WO2011009979A1 - Procedimiento de fabricación de papel con encolado interno mediante un sistema enzima-mediador - Google Patents

Procedimiento de fabricación de papel con encolado interno mediante un sistema enzima-mediador Download PDF

Info

Publication number
WO2011009979A1
WO2011009979A1 PCT/ES2010/000326 ES2010000326W WO2011009979A1 WO 2011009979 A1 WO2011009979 A1 WO 2011009979A1 ES 2010000326 W ES2010000326 W ES 2010000326W WO 2011009979 A1 WO2011009979 A1 WO 2011009979A1
Authority
WO
WIPO (PCT)
Prior art keywords
mediator
enzyme
paper
paste
alkyl
Prior art date
Application number
PCT/ES2010/000326
Other languages
English (en)
French (fr)
Inventor
Jordi GARCÍA UBASART
Maria Blanca Roncero Vivero
Teresa VIDAL LLUCIÀ
Jose Francisco Colom Pastor
Original Assignee
Universitat Politècnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De Catalunya filed Critical Universitat Politècnica De Catalunya
Publication of WO2011009979A1 publication Critical patent/WO2011009979A1/es

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/005Microorganisms or enzymes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/06Alcohols; Phenols; Ethers; Aldehydes; Ketones; Acetals; Ketals

