WO2011010583A1 - Method for screening for oligonucleotide, and oligonucleotide library - Google Patents

Method for screening for oligonucleotide, and oligonucleotide library Download PDF

Info

Publication number
WO2011010583A1
WO2011010583A1 PCT/JP2010/061888 JP2010061888W WO2011010583A1 WO 2011010583 A1 WO2011010583 A1 WO 2011010583A1 JP 2010061888 W JP2010061888 W JP 2010061888W WO 2011010583 A1 WO2011010583 A1 WO 2011010583A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide
nucleic acid
analog
mrna
oligonucleotides
Prior art date
Application number
PCT/JP2010/061888
Other languages
French (fr)
Japanese (ja)
Inventor
徹 夏目
俊吾 足達
Original Assignee
株式会社Galaxy Pharma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Galaxy Pharma filed Critical 株式会社Galaxy Pharma
Publication of WO2011010583A1 publication Critical patent/WO2011010583A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/10Applications; Uses in screening processes
    • C12N2320/11Applications; Uses in screening processes for the determination of target sites, i.e. of active nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised
    • C12N2330/31Libraries, arrays

Definitions

  • the present invention relates to an oligonucleotide screening method and an oligonucleotide library. More specifically, the present invention relates to an oligonucleotide screening method for obtaining a target oligonucleotide exhibiting a desired biological activity or chemical activity, an oligonucleotide library used in the screening method, and the like.
  • Oligonucleotides in which several to several tens of nucleotides are arranged in a chain by phosphodiester bonds via phosphoric acid are formed between base pairs with respect to a nucleotide chain having a complementary sequence. Are bonded by hydrogen bonds. By utilizing this characteristic, oligonucleotides have been widely used as research reagents and gene diagnostic reagents.
  • Oligonucleotides as research reagents are used, for example, as primers for polymerase chain reaction (PCR) and used to amplify specific gene sequences. Alternatively, it is also used as a probe for detecting the amplified gene sequence. Moreover, as a genetic diagnostic reagent, it is used as a probe immobilized on a DNA chip or a DNA array.
  • PCR polymerase chain reaction
  • nucleic acid pharmaceuticals In recent years, oligonucleotides have been developed as pharmaceuticals called nucleic acid pharmaceuticals.
  • an antisense method that selectively inhibits translation of a sense strand into a protein by introducing an oligonucleotide (antisense oligonucleotide) complementary to a partial sequence of mRNA (sense strand) of a target gene into a cell.
  • an antisense method by binding an antisense oligonucleotide to the mRNA of the target gene and inhibiting the binding of the translation factor complex to the mRNA, the translation of the mRNA into the protein is inhibited and the expression of the target gene product is suppressed. can do.
  • oligonucleotide As an example of an oligonucleotide as a nucleic acid drug, “decoy oligonucleotide” that binds to a specific transcription factor as “bait” and inhibits the function of the transcription factor can also be mentioned. Transcription factors bind to transcriptional control regions such as promoters and enhancers on the genome to control transcription of genes into mRNA. The decoy oligonucleotide binds to this transcription factor as a decoy and competitively inhibits the transcription factor from binding to the transcription control region, thereby inhibiting the transcription of the target gene mRNA and suppressing the expression of the target gene product.
  • LNA locked nucleic acid
  • BNA Bridged Nucleic Acid
  • Nucleosides in natural nucleic acids have two conformations, N-type and S-type. Because of this “fluctuation” between conformations, the double strands formed between DNA-DNA, RNA-RNA strands, and DNA-RNA are not necessarily thermodynamically stable.
  • 2'-O, 4'-C-methano-bridged nucleic acid (2 ', 4'-BNA) bridges the 2' and 4 'positions of ribose (sugar) with "-O-CH2-" It is an artificial nucleic acid whose conformation is fixed to N-type. Since 2 ', 4'-BNA has no fluctuation between conformations, oligonucleotides synthesized with several units of 2', 4'-BNA are compared to oligonucleotides synthesized with conventional natural nucleic acids. It has extremely high binding power and sequence specificity for RNA and DNA, and exhibits excellent heat resistance and nuclease resistance. So far, about 10 types of LNAs have been developed in addition to 2 ′, 4′-BNA (see Patent Documents 1 to 4).
  • the antisense method and the decoy method target only the genes for which the translation factor complex and transcription factor binding region sequences (hereinafter also referred to as “target sequences”) have been clarified. Cannot target unknown genes.
  • an oligonucleotide synthesized as a sequence complementary to the binding region of a translation factor complex or a transcription factor may not necessarily show the expected activity. Therefore, for example, in the antisense method, a plurality of oligonucleotides are synthesized for one translation factor complex-binding region on the target gene mRNA, or a large number of translation factor complex-binding regions on the mRNA are synthesized. It is necessary to synthesize oligonucleotides to find oligonucleotides exhibiting a desired activity by screening.
  • the main object of the present invention is to provide a method for screening an oligonucleotide for efficiently obtaining an oligonucleotide exhibiting biological activity or chemical activity such as target gene expression-suppressing activity.
  • the present invention provides a 7mer basic sequence comprising any nucleic acid analog, any one nucleic acid analog selected from adenine analog, guanine analog, thymine analog or cytosine analog, or adenine, guanine, Prepare two or more oligonucleotide pools composed of oligonucleotides in which one or two nucleic acids selected from thymine or cytosine are bound so that the basic sequences differ between the oligonucleotide pools.
  • An oligonucleotide screening method comprising: a procedure; and a procedure for identifying an oligonucleotide pool containing a target oligonucleotide from the oligonucleotide pool.
  • the screening method may further comprise a procedure for obtaining the target oligonucleotide from the identified oligonucleotide pool.
  • an oligonucleotide pool is prepared by binding one nucleic acid analog or nucleic acid to a basic sequence, an adenine analog, guanine analog, thymine is added to either the 5 ′ end or the 3 ′ end of the basic sequence.
  • Two oligonucleotide pools composed of four kinds of oligonucleotides, each of which binds any one nucleic acid analog selected from analogs or cytosine analogs, or any one nucleic acid selected from adenine, guanine, thymine, or cytosine, respectively. Prepare as above.
  • an oligonucleotide pool by binding two nucleic acid analogs or nucleic acids to a basic sequence, for example, an adenine analog, a guanine analog
  • An oligonucleotide pool consisting of 16 types of oligonucleotides, each of which binds any one nucleic acid analog selected from thymine analogs or cytosine analogs, or any one nucleic acid selected from adenine, guanine, thymine or cytosine Prepare two or more.
  • This screening method preferably includes a procedure for preparing 16384 (4 7) basic sequences consisting of all combinations of seven nucleic acid analogs.
  • oligonucleotide pools By preparing 16384 oligonucleotide pools using 16384 basic sequences, it is theoretically possible to prepare oligonucleotides that can specifically bind to nucleotide chains of any sequence.
  • the screening method according to the present invention for example, in the presence and absence of an oligonucleotide pool, the mRNA is contacted with an mRNA binding protein that binds to the mRNA, and the amount of binding between the mRNA and the mRNA binding protein is measured.
  • an oligonucleotide pool containing oligonucleotides that exhibit an activity of inhibiting the binding between mRNA and mRNA-binding protein By preparing 16384 oligonucleotide pools using 16384 basic sequences, it is theoretically possible to prepare oligonucleotides that can specifically bind to nucleotide chains of any sequence.
  • the mRNA in the presence and absence of an oligonucleot
  • an oligonucleotide pool containing an oligonucleotide exhibiting an activity of enhancing the expression of the protein can be identified it can.
  • the present invention is an oligonucleotide library provided for the above-described oligonucleotide screening method, wherein a 7mer basic sequence comprising any nucleic acid analog is added to an adenine analog, guanine analog, thymine analog or cytosine analog. It is composed of two or more oligonucleotide pools composed of one or two oligonucleotides bound to any one nucleic acid analog selected, or any one nucleic acid selected from adenine, guanine, thymine, or cytosine.
  • the present invention also provides an oligonucleotide library in which the basic sequences are different between the oligonucleotide pools. This oligonucleotide library preferably has 16384 basic sequences consisting of all combinations of seven nucleic acid analogs.
  • the present invention also provides an oligonucleotide exhibiting an activity that inhibits the binding between tumor necrosis factor ⁇ mRNA and RC3H1, and an oligonucleotide exhibiting an activity that enhances the expression of a low density lipoprotein receptor.
  • a “nucleic acid analog” is an artificial nucleic acid obtained by artificially modifying the chemical structure of a ribose or phosphodiester bond of a natural nucleic acid (DNA and RNA), and includes at least one in the oligonucleotide sequence. By being included, the binding affinity and sequence specificity for the complementary strand of the oligonucleotide can be increased as compared to the oligonucleotide consisting only of the natural nucleic acid.
  • the “nucleic acid analog” obtained by modifying the chemical structure of ribose includes at least the above-described bridged nucleic acid (BNA) or locked nucleic acid (LNA).
  • LNA As LNA, 2'-O, 4'-C-methano-bridged nucleic acid (2 ', 4'-BNA) and 3', 4'-BNA, 3'-amino- Conventionally known LNA such as 2 ′, 4′-BNA and 5′-amino-3 ′, 4′-BNA are included.
  • Nucleic acid analogs in which the chemical structure of the phosphodiester bond is modified include phosphorothioate-type artificial nucleic acids (S-oligo) in which the oxygen atom of the phosphate group is replaced with a sulfur atom.
  • the present invention provides an oligonucleotide screening method for efficiently obtaining a target oligonucleotide exhibiting biological activity or chemical activity such as target gene expression suppression activity.
  • the binding affinity and sequence specificity for the complementary strand of an oligonucleotide decreases as the length of the oligonucleotide decreases.
  • Conventional oligonucleotides for research, genetic diagnostic reagents, and nucleic acid pharmaceuticals usually have a binding affinity and sequence specificity for complementary strands of 10 to 40 mer in normal cases, and in most cases around 20 mer. It is said to be long. Since the length of the oligonucleotide is short, the desired activity of the oligonucleotide cannot be obtained unless sufficient binding affinity and sequence specificity for the complementary strand are exhibited.
  • the longer the length of the oligonucleotide the higher the cost for synthesis.
  • the length of the oligonucleotide becomes too long, nonspecific binding to a nucleotide chain having a partially complementary sequence (non-complementary chain) occurs. Therefore, it is desirable that the oligonucleotide be synthesized as short as possible on condition that sufficient binding affinity and sequence specificity for the complementary strand are exhibited.
  • the increase in synthesis cost due to the length of the oligonucleotide requires the synthesis of four types of oligonucleotides for every 1 mer. It will be functional. Therefore, in order to construct an oligonucleotide library at an economically feasible cost, it is desirable that the length of the oligonucleotide be as short as possible.
  • the present inventors added a 1-mer or 2-mer nucleic acid analog or nucleic acid to a nucleic acid analog 7mer. It was found that a total of 8 mer or 9 mer oligonucleotides synthesized in this manner exhibit necessary and sufficient binding affinity and sequence specificity and can express a desired biological activity or chemical activity.
  • the present invention has been completed by the inventors based on this finding, and uses an oligonucleotide library for efficiently obtaining a target oligonucleotide exhibiting a desired biological activity or chemical activity, and this library.
  • the present invention provides a screening method for oligonucleotides.
  • the oligonucleotide library according to the present invention is composed of two or more oligonucleotide pools.
  • Each oligonucleotide pool has a 7-mer “basic sequence” consisting of any nucleic acid analog, any one nucleic acid analog selected from adenine analog, guanine analog, thymine analog or cytosine analog, or adenine, guanine, thymine or It consists of an oligonucleotide in which one or two nucleic acids selected from cytosine are linked.
  • FIG. 1 schematically shows an oligonucleotide library according to the first embodiment of the present invention.
  • the figure shows an oligonucleotide library L in which each oligonucleotide pool is composed of oligonucleotides in which one nucleic acid analog or nucleic acid is linked to a 7mer basic sequence.
  • A represents an adenine analog
  • G represents a guanine analog
  • T thymine analog
  • C represents a cytosine analog
  • a represents adenine
  • g represents guanine
  • t thymine
  • c represents cytosine.
  • N represents any one nucleic acid analog selected from adenine analog, guanine analog, thymine analog, or cytosine analog
  • n represents any one nucleic acid selected from adenine, guanine, thymine, or cytosine.
  • Oligonucleotide library L is composed of a total of K types of oligonucleotide libraries from pool 1 to pool K.
  • Pool 1 includes four types of oligonucleotides 11, 12, 13, and 14. Oligonucleotides 11, 12, 13, and 14 have a basic sequence 1 represented by “AGTCAGGT” in common, and have a sequence in which A, G, T, and C are linked to the 3 ′ end of the basic sequence 1, respectively. ing. In the pool 1, it is desirable that the oligonucleotides 11, 12, 13, and 14 are contained in the same number of moles, but the concentration of each oligonucleotide is not particularly limited. Hereinafter, the same applies to the pool 2, the pool 3, and the pool K.
  • Pool 2 includes four types of oligonucleotides 21, 22, 23, and 24, and oligonucleotides 21, 22, 23, and 24 have a common basic sequence 2 represented by “AGTGGAGT”.
  • the basic sequence 2 has a sequence in which A, G, T, and C are bonded to the 3 ′ end.
  • the basic sequence 1 of the oligonucleotides 11, 12, 13, and 14 included in the pool 1 and the basic sequence 2 of the oligonucleotides 21, 22, 23, and 24 included in the pool 2 include the fourth nucleic acid analog from the 5 ′ end. “C” and “G” are different.
  • Pool 3 includes four types of oligonucleotides 31, 32, 33, and 34, and oligonucleotides 31, 32, 33, and 34 have a basic sequence 3 represented by “AGTTAGT” in common.
  • the basic sequence 3 has a sequence in which A, G, T, and C are bonded to the 3 ′ end.
  • the basic sequence 1 of the oligonucleotides 11, 12, 13, and 14 included in the pool 1 and the basic sequence 3 of the oligonucleotides 31, 32, 33, and 34 included in the pool 3 include the fourth nucleic acid analog from the 5 ′ end. “C” and “T” are different.
  • the basic sequence 2 of the oligonucleotides 21, 22, 23, and 24 included in the pool 2 and the basic sequence 3 of the oligonucleotides 31, 32, 33, and 34 included in the pool 3 are the fourth nucleic acid from the 5 ′ end.
  • the analogs are different for “G” and “T”, respectively.
  • the pool K (K is an integer of 2 to 16,384) includes four types of oligonucleotides K1, K2, K3, and K4.
  • the oligonucleotides K1, K2, K3, and K4 are indicated by “NNNNNNNN”.
  • the basic sequence K is commonly used, and A, G, T, and C are connected to the 3 ′ end of the basic sequence K, respectively.
  • the basic sequences K of the oligonucleotides K1, K2, K3, and K4 included in the pool K are different from the basic sequences 1 to K-1 of the oligonucleotides included in the pool 1 to the pool (K-1).
  • the oligonucleotide library L includes two or more oligonucleotide pools composed of four types of oligonucleotides in which a nucleic acid analog of A, G, T, or C is bound to a basic sequence that is different between pools. Has been.
  • FIG. 1 illustrates the case where the oligonucleotides K1, K2, K3, and K4 constituting the oligonucleotide pool K are sequences in which A, G, T, and C are bonded to the 3 ′ end of the basic sequence K, respectively.
  • Each nucleic acid analog may be bound to either the 3 ′ end or the 5 ′ end of the basic sequence K, and the oligonucleotides K1, K2, K3, and K4 are respectively A and G at the 5 ′ end of the basic sequence K.
  • T, and C may be combined.
  • FIG. 1 illustrates the case where oligonucleotides K1, K2, K3, and K4 constituting the oligonucleotide pool K are sequences in which the nucleic acid analogs A, G, T, and C are bonded to the ends of the basic sequence K, respectively. did. Either the nucleic acid analog or the nucleic acid may be bound to the end of the basic sequence.
  • the oligonucleotides K1, K2, K3, and K4 have the nucleic acids a, g, t, and c at the ends of the basic sequence K, respectively. A combined sequence may also be used.
  • FIG. 2 schematically shows an oligonucleotide library according to the second embodiment of the present invention.
  • the figure shows an oligonucleotide library L in which each oligonucleotide pool is composed of oligonucleotides in which two nucleic acid analogs or two nucleic acids are linked to a 7mer basic sequence.
  • Oligonucleotide library L is composed of a total of K types of oligonucleotide libraries from pool 1 to pool K.
  • Pool 1 contains 16 types of oligonucleotides 101-116. Oligonucleotides 101 to 116 have a basic sequence 1 represented by “AGTCCAGT” in common, and any one of A, G, T, and C is linked to the 5 ′ end and the 3 ′ end of this basic sequence 1, respectively. It is an array. In the pool 1, it is desirable that the oligonucleotides 101 to 116 are contained in the same number of moles, but the concentration of each oligonucleotide is not particularly limited. Hereinafter, the same applies to the pool 2, the pool 3, and the pool K.
  • the pool 2 includes 16 types of oligonucleotides 201 to 216, and the oligonucleotides 201 to 216 have the basic sequence 2 indicated by “AGTGAGT” in common, and 5 ′ of the basic sequence 2 It is set as the arrangement
  • the fourth nucleic acid analog from the 5 ′ end is “C” and “G”, respectively. And is different.
  • the pool 3 includes 16 types of oligonucleotides 301 to 316, and the oligonucleotides 301 to 316 have a basic sequence 3 represented by “AGTTAGT” in common. It is set as the arrangement
  • the fourth nucleic acid analogs from the 5 ′ end are “C” and “T”, respectively. And is different.
  • the fourth nucleic acid analog from the 5 ′ end is “G” and “ T ”.
  • the pool K (K is an integer of 2 to 16384) includes 16 types of oligonucleotides K01 to K16, and the oligonucleotides K01 to K16 share the basic sequence K represented by “NNNNNNNN”.
  • the basic sequence K has a sequence in which any one of A, G, T, and C is linked to the 5 ′ end and 3 ′ end.
  • the basic sequences K of the oligonucleotides K01 to K16 included in the pool K are different from the basic sequences 1 to K-1 of the oligonucleotides included in the pools 1 to (K-1).
  • the oligonucleotide library L includes two or more oligonucleotide pools composed of 16 kinds of oligonucleotides in which a nucleic acid analog of A, G, T, or C is bound to a basic sequence that is different between pools. Has been.
  • the oligonucleotides K01 to K16 constituting the oligonucleotide pool K are divided into one of A, G, T, C at the 5 ′ end of the basic sequence K, and A, G, T, at the 3 ′ end.
  • the case where any one of Cs is a sequence in which one is combined has been described.
  • Two nucleic acid analogs may be bound to the 5 ′ end and / or 3 ′ end of the basic sequence K, and both nucleic acid analogs are bound to the 5 ′ end or the 3 ′ end to form 16 types of oligonucleotides. Also good.
  • FIG. 2 illustrates the case where the oligonucleotides K01 to K16 constituting the oligonucleotide pool K have a sequence in which two nucleic acid analogs A, G, T, and C are bonded to the ends of the basic sequence K, respectively. Either the nucleic acid analog or the nucleic acid may be bound to the end of the basic sequence.
  • the oligonucleotides K1, K2, K3, and K4 have the nucleic acids a, g, t, and c at the ends of the basic sequence K, respectively. Two sequences may be combined, or one nucleic acid analog and one nucleic acid may be combined.
  • the oligonucleotide library L shown in FIG. 1 and FIG. 2 contains A, G, T, or C nucleic acid analogs or nucleic acids in a 7mer basic sequence that is different between pools. It comprises two or more oligonucleotide pools consisting of linked 8mer or 9mer oligonucleotides. As described above, a total of 8mer or 9mer oligonucleotide synthesized by adding 1mer or 2mer nucleic acid analog or nucleic acid to nucleic acid analog 7mer such as 2 ', 4'-BNA has the necessary and sufficient binding affinity and It has been shown that it can exhibit sequence specificity and express a desired biological or chemical activity.
  • oligonucleotide library L is composed of 16384 (4 to the 7th power) oligonucleotide pools, which are all combinations of nucleic acid analogs of the basic sequence 7mer, it binds specifically to nucleotide chains of any sequence.
  • An oligonucleotide library can be constructed such that possible 8mer or 9mer oligonucleotides are always included in either oligonucleotide pool.
  • oligonucleotide Screening Method Next, an oligonucleotide screening method according to the present invention will be described. In this screening method, an oligonucleotide exhibiting a desired biological activity or chemical activity is obtained using the oligonucleotide library L described above.
  • FIG. 3 is a flowchart showing the procedure of the oligonucleotide screening method according to the present invention.
  • symbol S 1 is a procedure for preparing a 7mer basic sequence consisting of an arbitrary nucleic acid analog.
  • the basic sequence can be synthesized by combining nucleic acid analogs using a conventional known method.
  • the basic sequence is synthesized using, for example, a known DNA synthesizer.
  • the synthesized basic sequence can be confirmed by purifying using a reverse phase column and then analyzing by reverse phase HPLC or MALDI-TOF-MS.
  • the basic sequence can also be obtained by using a custom oligonucleotide synthesis service.
  • Two or more basic arrays are prepared as different arrays.
  • the base sequence is prepared as 16384 (4 to the 7th power) of all combinations of 7-mer nucleic acid analogs.
  • Step S 2 described below using the basic sequence of 16384 ways, by preparing an oligonucleotide pool 16384 types, theoretically, an oligonucleotide capable of specifically binding to the nucleotide strand of any sequence Can be prepared.
  • Step S 2 designates each basic sequence prepared in Step S 1 one nucleic acid analogs or nucleic acid, or two bonds to, the procedure for preparing oligonucleotide pool It is.
  • oligonucleotide library L is constituted by oligonucleotides in which one nucleic acid analog or nucleic acid is bound to a 7mer basic sequence
  • oligonucleotides included in pool 1 to pool (K-1) A, G, T, and C are respectively linked to the 3 ′ end of the basic sequence K “NNNNNNNN” that is different from the basic sequences 1 to K-1.
  • K is an integer of 2 to 16384
  • the oligonucleotide library L is composed of oligonucleotides in which two nucleic acid analogs or two nucleic acids are linked to a 7mer basic sequence
  • the basic sequence 1 of oligonucleotides contained in pool 1 to pool (K-1) A, G, T, and C are respectively linked to the 5 ′ end and 3 ′ end of the basic sequence K “NNNNNNNN” that is different from the sequence of K ⁇ 1.
  • K is an integer of 2 to 16384
  • Oligonucleotide pools are prepared as two or more pools based on two or more basic sequences having different sequences.
  • the oligonucleotide pool is prepared as 16384 (4 to the 7th power) pools of all combinations of 7mer nucleic acid analogs.
  • 16384 oligonucleotide pools it is possible to prepare an oligonucleotide library L that always contains oligonucleotides that can specifically bind to nucleotide chains of any sequence.
  • reference numeral S 3 denotes an oligonucleotide containing an oligonucleotide exhibiting a desired biological activity or chemical activity from among the oligonucleotide pools constituting the oligonucleotide library L. Procedure for identifying nucleotide pools.
  • Each oligonucleotide pool contains 4 types or 16 types of oligonucleotides.
  • each of the oligonucleotide pools is subjected to various assays in the presence and absence thereof to identify an oligonucleotide pool containing the oligonucleotide exhibiting the desired activity (target oligonucleotide pool).
  • the “biological activity or chemical activity” of an oligonucleotide means the amount of organism that can be quantified by experiment, and specifically means the activity of the following oligonucleotide, for example.
  • Antisense activity that inhibits the binding of the translation factor complex to the mRNA by inhibiting the binding of the translation factor complex to the mRNA by binding to the mRNA of the target gene in a complementary manner.
  • Activity that inhibits translation into protein and suppresses expression of target gene product.
  • This activity inhibits the binding of mRNA binding proteins other than translation factor complexes to mRNA, or by inhibiting the binding of mRNA binding proteins to mRNA, resulting in decreased or increased expression of the target gene product. It may be an activity.
  • One example is the activity of stabilizing the mRNA and increasing the expression of the target gene product by inhibiting the binding of the cis element binding factor to the mRNA.
  • this antisense activity may be an activity that binds complementarily to non-coding RNA such as micro-RNA (miRNA) and inhibits or enhances its function.
  • cis element binding factor binds to specific sequences called “cis-elements” present in the 5 ′ and 3 ′ untranslated regions of DNA and RNA.
  • a cis element is involved in regulation of the expression of a gene encoded by its DNA strand or RNA strand.
  • a cis-element binding factor functions as a “trans-acting factor” that binds to a cis-element and positively or negatively controls gene expression.
  • One of the typical mRNA cis elements is “AU-rich element (AU-Rich Element; ARE)”.
  • ARE is a base sequence of about 10 to 150 bps rich in adenosine and uridine, and is abundant in the 3 ′ untranslated region (3 ′ UTR) of mRNA. ARE was initially found as a region where the nucleotide sequence of “AUUUA” frequently overlaps in the 3 ′ UTR of cytokines and lymphokines. ARE is currently estimated to be present in 5-8% of all genes, and ARE is considered to be present in many genes involved in the maintenance of homeostasis (“ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. ”Nucleic Acids Research, 2001, Vol.29, No.1, p.246-254.).
  • This activity binds to DNA-binding proteins or RNA-binding proteins other than transcription factors as decoys, or binds to DNA-binding proteins or RNA-binding proteins as a decoy, resulting in decreased or increased expression of the target gene product It may be an activity.
  • One example is the activity of stabilizing mRNA and increasing the expression of the target gene product by binding as a decoy to the cis element binding factor and inhibiting the binding of the cis element binding factor to the mRNA.
  • the biological activity or chemical activity of oligonucleotides can be evaluated by conducting various assays in the presence and absence of each oligonucleotide pool.
  • the following assay is performed. First, in the presence of each oligonucleotide pool, the mRNA of a target gene is brought into contact with an mRNA binding protein (here, a translation factor) that binds to the mRNA, and the amount of binding between the mRNA and the mRNA binding protein is measured.
  • an mRNA binding protein here, a translation factor
  • the target mRNA is brought into contact with the mRNA binding protein that binds to the mRNA, and the amount of binding between the mRNA and the mRNA binding protein is measured. Then, the amount of binding in the presence of the oligonucleotide pool is compared with the amount of binding in the absence of the oligonucleotide pool, and the oligonucleotide pool containing the oligonucleotide that exhibits the activity of inhibiting the binding between the mRNA and the mRNA binding protein is identified. .
  • the amount of binding between mRNA and mRNA binding protein can be evaluated, for example, by a pull-down assay using mRNA bait.
  • the following assay is performed. First, the expression level of the target protein is measured for the cells into which each oligonucleotide pool has been introduced. Moreover, the expression level of protein is measured about the cell which has not introduce
  • the expression level of the cells into which the oligonucleotide pool has been introduced is compared with the expression level of the cells into which the oligonucleotide pool has not been introduced, and an oligonucleotide pool containing oligonucleotides that exhibit the activity of increasing the expression of the target gene product is identified.
  • the expression level of the target protein can be evaluated, for example, by Western blot.
  • This assay can identify a target oligonucleotide pool containing decoy oligonucleotides that have the activity of binding to DNA or RNA binding proteins as decoys and increasing the expression of target gene products.
  • the assay is performed for each of two or more oligonucleotide pools constituting the oligonucleotide library L.
  • 16384 kinds of oligonucleotide pools are prepared, and an oligonucleotide library L containing oligonucleotides that can specifically bind to nucleotide chains of any sequence is always prepared.
  • an oligonucleotide library L containing oligonucleotides that can specifically bind to nucleotide chains of any sequence is always prepared.
  • one or more oligonucleotide pools exhibiting the desired activity can be identified.
  • symbol S 4 is a procedure for acquiring an oligonucleotide exhibiting a desired biological activity or chemical activity from the oligonucleotide pool identified in step S 3. is there.
  • the oligonucleotide pools identified in step S 3 contains four or 16 different oligonucleotides.
  • an oligonucleotide exhibiting a desired activity is identified from these oligonucleotides.
  • oligonucleotides can be identified by performing for each of the four or 16 kinds of oligonucleotides were synthesized by the same method as described in Step S 2, the various assays in a manner similar to that described in step S 3.
  • the screening method of an oligonucleotide according to the present invention performs the identification of the object oligonucleotide pool in step S 3, performing a two-step screening procedure of identifying the target oligonucleotide from the object pool of oligonucleotides further in this procedure. Thereby, in the oligonucleotide screening method according to the present invention, an oligonucleotide exhibiting a desired activity can be efficiently obtained.
  • oligonucleotide screening method by preparing 16384 oligonucleotide pools, oligonucleotides that can specifically bind to nucleotide chains of any sequence must be in any one or more oligonucleotide pools. Since it can be included, it is possible to obtain an oligonucleotide exhibiting an antisense activity, a decoy activity, etc. even for a target gene for which the target sequence cannot be specified.
  • oligonucleotide screening method it is not always necessary to prepare 16384 oligonucleotide pools.
  • screening can be carried out using a minimum of two or more oligonucleotide pools.
  • Oligonucleotide An oligonucleotide obtained by the oligonucleotide screening method of the present invention exhibits a desired biological activity or chemical activity such as the above-described antisense activity or decoy activity. Therefore, this oligonucleotide can be developed as a nucleic acid medicine, for example.
  • an oligonucleotide exhibiting antisense activity or decoy activity can be used as a nucleic acid drug for enhancing or suppressing the expression of a predetermined target gene. Since the oligonucleotide synthesized by LNA has high heat resistance and excellent nuclease resistance, the obtained oligonucleotide exhibits high stability when used as a nucleic acid pharmaceutical.
  • the oligonucleotide when the expression of a target gene is controlled using the obtained oligonucleotide, the oligonucleotide is added to the cell culture medium and taken into the cell to bind to the target gene mRNA in the cell.
  • the obtained oligonucleotide is introduced into the cell by lipofection or microinjection to bind to the target gene mRNA in the cell.
  • the target of gene expression is a living organ or a living body
  • the oligonucleotide is administered in vivo by an administration route such as oral route, rectal route, nasal route, vascular route, or by direct local administration to the target organ. Alternatively, it is introduced into a living organ and taken into a cell.
  • the base sequence and length of the obtained oligonucleotide, the chemical structure of ribose or the chemical structure of the phosphodiester bond, etc. can be appropriately changed and optimized.
  • optimizing the base sequence and the like it is possible to develop an oligonucleotide exhibiting higher activity or an oligonucleotide having lower toxicity and side effects.
  • the oligonucleotide can be expressed in the cell and bound to the target gene mRNA.
  • plasmids derived from Escherichia coli, Bacillus subtilis or yeast, animal viruses such as bacteriophages, retroviruses, vaccinia viruses, baculoviruses, or those obtained by fusing them with liposomes can be used.
  • the expression vector can be constructed by a known genetic engineering technique.
  • Oligonucleotide or expression vector capable of expressing it is a unit dose required for the practice of a generally accepted formulation together with a pharmaceutically acceptable carrier, flavoring agent, excipient, vehicle, preservative, stabilizer, binder, etc. It can be produced as a nucleic acid medicine by mixing in the form.
  • This pharmaceutical composition is sterilized, for example, orally as tablets, capsules, elixirs, microcapsules or the like with sugar coating as necessary, or with water or other pharmaceutically acceptable liquids. It can be used parenterally in the form of injections such as solutions or suspensions.
  • Additives that can be mixed into tablets, capsules and the like include binders such as gelatin, corn starch, tragacanth and gum arabic, excipients such as crystalline cellulose, corn starch, gelatin, alginic acid and the like. Leavening agents, lubricants such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin, flavorings such as peppermint, red oil and cherry.
  • the present inventors show that the oligonucleotide represented by the base sequence “CGGAAACA” binds to tumor necrosis factor ⁇ (Tumor Necrosis Factor ⁇ : TNF- ⁇ ) mRNA and this mRNA. It was found to show an activity of inhibiting the binding to the known transcription factor RC3H1.
  • this oligonucleotide or an expression vector capable of expressing this oligonucleotide can be used to regulate the expression of TNF- ⁇ , and can be used as an immunoactivator or anticancer agent.
  • oligonucleotide represented by the base sequence “ATGAATAAA” has an activity of increasing the expression of a low-density lipoprotein receptor (Low-) Density Lipoprotein Receptor: LDLR).
  • this oligonucleotide or an expression vector capable of expressing this oligonucleotide can be used as an LDLR expression enhancer.
  • LDLR has a function of taking LDL cholesterol in plasma into cells by receptor-mediated endocytosis.
  • intracellular uptake of LDL cholesterol by LDLR expressed in the liver plays an important role in the clearance of plasma LDL cholesterol.
  • LDL cholesterol is responsible for cholesterol transport from the liver to peripheral tissues.
  • LDL cholesterol causes vascular injury due to deposition on the inner wall of the blood vessel, causing arteriosclerosis, hypertension, cerebral infarction, myocardial infarction, narrowing. causes heart disease.
  • oligonucleotide can enhance the expression of LDLR, according to the pharmaceutical composition comprising this oligonucleotide or the like as an active ingredient, plasma LDL cholesterol can be applied by enhancing the expression of LDLR, particularly when applied to the liver. It becomes possible to prevent, ameliorate or treat hyperlipidemia and hyperlipidemia-related diseases.
  • prevention here includes not only prevention in the previous stage of disease, but also prevention against recurrence after treatment of the disease.
  • hyperlipidemia-related diseases include diabetes, obesity, and cancer. It is not excluded.
  • the pharmaceutical composition containing the above-mentioned oligonucleotide or the like as an active ingredient has the potential to be applied to prevent, ameliorate, or treat Alzheimer's disease by enhancing the expression of LDLR and controlling the level of plasma LDL cholesterol. There is also.
  • ⁇ Example 1> Screening of oligonucleotides having binding inhibitory activity between TNF- ⁇ mRNA and transcription factor RC3H1
  • TNF- ⁇ tumor necrosis factor ⁇
  • oligonucleotide pools 1N and 2N were composed of 16 types of oligonucleotides in which any one of A, G, T, and C was linked to the 5 'end and 3' end of the basic sequences 1 and 2, respectively.
  • 16 types of oligonucleotides in which any of a, g, t, and c were bonded to the 5 ′ end and 3 ′ end of the basic sequences 1 and 2, respectively, were designated as oligonucleotide pools 1n and 2n.
  • A represents an adenine analog
  • G represents a guanine analog
  • T thymine analog
  • C represents a cytosine analog
  • a represents adenine
  • g represents guanine
  • t thymine
  • c represents cytosine.
  • N represents any one nucleic acid analog selected from adenine analog, guanine analog, thymine analog, or cytosine analog
  • n represents any one nucleic acid selected from adenine, guanine, thymine, or cytosine. Represents.
  • TNF- ⁇ mRNA was synthesized by in vitro translation.
  • MEGAscriptT7 kit by amplifying the 869-1652th nucleotide sequence from the 5 ′ end of TNF- ⁇ mRNA (GenBank Accession No.NM_000594.2, SEQ ID NO: 1) by PCR using a primer having T7 promoter sequence at the 5 ′ end (Ambion) was used to synthesize RNA according to the attached protocol.
  • a reaction for covalently binding Flag-hydrazide to the 3 ′ end of the synthesized TNF- ⁇ mRNA was performed, and the 3 ′ end of the TNF- ⁇ mRNA was labeled with Flag.
  • the labeled mRNA was purified using RNeasy Mini Kit from Qiagen.
  • mRNA flag labeling is performed according to a known method (see “Programmable ribozymes for mischarging tRNA with nonnatural amino acids and their applications to translation.” Methods, 2005, Vol, 36, No.3, p.239-244). It was.
  • TNF- ⁇ mRNA-Flag The purified Flag-labeled TNF- ⁇ mRNA (hereinafter referred to as “TNF- ⁇ mRNA-Flag”) is mixed with cell-extracted protein extracted from 293T cells, and oligonucleotide pools 1N, 1n, 2N, or 2n are mixed with each oligonucleotide. The reaction was carried out by adding the final concentration to 100 nM. After immunoprecipitation, the eluted sample was subjected to Western blotting using an anti-RC3H1 antibody (Bethyl Laboratories).
  • FIG. 4 Western blot results are shown in “FIG. 4”.
  • RC3H1 was detected in samples (lanes 3 and 4) obtained by mixing the cell extract protein with 10 pmol of TNF- ⁇ mRNA-Flag and oligonucleotide pool 1N or 1n and immunoprecipitating with anti-Flag antibody.
  • the cell extract protein itself is mixed.
  • the cell extract protein is mixed with 10 pmol TNF- ⁇ mRNA-Flag and oligonucleotide solvent (water), and a sample obtained by immunoprecipitation with anti-Flag antibody is obtained. It is flowing.
  • RC3H1 was detected in samples (lanes 5 and 6) obtained by mixing the cell extract protein with 10 pmol of TNF- ⁇ mRNA-Flag and oligonucleotide pool 2N or 2n and immunoprecipitating with anti-Flag antibody. It was revealed that the binding of RC3H1 to TNF- ⁇ mRNA-Flag was inhibited.
  • Oligonucleotides showing activity to inhibit the binding between TNF- ⁇ mRNA and RC3H1 were obtained from the oligonucleotide pools 2N and 2n.
  • Immunoprecipitation and Western blotting were performed on 16 kinds of oligonucleotides constituting the oligonucleotide pool 2N or 2n by the same procedure as described above.
  • oligonucleotides 2N1 and 2n1 were obtained from each of the oligonucleotide pools 2N and 2n as oligonucleotides exhibiting binding inhibitory activity between TNF- ⁇ mRNA and RC3H1.
  • each screening step was performed with the oligonucleotide library as 2 (oligonucleotide pools 1N and 2N, or oligonucleotide pools 1n and 2n), which is the minimum number of oligonucleotide pools.
  • the oligonucleotides shown in “Table 3” were obtained as oligonucleotides showing the binding inhibitory activity between the target TNF- ⁇ mRNA and RC3H1.
  • the 9mer oligonucleotide in which two nucleic acid analogs or nucleic acids are bound to the basic sequence of the nucleic acid analog 7mer can exhibit a desired activity (in this case, the binding inhibitory activity between TNF- ⁇ mRNA and RC3H1). It was revealed.
  • This result shows that oligonucleotides that can specifically bind to nucleotide chains of any sequence are prepared by preparing 16384 (4 to the 7th power) oligonucleotide pools that are all combinations of 7-mer nucleic acid analogs.
  • oligonucleotide library that always contains an oligosaccharide that exhibits a desired activity such as an antisense activity or a decoy activity even for a target gene for which a target sequence cannot be specified by using this library. It shows that nucleotides can be obtained.
  • Example 2 Screening for oligonucleotides having an activity of inhibiting the binding of ZFP36L1 to LDLR mRNA and increasing the expression of LDLR
  • a 9-mer oligonucleotide in which two nucleic acid analogs or nucleic acids were bound to the basic sequence of nucleic acid analog 7-mer It has been clarified that the activity of increasing the expression of a low-density lipoprotein receptor (LDLR) is exhibited.
  • LDLR low-density lipoprotein receptor
  • oligonucleotide pool 3N Sixteen types of oligonucleotides in which A, G, T, and C were bonded to the 5 ′ end and 3 ′ end of basic sequence 3 were designated as oligonucleotide pool 3N. In addition, 16 types of oligonucleotides in which a, g, t, and c were bonded to the 5 ′ end and 3 ′ end of the basic sequence 3, respectively, were designated as an oligonucleotide pool 3n.
  • oligonucleotide pools 3N or 3n were transfected into cells by lipofection (Darmafect 4, Thermo Scientific). Oligonucleotide pools 3N and 3n were used after being diluted so that the final concentration of each oligonucleotide was 40 nM.
  • FIG. 5 Western blot results are shown in “FIG. 5”. An increase in LDLR expression level was confirmed in cells transfected with oligonucleotide pools 3N and 3n (lanes 2 and 3), compared to cells not transfected with the oligonucleotide pool (lane 1). Note that ⁇ -actin was used as an internal standard for expression level evaluation. The expression level of ⁇ -actin was not significantly changed regardless of the presence or absence of transfection.
  • Oligonucleotides having activity to increase the expression of LDLR were acquired from the oligonucleotide pools 3N and 3n.
  • oligonucleotide pools 3N and 3n As a result, from the oligonucleotide pools 3N and 3n, the following oligonucleotides 3N1 and 3n1 were obtained as oligonucleotides showing LDLR expression increasing activity.
  • Example 3 the mechanism by which the oligonucleotides 3N1, 3n1 obtained in Example 2 increase the expression of LDLR was examined.
  • LDLR mRNA was synthesized by in vitro translation. Amplification of the 2677-3585bp region of LDLR mRNA (SEQ ID NO: 2, GenBank Accession No.NM_000527) was performed by PCR using a primer having a T7 promoter sequence at the 5 'end, and MEGAscript T7 kit (Cat.No.1333, Ambion) was used to synthesize RNA. A reaction for covalently binding Flag-hydrazide to the 3 ′ end of the synthesized LDLR mRNA was performed, and the 3 ′ end of the LDLR mRNA was labeled with Flag. The labeled mRNA was purified using RNeasy Mini Kit (Cat. No. 74106) manufactured by Qiagen.
  • Flag-labeled LDLR mRNA was mixed with anti-Flag antibody beads (Cat. No. F2426, Sigma) and reacted at 4 ° C for 1 hour. Thereafter, 3 mg of cell-extracted protein extracted from 293T cells cultured in DMEM medium containing 10% FBS ⁇ ⁇ was added, and further reacted at 4 ° C for 1 hour. After washing away unbound protein, RNA and RNA binding protein were eluted with Flag peptide.
  • ZFP36L1 and ZFP36L2 were identified by LC-MS / MS.
  • ZFP36L1 and ZFP36L2 form one family of ARE binding factors (hereinafter referred to as “ZFP36 family”) together with ZFP36 (also known as TTP).
  • ZFP36 family has been reported to bind to ARE and destabilize mRNA and function to promote degradation (“Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly (A) ribonuclease. ”Molecular Cell Biology, 2003, Vol.23, No.11, p.3798-812).
  • LDLR mRNA was synthesized by in vitro translation and labeled with Flag peptide.
  • 3′UTR 2677-3585 bps from the 5 ′ end of LDLR mRNA (see SEQ ID NO: 2) was used.
  • LDLR mRNA -Flag Purified Flag-labeled LDLR mRNA
  • FIG. 6 Western blot results are shown in “FIG. 6”.
  • ZFP36L1 was detected in a sample (lane 2) obtained by mixing cell extract protein containing ZFP36L1 / ZFP36L2 with LDLR mRNA-Flag and immunoprecipitating with anti-Flag antibody.
  • lane 1 the cell extracted protein itself flows.
  • ZFP36L1 can bind to LDLR mRNA-Flag.
  • ZFP36L2 the same applies to the present embodiment hereinafter.
  • oligonucleotides 3N1, 3n1 can remarkably inhibit the binding of ZFP36L1 and ZFP36L2 to LDLR mRNA.
  • the result of this example is that the 9mer oligonucleotide in which two nucleic acid analogs or nucleic acids are bound to the base sequence of the nucleic acid analog 7mer inhibits the binding of the desired activity (here, ZFP36L1 and ZFP36L2 to LDLR mRNA) As a result, it is clarified that the activity of increasing the expression of LDLR can be exhibited.
  • the desired activity here, ZFP36L1 and ZFP36L2 to LDLR mRNA
  • the oligonucleotides 3N1, 3n1 inhibit the binding of ZFP36L1 and ZFP36L2 to LDLR mRNA, thereby inhibiting the mRNA degradation promoting function of ZFP36L1 and ZFP36L2 and stabilizing LDLR mRNA. It was strongly suggested that the expression of LDLR mRNA was increased by promoting. This is very significant in that it is revealed for the first time that ZFP36L1 and ZFP36L2 are involved in the expression control mechanism of LDLR mRNA in vivo.
  • the oligonucleotide screening method according to the present invention can contribute to elucidating a new control mechanism in the living body, starting from the obtained oligonucleotide.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Diabetes (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Cardiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hospice & Palliative Care (AREA)

Abstract

Disclosed is a method for screening for an oligonucleotide, which can be employed for highly efficiently obtaining an oligonucleotide having biological or chemical activities including an activity of inhibiting the expression of a target gene. Specifically disclosed is a method for screening for an oligonucleotide, which comprises: a step S2 of preparing at least two oligonucleotide pools; and a step S3 of identifying an oligonucleotide pool that comprises an oligonucleotide having a biological or chemical activity among from the oligonucleotide pools. In the step S2, each of the oligonucleotide pools comprises an oligonucleotide composed of a 7-mer base sequence comprising a nucleic acid analogue and one or two components which are bound to the base sequence and are independently selected from a nucleic acid analogue and a nucleic acid, wherein the nucleic acid analogue is selected from adenine analogues, guanine analogues, thymine analogues and cytosine analogues and the nucleic acid is selected from adenine, guanine, thymine and cytosine, and wherein base sequences of the oligonucleotide pools are different from each other.

