計測された電子電流値とデータベースに記載の電子電流基準値とを比
    較する工程を有し、前記電子電流値と前記電子電流基準値との間にある一定値以上の差が
    あった場合は、データベースに記載の反応時間又は電子量制御電圧を変更する
     ことを特徴とする請求項21又は22に記載の質量分析方法。
    A step of comparing the electronic current value measured by the electronic current measuring unit with the electronic current reference value described in the database, and a difference of a certain value or more between the electronic current value and the electronic current reference value is If there is, the mass spectrometry method according to claim 21 or 22, wherein the reaction time or the electron quantity control voltage described in the database is changed.
PCT/JP2010/062207 2009-07-24 2010-07-21 Mass spectrometry method and ion dissociation device WO2011010649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011523665A JP5362009B2 (en) 2009-07-24 2010-07-21 Mass spectrometry method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-173643 2009-07-24
JP2009173643 2009-07-24
JP2010-096640 2010-04-20
JP2010096640 2010-04-20

Publications (1)

Publication Number Publication Date
WO2011010649A1 true WO2011010649A1 (en) 2011-01-27

Family

ID=43499121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062207 WO2011010649A1 (en) 2009-07-24 2010-07-21 Mass spectrometry method and ion dissociation device

Country Status (2)

Country Link
JP (1) JP5362009B2 (en)
WO (1) WO2011010649A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012124020A1 (en) * 2011-03-11 2014-07-17 株式会社島津製作所 Mass spectrometer
JP2015181126A (en) * 2015-06-04 2015-10-15 株式会社島津製作所 Mass spectroscope
WO2017126006A1 (en) * 2016-01-18 2017-07-27 株式会社島津製作所 Ion trap mass spectrometry device and mass spectrometry method using said device
WO2018037484A1 (en) * 2016-08-23 2018-03-01 株式会社島津製作所 Mass spectrometry data processing device, mass spectrometry data processing method, and mass spectrometry data processing program
WO2018189540A1 (en) * 2017-04-12 2018-10-18 Micromass Uk Limited Optimised targeted analysis
JP2019196989A (en) * 2018-05-10 2019-11-14 株式会社島津製作所 Analysis methods, processing equipment, analysis device and program
CN114720603B (en) * 2017-04-12 2024-06-21 英国质谱公司 Optimized target analysis