Definitions

  • the present invention relates to a process for the manufacture of paper with internal gluing by means of an enzyme-mediator system.
  • Paper is defined as a sheet made up of fibers, mainly of plant origin, that have been felted and interwoven together. In its manufacturing process, different operations are performed sequentially to give rise to the final product. Thus, the raw material enters the process with the preparation of pastes (disintegration, refining, mixing, adding additives), passes through the machine head circuits to reach the input box, where the fibrous suspension is deposited on a fabric evenly across its width. It is here that the paper sheet is formed and the water extraction process begins, first by drainage, then by a press system, and finally by heat drying (T ⁇ 140 0 C). Before winding the paper and depending on the type of paper to be manufactured, other operations are performed, which may be chemical treatments (for example, coating) or mechanical operations (for example, calendering).
  • chemical treatments for example, coating
  • mechanical operations for example, calendering
  • additives are added to the pulp preparation, either to give the paper the desired properties (e.g. fillers, sizing agents, dry strength agents, wet strength agents, dyes and pigments, etc.) or to improve the manufacturing process (for example, retention agents, dispersants, defoamers or biocides, etc.).
  • the "internal gluing" of the paper consists in reducing the speed of penetration of a liquid in the paper structure, creating a hydrophobic surface at the fiber-water interface (Roberts, J. (Ed.) (1991). Paper Chemistry (lst ed.). New York: Chapman & Hall. ). Except in the case of absorbent papers, internal gluing is necessary to a greater or lesser extent for most kinds of paper and cellulosic products, and not only to obtain a good response in their final applications, but also to avoid problems in certain sections of the papermaking process. For example, during coating, it is important that the papers have an internal gluing to prevent the penetration of the stucco sauce into the paper structure, which weakens them and would result in machine breakage (Hubbe 2006).
  • urea-formaldehyde melamine-formaldehyde
  • modified starches polyacrylamide glyoxylate or polyamide-polyamine-epichloridrine (Eklund and Lindstróm, 1991; Roberts, 1991).
  • rosin a resin component of the trees, has been used together with aluminum salts (usually aluminum sulfate) to promote its retention in cellulosic fibers, applied in papermaking processes in acidic medium.
  • synthetic sizing agents were developed, such as, the alkyl cetene dimer (AKD) and the succinic alkenyl anhydrides (ASA) (Casey, JP (1981). PuIp and Paper, Chemistry and Chemical Technology. (3rd ed.), Volume 3. John Wiley &Sons; Eklund and "Lindstr ⁇ m, 1991 Roberts, 1991).
  • the AKDs are the most widely used and which result in more permanent internal gluing, although it does not fully develop until 10 days after paper is made, ASAs are much more reactive with cellulose and confer resistance to liquid penetration immediately after drying the paper.
  • Lacease applications in the forest produets industry A review. Enzyme and Microbial Technology 42, 293-307), and more specifically, for the bleaching of non-wood fibers (Garc ⁇ a, O .; Camarero S .; Colom, JF; Mart ⁇ nez, AT; Mart ⁇ nez, MJ; Monje, R. and Vidal, T. (2003). 'Optimization of a laccase- mediator stage for TCF bleaching of flax pulp. Holzaba, 57, 513-519, Camarero, S., Garc ⁇ a, O., Vidal, T., Colom, J., del Rio, J.
  • the same process can be performed under acid, neutral or alkaline conditions.
  • An objective of the present invention is to develop a process for the manufacture of paper with internal gluing comprising the steps of:
  • cellulosic fibers from one or more of the following: wood and non-wood pulp, unbleached and bleached pulp, mechanical, chemical and semi-chemical pulp, and recycled fibers;
  • step b) treatment of 'the fibers obtained in step a) with an enzyme-mediator system consisting of an oxidative enzyme laccase type and a mediator which is a natural or synthetic product comprising in their structure a phenolic group or alcohol, which structure is selected from the group consisting of:
  • R 3 is an alkyl> C 8 and Ri
  • R 2 can be:
  • Ri and R 2 -H, esters of 3, 4-dihydroxy-benzoic acid; or
  • R 2 and R 3 can be:
  • R 2 and R 3 can be:
  • Structure F sterols where the enzymatic treatment is applied under the following conditions: pH 4-9, consistency 0.1-18%, temperature 10-90 0 C and between 5 minutes and 12 hours duration; c) paper making with the treated fibers.
  • Another objective of the present invention is the use of the enzyme-mediator system with the characteristics mentioned in the first objective for the manufacture of paper with internal gluing.
  • Figure 1 shows images of eucalyptus samples, untreated (initial) and enzymatically treated (laccator-mediator), corresponding to example 1.
  • the internal sizing effect of the enzymatic treatment is evidenced by the fact that the drop of water deposited The paper structure does not penetrate the surface of the paper, as seen in the sample referenced as the mediator.
  • the present invention relates to a process for the manufacture of paper with internal gluing comprising the steps of:
  • cellulosic fibers from one or more of the following: wood and non-wood pulp, unbleached and bleached pulp, mechanical, chemical and semi-chemical pulp, and recycled fibers;
  • step b) treatment of the fibers obtained in step a) with an enzyme-mediating system consisting of a oxidative enzyme lacasa type and a mediator that is a natural or synthetic product that comprises in its structure a phenolic group or an alcohol, whose structure is selected from the group consisting of:
  • R 3 is an alkyl> Ce and Ri, R 2 can be:
  • Ri and R 2 -H, esters of 3, 4-dihydroxy-benzoic acid; or
  • R 2 and R 3 can be:
  • R 2 and R 3 can be:
  • Ri, R 2 and R 3 can be:
  • Structure F sterols, where the enzymatic treatment is applied under the following conditions: pH 4-9, consistency 0.1-18%, temperature 10-90 0 C and between 5 minutes and 12 hours duration;
  • internal gluing as defined " in the background, is understood as the ability to reduce the penetration rate of a liquid in the paper structure.
  • alkyl means a hydrocarbon chain, linear or branched, saturated or unsaturated.
  • paper means, as defined in the background, a sheet consisting of fibers, mainly of plant origin (they can also be synthetic, of animal or mineral origin), which have been felted and have been intertwined with each other.
  • the term General paper is used to describe both paper and cardboard (ISO 4046-1978).
  • the process of the present invention has the advantage that it is applicable to different types of cellulosic fibers that may or may not have lignin.
  • the origin of these cellulosic fibers is wood and non-wood pulp, unbleached (unbleached) and bleached pulp, mechanical, chemical and semi-chemical pulp, and recycled fibers.
  • the obtained cellulosic fibers are refined in the Valley stack (ISO 5264-1: 1979) before carrying out the enzymatic treatments.
  • the enzyme that makes up the enzyme-mediator system is a laccase (EC 1.10.3.2), which can be produced by different strains, preferably, but not limited to, Trametes villosa, Myceliopthera 'thermophila or Pycnoporus cinnabarinus.
  • the mediator is a natural or synthetic product, composed of a phenolic group or an alcohol, which must also contain some hydrophobic branching.
  • Mediators that meet this general description and that allow internal sizing are selected from the group consisting of: • Structure A
  • R3 is an alkyl> They may be:
  • R 2 and R 3 can be:
  • Ri .
  • Ri -H
  • R 3 -OH
  • R 2 alkyl> C 8 , preferably urushiol
  • Structure F sterols, - preferably sitosterol, stigmastanol, fucosterol, campesterol, "more preferably ⁇ -sitosterol.
  • the mediator is selected from the group consisting of octyl gallate, ' lauryl gallate, tocopherols,
  • the treatments are performed in reactors with or. without pressure, and with continuous agitation (for example in the mixing tub).
  • the general conditions of the reaction are: pH 4-9, consistency of 0.1-18% (preferably 1-1%), r temperature 10-90 ° C (preferably between 20 and 50 ° C).
  • the enzyme dose is between 0.01 and 500 U / g of dry pasta, preferably between 1 and 50 U / g.
  • the enzymatic reaction in the reactor lasts between 5 minutes and 12 hours, preferably between 1 and 4 hours.
  • the degree of gluing of the papers is determined by means of the Cobb test (ISO 535: 1991). Another test that allows the resistance to penetration of liquids to be determined is the capillary water rise test using the Klemm method (ISO 8787-1986). Additionally, a simple and fast method is the water drop test. This consists of arranging a drop of water (or other fluid) by means of a syringe and measuring the time it takes to be absorbed by the paper 1 . It is considered that the drop has been absorbed when the brightness of its surface disappears 1 . The measurement of the contact angle of a drop of water on the paper surface is another method cited and standardized (T 558 om-06).
  • Some paper samples are conditioned by a heat treatment with moisture, according to (ISO 5630-3: 1996) to subsequently analyze their influence on resistance to water penetration.
  • Another aspect of the present invention relates to the use of an enzyme-mediating system, as described above in the present invention, that is, consisting of a laccase oxidative enzyme and a mediator that is a natural or synthetic product that comprises in its structure a phenolic group or a alcohol, whose structure is selected from the group consisting of: in:
  • R 3 is an alkyl> Cs and Ri
  • R2 can be:
  • Ri and R 2 -H, esters of 3, 4-dihydroxy benzoic acid; or
  • R 1 , R 2 and R 3 can be:
  • R 2 and R 3 can be:
  • R 1 -H
  • R 3 -H
  • R 2 alkyl> C 8 , preferably 2-deoxy-urushiol
  • Structure F sterols, preferably sitosterol, stigmastanol, fucosterol, campesterol, more preferably ⁇ -sitosterol. for the manufacture of paper with internal gluing.
  • Said enzyme-mediator system used for the manufacture of paper with internal gluing has the characteristics. mentioned in step b) of treatment with the enzyme-mediating system indicated for the first purpose of the present invention.
  • the paste was conditioned with * H 2 SO 4 IN to adjust to pH 4.
  • the fibers were refined in the Valley stack (ISO 5264-1: 1979) until a paste with a drainage of 25 ° SR was obtained. .
  • the enzyme treatment was' done in. Easydye® device with bottles of 250 mL capacity. 6 g of dry paste were used at a consistency of 4%, pH 4.40 U / g of the Tram & tes villosa laccase and a dose of 4 ⁇ (by weight of dry paste) of lauryl gallate mediator. Prior to the addition of the enzyme, the mediator was dosed and stirring was carried out for 30 minutes at 25 ° C. After the indicated time, the amount of enzyme required was added and the 1 hour treatment at 50 ° C was started. When the reaction was over, the paste was filtered, the lye was collected and washed with distilled water. The fibrous suspension was then prepared with the paste Treated to form the papers. The corresponding control treatment was also performed, at the same conditions described above but without enzyme.