Description

オリゴヌクレオチドのスクリーニング方法及びオリゴヌクレオチドライブラリーOligonucleotide screening method and oligonucleotide library
 本発明は、オリゴヌクレオチドのスクリーニング方法とオリゴヌクレオチドライブラリー等に関する。より詳しくは、所望の生物的活性又は化学的活性を示す目的オリゴヌクレオチドを取得するためのオリゴヌクレオチドのスクリーニング方法と、このスクリーニング方法に用いられるオリゴヌクレオチドライブラリー等に関する。 The present invention relates to an oligonucleotide screening method and an oligonucleotide library. More specifically, the present invention relates to an oligonucleotide screening method for obtaining a target oligonucleotide exhibiting a desired biological activity or chemical activity, an oligonucleotide library used in the screening method, and the like.
 数個~数十個程度のヌクレオチドがリン酸を介してフォスフォジエステル結合によって鎖状に配列したオリゴヌクレオチド(Oligonucleotide)は、相補的な配列を有するヌクレオチド鎖に対して、塩基対間に形成される水素結合により結合する。この特性を利用して、オリゴヌクレオチドは、従来、研究用試薬や遺伝子診断試薬として広く用いられている。 Oligonucleotides in which several to several tens of nucleotides are arranged in a chain by phosphodiester bonds via phosphoric acid are formed between base pairs with respect to a nucleotide chain having a complementary sequence. Are bonded by hydrogen bonds. By utilizing this characteristic, oligonucleotides have been widely used as research reagents and gene diagnostic reagents.
 研究用試薬としてのオリゴヌクレオチドは、例えば、ポリメラーゼ連鎖反応(Polymerase chain reaction: PCR)のプライマーに用いられて、特定の遺伝子配列を増幅するために利用されている。あるいは、増幅された遺伝子配列を検出するためのプローブとしても利用される。また、遺伝子診断試薬としては、DNAチップやDNAアレイに固相化されるプローブとして使用されている。 Oligonucleotides as research reagents are used, for example, as primers for polymerase chain reaction (PCR) and used to amplify specific gene sequences. Alternatively, it is also used as a probe for detecting the amplified gene sequence. Moreover, as a genetic diagnostic reagent, it is used as a probe immobilized on a DNA chip or a DNA array.
 近年、オリゴヌクレオチドは、核酸医薬と称される医薬品としての開発が進められている。一例として、標的遺伝子のmRNA(センス鎖)の部分配列に相補的なオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)を細胞内へ導入し、センス鎖のタンパク質への翻訳を選択的に阻害する「アンチセンス法」がある。アンチセンス法では、標的遺伝子のmRNAにアンチセンスオリゴヌクレオチドを結合させ、mRNAへの翻訳因子複合体の結合を阻害することによって、mRNAのタンパク質への翻訳を阻害し、標的遺伝子産物の発現を抑制することができる。 In recent years, oligonucleotides have been developed as pharmaceuticals called nucleic acid pharmaceuticals. As an example, an antisense method that selectively inhibits translation of a sense strand into a protein by introducing an oligonucleotide (antisense oligonucleotide) complementary to a partial sequence of mRNA (sense strand) of a target gene into a cell. There is. In the antisense method, by binding an antisense oligonucleotide to the mRNA of the target gene and inhibiting the binding of the translation factor complex to the mRNA, the translation of the mRNA into the protein is inhibited and the expression of the target gene product is suppressed. can do.
 核酸医薬としてのオリゴヌクレオチドの一例として、「おとり」として特定の転写因子と結合し、転写因子の機能を阻害する「デコイオリゴヌクレオチド」も挙げられる。転写因子は、ゲノム上のプロモーターやエンハンサーといった転写制御領域に結合して、遺伝子のmRNAへの転写を制御している。デコイオリゴヌクレオチドは、この転写因子におとりとして結合し、転写因子が転写制御領域へ結合するのを競合的に阻害することによって、標的遺伝子mRNAの転写を阻害し、標的遺伝子産物の発現を抑制する。 As an example of an oligonucleotide as a nucleic acid drug, “decoy oligonucleotide” that binds to a specific transcription factor as “bait” and inhibits the function of the transcription factor can also be mentioned. Transcription factors bind to transcriptional control regions such as promoters and enhancers on the genome to control transcription of genes into mRNA. The decoy oligonucleotide binds to this transcription factor as a decoy and competitively inhibits the transcription factor from binding to the transcription control region, thereby inhibiting the transcription of the target gene mRNA and suppressing the expression of the target gene product.
 ここで、本発明に関連して「ロックト核酸(LNA: Locked Nucleic Acid)」について説明する。LNAは、「ブリッジド核酸(BNA: Bridged Nucleic Acid)」とも称されている。本発明において、LNA及びBNAは同義に用いるものとする。 Here, “locked nucleic acid (LNA)” is described in relation to the present invention. LNA is also referred to as “bridged nucleic acid (BNA: Bridged Nucleic Acid)”. In the present invention, LNA and BNA are used synonymously.
 天然の核酸(DNA及びRNA)中のヌクレオシドは、N型とS型の2種類のコンフォメーションをとっている。このコンフォメーション間の「ゆらぎ」のために、DNA-DNA間、RNA-RNA 間及びDNA-RNA間で形成される二本鎖は熱力学的に必ずしも安定した状態とはなっていない。 Nucleosides in natural nucleic acids (DNA and RNA) have two conformations, N-type and S-type. Because of this “fluctuation” between conformations, the double strands formed between DNA-DNA, RNA-RNA strands, and DNA-RNA are not necessarily thermodynamically stable.
 2'-O,4'-C-methano-bridged nucleic acid (2',4'-BNA)は、リボース(糖)の2’位と4’位を「- O - CH2-」で架橋し、コンフォメーションをN型に固定した人工核酸である。2',4'-BNAはコンフォメーション間のゆらぎがないため、2',4'-BNAを数ユニット組み込んで合成されたオリゴヌクレオチドは、従来の天然の核酸で合成されたオリゴヌクレオチドに比べて、RNAやDNAに対する結合力や配列特異性が極めて高く、かつ、優れた耐熱性とヌクレアーゼ耐性を示す。これまでに、2',4'-BNA以外にも、約10種類のLNAが開発されている(特許文献1~4参照)。 2'-O, 4'-C-methano-bridged nucleic acid (2 ', 4'-BNA) bridges the 2' and 4 'positions of ribose (sugar) with "-O-CH2-" It is an artificial nucleic acid whose conformation is fixed to N-type. Since 2 ', 4'-BNA has no fluctuation between conformations, oligonucleotides synthesized with several units of 2', 4'-BNA are compared to oligonucleotides synthesized with conventional natural nucleic acids. It has extremely high binding power and sequence specificity for RNA and DNA, and exhibits excellent heat resistance and nuclease resistance. So far, about 10 types of LNAs have been developed in addition to 2 ′, 4′-BNA (see Patent Documents 1 to 4).
特表2002-521310号Special Table 2002-521310 特開平10-304889号Japanese Patent Laid-Open No. 10-304889 特開平10-195098号JP 10-195098 A 国際公開第2005/021570号International Publication No. 2005/021570
 核酸医薬として機能するアンチセンスオリゴヌクレオチドやデコイオリゴヌクレオチドを得るためには、翻訳因子複合体の結合領域や転写因子の結合領域に相補的な配列を有するオリゴヌクレオチドを合成する必要がある。そのため、アンチセンス法やデコイ法では、翻訳因子複合体や転写因子の結合領域の配列(以下、「ターゲット配列」ともいう)が明らかにされている遺伝子のみが標的となり、これらの結合領域の配列が未知の遺伝子を標的とすることはできない。 In order to obtain an antisense oligonucleotide or a decoy oligonucleotide that functions as a nucleic acid drug, it is necessary to synthesize an oligonucleotide having a sequence complementary to a binding region of a translation factor complex or a binding region of a transcription factor. Therefore, the antisense method and the decoy method target only the genes for which the translation factor complex and transcription factor binding region sequences (hereinafter also referred to as “target sequences”) have been clarified. Cannot target unknown genes.
 さらに、翻訳因子複合体や転写因子の結合領域に相補的な配列として合成したオリゴヌクレオチドであっても、必ずしも期待した活性を示さない場合がある。そのため、例えば、アンチセンス法では、標的遺伝子mRNA上の一つの翻訳因子複合体結合領域に対して複数のオリゴヌクレオチドを合成したり、mRNA上の複数の翻訳因子複合体結合領域に対して多数のオリゴヌクレオチドを合成したりして、所望の活性を示すオリゴヌクレオチドをスクリーニングにより見つけ出す必要がある。 Furthermore, even an oligonucleotide synthesized as a sequence complementary to the binding region of a translation factor complex or a transcription factor may not necessarily show the expected activity. Therefore, for example, in the antisense method, a plurality of oligonucleotides are synthesized for one translation factor complex-binding region on the target gene mRNA, or a large number of translation factor complex-binding regions on the mRNA are synthesized. It is necessary to synthesize oligonucleotides to find oligonucleotides exhibiting a desired activity by screening.
 このような標的遺伝子に関する制約や、標的遺伝子毎に複数のオリゴヌクレオチドをその都度設計してスクリーニングするためのコストは、核酸医薬の開発を進めるにあたって大きな障害となっている。 Such restrictions on the target gene and the cost for designing and screening a plurality of oligonucleotides for each target gene are major obstacles in the development of nucleic acid drugs.
 そこで、本発明は、標的遺伝子の発現抑制活性等の生物的活性又は化学的活性を示すオリゴヌクレオチドを効率良く取得するためのオリゴヌクレオチドのスクリーニング方法を提供することを主な目的とする。 Therefore, the main object of the present invention is to provide a method for screening an oligonucleotide for efficiently obtaining an oligonucleotide exhibiting biological activity or chemical activity such as target gene expression-suppressing activity.
 上記課題解決のため、本発明は、任意の核酸アナログからなる7merの基本配列に、アデニンアナログ、グアニンアナログ、チミンアナログ又はシトシンアナログから選択されるいずれか一の核酸アナログ、又は、アデニン、グアニン、チミン又はシトシンから選択されるいずれか一の核酸、を1つ又は2つ結合したオリゴヌクレオチドからなるオリゴヌクレオチドプールを、各オリゴヌクレオチドプール間で前記基本配列が互いに異なるようして、二以上準備する手順と、オリゴヌクレオチドプールの中から、目的オリゴヌクレオチドを含むオリゴヌクレオチドプールを同定する手順と、を含む、オリゴヌクレオチドのスクリーニング方法を提供する。
 このスクリーニング方法は、さらに、同定されたオリゴヌクレオチドプールの中から目的オリゴヌクレオチドを取得する手順を含み得る。
 このスクリーニング方法において、基本配列に核酸アナログ又は核酸を1つ結合してオリゴヌクレオチドプールを調製する場合には、基本配列の5´末端又は3´末端のいずれかに、アデニンアナログ、グアニンアナログ、チミンアナログ又はシトシンアナログから選択されるいずれか一の核酸アナログ、又は、アデニン、グアニン、チミン又はシトシンから選択されるいずれか一の核酸、をそれぞれ結合した4種類のオリゴヌクレオチドからなるオリゴヌクレオチドプールを二以上準備する。
 また、このスクリーニング方法において、基本配列に核酸アナログ又は核酸を2つ結合してオリゴヌクレオチドプールを調製する場合には、例えば、基本配列の5´末端及び3´末端に、アデニンアナログ、グアニンアナログ、チミンアナログ又はシトシンアナログから選択されるいずれか一の核酸アナログ、又は、アデニン、グアニン、チミン又はシトシンから選択されるいずれか一の核酸、をそれぞれ結合した16種類のオリゴヌクレオチドからなるオリゴヌクレオチドプールを二以上準備する。
 このスクリーニング方法は、7つの核酸アナログの全ての組み合わせからなる16384(4の7乗)通りの基本配列を準備する手順を含むことが好適となる。16384通りの基本配列を用いて、16384通りのオリゴヌクレオチドプールを調製することにより、理論的に、あらゆる配列のヌクレオチド鎖に対して特異的に結合し得るオリゴヌクレオチドを用意できる。
 本発明に係るスクリーニング方法では、例えば、オリゴヌクレオチドプールの存在下及び非存在下で、mRNAとこのmRNAに結合するmRNA結合タンパク質とを接触させ、mRNAとmRNA結合タンパク質との結合量を測定することにより、mRNAとmRNA結合タンパク質との結合を阻害する活性を示すオリゴヌクレオチドを含むオリゴヌクレオチドプールを同定することができる。
 また、例えば、オリゴヌクレオチドプールを導入した細胞及び導入していない細胞についてタンパク質の発現量を測定することにより、該タンパク質の発現を増強する活性を示すオリゴヌクレオチドを含むオリゴヌクレオチドプールを同定することもできる。
In order to solve the above problems, the present invention provides a 7mer basic sequence comprising any nucleic acid analog, any one nucleic acid analog selected from adenine analog, guanine analog, thymine analog or cytosine analog, or adenine, guanine, Prepare two or more oligonucleotide pools composed of oligonucleotides in which one or two nucleic acids selected from thymine or cytosine are bound so that the basic sequences differ between the oligonucleotide pools. An oligonucleotide screening method comprising: a procedure; and a procedure for identifying an oligonucleotide pool containing a target oligonucleotide from the oligonucleotide pool.
The screening method may further comprise a procedure for obtaining the target oligonucleotide from the identified oligonucleotide pool.
In this screening method, when an oligonucleotide pool is prepared by binding one nucleic acid analog or nucleic acid to a basic sequence, an adenine analog, guanine analog, thymine is added to either the 5 ′ end or the 3 ′ end of the basic sequence. Two oligonucleotide pools composed of four kinds of oligonucleotides, each of which binds any one nucleic acid analog selected from analogs or cytosine analogs, or any one nucleic acid selected from adenine, guanine, thymine, or cytosine, respectively. Prepare as above.
In this screening method, when preparing an oligonucleotide pool by binding two nucleic acid analogs or nucleic acids to a basic sequence, for example, an adenine analog, a guanine analog, An oligonucleotide pool consisting of 16 types of oligonucleotides, each of which binds any one nucleic acid analog selected from thymine analogs or cytosine analogs, or any one nucleic acid selected from adenine, guanine, thymine or cytosine Prepare two or more.
This screening method preferably includes a procedure for preparing 16384 (4 7) basic sequences consisting of all combinations of seven nucleic acid analogs. By preparing 16384 oligonucleotide pools using 16384 basic sequences, it is theoretically possible to prepare oligonucleotides that can specifically bind to nucleotide chains of any sequence.
In the screening method according to the present invention, for example, in the presence and absence of an oligonucleotide pool, the mRNA is contacted with an mRNA binding protein that binds to the mRNA, and the amount of binding between the mRNA and the mRNA binding protein is measured. Thus, it is possible to identify an oligonucleotide pool containing oligonucleotides that exhibit an activity of inhibiting the binding between mRNA and mRNA-binding protein.
In addition, for example, by measuring the expression level of a protein in a cell into which an oligonucleotide pool has been introduced and a cell into which the oligonucleotide pool has not been introduced, an oligonucleotide pool containing an oligonucleotide exhibiting an activity of enhancing the expression of the protein can be identified it can.
 併せて、本発明は、上記のオリゴヌクレオチドのスクリーニング方法に供されるオリゴヌクレオチドライブラリーであって、任意の核酸アナログからなる7merの基本配列に、アデニンアナログ、グアニンアナログ、チミンアナログ又はシトシンアナログから選択されるいずれか一の核酸アナログ、又は、アデニン、グアニン、チミン又はシトシンから選択されるいずれか一の核酸、を1つ又は2つ結合したオリゴヌクレオチドからなる二以上のオリゴヌクレオチドプールから構成され、各オリゴヌクレオチドプール間で前記基本配列が互いに異なるようにされたオリゴヌクレオチドライブラリーをも提供する。
 このオリゴヌクレオチドライブラリーは、基本配列が、7つの核酸アナログの全ての組み合わせからなる16384通りとされていることが好適となる。
In addition, the present invention is an oligonucleotide library provided for the above-described oligonucleotide screening method, wherein a 7mer basic sequence comprising any nucleic acid analog is added to an adenine analog, guanine analog, thymine analog or cytosine analog. It is composed of two or more oligonucleotide pools composed of one or two oligonucleotides bound to any one nucleic acid analog selected, or any one nucleic acid selected from adenine, guanine, thymine, or cytosine. The present invention also provides an oligonucleotide library in which the basic sequences are different between the oligonucleotide pools.
This oligonucleotide library preferably has 16384 basic sequences consisting of all combinations of seven nucleic acid analogs.
 さらに、本発明は、腫瘍壊死因子α mRNAとRC3H1との結合を阻害する活性を示すオリゴヌクレオチドと、低密度リポタンパク質受容体の発現を増強する活性を示すオリゴヌクレオチドをも提供する。 Furthermore, the present invention also provides an oligonucleotide exhibiting an activity that inhibits the binding between tumor necrosis factor α mRNA and RC3H1, and an oligonucleotide exhibiting an activity that enhances the expression of a low density lipoprotein receptor.
 ここで、本発明における用語の定義を説明する。 Here, the definition of terms in the present invention will be described.
 「核酸アナログ」とは、天然の核酸(DNA及びRNA)のリボースの化学構造又はホスホジエステル結合の化学構造を人為的に改変して得た人工核酸であって、オリゴヌクレオチドの配列中に少なくとも1つ含まれることにより、天然核酸のみからなるオリゴヌクレオチドに比較して、オリゴヌクレオチドの相補鎖に対する結合親和性及び配列特異性を増大させ得るものをいう。具体的には、リボースの化学構造を改変した「核酸アナログ」は、上述のブリッジド核酸(BNA)又はロックト核酸(LNA)を少なくとも含む。LNAとしては、2'-O,4'-C-methano-bridged nucleic acid (2',4'-BNA)や3’,4’-BNA、これらをさらに改変して得た3’-amino-2',4'-BNAや5’-amino-3’,4’-BNAなどの従来公知のLNAが包含される。また、ホスホジエステル結合の化学構造を改変した「核酸アナログ」には、リン酸基の酸素原子を硫黄原子で置換したホスホロチオエート型人工核酸(S-oligo)などが含まれる。 A “nucleic acid analog” is an artificial nucleic acid obtained by artificially modifying the chemical structure of a ribose or phosphodiester bond of a natural nucleic acid (DNA and RNA), and includes at least one in the oligonucleotide sequence. By being included, the binding affinity and sequence specificity for the complementary strand of the oligonucleotide can be increased as compared to the oligonucleotide consisting only of the natural nucleic acid. Specifically, the “nucleic acid analog” obtained by modifying the chemical structure of ribose includes at least the above-described bridged nucleic acid (BNA) or locked nucleic acid (LNA). As LNA, 2'-O, 4'-C-methano-bridged nucleic acid (2 ', 4'-BNA) and 3', 4'-BNA, 3'-amino- Conventionally known LNA such as 2 ′, 4′-BNA and 5′-amino-3 ′, 4′-BNA are included. “Nucleic acid analogs” in which the chemical structure of the phosphodiester bond is modified include phosphorothioate-type artificial nucleic acids (S-oligo) in which the oxygen atom of the phosphate group is replaced with a sulfur atom.
 本発明により、標的遺伝子の発現抑制活性等の生物的活性又は化学的活性を示す目的オリゴヌクレオチドを効率良く取得するためのオリゴヌクレオチドのスクリーニング方法が提供される。 The present invention provides an oligonucleotide screening method for efficiently obtaining a target oligonucleotide exhibiting biological activity or chemical activity such as target gene expression suppression activity.
本発明の第一実施形態に係るオリゴヌクレオチドライブラリーを説明する図である。It is a figure explaining the oligonucleotide library which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係るオリゴヌクレオチドライブラリーを説明する図である。It is a figure explaining the oligonucleotide library which concerns on 2nd embodiment of this invention. 本発明に係るオリゴヌクレオチドのスクリーニング方法の手順を説明するフローチャートである。It is a flowchart explaining the procedure of the screening method of the oligonucleotide which concerns on this invention. TNF‐α mRNAとRC3H1との結合阻害活性を示すオリゴヌクレオチドプールを同定したウェスタンブロットの結果を示す図である(実施例1)。It is a figure which shows the result of the Western blot which identified the oligonucleotide pool which shows the binding inhibitory activity of TNF- (alpha) * mRNA and RC3H1 (Example 1). オリゴヌクレオチドプールのLDLR発現上昇活性を評価したウェスタンブロットの結果を示す図である(実施例2)。It is a figure which shows the result of the Western blot which evaluated the LDLR expression increase activity of an oligonucleotide pool (Example 2). オリゴヌクレオチドの、ZFP36L1とLDLR mRNAとの結合阻害活性を評価したウェスタンブロットの結果を示す図である(実施例3)。It is a figure which shows the result of the Western blot which evaluated the binding inhibitory activity of oligonucleotide of ZFP36L1 and LDLR (TM) mRNA (Example 3).