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313276A (en) * 2001-04-17 2002-10-25 Hitachi Ltd Ion-trap mass spectrometer and method
JP2005339812A (en) * 2004-05-24 2005-12-08 Hitachi High-Technologies Corp Mass spectroscope
JP2006234782A (en) * 2005-01-28 2006-09-07 Hitachi High-Technologies Corp Electron capture dissociation reaction device, and mass spectrometer having electron capture dissociation
JP2007121134A (en) * 2005-10-28 2007-05-17 Hitachi High-Technologies Corp Tandem mass analyzing system
JP2007127562A (en) * 2005-11-07 2007-05-24 Hitachi High-Technologies Corp Liquid feed pump
WO2007060755A1 (en) * 2005-11-28 2007-05-31 Hitachi, Ltd. Ion guide device, ion reactor, and mass analyzer
WO2007079589A1 (en) * 2006-01-11 2007-07-19 Mds Inc., Doing Business Through Its Mds Sciex Division Fragmenting ions in mass spectrometry
JP2009257850A (en) * 2008-04-15 2009-11-05 Hitachi High-Technologies Corp Mass analyzing system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313276A (en) * 2001-04-17 2002-10-25 Hitachi Ltd Ion-trap mass spectrometer and method
JP2005339812A (en) * 2004-05-24 2005-12-08 Hitachi High-Technologies Corp Mass spectroscope
JP2006234782A (en) * 2005-01-28 2006-09-07 Hitachi High-Technologies Corp Electron capture dissociation reaction device, and mass spectrometer having electron capture dissociation
JP2007121134A (en) * 2005-10-28 2007-05-17 Hitachi High-Technologies Corp Tandem mass analyzing system
JP2007127562A (en) * 2005-11-07 2007-05-24 Hitachi High-Technologies Corp Liquid feed pump
WO2007060755A1 (en) * 2005-11-28 2007-05-31 Hitachi, Ltd. Ion guide device, ion reactor, and mass analyzer
WO2007079589A1 (en) * 2006-01-11 2007-07-19 Mds Inc., Doing Business Through Its Mds Sciex Division Fragmenting ions in mass spectrometry
JP2009257850A (en) * 2008-04-15 2009-11-05 Hitachi High-Technologies Corp Mass analyzing system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. LIU ET AL.: "Electron Capture Dissociation of Tyrosine O-Sulfated Peptides Complexed with Divalent Metal Cations", ANALYTICAL CHEMISTRY, vol. 78, no. 21, 1 November 2006 (2006-11-01), pages 7570 - 7576 *
J.M. BUSHEY ET AL.: "Simultaneous Collision Induced Dissociation of the Charge Reduced Parent Ion during Electron Capture Dissociation", ANALYTICAL CHEMISTRY, vol. 81, no. 15, 2 July 2009 (2009-07-02), pages 6156 - 6164 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9111736B2 (en) 2011-03-11 2015-08-18 Shimadzu Corporation Mass spectrometer
JPWO2012124020A1 (en) * 2011-03-11 2014-07-17 株式会社島津製作所 Mass spectrometer
JP2015181126A (en) * 2015-06-04 2015-10-15 株式会社島津製作所 Mass spectroscope
WO2017126006A1 (en) * 2016-01-18 2017-07-27 株式会社島津製作所 Ion trap mass spectrometry device and mass spectrometry method using said device
JPWO2017126006A1 (en) * 2016-01-18 2018-06-28 株式会社島津製作所 Ion trap mass spectrometer and mass spectrometry method using the apparatus
CN108474762A (en) * 2016-01-18 2018-08-31 株式会社岛津制作所 Ion trap mass spectrometry device and the mass spectrometric analysis method for using the device
CN108474762B (en) * 2016-01-18 2021-03-26 株式会社岛津制作所 Ion trap mass spectrometry device and mass spectrometry method using the same
US10788469B2 (en) 2016-08-23 2020-09-29 Shimadzu Corporation Mass spectrometry data processor, mass spectrometry data processing method, and mass spectrometry data processing program
WO2018037484A1 (en) * 2016-08-23 2018-03-01 株式会社島津製作所 Mass spectrometry data processing device, mass spectrometry data processing method, and mass spectrometry data processing program
JPWO2018037484A1 (en) * 2016-08-23 2019-01-10 株式会社島津製作所 Mass spectrometry data processing apparatus, mass spectrometry data processing method, and mass spectrometry data processing program
KR102314968B1 (en) * 2017-04-12 2021-10-20 마이크로매스 유케이 리미티드 Optimized Targeted Analysis
CN110494952A (en) * 2017-04-12 2019-11-22 英国质谱公司 The target analysis of optimization
JP2020519855A (en) * 2017-04-12 2020-07-02 マイクロマス ユーケー リミテッド Optimized targeted analysis
KR20190126138A (en) * 2017-04-12 2019-11-08 마이크로매스 유케이 리미티드 Optimized Target Analysis
WO2018189540A1 (en) * 2017-04-12 2018-10-18 Micromass Uk Limited Optimised targeted analysis
US11201043B2 (en) 2017-04-12 2021-12-14 Micromass Uk Limited Optimised targeted analysis
CN110494952B (en) * 2017-04-12 2022-05-13 英国质谱公司 Optimized target analysis
CN114720603A (en) * 2017-04-12 2022-07-08 英国质谱公司 Optimized target analysis
GB2561378B (en) * 2017-04-12 2022-10-12 Micromass Ltd Optimised targeted analysis
CN114720603B (en) * 2017-04-12 2024-06-21 英国质谱公司 Optimized target analysis
JP2019196989A (en) * 2018-05-10 2019-11-14 株式会社島津製作所 Analysis methods, processing equipment, analysis device and program
JP7205077B2 (en) 2018-05-10 2023-01-17 株式会社島津製作所 Analysis method, processor, analyzer and program
JP7509762B2 (en) 2018-10-09 2024-07-02 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド Electron beam throttling for electron capture dissociation.

Also Published As

Publication number Publication date
JP5362009B2 (en) 2013-12-11
JPWO2011010649A1 (en) 2013-01-07

Similar Documents

Publication Publication Date Title
US10083825B2 (en) Mass spectrometer with bypass of a fragmentation device
US7642509B2 (en) Top-down protein analysis in mass spectrometers with ion traps
US20050063864A1 (en) Mass spectrometer system
JP5997650B2 (en) Analysis system
JP5362009B2 (en) Mass spectrometry method
CA2782209C (en) Multiplexed tandem mass spectrometry method
US8426155B2 (en) Proteome analysis in mass spectrometers containing RF ion traps
EP3631838B1 (en) Automated determination of mass spectrometer collision energy
JP4959712B2 (en) Mass spectrometer
JP2007046966A (en) Mass analyzing system
Creese et al. Liquid chromatography electron capture dissociation tandem mass spectrometry (LC-ECD-MS/MS) versus liquid chromatography collision-induced dissociation tandem mass spectrometry (LC-CID-MS/MS) for the identification of proteins
JP4959713B2 (en) Mass spectrometer
JP5065543B1 (en) Method for detection and sequencing of post-translationally modified peptides
US10317412B1 (en) Method and device for analyzing protein or peptide
EP2499655A1 (en) Detection and/or quantification of a compound in a sample
JP5840915B2 (en) Mass spectrometry method and apparatus capable of efficiently selecting glycopeptide ions
Su et al. Mass spectrometry instrumentation
JP7435812B2 (en) Mass spectrometry method and mass spectrometer
JP7142867B2 (en) ion analyzer
Le Vot et al. Implementation of a Penning ionization source on a FTICR instrument with ion funnel optics
JP2010014563A (en) Mass spectrometry method and system
CN114252499A (en) Dynamic exclusion of product ions that may be present in a main scan using real-time search results

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802269

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011523665

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10802269

Country of ref document: EP

Kind code of ref document: A1