  • the initial sample corresponds. to . eucalyptus fibers refined with the Valley stack. and without any other type of treatment.
  • the paste was conditioned with H 2 SO 4 IN to adjust to pH 4.
  • the fibers * were refined in the Valley stack (ISO 5264-1: 1979) until a paste with a drainage of 77 ° was obtained MR.
  • Enzymatic treatment was performed in the apparatus. Easydye® with bottles of 250 mL capacity. ⁇ g of dry paste at a consistency of 4%, pH 4, 40 U / g of lame Trametes villosa and a dose of 4% • (on dry pasta weight) of lauryl gallate mediator were used. Prior to the addition of the enzyme, the mediator was dosed and stirring was carried out for 30 minutes at 25 ° C. After the indica- time, he was added 'quantity' of enzyme required and the beginning occurred. 1 hour treatment at -5O 0 C. When the reaction was finished, the paste was filtered, the lye was collected and washed with distilled water. The fibrous suspension was then prepared with the treated pulp to form the papers. The corresponding control treatment was also performed under the same conditions described above but without enzyme.
  • the results obtained in the water drop absorption and capillarity absorption tests are shown below in Table 2.
  • the initial sample corresponds to the unbleached flax paste refined with the Valley stack and without any other treatment.
  • TCF bleached flax paste treatment Lium usitatissim ⁇ m
  • la.ca.sa. Trametes villosa
  • lauryl gallate as mediator for the internal gluing of the paper.
  • Enzymatic treatment was performed in the Easydye® apparatus with bottles of 250 mL capacity. 6 g of dry paste were used at a consistency of 4%, pH 4, 40 U / ' g of lame Trametes villosa and a dose of 4% (on weight of dry paste) of lauryl gallate mediator. 1 prior to the addition of the enzyme, the mediator was dosed and proceeded to stir for 30 minutes at 25 ° C. After the indicated time, the amount of enzyme required was added and the 1 hour treatment was started at 50 0 C. When the reaction was finished, the paste was filtered, the bleach was collected and washed with distilled water. The fibrous suspension was then prepared with the treated pulp to form the papers. Too . the corresponding control treatment, at the same conditions described above but without enzyme.
  • Table 3 shows the values of the water drop absorption and capillary absorption tests (Klemm method).
  • the initial sample corresponds to TCF flax fibers refined with the Valley stack and without any other treatment.
  • Table 3 Test results for bleached TCF flax paste treated with the lacasa-lauryl gallate system.
  • the fibers were refined in the Valley stack (ISO 5264-1: 1979) until a paste with a drainage of 62 ° SR was obtained.
  • Enzymatic treatment was performed in the Easydye® apparatus with bottles of 250 mL capacity. 6 g of dry paste were used at a consistency of 4%, pH 4.40 U / g of lame Trametes villosa and a dose of 4% (on dry paste) of lauryl gallate mediator. Prior to the addition of the enzyme, the mediator was dosed and stirring was carried out for 30 minutes at 25 ° C. After the indicated time, the amount of enzyme required was added and the 1 hour treatment at 50 0 C was started. When the reaction was finished, the paste was filtered, the bleach was collected and washed with distilled water. The fibrous suspension was then prepared with the treated pulp to form the papers. The corresponding control treatment was also performed, at the same conditions described above but without enzyme.
  • the results obtained in the water drop 1 absorption, capillarity absorption (Klemm method) and Cobb tests are shown in Table 4.
  • the initial sample corresponds to the ECF flax fibers refined with the Valley stack and without any other type of treatment.
  • Table, 4 Test results for bleached ECF flax paste treated with the lacasa ⁇ -lauril gallate system.
  • the fibers were refined in the Valley stack (ISO 5264-1: 1979) until a paste with a drainage of 62 ° SR was obtained.
  • Enzymatic treatment was performed in the Easydye® apparatus with bottles of 250 mL capacity. 6 g of dry paste were used at a consistency of 4%, pH 4.40 U / g of lame Trametes villosa and a dose of 4% (on dry paste) of octyl gallate mediator. Prior to the addition of the enzyme, the mediator was dosed and stirring was carried out for 30 minutes at 25 ° C. After the indicated time, the amount of enzyme required was added and the 1 hour treatment at 50 ° C was started. When the reaction was over, the paste was filtered, the lye was collected and washed with distilled water. The fibrous suspension was then prepared to form the papers. The corresponding control treatment was also performed, at the same conditions described above but without enzyme.
  • the results obtained in the water drop absorption and capillarity absorption tests are shown in Table 5.
  • the initial sample corresponds to the ECF flax fibers refined with the Valley stack and without any other treatment .
  • Table 5 Test results for bleached ECF flax paste treated with the lacasa-octyl gallate system.
  • the paste was conditioned with H 2 SO 4 IN to adjust to pH 4.
  • the fibers were refined in the Valley stack (ISO 5264-1: 1979) until a paste with a drainage of 25 ° SR was obtained.
  • Enzymatic treatment was performed in the Easydye® apparatus with bottles of 250 mL capacity. 6 g of dry paste were used at a consistency of 4%, pH 4.40 U / g of lame Trametes villosa and a dose of 4% (on dry paste) of mediator 2, 4, 6-tris (1-phenylethyl) phenol. Prior to the addition of the enzyme, the mediator was dosed and stirring was carried out for 30 minutes at 25 ° C. After the indicated time, the amount of enzyme required was added and the 1 hour treatment was started. duration at 50 ° C. When the reaction was over, the paste was filtered, the lye was collected and washed with distilled water. The fibrous suspension was then prepared to form the papers. The initial sample corresponds to eucalyptus fibers refined with the Valley stack and without any other treatment.
  • Table 6 Results for samples of unbleached eucalyptus kraft paste treated with the lacasa-2, 4, 6-tris (1-phenylethyl) phenol system. Effect of heat treatment and effect of storage in internal gluing.
  • the papers After treatment with the lacasa-mediator system, the papers presented a slight internal gluing that. improved after heat treating the samples.
  • the storage of the papers resulted in the improvement of the degree of gluing of the treated samples, increasing the time of water drop absorption.
  • the paste was conditioned with H 2 SO 4 IN to adjust to pH 4.
  • the fibers were refined in the Valley stack (ISO 5264-1: 1979) until a paste with a drainage of 25 ° SR was obtained.
  • Enzymatic treatment ' was performed in the Easydye® apparatus with bottles of 250 mL capacity. 6 g of dry paste were used at a consistency of 4%, pH 4.40 U / g of lame Trametes villosa and a dose of 4% (on dry paste) of mediator 4- [4- (Trifluoromethyl) phenoxy] phenol. Prior to the addition of the enzyme, the mediator was dosed and stirring was carried out for 30 minutes at 25 ° C. After the indicated time, the amount of enzyme required was added and the 1 hour treatment at 50 0 C was started. When the reaction was finished, the paste was filtered, the bleach was collected and washed with distilled water. The fibrous suspension was then prepared to form the papers. The initial sample corresponds to eucalyptus fibers refined with the Valley stack and without any other treatment.
  • Table 7 shows the results obtained in the water drop absorption, capillarity absorption (Klemm method) and Cobb tests. Table 7: Results for samples of unbleached eucalyptus kraft paste treated with the lacasa-trifluoromethyl system. Effect of heat treatment on internal gluing.
  • the fibers were refined in the Valley stack (ISO 5264-1: 1979) until a paste with a drainage of 62 ° SR was obtained.
  • Enzymatic treatment was performed in the Easydye® apparatus with bottles of 250 mL capacity. 6 g of dried pasta were used at a consistency of 4%, pH 5.40 U / g of lacasa Pycnoporus cinnabarinus and a dose of 4% (on dry paste) of lauryl gallate mediator. Prior to the addition of the enzyme, the mediator was dosed and stirring was carried out for 30 minutes at 25 ° C. After the indicated time, the amount of enzyme required was added and the 1 hour treatment at 50 0 C was started. When the reaction was finished, the paste was filtered, collected, the bleach and washed with distilled water. The fibrous suspension was then prepared with the treated pulp to form the papers. The initial sample corresponds to ECF flax fibers refined with the Valley stack and without any other treatment.
  • Table 8 shows the results obtained in the water drop absorption, capillary absorption tests (Klemm method). '
  • Table 8 Results for samples of bleached flax paste ECF treated with laccase Pycnoporus cinnabarinus and lauryl gallate mediator.
  • Flax ECF Linvm usltatlssimum
  • lacasa Mycelioptera thermophila
  • laur ⁇ l gallate as a mediator for the internal gluing of the papers.
  • the fibers were refined in the Valley stack (ISO 5264-1: 1979) until a paste with a drainage of 62 ° SR was obtained.
  • Enzymatic treatment was performed in the Easydye® apparatus with bottles of 250 mL capacity. 6 g of dry paste at a consistency of 4%, pH 5.40 U / g of the Mycelioptera thermophila house and a 4% dose (on dry paste) of lauryl gallate mediator were used. Prior to the addition of the enzyme, the mediator was dosed and stirring was carried out for 30 minutes at 25 ° C. After the indicated time, the amount of enzyme required was added and the 1 hour treatment at 50 ° C was started. When the reaction was over, the paste was filtered, the lye was collected and washed with distilled water. The fibrous suspension was then prepared with the treated pulp to form the papers. The initial sample corresponds to ECF flax fibers refined with the Valley stack and without any other treatment.
  • Table 9 shows the results obtained in the water drop absorption, capillary absorption tests (Klemm method).
  • Table 9 Results for samples of bleached flax paste ECF treated with laccase Mycelioptera thermophila and lauryl gallate mediator.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Paper (AREA)

Abstract

La presente invención se refiere a un procedimiento para la fabricación de papel con encolado interno que comprende las etapas de: a) preparación de fibras celulósicas; b) tratamiento de las fibras obtenidas en la etapa a) con un sistema enzima-mediador que consiste en una enzima oxidativa tipo lacasa y un mediador que es un producto natural o sintético que comprende en su estructura un grupo fenólico o un alcohol, y c) fabricación del papel con las fibras tratadas.