 一般に、オリゴヌクレオチドの相補鎖に対する結合親和性及び配列特異性は、オリゴヌクレオチドの長さが短くなるほど減少する。従来の研究用試薬や遺伝子診断試薬、核酸医薬としてのオリゴヌクレオチドは、相補鎖に対する十分な結合親和性と配列特異性を担保するため、通常の場合で10~40mer、多くの場合は20mer前後の長さとされている。オリゴヌクレオチドの長さが短いために相補鎖に対する十分な結合親和性と配列特異性が発揮されないと、所望のオリゴヌクレオチドの活性を得ることができない。 In general, the binding affinity and sequence specificity for the complementary strand of an oligonucleotide decreases as the length of the oligonucleotide decreases. Conventional oligonucleotides for research, genetic diagnostic reagents, and nucleic acid pharmaceuticals usually have a binding affinity and sequence specificity for complementary strands of 10 to 40 mer in normal cases, and in most cases around 20 mer. It is said to be long. Since the length of the oligonucleotide is short, the desired activity of the oligonucleotide cannot be obtained unless sufficient binding affinity and sequence specificity for the complementary strand are exhibited.
 一方、オリゴヌクレオチドは、長さが長くなるほど合成のためのコストが増大する。また、オリゴヌクレオチドの長さが長くなり過ぎると、部分的にのみ相補的な配列を有するヌクレオチド鎖(非相補鎖)への非特異的な結合が生じてしまう。そのため、オリゴヌクレオチドは、相補鎖に対する十分な結合親和性及び配列特異性が発揮されることを条件に、可能な限り短い長さとして合成されることが望ましい。 On the other hand, the longer the length of the oligonucleotide, the higher the cost for synthesis. Moreover, when the length of the oligonucleotide becomes too long, nonspecific binding to a nucleotide chain having a partially complementary sequence (non-complementary chain) occurs. Therefore, it is desirable that the oligonucleotide be synthesized as short as possible on condition that sufficient binding affinity and sequence specificity for the complementary strand are exhibited.
 さらに、オリゴヌクレオチドのライブラリーを構築しようとする場合、オリゴヌクレオチドの長さが長くなることによる合成コストの増大は、1mer長くなるごとに4種類のオリゴヌクレオチドを合成する必要があるために、指数関数的なものとなる。そのため、オリゴヌクレオチドのライブラリーを経済的に実現可能なコストで構築するためには、オリゴヌクレオチドの長さは可能な限り短いことが望まれる。 Furthermore, when trying to construct a library of oligonucleotides, the increase in synthesis cost due to the length of the oligonucleotide requires the synthesis of four types of oligonucleotides for every 1 mer. It will be functional. Therefore, in order to construct an oligonucleotide library at an economically feasible cost, it is desirable that the length of the oligonucleotide be as short as possible.
 本発明者らは、生物的活性又は化学的活性を示すオリゴヌクレオチドを取得するための最小限のオリゴヌクレオチドの長さを検討した結果、核酸アナログ7merに、1mer又は2merの核酸アナログ又は核酸を付加して合成した合計8mer又は9merのオリゴヌクレオチドが必要かつ十分な結合親和性及び配列特異性を発揮し、所望の生物的活性又は化学的活性を発現し得ることを見出した。 As a result of studying the minimum oligonucleotide length for obtaining an oligonucleotide exhibiting biological activity or chemical activity, the present inventors added a 1-mer or 2-mer nucleic acid analog or nucleic acid to a nucleic acid analog 7mer. It was found that a total of 8 mer or 9 mer oligonucleotides synthesized in this manner exhibit necessary and sufficient binding affinity and sequence specificity and can express a desired biological activity or chemical activity.
 本発明は、この知見に基づき発明者らによって完成されたものであり、所望の生物的活性又は化学的活性を示す目的オリゴヌクレオチドを効率良く取得するためのオリゴヌクレオチドライブラリーとこのライブラリーを用いたオリゴヌクレオチドのスクリーニング方法等を提供するものである。 The present invention has been completed by the inventors based on this finding, and uses an oligonucleotide library for efficiently obtaining a target oligonucleotide exhibiting a desired biological activity or chemical activity, and this library. The present invention provides a screening method for oligonucleotides.
 以下、本発明を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. In addition, embodiment described below shows an example of typical embodiment of this invention, and, thereby, the range of this invention is not interpreted narrowly.
1.オリゴヌクレオチドライブラリー
 本発明に係るオリゴヌクレオチドライブラリーは、二以上のオリゴヌクレオチドプールから構成されている。各オリゴヌクレオチドプールは、任意の核酸アナログからなる7merの「基本配列」に、アデニンアナログ、グアニンアナログ、チミンアナログ又はシトシンアナログから選択されるいずれか一の核酸アナログ、又は、アデニン、グアニン、チミン又はシトシンから選択されるいずれか一の核酸、を1つ又は2つ結合したオリゴヌクレオチドからなっている。
1. Oligonucleotide Library The oligonucleotide library according to the present invention is composed of two or more oligonucleotide pools. Each oligonucleotide pool has a 7-mer “basic sequence” consisting of any nucleic acid analog, any one nucleic acid analog selected from adenine analog, guanine analog, thymine analog or cytosine analog, or adenine, guanine, thymine or It consists of an oligonucleotide in which one or two nucleic acids selected from cytosine are linked.
(1-1)8merオリゴヌクレオチドライブラリー
 図1に、本発明の第一実施形態に係るオリゴヌクレオチドライブラリーを模式的に示す。図は、7merの基本配列に核酸アナログ又は核酸を1つ結合したオリゴヌクレオチドによって各オリゴヌクレオチドプールが構成されたオリゴヌクレオチドライブラリーLを示している。
(1-1) 8-mer oligonucleotide library FIG. 1 schematically shows an oligonucleotide library according to the first embodiment of the present invention. The figure shows an oligonucleotide library L in which each oligonucleotide pool is composed of oligonucleotides in which one nucleic acid analog or nucleic acid is linked to a 7mer basic sequence.
 図中、「A」はアデニンアナログ、「G」はグアニンアナログ、「T」チミンアナログ、「C」はシトシンアナログを示し、「a」はアデニン、「g」はグアニン、「t」チミン、「c」はシトシンを表す。また、「N」はアデニンアナログ、グアニンアナログ、チミンアナログ又はシトシンアナログから選択されるいずれか一の核酸アナログを示し、「n」はアデニン、グアニン、チミン又はシトシンから選択されるいずれか一の核酸を表す。 In the figure, “A” represents an adenine analog, “G” represents a guanine analog, “T” thymine analog, “C” represents a cytosine analog, “a” represents adenine, “g” represents guanine, “t” thymine, “ “c” represents cytosine. "N" represents any one nucleic acid analog selected from adenine analog, guanine analog, thymine analog, or cytosine analog, and "n" represents any one nucleic acid selected from adenine, guanine, thymine, or cytosine. Represents.
 オリゴヌクレオチドライブラリーLは、プール1からプールKの合計K種類のオリゴヌクレオチドライブラリーから構成されている。 Oligonucleotide library L is composed of a total of K types of oligonucleotide libraries from pool 1 to pool K.
 プール1には、オリゴヌクレオチド11,12,13,14の4種類のオリゴヌクレオチドが含まれている。オリゴヌクレオチド11,12,13,14は、「AGTCAGT」で示される基本配列1を共通して有し、この基本配列1の3´末端にそれぞれA,G,T,Cを結合した配列とされている。プール1において、オリゴヌクレオチド11,12,13,14は同モル数ずつ含まれていることが望ましいが、各オリゴヌクレオチドの濃度は特に限定されないものとする。以下、プール2、プール3及びプールKについても同様である。 Pool 1 includes four types of oligonucleotides 11, 12, 13, and 14. Oligonucleotides 11, 12, 13, and 14 have a basic sequence 1 represented by “AGTCAGGT” in common, and have a sequence in which A, G, T, and C are linked to the 3 ′ end of the basic sequence 1, respectively. ing. In the pool 1, it is desirable that the oligonucleotides 11, 12, 13, and 14 are contained in the same number of moles, but the concentration of each oligonucleotide is not particularly limited. Hereinafter, the same applies to the pool 2, the pool 3, and the pool K.
 プール2には、オリゴヌクレオチド21,22,23,24の4種類のオリゴヌクレオチドが含まれ、オリゴヌクレオチド21,22,23,24は、「AGTGAGT」で示される基本配列2を共通して有し、この基本配列2の3´末端にそれぞれA,G,T,Cを結合した配列とされている。プール1に含まれるオリゴヌクレオチド11,12,13,14の基本配列1と、プール2に含まれるオリゴヌクレオチド21,22,23,24の基本配列2は、5´末端から4番目の核酸アナログがそれぞれ「C」と「G」とで異なっている。 Pool 2 includes four types of oligonucleotides 21, 22, 23, and 24, and oligonucleotides 21, 22, 23, and 24 have a common basic sequence 2 represented by “AGTGGAGT”. The basic sequence 2 has a sequence in which A, G, T, and C are bonded to the 3 ′ end. The basic sequence 1 of the oligonucleotides 11, 12, 13, and 14 included in the pool 1 and the basic sequence 2 of the oligonucleotides 21, 22, 23, and 24 included in the pool 2 include the fourth nucleic acid analog from the 5 ′ end. “C” and “G” are different.
 プール3には、オリゴヌクレオチド31,32,33,34の4種類のオリゴヌクレオチドが含まれ、オリゴヌクレオチド31,32,33,34は、「AGTTAGT」で示される基本配列3を共通して有し、この基本配列3の3´末端にそれぞれA,G,T,Cを結合した配列とされている。プール1に含まれるオリゴヌクレオチド11,12,13,14の基本配列1と、プール3に含まれるオリゴヌクレオチド31,32,33,34の基本配列3は、5´末端から4番目の核酸アナログがそれぞれ「C」と「T」とで異なっている。また、プール2に含まれるオリゴヌクレオチド21,22,23,24の基本配列2と、プール3に含まれるオリゴヌクレオチド31,32,33,34の基本配列3は、5´末端から4番目の核酸アナログがそれぞれ「G」と「T」とで異なっている。 Pool 3 includes four types of oligonucleotides 31, 32, 33, and 34, and oligonucleotides 31, 32, 33, and 34 have a basic sequence 3 represented by “AGTTAGT” in common. The basic sequence 3 has a sequence in which A, G, T, and C are bonded to the 3 ′ end. The basic sequence 1 of the oligonucleotides 11, 12, 13, and 14 included in the pool 1 and the basic sequence 3 of the oligonucleotides 31, 32, 33, and 34 included in the pool 3 include the fourth nucleic acid analog from the 5 ′ end. “C” and “T” are different. The basic sequence 2 of the oligonucleotides 21, 22, 23, and 24 included in the pool 2 and the basic sequence 3 of the oligonucleotides 31, 32, 33, and 34 included in the pool 3 are the fourth nucleic acid from the 5 ′ end. The analogs are different for “G” and “T”, respectively.
 プールK(Kは2以上16384以下の整数)には、オリゴヌクレオチドK1,K2,K3,K4の4種類のオリゴヌクレオチドが含まれ、オリゴヌクレオチドK1,K2,K3,K4は、「NNNNNNN」で示される基本配列Kを共通して有し、この基本配列Kの3´末端にそれぞれA,G,T,Cを結合した配列とされている。プールKに含まれるオリゴヌクレオチドK1,K2,K3,K4の基本配列Kは、プール1~プール(K-1)に含まれるオリゴヌクレオチドの基本配列1~K-1と異なる配列とされている。 The pool K (K is an integer of 2 to 16,384) includes four types of oligonucleotides K1, K2, K3, and K4. The oligonucleotides K1, K2, K3, and K4 are indicated by “NNNNNNNN”. The basic sequence K is commonly used, and A, G, T, and C are connected to the 3 ′ end of the basic sequence K, respectively. The basic sequences K of the oligonucleotides K1, K2, K3, and K4 included in the pool K are different from the basic sequences 1 to K-1 of the oligonucleotides included in the pool 1 to the pool (K-1).
 このようにオリゴヌクレオチドライブラリーLは、プール間で異なる配列とされた基本配列にA,G,T又はCの核酸アナログを結合した4種類のオリゴヌクレオチドからなるオリゴヌクレオチドプールを二以上含んで構成されている。 As described above, the oligonucleotide library L includes two or more oligonucleotide pools composed of four types of oligonucleotides in which a nucleic acid analog of A, G, T, or C is bound to a basic sequence that is different between pools. Has been.
 図1では、オリゴヌクレオチドプールKを構成するオリゴヌクレオチドK1,K2,K3,K4を、基本配列Kの3´末端にそれぞれA,G,T,Cを結合した配列とする場合を説明した。各核酸アナログは、基本配列Kの3´末端又は5´末端のいずれか一方に結合されればよく、オリゴヌクレオチドK1,K2,K3,K4は、基本配列Kの5´末端にそれぞれA,G,T,Cを結合した配列としてもよい。 FIG. 1 illustrates the case where the oligonucleotides K1, K2, K3, and K4 constituting the oligonucleotide pool K are sequences in which A, G, T, and C are bonded to the 3 ′ end of the basic sequence K, respectively. Each nucleic acid analog may be bound to either the 3 ′ end or the 5 ′ end of the basic sequence K, and the oligonucleotides K1, K2, K3, and K4 are respectively A and G at the 5 ′ end of the basic sequence K. , T, and C may be combined.
 また、図1では、オリゴヌクレオチドプールKを構成するオリゴヌクレオチドK1,K2,K3,K4を、基本配列Kの末端にそれぞれA,G,T,Cの核酸アナログを結合した配列とする場合を説明した。基本配列の末端には、核酸アナログ又は核酸のいずれか一方が結合されればよく、オリゴヌクレオチドK1,K2,K3,K4は、基本配列Kの末端にそれぞれa,g,t,cの核酸を結合した配列としてもよい。 FIG. 1 illustrates the case where oligonucleotides K1, K2, K3, and K4 constituting the oligonucleotide pool K are sequences in which the nucleic acid analogs A, G, T, and C are bonded to the ends of the basic sequence K, respectively. did. Either the nucleic acid analog or the nucleic acid may be bound to the end of the basic sequence. The oligonucleotides K1, K2, K3, and K4 have the nucleic acids a, g, t, and c at the ends of the basic sequence K, respectively. A combined sequence may also be used.
(1-2)9merオリゴヌクレオチドライブラリー
 図2に、本発明の第二実施形態に係るオリゴヌクレオチドライブラリーを模式的に示す。図は、7merの基本配列に核酸アナログ又は核酸を2つ結合したオリゴヌクレオチドによって各オリゴヌクレオチドプールが構成されたオリゴヌクレオチドライブラリーLを示している。
(1-2) 9-mer oligonucleotide library FIG. 2 schematically shows an oligonucleotide library according to the second embodiment of the present invention. The figure shows an oligonucleotide library L in which each oligonucleotide pool is composed of oligonucleotides in which two nucleic acid analogs or two nucleic acids are linked to a 7mer basic sequence.
 オリゴヌクレオチドライブラリーLは、プール1からプールKの合計K種類のオリゴヌクレオチドライブラリーから構成されている。 Oligonucleotide library L is composed of a total of K types of oligonucleotide libraries from pool 1 to pool K.
 プール1には、オリゴヌクレオチド101~116の16種類のオリゴヌクレオチドが含まれている。オリゴヌクレオチド101~116は、「AGTCAGT」で示される基本配列1を共通して有し、この基本配列1の5´末端及び3´末端にそれぞれA,G,T,Cのいずれかを結合した配列とされている。プール1において、オリゴヌクレオチド101~116は同モル数ずつ含まれていることが望ましいが、各オリゴヌクレオチドの濃度は特に限定されないものとする。以下、プール2、プール3及びプールKについても同様である。 Pool 1 contains 16 types of oligonucleotides 101-116. Oligonucleotides 101 to 116 have a basic sequence 1 represented by “AGTCCAGT” in common, and any one of A, G, T, and C is linked to the 5 ′ end and the 3 ′ end of this basic sequence 1, respectively. It is an array. In the pool 1, it is desirable that the oligonucleotides 101 to 116 are contained in the same number of moles, but the concentration of each oligonucleotide is not particularly limited. Hereinafter, the same applies to the pool 2, the pool 3, and the pool K.
 プール2には、オリゴヌクレオチド201~216の16種類のオリゴヌクレオチドが含まれ、オリゴヌクレオチド201~216は、「AGTGAGT」で示される基本配列2を共通して有し、この基本配列2の5´末端及び3´末端にそれぞれA,G,T,Cのいずれかを結合した配列とされている。プール1に含まれるオリゴヌクレオチド101~116の基本配列1と、プール2に含まれるオリゴヌクレオチド201~216の基本配列2は、5´末端から4番目の核酸アナログがそれぞれ「C」と「G」とで異なっている。 The pool 2 includes 16 types of oligonucleotides 201 to 216, and the oligonucleotides 201 to 216 have the basic sequence 2 indicated by “AGTGAGT” in common, and 5 ′ of the basic sequence 2 It is set as the arrangement | sequence which combined either A, G, T, or C to the terminal and 3 'terminal. In the basic sequence 1 of the oligonucleotides 101 to 116 included in the pool 1 and the basic sequence 2 of the oligonucleotides 201 to 216 included in the pool 2, the fourth nucleic acid analog from the 5 ′ end is “C” and “G”, respectively. And is different.
 プール3には、オリゴヌクレオチド301~316の16種類のオリゴヌクレオチドが含まれ、オリゴヌクレオチド301~316は、「AGTTAGT」で示される基本配列3を共通して有し、この基本配列3の5´末端及び3´末端にそれぞれA,G,T,Cのいずれかを結合した配列とされている。プール1に含まれるオリゴヌクレオチド101~116の基本配列1と、プール3に含まれるオリゴヌクレオチド301~316の基本配列3は、5´末端から4番目の核酸アナログがそれぞれ「C」と「T」とで異なっている。また、プール2に含まれるオリゴヌクレオチド201~216の基本配列2と、プール3に含まれるオリゴヌクレオチド301~316の基本配列3は、5´末端から4番目の核酸アナログがそれぞれ「G」と「T」とで異なっている。 The pool 3 includes 16 types of oligonucleotides 301 to 316, and the oligonucleotides 301 to 316 have a basic sequence 3 represented by “AGTTAGT” in common. It is set as the arrangement | sequence which combined either A, G, T, or C to the terminal and 3 'terminal. In the basic sequence 1 of the oligonucleotides 101 to 116 included in the pool 1 and the basic sequence 3 of the oligonucleotides 301 to 316 included in the pool 3, the fourth nucleic acid analogs from the 5 ′ end are “C” and “T”, respectively. And is different. In addition, in the basic sequence 2 of the oligonucleotides 201 to 216 included in the pool 2 and the basic sequence 3 of the oligonucleotides 301 to 316 included in the pool 3, the fourth nucleic acid analog from the 5 ′ end is “G” and “ T ”.
 プールK(Kは2以上16384以下の整数)には、オリゴヌクレオチドK01~K16の16種類のオリゴヌクレオチドが含まれ、オリゴヌクレオチドK01~K16は、「NNNNNNN」で示される基本配列Kを共通して有し、この基本配列Kの5´末端及び3´末端にそれぞれA,G,T,Cのいずれかを結合した配列とされている。プールKに含まれるオリゴヌクレオチドK01~K16の基本配列Kは、プール1~プール(K-1)に含まれるオリゴヌクレオチドの基本配列1~K-1と異なる配列とされている。 The pool K (K is an integer of 2 to 16384) includes 16 types of oligonucleotides K01 to K16, and the oligonucleotides K01 to K16 share the basic sequence K represented by “NNNNNNNN”. The basic sequence K has a sequence in which any one of A, G, T, and C is linked to the 5 ′ end and 3 ′ end. The basic sequences K of the oligonucleotides K01 to K16 included in the pool K are different from the basic sequences 1 to K-1 of the oligonucleotides included in the pools 1 to (K-1).
 このようにオリゴヌクレオチドライブラリーLは、プール間で異なる配列とされた基本配列にA,G,T又はCの核酸アナログを結合した16種類のオリゴヌクレオチドからなるオリゴヌクレオチドプールを二以上含んで構成されている。 As described above, the oligonucleotide library L includes two or more oligonucleotide pools composed of 16 kinds of oligonucleotides in which a nucleic acid analog of A, G, T, or C is bound to a basic sequence that is different between pools. Has been.
 図2では、オリゴヌクレオチドプールKを構成するオリゴヌクレオチドK01~K16を、基本配列Kの5´末端にA,G,T,Cのいずれかを1つ、3´末端にA,G,T,Cのいずれかを1つを結合した配列とする場合を説明した。2つの核酸アナログは、基本配列Kの5´末端及び/又は3´末端に結合されればよく、2つの核酸アナログをともに5´末端又は3´末端に結合して、16種類のオリゴヌクレオチドとしてもよい。 In FIG. 2, the oligonucleotides K01 to K16 constituting the oligonucleotide pool K are divided into one of A, G, T, C at the 5 ′ end of the basic sequence K, and A, G, T, at the 3 ′ end. The case where any one of Cs is a sequence in which one is combined has been described. Two nucleic acid analogs may be bound to the 5 ′ end and / or 3 ′ end of the basic sequence K, and both nucleic acid analogs are bound to the 5 ′ end or the 3 ′ end to form 16 types of oligonucleotides. Also good.
 また、図2では、オリゴヌクレオチドプールKを構成するオリゴヌクレオチドK01~K16を、基本配列Kの末端にそれぞれA,G,T,Cの核酸アナログを2つ結合した配列とする場合を説明した。基本配列の末端には、核酸アナログ又は核酸のいずれか一方が結合されればよく、オリゴヌクレオチドK1,K2,K3,K4は、基本配列Kの末端にそれぞれa,g,t,cの核酸を2つ結合した配列としてもよく、あるいは核酸アナログ1つと核酸1つとを結合した配列としてもよい。 FIG. 2 illustrates the case where the oligonucleotides K01 to K16 constituting the oligonucleotide pool K have a sequence in which two nucleic acid analogs A, G, T, and C are bonded to the ends of the basic sequence K, respectively. Either the nucleic acid analog or the nucleic acid may be bound to the end of the basic sequence. The oligonucleotides K1, K2, K3, and K4 have the nucleic acids a, g, t, and c at the ends of the basic sequence K, respectively. Two sequences may be combined, or one nucleic acid analog and one nucleic acid may be combined.
(1-3)オリゴヌクレオチドプール数
 図1及び図2に示したオリゴヌクレオチドライブラリーLは、プール間で異なる配列とされた7merの基本配列にA,G,T又はCの核酸アナログ又は核酸を結合した8mer又は9merのオリゴヌクレオチドからなるオリゴヌクレオチドプールを二以上含んで構成されている。上述のように、2',4'-BNA等の核酸アナログ7merに、1mer又は2merの核酸アナログ又は核酸を付加して合成した合計8mer又は9merのオリゴヌクレオチドは、必要かつ十分な結合親和性及び配列特異性を発揮し、所望の生物的活性又は化学的活性を発現し得ることが明らかになっている。
(1-3) Number of oligonucleotide pools The oligonucleotide library L shown in FIG. 1 and FIG. 2 contains A, G, T, or C nucleic acid analogs or nucleic acids in a 7mer basic sequence that is different between pools. It comprises two or more oligonucleotide pools consisting of linked 8mer or 9mer oligonucleotides. As described above, a total of 8mer or 9mer oligonucleotide synthesized by adding 1mer or 2mer nucleic acid analog or nucleic acid to nucleic acid analog 7mer such as 2 ', 4'-BNA has the necessary and sufficient binding affinity and It has been shown that it can exhibit sequence specificity and express a desired biological or chemical activity.