Description

PROCEDIMIENTO DE FABRICACIÓN DE PAPEL CON ENCOLADO INTERNO MEDIANTE UN SISTEMA ENZIMA-MEDIADOR
CAMPO DE LA INVENCIÓN
La presente invención se refiere a un procedimiento para la fabricación de papel con encolado interno mediante un sistema enzima-mediador.
ANTECEDENTES
El papel se define como una hoja constituida por fibras, principalmente de origen vegetal, que han sido afieltradas y se han entrelazado entre si. En su proceso de fabricación intervienen distintas operaciones realizadas secuencialmente para dar lugar al producto final. Asi pues, la materia prima entra al proceso con la preparación de pastas (desintegración, refino, mezcla, adición de aditivos) , pasa por los circuitos de cabeza de máquina para llegar a la caja de entrada, donde la suspensión fibrosa es depositada sobre una tela de forma uniforme en todo su ancho. Es aqui donde se forma la hoja de papel y empieza el proceso de extracción de agua, primero por drenaje, después mediante un sistema de prensas, y finalmente por secado con calor (T ≤ 1400C) . Antes de bobinar el papel y según el tipo de papel a fabricar, se realizan otras operaciones que pueden ser tratamientos químicos (por ejemplo, el estucado) u operaciones mecánicas (por ejemplo, el calandrado) .
Como se ha dicho anteriormente, en la preparación de pastas se añaden aditivos, ya sea para darle al papel las propiedades deseadas (por ejemplo, cargas, agentes de encolado, agentes de resistencia en seco, agentes de resistencia en húmedo, colorantes y pigmentos, etc.) o para mejorar el proceso de fabricación (por ejemplo, agentes de retención, dispersantes, antiespumantes o biocidas, etc.).
El "encolado interno" del papel consiste en reducir la velocidad de penetración de un liquido en la estructura del papel, creando una superficie hidrofóbica en la interfase fibra-agua (Roberts, J. (Ed.) (1991). Paper Chemistry (lst ed.). New York: Chapman & Hall.). Excepto en el caso de papeles absorbentes, el encolado interno es necesario en mayor o menor grado para la mayoría de clases de papeles y productos celulósicos, y no solamente para obtener una buena respuesta en sus aplicaciones finales, sino también para evitar problemas en determinadas secciones del proceso de fabricación de papel. Por ejemplo, durante el estucado, es importante que los papeles tengan un encolado interno para evitar la penetración de la salsa de estuco en la estructura del papel, lo cual los debilitarla y supondría roturas en máquina (Hubbe 2006) .
Por otra parte, es importante distinguir el "encolado interno" de la "resistencia en húmedo" del papel. Según Eklund, D. and Lindstrδm, T. (1991) . Paper Chemistry, An Introduction. (lst English ed.). Grankulla: DT Paper Science, se dice que un papel posee resistencia en húmedo cuando éste conserva parte de su resistencia estando saturado con agua. La resistencia en húmedo es necesaria para papeles de embalaje, papeles absorbentes, papeles de uso exterior, papeles que deben estar en contacto con líquidos y substancias húmedas, papeles de filtro u otras calidades de papeles. Se utilizan varios tipos de productos para incrementar esta propiedad, tales como la urea- formaldehido, la melamina-formaldehido, almidones modificados, la poliacrilamida glioxilato o la poliamida- poliamina-epicloridrina (Eklund and Lindstróm, 1991; Roberts, 1991) .
Para el encolado interno del papel, tradicionalmente en la industria papelera se ha utilizado la colofonia, componente de la resina de los árboles, juntamente con sales de aluminio (usualmente sulfato de aluminio) para promover su retención en las fibras celulósicas, aplicándose en procesos de fabricación de papel en medio ácido. Para poder realizar el encolado interno en aquellos papeles fabricados en condiciones neutras, se desarrollaron los agentes de encolado sintéticos, tales como, los dimeros de alquil ceteno (AKD) y los anhidridos de alquenil succinico (ASA) (Casey, J. P. (1981) . PuIp and Paper, Chemistry and Chemical Technology. (3rd ed. ) , Volume 3. John Wiley & Sons; Eklund and" Lindstrδm, 1991 Roberts, 1991) . Entre éstos, los AKD son los más utilizados y los que dan como resultado un encolado interno más permanente, aunque no se desarrolla totalmente hasta 10 dias después de la fabricación del papel. Por su parte, los ASA son mucho más reactivos con la celulosa y confieren resistencia a la penetración de líquidos inmediatamente después de secar el papel .
Se han desarrollado métodos alternativos (no enzimáticos) a nivel de laboratorio para dar propiedades de hidrofobicidad a las fibras celulósicas: tratamiento con plasma de fluorotrimetilsilano sobre pasta CTMP de sisal (Navarro, F.; Dávalos, F.; Denes, F.; Cruz, L.; Young, R. and Ramos, J. (2003) . Highly hydrophobic sisal chemithermomechanical pulp (CTMP) paper by fluorotrimetilsilane plasma treatment . Cellulose 10 (4), 411-424), utilización de ácidos grasos con sales de aluminio en pastas de coniferas (Rom, M. ; Dutkiewicz, J.; Fryczkowska, B. and Fryczkowski, R. (2007). The hydrophobisation of cellulose pulp. Fibres & Textiles in Eastern Europe 15 (5-6), 141-144), obtención de papeles superhidrófobos mediante compuestos fluorados (Yang, H. and Der\g, Y. (2008) . Preparation and physical properties of superhydrophobic papers . Journal of Colloid and Interface Science 325 (2) , 588-593) , hidrofobización de fibras de algodón por reacciones de transes.terificación entre triglicéridos de aceites vegetales y la celulosa (Dankovich, T. and Hsieh Y. L. (2007) . Surface modification of cellulose with plant triglycerides for hydrophobicity. Cellulose 14 (5), 469-480). Mediante el desarrollo de nuevos procesos existe la voluntad de sustituir, en los casos donde sea posible, los métodos tradicionales por otros más efectivos, eficientes y respetuosos con el medio ambiente. En este sentido, la biotecnología juega un papel muy importante.
Se ha demostrado que la enzima oxidoreductasa lacasa cataliza la oxidación de compuestos fenólicos y se han publicado muchos trabajos referentes a la utilización de estas enzimas para la deslignificación y el blanqueo de fibras celulósicas (Cali, H. and Mücke, I. (1997). History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym® process) . Journal of Biotechnology 53, 163-202, Rodríguez, S. and Toca, J. L. '(2006). Industrial and biotechnological applications of laceases: A review. Biotechnology Advances 24, 500-513,' Widsten, P. and Kandelbauer, A. (2008). Lacease applications in the forest produets industry: A review. Enzyme and Microbial Technology 42, 293-307), y más concretamente, para el blanqueo de fibras no madereras (García, O.; Camarero S.; Colom, J. F.; Martínez, A. T.; Martínez, M. J.; Monje, R. and Vidal, T. (2003).' Optimization of a laccase-mediator stage for TCF bleaching of flax pulp. Holzforschung, 57, 513-519, Camarero, S., García, O., Vidal, T., Colom, J., del Rio, J. C, Gutiérrez, A., Gras, J. M., Monje, R., Martínez, M. J. and Martínez, A. T. (2004). Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator , system. Enzyme Microb.Technol.' 35, 113-120, Fillat, U. and Roncero, M. B. (2009) . Biobleaching of high qüality pulps wit'h laccase- mediator system: Influence of treatment time and oxygen supply. Biochemical Engineering Journal 44 (2-3), 193-198) o de fibras madereras (Camarero, S.; Ibarrá, D.; Martínez, A. T.; Romero, J.; Gutiérrez, A. and del Rio, J. C. (2007). Paper pulp delignification using lacease ,and natural mediators. Enzyme and Microbial Technology 40, 1264-1271, Moldes, D. and Vidal, T. (2008) . Laccase-HBT bleaching of eucalyptus kraft pulp. Influence of the operating conditions. Bioresour. Technol. 99, 8565-8570, VaIIs1. C. and Roncero, M. B. (2009) . Using both xylanase and lacease enzymes for pulp bleaching. Bioresource Technology 100, 2032-2039) . La lacasa también puede catalizar reacciones de polimerización de compuestos fenólicos en polifenoles (Mita et al. 2003) y de curado de lipidos fenólicos (Tsujimoto et al. 2007). Existen patentes donde se describe el sistema lacasa-mediador para el blanqueo de fibras celulósicas (WO 9429510, WO9501426, WO9954545, WO03052201) , el aumento de la opacidad de los papeles (US 2007/0029059A1) , la eliminación de compuestos lipofilicos (ES2282020B1) o la mejora de la resistencia en húmedo del papel (US 6,610,172Bl), pero en ninguna de ellas se describe un procedimiento para la obtención del papel con encolado interno donde se utilice este sistema lacasa-mediador y donde las fibras puedan ser con o sin lignina.
Los presentes inventores han descubierto sorprendentemente que aplicando un sistema lacasa-mediador en fibras celulósicas (con o sin lignina) se obtienen papeles que presentan un encolado interno. Otras ventajas que presenta este proceso de obtención del papel son las siguientes:
En este proceso, algunos de los productos son naturales o sus derivados
Se pone a disposición un amplio abanico de productos en los que se puede aprovechar la propiedad del encolado interno.
El mismo proceso se puede realizar en condiciones acidas, neutras o alcalinas '
Con algunos de los productos se pueden obtener otras propiedades como antioxidantes y antimicrobianas
El mismo tratamiento puede utilizarse para el control de microorganismos en los procesos de fabricación de papel Con determinados mediadores el papel puede, presentar "encolado interno" frente a fluidos grasos
DESCRIPCIÓN RESUMIDA DE LA INVENCIÓN
Un objetivo de la presente invención es desarrollar un procedimiento para la fabricación de papel con encolado interno que comprende las etapas de:
a) preparación de fibras celulósicas procedentes de una o más de las siguientes: pastas madereras y no madereras, pastas no blanqueadas y blanqueadas, pastas mecánicas, químicas y semi- quimicas, y fibras recicladas;
b) tratamiento de' las fibras obtenidas en la etapa a) con un sistema enzima-mediador que consiste en una enzima oxidativa tipo lacasa y un mediador que es un producto natural o sintético que comprende en su estructura un grupo fenólico o un alcohol, cuya estructura se selecciona del grupo que consiste en:
• Estructura A
Figure imgf000008_0001
donde R3 es un alquil > C8 y Ri, R2 pueden ser:
i) Ri= -OH y R2= -H;
ii) Ri y R2= -H, esteres del 3, 4-dihidroxi-ácido benzoico; o
iii) Ri= -H y R2= -CH3, esteres del ácido vainillico
• Estructura B-I : tocoferol
Figure imgf000008_0002
donde Ri , R2 y R3 pueden ser :
i ) Ri = R2 = R3 = -CH3 ;
ii ) Ri = R3 = -CH3 ; R2 = -H ;
iii ) R2 = R3 = -CH3 ; Ri = -H ; o
iv) Ri = R2 = -H; R3 = -CH3
• Estructura B-2 : tocotrienoles
Figure imgf000008_0003
donde Ri , R2 y R3 pueden ser : i) R1 = R2 = R3 = -CH3;
ii) Ri = R3 = -CH3; R2 = -H;
iii) R2 = R3 = -CH3 ; Ri = -H; o
iv) Ri = R2 = -H; R3 = -CH3 Estructura C
Figure imgf000009_0001
donde Ri, R2 y R3 pueden ser:
i) Ri = -H, R3 = -OH y R2 = alquil > C8;
ii1) R2 = -H, R3 = -OH y Ri = alquil > C8; o iii) Ri = -H, R3 = -H y R2 = alquil > C8 • Estructura D: 2, 4, 6-tris (1-feniletil) fenol
Figure imgf000009_0002
Estructura E: 4- [4- (Trifluorometil) fenoxi] fenol
Figure imgf000009_0003
• Estructura F: esteróles donde el tratamiento enzimático se aplica en las condiciones siguientes: pH 4-9, consistencia 0,1-18%, temperatura 10-900C y entre 5 minutos y 12 horas de duración; c) fabricación del papel con las fibras tratadas.
Otro objetivo de la presente invención es la utilización del sistema enzima-mediador con las características mencionadas en el primer objetivo para la fabricación de papel con encolado interno.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra imágenes de muestras de eucalipto, sin tratar (inicial) y tratadas enzimáticamente (lacasa- mediador) , correspondientes al ejemplo 1. El efecto de encolado interno del tratamiento enzimático se pone de manifiesto por el hecho que la gota de agua depositada en la superficie no penetra en' la estructura del papel, tal como se observa en la muestra referenciada como lacasa- mediador.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención se refiere a un procedimiento para la fabricación de papel con encolado interno que comprende las etapas de:
a) preparación de fibras celulósicas procedentes de una o más de las siguientes: pastas madereras y no madereras, pastas no blanqueadas y blanqueadas, pastas mecánicas, químicas y semi-quimicas, y fibras recicladas;
b) tratamiento de las fibras obtenidas en la etapa a) con un sistema enzima-mediador que consiste en una enzima oxidativa tipo lacasa y un mediador que es un producto natural o sintético que comprende en su estructura un grupo fenólico o un alcohol, cuya estructura se selecciona del grupo que consiste en:
Estructura A'
Figure imgf000011_0001
donde R3 es un alquil > Ce y Ri, R2 pueden ser:
i) Ri= -OH y R2= -H;
ii) Ri y R2= -H , esteres del 3, 4-dihidroxi-ácido benzoico; o
iii) Ri= -H y R2= -CH3, esteres del ácido vainillico
Estructura B-I: tocoferol
Figure imgf000011_0002
donde Ri, R2 y R3 pueden ser :
i )1 Rx = R2 = R3 = -CH3;
ii ) Ri = R3 = -CH3 ; R2 = -H;
iii ) R2 = R3 = -CH3 ; Ri = -H; o
iv) Ri = R2 = -H; R3 = -CH3
Estructura B-2 : tocotrienoles
Figure imgf000012_0001
donde Ri, R2 y R3 pueden ser:
i) Ri = R2 = R3 = -CH3;
Figure imgf000012_0002
iii) R2 = R3 = -CH3 ; Ri = -H; o
iv) Ri = R2 = -H; R3 = -CH3
Estructura
Figure imgf000012_0003
donde Ri, R2 y R3 pueden ser:
i) R1 = -H, R3 = -OH y R2 = alquil > C8;
U)R2 = -H, R3 = -OH y Ri = alquil > C8; o iii) Ri = -H, R3 = -H y R2 = alquil > C8, • Estructura D: 2, 4, 6-tris (1-f eniletil) f enol
Figure imgf000012_0004
Estructura E: 4- [4- (Trifluorometil) fenoxi] fenol
Figure imgf000013_0001
• Estructura F: esteróles, donde el tratamiento enzimático se aplica en las condiciones siguientes: pH 4-9, consistencia 0,1-18%, temperatura 10-900C y entre 5 minutos y 12 horas de duración;
c) fabricación del papel con las fibras tratadas.
En la presente invención por "encolado interno", tal como se ha definido" en los antecedentes, se entiende la capacidad de reducir la velocidad de penetración de un liquido en la estructura del papel.
En la presente invención por "alquil" se entiende una cadena de hidrocarburos, lineal o ramificada, saturada o insaturada .
En la presente invención por "consistencia" se entiende según (Asenjo, J. L.; Barbadillo, P.; Glez. Monfort, P. (1992). Diccionario terminológico iberoamericano de celulosa, papel, cartón, y sus derivados. Madrid. Instituto papelero español) , como la relación entre la masa, al seco absoluto, del material que pueda separarse por filtración a partir de una muestra de pasta y la muestra sin filtrar, expresada en tanto por ciento.
*
En la presente invención por "papel" se entiende, tal como se ha definido en los antecedentes, una hoja constituida por fibras, principalmente de origen vegetal (también pueden ser sintéticas, de origen animal o mineral) , que han sido afieltradas y se han entrelazado entre si. El término general papel se usa para describir tanto papel como cartón (ISO 4046-1978) .
Etapa a) Preparación de fibras celulósicas
El procedimiento de la presente invención tiene la ventaja de que es aplicable a distintos tipos de fibras celulósicas que pueden tener o no lignina. La procedencia de estas fibras celulósicas es pastas madereras y no madereras, pastas no blanqueadas (no blanqueadas) y blanqueadas, pastas mecánicas, químicas y semi-quimicas, y fibras recicladas . Las fibras celulósicas obtenidas se refinan en la pila Valley (ISO 5264-1:1979) antes de realizar los tratamientos enzimáticos.
Etapa b) Tratamiento con el sistema enzima-mediador
La enzima que compone el sistema enzima-mediador es una lacasa (EC 1.10.3.2), que puede ser producida por distintas cepas, preferiblemente, pero sin limitarse a las mismas, Trametes villosa, Myceliopthera 'thermophila o Pycnoporus cinnabarinus .
El mediador es un producto natural o sintético, compuesto por un grupo fenólico o un alcohol, que además debe contener alguna ramificación hidrófoba. Los mediadores que cumplen con esta descripción general y que permiten el encolado interno se seleccionan del grupo que consiste en: • Estructura A
donde R3 es un alquil >
Figure imgf000014_0001
pueden ser:
i) Ri= -OH y R2= -H, preferiblemente el octil galato o el lauril galato; ii) Ri y R2= -H, esteres del 3, 4-dihidroxi- ácido benzoico; o
iii) Ri= -H y R2= -CH3, esteres del ácido vainillico
Estructura B-I : tocoferol
Figure imgf000015_0001
Con esta estructura se incluyen todos los tocof eróles: i) Ri = R2 " = R3' = -CH3→ α-tocoferol;
U)Ri = R3 = -CH3 ; R2 = -H → β-tocof erol;
Ui)R2 = R3 = -CH3 ; Ri = -H → γ-tocofero; o iv) Ri = R2 = -H; R3 = -CH3 → δ-tocoferol • Estructura B-2 : tocotrienoles'
Figure imgf000015_0002
donde Ri, R2 y R3 pueden ser:
i) Ri =. R2 = R3 = -CH3→ α-tocotrienol;
ii) Ri = R3 = -CH3 ; R2 = -H → β-tocotrienol;
iii) R2 = R3 = -CH3 ; Ri = -H → γ-tocotrienol; o iv) Ri = R2 = -H; R3 = -CH3 → δ-tocotrienol
- Estructura C
Figure imgf000015_0003
donde Ri, R2 y R3 pueden ser: i) Ri = -H, R3 = -OH y R2 = alquil > C8, preferiblemente urushiol;
"ii) R2 = -H, R3 = -OH y R1 = alquil > C8, preferiblemente thitsiol; o iii ) Ri = -H, R3 = -H y R2 = alquil > C8 , preferiblemente 2-deoxi-urushiol
Estructura D : 2 , 4 , 6-tris ( 1-feniletil ) fenol
Figure imgf000016_0001
Estructura E: 4- [4- (Trifluorometil) fenoxi] fenol
Figure imgf000016_0002
• Estructura F: esteróles,- preferiblemente sitosterol, estigmastanol, fucosterol, campesterol, "más preferiblemente β-sitosterol .
Preferiblemente, el mediador se selecciona del grupo que consiste en octil galato, ' lauril galato, tocoferoles,
2, 4, 6-tris (1-feniletil) fenol y 4- [4- (trifluorometil) fenoxi] fenol .
Los tratamientos se realizan en reactores con o . sin presión, y con agitación continua (por ejemplo en la tina de mezcla) . Las condiciones generales de la reacción son: pH 4-9, consistencia de ,0,1-18% (preferiblemente 1-1%),r temperatura 10-90°C (preferiblemente entre 20 y 50°C) . La dosis de enzima está comprendida entre 0,01 y 500 U/g de pasta seca, preferiblemente entre 1 y 50 U/g. El mediador se aplica en dosis que pueden ser de 0,1-5% (respecto al peso seco de pasta), preferiblemente de 2-4%. La reacción enzimática en el reactor tiene una duración entre 5 minutos y 12 horas, preferiblemente entre 1 y 4 horas.
Etapa c) Fabricación del papel con las fibras tratadas
1
Se forman los papeles con el formador de hojas de laboratorio (ISO 5269-2:2004).
Con el fin de obtener un encolado interno óptimo es posible aplicar una etapa adicional (d) de almacenamiento de las muestras a temperatura ambiente y/o una etapa (e) de posttratamiento térmico a una temperatura inferior a 1400C, preferiblemente inferior a 8O0C.
Caracterización del papel final i
El grado de encolado de los papeles se determina mediarite el ensayo Cobb (ISO 535:1991). Otro ensayo que permite determinar la resistencia a la penetración de los líquidos es el ensayo de ascensión de agua por capilaridad con el método Klemm (ISO 8787-1986) . Adicionalmente, un método sencillo y rápido es el test de la gota de agua. Éste consiste en disponer una gota de agua (u otro fluido) mediante una jeringuilla y medir el tiempo que tarda en ser absorbida por el papel1. Se considera que la gota ha sido absorbida cuando desaparece el brillo de su superficie1. La medición del ángulo de contacto de una gota de agua sobre la superficie del papel es otro método citado y normalizado (T 558 om-06) .
Algunas muestras de papeles se acondicionan mediante un tratamiento térmico con humedad, según (ISO 5630-3:1996) para analizar posteriormente su influencia en la resistencia a la penetración de agua.
Otro aspecto de la presente invención se refiere a la utilización de un sistema enzima-mediador, tal como se ha descrito anteriormente en la presente invención, es decir, que consiste en una enzima oxidativa tipo lacasa y un mediador que es un producto natural o sintético que comprende en su estructura un grupo fenólico o un alcohol, cuya estructura se selecciona del grupo que consiste en: en:
• Estructura A
Figure imgf000018_0001
donde R3 es un alquil > Cs y Ri, R2 pueden ser:
i) Ri= -OH y R2= -H, preferiblemente el octil galato o el lauril galato;
ii) Ri y R2= -H, esteres del 3, 4-dihidroxi- ácido benzoico; o
Ui)Ri= -H y R2= -CH3, esteres del ácido vainillico
• Estructura B-I : tocoferol
Figure imgf000018_0002
Con esta estructura se incluyen todos los tocof eróles : i ) Ri = R2 = R3 = -CH3→ α-tocoferol ;
ii ) Ri = R3 = -CH3 ; R2 = -H → β-tocoferol ;
iii ) R2 = R3 = -CH3 ; Ri = -H → γ-tocof erol ; o iv) Ri = R2 = -H; R3 = -CH3 → δ-tocoferol • Estructura B-2 : tocotrienoles
Figure imgf000018_0003
.CH, CH3 CH, CH3 donde R1 , R2 y R3 pueden ser :
i ) Ri = R2 = R3 = -CH3→ α-tocotrienol ;
ii ) Ri = R3 = -CH3 ; R2 = -H → β-tocotrienol ; Ui ) R2 = R3 = -CH3 ; Ri = ,-H → γ-tocotrienol ; o iv) Ri = R2 = -H; R3 = -CH3 → δ-tocotrienol
• Estructura C
Figure imgf000019_0001
donde Ri, R2 y R3 pueden ser:
i) R1 = -H, R3 = -OH y R2 = alquil > Cδ, preferiblemente urushiol;
ii) R2 = -H, R3 = -OH y R1 = alquil > C8, preferiblemente thitsiol; o
iii) R1 = -H, R3 = -H y R2 = alquil > C8, preferiblemente 2-deoxi-urushiol
Estructura D: 2, 4, 6-tris (1-feniletil) fenol
Figure imgf000019_0002
Estructura E: 4- [4- (Trifluorometil) fenoxi] fenol
Figure imgf000019_0003
• Estructura . F: esteróles, preferiblemente sitosterol, estigmastanol, fucosterol, campesterol, más preferiblemente β-sitosterol. para la fabricación de papel con encolado interno.
Dicho sistema enzima-mediador utilizado para la fabricación de papel con encolado interno presenta las características . mencionadas en la etapa b) de tratamiento con el sistema enzima-mediador indicada para el primer objetivo de la presente invención.
Los siguientes ejemplos no limitantes ilustran el proceso descrito en esta invención.
EJEMPLO 1
Tratamiento de pasta kraft no blanqueada de eucalipto
(Eucalyptus globulus) con lacasa (Trametes villosa) y lauril galato como mediador para el encolado interno del papel
Para preparar la materia prima, la pasta se acondicionó con* H2SO4 IN para ajustaría a pH 4. Las fibras se refinaron en la pila Valley (ISO 5264-1:1979) hasta obtener una pasta con una drenabilidad de 25°SR.