 従って、オリゴヌクレオチドライブラリーLを、基本配列7merの核酸アナログの全ての組み合わせである16384(4の7乗)通りのオリゴヌクレオチドプールから構成すれば、あらゆる配列のヌクレオチド鎖に対して特異的に結合し得る8mer又は9merのオリゴヌクレオチドが、いずれかのオリゴヌクレオチドプールに必ず含まれるようなオリゴヌクレオチドライブラリーを構築できる。 Therefore, when the oligonucleotide library L is composed of 16384 (4 to the 7th power) oligonucleotide pools, which are all combinations of nucleic acid analogs of the basic sequence 7mer, it binds specifically to nucleotide chains of any sequence. An oligonucleotide library can be constructed such that possible 8mer or 9mer oligonucleotides are always included in either oligonucleotide pool.
2.オリゴヌクレオチドのスクリーニング方法
 次に、本発明に係るオリゴヌクレオチドのスクリーニング方法について説明する。このスクリーニング方法は、上記のオリゴヌクレオチドライブラリーLを用いて、所望の生物的活性又は化学的活性を示すオリゴヌクレオチドを取得するものである。
2. Oligonucleotide Screening Method Next, an oligonucleotide screening method according to the present invention will be described. In this screening method, an oligonucleotide exhibiting a desired biological activity or chemical activity is obtained using the oligonucleotide library L described above.
 図3は、本発明に係るオリゴヌクレオチドのスクリーニング方法の手順を示すフローチャートである。 FIG. 3 is a flowchart showing the procedure of the oligonucleotide screening method according to the present invention.
(2-1)基本配列の合成
 図3中、符号Sは、任意の核酸アナログからなる7merの基本配列を準備する手順である。
(2-1) Synthesis of Basic Sequence In FIG. 3, symbol S 1 is a procedure for preparing a 7mer basic sequence consisting of an arbitrary nucleic acid analog.
 基本配列は、従来の公知の手法を用い、核酸アナログを結合することによって合成できる。基本配列の合成は、例えば、公知のDNAシンセサイザーを用いて行う。合成された基本配列は、逆相カラムを用いて精製した後、逆相HPLCやMALDI-TOF-MSで分析することによって確認できる。また、基本配列は、オリゴヌクレオチドの受託合成サービスを利用して入手することもできる。 The basic sequence can be synthesized by combining nucleic acid analogs using a conventional known method. The basic sequence is synthesized using, for example, a known DNA synthesizer. The synthesized basic sequence can be confirmed by purifying using a reverse phase column and then analyzing by reverse phase HPLC or MALDI-TOF-MS. In addition, the basic sequence can also be obtained by using a custom oligonucleotide synthesis service.
 基本配列は、互いに異なる配列とされた二以上を準備する。好適には、基本配列は、7merの核酸アナログの全ての組み合わせである16384(4の7乗)通りを準備する。次に説明する手順Sにおいて、16384通りの基本配列を用いて、16384通りのオリゴヌクレオチドプールを調製することにより、理論的に、あらゆる配列のヌクレオチド鎖に対して特異的に結合し得るオリゴヌクレオチドを用意できる。 Two or more basic arrays are prepared as different arrays. Preferably, the base sequence is prepared as 16384 (4 to the 7th power) of all combinations of 7-mer nucleic acid analogs. In Step S 2 described below, using the basic sequence of 16384 ways, by preparing an oligonucleotide pool 16384 types, theoretically, an oligonucleotide capable of specifically binding to the nucleotide strand of any sequence Can be prepared.
(2-2)オリゴヌクレオチドプールの調製
 図3中、符号Sは、手順Sで準備した基本配列にそれぞれ核酸アナログ又は核酸を1つ又は2つ結合して、オリゴヌクレオチドプールを調製する手順である。
(2-2) in Preparation view third oligonucleotide pool, the letter S 2 designates each basic sequence prepared in Step S 1 one nucleic acid analogs or nucleic acid, or two bonds to, the procedure for preparing oligonucleotide pool It is.
 具体的には、オリゴヌクレオチドライブラリーLを、7merの基本配列に核酸アナログ又は核酸を1つ結合したオリゴヌクレオチドによって構成する場合、例えば、プール1~プール(K-1)に含まれるオリゴヌクレオチドの基本配列1~K-1と異なる配列とされた基本配列K「NNNNNNN」の3´末端にそれぞれA,G,T,Cを結合する。これにより、オリゴヌクレオチドK1,K2,K3,K4の4種類のオリゴヌクレオチドを合成し、オリゴヌクレオチドプールK(Kは2以上16384以下の整数)を調製する(図1参照)。 Specifically, when the oligonucleotide library L is constituted by oligonucleotides in which one nucleic acid analog or nucleic acid is bound to a 7mer basic sequence, for example, oligonucleotides included in pool 1 to pool (K-1) A, G, T, and C are respectively linked to the 3 ′ end of the basic sequence K “NNNNNNNN” that is different from the basic sequences 1 to K-1. Thereby, four types of oligonucleotides K1, K2, K3, and K4 are synthesized, and an oligonucleotide pool K (K is an integer of 2 to 16384) is prepared (see FIG. 1).
 また、オリゴヌクレオチドライブラリーLを、7merの基本配列に核酸アナログ又は核酸を2つ結合したオリゴヌクレオチドによって構成する場合、例えば、プール1~プール(K-1)に含まれるオリゴヌクレオチドの基本配列1~K-1と異なる配列とされた基本配列K「NNNNNNN」の5´末端及び3´末端にそれぞれA,G,T,Cを結合する。これにより、オリゴヌクレオチドK01~K16の16種類のオリゴヌクレオチドを合成し、オリゴヌクレオチドプールK(Kは2以上16384以下の整数)を調製する(図2参照)。 When the oligonucleotide library L is composed of oligonucleotides in which two nucleic acid analogs or two nucleic acids are linked to a 7mer basic sequence, for example, the basic sequence 1 of oligonucleotides contained in pool 1 to pool (K-1) A, G, T, and C are respectively linked to the 5 ′ end and 3 ′ end of the basic sequence K “NNNNNNNN” that is different from the sequence of K−1. Thus, 16 types of oligonucleotides K01 to K16 are synthesized, and an oligonucleotide pool K (K is an integer of 2 to 16384) is prepared (see FIG. 2).
 オリゴヌクレオチドプールは、互いに異なる配列とされた二以上の基本配列から2以上のプールを準備する。好適には、オリゴヌクレオチドプールは、7merの核酸アナログの全ての組み合わせである16384(4の7乗)通りのプールを調製する。16384通りのオリゴヌクレオチドプールを調製することにより、あらゆる配列のヌクレオチド鎖に対して特異的に結合し得るオリゴヌクレオチドが必ずいずれかのプールに含まれているオリゴヌクレオチドライブラリーLを調製できる。 Oligonucleotide pools are prepared as two or more pools based on two or more basic sequences having different sequences. Preferably, the oligonucleotide pool is prepared as 16384 (4 to the 7th power) pools of all combinations of 7mer nucleic acid analogs. By preparing 16384 oligonucleotide pools, it is possible to prepare an oligonucleotide library L that always contains oligonucleotides that can specifically bind to nucleotide chains of any sequence.
(2-3)オリゴヌクレオチドプールの同定
 図3中、符号Sは、オリゴヌクレオチドライブラリーLを構成するオリゴヌクレオチドプールの中から、所望の生物的活性又は化学的活性を示すオリゴヌクレオチドを含むオリゴヌクレオチドプールを同定する手順である。
(2-3) Identification of oligonucleotide pool In FIG. 3, reference numeral S 3 denotes an oligonucleotide containing an oligonucleotide exhibiting a desired biological activity or chemical activity from among the oligonucleotide pools constituting the oligonucleotide library L. Procedure for identifying nucleotide pools.
 各オリゴヌクレオチドプールには、4種類又は16種類のオリゴヌクレオチドが含まれている。本手順では、オリゴヌクレオチドプールの一つひとつについて、その存在下及び非存在下において各種のアッセイを行うことにより、所望の活性を示すオリゴヌクレオチドを含むオリゴヌクレオチドプール(目的オリゴヌクレオチドプール)を同定する。 Each oligonucleotide pool contains 4 types or 16 types of oligonucleotides. In this procedure, each of the oligonucleotide pools is subjected to various assays in the presence and absence thereof to identify an oligonucleotide pool containing the oligonucleotide exhibiting the desired activity (target oligonucleotide pool).
 ここで、オリゴヌクレオチドの「生物的活性又は化学的活性」とは、実験により定量可能な生物量を意味し、具体的には例えば以下のようなオリゴヌクレオチドの活性を意味するものとする。 Here, the “biological activity or chemical activity” of an oligonucleotide means the amount of organism that can be quantified by experiment, and specifically means the activity of the following oligonucleotide, for example.
(1)アンチセンス活性
 標的遺伝子のmRNAに相補的に結合し、mRNAへの翻訳因子複合体の結合を阻害する活性、あるいは、mRNAへの翻訳因子複合体の結合を阻害することによって、mRNAのタンパク質への翻訳を阻害し、標的遺伝子産物の発現を抑制する活性。
(1) Antisense activity Activity that inhibits the binding of the translation factor complex to the mRNA by inhibiting the binding of the translation factor complex to the mRNA by binding to the mRNA of the target gene in a complementary manner. Activity that inhibits translation into protein and suppresses expression of target gene product.
 この活性は、翻訳因子複合体以外のmRNA結合タンパク質のmRNAへの結合を阻害する活性、あるいは、mRNA結合タンパク質のmRNAへの結合を阻害することによって、結果として標的遺伝子産物の発現を減少又は上昇させる活性であってもよい。一例として、シスエレメント結合因子のmRNAへの結合を阻害することによって、mRNAを安定化し、標的遺伝子産物の発現を上昇させる活性が挙げられる。さらに、このアンチセンス活性は、micro-RNA(miRNA)等のノンコーディングRNAに相補的に結合し、その機能を阻害又は亢進する活性であってもよい。 This activity inhibits the binding of mRNA binding proteins other than translation factor complexes to mRNA, or by inhibiting the binding of mRNA binding proteins to mRNA, resulting in decreased or increased expression of the target gene product. It may be an activity. One example is the activity of stabilizing the mRNA and increasing the expression of the target gene product by inhibiting the binding of the cis element binding factor to the mRNA. Furthermore, this antisense activity may be an activity that binds complementarily to non-coding RNA such as micro-RNA (miRNA) and inhibits or enhances its function.
 以下に、「シスエレメント結合因子」について簡単に説明する。「シスエレメント結合因子」は、DNA及びRNAの5´及び3´非翻訳領域に存在する「シスエレメント(cis-element)」と呼ばれる特定配列に結合する。シスエレメントは、そのDNA鎖又はRNA鎖にコードされる遺伝子の発現制御に関与している。シスエレメント結合因子は、シスエレメントに結合して遺伝子の発現を正負に制御する「trans-acting factor」として機能している。 The following briefly describes the “cis element binding factor”. “Cis element binding factors” bind to specific sequences called “cis-elements” present in the 5 ′ and 3 ′ untranslated regions of DNA and RNA. A cis element is involved in regulation of the expression of a gene encoded by its DNA strand or RNA strand. A cis-element binding factor functions as a “trans-acting factor” that binds to a cis-element and positively or negatively controls gene expression.
 mRNAに存在するシスエレメント及びこのシスエレメントに結合するシスエレメント結合因子は、mRNAの安定性やタンパクへの翻訳量を主として負に制御している(“AU-rich elements and associated factors: are there unifying principles?” Nucleic Acids Research, 2005, Vol.33, No.22, p.7138-7150、“AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors.” Biochemical Society Transactions, 2002, Vol.30, part 6, p.952-958.参照)。代表的なmRNAシスエレメントの一つに、「AUリッチエレメント(AU-Rich Element; ARE)」がある。AREは、アデノシンとウリジンに富む10~150bps程度の塩基配列であり、mRNAの3´非翻訳領域(3´UTR)に多く存在する。AREは、当初、サイトカインやリンフォカインの3´UTRにおいて「AUUUA」の塩基配列が頻繁に重複して存在する領域として見つかった。AREは、現在では全遺伝子の5~8%に存在すると推定されており、ホメオスタシスの維持に関与する多くの遺伝子にAREが存在しているものと考えられている(“ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins.” Nucleic Acids Research, 2001, Vol.29, No.1, p.246-254.参照)。 The cis element present in mRNA and the cis element binding factor that binds to this cis element mainly negatively regulates the stability of mRNA and the amount of translation into protein (“AU-rich elements and associated factors: are there unifying principles? ”Nucleic Acids Research, 2005, Vol.33, No.22, p.7138-7150,“ AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors. ”Biochemical Society Transactions, 2002, Vol.30, part 6, p.952-958.) One of the typical mRNA cis elements is “AU-rich element (AU-Rich Element; ARE)”. ARE is a base sequence of about 10 to 150 bps rich in adenosine and uridine, and is abundant in the 3 ′ untranslated region (3 ′ UTR) of mRNA. ARE was initially found as a region where the nucleotide sequence of “AUUUA” frequently overlaps in the 3 ′ UTR of cytokines and lymphokines. ARE is currently estimated to be present in 5-8% of all genes, and ARE is considered to be present in many genes involved in the maintenance of homeostasis (“ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. ”Nucleic Acids Research, 2001, Vol.29, No.1, p.246-254.).
(2)デコイ活性
 転写因子におとりとして結合し、転写因子がゲノム上の転写制御領域へ結合するのを阻害する活性、あるいは、転写因子がゲノム上の転写制御領域へ結合するのを阻害することによって、標的遺伝子mRNAの転写を阻害し、標的遺伝子産物の発現を抑制する活性。ゲノム上に存在するTATAボックス、CATボックス、Sp1等のプロモーターやエンハンサーなどの転写制御領域は、DNAに存在するシスエレメントである。
(2) Decoy activity Binding to a transcription factor as a decoy, inhibiting the transcription factor from binding to the transcriptional regulatory region on the genome, or inhibiting the transcription factor from binding to the transcriptional regulatory region on the genome. Inhibits the transcription of the target gene mRNA and suppresses the expression of the target gene product. TATA boxes, CAT boxes, Sp1 and other transcriptional regulatory regions present on the genome are cis elements present in DNA.
 この活性は、転写因子以外のDNA結合タンパク質又はRNA結合タンパク質におとりとして結合する活性、あるいは、DNA結合タンパク質又はRNA結合タンパク質におとりとして結合することによって、結果として標的遺伝子産物の発現を減少又は上昇させる活性であってもよい。一例として、シスエレメント結合因子におとりとして結合し、mRNAへのシスエレメント結合因子の結合を阻害することによって、mRNAを安定化し、標的遺伝子産物の発現を上昇させる活性が挙げられる。 This activity binds to DNA-binding proteins or RNA-binding proteins other than transcription factors as decoys, or binds to DNA-binding proteins or RNA-binding proteins as a decoy, resulting in decreased or increased expression of the target gene product It may be an activity. One example is the activity of stabilizing mRNA and increasing the expression of the target gene product by binding as a decoy to the cis element binding factor and inhibiting the binding of the cis element binding factor to the mRNA.
(3)アプタマー活性
 オリゴヌクレオチドが作る立体構造によって、特定の分子に特異的に結合し、その分子の機能を阻害または亢進する活性。これまでに、増殖因子や酵素、受容体、膜タンパク質、ウイルスタンパク質などに対し、アプタマー活性を示すオリゴヌクレオチドが知られている。
(3) Aptamer activity Activity that specifically binds to a specific molecule and inhibits or enhances the function of the molecule by the three-dimensional structure created by the oligonucleotide. So far, oligonucleotides exhibiting aptamer activity for growth factors, enzymes, receptors, membrane proteins, viral proteins, etc. are known.
 オリゴヌクレオチドの生物的活性又は化学的活性は、各オリゴヌクレオチドプールの存在下及び非存在下において各種のアッセイを行うことにより評価することができる。 The biological activity or chemical activity of oligonucleotides can be evaluated by conducting various assays in the presence and absence of each oligonucleotide pool.
 例えば、オリゴヌクレオチドの活性として、標的遺伝子のmRNAに相補的に結合し、mRNAへの翻訳因子複合体の結合を阻害する活性を評価する場合は、次のようなアッセイを行う。まず、各オリゴヌクレオチドプールの存在下で、標的遺伝子のmRNAとこのmRNAに結合するmRNA結合タンパク質(ここでは、翻訳因子)とを接触させ、mRNAとmRNA結合タンパク質との結合量を測定する。また、各オリゴヌクレオチドプールの非存在下で、標的mRNAとこのmRNAに結合するmRNA結合タンパク質とを接触させ、mRNAとmRNA結合タンパク質との結合量を測定しておく。そして、オリゴヌクレオチドプールの存在下での結合量と非存在下での結合量とを比較して、mRNAとmRNA結合タンパク質との結合を阻害する活性を示すオリゴヌクレオチドを含むオリゴヌクレオチドプールを同定する。mRNAとmRNA結合タンパク質との結合量は、例えば、mRNAベイトを用いたプルダウンアッセイにより評価することができる。 For example, when evaluating the activity of the oligonucleotide that binds complementarily to the mRNA of the target gene and inhibits the binding of the translation factor complex to the mRNA, the following assay is performed. First, in the presence of each oligonucleotide pool, the mRNA of a target gene is brought into contact with an mRNA binding protein (here, a translation factor) that binds to the mRNA, and the amount of binding between the mRNA and the mRNA binding protein is measured. Further, in the absence of each oligonucleotide pool, the target mRNA is brought into contact with the mRNA binding protein that binds to the mRNA, and the amount of binding between the mRNA and the mRNA binding protein is measured. Then, the amount of binding in the presence of the oligonucleotide pool is compared with the amount of binding in the absence of the oligonucleotide pool, and the oligonucleotide pool containing the oligonucleotide that exhibits the activity of inhibiting the binding between the mRNA and the mRNA binding protein is identified. . The amount of binding between mRNA and mRNA binding protein can be evaluated, for example, by a pull-down assay using mRNA bait.
 このアッセイにより、標的遺伝子のmRNAに相補的に結合し、mRNAへの翻訳因子複合体の結合を阻害する活性を有するアンチセンスオリゴヌクレオチドが含まれる目的オリゴヌクレオチドプールを同定することができる。 By this assay, it is possible to identify a target oligonucleotide pool containing an antisense oligonucleotide that binds complementarily to the mRNA of the target gene and inhibits the binding of the translation factor complex to the mRNA.
 また、例えば、オリゴヌクレオチドの活性として、DNA結合タンパク質又はRNA結合タンパク質におとりとして結合することによって、結果として標的遺伝子産物の発現を上昇させる活性を評価する場合は、次のようなアッセイを行う。まず、各オリゴヌクレオチドプールを導入した細胞について目的タンパク質の発現量を測定する。また、各オリゴヌクレオチドプールを導入していない細胞についてタンパク質の発現量を測定する。そして、オリゴヌクレオチドプールを導入した細胞の発現量と導入していない細胞の発現量とを比較して、標的遺伝子産物の発現を上昇させる活性を示すオリゴヌクレオチドを含むオリゴヌクレオチドプールを同定する。目的タンパク質の発現量は、例えば、ウェスタンブロットに評価することができる。 Also, for example, when the activity of the oligonucleotide is evaluated by binding to a DNA-binding protein or RNA-binding protein as a decoy and consequently increasing the expression of the target gene product, the following assay is performed. First, the expression level of the target protein is measured for the cells into which each oligonucleotide pool has been introduced. Moreover, the expression level of protein is measured about the cell which has not introduce | transduced each oligonucleotide pool. Then, the expression level of the cells into which the oligonucleotide pool has been introduced is compared with the expression level of the cells into which the oligonucleotide pool has not been introduced, and an oligonucleotide pool containing oligonucleotides that exhibit the activity of increasing the expression of the target gene product is identified. The expression level of the target protein can be evaluated, for example, by Western blot.
 このアッセイにより、DNA又はRNA結合タンパク質におとりとして結合し、標的遺伝子産物の発現を上昇させる活性を有するデコイオリゴヌクレオチドが含まれる目的オリゴヌクレオチドプールを同定することができる。 This assay can identify a target oligonucleotide pool containing decoy oligonucleotides that have the activity of binding to DNA or RNA binding proteins as decoys and increasing the expression of target gene products.
 アッセイは、オリゴヌクレオチドライブラリーLを構成する二以上のオリゴヌクレオチドプールのそれぞれについて行う。この際、16384通りのオリゴヌクレオチドプールを調製し、あらゆる配列のヌクレオチド鎖に対して特異的に結合し得るオリゴヌクレオチドが必ずいずれかのプールに含まれているオリゴヌクレオチドライブラリーLを調製しておくことにより、所望の活性を示すオリゴヌクレオチドプールを一つ以上同定することができる。 The assay is performed for each of two or more oligonucleotide pools constituting the oligonucleotide library L. At this time, 16384 kinds of oligonucleotide pools are prepared, and an oligonucleotide library L containing oligonucleotides that can specifically bind to nucleotide chains of any sequence is always prepared. Thus, one or more oligonucleotide pools exhibiting the desired activity can be identified.
(2-4)オリゴヌクレオチドの取得
 図3中、符号Sは、手順Sで同定されたオリゴヌクレオチドプールの中から、所望の生物的活性又は化学的活性を示すオリゴヌクレオチドを取得する手順である。
(2-4) Acquisition of oligonucleotide In FIG. 3, symbol S 4 is a procedure for acquiring an oligonucleotide exhibiting a desired biological activity or chemical activity from the oligonucleotide pool identified in step S 3. is there.
 手順Sで同定されたオリゴヌクレオチドプールには、4種類又は16種類のオリゴヌクレオチドが含まれている。本手順では、これらのオリゴヌクレオチドの中から所望の活性を示すオリゴヌクレオチド(目的オリゴヌクレオチド)を同定する。 The oligonucleotide pools identified in step S 3, contains four or 16 different oligonucleotides. In this procedure, an oligonucleotide exhibiting a desired activity (target oligonucleotide) is identified from these oligonucleotides.
 目的オリゴヌクレオチドは、手順Sで説明した方法と同様にして合成した4種類又は16種類のオリゴヌクレオチドのそれぞれについて、手順Sで説明した方法と同様にして各種アッセイを行うことにより同定できる。 The purpose oligonucleotides can be identified by performing for each of the four or 16 kinds of oligonucleotides were synthesized by the same method as described in Step S 2, the various assays in a manner similar to that described in step S 3.
 本発明に係るオリゴヌクレオチドのスクリーニング方法では、手順Sで目的オリゴヌクレオチドプールの同定を行い、さらに本手順で目的オリゴヌクレオチドプールの中から目的オリゴヌクレオチドを同定するという二段階のスクリーニング手順を行う。これにより、本発明に係るオリゴヌクレオチドのスクリーニング方法では、所望の活性を示すオリゴヌクレオチドを効率良く取得することができる。 The screening method of an oligonucleotide according to the present invention performs the identification of the object oligonucleotide pool in step S 3, performing a two-step screening procedure of identifying the target oligonucleotide from the object pool of oligonucleotides further in this procedure. Thereby, in the oligonucleotide screening method according to the present invention, an oligonucleotide exhibiting a desired activity can be efficiently obtained.
 本発明に係るオリゴヌクレオチドのスクリーニング方法では、16384通りのオリゴヌクレオチドプールを調製することにより、あらゆる配列のヌクレオチド鎖に対して特異的に結合し得るオリゴヌクレオチドがいずれか一以上のオリゴヌクレオチドプールに必ず含まれるようにすることができるため、ターゲット配列を特定できないような標的遺伝子についても、アンチセンス活性やデコイ活性等を示すオリゴヌクレオチドを得ることが可能である。 In the oligonucleotide screening method according to the present invention, by preparing 16384 oligonucleotide pools, oligonucleotides that can specifically bind to nucleotide chains of any sequence must be in any one or more oligonucleotide pools. Since it can be included, it is possible to obtain an oligonucleotide exhibiting an antisense activity, a decoy activity, etc. even for a target gene for which the target sequence cannot be specified.
 なお、本発明に係るオリゴヌクレオチドのスクリーニング方法において、オリゴヌクレオチドプールは必ずしも16384通りを準備する必要はない。オリゴヌクレオチドプールの数は多いほど、スクリーニングによって目的オリゴヌクレオチドを取得できる確度が高まるが、最少二以上のオリゴヌクレオチドプールを用いればスクリーニングの実施が可能である。 In the oligonucleotide screening method according to the present invention, it is not always necessary to prepare 16384 oligonucleotide pools. The greater the number of oligonucleotide pools, the higher the accuracy with which the target oligonucleotide can be obtained by screening. However, screening can be carried out using a minimum of two or more oligonucleotide pools.
3.オリゴヌクレオチド
 本発明に係るオリゴヌクレオチドのスクリーニング方法によって取得されたオリゴヌクレオチドは、上述のアンチセンス活性やデコイ活性等の所望の生物学的活性又は化学的活性を示す。従って、このオリゴヌクレオチドは、例えば、核酸医薬としての開発が可能である。
3. Oligonucleotide An oligonucleotide obtained by the oligonucleotide screening method of the present invention exhibits a desired biological activity or chemical activity such as the above-described antisense activity or decoy activity. Therefore, this oligonucleotide can be developed as a nucleic acid medicine, for example.
 具体的には、アンチセンス活性やデコイ活性を示すオリゴヌクレオチドは、所定の標的遺伝子の発現を増強又は抑制するための核酸医薬として利用することができる。LNAにより合成されたオリゴヌクレオチドは高い耐熱性と優れたヌクレアーゼ耐性を備えるため、取得されたオリゴヌクレオチドは核酸医薬として用いる際に高い安定性を示す。 Specifically, an oligonucleotide exhibiting antisense activity or decoy activity can be used as a nucleic acid drug for enhancing or suppressing the expression of a predetermined target gene. Since the oligonucleotide synthesized by LNA has high heat resistance and excellent nuclease resistance, the obtained oligonucleotide exhibits high stability when used as a nucleic acid pharmaceutical.
 例えば、取得されたオリゴヌクレオチドを用いて標的遺伝子の発現を制御する場合、オリゴヌクレオチドを細胞培養液に添加し細胞内へ取り込ませることによって、細胞内の標的遺伝子mRNAに結合させる。あるいは、取得されたオリゴヌクレオチドをリポフェクションやマイクロインジェクションによって細胞内へ導入することにより、細胞内の標的遺伝子mRNAに結合させる。また、遺伝子発現の制御対象が生体臓器又は生体である場合には、経口経路、直腸経路、鼻腔経路、血管経路などの投与経路によって、又は対象臓器への直接局所投与によって、オリゴヌクレオチドを生体内又は生体臓器内へ導入し、細胞内へ取り込ませる。 For example, when the expression of a target gene is controlled using the obtained oligonucleotide, the oligonucleotide is added to the cell culture medium and taken into the cell to bind to the target gene mRNA in the cell. Alternatively, the obtained oligonucleotide is introduced into the cell by lipofection or microinjection to bind to the target gene mRNA in the cell. In addition, when the target of gene expression is a living organ or a living body, the oligonucleotide is administered in vivo by an administration route such as oral route, rectal route, nasal route, vascular route, or by direct local administration to the target organ. Alternatively, it is introduced into a living organ and taken into a cell.
 核酸医薬としての開発のため、取得されたオリゴヌクレオチドの塩基配列や長さ、リボースの化学構造又はホスホジエステル結合の化学構造等は、適宜変更され最適化され得る。塩基配列等の最適化によって、より高い活性を示すオリゴヌクレオチド、あるいは毒性や副作用がより低いオリゴヌクレオチドの開発が可能となる。 For the development as a nucleic acid drug, the base sequence and length of the obtained oligonucleotide, the chemical structure of ribose or the chemical structure of the phosphodiester bond, etc. can be appropriately changed and optimized. By optimizing the base sequence and the like, it is possible to develop an oligonucleotide exhibiting higher activity or an oligonucleotide having lower toxicity and side effects.
 さらに、オリゴヌクレオチドを発現可能なベクターをトランスフェクトすることによって、オリゴヌクレオチドを細胞内で発現させ、標的遺伝子mRNAに結合させることもできる。ベクターには、大腸菌由来や枯草菌由来、酵母由来のプラスミドや、バクテリオファージ、レトロウイルス、ワクシニアウイルス、バキュロウイルスなどの動物ウイルス又はこれらをリポソームと融合させたものなどが用いることができる。発現ベクターの構築は、公知の遺伝子工学的手法により行うことができる。 Furthermore, by transfecting a vector capable of expressing the oligonucleotide, the oligonucleotide can be expressed in the cell and bound to the target gene mRNA. As the vector, plasmids derived from Escherichia coli, Bacillus subtilis or yeast, animal viruses such as bacteriophages, retroviruses, vaccinia viruses, baculoviruses, or those obtained by fusing them with liposomes can be used. The expression vector can be constructed by a known genetic engineering technique.
 オリゴヌクレオチド若しくはこれを発現可能な発現ベクターは、薬学的に認められる担体、香味剤、賦形剤、ベヒクル、防腐剤、安定剤、結合剤などとともに一般に認められた製剤実施に要求される単位用量形態で混和することによって核酸医薬として製造できる。この医薬組成物は、例えば、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液又は懸濁液剤などの注射剤の形で非経口的に使用できる。錠剤、カプセル剤などに混和することができる添加剤としては、例えば、ゼラチン、コーンスターチ、トラガント、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸などのような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリンのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。 Oligonucleotide or expression vector capable of expressing it is a unit dose required for the practice of a generally accepted formulation together with a pharmaceutically acceptable carrier, flavoring agent, excipient, vehicle, preservative, stabilizer, binder, etc. It can be produced as a nucleic acid medicine by mixing in the form. This pharmaceutical composition is sterilized, for example, orally as tablets, capsules, elixirs, microcapsules or the like with sugar coating as necessary, or with water or other pharmaceutically acceptable liquids. It can be used parenterally in the form of injections such as solutions or suspensions. Additives that can be mixed into tablets, capsules and the like include binders such as gelatin, corn starch, tragacanth and gum arabic, excipients such as crystalline cellulose, corn starch, gelatin, alginic acid and the like. Leavening agents, lubricants such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin, flavorings such as peppermint, red oil and cherry.
 本発明者らは、実施例において詳しく後述するように、塩基配列「CGGAAACA」によって示されるオリゴヌクレオチドが腫瘍壊死因子α(Tumor Necrosis Factor α:TNF‐α) mRNAと、このmRNAに結合することが知られている転写因子RC3H1との結合を阻害する活性を示すことを見出した。 As will be described later in detail in the Examples, the present inventors show that the oligonucleotide represented by the base sequence “CGGAAACA” binds to tumor necrosis factor α (Tumor Necrosis Factor α: TNF-α) mRNA and this mRNA. It was found to show an activity of inhibiting the binding to the known transcription factor RC3H1.
 従って、このオリゴヌクレオチド若しくはこのオリゴヌクレオチドを発現可能な発現ベクターは、TNF‐αの発現を調整するために利用でき、免疫活性化剤や抗癌剤として用いられ得る。 Therefore, this oligonucleotide or an expression vector capable of expressing this oligonucleotide can be used to regulate the expression of TNF-α, and can be used as an immunoactivator or anticancer agent.
 また、塩基配列「ATGAATAAA」によって示されるオリゴヌクレオチドが低密度リポタンパク質受容体(Low- Density Lipoprotein Receptor:LDLR)の発現を上昇させる活性を示すことも見出した。 It was also found that the oligonucleotide represented by the base sequence “ATGAATAAA” has an activity of increasing the expression of a low-density lipoprotein receptor (Low-) Density Lipoprotein Receptor: LDLR).
 従って、このオリゴヌクレオチド、若しくはこのオリゴヌクレオチドを発現可能な発現ベクターは、LDLR発現増強剤として使用することができる。 Therefore, this oligonucleotide or an expression vector capable of expressing this oligonucleotide can be used as an LDLR expression enhancer.
 LDLRは、レセプターを介したエンドサイトーシスによって血漿中のLDLコレステロールを細胞内に取り込む機能を有している。特に、肝臓に発現するLDLRによるLDLコレステロールの細胞内取り込みは、血漿LDLコレステロールのクリアランスに重要な役割を果たしている。LDLコレステロールは、肝臓から末梢組織へのコレステロール運搬を担っている。しかし、血中のLDLコレステロールが正常値を超えて増加した高脂血症の状態では、LDLコレステロールは血管内壁への沈着によって血管傷害を引き起こし、動脈硬化や高血圧症、脳梗塞、心筋梗塞、狭心症の原因となる。 LDLR has a function of taking LDL cholesterol in plasma into cells by receptor-mediated endocytosis. In particular, intracellular uptake of LDL cholesterol by LDLR expressed in the liver plays an important role in the clearance of plasma LDL cholesterol. LDL cholesterol is responsible for cholesterol transport from the liver to peripheral tissues. However, in a hyperlipidemic state where the LDL cholesterol in the blood has increased beyond normal levels, LDL cholesterol causes vascular injury due to deposition on the inner wall of the blood vessel, causing arteriosclerosis, hypertension, cerebral infarction, myocardial infarction, narrowing. Causes heart disease.
 上記オリゴヌクレオチドはLDLRの発現を増強することが可能であるため、このオリゴヌクレオチド等を有効成分とする医薬組成物によれば、特に肝臓へ適用してLDLR発現を増強させることで、血漿LDLコレステロールのクリアランスを高め、高脂血症及び高脂血症関連疾患を予防、改善又は治療することが可能となる。なお、ここでいう「予防」には、疾患を罹患する前段階の予防だけではなく、疾患治療後の再発に対する予防も含まれるものとする。また、高脂血症関連疾患としては、上記の動脈硬化や高血圧症、脳梗塞、心筋梗塞、狭心症に加え、糖尿病や肥満症、癌が含まれるが、この他の疾患への適用を除外するものではない。 Since the above-mentioned oligonucleotide can enhance the expression of LDLR, according to the pharmaceutical composition comprising this oligonucleotide or the like as an active ingredient, plasma LDL cholesterol can be applied by enhancing the expression of LDLR, particularly when applied to the liver. It becomes possible to prevent, ameliorate or treat hyperlipidemia and hyperlipidemia-related diseases. Note that “prevention” here includes not only prevention in the previous stage of disease, but also prevention against recurrence after treatment of the disease. In addition to arteriosclerosis, hypertension, cerebral infarction, myocardial infarction, and angina, hyperlipidemia-related diseases include diabetes, obesity, and cancer. It is not excluded.
 LDLRに関しては、その遺伝子多型がアルツハイマー病の発症リスクに関係していることが報告されている(”Function of beta-amyloid in cholesterol transport: a lead to neurotoxicity.” FASEB J., 2002, Oct;16(12):1677-9. Epub 2002 Aug 21.参照)。また、コレステロールレベルの上昇がアルツハイマー病の病態に関与していることも示唆されている(”Genetic study evaluating LDLR polymorphisms and Alzheimer's disease.” Neurobiol Aging., 2008, Jun;29(6):848-55. Epub 2007 Jan 18.参照)。 Regarding LDLR, it has been reported that the genetic polymorphism is associated with the risk of developing Alzheimer's disease (“Function of beta-amyloid in cholesterol transport: a lead to neurotoxicity.” FASEB J., 2002, Oct; 16 (12): 1677-9. See Epub 2002, Aug 21. It has also been suggested that elevated cholesterol levels are involved in the pathology of Alzheimer's disease (“Genetic study evaluating LDLR polymorphisms and Alzheimer's disease.” Neurobiol Aging., 2008, Jun; 29 (6): 848-55 (See Epub 2007 (Jan 18)).
 これらのことから、上記オリゴヌクレオチド等を有効成分とする医薬組成物は、LDLRの発現を増強し、血漿LDLコレステロールのレベルをコントロールすることで、アルツハイマー病を予防、改善又は治療に適用できる可能性もある。 Therefore, the pharmaceutical composition containing the above-mentioned oligonucleotide or the like as an active ingredient has the potential to be applied to prevent, ameliorate, or treat Alzheimer's disease by enhancing the expression of LDLR and controlling the level of plasma LDL cholesterol. There is also.
<実施例1>
1.TNF-α mRNAと転写因子RC3H1との結合阻害活性を有するオリゴヌクレオチドのスクリーニング
 本発明に係るスクリーニング方法を用いて、本発明者らにより腫瘍壊死因子α(Tumor Necrosis Factor α:TNF‐α)mRNAに結合することが明らかにされた転写因子RC3H1と、TNF‐α mRNAと、の結合を阻害する活性を示すオリゴヌクレオチドの取得を試みた。
<Example 1>
1. Screening of oligonucleotides having binding inhibitory activity between TNF-α mRNA and transcription factor RC3H1 By using the screening method according to the present invention, the present inventors have made a tumor necrosis factor α (TNF-α) mRNA An attempt was made to obtain an oligonucleotide exhibiting an activity of inhibiting the binding between the transcription factor RC3H1 that was revealed to bind to TNF-α mRNA.
(1)基本配列の合成
 株式会社ジーンデザインのBNA合成サービスを利用して、以下の2種類の異なる配列の基本配列を有するオリゴヌクレオチドを合成した。
(1) Synthesis of basic sequence Using the BNA synthesis service of Gene Design Co., Ltd., oligonucleotides having the basic sequences of the following two different sequences were synthesized.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(2)オリゴヌクレオチドプールの調製
 基本配列1,2の5´末端及び3´末端にそれぞれA,G,T,Cのいずれかを結合したオリゴヌクレオチド16種類をオリゴヌクレオチドプール1N及び2Nとした。また、基本配列1,2の5´末端及び3´末端にそれぞれa,g,t,cのいずれかを結合したオリゴヌクレオチド16種類をオリゴヌクレオチドプール1n及び2nとした。ここで、「A」はアデニンアナログ、「G」はグアニンアナログ、「T」チミンアナログ、「C」はシトシンアナログを示し、「a」はアデニン、「g」はグアニン、「t」チミン、「c」はシトシンを表す。また、「N」はアデニンアナログ、グアニンアナログ、チミンアナログ又はシトシンアナログから選択されるいずれか一の核酸アナログを示し、「n」はアデニン、グアニン、チミン又はシトシンから選択されるいずれか一の核酸を表す。
(2) Preparation of oligonucleotide pools The oligonucleotide pools 1N and 2N were composed of 16 types of oligonucleotides in which any one of A, G, T, and C was linked to the 5 'end and 3' end of the basic sequences 1 and 2, respectively. In addition, 16 types of oligonucleotides in which any of a, g, t, and c were bonded to the 5 ′ end and 3 ′ end of the basic sequences 1 and 2, respectively, were designated as oligonucleotide pools 1n and 2n. Here, “A” represents an adenine analog, “G” represents a guanine analog, “T” thymine analog, “C” represents a cytosine analog, “a” represents adenine, “g” represents guanine, “t” thymine, “ “c” represents cytosine. "N" represents any one nucleic acid analog selected from adenine analog, guanine analog, thymine analog, or cytosine analog, and "n" represents any one nucleic acid selected from adenine, guanine, thymine, or cytosine. Represents.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(3)オリゴヌクレオチドプールの同定
 オリゴヌクレオチドプール1N,1n,2N,2nの中から、TNF‐α mRNAとRC3H1との結合を阻害する活性を示すオリゴヌクレオチドプールを同定した。
(3) Identification of oligonucleotide pool Among the oligonucleotide pools 1N, 1n, 2N, and 2n, an oligonucleotide pool showing an activity that inhibits the binding between TNF-α mRNA and RC3H1 was identified.
 TNF-α mRNAをin vitro translationにより合成した。5´末端にT7 promoter 配列を持つプライマーを用いてPCRによりTNF-α mRNA (GenBankAccession No.NM_000594.2、配列番号1)の5´側末端から869-1652番目の塩基配列を増幅し、MEGAscriptT7 キット (Ambion)を用い、添付プロトコールに従ってRNAの合成を行った。合成されたTNF-α mRNAの3´末端にFlag-hydrazideを共有結合させる反応を行い、TNF-α mRNAの3´末端をFlag標識した。標識mRNAをQiagen社のRNeasy Mini Kitを用いて精製した。なお、mRNAのFlag標識は、公知の手法(”Programmable ribozymes for mischarging tRNA with nonnatural amino acids and their applications to translation.” Methods, 2005, Vol,36, No.3, p.239-244参照)に従って行った。 TNF-α mRNA was synthesized by in vitro translation. MEGAscriptT7 kit by amplifying the 869-1652th nucleotide sequence from the 5 ′ end of TNF-α mRNA (GenBank Accession No.NM_000594.2, SEQ ID NO: 1) by PCR using a primer having T7 promoter sequence at the 5 ′ end (Ambion) was used to synthesize RNA according to the attached protocol. A reaction for covalently binding Flag-hydrazide to the 3 ′ end of the synthesized TNF-α mRNA was performed, and the 3 ′ end of the TNF-α mRNA was labeled with Flag. The labeled mRNA was purified using RNeasy Mini Kit from Qiagen. In addition, mRNA flag labeling is performed according to a known method (see “Programmable ribozymes for mischarging tRNA with nonnatural amino acids and their applications to translation.” Methods, 2005, Vol, 36, No.3, p.239-244). It was.
 精製後のFlag標識TNF-α mRNA(以下「TNF-α mRNA-Flag」という)を、293T細胞から抽出した細胞抽出タンパクと混合し、オリゴヌクレオチドプール1N,1n,2N又は2nを各オリゴヌクレオチドの終濃度が100nMとなるように添加して反応を行った。免疫沈降後、溶出させた試料について、抗RC3H1抗体(Bethyl Laboratories)を用いてウェスタンブロッティングを行った。 The purified Flag-labeled TNF-α mRNA (hereinafter referred to as “TNF-α mRNA-Flag”) is mixed with cell-extracted protein extracted from 293T cells, and oligonucleotide pools 1N, 1n, 2N, or 2n are mixed with each oligonucleotide. The reaction was carried out by adding the final concentration to 100 nM. After immunoprecipitation, the eluted sample was subjected to Western blotting using an anti-RC3H1 antibody (Bethyl Laboratories).