El tratamiento enzimático fue' realizado en. el aparato Easydye® con frascos de 250 mL de capacidad. Se utilizaron 6 g de pasta seca a una consistencia del 4%, pH 4, 40 U/g de lacasa Tram&tes villosa y una dosis del 4^ (sobre peso de pasta seca) de mediador lauril galato. Previamente a la adición de la enzima, se dosificó el mediador y se procedió a la agitación durante 30 minutos a 25°C. Pasado el tiempo indicado, se añadió la cantidad de enzima requerida y se dio comienzo al tratamiento de 1 hora de duración a 50°C. Cuando la reacción finalizó, la pasta fue filtrada, se recogieron las lejías y se lavó con agua destilada. Seguidamente se preparó la suspensión fibrosa con la pasta tratada para formar los papeles. También se realizó el correspondiente tratamiento control, a las mismas condiciones descritas anteriormente pero sin enzima.
A continuación en la Tabla 1 se muestran los resultados obtenidos en los ensayos de absorción de la gota de agua, absorción por1 capilaridad (método Klemm) y el ensayo Cobb.
La muestra inicial corresponde . a . las fibras de eucalipto refinadas con la pila Valley. y sin ningún otro tipo de tratamiento.
Tabla 1. Resultados de los ensayos en pasta kraft no blanqueada de eucalipto tratada con' sistema lacasa-lauril galato.
Figure imgf000021_0001
Se puede observar .corno los papeles realizados con las fibras tratadas con el sistema enzimático presentan resistencia a la penetración del agua, presentan encolado interno: elevado tiempo de absorción de la gota de agua, nula absorción por capilaridad y obtención de un valor válido en ' el 'ensayo Cobbδo. Este último ensayo no , se pudo realizar con las muestras inicial y control debido a que no ofrecían ninguna resistencia a la penetración, lo que significa que los papeles no están encolados internamente. EJEMPLO 2
Tratamiento de pasta no blanqueada dé lino (L±num usltatissimum) con lacasa (Trametes villosa) y lauril galato como mediador para el encolado interno en los papeles.
Para preparar la materia prima, la pasta "se acondicionó con H2SO4 IN para ajustaría a pH 4. Las fibras se* refinaron en la pila Valley (ISO 5264-1:1979) hasta obtener una pasta con una drenabilidad de 77°SR.
El tratamiento enzimático fue realizado en el aparato . Easydye® con frascos de 250 mL de capacidad. Se utilizaron β g de pasta seca a una consistencia del 4%, pH 4, 40 U/g de lacasa Trametes villosa y una dosis del 4% (sobre peso de pasta seca) de mediador lauril galato. Previamente a la adición de la enzima, se dosificó el mediador y se procedió a la agitación durante 30 minutos a 25 °C. Pasado el tiempo indicado-, se añadió ' la cantidad ' de enzima requerida y se dio comienzo al. tratamiento de 1 hora de- duración a -5O0C. Cuando la reacción finalizó, la pasta fue filtrada, -se recogieron las lejías y se lavó con agua destilada. Seguidamente se preparó la suspensión fibrosa con la pasta tratada para formar los papeles. También se realizó el, correspondiente tratamiento control, a las mismas condiciones descritas anteriormente pero sin enzima.
A continuación en la Tabla 2 se muestran los resultados obtenidos en los ensayos de absorción de la gota de agua y absorción por capilaridad (método Klemm) . La muestra inicial corresponde a la pasta de lino no blanqueada refinada con la pila Valley y sin ningún otro tipo de tratamiento.
Tabla 2. Resultados de los ensayos en pasta no blanqueada de lino tratada con el sistema lacasa-lauril galato.
Figure imgf000023_0001
De manera similar al ejemplo 1, la acción del sistema lacasa-mediador causa el encolado interno del papel, ahora con pasta no blanqueada de lino .
EJEMPLO 3
Tratamiento de pasta blanqueada TCF de lino (Linum usitatissimαm) con la.ca.sa. (Trametes villosa) y lauril galato como mediador para el encolado interno del papel.
Para este trabajo se utilizó una pasta de lino blanqueado TCF ya refinada en la pila Valley (ISO 5264-1:1979) con una drenabilidad de 89°SR.
El tratamiento enzimático fue realizado en el aparato Easydye® con frascos de 250 mL de capacidad. Se utilizaron 6 g dé pasta seca a una consistencia del 4%, pH 4, 40 U/'g de lacasa Trametes villosa y una dosis del 4% (sobre peso de pasta seca) de mediador lauril galato. Previamente a 1Ia adición de la enzima, se dosificó el mediador y se procedió a la agitación durante 30 minutos a 25°C. Pasado el tiempo indicado, se añadió la cantidad de enzima requerida y se dio comienzo al tratamiento de 1 hora de duración a 500C. Cuando la reacción finalizó, la pasta fue filtrada, se recogieron las lejias y se lavó con agua, destilada. Seguidamente se preparó la suspensión fibrosa con la pasta tratada para formar los papeles. También . se realizó el correspondiente tratamiento control, a las mismas condiciones descritas anteriormente pero sin enzima.
La Tabla 3 muestra los valores de los ensayos de absorción de la gota de agua y absorción por capilaridad (método Klemm) . La muestra inicial corresponde a las fibras de lino TCF refinadas con la pila Valley y sin ningún otro tipo de tratamiento.
Tabla 3: Resultados de los ensayos para la pasta blanqueada TCF de lino tratada con el sistema lacasa-lauril galato.
Figure imgf000024_0001
Los ^resultados demuestran que, no solamente con pasta no blanqueada sino que también con pasta blanqueada, el tratamiento enzimático con la lacasa Trametes villosa y el mediador lauril galato aumenta la resistencia a la penetración de agua en la estructura del papel.
EiJEMPLO 4
Tratamiento de pasta blanqueada ECF de lino (L±num uslta.tlss±mαm) con lacasa (Trametes villosa) y lauril galato como mediador para el encolado interno de los papeles.
Para preparar la materia prima, las fibras se refinaron en la pila Valley (ISO 5264-1:1979) hasta obtener una pasta con una drenabilidad de 62°SR. El tratamiento enzimático fue realizado en el aparato Easydye® con frascos de 250 mL de capacidad. Se utilizaron 6 g de pasta seca a una consistencia del 4%, pH 4, 40 U/g de lacasa Trametes villosa y una dosis del 4% (sobre pasta seca) de mediador lauril galato. Previamente a la adición de la enzima, se dosificó el mediador y se procedió a la agitación durante 30 minutos a 25°C. Pasado el tiempo indicado, se añadió la cantidad de enzima requerida y se dio comienzo al tratamiento de 1 hora de duración a 500C. Cuando la reacción .finalizó, la pasta fue filtrada, se recogieron las lejías y se lavó con agua destilada. Seguidamente se preparó la suspensión fibrosa con la pasta tratada para formar los papeles. También se realizó el correspondiente tratamiento control, a las mismas condiciones descritas anteriormente pero sin enzima.
Los resultados obtenidos en los ensayos de absorción de la gota1 de agua, absorción por capilaridad (método Klemm) y Cobb se muestran en la Tabla 4. La muestra inicial corresponde a las fibras de lino ECF refinadas con la pila Valley y sin ningún otro tipo de tratamiento.
Tabla ,4 : Resultados de los ensayos para la pasta blanqueada ECF de lino tratadas con el sistema lacasa^-lauril galato.
Figure imgf000025_0001
Sé pone de manifiesto el encolado interno del papel mediante el sistema lacasa-lauril galato, con los valores de Cobb30 y absorción por .capilaridad, asi como el elevado tiempo de absorción de la gota de agua (ver Tabla ) .
EJEMPiO 5
Tratamiento de pasta blanqueada ECF de lino (Linum usitatissimum) con lacasa (Trametes villosa) y octil galato como mediador para el encolado interno de papeles.
Para preparar la materia prima, las fibras se refinaron en la pila Valley (ISO 5264-1:1979) hasta obtener una pasta con una drenabilidad de 62°SR.
El tratamiento enzimático fue realizado en el aparato Easydye® con frascos de 250 mL de capacidad. Se utilizaron 6 g de pasta seca a una consistencia del 4%, pH 4, 40 U/g de lacasa Trametes villosa y una dosis del 4% (sobre pasta seca) de mediador octil galato. Previamente a la adición de la enzima, se dosificó el mediador y se procedió a la agitación durante 30 minutos a 25°C. Pasado el tiempo indicado, se añadió la cantidad de enzima requerida y se dio comienzo al tratamiento de 1 hora de duración a 50 °C. Cuando la reacción finalizó, la pasta fue filtrada, se recogieron las lejias y se lavó con agua destilada. Seguidamente se preparó la suspensión fibrosa para formar los papeles. También se realizó el correspondiente tratamiento control, a las mismas condiciones descritas anteriormente pero sin enzima.
Los resultados obtenidos en los ensayos de absorción de la gota de agua y absorción por capilaridad (método Klemm) se muestran en la Tabla 5. La muestra inicial corresponde a las fibras de lino ECF refinadas con la pila Valley y sin ningún otro tipo de tratamiento.
Tabla 5: Resultados de los ensayos para la pasta blanqueada ECF de lino tratadas con el sistema lacasa-octil galato.
Figure imgf000027_0001
Esta vez, con distinto mediador, el sistema enzimático también resultó efectivo.
EJEMPLO 6
Tratamiento de pasta kraft no blanqueada, de eucalipto (Eucalyptus glóbulus) con lacasa (Trametes villosa) y 2, 4, 6-tris (feniletil) fenol como mediador para el encolado interno de los papeles, y comprobar el efecto de (a) un tratamiento térmico y (b) del almacenado de los papeles en el encolado interno.
Para preparar la materia prima, la pasta se acondicionó con H2SO4 IN para ajustaría a pH 4. Las fibras se refinaron en la pila Valley (ISO 5264-1:1979) hasta obtener una pasta con una drenabilidad de 25°SR.
El tratamiento enzimático fue realizado en el aparato Easydye® con frascos de 250 mL de capacidad. Se utilizaron 6 g de pasta seca a una consistencia del 4%, pH 4, 40 U/g de lacasa Trametes villosa y una dosis del 4% (sobre pasta seca) de mediador 2, 4, 6-tris (1-feniletil) fenol. Previamente a la adición de la enzima, se dosificó el mediador y se procedió a la agitación durante 30 minutos a 25°C. Pasado el tiempo indicado, se añadió la cantidad de enzima requerida y se dio comienzo al tratamiento de 1 hora de duración a 50°C. Cuando la reacción finalizó, la pasta fue filtrada, se recogieron las lejías y se lavó con agua destilada. Seguidamente se preparó la suspensión fibrosa para formar los papeles. La muestra inicial corresponde a las fibras de eucalipto refinadas con la- pila Valley y sin ningún otro tipo de tratamiento.
Las muestras recibieron un post-tratamiento térmico según (ISO 5630-3:1996) para medir posteriormente la resistencia a la penetración de agua. En la Tabla' 6 se muestran los resultados obtenidos en los ensayos de absorción de la gota de agua, absorción por capilaridad (método Klemm) . Las mismas propiedades se midieron después de almacenar los papeles durante un mes.
Tabla 6: Resultados para las muestras de pasta kraft no blanqueada de eucalipto tratadas con el sistema lacasa- 2, 4, 6-tris (1-feniletil) fenol . Efecto del tratamiento térmico y efecto del almacenado en el encolado interno.
Almacenado
Absorción Capilaridad Absorción .Capilaridad . gota de Klemm gota de Klemm
Ensayos agua I agua
Muestras [min] [cm] [min] [cm]
Inicial 0,03 6,20 0,03 6,20
Lacasa-mediador 0,53 - 2,03 2,25
Lacasa-mediador
1,45 - 1,5 3,75
+ Trat. térmico
Después del tratamiento con el sistema lacasa-mediador, los papeles presentaron un leve encolado interno que. mejoro después de tratar térmicamente las muestras. El almacenado de los papeles produjo la mejora del grado de encolado de las muestras tratadas, aumentando 4 veces el tiempo de absorción de la gota de agua.
EJEMPLO 7
Tratamiento de pasta kraft blanqueada, de eucalipto no (Eucalyptus globulus) con lacasa (Trametes villosa) y 4- [4- ( Trifluqrometil) fenoxi]fenol como mediador para el encolado interno de los papeles y comprobar el efecto de un tratamiento térmico.
Para preparar la materia prima, la pasta se acondicionó con H2SO4 IN para ajustaría a pH 4. Las fibras se refinaron en la pila Valley (ISO 5264-1:1979) hasta obtener una pasta con una drenabilidad de 25°SR.
El tratamiento enzimático ' fue realizado en el aparato Easydye® con frascos de 250 mL de capacidad. Se utilizaron 6 g de pasta seca a una consistencia del 4%, pH 4, 40 U/g de lacasa Trametes villosa y una dosis del 4% (sobre pasta seca) de mediador 4-[4-( Trifluorometil) fenoxi] fenol . Previamente a la adición de la enzima, se dosificó el mediador y se procedió a la agitación durante 30 minutos a 25°C. Pasado el tiempo indicado, se añadió la cantidad de enzima requerida y se dio comienzo al tratamiento de 1 hora de duración a 500C. Cuando la reacción finalizó, la pasta fue filtrada, se recogieron las lejías y se lavó con agua destilada. Seguidamente se preparó la suspensión fibrosa para formar los papeles. La muestra inicial corresponde a las fibras de eucalipto refinadas con la pila Valley y sin ningún otro tipo de tratamiento.
Las muestras recibieron un post-tratamiento térmico según (ISO 5630-3:1996) para medir posteriormente la resistencia a la penetración de agua. En la Tabla 7 se muestran los resultados obtenidos en los ensayos de absorción de la gota de agua, absorción por capilaridad (método Klemm) y Cobb. Tabla 7: Resultados para las muestras de pasta kraft no blanqueada de eucalipto tratadas con el sistema lacasa- trifluorometil. Efecto del tratamiento térmico en el encolado interno.
Figure imgf000030_0001
Se puede observar que en este caso, con el mediador 4-[A- (Trifluorometil) fenoxi] fenol, el encolado interno se manifiesta después del tratamiento térmico, lo que sugiere > que se .produce un curado del producto de la reacción enzima-mediador. Este caso es similar al encolado convencional con dimeros de alquil ceteno (AKD) , en el cual deben transcurrir un minimo de 10 dias para, el desarrollo del 100% del encolado interno.
EJEMPLO 8
Tratamiento de pasta blanqueada ECF de lino (Linum usitatissimum) con lacasa (Pycnoporus cinnabarinuε) y lanril galato como mediador para el encolado interno de los papeles.
Para preparar la materia prima, las fibras se refinaron en la pila Valley (ISO 5264-1:1979) hasta obtener una pasta con una drenabilidad de 62°SR.
El tratamiento enzimático fue realizado en el aparato Easydye® con frascos de 250 mL de capacidad. Se utilizaron 6 g de pasta seca a una consistencia del 4%, pH 5, 40 U/g de lacasa Pycnoporus cinnabarinus y una dosis del 4% (sobre pasta seca) de mediador lauril galato. Previamente a la adición de la enzima, se dosificó el mediador y se procedió a la agitación durante 30 minutos a 25°C. Pasado el tiempo indicado, se añadió la cantidad de enzima requerida y se dio comienzo al tratamiento de 1 hora de duración a 500C. Cuando la reacción finalizó, la pasta fue filtrada, se recogieron , las lejias y se lavó con agua destilada. Seguidamente se preparó la suspensión fibrosa con la pasta tratada para formar los papeles. La muestra inicial corresponde a las fibras de lino ECF refinadas con la pila Valley y sin ningún otro tipo de tratamiento.
En la Tabla 8 se muestran los resultados obtenidos en los ensayos de absorción de la gota de agua, absorción por capilaridad (método Klemm) . '
Tabla 8 : Resultados para las muestras de pasta blanqueada ECF de lino tratadas con la lacasa Pycnoporus cinnabarinus y el mediador lauril galato.
Figure imgf000031_0001
Como demuestran los valores de la Tabla, con otro tipo de lacasa, en este caso Pycnoporus cinnabarinus, y con el mediador lauril galato, los papeles adquieren resistencia a la penetración de agua, lo que significa que tienen un cierto grado de encolado interno y el sistema es efectivo.
EJEMPLO 9
Tratamiento de pasta, blanqueada. ECF de lino (Linvm usltatlssimum) con lacasa (Mycelioptera thermophila) y laur±l galato como mediador para el encolado interno de los papeles.
Para preparar la materia prima, las fibras se refinaron en la pila Valley (ISO 5264-1:1979) hasta obtener una pasta con una drenabilidad de 62°SR.
El tratamiento enzimático fue realizado en el aparato Easydye® con frascos de 250 mL de capacidad. Se utilizaron 6 g de pasta seca a una consistencia del 4%, pH 5, 40 U/g de lacasa Mycelioptera thermophila y una dosis del 4% (sobre pasta seca) de mediador lauril galato. Previamente a la adición de la enzima, se dosificó el mediador y se procedió a la agitación durante 30 minutos a 25°C. Pasado el tiempo indicado, se añadió la cantidad de enzima requerida y se dio comienzo al tratamiento de 1 hora de duración a 50°C. Cuando la reacción finalizó, la pasta fue filtrada, se recogieron las lejías y se lavó con agua destilada. Seguidamente se preparó la suspensión fibrosa con la pasta tratada para formar los papeles. La muestra inicial corresponde a las fibras de lino ECF refinadas con la pila Valley y sin ningún otro tipo de tratamiento.
En la Tabla 9 se muestran los resultados obtenidos en los ensayos de absorción de la gota de agua, absorción por capilaridad (método Klemm) .
Tabla 9: Resultados para las muestras de pasta blanqueada ECF de lino tratadas con la lacasa Mycelioptera thermophila y el mediador lauril galato.
Figure imgf000032_0001
Figure imgf000033_0001
Como demuestran los valores , anteriores, con otro tipo de lacasa, en este caso la Mycelioptera thermophilaf y con el mediador lauril galato, los papeles también adquieren cierta resistencia a la penetración de agua.
BIBLIOGRAFÍA
Cali, H. and Mücke,1 I. (1997). History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym® process) . Journal of Biotechnology 53, 163-202.
Camarero,' S., Garcia, 0., Vidal, T., Colom, J., del Rio, J. C, Gutiérrez, A., Gras, J. M., Monje, R., Martínez, M. J. and Martínez, A. T. (2004). Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb.Technol. 35, 113-120.
Camarero, S.;1 Ibarra, D.; Martínez, A. T.; Romero, J.; Gutiérrez, A. and del .Rio, J. C. (2007) . Paper pulp delignification using lacease and natural mediators. Enzyme and Microbial Technology 40, 1264-1271.
Casey, J. P. (1981). Pulp and Paper, Chemistry' and Chemical .Technology. (3rd ed. ) , Volume 3. John Wiley & Sons.
Dankovich, T. and Hsieh Y. L. (2007) . Surface modification of cellulose with plant triglycerides for hydrophobicity . Cellulose 14 (5), 469-480.
Eklund, D. arid Lindstrδm, T. (1991) . Paper Chemistry, An Introduction. (lst English ed.). Grankulla:. DT. Paper Science. Fillat, U. and Roncero, M. B. (2009) . Biobleaching of high quality pulps with laccase-mediator systeϊn: Influence of treatment time and oxygen supply. Biochemical Engineering Journal 44 (2-3), 193-198 -
García, O.; Camarero S.; Coloría, J. F.; Martínez, A. T . ; Martínez, M. J.; Monje, R. and Vidal, T. (2003). Optimization of a laccase-mediator stage for TCF bleaching of flax pulp. Holzforschung, 57, 513-519.
Hubbe, Martin A. (2006). Paper' s_ resistance to wetting-A review of internal sizing chemicals and their effects. Bioresources 2(51), 106-145.
Lund, M. and C. Felby (2001) . Wet strength, improvement of unbleached kraft pulp through lacease catalyzed oxidation. Enzyme and Microbial Technology 28 (9-10), 760-765.
Liu, N.; Shi, S.; Gao, Y. and Qin, M. (2009). Fiber modification of kraft pulp' with lacease in presence of metil syringate. Enzyme and Microbial Technology 44 (2), 89-95.
Mita, N.; Tawaki, S . I . ; Uyama, H. and Kobayashi, S. (2003). Laccase-catalyzed oxidative polymerization of fenols. Macromolecular Bioscience 3 (5), 253-257.
Moldes, D. and Vidal, T. (2008) . Laccase-HBT bleaching of eucalyptus kraft ' pulp. Influence , of the operating conditions. Bioresour. Technol . 99, 8565-8570.
Navarro, F.; Dávalos, 1F.; Denes, F.; Cruz, L.; Young, R. and Ramos, J. (2003) . ' Highly hydrophobic sisal, chemithermomechanical pulp (CTMP) paper by fluorotrimetilsilane plasma treatment. Cellulose 10 (4), 411-424. Roberts, J. (Ed.) (1991). Paper Chemistry (lst ed. ) . New York: Chapman & Hall.
Rodríguez, S. and Toca, J. L. (2006). Industrial and biotechnological applications of laceases: A review. Biotechnology Advances 24, 500-513.
Rom, M.; Dutkiewicz, J.;1 Fryczkowska, B. and Fryczkowski, R. (2007) . The hydrophobisation of cellulose pulp. Fibres & Textiles in Eastern Europe 15 (5-6), 141-144.
Tsujimoto, T.; Ando, N.; Oyabu, H.; Uyama, H. and Kobayashi, S. (2007). Laccase-catalyzed curing of natural fenolic lipids and product properties. Journal of Macromolecular Science, Part A 44 (9), 1055-1060.
VaLIs, C. and Roncero, M. B. (2009) . Using both xylanase and lacease enzymes for pulp bleaching. Bioresource Technology 100, 2032-2039.
Widsten, P. and Kandelbauer, A. (2008). Lacease applications in the forest products industry: A review. Enzyme and Microbial Technology 42, 293-307.
Yang, H. and Deng, Y. (2008). Preparation and physical properties of superhydrophobic papers. Journal of Colloid and Interface Science 325 (2), 588-593.
Patentes citadas
Cali, Hans-Peter. Process for modifying, breaking down or bleaching lignin, materials containing lignin or like substances. WO 9429510 Al 19941222 CAN 123:147086 AN 1995:763518.
Schneider, Palle; Pedersen, Anders Hjelholt. Enhancement of lacease reactions with aromatic ring-containing organic compounds and use of enzyme compositions in detergents and for water purification and pulp bleaching. WO 9501426 Al 19950112 CAN 122:259857 AN 1995:506267.
Bourbonnais, Robert; Rochefort, Dominic; Paice, Michael G.; Renaud, SyIvie; Leech, Donal. Oxidase process for pulp and dye oxidation. PCT Int. Appl. . (1999), 23 pp. CODEN: PIXXD2 WO 9954545 Al 19991028 CAN 131:311843 AN 1999:691273
Camarero Fernández, Susana; Garcia, Olga; Vidal, Teresa; Colom, José F.; Del Rio, José C; Gutiérrez Suárez, Ana; Martinez Hernández, Maria Jesús; Sigoillot, Jean 1C; Asther, Marcel; Martinez Ferrer, Ángel Tomás. Method for chlorine-free enzymatic , bleaching of high-quality pulps obtained from herbaceous or shrub plant fibers . PCT Int. Appl. (2003), 33 pp. CODEN: PIXXD2 WO 2003052201 Al 20030626 CAN 139:70636 AN 2003:491475
Elgarhy, Yassin; -De Laryssa, Alexandre. Enzymatic opacifying composition for paper, pulp or paperboard, processes using same and pulp, paper or paperboard produced therefrom. U.S. Pat . Appl. Publ . (2007), 7pp. CODEN: USXXCO US 2007029059 Al 20070208 CAN 146:208218 AN 2007:150195
Gutiérrez Suárez, Ana; Rio Andrade, José Carlos Del; Rencoret Pazo, Jorge; Ibarra Trejo, David; , Speranza " Fernández, Ana Mariela; Camarero Fernández, Susana; Martinez Hernández, Maria" Jesús; Martinez Ferrer, .Ángel T. Mediator-enzyme system for controlling pitch deposifs in pulp and paper .production. PCT Int. Appl. (2007), 40pp. CODEN: PIXXD2, WO 2007003677 Al 20070111 CAN 146:102584 AN 2007:35827
Lund, Martin; Felby, Claus . Production of paper materials with improved wet strength and use of a fenol-oxidizing enzyme and a mediator therein. PCT Int. Appl. (2000), 25 pp. CODEN: PIXXD2 WO 2000068500 Al 20001116 CAN 133:351695. AN 2000:814704