 ウェスタンブロットの結果を「図4」に示す。細胞抽出タンパクを10pmolの TNF-α mRNA-Flag及びオリゴヌクレオチドプール1N又は1nと混合し、抗Flag抗体で免疫沈降させて得た試料(レーン3、4)では、RC3H1が検出された。レーン1には細胞抽出タンパクそのものを、レーン2には細胞抽出タンパクを10pmolの TNF-α mRNA-Flag及びオリゴヌクレオチドの溶媒(水)と混合し、抗Flag抗体で免疫沈降させて得た試料を流している。 Western blot results are shown in “FIG. 4”. RC3H1 was detected in samples (lanes 3 and 4) obtained by mixing the cell extract protein with 10 pmol of TNF-α mRNA-Flag and oligonucleotide pool 1N or 1n and immunoprecipitating with anti-Flag antibody. In lane 1, the cell extract protein itself is mixed. In lane 2, the cell extract protein is mixed with 10 pmol TNF-α mRNA-Flag and oligonucleotide solvent (water), and a sample obtained by immunoprecipitation with anti-Flag antibody is obtained. It is flowing.
 これに対して、細胞抽出タンパクを10pmolの TNF-α mRNA-Flag及びオリゴヌクレオチドプール2N又は2nと混合し、抗Flag抗体で免疫沈降させて得た試料(レーン5、6)では、RC3H1が検出されず、TNF-α mRNA-FlagへのRC3H1の結合が阻害されていることが明らかになった。 In contrast, RC3H1 was detected in samples (lanes 5 and 6) obtained by mixing the cell extract protein with 10 pmol of TNF-α mRNA-Flag and oligonucleotide pool 2N or 2n and immunoprecipitating with anti-Flag antibody. It was revealed that the binding of RC3H1 to TNF-α mRNA-Flag was inhibited.
(4)オリゴヌクレオチドの取得
 オリゴヌクレオチドプール2N,2nの中から、TNF‐α mRNAとRC3H1との結合を阻害する活性を示すオリゴヌクレオチドを取得した。
(4) Obtaining Oligonucleotides Oligonucleotides showing activity to inhibit the binding between TNF-α mRNA and RC3H1 were obtained from the oligonucleotide pools 2N and 2n.
 オリゴヌクレオチドプール2N又は2nを構成する16種類のオリゴヌクレオチドについて、上記と同様の手順により、免疫沈降とウェスタンブロットを行った。 Immunoprecipitation and Western blotting were performed on 16 kinds of oligonucleotides constituting the oligonucleotide pool 2N or 2n by the same procedure as described above.
 その結果、オリゴヌクレオチドプール2N,2nのそれぞれから、TNF‐α mRNAとRC3H1との結合阻害活性を示すオリゴヌクレオチドとして以下のオリゴヌクレオチド2N1,2n1が得られた。 As a result, the following oligonucleotides 2N1 and 2n1 were obtained from each of the oligonucleotide pools 2N and 2n as oligonucleotides exhibiting binding inhibitory activity between TNF-α mRNA and RC3H1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本実施例では、オリゴヌクレオチドライブラリーを、最小数のオリゴヌクレオチドプール数である2(オリゴヌクレオチドプール1N及び2N、又は、オリゴヌクレオチドプール1n及び2n)として、スクリーニングの各工程を行った。その結果、目的のTNF‐αmRNAとRC3H1との結合阻害活性を示すオリゴヌクレオチドとして「表3」に示したオリゴヌクレオチドが得られた。 In this example, each screening step was performed with the oligonucleotide library as 2 ( oligonucleotide pools 1N and 2N, or oligonucleotide pools 1n and 2n), which is the minimum number of oligonucleotide pools. As a result, the oligonucleotides shown in “Table 3” were obtained as oligonucleotides showing the binding inhibitory activity between the target TNF-α mRNA and RC3H1.
 この結果から、核酸アナログ7merの基本配列に2つの核酸アナログ又は核酸を結合した9merオリゴヌクレオチドが、所望の活性(ここでは、TNF‐α mRNAとRC3H1との結合阻害活性)を発揮し得ることが明らかにされた。そして、この結果は、7merの核酸アナログの全ての組み合わせである16384(4の7乗)通りのオリゴヌクレオチドプールを調製することにより、あらゆる配列のヌクレオチド鎖に対して特異的に結合し得るオリゴヌクレオチドが必ず含まれるようなオリゴヌクレオチドライブラリーを構築できることを示しており、このライブラリーを用いればターゲット配列を特定できないような標的遺伝子についても、アンチセンス活性やデコイ活性等の所望の活性を示すオリゴヌクレオチドを得られることを示している。 From this result, it is possible that the 9mer oligonucleotide in which two nucleic acid analogs or nucleic acids are bound to the basic sequence of the nucleic acid analog 7mer can exhibit a desired activity (in this case, the binding inhibitory activity between TNF-α mRNA and RC3H1). It was revealed. This result shows that oligonucleotides that can specifically bind to nucleotide chains of any sequence are prepared by preparing 16384 (4 to the 7th power) oligonucleotide pools that are all combinations of 7-mer nucleic acid analogs. It is shown that it is possible to construct an oligonucleotide library that always contains an oligosaccharide that exhibits a desired activity such as an antisense activity or a decoy activity even for a target gene for which a target sequence cannot be specified by using this library. It shows that nucleotides can be obtained.
<実施例2>
2.ZFP36L1のLDLR mRNAへの結合を阻害し、LDLRの発現を上昇させる活性を有するオリゴヌクレオチドのスクリーニング
 本実施例では、核酸アナログ7merの基本配列に2つの核酸アナログ又は核酸を結合した9merオリゴヌクレオチドが、低密度リポタンパク質受容体(Low- Density Lipoprotein Receptor:LDLR)の発現を上昇させる活性を示すことを明らかにした。
<Example 2>
2. Screening for oligonucleotides having an activity of inhibiting the binding of ZFP36L1 to LDLR mRNA and increasing the expression of LDLR In this example, a 9-mer oligonucleotide in which two nucleic acid analogs or nucleic acids were bound to the basic sequence of nucleic acid analog 7-mer, It has been clarified that the activity of increasing the expression of a low-density lipoprotein receptor (LDLR) is exhibited.
(1)基本配列の合成
 株式会社ジーンデザインのBNA合成サービスを利用して、以下の配列の基本配列を有するオリゴヌクレオチドを合成した。
(1) Synthesis of basic sequence Using the BNA synthesis service of Gene Design Co., Ltd., an oligonucleotide having the following basic sequence was synthesized.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(2)オリゴヌクレオチドプールの調製
 基本配列3の5´末端及び3´末端にそれぞれA,G,T,Cを結合したオリゴヌクレオチド16種類をオリゴヌクレオチドプール3Nとした。また、基本配列3の5´末端及び3´末端にそれぞれa,g,t,cを結合したオリゴヌクレオチド16種類をオリゴヌクレオチドプール3nとした。
(2) Preparation of oligonucleotide pool Sixteen types of oligonucleotides in which A, G, T, and C were bonded to the 5 ′ end and 3 ′ end of basic sequence 3 were designated as oligonucleotide pool 3N. In addition, 16 types of oligonucleotides in which a, g, t, and c were bonded to the 5 ′ end and 3 ′ end of the basic sequence 3, respectively, were designated as an oligonucleotide pool 3n.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(3)オリゴヌクレオチドプールの活性評価
 オリゴヌクレオチドプール3N,3nがLDLRの発現を上昇させる活性を有するかについて評価を行った。
(3) Evaluation of activity of oligonucleotide pool It was evaluated whether the oligonucleotide pools 3N and 3n have an activity to increase the expression of LDLR.
 Hela細胞を、12-well プレートに1×105 cells / wellで播種し、10%FBS 含有DMEM培地を用いて培養した。培養24時間後、オリゴヌクレオチドプール3N又は3nをリポフェクション(Darmafect 4, Thermo Scientific)によって細胞にトランスフェクトした。オリゴヌクレオチドプール3N,3nは、各オリゴヌクレオチドの終濃度が40nMとなるように希釈して用いた。 Hela cells were seeded on a 12-well plate at 1 × 10 5 cells / well and cultured using DMEM medium containing 10% FBS. After 24 hours in culture, oligonucleotide pools 3N or 3n were transfected into cells by lipofection (Darmafect 4, Thermo Scientific). Oligonucleotide pools 3N and 3n were used after being diluted so that the final concentration of each oligonucleotide was 40 nM.
 トランスフェクション24時間後の細胞を回収し、定法によりタンパク抽出を行った。抽出したタンパク5μgをSDS-PAGEにより分離し、メンブレンにブロットした。定法によりウェスタンブロットを行い、LDLRの発現量を評価した。抗LDLR抗体には、Abcam社の抗体(Cat.No.ab52818)を使用した。 Cells 24 hours after transfection were collected, and protein extraction was performed by a conventional method. 5 μg of the extracted protein was separated by SDS-PAGE and blotted on a membrane. Western blotting was performed by a conventional method to evaluate the expression level of LDLR. As an anti-LDLR antibody, an Abcam antibody (Cat. No. ab52818) was used.
 ウェスタンブロットの結果を「図5」に示す。オリゴヌクレオチドプールのトランスフェクトを行わなかった細胞(レーン1)に比べ、オリゴヌクレオチドプール3N,3nをトランスフェクトした細胞(レーン2,3)では、LDLR発現量の増加が確認された。なお、発現量評価の内部標準には、β-actinを用いた。β-actinの発現量は、トランフェクトの有無によらず、有意な発現量の変化は認められなかった。 Western blot results are shown in “FIG. 5”. An increase in LDLR expression level was confirmed in cells transfected with oligonucleotide pools 3N and 3n (lanes 2 and 3), compared to cells not transfected with the oligonucleotide pool (lane 1). Note that β-actin was used as an internal standard for expression level evaluation. The expression level of β-actin was not significantly changed regardless of the presence or absence of transfection.
(4)オリゴヌクレオチドの取得
 オリゴヌクレオチドプール3N,3nの中から、LDLRの発現を上昇させる活性を示すオリゴヌクレオチドを取得した。
(4) Acquisition of oligonucleotides Oligonucleotides having activity to increase the expression of LDLR were acquired from the oligonucleotide pools 3N and 3n.
 オリゴヌクレオチドプール3N又は3nを構成する16種類のオリゴヌクレオチドについて、上記と同様の手順により、トランスフェクションとウェスタンブロットを行った。 For 16 types of oligonucleotides constituting the oligonucleotide pool 3N or 3n, transfection and Western blotting were performed by the same procedure as described above.
 その結果、オリゴヌクレオチドプール3N,3nのそれぞれから、LDLRの発現上昇活性を示すオリゴヌクレオチドとして以下のオリゴヌクレオチド3N1,3n1が得られた。 As a result, from the oligonucleotide pools 3N and 3n, the following oligonucleotides 3N1 and 3n1 were obtained as oligonucleotides showing LDLR expression increasing activity.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<実施例3>
3.オリゴヌクレオチドの作用機序の解析
 本実施例では、実施例2で得られたオリゴヌクレオチド3N1,3n1がLDLRの発現を上昇させるメカニズムについて検討を行った。オリゴヌクレオチド3N1,3n1の作用機序としては、オリゴヌクレオチド3N1,3n1がmRNA結合タンパク質のmRNAへの結合を阻害することによって、結果として標的遺伝子産物の発現を減少又は上昇させていることが考えられる。そこで、本実施例では、LDLR mRNAに結合するmRNA結合タンパク質を同定し、オリゴヌクレオチド3N1,3n1がこのmRNA結合タンパク質のLDLRmRNAへの結合を阻害することを明らかにした。
<Example 3>
3. In this example, the mechanism by which the oligonucleotides 3N1, 3n1 obtained in Example 2 increase the expression of LDLR was examined. As the mechanism of action of oligonucleotide 3N1, 3n1, it is considered that oligonucleotide 3N1, 3n1 inhibits the binding of mRNA-binding protein to mRNA, resulting in decreased or increased expression of the target gene product. . Therefore, in this example, mRNA binding proteins that bind to LDLR mRNA were identified, and it was clarified that oligonucleotides 3N1, 3n1 inhibit the binding of this mRNA binding protein to LDLR mRNA.
(1)LDLR mRNAに結合するmRNA結合タンパク質の同定
 はじめに、LDLR mRNAに結合するmRNA結合タンパク質を同定することを目的として、LDLR mRNA をベイトとした免疫沈降とマススペクトロメーターを用いたプロテオーム解析による網羅的解析を行った。
(1) Identification of mRNA-binding protein that binds to LDLR mRNA First, for the purpose of identifying mRNA-binding protein that binds to LDLR mRNA, it is covered by immunoprecipitation using LDLR mRNA as a bait and proteome analysis using a mass spectrometer. Analysis was performed.
 実施例1で説明した方法に従って、LDLR mRNAをin vitro translationにより合成した。5´末端にT7 promoter 配列を持つプライマーを用いてPCRによりLDLR mRNA (配列番号2、GenBank Accession No.NM_000527)の2677-3585bp領域の増幅を行い、MEGAscript T7 キット (Cat.No.1333, Ambion)を用いてRNAの合成を行った。合成されたLDLR mRNAの3´末端にFlag-hydrazideを共有結合させる反応を行い、LDLR mRNAの3´末端をFlag標識した。標識mRNAをQiagen社のRNeasy Mini Kit(Cat.No.74106)を用いて精製した。 In accordance with the method described in Example 1, LDLR mRNA was synthesized by in vitro translation. Amplification of the 2677-3585bp region of LDLR mRNA (SEQ ID NO: 2, GenBank Accession No.NM_000527) was performed by PCR using a primer having a T7 promoter sequence at the 5 'end, and MEGAscript T7 kit (Cat.No.1333, Ambion) Was used to synthesize RNA. A reaction for covalently binding Flag-hydrazide to the 3 ′ end of the synthesized LDLR mRNA was performed, and the 3 ′ end of the LDLR mRNA was labeled with Flag. The labeled mRNA was purified using RNeasy Mini Kit (Cat. No. 74106) manufactured by Qiagen.
 精製後のFlag標識LDLR mRNA 10pmolを抗Flag抗体ビーズ(Cat.No.F2426, Sigma)と混合、4℃で1時間反応を行った。その後、10%FBS 含有DMEM培地で培養した293T細胞から抽出した細胞抽出タンパク3mgを加えさらに、4℃で1時間反応を行った。非結合タンパク質を洗い流した後、RNA及びRNA結合タンパク質をFlagペプチドで溶出させた。溶出させて得た試料を、リジルエンドペプチダーゼ処理し、公知の手法であるLC-MS/MS法を用い(”A direct nanoflowliquid chromatography-tandem mass spectrometry system for interaction proteomics.” Analytical Chemistry, 2002, Vol.74, No.18, p.4725-4733参照)に従って、解析を行った。マススペクトロメーターには、QSTAR XL(アプライドバイオシステム)を用いた。 After purification, 10 pmol of Flag-labeled LDLR mRNA was mixed with anti-Flag antibody beads (Cat. No. F2426, Sigma) and reacted at 4 ° C for 1 hour. Thereafter, 3 mg of cell-extracted protein extracted from 293T cells cultured in DMEM medium containing 10% FBS 培 地 was added, and further reacted at 4 ° C for 1 hour. After washing away unbound protein, RNA and RNA binding protein were eluted with Flag peptide. Samples obtained by elution were treated with lysyl endopeptidase, and the LC-MS / MS method (“A direct 手法 nanoflowliquid chromatography-tandem mass spectrometry system for interaction proteomics.” Analytical Chemistry, 2002, Vol. 74, No.18, p.4725-4733). As the mass spectrometer, QSTAR バ イ オ XL (Applied Biosystem) was used.
 LC-MS/MSにより「ZFP36L1」及び「ZFP36L2」が同定された。ZFP36L1及びZFP36L2は、ZFP36(別名TTP)とともにARE結合因子の1ファミリー(以下、「ZFP36ファミリー」という)を形成している。ZFP36ファミリーは、AREに結合してmRNAを不安定化し、分解促進に機能していることが報告されている(”Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly(A) ribonuclease.” Molecular Cell Biology, 2003, Vol.23, No.11, p.3798-812参照)。 “ZFP36L1” and “ZFP36L2” were identified by LC-MS / MS. ZFP36L1 and ZFP36L2 form one family of ARE binding factors (hereinafter referred to as “ZFP36 family”) together with ZFP36 (also known as TTP). ZFP36 family has been reported to bind to ARE and destabilize mRNA and function to promote degradation (“Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly (A) ribonuclease. ”Molecular Cell Biology, 2003, Vol.23, No.11, p.3798-812).
(2)オリゴヌクレオチド3N1,3n1による結合阻害実験
 次に、オリゴヌクレオチド3N1,3n1が、ZFP36L1及びZFP36L2のLDLR mRNAへの結合を阻害し得るかについて検討を行った。
(2) Binding inhibition experiment with oligonucleotides 3N1 and 3n1 Next, it was examined whether oligonucleotides 3N1 and 3n1 could inhibit the binding of ZFP36L1 and ZFP36L2 to LDLR mRNA.
 LDLR mRNAのmRNAをin vitro translationにより合成し、Flagペプチドによる標識を行った。3´UTRには、LDLR mRNA(配列番号2参照)のうち、5´側末端から2677-3585bpsを用いた。 LDLR mRNA was synthesized by in vitro translation and labeled with Flag peptide. For 3′UTR, 2677-3585 bps from the 5 ′ end of LDLR mRNA (see SEQ ID NO: 2) was used.
 精製後のFlag標識LDLR mRNA(以下「LDLR mRNA -Flag」という)を、293T細胞から抽出した細胞抽出タンパクと混合し、さらにオリゴヌクレオチド3N1又は3n1を終濃度100nMで加えて反応を行った。免疫沈降後、溶出させた試料について、抗ZFP36L1抗体(Cell signaling)を用いてウェスタンブロッティングを行った。 Purified Flag-labeled LDLR mRNA (hereinafter referred to as "LDLR mRNA -Flag") was mixed with cell-extracted protein extracted from 293T cells, and oligonucleotide 3N1 or 3n1 was added at a final concentration of 100 nM for reaction. After immunoprecipitation, the eluted sample was subjected to Western blotting using an anti-ZFP36L1 antibody (Cell signaling).
 ウェスタンブロットの結果を「図6」に示す。ZFP36L1/ ZFP36L2が含まれる細胞抽出タンパクをLDLR mRNA-Flagと混合し、抗Flag抗体で免疫沈降させて得た試料(レーン2)では、ZFP36L1が検出された。なお、レーン1には細胞抽出タンパクそのものを流している。 Western blot results are shown in “FIG. 6”. ZFP36L1 was detected in a sample (lane 2) obtained by mixing cell extract protein containing ZFP36L1 / ZFP36L2 with LDLR mRNA-Flag and immunoprecipitating with anti-Flag antibody. In lane 1, the cell extracted protein itself flows.
 このことは、ZFP36L1がLDLR mRNA-Flag に結合し得ることを示すものである。なお、図示は省略するが、ZFP36L2についても同様の結果が得られている(以下、本実施例について同じ)。 This indicates that ZFP36L1 can bind to LDLR mRNA-Flag. Although not shown, the same result is obtained for ZFP36L2 (the same applies to the present embodiment hereinafter).
 オリゴヌクレオチド3N1又は3n1の存在下で、細胞抽出タンパクとLDLR mRNA-Flagとを反応させたレーン3,4では、ZFP36L1の検出シグナルは顕著に低下した。レーン8-13における検出バンドの強度は、レーン2に示したActin 3´UTR-Flagとの反応により得られた検出バンドの強度と同程度以下であった。一方、コントロールLNA4,5を加えて反応を行ったレーン4-7では、ZFP36L1及びZFP36L2の検出シグナルの低下は認められなかった。 In the lanes 3 and 4 where the cell extract protein and LDLRLD mRNA-Flag were reacted in the presence of the oligonucleotide 3N1 or 3n1, the detection signal of ZFP36L1 was significantly reduced. The intensity of the detection band in lanes 8-13 was less than or equal to the intensity of the detection band obtained by the reaction with Actin 3′UTR-Flag shown in lane 2. On the other hand, in Lanes 4-7 where the reaction was carried out with the addition of control LNA4, 5, no decrease in the detection signals of ZFP36L1 and ZFP36L2 was observed.
 このことから、オリゴヌクレオチド3N1,3n1が、ZFP36L1及びZFP36L2のLDLR mRNAへの結合を顕著に阻害し得ることが明らかになった。 From this, it was revealed that the oligonucleotides 3N1, 3n1 can remarkably inhibit the binding of ZFP36L1 and ZFP36L2 to LDLR mRNA.
 本実施例の結果は、核酸アナログ7merの基本配列に2つの核酸アナログ又は核酸を結合した9merオリゴヌクレオチドが、所望の活性(ここでは、ZFP36L1及びZFP36L2のLDLR mRNAへの結合を阻害することによって、結果としてLDLRの発現を上昇させる活性)を発揮し得ることを明らかにするものである。 The result of this example is that the 9mer oligonucleotide in which two nucleic acid analogs or nucleic acids are bound to the base sequence of the nucleic acid analog 7mer inhibits the binding of the desired activity (here, ZFP36L1 and ZFP36L2 to LDLR mRNA) As a result, it is clarified that the activity of increasing the expression of LDLR can be exhibited.
 ZFP36ファミリーは、AREに結合してmRNAを不安定化し、分解促進に機能していることが報告されている。従って、本実施例の結果から、オリゴヌクレオチド3N1,3n1が、ZFP36L1及びZFP36L2のLDLR mRNAへの結合を阻害することによって、ZFP36L1及びZFP36L2のmRNA分解促進機能を阻害して、LDLR mRNAを安定化し翻訳を促進することで、LDLR mRNAの発現を上昇させていることが強く示唆された。そして、このことは、生体内においてLDLR mRNAの発現制御機構にZFP36L1及びZFP36L2が関与していることを初めて明らかにする点で大変意義深いものである。このように、本発明に係るオリゴヌクレオチドのスクリーニング方法は、取得されたオリゴヌクレオチドを端緒として、生体内における新たな制御機構を解明するためにも寄与し得るものである。 Z ZFP36 family has been reported to bind to ARE, destabilize mRNA, and function to promote degradation. Therefore, from the results of this example, the oligonucleotides 3N1, 3n1 inhibit the binding of ZFP36L1 and ZFP36L2 to LDLR mRNA, thereby inhibiting the mRNA degradation promoting function of ZFP36L1 and ZFP36L2 and stabilizing LDLR mRNA. It was strongly suggested that the expression of LDLR mRNA was increased by promoting. This is very significant in that it is revealed for the first time that ZFP36L1 and ZFP36L2 are involved in the expression control mechanism of LDLR mRNA in vivo. Thus, the oligonucleotide screening method according to the present invention can contribute to elucidating a new control mechanism in the living body, starting from the obtained oligonucleotide.