Claims

REIVINDICACIONES
1. -Procedimiento para la fabricación de papel con encolado interno que comprende las etapas de:
a) preparación de fibras celulósicas procedentes de una o más de las siguientes: pastas madereras y no madereras, pastas no blanqueadas y blanqueadas, pastas mecánicas, quimicas y semi- quimicas, y fibras recicladas;
b) tratamiento de las fibras obtenidas en la etapa a) con un sistema enzima-mediador que consiste en una enzima oxidativa tipo lacasa y un mediador que es un producto natural o sintético que comprende en su estructura un grupo fenólico o un alcohol, cuya estructura se selecciona del grupo que consiste en:
• Estructura A
Figure imgf000038_0001
donde R3 es un alquil > Cs y Ri, R2 pueden ser:
I)Rx= -OH y R2= -H;
ii) Ri y R2= -H , esteres del 3,4- dihidroxi-ácido benzoico; o
Ui)Ri= -H y R2= -CH3, esteres del ácido vainillico
Estructura B-I: tocoferol
Figure imgf000038_0002
donde Ri, R2 y R3 pueden ser :
i) Rx = R2 = R3 = -CH3; ii) Ri = R3 = -CH3 ; R2 = -H;
Hi)R2 = R3 = -CH3 ; Ri = -H; o
-Lv)R1 = R2 = -H; R3 = -CH3
Estructura B-2 : tocotrienoles
Figure imgf000039_0001
donde R1, R2 y R3 pueden ser:
i) R1 = R2 = R3 = -CH3;
ii) R1 = R3 = -CH3 ; R2 = -H;
Ui)R2 = R3 = -CH3 ; Ri = -H; o iv)Ri = R2 = -H; R3 = -CH3
• Estructura C
Figure imgf000039_0002
donde R1, R2 y R3 pueden ser:
DR1 = -H, R3 = -OH y R2 = alquil > C8; U)R2 = -H, R3 = -OH y Ri = alquil > C8; o Ui)R1 = -H, R3 = -H y R2 = alquil > C8,
Estructura D : 2 , 4 , 6-tris ( 1-feniletil ) fenol
Figure imgf000040_0001
Estructura E: 4- [4- (Trifluorometil) fenoxi] fenol
Figure imgf000040_0002
• Estructura F: esteróles donde el tratamiento enzimático se aplica en las condiciones siguientes: pH 4-9, consistencia 0,1-18%, temperatura 10-900C y entre 5 minutos y 12 horas de duración.
c) fabricación de papel con las fibras tratadas.
2. -Procedimiento según la reivindicación 1, que comprende además la etapa de:
d) almacenamiento de las muestras a temperatura ambiente .
3. -Procedimiento según la reivindicación 1 ó la reivindicación 2, que comprende además la etapa de:
e) post-tratamiento térmico a una temperatura inferior a 140°C, preferiblemente a 8O0C.
4.- Utilización de un sistema enzima-mediador que consiste en una enzima oxidativa tipo lacasa y un mediador que es un producto natural o sintético que comprende en su estructura un grupo fenólico o un alcohol, cuya estructura se selecciona del grupo que consiste en:
• Estructura A
Figure imgf000041_0001
donde R3 es un alquil > Cs y Ri, R2 pueden ser:
i) Ri= -OH y R2= -H;
ii)Ri y R2= -H , esteres del 3, 4-dihidroxi- ácido benzoico; o
iii) Ri= -H y R2= -CH3, esteres del ácido vainillico
Estructura B-I: tocoferol
Figure imgf000041_0002
donde Ri, R2 y R3 pueden ser :
i ) Ri = R2 = R3 - -CH3 ;
ii ) Ri = R3 = -CH3 ; R2 = -H;
iii ) R2 = R3 = -CH3 ; Ri = -H; o iv) Ri = R2 = -H; R3 = -CH3 • Estructura B-2 : tocotrienoles
Figure imgf000042_0001
donde Ri, R2 y R3 pueden ser:
i) ,Ri = R2 = R3 = -CH3 ;
ii) Ri = R3 = -CH3 ; R2 = -H;
Ui)R2 = R3 = -CH3 ; Ri = -H; o
iv) Ri =, R2 ='" -H; R3 = -CH3
• Estructura C ' .
Figure imgf000042_0002
donde Ri, R2 y R3 pueden ser:
i) Ri = -H, R3 = -OH y R2 = alquil > C8; ii) R2 = -H, R3 = -OH y Ri = alquil > C8; o iii) Ri' = -H, R3 = -H y R2 ' = alquil > C8, • Estructura D: 2, 4, 6-tris (1-f eniletil) fenol
Figure imgf000042_0003
• Estructura E: 4- [4- (Trifluorometil) fenoxi] fenol
Figure imgf000043_0001
• Estructura F: esteróles; para la fabricación de papel con encolado interno.
5. -Procedimiento según cualquiera de las reivindicaciones 1 a 3, donde la enzima es de tipo lacasa producida por las cepas Trametes villosa, • Myceliopthera thermophila o Pycnoporus cinnabarinus.
6.- Procedimiento según . cualquiera de las reivindicaciones 1-3, 5, donde la enzima se aplica con una dosis entre ' 0,01 y, 500 U/g, preferiblemente entre 1 y 50 U/g de pasta seca.
7. - , Procedimiento , según cualquiera de las reivindicaciones 1-3, 5, 6, donde el mediador se selecciona del grupo que consiste en octil galato, lauril galato, α- tocoferol, 2, 4, 6-tris (1-feniletil) fenol y 4- [4-
(trifluorometil) fenoxi] fenol .
.8.- Procedimiento según cualquiera de las reivindicaciones 1-3, 5-7, donde el mediador se aplica con una, dosis entre 0,1 y 5%, preferiblemente entre 2 y 4%, respecto al peso seco de pasta. '
9.- Utilización según la reivindicación 4, donde la enzima es de tipo lacasa producida por las cepas Trametes villosa, Myceliopthera thermophila, o Pycnoporus cinnabarinus .
10.- Utilización según la reivindicación 4 o 5, donde la enzima se aplica con una dosis entre 0,01 y 500 U/g, preferiblemente entre 1 y 50 U/g de pasta seca.
11.- Utilización según la reivindicación 4 a 6, donde el mediador se , selecciona del grupo que• consiste en octil galato, lauril galato, α-tocoferol, 2, 4, 6-tris (1- feniletil) fenol y 4- [4- (trifluorometil) fenoxi] fenol.
12.- Utilización según la reivindicación 4 a 1, donde el mediador se aplica con una dosis entre 0,1 y 5%, preferiblemente entre 2 y 4%, respecto al peso seco- de pasta.
PCT/ES2010/000326 2009-07-23 2010-07-23 Procedimiento de fabricación de papel con encolado interno mediante un sistema enzima-mediador WO2011009979A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200901671A ES2352495B1 (es) 2009-07-23 2009-07-23 Procedimiento de fabricación de papel con encolado interno mediante un sistema enzima-mediador.
ESP200901671 2009-07-23

Publications (1)

Publication Number Publication Date
WO2011009979A1 true WO2011009979A1 (es) 2011-01-27

Family

ID=43498798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000326 WO2011009979A1 (es) 2009-07-23 2010-07-23 Procedimiento de fabricación de papel con encolado interno mediante un sistema enzima-mediador

Country Status (2)

Country Link
ES (1) ES2352495B1 (es)
WO (1) WO2011009979A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2387426A1 (es) * 2012-06-04 2012-09-21 Universitat Politècnica De Catalunya Preparación enzimática acuosa aislada y uso para la funcionalización de la superficie del papel o soportes celulósicos

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610172B1 (en) * 1999-05-06 2003-08-26 Novozymes A/S Process for treating pulp with laccase and a mediator to increase paper wet strength
US20070029059A1 (en) * 2005-08-08 2007-02-08 Yassin Elgarhy Enzymatic opacifying composition for paper, pulp or paperboard, processes using same and pulp, paper or paperboard produced therefrom

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610172B1 (en) * 1999-05-06 2003-08-26 Novozymes A/S Process for treating pulp with laccase and a mediator to increase paper wet strength
US20070029059A1 (en) * 2005-08-08 2007-02-08 Yassin Elgarhy Enzymatic opacifying composition for paper, pulp or paperboard, processes using same and pulp, paper or paperboard produced therefrom

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
N. LIU ET AL.: "Fiber modification of kraft pulp with laccase in presence of methyl syringate", ENZYM. & MICROBIOL. TECHNOL., vol. 44, 2009, pages 89 - 95, XP025800399, DOI: doi:10.1016/j.enzmictec.2008.10.014 *
P. WIDSTEN ET AL.: "Adhesion improvement of lignocthelulosic products by inzymatic pre-treatment", BIOTECHNOL. ADVANCES, vol. 26, 2008, pages 379 - 386 *
R. P. CHANDRA ET AL.: "Elucidating the effects of laccase on the physical properties of high-kappa kraft pulps", PROGRESS IN BIOTECHNOLOGY, vol. 21, 2002, pages 165 - 172 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2387426A1 (es) * 2012-06-04 2012-09-21 Universitat Politècnica De Catalunya Preparación enzimática acuosa aislada y uso para la funcionalización de la superficie del papel o soportes celulósicos
WO2013182723A1 (es) 2012-06-04 2013-12-12 Universitat Politècnica De Catalunya Preparación enzimática acuosa aislada y su uso para la funcionalización de la superficie del papel o soportes celulósicos
US9702087B2 (en) 2012-06-04 2017-07-11 Universitat Politecnica De Catalunya Isolated aqueous enzymatic preparation and the use thereof for the functionalization of the surface of paper or cellulosic substrates

Also Published As

Publication number Publication date
ES2352495A1 (es) 2011-02-21
ES2352495B1 (es) 2012-01-12

Similar Documents

Publication Publication Date Title
US8871054B2 (en) Process for preparing fluff pulp sheet with cationic dye and debonder surfactant
CN108130788B (zh) 一种防水防油食品包装纸的制备方法
Garcia-Ubasart et al. Enzymatic treatments of pulp using laccase and hydrophobic compounds
Maijala et al. Biomechanical pulping of softwood with enzymes and white-rot fungus Physisporinus rivulosus
US20230035105A1 (en) Surface enhanced pulp fibers at a substrate surface
AU2006326399B2 (en) Method of decreasing the rate of photoyellowing
Mutjé et al. A comparative study of the effect of refining on organosolv pulp from olive trimmings and kraft pulp from eucalyptus wood
Reynaud et al. Hydrophobic properties conferred to Kraft pulp by a laccase-catalysed treatment with lauryl gallate
McLean et al. The effect of wood extractives composition, pH and temperature on pitch deposition
ES2659454T3 (es) Procedimiento para fabricar papel que comprende pasta quimiotermomecánica blanqueada apto para un revestimiento desprendible y productos y utilizaciones del mismo
CA3036599A1 (en) Method for producing cellulose filaments with less refining energy
ES2352495B1 (es) Procedimiento de fabricación de papel con encolado interno mediante un sistema enzima-mediador.
EP2567024A1 (de) Faserstoffzusammensetzung für die papier- und kartonherstellung
WO2022189488A1 (en) Process for improving moisture- and water-resistance of paper
ES2767579T3 (es) Preparación enzimática acuosa aislada y su uso para la funcionalización de la superficie de papel o sustratos celulósicos
Fardim et al. Pulp fibers for papermaking and cellulose dissolution
Hubbe et al. Archival performance of paper as affected by chemical components: A review
CN103726393A (zh) 一种本色复印原纸的制备方法
Åvitsland et al. AKD sizing of TCF and ECF bleached birch pulp characterized by peroxide edge wicking index
BR112021010318A2 (pt) Método para produzir fibras de holocelulose, uso das referidas fibras, método para produzir um agente de resistência para papel, processo para a produção de papel, papel, uso do mesmo
Hui et al. Study on adsorption of OBA and PCC onto HYP fibres
Liu et al. Fiber modification by laccase and a hydrophobic compound
Khantayanuwong et al. Water absorptiveness of handsheets produced with various pH levels of pulp suspension, AKD dosages and mixing times
Khakifirooz et al. Insight on the Feasibility of Producing Durable Paper from Spruce Pulp using the Sulfate Process
Wright Kinetic processes in alkaline peroxide bleaching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10801984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10801984

Country of ref document: EP

Kind code of ref document: A1