Claims (17)

  1.  任意の核酸アナログからなる7merの基本配列に、アデニンアナログ、グアニンアナログ、チミンアナログ又はシトシンアナログから選択されるいずれか一の核酸アナログ、又は、アデニン、グアニン、チミン又はシトシンから選択されるいずれか一の核酸、を1つ又は2つ結合したオリゴヌクレオチドからなるオリゴヌクレオチドプールを、各オリゴヌクレオチドプール間で前記基本配列が互いに異なるようして、二以上準備する手順と、
    オリゴヌクレオチドプールの中から、目的オリゴヌクレオチドを含むオリゴヌクレオチドプールを同定する手順と、
    を含む、オリゴヌクレオチドのスクリーニング方法。
    Any one nucleic acid analog selected from adenine analog, guanine analog, thymine analog or cytosine analog, or any one selected from adenine, guanine, thymine or cytosine in a 7mer basic sequence consisting of any nucleic acid analog A procedure of preparing two or more oligonucleotide pools composed of oligonucleotides obtained by binding one or two nucleic acids, such that the basic sequences differ between the oligonucleotide pools;
    A procedure for identifying an oligonucleotide pool containing the target oligonucleotide from the oligonucleotide pool;
    A method for screening oligonucleotides.
  2.  前記基本配列の5´末端又は3´末端のいずれかに、
    アデニンアナログ、グアニンアナログ、チミンアナログ又はシトシンアナログから選択されるいずれか一の核酸アナログ、又は、
    アデニン、グアニン、チミン又はシトシンから選択されるいずれか一の核酸、をそれぞれ結合した4種類のオリゴヌクレオチドからなるオリゴヌクレオチドプールを二以上準備する請求項1記載のオリゴヌクレオチドのスクリーニング方法。
    At either the 5 ′ end or 3 ′ end of the basic sequence,
    Any one nucleic acid analog selected from adenine analog, guanine analog, thymine analog or cytosine analog, or
    The oligonucleotide screening method according to claim 1, wherein two or more oligonucleotide pools each comprising four kinds of oligonucleotides each bound to any one nucleic acid selected from adenine, guanine, thymine, or cytosine are prepared.
  3.  前記基本配列の5´末端及び3´末端に、
    アデニンアナログ、グアニンアナログ、チミンアナログ又はシトシンアナログから選択されるいずれか一の核酸アナログ、又は、
    アデニン、グアニン、チミン又はシトシンから選択されるいずれか一の核酸、をそれぞれ結合した16種類のオリゴヌクレオチドからなるオリゴヌクレオチドプールを二以上準備する請求項1記載のオリゴヌクレオチドのスクリーニング方法。
    At the 5 ′ end and 3 ′ end of the basic sequence,
    Any one nucleic acid analog selected from adenine analog, guanine analog, thymine analog or cytosine analog, or
    The oligonucleotide screening method according to claim 1, wherein two or more oligonucleotide pools each comprising 16 kinds of oligonucleotides each bound with any one nucleic acid selected from adenine, guanine, thymine, or cytosine are prepared.
  4.  7つの核酸アナログの全ての組み合わせからなる16384通りの基本配列を準備する手順を含む請求項1~3記載のいずれか一項に記載のアンチセンスオリゴヌクレオチドのスクリーニング方法。 The method for screening an antisense oligonucleotide according to any one of claims 1 to 3, comprising a procedure for preparing 16384 basic sequences comprising all combinations of seven nucleic acid analogs.
  5.  前記核酸アナログは、オリゴヌクレオチドの配列中に少なくとも1つ含まれることにより、核酸のみからなるオリゴヌクレオチドに比較して、オリゴヌクレオチドの相補鎖に対する結合親和性を増大させるものである請求項4記載のオリゴヌクレオチドのスクリーニング方法。 5. The nucleic acid analog according to claim 4, wherein at least one of the nucleic acid analogs is included in the sequence of the oligonucleotide, thereby increasing the binding affinity for the complementary strand of the oligonucleotide as compared to the oligonucleotide consisting of only the nucleic acid. Oligonucleotide screening method.
  6.  前記核酸アナログとして、ブリッジド核酸又はロックト核酸を用いる請求項5記載のオリゴヌクレオチドのスクリーニング方法。 The oligonucleotide screening method according to claim 5, wherein a bridged nucleic acid or a locked nucleic acid is used as the nucleic acid analog.
  7.  前記オリゴヌクレオチドプールの存在下及び非存在下で、mRNAとこのmRNAに結合するmRNA結合タンパク質とを接触させ、mRNAとmRNA結合タンパク質との結合量を測定することにより、mRNAとmRNA結合タンパク質との結合を阻害する活性を示すオリゴヌクレオチドを含むオリゴヌクレオチドプールを同定する請求項1記載のオリゴヌクレオチドのスクリーニング方法。 In the presence and absence of the oligonucleotide pool, the mRNA is contacted with the mRNA binding protein that binds to the mRNA, and the amount of binding between the mRNA and the mRNA binding protein is measured. The method for screening an oligonucleotide according to claim 1, wherein an oligonucleotide pool containing an oligonucleotide having an activity of inhibiting binding is identified.
  8.  前記mRNAは腫瘍壊死因子α mRNAであり、前記mRNA結合タンパク質がRC3H1である請求項7記載のオリゴヌクレオチドのスクリーニング方法。 The oligonucleotide screening method according to claim 7, wherein the mRNA is tumor necrosis factor α 因子 mRNA, and the mRNA binding protein is RC3H1.
  9.  前記オリゴヌクレオチドプールを導入した細胞及び導入していない細胞についてタンパク質の発現量を測定することにより、該タンパク質の発現を増強する活性を示すオリゴヌクレオチドを含むオリゴヌクレオチドプールを同定する請求項1記載のオリゴヌクレオチドのスクリーニング方法。 The oligonucleotide pool containing the oligonucleotide which shows the activity which enhances the expression of this protein is identified by measuring the expression level of protein about the cell which introduce | transduced the said oligonucleotide pool, and the cell which is not introduce | transduced. Oligonucleotide screening method.
  10.  前記タンパク質は低密度リポタンパク質受容体である請求項9記載のオリゴヌクレオチドのスクリーニング方法。 The oligonucleotide screening method according to claim 9, wherein the protein is a low-density lipoprotein receptor.
  11.  同定されたオリゴヌクレオチドプールの中から目的オリゴヌクレオチドを取得する手順を含む請求項1記載のオリゴヌクレオチドのスクリーニング方法。 The method for screening an oligonucleotide according to claim 1, comprising a procedure for obtaining a target oligonucleotide from the identified oligonucleotide pool.
  12.  請求項1記載のオリゴヌクレオチドのスクリーニング方法に供されるオリゴヌクレオチドライブラリーであって、
    任意の核酸アナログからなる7merの基本配列に、アデニンアナログ、グアニンアナログ、チミンアナログ又はシトシンアナログから選択されるいずれか一の核酸アナログ、又は、アデニン、グアニン、チミン又はシトシンから選択されるいずれか一の核酸、を1つ又は2つ結合したオリゴヌクレオチドからなる二以上のオリゴヌクレオチドプールから構成され、
    各オリゴヌクレオチドプール間で前記基本配列が互いに異なるようにされたオリゴヌクレオチドライブラリー。
    An oligonucleotide library provided for the oligonucleotide screening method according to claim 1,
    Any one nucleic acid analog selected from adenine analog, guanine analog, thymine analog or cytosine analog, or any one selected from adenine, guanine, thymine or cytosine in a 7mer basic sequence consisting of any nucleic acid analog Consisting of two or more oligonucleotide pools consisting of oligonucleotides linked with one or two nucleic acids,
    An oligonucleotide library in which the basic sequences are different from each other between each oligonucleotide pool.
  13.  前記基本配列が、7つの核酸アナログの全ての組み合わせからなる16384通りとされている請求項12記載のオリゴヌクレオチドライブラリー。 The oligonucleotide library according to claim 12, wherein the basic sequence is 16384 consisting of all combinations of seven nucleic acid analogs.
  14.  請求項8記載のオリゴヌクレオチドのスクリーニング方法によって得られた塩基配列CGGAAACAで示されるアンチセンスオリゴヌクレオチド。 An antisense oligonucleotide represented by the base sequence CGGAAACA obtained by the oligonucleotide screening method according to claim 8.
  15.  塩基配列CGGAAACAで示されるオリゴヌクレオチド、又は該オリゴヌクレオチドを発現可能な発現ベクターを含有する腫瘍壊死因子α発現調節剤。 A tumor necrosis factor α expression regulator containing an oligonucleotide represented by the base sequence CGGAAACA or an expression vector capable of expressing the oligonucleotide.
  16.  請求項10記載のオリゴヌクレオチドのスクリーニング方法によって得られた塩基配列ATGAATAAAで示されるアンチセンスオリゴヌクレオチド。 An antisense oligonucleotide represented by the base sequence ATGAATAAA obtained by the oligonucleotide screening method according to claim 10.
  17.  塩基配列ATGAATAAAで示されるオリゴヌクレオチド、又は該オリゴヌクレオチドを発現可能な発現ベクターを含有する低密度リポタンパク質受容体発現増強剤。 A low-density lipoprotein receptor expression enhancer containing an oligonucleotide represented by the base sequence ATGAATAAA or an expression vector capable of expressing the oligonucleotide.
PCT/JP2010/061888 2009-07-22 2010-07-14 Method for screening for oligonucleotide, and oligonucleotide library WO2011010583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-170891 2009-07-22
JP2009170891A JP2011024434A (en) 2009-07-22 2009-07-22 Method for screening oligonucleotide, and oligonucleotide library

Publications (1)

Publication Number Publication Date
WO2011010583A1 true WO2011010583A1 (en) 2011-01-27

Family

ID=43499056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061888 WO2011010583A1 (en) 2009-07-22 2010-07-14 Method for screening for oligonucleotide, and oligonucleotide library

Country Status (2)

Country Link
JP (1) JP2011024434A (en)
WO (1) WO2011010583A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035820A (en) * 2011-05-10 2013-02-21 Maruzen Pharmaceut Co Ltd Tie2 ACTIVATOR, ANGIOGENESIS SUPPRESSANT, MATURATING AGENT, NORMALIZING AGENT AND STABILIZING AGENT OF BLOOD VESSEL, AND PHARMACEUTICAL COMPOSITION
US9617538B2 (en) * 2011-08-29 2017-04-11 Niigata University Of Pharmacy And Applied Life Science Heptamer-type small guide nucleic acids inducing apoptosis of human leukemia cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195098A (en) 1996-11-18 1998-07-28 Takeshi Imanishi New nucleotide analogue
JPH10304889A (en) 1997-03-07 1998-11-17 Takeshi Imanishi New bicyclo nucleotide and oligonucleotide analogue
JP2002521310A (en) 1997-09-12 2002-07-16 エクシコン エ/エス Oligonucleotide analogues
WO2005021570A1 (en) 2003-08-28 2005-03-10 Gene Design, Inc. Novel artificial nucleic acids of n-o bond crosslinkage type
WO2009093384A1 (en) * 2008-01-24 2009-07-30 National Institute Of Advanced Industrial Science And Technology Polynucleotide or analogue thereof, and gene expression regulation method using the polynucleotide or the analogue thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195098A (en) 1996-11-18 1998-07-28 Takeshi Imanishi New nucleotide analogue
JPH10304889A (en) 1997-03-07 1998-11-17 Takeshi Imanishi New bicyclo nucleotide and oligonucleotide analogue
JP2002521310A (en) 1997-09-12 2002-07-16 エクシコン エ/エス Oligonucleotide analogues
WO2005021570A1 (en) 2003-08-28 2005-03-10 Gene Design, Inc. Novel artificial nucleic acids of n-o bond crosslinkage type
WO2009093384A1 (en) * 2008-01-24 2009-07-30 National Institute Of Advanced Industrial Science And Technology Polynucleotide or analogue thereof, and gene expression regulation method using the polynucleotide or the analogue thereof

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"A direct nano flowliquid chromatography-tandem mass spectrometry system for interaction proteomics", ANALYTICAL CHEMISTRY, vol. 74, no. 18, 2002, pages 4725 - 4733
"ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins", NUCLEIC ACIDS RESEARCH, vol. 29, no. 1, 2001, pages 246 - 254
"AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors", BIOCHEMICAL SOCIETY TRANSACTIONS, vol. 30, 2002, pages 952 - 958
"AU-rich elements and associated factors: are there unifying principles?", NUCLEIC ACIDS RESEARCH, vol. 33, no. 22, 2005, pages 7138 - 7150
"Function of beta-amyloid in cholesterol transport: a lead to neurotoxicity", FASEB J., vol. 16, no. 12, 21 August 2002 (2002-08-21), pages 1677 - 1679
"Genetic study evaluating LDLR polymorphisms and Alzheimer's disease", NEUROBIOL AGING., vol. 29, no. 6, 18 January 2007 (2007-01-18), pages 848 - 855
"Programmable ribozymes for mischarging tRNA with nonnatural amino acids and their applications to translation", METHODS, vol. 36, no. 3, 2005, pages 239 - 244
"Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly (A) ribonuclease", MOLECULAR CELL BIOLOGY, vol. 23, no. 11, 2003, pages 3798 - 3812
KEEFE, ANTHONY D. ET AL.: "SELEX with modified nucleotides.", CURRENT OPINION IN CHEMICAL BIOLOGY, vol. 12, no. 4, 2008, pages 448 - 456, XP024528065 *

Also Published As

Publication number Publication date
JP2011024434A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
Gebauer et al. RNA-binding proteins in human genetic disease
WO2009093384A1 (en) Polynucleotide or analogue thereof, and gene expression regulation method using the polynucleotide or the analogue thereof
Sterne-Weiler et al. Loss of exon identity is a common mechanism of human inherited disease
AU2002229701B2 (en) Method for inhibiting the expression of a target gene
Pereira‐Castro et al. On the function and relevance of alternative 3′‐UTRs in gene expression regulation
WO2013059606A1 (en) Compounds and methods for the treatment of muscular disease, and related screening methods
Vasquez et al. Site-specific incorporation of 5′-methyl DNA enhances the therapeutic profile of gapmer ASOs
Benhamou et al. A toxic RNA catalyzes the cellular synthesis of its own inhibitor, shunting it to endogenous decay pathways
WO2004046081A1 (en) Beta-nitrostyrene compound and telomerase inhibitor having an anticancer activity
WO2011010583A1 (en) Method for screening for oligonucleotide, and oligonucleotide library
Donahue et al. Identification of tau stem loop RNA stabilizers
Hagler et al. Expanded DNA and RNA trinucleotide repeats in myotonic dystrophy type 1 select their own multitarget, sequence-selective inhibitors
KR101647521B1 (en) Transfection agent
JP4851940B2 (en) Pharmaceutical composition for the treatment of cancer or diabetes
WO2022054801A1 (en) siRNA AND USE THEREOF
KR100962185B1 (en) Marker genes based on daunorubicin treatment for screening of drug inducing cardio toxicity and screening method using thereof
EP4090649A1 (en) Compositions and methods for targeted protein stabilization by redirecting endogenous deubiquitinases
El Boujnouni et al. Block or degrade? Balancing on-and off-target effects of antisense strategies against transcripts with expanded triplet repeats in DM1
TW201643249A (en) Dna aptamer capable of binding to non-small cell lung cancer cell (h1975)
JP5093484B2 (en) Expression enhancer of low density lipoprotein receptor
Yang et al. Visualization of long noncoding RNA MEG3 in living cells by a triple-helix-powered 3D catcher
US20070287153A1 (en) Methods for the identification and validation of functional intracellular targets with intramers or in vivo selection
WO2023038027A1 (en) Senolytic drug screening method and senolytic drug
US20230304019A1 (en) Dna aptamer, pharmaceutical composition comprising same, method for inhibiting catalytic ability of txndc5, and method for preventing or treating organ fibrosis
WO2007129598A1 (en) Method for screening of substance capable of increasing glutathione

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802203

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010802203

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE