WO2011007907A1 - Novel methane oxidizing bacteria, methylocystis microorganism and method for reducing methane using same - Google Patents

Novel methane oxidizing bacteria, methylocystis microorganism and method for reducing methane using same Download PDF

Info

Publication number
WO2011007907A1
WO2011007907A1 PCT/KR2009/003907 KR2009003907W WO2011007907A1 WO 2011007907 A1 WO2011007907 A1 WO 2011007907A1 KR 2009003907 W KR2009003907 W KR 2009003907W WO 2011007907 A1 WO2011007907 A1 WO 2011007907A1
Authority
WO
WIPO (PCT)
Prior art keywords
methane
soil
biocover
layer
methylocystis
Prior art date
Application number
PCT/KR2009/003907
Other languages
French (fr)
Korean (ko)
Inventor
조경숙
류희욱
문경은
이은희
박현정
이상현
이수연
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to PCT/KR2009/003907 priority Critical patent/WO2011007907A1/en
Publication of WO2011007907A1 publication Critical patent/WO2011007907A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention relates to a novel microorganism of the genus methane oxidizing bacteria methyloscis and to a method for reducing methane using the same. More specifically, the novel microorganism of the genus methyloscistis excellent in resolution for methane or volatile organic compounds is earthworm as a filler. Methane can be more effectively decomposed in methane abatement biocovers or abatement systems that use fecal soil.
  • Representative greenhouse gases that cause global climate change include carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), and F-gases (HFCs, PFCs, SF 6 ). Since the Industrial Revolution, global human greenhouse gas emissions have risen rapidly due to human activities. Methane, the second-highest greenhouse gas contributing to carbon dioxide, is a colorless, odorless greenhouse gas that is explosive if it contains 5-15% of air and is a harmful gas that causes respiratory distress after long-term exposure to 0.5% methane. In particular, the residence time of methane is 12 ⁇ 3 years, which is relatively short compared to other greenhouse gases. Therefore, GWP is 20 times higher than that of carbon dioxide.
  • Methane is characterized not only by the agriculture and fossil fuel use sectors, but also by other sources of waste treatment, unlike other greenhouse gases.
  • the amount of methane from landfills and waste is estimated to be around 35-73 Tg per year.
  • Methane is produced by methane-producing bacteria in the anaerobic decomposition of organic matter, and the amount of methane produced by these biological activities is estimated to be about 70-80% of the total generation.
  • Methane removal is largely eliminated by reaction with OH radicals in the troposphere (CH 4 + OH-> CH 3 + H 2 O) and with chlorine in the stratosphere (CH 4 + Cl-> CH 3 + + HCl).
  • methane is finally oxidized to carbon dioxide by methane nutrients as the only carbon and energy source, which is the main extinction mechanism of methane.
  • landfills which are the major sources of methane, are equipped with gas collection wells that can capture biogas. Generally, about 40 to 60% of the biogas produced can be recovered. It is reported that up to 90% of biogas can be recovered if synthetic resin covers are installed in the landfill. Biogas containing methane discharged from landfills can be recovered, recycled for energy, or burned, or oxidized and removed using cover soil microorganisms. Combustion of biogas as an energy source by burning biogas is an ideal way to reduce greenhouse gases and secure renewable energy.However, methane content of biogas is over 30% and biogas flux is 50 m 3 h. Only applicable when -1 .
  • landfills with low biogas emissions due to the lapse of time or small landfills researches using biological methods such as biofilters or biocovers to minimize methane emissions, greenhouse gases has been very active in recent years.
  • the biological method uses methane oxidizing bacterium activity to remove and methane oxidize under aerobic conditions, and biofilters or biocovers have been developed that utilize various materials such as soil, compost, and peat as fillers.
  • biofilters and biocovers evaluated in the field application is known to vary greatly in methane removal efficiency according to landfill characteristics, filler types and environmental conditions. Therefore, it is essential to select effective methane oxidizing bacteria and fillers for methane removal. will be.
  • Another object of the present invention is to provide a method for reducing methane by using the novel methane oxidizing bacteria.
  • Still another object of the present invention is to provide a biocover capable of removing methane using the novel methane oxidizing bacteria and a methane abatement system including the same.
  • Another object of the present invention is to provide a method of reducing methane using the system.
  • the present invention provides a Methylocystis sp. M6 KCTC 11519BP.
  • the present invention also provides a composition for reducing methane comprising Methylocystis sp. M6 KCTC 11519BP.
  • the present invention also provides a methane reduction method comprising the step of decomposing methane methane reduction composition of the present invention.
  • the present invention also provides a methane-reducing biocover emanating from the cover layer or surface of a landfill containing the methane-reducing composition of the present invention.
  • the present invention also provides a methane abatement system for biologically decomposing methane emitted from the cover layer or the ground surface by installing a bio active layer on the cover layer or the ground surface of the landfill.
  • a biocover layer in which at least one biocover of the present invention is laminated is laminated
  • It provides a methane reduction system comprising a ventilation layer surrounding the biocover layer.
  • the present invention also provides a methane abatement system for biologically decomposing methane emitted from the cover layer or the ground surface by installing a bio active layer on the cover layer or the ground surface of the landfill.
  • a biocover layer in which at least one biocover of the present invention is laminated is laminated
  • It provides a methane reduction system comprising a ventilation layer stacked on the lower bio cover layer.
  • the present invention also provides a methane abatement method comprising the step of decomposing methane by injecting a sample into the methane abatement system of the present invention.
  • the novel microorganism of the genus methylosciss of the present invention can be used in a biocover installed in a landfill cover or surface that is capable of biologically decomposing methane due to its excellent resolution for methane or volatile organic compounds.
  • the present invention can further increase the methane oxidation efficiency by using earthworm fecal soil as a filler.
  • Figure 2 shows the methane oxidation characteristics of soil and feces mixed soil.
  • Figure 3 shows the effect of water content (a) and temperature (b) on the rate of methane oxidation.
  • Figure 4 is a comparison of the bacterial community characteristics of paddy soil, fecal soil and mixed soil, (a) general bacteria, (b) methane oxide bacteria.
  • Figure 5 shows the phylogenetic relationship of pmoA -clone and pmoA -DGGE band clone of fecal soil samples.
  • Figure 6 shows the methane decomposition of the landfill thickening broth, symbol ⁇ , experimental group ⁇ , control.
  • Figure 7 shows a phylogenetic tree of clones obtained from landfill thickening broth.
  • Figure 8 shows a phylogenetic tree of Methylocystis sp. M6 strain of the present invention.
  • Figure 9 shows the methane decomposition characteristics of Methylocystis sp. M6 of the present invention.
  • FIG. 10 shows a laboratory scale biocover and a laboratory scale biocover installation drawing.
  • FIG. 11 compares the methane concentration emitted from the biocover surface (40% CH 4 + 60% CO 2 (v / v) mixed gas flow rate: 10 mL / min).
  • FIG. 13 compares the methane concentration emitted from the biocover surface (40% CH 4 + 60% CO 2 (v / v) mixed gas flow rate: 20 mL / min).
  • FIG. 14 shows changes in O 2 , N 2 , CH 4 and CO 2 concentrations at each height of the biocover (40% CH 4 + 60% CO 2 (v / v) mixed gas flow rate: 10 mL / min).
  • the present invention relates to Methylocystis sp. M6 KCTC 11519BP.
  • the microorganism of the present invention is a novel methane oxidizing bacterium having excellent resolution of methane or volatile organic compounds, sealing a culture bottle containing landfill soil and enriched culture medium, for example, NMS (nitrate mineral salts) medium, and methane as a carbon source.
  • NMS nano mineral salts
  • methane as a carbon source.
  • Methylocystis sp. M6 strain is excellent in the resolution of volatile organic compounds in addition to methane.
  • the present invention also relates to a composition for reducing methane comprising Methylocystis sp. M6 KCTC 11519BP.
  • composition of the present invention can use the novel Methylocystis sp. M6 KCTC 11519BP of the present invention as methane oxidizing bacteria to remove methane.
  • the methane reducing composition of the present invention may be used alone or both of the soil, earthworm fecal soil, etc. as a filler for the culture environment composition of the bacterial culture.
  • the earthworm fecal soil is an earthworm fecal soil produced by supplying the sewage sludge generated in the sewage treatment process to earthworm food. After the natural fermentation / drying process for more than 6 months, impurities may be removed and the particle size may be 0.2 to 2 mm. .
  • the soil may be paddy / field soil, forest soil, or wetland soil, but is not particularly limited thereto.
  • the soil can be collected at a depth of 100 to 200 cm from the surface layer, and then sieved up to 3 mm to remove large particles.
  • the soil and earthworm fecal soil pH is 5 to 7
  • the water content is 1 to 40%
  • the organic content may be used as 1 to 40%, but is not particularly limited thereto.
  • the soil and earthworm fecal soil is preferably mixed in a ratio of 50: 50 to 90: 10 to weight. It is because the reduction efficiency of methane is high when it is in the said content range.
  • the present invention also relates to a methane reduction method comprising the step of decomposing methane methane reduction composition of the present invention.
  • the methane reducing composition of the present invention can effectively decompose these using methane as a carbon source.
  • the present invention also relates to a methane-reducing biocover emanating from the cover layer or surface of a landfill containing the methane-reducing composition of the present invention.
  • methane reducing composition of the present invention When the methane reducing composition of the present invention is put in a methane reducing biocover and the biocover is contacted with methane, methane may be effectively decomposed.
  • the biocover of the present invention may include a biomedia layer containing the composition for reducing methane of the present invention.
  • the biomedia layer may include Methylocystis sp. M6 KCTC 11519BP as a methane oxidizing bacterium capable of biologically decomposing methane.
  • the biomedia layer may further include a conventional methane oxidizing bacteria in order to increase the decomposition efficiency of methane.
  • methane is methyl by oxidation bacteria Pseudomonas genus (Methylomonas), methyl micro emptying in (Methylomicrobium), methyl bakteo in (Methylobacter), methyl local dumsok (Methylocaldum), waves with methyl acceleration (Methylophaga), Sar with methyl or when a Methylosarcina , Methylothermus , Methylohalobius , Methylosphaera , Methylocystis , Methylocella , Methyl rokap sasok (Methylocapsa), may be used alone or two or more kinds in Sinners (Methylosinus), or methyl Rhodococcus genus (Methylococcus) such as methyl.
  • the biomedia layer may include soil or earthworm fecal soil as a filler.
  • the type of the soil, the manufacturing method of earthworm fecal soil is as described above.
  • the biomedia layer may further include an oxygen generating agent to supply the oxygen required by the methane oxide bacteria to reduce the thickness of the bio cover.
  • the oxygen generating agent may be used alone or two or more of magnesium peroxide, calcium peroxide, sodium percarbonate and the like.
  • the present invention also provides a methane abatement system for biologically decomposing methane emitted from the cover layer or the ground surface by installing a bio active layer on the cover layer or the ground surface of the landfill.
  • a biocover layer in which at least one biocover of the present invention is laminated is laminated
  • It relates to a methane abatement system comprising a ventilation layer surrounding the biocover layer.
  • the biocover layer contains methane oxidizing bacteria and earthworm fecal soil, which can biologically decompose methane.
  • the methane oxidizing bacteria may include the novel Methylocystis sp. M6 KCTC 11519BP of the present invention.
  • the methane oxidizing bacteria may further comprise the above-described conventional methane oxidizing bacteria.
  • the biocover layer may use soil or earthworm fecal soil as a filler to increase the oxidation efficiency of methane. Details of the soil or earthworm feces are as described above.
  • the thickness of the biocover layer is preferably 50 to 500 mm.
  • the thickness is less than 50 mm, the time for contact between the methane oxidizing bacteria and methane gas is short so that the oxidation does not occur sufficiently that the methane gas is not converted to carbon dioxide.
  • the thickness exceeds 500 mm, oxygen diffused in the atmosphere cannot diffuse to the bottom of the biocover layer and thus cannot establish aerobic conditions.
  • the biocover layer is surrounded by a ventilation layer for supplying oxygen.
  • the component constituting the ventilation layer is not particularly limited as long as it has a particle size capable of supplying oxygen.
  • it may consist of sand or gravel.
  • the ventilation layer may be provided with at least one vent pipe for supplying air. Air may be injected into the blower through the vent pipe.
  • the present invention also provides a methane abatement system for biologically decomposing methane emitted from the cover layer or the ground surface by installing a bio active layer on the cover layer or the ground surface of the landfill.
  • a biocover layer in which at least one biocover of the present invention is laminated is laminated
  • It relates to a methane abatement system comprising a ventilation layer stacked below the biocover layer.
  • a ventilation layer capable of supplying oxygen between the cover layer and the biocover layer may be stacked.
  • biocover layer Details of the biocover layer are as described above.
  • the component constituting the ventilation layer is not particularly limited as long as it has a particle size capable of supplying oxygen.
  • it may consist of sand or gravel.
  • the ventilation layer may be provided with at least one vent pipe for supplying air. Air may be injected into the blower through the vent pipe.
  • the present invention also relates to a methane abatement method comprising the step of decomposing methane by injecting a sample into the methane abatement system of the present invention.
  • the methane oxidizing bacteria of the present invention and the earthworm fecal soil as a filler can be effectively decomposed.
  • the soil used in this example was paddy soil of Gyeonggi-do, which was collected after digging more than about 30 cm from the surface layer, and removing the large particles by striking the collected soil with a 2 mm sieve.
  • Earthworm fecal soil was also collected from sewage treatment facility in Seoul.
  • An earthworm fecal soil produced by supplying sewage sludge from sewage treatment to earthworm food, and using average particle size of 0.2-2 mm after natural fermentation / drying process for more than 6 months and impurities removed and particle size selection process It was.
  • Soil and fecal soil pHs were 6.47 ⁇ 0.08 and 5.23 ⁇ 0.13, respectively, and the water contents were 2.27 ⁇ 0.11%, 38.09 ⁇ 1.39%, and organic matter contents were 1.71 ⁇ 0.24% and 37.41 ⁇ 1.21%, respectively.
  • Methane removal capacity (oxidation rate) according to the mixing ratio of soil and fecal soil is shown in FIG. 1.
  • the methane oxidation rate of only non-mixed bunbyeonto soil was 1.5 ⁇ g ⁇ g-day soil -1 ⁇ h -1 in an initial state, after the concentrated culture 4.9 1.5 ⁇ g ⁇ g-day soil - It was improved to 1 ⁇ h -1 .
  • the filter bed is a place where biofilm containing methane oxidizing bacteria is cultured, so it needs enough space for growth of microorganisms, requires high water content, meets physical / chemical / biological properties, and the lower the cost, the better. Therefore, fecal soil was sufficiently satisfied as a filter bed, and it was confirmed that it can be used as a material for biocover and biofilter because it obtains good methane oxidation ability even with a small amount of mixing.
  • distilled water was added and sealed after adding 15, 20, 25, 30, 35 and 40% water content of the mixed soil of the serum bottle containing 50 g of the mixed soil.
  • Methane gas was injected (final concentration: 50,000 ppmv) and methane concentration was periodically analyzed at the top of the serum bottle while static culture at 25 ° C.
  • methane concentration was lowered below 200 ppmv
  • methane gas was reinjected to the same concentration. Re-injection was performed 5 times in this way, and the methane oxidation rate was calculated by calculating the methane concentration decrease over time.
  • the experiment was performed by preparing two sets of serum bottles for each moisture content condition.
  • Serum disease experiments were conducted to investigate the methane oxidation characteristics of paddy soil and fecal mixed soil in detail.
  • methane was removed by sterilizing the mixed soil, and the removal of methane by physical adsorption or chemical reaction was not observed (not shown).
  • 3A shows the effect of methane oxidation ability according to the change in water content using a mixed soil having a mixing ratio of soil and earthworm fecal soil by 5: 5 concentration.
  • the rate of methanation at 25% water content was 559.5 ⁇ g ⁇ g-dry soil -1 ⁇ h -1, and at 57% -78% water content at 25% water content above or below 25% water content. Value was shown.
  • the mixed soil of earthworm fecal soil and paddy soil effectively removed methane in a wide range of water content of 15-40%. In general, considering that the water content of the landfill is widely distributed from 7 to 45%, it can be seen that the earthworm feces mixed soil is suitable as a biocover (biocover) material.
  • the methane removal capacity when the water content of earthworm fecal mixed soil is 15-40% is more than 4.4 ⁇ 7.8 times that of landfill soil, which is much higher than other reports. see.
  • methane oxidizing bacteria can be regarded as mesophilic microorganisms.
  • the temperature changes due to the direct contact with air in the 10–30 cm deep soil layer which is expected to have the most active methane oxidizing bacteria. Since the uppermost temperature of the cover layer in winter keeps about 15 ° C on average, it can be said that the biocover landfill can be applied.
  • DNA extracted from RPS, RES, and EEPS was used to amplify 16S rRNA gene and pmoA gene, respectively.
  • Approximately 200 bp of the 16S rRNA gene fragment was prepared using primers 341f (CCT ACG GGA GGC AGC AG) and 518r (ATT ACC GCG GCT GCT) with 40-bp GC clamp (CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG G). Amplification via PCRdmf using GG).
  • Fragments of the particulate methane monooxigenase (pMMO approximately 510 bp) encoded by the pmoA gene were identified by primers A189f (GGN GAC TGG GAC TTC TGG) and mb661r (CCG GMG) stained with 6-FAM (6-carboxyfluorescein). Amplification was by PCR using CAA CGT CYT TAC C). PCR was performed in 50- ⁇ l of reaction solution and the components were as follows: 100 ng DNA, 0.2 mg BSA, 0.4 mM each primer, 1 ⁇ Ex Taq buffer, 0.75 U Takara Ex Taq DNA polymerase (TaKaRa Bio Inc.) , 200 mM dNTP.
  • PCR was performed using a GeneAmp ® PCR system Model 2700 (PE Applied Biosystems) that conditions were as follows: initial denaturation 95 °C, 5 min; 35 cycles-denatured 95 ° C., 30 seconds, annealing 55 ° C. or 60 ° C., 30 seconds, amplification 72 ° C., 30 seconds; 72 ° C., 10 minutes in the last step.
  • Each PCR product was identified on a 1% agarose gel and purified using a QIAquick PCR purification kit (Qiagen).
  • Qiagen QIAquick PCR purification kit
  • the secondary pmoA- PCR was carried out under the same conditions as above, and the product was purified using the primary pmoA- PCR product as a material.
  • 16S rRNA gene fragments (approximately 200 bp) were subjected to 8% polyacrylamide gel (40-60% gradient urea and deionized formamide) to analyze common microorganisms in RES, RPS and EEPS soils. Electrophoresis on. Approximately 6 mg of 16S rRNA gene fragments were used and 15 at 50 V in 1 ⁇ TAE buffer (10 mM Tris base, 20 mM sodium acetate, 1 mM EDTA) warmed to 60 ° C. using DCode TM system (BioRed). Electrophoresis was performed for hours.
  • 1 ⁇ TAE buffer (10 mM Tris base, 20 mM sodium acetate, 1 mM EDTA) warmed to 60 ° C. using DCode TM system (BioRed). Electrophoresis was performed for hours.
  • the purified secondary pmoA- PCR product was electrophoresed on 6% polyacrylamide gel (40-80% gradient urea and deionized formamide). The conditions were electrophoresed for 15 hours at 100V in 60 ° C. 1 ⁇ TAE buffer. DNA fragments were extracted by freeze-thaw method only in dominant bands as band intensities, and extracted pmoA gene fragments were PCR amplified using primers A189f-GC and mb661r. The amplified pmoA gene fragment was purified using a QIAquick PCR purification kit, and the nucleotide sequence was determined by primer mb661r with BigDye v3.1 and ABI auto sequencer 3730XL DNA analyzer (Applied Biosystem).
  • T-RFs Terminal restriction fragments
  • ABI 377 DNA auto sequencer Only 50-500 bp of T-RFs were selected and analyzed using GENESCAN analytical software (ABI). The peak width of the selected fragment sizes was considered only those peaks with 50 relative fluorescent units (RFU) or more. Each fragment peak area was calculated from the sum of the total peak areas, and the principal component analysis (PCA) was performed using the software SPSS version 12.0K (SPSS Inc.).
  • EEPS- pmoA Gene sequences In the GenBank database pmoA Nucleic acid and amino acid sequences of genes were compared and identified by Blastn and Blastx search (www.ncbi.nlm.nih.gov/BLAST). Of sample pmoA Identified and compared with the gene sequence pmoA Gene sequencing the software BioEdit version 7.0.9.0. Alignment using the (BioEdit Sequence Alignment Editor), only sequencing sequences (> 450 bp) of the software MEGA It was applied to phylogeny generation using version 4 (Tamura et al., 2007). The phylogenetic tree includes the Neighbor-Joining method and the Substitution model; Calculations were made using bootstrap 1000 iterations using amino acid position correction.
  • pmoA insoluble methane monooxigenase base sequence obtained through this experiment was listed in the GenBank database with the following certification number: Certificate number: EEPS pmoA-DGGE band sequence, FJ775131 to FJ775133 EEPS pmoA-clone base Sequence, FJ775134 through FJ77513164.
  • 31 pmoA clones were randomly selected from the pmoA gene clone library derived from DNA extracted from EEPS to determine and compare the base sequences. As a result of investigation using BLAST, all 31 belonged to Methylocystis (type II methanotrophs), and their phylogenetic tree is shown in FIG. 5.
  • three dominant pmoA -DGGE bands (EEPS pmoA -DGGE band EBL1-band EBL3) with band (brightness) intensity in DGGE of the secondary pmoA- PCR product were used to identify methane oxidative bacterial dominant species of RPS, RES and EEPS Were selected and their sequencing was determined and compared.
  • EEPS pmoA -DGGE EBL1 band and band EBL2 is methyl local dumsok (Methylocaldum sp.) In seutiseu (Methylocystis) when in the band intensity was high EEPS pmoA -DGGE band EBL3 is methyl the (type I methanotrophs) (type II) (not shown).
  • EEPS pmoA- DGGE band EBL2 which appeared in RES and EEPS, did not appear in RPS.
  • the dominant methane oxidizing bacterium enriched in EEPS pmoA -methanotrophs are the genus Methylocaldum sp.) (type I) and Methylosissis ( Methylocystis sp.) (type II). Therefore, it can be seen that type I and type II methanogenic bacteria were involved in methane oxidation in EEPS.
  • the seutiseu in (Methylocystis sp.) (Type II ) is methyl seutiseu in (Methylocystis) when a relative to the strength of the number of clones with pmoA pmoA -DGGE band belonging thereto when methyl Presumably the methane oxidizing bacteria.
  • Methylocystis is the result of the predominance of methane-oxidizing bacteria is interesting. This is because the EEPS methane oxidizing bacteria enrichment environment was an environment rich in oxygen, low concentrations of methane (5%) and nutrient rich (earthworm feces), which favored type I methane oxidizing bacteria. However, the results are not unexpected. Because the diversity of methane oxidizing bacteria is determined by a variety of environmental factors, rather than one environmental factor: methane concentration, oxygen availability, temperature, nitrogen source, soil material and water content, and so far The reported results show no evidence that type I and type II methanogenic bacteria can dominate independently of each other due to high and low methane concentrations.
  • Soil was taken from the landfill to obtain a methane oxide consortium.
  • the soil collection site is Gongju, Chungcheongnam-do, and is an active landfill where landfill gas is continuously discharged.
  • the collected soil was transported in an ice box and stored at 4 ° C.
  • Thickening culture was performed as follows to obtain a methane oxide consortium.
  • a 600 mL serum bottle 8 g of wet landfill soil and 20 mL of nitrate mineral salts (NMS) medium were added and sealed with a rubber stopper.
  • NMS nitrate mineral salts
  • 5% (v / v) of methane was injected as the only carbon source, and the serum bottle was incubated at 30 ° C. and 180 rpm. Once 100% of the injected methane was removed, the rubber bottle was opened with a serum bottle for air saturation for 1 hour. After air saturation, the rubber stopper was closed and methane was injected at the same concentration.
  • 1 mL of nitrogen and phosphorus concentrates were added to each other when air saturation was performed.
  • the NMS medium composition is as follows (MgSO 4 .7H 2 O 1 g / L; CaCl 2 ⁇ 2H 2 O 0.295 g / L; KNO 3 1 g / L; KH 2 PO 4 0.26 g / L; 0.41 g / L ). Nitrogen and phosphorus concentrates were referred to NMS medium composition, nitrogen was prepared by adding 2 g of KNO 3 in 100 mL distilled water and 0.52 g of KH 2 PO 4 and 1.65 g of Na 2 HPO 4 ⁇ 12H 2 O in 100 mL distilled water. .
  • methane oxidized (decomposed) concentrated culture medium enriched using landfill soil was 100% decomposed 5% methane within 65 hours, and the methane decomposition rate of the concentrated culture medium was 4.95 ⁇ 0.26 ⁇ mole g-dry. soil -1 h -1 . From the experimental results, it was confirmed that the thickening medium effectively decomposed methane.
  • DGGE PCR-denaturing gradient gel electrophoresis
  • the amplification conditions were performed 40 times at the first stage of the initial denaturation at 96 °C 5 minutes at 96 °C, denatured 96 °C 1 minute, annealing 58 °C 1 minute, amplification 72 °C 1 minute, and at the last stage 72 °C 5 minutes Experiment with.
  • the amplified DNA concentrations were adjusted to 200-300 ng / ⁇ l and injected into 6% polyacrylamide gels. The urea change was 35-70% and operated for 17 hours at 60 ° C and 50V.
  • the band was cut from the gel after the DGGE experiment, and DNA was extracted from the cut gel. To extract DNA from the gel, 30 ⁇ l of sterile water was added and frozen at -20 ° C.
  • Methane oxidative consortium was analyzed by PCR-DGGE, and the nucleotide sequences of the obtained clones were identified. As a result, Methylocystis sp., Methylosinus sp., And Methylmicrobiium alboom were identified. ( Methylomicrobium album), such as methane oxidized bacteria was confirmed that the dominant species (Fig. 7).
  • DNA was extracted using the same method as Example 2 to identify methane-degraded pure bacteria.
  • the extracted DNA was amplified using 27f (5'-AGA GTT TGA TCM TGG CTC AG-3 ') and 1492r (5'-TAC GGY TAC CTT GTT ACG AC-3'). Amplification conditions were the same as in Example 2, and the amplified samples were identified by sequencing.
  • NMS agar medium was inoculated with a consortium and incubated in a desiccator containing 20% methane.
  • Strain M6 capable of decomposing methane was isolated from the culture medium, and belonged to the genus Methylocystis sp. According to 16S rDNA partial sequencing. The nucleotide sequence results of the M6 strain are shown in Table 1, and the phylogenetic tree results similar to the M6 strain are shown in FIG. 8. The isolate was identified as Methylocystis sp. These results show that Methylocystis sp. M6 strains dominate in the thickening medium and play an important role in decomposing methane.
  • Methylocystis sp. M6 which has high resolution against methane, was deposited on June 3, 2009 to the Korea Institute of Bioscience and Biotechnology, and received the accession number KCTC 11519BP.
  • a laboratory scale biocover was fabricated and tested to investigate the CH 4 oxidation characteristics by simulating the cover layer of landfill on a laboratory scale.
  • the column used in this experiment consisted of three layers, consisting of two 20 cm diameter, 50 cm high charging sections, and a 20 cm diameter and 30 cm high ventilation section.
  • the biocover is made of PVC material and a detailed configuration diagram of the device is shown in FIG. 10.
  • a PVC perforated plate and a 20 cm diameter rubber filter were raised to a height of 50 cm to allow the CH 4 / CO 2 mixed gas to diffuse as uniformly as possible.
  • Soil mixed with forest soil and earthworm fecal soil at 75:25 (w / w) was charged to two stages of filling.
  • 300 mL (1.3 ⁇ 10 8 cells / mL) of the microbial consortium culture solution developed in Example 3 was added to the filling part.
  • a biocover filled with only forest soil without earthworm fecal soil was prepared.
  • the sample injection port installed a gas-tight valve every 10 cm and inserted a GC analysis septum at the outlet to prevent mixed gas leakage in the column. Air was continuously flowed at the top of the column at a flow rate of 200 mL / min to simulate the description of the atmospheric layer and the redox gradient of the landfill's natural soil layer. Synthetic landfill gas concentrations were 40% CH 4 and 60% CO 2 and fed at 10 and 20 mL / min from bottom to top. All experiments were run in a laboratory at 20 ⁇ 5 ° C.
  • the lower end of the biocover (-0.5 to -1 m) is anaerobic, and the CH 4 is hardly diluted into the atmosphere because the air flowing from the upper vent is not sufficiently diffused to the lower end.
  • the activity of methanetrophs (methanotrophs) is also considered to be insignificant.
  • the concentration of CH 4 is above 1% (v / v) and the concentration of O 2 is about 1% (v / v)
  • the growth rate of type II methane oxidizing bacteria is higher than that of type I methane oxidizing bacteria. This is not to say that there is no CH 4 oxidation.
  • the density of 100% soil and biocover mixed with soil and fecal soil were 0.83 and 0.76, respectively, and the organic contents were 13.6 ⁇ 1.23% and 23.09 ⁇ 0.60%, respectively. From these results, it was found that the density of the filter bed was lowered when the earthworm fecal soil was mixed, so that the air was diffused smoothly, and the growth and activity of methane oxidizing bacteria was increased because the organic matter was richer than the forest soil. Therefore, when applying the cover material mixed with the earthworm fecal soil, it was confirmed that the thinning of the final cover layer and the high methane oxidation rate could be derived.
  • Methylocystis sp. M6 strains to be used for substrate testing were inoculated in NMS medium after mass cultivation in R2A medium and washing. This was dispensed in 4 mL portions of 120 mL serum bottles, and 1 ⁇ l of each substance was injected after closing with a rubber stopper. M6 strains for methanol, ethanol, acetone and diesel decomposition for measuring the OD 600 value were divided into 600 mL-serum bottles by 20 mL, and 10 ⁇ l of each material was injected after blocking with a rubber stopper.
  • the growth capacity using methanol, ethanol, acetone and diesel was analyzed by measuring the OD 600 value, and the resolution of the remaining 10 materials was analyzed by measuring the concentration of the substrate, using 50 ⁇ l gas tight syringe.
  • 30 ⁇ l was collected from the headspace of the serum bottle, and a gas chromatography (Agilent 6850N, USA) -flame ionization detector equipped with a wax column (Supelco, 30 ⁇ 0.32 mm ⁇ 0.25 ⁇ m) was used.
  • the analysis temperature was 100 degreeC of oven, and 230 degreeC of injection part and a detection part.
  • Methylocystis sp. M6 strain was able to decompose m -xylene, p -xylene, methanol and ethanol.
  • the methane reduction system using the biocover according to the present invention was prepared as follows.
  • the biocover material was used in the ratio of 75:25 to weight ratio of soil and earthworm stool, and Methylocystis sp. M6 was used as methane oxidizing bacterium.
  • the biocover layer may be prepared by mixing magnesium peroxide (MgO 2 ) and calcium peroxide (CaO 2 ), which are oxygen generating agents.
  • MgO 2 magnesium peroxide
  • CaO 2 calcium peroxide
  • the methane abatement facility using the biocover consists of a landfill layer, a cover layer, a biocover layer, and a planting layer. Installed and configured to supply air to the blower.
  • Methane abatement facility using biocover consists of landfill layer, cover layer, sand and gravel layer, biocover layer, and plant layer, and supplies air to sand and gravel layer between cover layer and biocover layer to supply oxygen to biocover layer. Can be installed and configured to supply air to the blower.
  • the present invention can biologically decompose methane using a novel strain having excellent degradability for methane or volatile organic compounds, and thus can be used in biocovers installed on landfill cover layers or ground surfaces.

Abstract

The present invention relates to novel methane oxidizing bacteria, Methylocystis microorganism and a method for reducing methane using the same. More specifically, the novel Methylocystis microorganism has good degradability for methane or other volatile organic compounds and can more effectively degrade methane under biocover or a reduced system using an earthworm-cast as filler material.

Description

신규한 메탄산화세균 메틸로시스티스 속 미생물 및 이를 이용한 메탄 저감방법Novel Microorganisms of Methyloxidation Bacteria
본 발명은 신규한 메탄산화세균 메틸로시스티스 속 미생물 및 이를 이용한 메탄 저감방법에 관한 것으로, 보다 상세하게는, 메탄 또는 휘발성유기화합물에 대한 분해능이 우수한 신규 메틸로시스티스 속 미생물은 충전제로 지렁이 분변토를 사용하는 메탄 저감용 바이오커버 또는 저감 시스템에서 보다 효과적으로 메탄을 분해할 수 있다. The present invention relates to a novel microorganism of the genus methane oxidizing bacteria methyloscis and to a method for reducing methane using the same. More specifically, the novel microorganism of the genus methyloscistis excellent in resolution for methane or volatile organic compounds is earthworm as a filler. Methane can be more effectively decomposed in methane abatement biocovers or abatement systems that use fecal soil.
전 지구적 기후변화를 야기하는 대표적인 온실가스로 이산화탄소(CO2), 메탄(CH4), 아산화질소(N2O), F-가스(HFCs, PFCs, SF6) 등이 있다. 산업혁명 이후 인간 활동으로 인해 전 지구적 온실가스 배출량이 급속도로 증가되어 왔다. 이산화탄소에 이에 2번째로 기여도가 높은 온실가스인 메탄은 무색, 무취 온실가스로, 공기 중에 5~15% 함유되어 있으면 폭발성이 있으며, 0.5% 메탄에 장기 노출 시 호흡곤란을 야기하는 유해가스이다. 특히 메탄의 체류시간은 12±3년으로 타 온실가스에 비해 비교적 짧기 때문에, 20년 기준 GWP는 이산화탄소보다 70배 이상이다. 메탄은 농업 및 화석연료 사용 분야뿐 만 아니라, 다른 온실가스와는 다른 폐기물 처리분야가 주요 발생원인 특징이 있다. 매립지와 폐기물로부터 발생되는 메탄양은 연간 약 35∼73 Tg으로 추정된다. 메탄은 유기물의 혐기적 분해 과정에서 메탄생성세균에 의해 생성되며, 이러한 생물학적 작용에 의한 메탄 발생량은 총 발생량의 약 70~80% 정도 차지하는 것으로 추정되고 있다. 메탄 제거는 주로 대류권에서의 OH 라디칼과의 반응(CH4 + OH·→ CH3·+ H2O)과 성층권에서 염소와 반응(CH4 + Cl·→ CH3·+ HCl)에 의해 소멸된다. 또한, 호기적인 환경에서 메탄은 유일 탄소원과 에너지원으로 이용하는 메탄영양세균에 의해 이산화탄소로 최종 산화되는데, 이 메커니즘이 메탄의 주요 소멸 메커니즘이다. Representative greenhouse gases that cause global climate change include carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), and F-gases (HFCs, PFCs, SF 6 ). Since the Industrial Revolution, global human greenhouse gas emissions have risen rapidly due to human activities. Methane, the second-highest greenhouse gas contributing to carbon dioxide, is a colorless, odorless greenhouse gas that is explosive if it contains 5-15% of air and is a harmful gas that causes respiratory distress after long-term exposure to 0.5% methane. In particular, the residence time of methane is 12 ± 3 years, which is relatively short compared to other greenhouse gases. Therefore, GWP is 20 times higher than that of carbon dioxide. Methane is characterized not only by the agriculture and fossil fuel use sectors, but also by other sources of waste treatment, unlike other greenhouse gases. The amount of methane from landfills and waste is estimated to be around 35-73 Tg per year. Methane is produced by methane-producing bacteria in the anaerobic decomposition of organic matter, and the amount of methane produced by these biological activities is estimated to be about 70-80% of the total generation. Methane removal is largely eliminated by reaction with OH radicals in the troposphere (CH 4 + OH-> CH 3 + H 2 O) and with chlorine in the stratosphere (CH 4 + Cl-> CH 3 + + HCl). . Also, in aerobic environments, methane is finally oxidized to carbon dioxide by methane nutrients as the only carbon and energy source, which is the main extinction mechanism of methane.
한편, 주요한 메탄 발생원인 일부 매립지에서는 바이오가스를 포집할 수 있는 가스포집정이 설치되어 있는데, 일반적으로 생성된 바이오가스의 40~60% 정도 회수 가능하다. 매립지에 전면적으로 합성수지 커버를 설치할 경우, 90%까지 바이오가스를 회수 가능할 것으로 보고되고 있다. 매립지에서 배출되는 메탄을 함유한 바이오가스는 회수하여 에너지 등으로 자원화하거나 태워버리거나 복토의 토양미생물을 이용하여 산화·제거할 수 있다. 바이오가스를 연소시켜 연소열을 에너지원으로 자원화하는 방법은 온실가스 저감과 동시에 신재생에너지를 확보하는 차원에서 매우 이상적인 방법이나, 바이오가스 중 메탄 함량이 30% 이상이고 바이오가스 flux가 50 m3 h-1인 경우에만 적용 가능하다. 바이오가스 포집정이 설치된 매립지의 경우, 1톤의 CO2 환산톤에 해당되는 메탄가스를 에너지원으로 자원화하는데 소요되는 설치비와 운전비는 3.1$ US 정도 소요된다. 촉매를 이용하여 메탄가스를 충전탑에서 600∼800℃에서 산화시키는 화학적 산화방법은 메탄가스 농도가 0.1~1%로 저농도일 때 적용 가능한 방법이다. 또한, 메탄을 메탄올로 전환하여 자원화하고자 하는 방법도 연구되고 있다. 매립지에서 폭발위험을 방지하기 위해 바이오가스를 에너지 회수 없이 단순히 태워버리기도 한다. 이러한 단순 소각방법도 가스 포집정이 설치된 매립지에서 적용 가능하며, 바이오가스 중의 메탄농도가 20% 이상이어야 하고 바이오가스 flux가 10∼15 m3 h-1일 때 적용 가능하다. 또한, 바이오가스 소각시 dioxins과 같은 2차 오염물질이 발생하는 문제점이 있다. 우리나라뿐 만 아니라 선진국에서도 가스포집설비가 설치되지 않은 매립지가 여전히 많으며 시간이 많이 경과하거나 매립 규모가 작아 바이오가스 배출량이 적은 매립지가 많이 존재하다. On the other hand, some landfills, which are the major sources of methane, are equipped with gas collection wells that can capture biogas. Generally, about 40 to 60% of the biogas produced can be recovered. It is reported that up to 90% of biogas can be recovered if synthetic resin covers are installed in the landfill. Biogas containing methane discharged from landfills can be recovered, recycled for energy, or burned, or oxidized and removed using cover soil microorganisms. Combustion of biogas as an energy source by burning biogas is an ideal way to reduce greenhouse gases and secure renewable energy.However, methane content of biogas is over 30% and biogas flux is 50 m 3 h. Only applicable when -1 . For landfill biogas collecting Jung installed, installation cost and operation cost required to recycling the methane gas corresponding to CO 2 in terms of tone of the first tone as an energy source is take US $ 3.1. The chemical oxidation method of oxidizing methane gas at 600-800 ° C. in a packed column using a catalyst is a method applicable when the concentration of methane gas is low at 0.1-1%. In addition, a method of converting methane into methanol to be recycled is also being studied. To prevent the risk of explosion in landfills, biogas is simply burned off without energy recovery. This simple incineration method is also applicable to landfills equipped with gas collection wells, when the concentration of methane in biogas is at least 20% and biogas flux is 10-15 m 3 h -1 . In addition, there is a problem that secondary pollutants such as dioxins are generated during incineration of biogas. In Korea as well as in developed countries, there are still many landfills without gas collection facilities, and many landfills with low biogas emissions exist due to the lapse of time or the size of landfills.
가스포집설비가 설치되지 않은 매립지, 시간이 많이 경과하거나 매립규모가 작아 바이오가스 배출량이 적은 매립지의 경우, 온실가스인 메탄 배출을 최소화하기 위해 바이오필터 혹은 바이오커버 등과 같은 생물학적 방법을 활용하고자 하는 연구가 최근 들어 매우 활발하게 진행되고 있다. 이러한 생물학적 방법은 호기적 조건하에서 메탄 산화하여 제거하는 메탄산화세균 활성을 이용하는 것으로, 토양, 퇴비, 토탄 등 다양한 물질을 충전제로 활용하는 바이오필터 혹은 바이오커버가 개발되고 있다. In the case of landfills without gas collection facilities, landfills with low biogas emissions due to the lapse of time or small landfills, researches using biological methods such as biofilters or biocovers to minimize methane emissions, greenhouse gases Has been very active in recent years. The biological method uses methane oxidizing bacterium activity to remove and methane oxidize under aerobic conditions, and biofilters or biocovers have been developed that utilize various materials such as soil, compost, and peat as fillers.
따라서, 현장 적용 평가한 바이오필터와 바이오커버의 성능은 매립지 특성, 충전제 종류 및 환경 조건 등에 따라 메탄 제거 효율이 매우 다양한 것으로 알려져 있어, 메탄 제거를 위해서는 효과적인 메탄산화세균과 충전제의 선택이 필수적이라 할 것이다. Therefore, the performance of biofilters and biocovers evaluated in the field application is known to vary greatly in methane removal efficiency according to landfill characteristics, filler types and environmental conditions. Therefore, it is essential to select effective methane oxidizing bacteria and fillers for methane removal. will be.
본 발명의 목적은 메탄을 분해할 수 있는 신규의 메탄산화세균을 매립지에서 분리 및 동정하는 것이다.It is an object of the present invention to isolate and identify new methanogenic bacteria that can decompose methane in landfills.
본 발명의 다른 목적은 상기 신규 메탄산화세균을 이용하여 메탄을 저감하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for reducing methane by using the novel methane oxidizing bacteria.
본 발명의 또 다른 목적은 상기 신규 메탄산화세균을 이용하여 메탄을 제거할 수 있는 바이오커버(biocover) 및 이를 포함하는 메탄 저감 시스템을 제공하는 것이다.Still another object of the present invention is to provide a biocover capable of removing methane using the novel methane oxidizing bacteria and a methane abatement system including the same.
본 발명의 또 다른 목적은 상기 시스템을 이용하여 메탄을 저감하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method of reducing methane using the system.
상기 목적을 달성하기 위하여, 본 발명은 메틸로시스티스 속(Methylocystis sp.) M6 KCTC 11519BP를 제공한다.In order to achieve the above object, the present invention provides a Methylocystis sp. M6 KCTC 11519BP.
본 발명은 또한 메틸로시스티스 속(Methylocystis sp.) M6 KCTC 11519BP를 포함하는 메탄 저감용 조성물을 제공한다.The present invention also provides a composition for reducing methane comprising Methylocystis sp. M6 KCTC 11519BP.
본 발명은 또한 본 발명의 메탄 저감용 조성물이 메탄을 분해시키는 단계를 포함하는 메탄 저감방법을 제공한다.The present invention also provides a methane reduction method comprising the step of decomposing methane methane reduction composition of the present invention.
본 발명은 또한 본 발명의 메탄 저감용 조성물을 포함하는, 폐기물 매립지의 복토층 또는 지표면에서 발산되는 메탄 저감용 바이오커버를 제공한다.The present invention also provides a methane-reducing biocover emanating from the cover layer or surface of a landfill containing the methane-reducing composition of the present invention.
본 발명은 또한 폐기물 매립지의 복토층 또는 지표면 위에 바이오 활성층을 설치하여 복토층 또는 지표면에서 발산되는 메탄을 생물학적으로 분해하는 메탄 저감 시스템에 있어서, 상기 바이오 활성층은 The present invention also provides a methane abatement system for biologically decomposing methane emitted from the cover layer or the ground surface by installing a bio active layer on the cover layer or the ground surface of the landfill.
본 발명의 바이오커버가 하나 이상 적층된 바이오커버층; 및A biocover layer in which at least one biocover of the present invention is laminated; And
상기 바이오커버층을 둘러싸는 통기층을 포함하는 것을 특징으로 하는 메탄 저감 시스템을 제공한다.It provides a methane reduction system comprising a ventilation layer surrounding the biocover layer.
본 발명은 또한 폐기물 매립지의 복토층 또는 지표면 위에 바이오 활성층을 설치하여 복토층 또는 지표면에서 발산되는 메탄을 생물학적으로 분해하는 메탄 저감 시스템에 있어서, 상기 바이오 활성층은 The present invention also provides a methane abatement system for biologically decomposing methane emitted from the cover layer or the ground surface by installing a bio active layer on the cover layer or the ground surface of the landfill.
본 발명의 바이오커버가 하나 이상 적층된 바이오커버층; 및A biocover layer in which at least one biocover of the present invention is laminated; And
상기 바이오커버층 하부에 적층되는 통기층을 포함하는 것을 특징으로 하는 메탄 저감 시스템을 제공한다.It provides a methane reduction system comprising a ventilation layer stacked on the lower bio cover layer.
본 발명은 또한 본 발명의 메탄 저감 시스템에 시료를 주입하여 메탄을 분해시키는 단계를 포함하는 메탄 저감방법을 제공한다.The present invention also provides a methane abatement method comprising the step of decomposing methane by injecting a sample into the methane abatement system of the present invention.
본 발명의 신규 메틸로시스티스 속 미생물은 메탄 또는 휘발성유기화합물에 대한 분해능이 우수하여 메탄을 생물학적으로 분해할 수 있는 매립지 복토층 또는 지표면에 설치되는 바이오커버에 사용될 수 있다. 또한, 본 발명은 충전제로 지렁이 분변토를 사용함으로써 메탄 산화 효율을 더욱 높일 수 있다.The novel microorganism of the genus methylosciss of the present invention can be used in a biocover installed in a landfill cover or surface that is capable of biologically decomposing methane due to its excellent resolution for methane or volatile organic compounds. In addition, the present invention can further increase the methane oxidation efficiency by using earthworm fecal soil as a filler.
도 1은 지렁이 분변토 혼합비율에 따른 메탄 산화속도를 비교한 것으로, (a) 초기, (b) 활성을 나타낸다.1 is a comparison of the methane oxidation rate according to the earthworm feces mixing ratio, (a) the initial, (b) shows the activity.
도 2는 토양 및 분변토 혼합토양의 메탄 산화 특성을 나타낸 것이다. Figure 2 shows the methane oxidation characteristics of soil and feces mixed soil.
도 3은 메탄산화속도에 미치는 수분 함수량(a)과 온도의 영향(b)을 나타낸 것이다.Figure 3 shows the effect of water content (a) and temperature (b) on the rate of methane oxidation.
도 4는 논토양, 분변토 및 혼합토양의 세균 군집 특성을 비교한 것으로, (a) 일반세균, (b) 메탄산화세균을 나타낸다.Figure 4 is a comparison of the bacterial community characteristics of paddy soil, fecal soil and mixed soil, (a) general bacteria, (b) methane oxide bacteria.
도 5는 분변토 시료의 pmoA-clone과 pmoA-DGGE band clone의 계통발생학적 연관성을 나타낸 것이다.Figure 5 shows the phylogenetic relationship of pmoA -clone and pmoA -DGGE band clone of fecal soil samples.
도 6은 매립지 농화배양액의 메탄 분해를 나타낸 것으로, 기호 ●, 실험군 ○, 대조군을 나타낸다. Figure 6 shows the methane decomposition of the landfill thickening broth, symbol ●, experimental group ○, control.
도 7은 매립지 농화배양액으로부터 얻은 클론의 계통발생학적 트리를 나타낸 것이다. Figure 7 shows a phylogenetic tree of clones obtained from landfill thickening broth.
도 8은 본 발명의 메틸로시스티스속(Methylocystis sp.) M6 균주의 계통발생학적 트리를 나타낸 것이다. Figure 8 shows a phylogenetic tree of Methylocystis sp. M6 strain of the present invention.
도 9는 본 발명의 메틸로시스티스속(Methylocystis sp.) M6의 메탄 분해 특성을 나타낸 것이다. Figure 9 shows the methane decomposition characteristics of Methylocystis sp. M6 of the present invention.
도 10은 실험실 규모의 바이오커버 및 실험실 규모의 바이오커버 설치 도면을 나타낸 것이다.10 shows a laboratory scale biocover and a laboratory scale biocover installation drawing.
도 11은 바이오커버 표면에서 배출되는 메탄 농도를 비교한 것이다 (40% CH4+60% CO2(v/v) 혼합가스 유량: 10 mL/min).FIG. 11 compares the methane concentration emitted from the biocover surface (40% CH 4 + 60% CO 2 (v / v) mixed gas flow rate: 10 mL / min).
도 12는 바이오커버 각 높이 별로 O2, N2, CH4 및 CO2 농도변화를 나타낸 것이다 (40% CH4+60% CO2(v/v) 혼합가스 유량: 10 mL/min).12 shows changes in O 2 , N 2 , CH 4 and CO 2 concentrations at each height of the biocover (40% CH 4 + 60% CO 2 (v / v) mixed gas flow rate: 10 mL / min).
도 13은 바이오커버 표면에서 배출되는 메탄 농도를 비교한 것이다 (40% CH4+60% CO2(v/v) 혼합가스 유량: 20 mL/min).FIG. 13 compares the methane concentration emitted from the biocover surface (40% CH 4 + 60% CO 2 (v / v) mixed gas flow rate: 20 mL / min).
도 14는 바이오커버 각 높이 별로 O2, N2, CH4 및 CO2 농도변화를 나타낸 것이다 (40% CH4+60% CO2(v/v) 혼합가스 유량: 10 mL/min).FIG. 14 shows changes in O 2 , N 2 , CH 4 and CO 2 concentrations at each height of the biocover (40% CH 4 + 60% CO 2 (v / v) mixed gas flow rate: 10 mL / min).
도 15는 매립지에 설치하기 위한 본 발명의 바이오커버를 포함하는 메탄 또는 휘발성유기화합물 저감 시스템을 나타낸 것이다.15 shows a methane or volatile organic compound reduction system including the biocover of the present invention for installation in a landfill.
이하, 본 발명의 구성을 구체적으로 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the structure of this invention is demonstrated concretely.
본 발명은 메틸로시스티스 속(Methylocystis sp.) M6 KCTC 11519BP에 관한 것이다.The present invention relates to Methylocystis sp. M6 KCTC 11519BP.
본 발명의 미생물은 메탄 또는 휘발성유기화합물의 분해능이 우수한 신규 메탄산화세균으로, 매립지 토양과 농화배양배지, 예를 들어 NMS(nitrate mineral salts) 배지를 첨가한 배양병을 밀봉하고, 탄소원으로 메탄을 주입하되, 배양 동안 질소와 인을 계속적으로 공급한 후 농화배양액을 접종원으로 사용하여 메탄 분해능이 우수한 신규 메탄산화세균, 메틸로시스티스 속(Methylocystis sp.) M6를 분리 동정하고, 2009년 6월 3일자로 한국생명공학연구원 생물자원센터에 기탁하여 기탁번호 KCTC 11519BP를 받았다. 상기 메틸로시스티스 속(Methylocystis sp.) M6 균주는 메탄 외에도 휘발성유기화합물에 대한 분해능이 우수하다.The microorganism of the present invention is a novel methane oxidizing bacterium having excellent resolution of methane or volatile organic compounds, sealing a culture bottle containing landfill soil and enriched culture medium, for example, NMS (nitrate mineral salts) medium, and methane as a carbon source. Injected with nitrogen and phosphorus continuously during incubation, isolates and identified a new methane-oxidizing bacterium, Methylocystis sp. On 3rd, he was deposited with the Korea Institute of Bioscience and Biotechnology, and received the accession number KCTC 11519BP. Methylocystis sp. M6 strain is excellent in the resolution of volatile organic compounds in addition to methane.
본 발명은 또한 메틸로시스티스 속(Methylocystis sp.) M6 KCTC 11519BP를 포함하는 메탄 저감용 조성물에 관한 것이다.The present invention also relates to a composition for reducing methane comprising Methylocystis sp. M6 KCTC 11519BP.
본 발명의 조성물은 메탄을 제거하기 위해 메탄산화세균으로 본 발명의 신규한 메틸로시스티스 속(Methylocystis sp.) M6 KCTC 11519BP를 사용할 수 있다. The composition of the present invention can use the novel Methylocystis sp. M6 KCTC 11519BP of the present invention as methane oxidizing bacteria to remove methane.
또한, 본 발명의 메탄 저감용 조성물은 세균 배양액의 배양 환경 조성을 위한 충전제로 토양, 또는 지렁이 분변토 등을 단독 또는 둘 다 사용할 수 있다. In addition, the methane reducing composition of the present invention may be used alone or both of the soil, earthworm fecal soil, etc. as a filler for the culture environment composition of the bacterial culture.
상기 지렁이 분변토는 하수처리과정에서 발생한 하수오니를 지렁이 먹이로 공급하여 생산된 지렁이 분변토로, 6개월 이상 자연 발효/건조과정을 거친 후 불순물을 제거하고 입자 크기가 0.2 내지 2 mm인 것을 사용할 수 있다. The earthworm fecal soil is an earthworm fecal soil produced by supplying the sewage sludge generated in the sewage treatment process to earthworm food. After the natural fermentation / drying process for more than 6 months, impurities may be removed and the particle size may be 0.2 to 2 mm. .
또한, 상기 토양은 논/밭 토양, 산림토양, 또는 습지 토양 등을 사용할 수 있으나, 이에 특별히 제한하지는 않는다.In addition, the soil may be paddy / field soil, forest soil, or wetland soil, but is not particularly limited thereto.
상기 토양은 표면층에서 100 내지 200 cm 깊이에서 채취한 후, 3 mm 이하의 체로 쳐서 큰 입자는 제거하고 사용할 수 있다.The soil can be collected at a depth of 100 to 200 cm from the surface layer, and then sieved up to 3 mm to remove large particles.
상기 토양과 지렁이 분변토의 pH는 5 내지 7, 함수량은 1 내지 40%, 유기물 함량은 1 내지 40%로 사용할 수 있으나, 이에 특별히 제한하지는 않는다.The soil and earthworm fecal soil pH is 5 to 7, the water content is 1 to 40%, the organic content may be used as 1 to 40%, but is not particularly limited thereto.
또한, 상기 토양 및 지렁이 분변토는 중량 대비 50 : 50 내지 90 : 10의 비율로 혼합되는 것이 바람직하다. 상기 함량 범위 내일 경우, 메탄의 저감 효율이 높기 때문이다. In addition, the soil and earthworm fecal soil is preferably mixed in a ratio of 50: 50 to 90: 10 to weight. It is because the reduction efficiency of methane is high when it is in the said content range.
본 발명은 또한 본 발명의 메탄 저감용 조성물이 메탄을 분해시키는 단계를 포함하는 메탄 저감방법에 관한 것이다.The present invention also relates to a methane reduction method comprising the step of decomposing methane methane reduction composition of the present invention.
본 발명의 메탄 저감용 조성물은 탄소원으로 메탄을 사용하여 이들을 효과적으로 분해할 수 있다. The methane reducing composition of the present invention can effectively decompose these using methane as a carbon source.
본 발명은 또한 본 발명의 메탄 저감용 조성물을 포함하는, 폐기물 매립지의 복토층 또는 지표면에서 발산되는 메탄 저감용 바이오커버에 관한 것이다.The present invention also relates to a methane-reducing biocover emanating from the cover layer or surface of a landfill containing the methane-reducing composition of the present invention.
본 발명의 메탄 저감용 조성물을 메탄 저감용 바이오커버에 넣어주고 상기 바이오커버와 메탄을 접촉시키면 메탄이 효과적으로 분해될 수 있다.When the methane reducing composition of the present invention is put in a methane reducing biocover and the biocover is contacted with methane, methane may be effectively decomposed.
본 발명의 바이오커버는 본 발명의 메탄 저감용 조성물을 함유하는 바이오 메디아층을 포함할 수 있다. The biocover of the present invention may include a biomedia layer containing the composition for reducing methane of the present invention.
상기 바이오 메디아층은 메탄을 생물학적으로 분해할 수 있는 메탄산화세균으로 메틸로시스티스 속(Methylocystis sp.) M6 KCTC 11519BP를 포함할 수 있다. The biomedia layer may include Methylocystis sp. M6 KCTC 11519BP as a methane oxidizing bacterium capable of biologically decomposing methane.
또한, 상기 바이오 메디아층은 메탄의 분해 효율을 높이기 위해 통상의 메탄산화세균을 더 포함할 수 있다. 상기 메탄산화세균으로는 메틸로모나스속(Methylomonas), 메틸로마이크로비움속(Methylomicrobium), 메틸로박터속(Methylobacter), 메틸로칼둠속(Methylocaldum), 메틸로파가속(Methylophaga), 메틸로사르시나속(Methylosarcina), 메틸로써머스속(Methylothermus), 메틸로할로비우스속(Methylohalobius), 메틸로스파에라속(Methylosphaera), 메틸로시스티스속(Methylocystis), 메틸로셀라속(Methylocella), 메틸로캅사속(Methylocapsa), 메틸로시너스속(Methylosinus), 또는 메틸로코커스속(Methylococcus) 등을 단독 또는 2종 이상 사용할 수 있다. In addition, the biomedia layer may further include a conventional methane oxidizing bacteria in order to increase the decomposition efficiency of methane. In the methane is methyl by oxidation bacteria Pseudomonas genus (Methylomonas), methyl micro emptying in (Methylomicrobium), methyl bakteo in (Methylobacter), methyl local dumsok (Methylocaldum), waves with methyl acceleration (Methylophaga), Sar with methyl or when a Methylosarcina , Methylothermus , Methylohalobius , Methylosphaera , Methylocystis , Methylocella , Methyl rokap sasok (Methylocapsa), may be used alone or two or more kinds in Sinners (Methylosinus), or methyl Rhodococcus genus (Methylococcus) such as methyl.
또한, 상기 바이오 메디아층은 충전제로 토양 또는 지렁이 분변토를 포함할 수 있다. 상기 토양의 종류, 지렁이 분변토의 제조방법은 전술한 바와 같다.In addition, the biomedia layer may include soil or earthworm fecal soil as a filler. The type of the soil, the manufacturing method of earthworm fecal soil is as described above.
또한, 상기 바이오 메디아층은 메탄산화세균이 필요로 하는 산소를 공급하여 바이오커버의 두께를 얇게 하기 위하여 산소생성제를 더 포함할 수 있다. In addition, the biomedia layer may further include an oxygen generating agent to supply the oxygen required by the methane oxide bacteria to reduce the thickness of the bio cover.
상기 산소생성제는 과산화마그네슘, 과산화칼슘, 또는 과탄산나트륨 등을 단독 또는 2종 이상 사용할 수 있다. The oxygen generating agent may be used alone or two or more of magnesium peroxide, calcium peroxide, sodium percarbonate and the like.
본 발명은 또한 폐기물 매립지의 복토층 또는 지표면 위에 바이오 활성층을 설치하여 복토층 또는 지표면에서 발산되는 메탄을 생물학적으로 분해하는 메탄 저감 시스템에 있어서, 상기 바이오 활성층은 The present invention also provides a methane abatement system for biologically decomposing methane emitted from the cover layer or the ground surface by installing a bio active layer on the cover layer or the ground surface of the landfill.
본 발명의 바이오커버가 하나 이상 적층된 바이오커버층; 및A biocover layer in which at least one biocover of the present invention is laminated; And
상기 바이오커버층을 둘러싸는 통기층을 포함하는 것을 특징으로 하는 메탄 저감 시스템에 관한 것이다.It relates to a methane abatement system comprising a ventilation layer surrounding the biocover layer.
상기 바이오커버층은 메탄산화세균과 지렁이 분변토를 포함하고 있어 메탄을 생물학적으로 분해할 수 있다.The biocover layer contains methane oxidizing bacteria and earthworm fecal soil, which can biologically decompose methane.
상기 메탄산화세균으로 본 발명의 신규 메틸로시스티스 속(Methylocystis sp.) M6 KCTC 11519BP를 포함할 수 있다. The methane oxidizing bacteria may include the novel Methylocystis sp. M6 KCTC 11519BP of the present invention.
상기 메탄산화세균은 전술한 통상의 메탄산화세균을 더 포함할 수 있다. The methane oxidizing bacteria may further comprise the above-described conventional methane oxidizing bacteria.
또한, 바이오커버층은 메탄의 산화 효율을 높이기 위해 충전제로 토양 또는 지렁이 분변토를사용할 수 있다. 토양 또는 지렁이 분변토에 대한 구체적인 사항은 전술한 바와 같다.In addition, the biocover layer may use soil or earthworm fecal soil as a filler to increase the oxidation efficiency of methane. Details of the soil or earthworm feces are as described above.
또한, 상기 바이오커버층의 두께는 50 내지 500 mm 인 것이 바람직하다. 상기 두께가 50 mm 미만인 경우, 메탄산화세균과 메탄가스가 접촉할 수 있는 시간이 짧아 산화작용이 충분히 일어나지 않아 메탄가스가 이산화탄소로 전환되지 못한다. 상기 두께가 500 mm를 초과할 경우, 대기에서 확산되는 산소가 바이오커버층의 저면까지 확산하지 못하여 호기성 조건을 조성할 수 없다.In addition, the thickness of the biocover layer is preferably 50 to 500 mm. When the thickness is less than 50 mm, the time for contact between the methane oxidizing bacteria and methane gas is short so that the oxidation does not occur sufficiently that the methane gas is not converted to carbon dioxide. When the thickness exceeds 500 mm, oxygen diffused in the atmosphere cannot diffuse to the bottom of the biocover layer and thus cannot establish aerobic conditions.
상기 바이오커버층은 산소를 공급하기 위한 통기층이 둘러싸고 있다. 상기 통기층을 구성하는 성분은 산소 공급이 가능한 입자 크기를 갖는 것이라면 특별히 제한하지는 않는다. 예를 들어, 모래, 또는 자갈로 구성될 수 있다. 또한, 상기 통기층에는 공기를 공급할 수 있는 통기관이 하나 이상 설치되어 있을 수 있다. 상기 통기관을 통해 송풍기로 공기를 주입할 수 있다.The biocover layer is surrounded by a ventilation layer for supplying oxygen. The component constituting the ventilation layer is not particularly limited as long as it has a particle size capable of supplying oxygen. For example, it may consist of sand or gravel. In addition, the ventilation layer may be provided with at least one vent pipe for supplying air. Air may be injected into the blower through the vent pipe.
본 발명은 또한 폐기물 매립지의 복토층 또는 지표면 위에 바이오 활성층을 설치하여 복토층 또는 지표면에서 발산되는 메탄을 생물학적으로 분해하는 메탄 저감 시스템에 있어서, 상기 바이오 활성층은 The present invention also provides a methane abatement system for biologically decomposing methane emitted from the cover layer or the ground surface by installing a bio active layer on the cover layer or the ground surface of the landfill.
본 발명의 바이오커버가 하나 이상 적층된 바이오커버층; 및A biocover layer in which at least one biocover of the present invention is laminated; And
상기 바이오커버층 하부에 적층되는 통기층을 포함하는 것을 특징으로 하는 메탄 저감 시스템에 관한 것이다.It relates to a methane abatement system comprising a ventilation layer stacked below the biocover layer.
본 발명의 메탄 저감 시스템은 복토층과 바이오커버층 사이의 산소를 공급할 수 있는 통기층이 적층될 수 있다.In the methane reduction system of the present invention, a ventilation layer capable of supplying oxygen between the cover layer and the biocover layer may be stacked.
상기 바이오커버층에 대한 구체적인 내용은 전술한 바와 같다.Details of the biocover layer are as described above.
상기 통기층을 구성하는 성분은 산소 공급이 가능한 입자 크기를 갖는 것이라면 특별히 제한하지는 않는다. 예를 들어, 모래, 또는 자갈로 구성될 수 있다. 또한, 상기 통기층에는 공기를 공급할 수 있는 통기관이 하나 이상 설치되어 있을 수 있다. 상기 통기관을 통해 송풍기로 공기를 주입할 수 있다.The component constituting the ventilation layer is not particularly limited as long as it has a particle size capable of supplying oxygen. For example, it may consist of sand or gravel. In addition, the ventilation layer may be provided with at least one vent pipe for supplying air. Air may be injected into the blower through the vent pipe.
본 발명은 또한 본 발명의 메탄 저감 시스템에 시료를 주입하여 메탄을 분해시키는 단계를 포함하는 메탄 저감방법에 관한 것이다.The present invention also relates to a methane abatement method comprising the step of decomposing methane by injecting a sample into the methane abatement system of the present invention.
본 발명의 메탄 저감 시스템에 메탄가스를 주입할 경우 본 발명의 메탄산화세균과, 충전제로 지렁이 분변토를 사용하여 효과적으로 분해될 수 있다.When the methane gas is injected into the methane abatement system of the present invention, the methane oxidizing bacteria of the present invention and the earthworm fecal soil as a filler can be effectively decomposed.
이하, 본 발명에 따르는 실시예 및 본 발명에 따르지 않는 비교예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples according to the present invention and comparative examples not according to the present invention, but the scope of the present invention is not limited to the examples given below.
<실시예 1> 지렁이 분변토의 메탄 저감 효과Example 1 Methane Reduction Effect of Earthworm Fecal Soil
본 실시예에서 사용한 토양은 경기도의 논 토양으로, 표면층에서 약 30cm 이상 파낸 뒤 채취하였으며, 채취한 토양을 2 mm 체로 쳐서 큰 입자를 제거하였다. 또한, 지렁이 분변토는 서울 소재 하수처리설비에서 채취하였다. 하수처리과정에서 발생한 하수오니를 지렁이 먹이로 공급하여 생산된 지렁이 분변토로, 6개월 이상 자연 발효/건조과정을 거친 후 불순물 제거 및 입자 크기 선별과정을 거친 평균입자 크기가 0.2-2 mm의 것을 사용하였다. The soil used in this example was paddy soil of Gyeonggi-do, which was collected after digging more than about 30 cm from the surface layer, and removing the large particles by striking the collected soil with a 2 mm sieve. Earthworm fecal soil was also collected from sewage treatment facility in Seoul. An earthworm fecal soil produced by supplying sewage sludge from sewage treatment to earthworm food, and using average particle size of 0.2-2 mm after natural fermentation / drying process for more than 6 months and impurities removed and particle size selection process It was.
토양과 분변토의 pH는 각각 6.47±0.08, 5.23±0.13 이었고, 함수량은 2.27±0.11%, 38.09±1.39%, 유기물 함량은 1.71±0.24%, 37.41±1.21%이었다.Soil and fecal soil pHs were 6.47 ± 0.08 and 5.23 ± 0.13, respectively, and the water contents were 2.27 ± 0.11%, 38.09 ± 1.39%, and organic matter contents were 1.71 ± 0.24% and 37.41 ± 1.21%, respectively.
<실험예 1> 메탄 산화속도에 미치는 토양 및 지렁이 분변토 혼합비 영향Experimental Example 1 Effect of Soil and Earthworm Fecal Mix Ratio on Methane Oxidation Rate
토양과 분변토 혼합비 차이에 따른 메탄제거속도의 차이를 조사하기 위해, 논 토양과 분변토를 10:0(w/w), 1:9, 2:8, 3:7, 4:6 및 5:5 조건이 되도록 혼합한 뒤, 각각 혼합토양의 함수율이 25%가 되도록 증류수를 첨가하였다. 각각의 혼합토양을 600 mL-혈청병에 50 g씩 첨가한 후, 부틸 러버로 밀폐한 후 메탄가스를 최종농도가 5% (50,000 ppmv)가 되도록 주입하였다. 25℃ 항온조건에 정치배양하면서 주기적으로 혈청병 상부의 메탄 농도 분석하여, 메탄농도가 200 ppmv 이하로 저하되면, 상기와 동일 농도의 메탄가스를 재주입하였다. 동일한 방법으로 메탄가스 재주입을 5-10회 수행하였고, 재주입에 따른 메탄산화속도를 구하였다.In order to investigate the difference of methane removal rate according to the difference of soil and fecal soil mix ratio, paddy soil and fecal soil were treated with 10: 0 (w / w), 1: 9, 2: 8, 3: 7, 4: 6 and 5: 5. After mixing to the conditions, distilled water was added so that the water content of the mixed soil was 25%. 50 g of each mixed soil was added to 600 mL-serum bottles, sealed with butyl rubber, and injected with methane gas at a final concentration of 5% (50,000 ppmv). When the methane concentration of the upper portion of the serum bottle was periodically analyzed while stationary incubation at 25 ° C., the methane gas having the same concentration as above was re-injected. Methane gas re-injection was performed 5-10 times in the same way, and the rate of methane oxidation following re-injection was determined.
각 혈청병의 headspace의 가스는 gas-tight syringe(Agilent)를 이용하여 0.5mL 채취한 후 FID(Flame Ionization detector)가 장착된 GC(Gas chromatography, Agilent 6890 plus, USA)를 이용하여 CH4 농도분석을 하였다. 분석 조건은 HP-1 column(30 m × 0.320 mm × 0.25 ㎛), carrier gas(H2 35 mL/min, air 300 mL/min), make-up gas(N2 30 mL/min), split ratio 12:1, 주입부 온도 250℃, 검출부 온도 250℃, 오븐 온도 100℃(2.5분 hold)에서 수행하였다. CH4을 포함하여 산소, 이산화탄소 농도 분석을 위해 TCD (Thermal conductivity detector)가 장착된 GC (Gas chromatography, Agilent 7890A, USA)를 이용하였다. 분석 조건은 Molesive 5A column (30 m×0.53 mm×25 ㎛), carrier gas (He 20 mL/min), make-up gas (He 3 mL/min) split ratio 2:1, 주입부 온도 200℃, 검출부 온도 250℃, 오븐 온도 50℃ (3분 hold), 30℃/min 에서 250℃(2 분 hold)에서 수행하였다.0.5 mL of gas from the headspace of each serum bottle was collected using a gas-tight syringe (Agilent), and then CH 4 concentration analysis was performed using gas chromatography (Agilent 6890 plus, USA) equipped with a flame ionization detector (FID). It was. Analytical conditions were HP-1 column (30 m × 0.320 mm × 0.25 μm), carrier gas (H 2 35 mL / min, air 300 mL / min), make-up gas (N 2 30 mL / min), split ratio 12: 1, injection unit temperature 250 ° C, detection unit temperature 250 ° C, oven temperature 100 ° C (2.5 minutes hold). Gas chromatography, Agilent 7890A, USA (GC) equipped with TCD (Thermal conductivity detector) was used for oxygen and carbon dioxide concentration analysis, including CH 4 . Analytical conditions were Molesive 5A column (30 m × 0.53 mm × 25 μm), carrier gas (He 20 mL / min), make-up gas (He 3 mL / min) split ratio 2: 1, inlet temperature 200 ° C, The detection unit temperature was performed at 250 ° C., oven temperature 50 ° C. (3 minutes hold), and 30 ° C./min at 250 ° C. (2 minutes hold).
토양과 분변토의 혼합비에 따른 메탄제거용량 (산화속도)을 도 1에 도시하였다.Methane removal capacity (oxidation rate) according to the mixing ratio of soil and fecal soil is shown in FIG. 1.
도 1에 나타난 바와 같이, 분변토를 혼합하지 않은 토양만의 메탄산화속도는 초기 상태에서 1.5 ㎍·g-day soil-1·h-1이었으며, 농화배양 후에는 4.9 1.5 ㎍·g-day soil-1·h-1으로 향상되었다. As shown in Fig. 1, the methane oxidation rate of only non-mixed bunbyeonto soil was 1.5 ㎍ · g-day soil -1 · h -1 in an initial state, after the concentrated culture 4.9 1.5 ㎍ · g-day soil - It was improved to 1 · h -1 .
분변토를 토양에 10, 20, 30, 40, 50% (w/w)의 비율로 혼합한 경우 메탄 산화능이 8.6-25.1 ㎍·g-day soil-1·h-1 (6.1-17.9 g·m-3·h-1) 이었다. 이는 지렁이 분변토의 비율을 10%까지 낮추어도 만족할만한 메탄산화능을 얻을 수 있는 것을 보여준다. When fecal soil is mixed with soil at a ratio of 10, 20, 30, 40, 50% (w / w), the methane oxidation capacity is 8.6-25.1 ㎍ g-day soil -1 h -1 (6.1-17.9 g -3 h -1 ). This shows that satisfactory methane oxidation can be obtained even if the ratio of earthworm fecal soil is reduced to 10%.
Filter bed는 메탄산화세균을 포함한 biofilm이 배양되는 곳이므로 미생물의 생장에 충분한 공간이 필요하며, 높은 함수율을 요구하고, 물리/화학/생물학적인 속성에 잘 부합해야 하며, 저렴할수록 유리하다. 따라서 분변토는 filter bed로써의 요건을 충분히 갖추었으며, 적은 양의 혼합으로도 좋은 메탄 산화능을 얻으므로 바이오커버 및 바이오필터의 소재로 활용 가능함을 확인하였다.The filter bed is a place where biofilm containing methane oxidizing bacteria is cultured, so it needs enough space for growth of microorganisms, requires high water content, meets physical / chemical / biological properties, and the lower the cost, the better. Therefore, fecal soil was sufficiently satisfied as a filter bed, and it was confirmed that it can be used as a material for biocover and biofilter because it obtains good methane oxidation ability even with a small amount of mixing.
<실험예 2> 메탄 산화능에 미치는 온도 및 수분함량의 영향Experimental Example 2 Effect of Temperature and Water Content on Methane Oxidation Capacity
논 토양과 지렁이 분변토를 5:5로 혼합한 토양을 대상으로 메탄산화속도에 미치는 온도와 함수율의 영향을 조사하기 위해, 13개의 600 mL-혈청병에 혼합토양(논 토양:분변토=5:5, w/w)을 100 g 씩 주입한 후, 메탄가스를 5%가 되도록 첨가하였다. 25℃ 항온조건에 정치배양하면서 메탄 농도가 200 ppmv 이하로 저하되면 메탄을 재주입하는 과정을 5회 수행하였다. 이렇게 steady state 에 도달한 혼합토양을 각각의 혈청병에서 꺼내 균일하게 혼합한 후(총 1300g 정도), 혼합토양의 함수율이 15% 이하가 될 때까지 3일간 자연건조 시켰다. 자연건조 시킨 혼합토양을 600 mL-혈청병에 50 g씩 분주하였다.To investigate the effects of temperature and water content on methane oxidation rate in soils mixed with 5: 5 of paddy soils and earthworm feces, mixed soils in 13 600 mL-serum bottles (paddy soil: fecal soil = 5: 5, After 100 g of w / w) was added, methane gas was added to 5%. When the methane concentration was lowered to 200 ppmv or less while incubated at 25 ° C. under constant temperature, the process of reinjecting methane was performed five times. The mixed soil reaching the steady state was removed from each serum bottle and mixed uniformly (about 1300 g in total), and then naturally dried for 3 days until the moisture content of the mixed soil became 15% or less. 50 g each of the naturally dried mixed soil was dispensed into 600 mL-serum bottles.
메탄분해능에 미치는 함수율의 영향을 조사하기 위해 혼합토양을 50 g씩 넣은 혈청병의 혼합토양의 함수율이 15, 20, 25, 30, 35 및 40%가 되도록 증류수를 첨가한 후, 밀폐하였다. 메탄가스를 주입하고 (최종농도: 50,000 ppmv), 25℃에서 정치배양하면서 주기적으로 혈청병 상부의 메탄 농도 분석하여, 메탄농도가 200 ppmv 이하로 저하되면, 동일 농도가 되도록 메탄가스를 재주입하였다. 이러한 방법으로 재주입을 5회 수행하였으며, 시간에 따른 메탄농도감소를 계산하여 메탄산화속도를 계산하였다. 각 함수율 조건 별로 혈청병을 2 세트씩 준비하여 실험을 수행하였다. In order to investigate the effect of the water content on the methane decomposition ability, distilled water was added and sealed after adding 15, 20, 25, 30, 35 and 40% water content of the mixed soil of the serum bottle containing 50 g of the mixed soil. Methane gas was injected (final concentration: 50,000 ppmv) and methane concentration was periodically analyzed at the top of the serum bottle while static culture at 25 ° C. When the methane concentration was lowered below 200 ppmv, methane gas was reinjected to the same concentration. Re-injection was performed 5 times in this way, and the methane oxidation rate was calculated by calculating the methane concentration decrease over time. The experiment was performed by preparing two sets of serum bottles for each moisture content condition.
한편, 메탄산화능에 미치는 온도의 영향을 조사하기 위해 혼합토양을 50 g씩 넣은 혈청병의 혼합토양의 함수율이 25%가 되도록 증류수를 첨가한 후, 밀폐 후 메탄가스를 주입하였다(최종농도: 50,000 ppmv). 각 혈청병을 15, 20, 25, 30, 35 및 40℃에서 정치배양하면서, 메탄분해속도를 측정하였다. 각 온도 조건 별로 혈청병을 2 세트 준비하여 실험을 수행하였다. 온도 영향 실험 역시 함수율 영향 실험과 동일하게 메탄을 5회 재주입하여 각 주입시의 메탄분해속도를 계산하여 평균값을 구하였다. On the other hand, to investigate the effect of temperature on the methane oxidation capacity, distilled water was added so that the moisture content of the mixed soil of the serum bottle containing 50 g of mixed soil was 25%, and then methane gas was injected after closing (final concentration: 50,000 ppmv). ). The methane degradation rate was measured while each serum bottle was incubated at 15, 20, 25, 30, 35 and 40 ° C. Experiments were performed by preparing two sets of serum bottles for each temperature condition. In the temperature effect experiment, methane was reinjected 5 times in the same manner as the water content effect experiment, and the average value was calculated by calculating the methane decomposition rate at each injection.
논 토양과 분변토 혼합토양의 메탄산화특성을 상세하게 조사하기 위해 혈청병 실험을 수행하였다. 우선, 혼합토양에서 물리적/화학적 반응에 의해 메탄이 제거되는지 조사하기 위해 혼합토양을 멸균하여 메탄 제거 여부를 조사한 결과 물리적 흡착이나 화학적 반응에 의한 메탄 제거는 관찰되지 않았다(미도시됨). Serum disease experiments were conducted to investigate the methane oxidation characteristics of paddy soil and fecal mixed soil in detail. First, in order to investigate whether methane is removed by physical / chemical reaction in the mixed soil, the methane was removed by sterilizing the mixed soil, and the removal of methane by physical adsorption or chemical reaction was not observed (not shown).
또한, 도 2에 나타난 바와 같이, 혼합토양의 메탄 제거 특성을 조사한 결과, 혼합토양에서 첫 번째 메탄 주입 시 약 2일의 lag period 후에 메탄이 제거되었으나, 두 번째 메탄 재주입부터는 lag period 없이 메탄 제거가 관찰되었다(도 2a). 이 결과는 논 토양보다는 분변토에 메탄분해에 관여하는 미생물이 더 많은 것으로 사료된다. 따라서 분변토는 메탄제거 시스템에 있어 우수한 접종원 중의 하나로 사료된다. In addition, as shown in FIG. 2, when the methane removal characteristics of the mixed soil were examined, methane was removed after about two days of lag period when the first methane was injected, but the methane was removed without a lag period from the second methane reinjection. Was observed (FIG. 2A). This result suggests that fecal soil contains more microorganisms involved in methane decomposition than paddy soil. Fecal soil is therefore considered one of the best inoculum in methane removal system.
또한, 메탄의 농도 감소와 더불어 산소 농도와 이산화탄소 농도 역시 증가하였으나, 메탄을 주입하지 않는 경우에는 이산화탄소 농도 증가가 관찰되지 않았다(도 2b). 이는 메탄이 메탄산화세균에 의해 분해되어 이산화탄소로 배출되었음을 의미한다. 메탄산화세균은 CH4을 CO2로 완전 산화시키는 에너지대사 경로를 따르거나 세포구성물질로 변화시키는 물질대사경로를 따르게 된다: CH4 + 2O2 Biomass + CO2 + 2H2O 즉, CH4 산화 생성물인 HCHO를 세포물질 합성을 위해서도 사용함으로써 이론적으로 CH4 한 분자당 CO2 생성량은 한 분자 이하가 된다. 따라서 메탄산화세균에 의해 CH4이 CO2로 산화되기는 하나, 일부는 물질대사를 거침으로써 온실효과 기체의 총량 자체를 줄일 수 있다는 것이다. 본 실험예에서 습도 25%, 온도 25℃의 조건에서 CH4 소모량에 대한 CO2 발생량의 비가 0.46이었으며, 함수율이 40%일 때는 0.97로 측정되었다. 따라서 모든 CH4이 같은 농도의 CO2로 산화되는 것은 아님을 확인하였으며, 이러한 사실은 지구온난화 방지 측면으로 볼 때, 지구온난화 가스의 총량을 저감할 수 있다는 점을 공학적으로 이용할 수 있는 가능성을 보여주고 있다.In addition, oxygen concentration and carbon dioxide concentration also increased with the decrease of the concentration of methane, but no increase of the carbon dioxide concentration was observed when no methane was injected (FIG. 2B). This means that methane was decomposed by methane oxidizing bacteria and released into carbon dioxide. Methane oxidizing bacteria follow an energy metabolic pathway that completely oxidizes CH 4 to CO 2 or a metabolic pathway that transforms them into cellular components: CH 4 + 2O 2 Biomass + CO 2 + 2H 2 O, ie CH 4 oxidation By using HCHO, a product, for the synthesis of cellular materials, theoretically, the amount of CO 2 produced per molecule of CH 4 is less than one molecule. Therefore, although CH 4 is oxidized to CO 2 by methane oxidizing bacteria, some of them can reduce the total amount of greenhouse gases by metabolism. In this Experimental Example, the ratio of CO 2 generation to CH 4 consumption at 25% humidity and 25 ° C was 0.46, and 0.97 when the water content was 40%. Therefore, it was confirmed that not all CH 4 is oxidized to the same concentration of CO 2 , which shows the possibility of engineering the fact that the total amount of global warming gas can be reduced in terms of prevention of global warming. Giving.
메탄의 농도 별로 토양과 지렁이 분변토의 혼합비율이 5:5인 혼합토양을 이용하여 함수율 변화에 따른 메탄산화능의 영향을 도 3a에 도시하였다. 수분함량이 25%일 때의 메탄산화속도는 559.5 ㎍·g-dry soil-1·h-1 이었으며, 25%보다 높거나 낮은 수분함량에서는 수분함량이 25%일 때의 57~78%의 상대값을 보였다. 그러나 지렁이 분변토와 논 토양의 혼합토양은 수분함량이 15~40%의 넓은 범위에서 메탄을 효과적으로 제거하였다. 일반적으로 매립지의 수분함량이 7~45%까지 폭넓게 분포함을 고려할 때, 지렁이 분변토 혼합토가 바이오커버(biocover) 소재로 적합함을 알 수 있다. 3A shows the effect of methane oxidation ability according to the change in water content using a mixed soil having a mixing ratio of soil and earthworm fecal soil by 5: 5 concentration. The rate of methanation at 25% water content was 559.5 ㎍ · g-dry soil -1 · h -1, and at 57% -78% water content at 25% water content above or below 25% water content. Value was shown. However, the mixed soil of earthworm fecal soil and paddy soil effectively removed methane in a wide range of water content of 15-40%. In general, considering that the water content of the landfill is widely distributed from 7 to 45%, it can be seen that the earthworm feces mixed soil is suitable as a biocover (biocover) material.
또한, 메탄 산화에 대한 수분함량의 영향을 조사한 결과, 지렁이 분변토 혼합토양의 수분함량이 15~40%일 때의 메탄제거용량은 landfill soil의 4.4~7.8배 이상이므로 다른 보고에 비하여 월등히 높은 성능을 보인다. In addition, as a result of examining the effect of water content on the methane oxidation, the methane removal capacity when the water content of earthworm fecal mixed soil is 15-40% is more than 4.4 ~ 7.8 times that of landfill soil, which is much higher than other reports. see.
메탄산화속도에 미치는 온도의 영향은 도 3b에 도시하였다. 메탄 산화를 위한 최적 온도는 25℃로 농화배양 후 메탄산화속도가 504.8 ㎍·g-dry soil-1·h-1 이었다. 25℃ 이하로 온도가 감소함에 따라 메탄산화능이 급격하게 저하되었으며 15℃에서는 25℃의 약 26%로 감소하였다. 하지만 25℃ 제외한 20~40℃의 범위에서 메탄산화속도는 129 내지 380 ㎍·g-dry soil-1·h-1으로 비교적 넓은 온도범위에서 우수한 메탄산화능을 얻을 수 있었다. The effect of temperature on the rate of methane oxidation is shown in Figure 3b. The optimum temperature for methane oxidation was 25 ℃ and the rate of methane oxidation was 504.8 ㎍ · g-dry soil -1 · h -1 after enrichment. As the temperature was lowered below 25 ° C., the methane oxidation capacity decreased drastically and at 15 ° C. decreased to about 26% of 25 ° C. However, the methane oxidation rate in the range of 20 ~ 40 ℃ excluding 25 ℃ 129 ~ 380 ㎍ · g-dry soil -1 · h -1 was able to obtain excellent methane oxidation capacity in a relatively wide temperature range.
이 결과로 볼 때 메탄산화세균은 중온성 미생물로 볼 수 있다. 매립지 내부는 계절별 온도 변화에 큰 차이가 없지만, 메탄산화세균의 서식이 가장 왕성할 것으로 예상되는 깊이 10~30 cm의 복토층은 대기 중의 공기와 직접적으로 맞닿는 부분이 있기 때문에 온도변화가 나타난다. 동절기의 복토층의 최상단 온도가 평균적으로 약 15℃를 유지하므로, 바이오커버의 매립지 적용이 가능하다고 할 수 있다. As a result, methane oxidizing bacteria can be regarded as mesophilic microorganisms. There is no significant difference in seasonal temperature changes in the landfill, but the temperature changes due to the direct contact with air in the 10–30 cm deep soil layer, which is expected to have the most active methane oxidizing bacteria. Since the uppermost temperature of the cover layer in winter keeps about 15 ° C on average, it can be said that the biocover landfill can be applied.
본 실험에서, 메탄산화능이 유효하게 나타난 범위인 15~40℃에서 높은 산화능을 나타냈다. In this experiment, the high oxidation capacity was shown in the range of 15 ~ 40 ℃ effective methane oxidation capacity.
<실험예 3> 미생물 군집 분석Experimental Example 3 Analysis of Microbial Community
(총 DNA 추출)(Total DNA extraction)
분변토(RES), 논 토양(RPS), 혼합토양(EEPS, earthworm cast:paddy=5:5)으로부터 Fast DNA SPIN for Soil Kit (MP Biomedical)을 이용하여 DNA를 추출하였다. 추출된 DNA는 PCR 재료로 사용되기까지 -20℃에 보관되었다. DNA was extracted from fecal soil (RES), paddy soil (RPS), and mixed soil (EEPS, earthworm cast: paddy = 5: 5) using Fast DNA SPIN for Soil Kit (MP Biomedical). The extracted DNA was stored at -20 ° C until used as PCR material.
(PCR 증폭)(PCR amplification)
RPS, RES, EEPS에서 추출된 DNA는 16S rRNA 유전자와 pmoA 유전자를 증폭하기 위해 각각 사용되었다. 약 200 bp의 16S rRNA 유전자 단편은 40-bp GC clamp (CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG G)가 붙은 primer 341f (CCT ACG GGA GGC AGC AG)와 518r (ATT ACC GCG GCT GCT GG)을 이용한 PCRdmf 통하여 증폭하였다. pmoA 유전자에 의해 코딩된 불가용성 메탄산화효소 (particulate methane monooxigenase, pMMO 약 510 bp)의 단편은 6-FAM (6-carboxyfluorescein)로 염색된 프라이머 A189f (GGN GAC TGG GAC TTC TGG)와 mb661r (CCG GMG CAA CGT CYT TAC C)을 이용한 PCR을 통하여 증폭하였다. PCR은 50-㎕의 반응액에서 수행되었으며 그 성분은 다음과 같다: 100 ng DNA, 0.2 mg BSA, 0.4 mM 각 primer, 1×Ex Taq 버퍼, 0.75 U Takara Ex Taq DNA polymerase (TaKaRa Bio Inc.), 200 mM dNTP. PCR은 GeneAmp®PCR system Model 2700 (PE Applied Biosystems)를 이용하여 수행하였고 그 조건은 다음과 같았다: 초기 변성 95℃, 5분; 35 사이클- 변성 95℃, 30초, 풀림 55℃ 또는 60℃, 30초, 증폭 72℃, 30초; 마지막 단계에서 72℃, 10분. 각 PCR 산물은 1% 아가로우즈 겔에서 확인하였고, QIAquick PCR purification kit (Qiagen)을 이용하여 정제하였다. DGGE와 염기서열 분석을 통한 각 토양의 우점 메탄산화세균을 확인하기 위해, 1차 pmoA-PCR 산물을 재료로 하여, 2차 pmoA-PCR를 위의 조건과 동일하게 수행하고 그 산물을 정제하였다. DNA extracted from RPS, RES, and EEPS was used to amplify 16S rRNA gene and pmoA gene, respectively. Approximately 200 bp of the 16S rRNA gene fragment was prepared using primers 341f (CCT ACG GGA GGC AGC AG) and 518r (ATT ACC GCG GCT GCT) with 40-bp GC clamp (CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG G). Amplification via PCRdmf using GG). Fragments of the particulate methane monooxigenase (pMMO approximately 510 bp) encoded by the pmoA gene were identified by primers A189f (GGN GAC TGG GAC TTC TGG) and mb661r (CCG GMG) stained with 6-FAM (6-carboxyfluorescein). Amplification was by PCR using CAA CGT CYT TAC C). PCR was performed in 50-μl of reaction solution and the components were as follows: 100 ng DNA, 0.2 mg BSA, 0.4 mM each primer, 1 × Ex Taq buffer, 0.75 U Takara Ex Taq DNA polymerase (TaKaRa Bio Inc.) , 200 mM dNTP. PCR was performed using a GeneAmp ® PCR system Model 2700 (PE Applied Biosystems) that conditions were as follows: initial denaturation 95 ℃, 5 min; 35 cycles-denatured 95 ° C., 30 seconds, annealing 55 ° C. or 60 ° C., 30 seconds, amplification 72 ° C., 30 seconds; 72 ° C., 10 minutes in the last step. Each PCR product was identified on a 1% agarose gel and purified using a QIAquick PCR purification kit (Qiagen). In order to identify the dominant methane-oxidizing bacteria of each soil through DGGE and sequencing, the secondary pmoA- PCR was carried out under the same conditions as above, and the product was purified using the primary pmoA- PCR product as a material.
(DGGE 분석)(DGGE analysis)
RES, RPS, EEPS 각 토양의 일반 미생물을 분석하기 위해, 정제된 16S rRNA 유전자 단편들(약 200 bp)을 8% 폴리아크릴아마이드 젤(40∼60% 농도구배의 우레아와 탈이온화된 포름아마이드)에 전기영동 하였다. 약 6 mg의 16S rRNA 유전자 단편들을 사용하였고, DCodeTM system (BioRed)을 이용하여 60℃로 데워진 1× TAE 버퍼 (10 mM Tris base, 20 mM sodium acetate, 1 mM EDTA) 속에서 50 V로 15 시간 동안 전기영동 하였다. 젤 상에서 분리된 유전자 단편들은 SYBR GOLD 용액 (Invitrogen) (1/10000 in 0.5×TAE 버퍼)으로 염색한 후, UV-illuminator를 이용하여 확인하였다. 각 토양 샘플의 DGGE 밴드 양상 간의 유사성을 GelCompa II software version 3.0 (Applied Maths, Inc.)를 이용하여 분석하고, 각 밴드의 상대적 출현빈도를 수치적으로 얻었다. 그 수치를 이용하여 DGGE 밴드 분석에서의 미생물 다양성 지수로, Shannon diversity Index (H) 를 다음의 식을 이용하여 계산하였다. Purified 16S rRNA gene fragments (approximately 200 bp) were subjected to 8% polyacrylamide gel (40-60% gradient urea and deionized formamide) to analyze common microorganisms in RES, RPS and EEPS soils. Electrophoresis on. Approximately 6 mg of 16S rRNA gene fragments were used and 15 at 50 V in 1 × TAE buffer (10 mM Tris base, 20 mM sodium acetate, 1 mM EDTA) warmed to 60 ° C. using DCode system (BioRed). Electrophoresis was performed for hours. Gene fragments isolated on the gel were stained with SYBR GOLD solution (Invitrogen) (1/10000 in 0.5 × TAE buffer) and confirmed using UV-illuminator. Similarity between the DGGE band patterns of each soil sample was analyzed using GelCompa II software version 3.0 (Applied Maths, Inc.) and the relative frequency of each band was numerically obtained. As the microbial diversity index in DGGE band analysis using the numerical value, Shannon diversity Index ( H ) was calculated using the following formula.
H = - ∑ P i log P i H =-∑ P i log P i
P i, 전체 밴드 강도 총합에 대한 각 밴드의 상대강도를 나타낸다. P i , the relative strength of each band with respect to the total band strength total.
정제된 2차 pmoA-PCR 산물을 6% 폴리아크릴아마이드 젤(40∼80% 농도구배의 우레아와 탈이온화된 포름아마이드)에 전기영동 하였다. 조건은 60℃ 1×TAE 버퍼 속에서 100V로 15 시간 동안 전기 영동 하였다. 밴드강도로써 우점 밴드들에서만 동결-해동 방법으로 DNA 단편을 추출하고, 추출된 pmoA 유전자 단편은 primer A189f-GC 와 mb661r를 이용하여 PCR 증폭하였다. 증폭된 pmoA 유전자 단편은 QIAquick PCR purification kit을 이용하여 정제하고 primer mb661r로 BigDye v3.1 와 ABI auto sequencer 3730XL DNA analyzer (Applied Biosystem)로 염기서열을 결정 하였다. The purified secondary pmoA- PCR product was electrophoresed on 6% polyacrylamide gel (40-80% gradient urea and deionized formamide). The conditions were electrophoresed for 15 hours at 100V in 60 ° C. 1 × TAE buffer. DNA fragments were extracted by freeze-thaw method only in dominant bands as band intensities, and extracted pmoA gene fragments were PCR amplified using primers A189f-GC and mb661r. The amplified pmoA gene fragment was purified using a QIAquick PCR purification kit, and the nucleotide sequence was determined by primer mb661r with BigDye v3.1 and ABI auto sequencer 3730XL DNA analyzer (Applied Biosystem).
(pmoA-based T-RFLP 분석)(pmoA-based T-RFLP analysis)
RES, EPS, EEPS의 DNA로부터 유래된 6-FAM 염색 pmoA 유전자 단편들을 정제하고, 약 200 ng을 각각의 제한효소 Msp I 와 Hha I(BEAMS Biotechnology) 20 U로 37℃에서 하룻밤 처리하여 절단하였다. 말단 제한단편(T-RF)들이 크기 분포를 denaturing polyacrylamide 젤(6 M 우레아와 5% 폴리아크릴아마이드)에 ABI 377 DNA auto sequencer를 이용하여 전기영동 하였다. 50∼500 bp의 T-RFs 만 선택하여 GENESCAN analytical software(ABI)를 이용하여 분석하였다. 선택된 단편 사이즈들의 피크 넓이는 50 relative fluorescent units(RFU) 이상을 가진 피크들만 고려되었다. 전체 피크넓이 총합대비 각 단편 피크 넓이를 계산하였고, 그 수치를 이용하여 principal component analysis (PCA)를 소프트웨어 SPSS version 12.0K(SPSS Inc.)로 수행하였다. 6-FAM stained pmoA gene fragments derived from DNAs of RES, EPS, and EEPS were purified, and about 200 ng were digested with 37 U of each restriction enzyme Msp I and Hha I (BEAMS Biotechnology) overnight at 37 ° C. Terminal restriction fragments (T-RFs) were electrophoresed in denaturing polyacrylamide gels (6 M urea and 5% polyacrylamide) using an ABI 377 DNA auto sequencer. Only 50-500 bp of T-RFs were selected and analyzed using GENESCAN analytical software (ABI). The peak width of the selected fragment sizes was considered only those peaks with 50 relative fluorescent units (RFU) or more. Each fragment peak area was calculated from the sum of the total peak areas, and the principal component analysis (PCA) was performed using the software SPSS version 12.0K (SPSS Inc.).
(pmoA-based PCR 클로닝 및 시퀀싱)(pmoA-based PCR cloning and sequencing)
EEPS DNA로부터 유래한 pmoA 유전자 단편을 정제하고, pGEM-T-Easy vector system(Promega)을 이용하여 클로닝 하였다. 클로닝 벡터로 cell-pulser electroporator (GIBCO BRL.)를 이용하여 E. coli DH5α를 형질전환 시키고, 선택배지 (LacZ/X-gal, ampicillin)에서 형질전환된 흰색 콜로니만을 선별 하였다. 선별된 콜로니를 50 ㎕의 증류수에 현탁한 후, 95℃에서 30분 동안 끓이고 13,000 rpm으로 10분 동안 원심분리하여 상등액을 취하였다. 클론-벡터가 포함된 상등액 1 ㎕를 이용하여 primer A189f and mb661r와 함께 PCR 을 수행하였고, 증폭된 pmoA 유전자 단편은 정제 후 염기서열을 primer A189f로 결정하였다. Purification of the pmoA a gene fragment derived from EEPS DNA, which was cloned using the pGEM-T-Easy vector system ( Promega). As a cloning vector, E. coli DH5α was transformed using a cell-pulser electroporator (GIBCO BRL.), And only white colonies transformed in selection medium ( LacZ / X-gal, ampicillin) were selected. The selected colonies were suspended in 50 μl of distilled water, then boiled at 95 ° C. for 30 minutes, and centrifuged at 13,000 rpm for 10 minutes to obtain a supernatant. PCR was performed with primer A189f and mb661r using 1 μl of the supernatant containing the clone-vector, and the sequence of the amplified pmoA gene fragment was determined as primer A189f.
(계통발생학적 분석)Phylogenetic Analysis
EEPS-pmoA 유전자 염기서열들은 GenBank database에 있는 pmoA 유전자의 핵산과 아미노산 서열과 Blastn and Blastx 검색을 통하여 비교 동정 하였다 (www.ncbi.nlm.nih.gov/BLAST). 샘플의 pmoA 유전자 염기서열과 비교 동정된 pmoA 유전자 염기서열을 the software BioEdit version 7.0.9.0. (BioEdit Sequence Alignment Editor)을 이용하여 정렬시키고, 유사정렬된 부분의 염기서열 (>450 bp)들만 software MEGA version 4(Tamura et al., 2007)를 이용한 계통수 작성에 적용하였다. 그 계통수는 Neighbor-Joining method 와 Substitution model; amino acid position correction을 이용하여 bootstrap 1000 반복을 통해 계산 작성 하였다. EEPS-pmoA Gene sequences In the GenBank databasepmoA Nucleic acid and amino acid sequences of genes were compared and identified by Blastn and Blastx search (www.ncbi.nlm.nih.gov/BLAST). Of samplepmoA Identified and compared with the gene sequencepmoA Gene sequencing the software BioEdit version 7.0.9.0. Alignment using the (BioEdit Sequence Alignment Editor), only sequencing sequences (> 450 bp) of the softwareMEGA It was applied to phylogeny generation using version 4 (Tamura et al., 2007). The phylogenetic tree includes the Neighbor-Joining method and the Substitution model; Calculations were made using bootstrap 1000 iterations using amino acid position correction.
(뉴클레오티드 서열 인증번호)(Nucleotide sequence identification number)
본 실험을 통해 얻은 불용성 메탄산화효소(particulate methane monooxigenase, pmoA) 염기서열은 GenBank database에 다음과 같은 인증번호로 수록되었다: 인증번호: EEPS pmoA-DGGE 밴드 염기서열, FJ775131부터 FJ775133 EEPS pmoA-clone 염기서열, FJ775134부터 FJ77513164.The insoluble methane monooxigenase ( pmoA ) base sequence obtained through this experiment was listed in the GenBank database with the following certification number: Certificate number: EEPS pmoA-DGGE band sequence, FJ775131 to FJ775133 EEPS pmoA-clone base Sequence, FJ775134 through FJ77513164.
본 실험에서는 논 토양(RPS), 지렁이 분변토(RES), 혼합토양(EEPS)의 메탄 농화배양 후, 이들로부터 증폭한 16s rRNA gene amplicons을 이용하여 DGGE 방법으로 일반 미생물 군집의 다양성을 조사하였다(도 4). 이들 다양성 지수 (H')는 각각 RPS=3.32, RES=3.18, RESS=3.35 이었다. 그리고, 일반미생물의 DGGE band cluster 유사성은 각각 RPS와 EEPS가 71.43 %, RPS와 RES가 58.00%, RES와 EEPS가 64.59%이었다. DGGE band들의 상대적 다양성을 이용한 PCA 분석에서 EEPS의 일반 미생물군집은 RES보다는 RPS의 일반 미생물군집과 가까운 관계를 보였다 (도 4a). 이러한 결과는 EEPS의 일반 미생물군집이 RES 보다는 RPS의 일반 미생물군집에서 유래되었음을 암시한다. In this experiment, methane enrichment of paddy soil (RPS), earthworm fecal soil (RES), and mixed soil (EEPS) was carried out, and the diversity of general microbial community was investigated by DGGE method using 16s rRNA gene amplicons amplified from them (Fig. 4). These diversity indices ( H ' ) were RPS = 3.32, RES = 3.18 and RESS = 3.35, respectively. The similarities of DGGE band cluster in general microorganisms were 71.43% for RPS and EEPS, 58.00% for RPS and RES, and 64.59% for RES and EEPS, respectively. In the PCA analysis using the relative diversity of DGGE bands, the general microbial community of EEPS showed a closer relationship with the general microbial community of RPS than RES (FIG. 4A). These results suggest that the general microbial community of EEPS is derived from the general microbial community of RPS rather than RES.
실제 토양에서 메탄산화를 위한 메탄산화효소들의 활성은 pmoA 유전자에 의해 코딩된 불가용성 메탄산화효소 (particulate methane monooxigenase, pMMO)가 mmoX 유전자에 의해 코딩된 가용성 메탄산화효소 (soluble methane monooxigenase, sMMO)보다 더 광범위하게 실제활성을 보일 것으로 생각되고 있다. 본 실험에서는 RPS, RES, EEPS에 존재하는 메탄산화세균의 다양성을, pmoA-유전자를 증폭하고 제한효소 Msp I와 Hha I 로 처리한 T-RFLP 방법으로부터 얻어진 T-RFs 를 PCA 방법으로 조사하였다. 그 결과 EEPS의 메탄 산화세균군집은 RPS보다는 RES의 메탄 산화세균군집에 가까웠다 (도 4b). 이는 흥미로운 발견으로, EEPS의 메탄 산화세균군집이 RPS보다는 RES의 메탄 산화세균군집으로부터 유래했음을 암시한다. 상기에서 언급했듯이, 이와는 상반되게, EEPS의 일반 미생물군집은 RES보다는 RPS의 일반 미생물군집에서 유래했음이 암시되었다. 이러한 결과는 지렁이 분변토가 메탄산화세균의 훌륭한 자원임을 증명한다. The activity of methanases for methanation in real soils is higher than that of the soluble methane monooxigenase (sMMO), which is encoded by the pmoA gene (particulate methane monooxigenase, pMMO). It is thought to be more broadly practical. In this experiment, the diversity of methane-oxidizing bacteria present in RPS, RES, and EEPS was investigated by T-RFs obtained from T-RFLP method amplified with pmoA -gene and treated with restriction enzymes Msp I and Hha I by PCA method. As a result, the methane oxidative bacterial community of EEPS was closer to the methane oxidative bacterial community of RES than RPS (FIG. 4B). This is an interesting finding, suggesting that the methane oxidative bacterial community of EEPS is derived from the methane oxidative bacterial community of RES rather than RPS. As mentioned above, on the contrary, it was suggested that the general microbial community of EEPS was derived from the general microbial community of RPS rather than RES. These results demonstrate that earthworm feces are a good source of methane oxidizing bacteria.
또한, EEPS에서 추출된 DNA로부터 유래한 pmoA 유전자 클론 라이브러리에서 31 개의 pmoA 클론을 무작위로 선별하여 그 염기서열을 결정하고 비교 분석하였다. BLAST를 이용한 조사 결과, 31 개 모두 메틸로시스속(Methylocystis)(type II methanotrophs)에 속하였으며, 이들의 계통수는 도 5에 도시하였다. 이와 함께, RPS, RES, EEPS의 메탄 산화세균 우점종을 밝히기 위해, 2차 pmoA-PCR 산물의 DGGE에서 밴드 (밝기)강도로 3개의 우점 pmoA-DGGE 밴드 (EEPS pmoA-DGGE band EBL1-band EBL3)가 선별되었으며, 이들의 염기서열을 결정하고 비교분석 하였다. In addition, 31 pmoA clones were randomly selected from the pmoA gene clone library derived from DNA extracted from EEPS to determine and compare the base sequences. As a result of investigation using BLAST, all 31 belonged to Methylocystis (type II methanotrophs), and their phylogenetic tree is shown in FIG. 5. In addition, three dominant pmoA -DGGE bands (EEPS pmoA -DGGE band EBL1-band EBL3) with band (brightness) intensity in DGGE of the secondary pmoA- PCR product were used to identify methane oxidative bacterial dominant species of RPS, RES and EEPS Were selected and their sequencing was determined and compared.
BLAST를 이용한 조사 결과, EEPS pmoA-DGGE 밴드 EBL1 과 밴드 EBL2는 메틸로칼둠속 (Methylocaldum sp.)(type I methanotrophs)에 가장 밴드 강도가 높았던 EEPS pmoA-DGGE 밴드 EBL3은 메틸로시스티스속(Methylocystis) (type II)에 속하였다 (미도시됨). 반면, RES와 EEPS에서 출현한 EEPS pmoA-DGGE 밴드 EBL2는 RPS에서는 출현하지 않았다. 이러한 결과로 지렁이 분변토가 일반토양 (논 토양, RPS) 보다는 메탄 산화세균 농화에 더욱 직접적으로 기여하였음을 확인하였다.Investigation using the BLAST, EEPS pmoA -DGGE EBL1 band and band EBL2 is methyl local dumsok (Methylocaldum sp.) In seutiseu (Methylocystis) when in the band intensity was high EEPS pmoA -DGGE band EBL3 is methyl the (type I methanotrophs) (type II) (not shown). In contrast, the EEPS pmoA- DGGE band EBL2, which appeared in RES and EEPS, did not appear in RPS. These results confirmed that earthworm fecal soil contributed more directly to methane oxidative bacterium concentration than general soil (paddy soil, RPS).
계통수에서 보듯이(도 5), EEPS에서 농화배양된 우점 메탄 산화세균(pmoA-methanotrophs)들은 메틸로칼둠속(Methylocaldum sp.) (type I) 과 메틸로시스티스속(Methylocystis sp.) (type II)에 속하였다. 따라서, EEPS에서는 type I 및 type II 메탄산화세균이 메탄 산화에 관여하였음을 알 수 있다. As shown in the phylogenetic tree (FIG. 5), the dominant methane oxidizing bacterium enriched in EEPS (pmoA-methanotrophs are the genusMethylocaldum sp.) (type I) and Methylosissis (Methylocystis sp.) (type II). Therefore, it can be seen that type I and type II methanogenic bacteria were involved in methane oxidation in EEPS.
EEPS에서의 농화와 우점으로 볼 때, 메틸로시스티스속(Methylocystis sp.) (type II)이 이에 속하는 pmoA 클론의 수와 pmoA-DGGE 밴드의 강도를 기준으로 메틸로시스티스속(Methylocystis)이 메탄 산화세균의 우점으로 추정된다. In terms of thickening and dominant in EEPS, the seutiseu in (Methylocystis sp.) (Type II ) is methyl seutiseu in (Methylocystis) when a relative to the strength of the number of clones with pmoA pmoA -DGGE band belonging thereto when methyl Presumably the methane oxidizing bacteria.
한편, 메틸로시스티스속(Methylocystis)이 메탄산화세균의 우점으로 추정된 결과는 흥미롭다. 왜냐하면, EEPS 메탄 산화세균 농화배양 환경은 type I 메탄산화세균에게 유리한, 산소풍족과 저농도 메탄 (5%), 영양풍족 (지렁이 분변토)의 환경이었기 때문이다. 하지만, 이 결과가 예상할 수 없는 것만은 아니다. 왜냐하면, 메탄산화세균의 다양성은 어느 한 가지의 환경요인보다는 다음과 같은 여러 가지 환경요인에 의해 복합적으로 결정되기 때문이다: 메탄 농도와 산소 이용성, 온도, 질소원, 토양재질과 함수량, 그리고, 지금까지 보고된 결과에 의하면 type I 과 type II 메탄산화세균이 메탄 농도가 높고 낮음에 따라 서로 독립적으로 우점할 수 있다는 증거가 없다. On the other hand, Methylocystis ( Methylocystis ) is the result of the predominance of methane-oxidizing bacteria is interesting. This is because the EEPS methane oxidizing bacteria enrichment environment was an environment rich in oxygen, low concentrations of methane (5%) and nutrient rich (earthworm feces), which favored type I methane oxidizing bacteria. However, the results are not unexpected. Because the diversity of methane oxidizing bacteria is determined by a variety of environmental factors, rather than one environmental factor: methane concentration, oxygen availability, temperature, nitrogen source, soil material and water content, and so far The reported results show no evidence that type I and type II methanogenic bacteria can dominate independently of each other due to high and low methane concentrations.
<실시예 2> 매립지 토양으로부터 메탄 산화 컨소시엄 배양Example 2 Methane Oxidation Consortium Culture from Landfill Soil
메탄 산화 컨소시움을 얻기 위해 매립지로부터 토양을 채취 하였다. 토양 채취 장소는 충청남도 공주로, 매립가스가 계속 배출되고 있는 활동적인 매립지로 표면으로부터 약 10 cm 깊이에서 흙을 채취하였다. 채취한 흙은 아이스박스에 넣어 운반하였고 4℃에서 보관하였다.Soil was taken from the landfill to obtain a methane oxide consortium. The soil collection site is Gongju, Chungcheongnam-do, and is an active landfill where landfill gas is continuously discharged. The collected soil was transported in an ice box and stored at 4 ° C.
메탄 산화 컨소시움을 얻기 위해 다음과 같이 농화배양을 수행하였다. 600 mL-혈청병에 매립지 토양 (wet landfill soil) 8 g과 nitrate mineral salts (NMS) 배지 20 mL을 넣고 고무마개로 밀봉하였다. 밀봉된 혈청병에 유일 탄소원으로 메탄 5% (v/v)를 주입하였고 혈청병은 30℃, 180 rpm에서 배양하였다. 한번 주입한 메탄이 100% 제거되면 혈청병 고무마개를 열어 1시간 동안 공기포화를 시켜 주었고, 공기포화 후 고무마개를 닫고 메탄을 동일한 농도로 주입하였다. 질소와 인의 고갈에 따른 저해를 막기 위해 재배양 2번 수행 후 공기포화할 때 질소와 인 농축액을 각각 1 mL씩 넣어주었다. Thickening culture was performed as follows to obtain a methane oxide consortium. In a 600 mL serum bottle, 8 g of wet landfill soil and 20 mL of nitrate mineral salts (NMS) medium were added and sealed with a rubber stopper. In a sealed serum bottle, 5% (v / v) of methane was injected as the only carbon source, and the serum bottle was incubated at 30 ° C. and 180 rpm. Once 100% of the injected methane was removed, the rubber bottle was opened with a serum bottle for air saturation for 1 hour. After air saturation, the rubber stopper was closed and methane was injected at the same concentration. In order to prevent inhibition due to the depletion of nitrogen and phosphorus, 1 mL of nitrogen and phosphorus concentrates were added to each other when air saturation was performed.
NMS 배지 조성은 다음과 같다 (MgSO4·7H2O 1 g/L; CaCl2·2H2O 0.295 g/L; KNO3 1 g/L; KH2PO4 0.26 g/L; 0.41 g/L). 질소와 인 농축액은 NMS 배지조성을 참고하였고, 질소는 KNO3를 100 mL 증류수에 2 g을 인은 100 mL 증류수에 KH2PO4 0.52 g과 Na2HPO4·12H2O 1.65 g을 넣어 제조하였다. The NMS medium composition is as follows (MgSO 4 .7H 2 O 1 g / L; CaCl 2 · 2H 2 O 0.295 g / L; KNO 3 1 g / L; KH 2 PO 4 0.26 g / L; 0.41 g / L ). Nitrogen and phosphorus concentrates were referred to NMS medium composition, nitrogen was prepared by adding 2 g of KNO 3 in 100 mL distilled water and 0.52 g of KH 2 PO 4 and 1.65 g of Na 2 HPO 4 · 12H 2 O in 100 mL distilled water. .
농화배양을 진행하면서 메탄이 분해되는지 확인하고자 1 mL gas tight syringe를 이용하여 혈청병의 headspace에서 0.3 mL씩 채취하였다. 채취가스는 왁스컬럼 (Supelco, 30×0.32mm×0.25㎛)이 장착된 가스크로마토그래피 (Agilent 6850N, USA)-불꽃 이온화 검출기를 이용하여 분석하였다. 분석 온도는 오븐 100℃, 주입부와 검출부는 230℃ 이었다. In order to check whether methane is decomposed during the enrichment culture, 0.3 mL was collected from the headspace of the serum bottle using a 1 mL gas tight syringe. Sample gas was analyzed using a gas chromatography (Agilent 6850N, USA) -flame ionization detector equipped with a wax column (Supelco, 30 × 0.32 mm × 0.25 μm). The analysis temperature was 100 degreeC of oven, and 230 degreeC of injection part and a detection part.
도 6에 나타난 바와 같이, 매립지 토양을 이용하여 농화배양한 메탄 산화(분해) 농화배양액은 5% 메탄을 65시간 이내에 100% 분해하였고, 농화배양액의 메탄 분해 속도는 4.95±0.26 μmole·g-dry soil-1·h-1 이었다. 실험 결과로부터 이 농화배양액이 메탄을 효과적으로 분해하는 것을 확인하였다. As shown in FIG. 6, methane oxidized (decomposed) concentrated culture medium enriched using landfill soil was 100% decomposed 5% methane within 65 hours, and the methane decomposition rate of the concentrated culture medium was 4.95 ± 0.26 μmole g-dry. soil -1 h -1 . From the experimental results, it was confirmed that the thickening medium effectively decomposed methane.
메탄 산화 컨소시움의 미생물 군집을 알아보고자 초기 토양 및 컨소시움으로부터 DNA를 추출하였다. 초기 토양의 미생물 군집 분석을 위해 약 0.5 g 토양 (wet soil)을 BIO101 kit를 이용하여 추출하였다. 메탄 산화 컨소시움 시료는 메탄이 완전히 분해된 후 배양액 1 mL을 14,000×g에서 5분간 원심분리하여 침전물에서 DNA를 추출하였고 토양과 마찬가지로 BIO101 kit을 이용하였다. DNA 추출은 BIO101 kit 방법에 따라 수행하였고 모든 샘플은 2 반복씩 추출하였다.To investigate the microbial community of methane oxide consortium, DNA was extracted from the initial soil and consortium. About 0.5 g of wet soil was extracted using BIO101 kit for microbial community analysis of initial soil. The methane oxide consortium sample was centrifuged at 14,000 × g for 5 min after the complete decomposition of methane to extract DNA from the precipitate. BIO101 kit was used as the soil. DNA extraction was performed according to the BIO101 kit method and all samples were extracted two times.
메탄분해세균의 군집 구조를 알아보고자, PCR-denaturing gradient gel electrophoresis (DGGE) 기법을 이용하였다. 메탄분해세균을 증폭하는데 사용한 프라이머 쌍은 A189fGC (5’- CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG G GGN GAC TGG GAC TTC TGG-3’)와 mb661r (5’-CCG GMG CAA CGT CYT TAC C-3’) 이었다. 증폭 조건은 첫 번째 단계에서 초기변성이 96℃에서 5 분, 두 번째 단계에서 변성 96℃ 1 분, 풀림 58℃ 1 분, 증폭 72℃ 1 분을 40 회 수행하였고, 마지막 단계에서 72℃ 5 분으로 실험하였다. 증폭된 DNA 농도를 200-300 ng/㎕로 맞춘 후 6% 폴리아크릴아마이드 젤에 주입하였다. 우레아의 변화는 35-70%였고 60℃, 50 V에서 17시간 운전하였다. DGGE 실험 후 젤로부터 밴드를 잘랐고, 자른 젤에서 DNA를 추출하였다. 젤로부터 DNA를 추출하기 위해서 멸균수 30 ㎕를 첨가하고 -20℃에서 얼렸다. 그 후 70℃에서 3분간 녹이고 잘 섞어 주었다. 다음의 과정을 3번 반복한 후 상등액의 DNA를 증폭하였고, 증폭 시 사용 프라이머는 A189fGC primer에서 GC 부분을 제외한 프라이머를 사용하였다. 증폭 조건은 위와 동일하다. 증폭된 DNA의 염기서열을 분석하여 농화배양액의 메탄분해세균의 군집을 알아보았다. To investigate the community structure of methane-degrading bacteria, PCR-denaturing gradient gel electrophoresis (DGGE) was used. Primer pairs used to amplify methane degradation bacteria were A189fGC (5'- CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG G GGN GAC TGG GAC TTC TGG-3 ') and mb661r (5'-CCG GMG CAA CGT CYT) TAC C-3 '). The amplification conditions were performed 40 times at the first stage of the initial denaturation at 96 5 minutes at 96 ℃, denatured 96 1 minute, annealing 58 1 minute, amplification 72 1 minute, and at the last stage 72 5 minutes Experiment with. The amplified DNA concentrations were adjusted to 200-300 ng / μl and injected into 6% polyacrylamide gels. The urea change was 35-70% and operated for 17 hours at 60 ° C and 50V. The band was cut from the gel after the DGGE experiment, and DNA was extracted from the cut gel. To extract DNA from the gel, 30 μl of sterile water was added and frozen at -20 ° C. Then dissolved at 70 ℃ for 3 minutes and mixed well. After repeating the following three times amplified DNA of the supernatant, the primer used in the amplification except for the GC portion in the A189fGC primer. Amplification conditions are the same as above. The nucleotide sequence of the amplified DNA was analyzed to determine the community of methane-degrading bacteria in the concentrated culture medium.
메탄 산화 컨소시움을 PCR-DGGE로 분석한 후 얻은 클론의 염기서열을 분석하여 동정한 결과, 메틸로시스티스속(Methylocystis sp.), 메틸로시너스속(Methylosinus sp.), 및 메틸로마이크로비움 알붐(Methylomicrobium album) 등과 같은 메탄산화세균이 우점종임을 확인하였다(도 7).Methane oxidative consortium was analyzed by PCR-DGGE, and the nucleotide sequences of the obtained clones were identified. As a result, Methylocystis sp., Methylosinus sp., And Methylmicrobiium alboom were identified. ( Methylomicrobium album), such as methane oxidized bacteria was confirmed that the dominant species (Fig. 7).
<실시예 3> 신규의 메탄산화세균 메틸로시스티스속(Methylocystis sp.) M6 분리 및 동정Example 3 Isolation and Identification of a Novel Methylocystis sp.
메탄 분해 순수균을 분리하기 위해 농화배양액을 접종원으로 사용하여 실험을 수행하였다. 9 mL 0.9% NaCl 용액에 농화배양액 1 mL을 넣고 연속 희석 방법을 이용하여 희석하였다. 희석된 용액을 NMS 한천 배지에 도말한 후 데시케이터에 넣고 20% 메탄을 첨가 후 30℃에 배양하면서 균주 성장을 관찰하였다. 성장된 콜로니를 4 mL의 NMS 배지가 포함된 혈청병에 접종하고 고무마개로 막은 후 메탄을 5% 주입하였다. 주입 후 headspace의 메탄 농도를 시간에 따라 분석하여 메탄 분해능을 확인하였다. 분석방법은 상기 실시예 2와 동일하다. In order to isolate methane degrading bacteria, an experiment was carried out using a concentrated culture medium as an inoculum. 1 mL of the concentrated culture solution was added to 9 mL 0.9% NaCl solution and diluted using the serial dilution method. The diluted solution was plated in NMS agar medium, placed in a desiccator, and strain growth was observed while adding 20% methane and incubating at 30 ° C. The grown colonies were inoculated into a serum bottle containing 4 mL of NMS medium, blocked with a rubber stopper, and then injected with 5% methane. After injection, the concentration of methane in the headspace was analyzed over time to determine the methane resolution. Analysis method is the same as in Example 2.
메탄 분해 순수균을 동정하기 위해 상기 실시예 2와 동일한 방법을 이용하여 DNA를 추출하였다. 추출된 DNA를 27f (5’-AGA GTT TGA TCM TGG CTC AG-3’)와 1492r (5’-TAC GGY TAC CTT GTT ACG AC-3’)를 이용하여 증폭하였다. 증폭 조건은 상기 실시예 2와 같고 증폭된 시료를 염기서열 분석하여 동정하였다. DNA was extracted using the same method as Example 2 to identify methane-degraded pure bacteria. The extracted DNA was amplified using 27f (5'-AGA GTT TGA TCM TGG CTC AG-3 ') and 1492r (5'-TAC GGY TAC CTT GTT ACG AC-3'). Amplification conditions were the same as in Example 2, and the amplified samples were identified by sequencing.
메탄 산화 컨소시엄으로부터 메탄을 분해할 수 있는 순수균을 얻고자 NMS 아가 배지에 컨소시엄을 접종하고 20% 메탄이 포함된 데시케이터에서 배양하였다. 배양된 배지에서 메탄을 분해할 수 있는 균주 M6을 분리하였고, 16S rDNA 부분 염기서열 분석결과 메틸로시스티스속(Methylocystis sp.)에 속하였다. M6 균주의 염기서열 결과는 표 1과 같고 M6 균주와 유사한 계통발생학적 트리 결과는 도 8에 도시하였다. 분리 균주는 메틸로시스티스속(Methylocystis sp.)으로 동정되었다. 이러한 결과로 볼 때, 메틸로시스티스속(Methylocystis sp.) M6 균주가 농화배양액에서 우점하며 메탄을 분해하는데 있어서 중요한 역할을 하는 것을 알 수 있었다. To obtain pure bacteria capable of decomposing methane from the methane oxidation consortium, NMS agar medium was inoculated with a consortium and incubated in a desiccator containing 20% methane. Strain M6 capable of decomposing methane was isolated from the culture medium, and belonged to the genus Methylocystis sp. According to 16S rDNA partial sequencing. The nucleotide sequence results of the M6 strain are shown in Table 1, and the phylogenetic tree results similar to the M6 strain are shown in FIG. 8. The isolate was identified as Methylocystis sp. These results show that Methylocystis sp. M6 strains dominate in the thickening medium and play an important role in decomposing methane.
메틸로시스티스속(Methylocystis sp.) M6의 메탄 분해 특성을 알아본 결과 M6 균주는 5% 메탄을 3일안에 완전히 분해하였다. 이때 메탄의 분해속도는 9.98 mmole·L-1·h-1 이었다 (도 9).As a result of methane decomposition of Methylocystis sp. M6, M6 strain completely degraded 5% methane in 3 days. At this time, the decomposition rate of methane was 9.98 mmole-L -1 -h -1 (Fig. 9).
따라서, 메탄에 대한 분해능이 우수한 메틸로시스티스속(Methylocystis sp.) M6을 2009년 6월 3일자로 한국생명공학연구원 생물자원센터에 기탁하여 기탁번호 KCTC 11519BP를 받았다.Therefore, Methylocystis sp. M6, which has high resolution against methane, was deposited on June 3, 2009 to the Korea Institute of Bioscience and Biotechnology, and received the accession number KCTC 11519BP.
[규칙 제26조에 의한 보정 26.10.2009] 
표 1
Figure WO-DOC-TABLE-164
[Revisions under Rule 26 26.10.2009]
Table 1
Figure WO-DOC-TABLE-164
<실시예 4> 신규 균주를 이용한 바이오커버Example 4 Biocover Using New Strain
매립지의 복토층을 실험실 규모로 모사하여 CH4 산화특성을 규명하기 위하여 실험실 규모의 바이오커버 (biocover)를 제작하여 실험하였다. 본 실험에서 사용된 컬럼은 총 3개의 층으로 구성되었으며, 지름 20 cm, 높이 50 cm의 충전부 2개와 지름 20 cm, 높이 30 cm의 환기부로 이루어져있다. 바이오커버는 PVC 재질로 제작되었으며 상세한 장치의 구성도를 도 10에 도시하였다.A laboratory scale biocover was fabricated and tested to investigate the CH 4 oxidation characteristics by simulating the cover layer of landfill on a laboratory scale. The column used in this experiment consisted of three layers, consisting of two 20 cm diameter, 50 cm high charging sections, and a 20 cm diameter and 30 cm high ventilation section. The biocover is made of PVC material and a detailed configuration diagram of the device is shown in FIG. 10.
각 충전부의 밑부분은 PVC 재질의 다공판과 20 cm 직경의 고무 필터를 50 cm 높이로 올려 CH4/CO2 혼합가스가 유입부분에서 최대한 균일하게 확산될 수 있도록 하였다. 산림토양과 지렁이 분변토를 75:25(w/w)로 혼합한 토양을 2단의 충전부에 충전하였다. 또한, 상기 실시예 3에서 개발한 미생물 컨소시움 배양액 300 mL(1.3×108 cells/mL)을 충전부에 첨가하였다. 지렁이 분변토 혼합 효과를 검증하기 위한 대조군으로 지렁이 분변토를 혼합하지 않은 산림토양만을 충전한 바이오커버를 준비하였다. At the bottom of each charging section, a PVC perforated plate and a 20 cm diameter rubber filter were raised to a height of 50 cm to allow the CH 4 / CO 2 mixed gas to diffuse as uniformly as possible. Soil mixed with forest soil and earthworm fecal soil at 75:25 (w / w) was charged to two stages of filling. In addition, 300 mL (1.3 × 10 8 cells / mL) of the microbial consortium culture solution developed in Example 3 was added to the filling part. As a control for verifying the mixing effect of earthworm fecal soil, a biocover filled with only forest soil without earthworm fecal soil was prepared.
시료 주입 포트는 10 cm 마다 gas-tight valve를 설치하고 출구에 GC 분석용 셉툼(septum)을 끼워서 컬럼 내의 혼합가스 누출을 최대한 방지하였다. 컬럼 상부에는 공기를 200 mL/min의 유량으로 계속적으로 흘려주어 대기층의 묘사와 매립지의 자연적인 토양층 redox gradient를 모사하였다. 합성 매립가스의 농도는 40% CH4와 60% CO2를 사용하였으며 하단에서 상부 방향으로 10 및 20 mL/min로 공급하였다. 모든 실험은 20±5℃의 실험실에서 운전하였다. The sample injection port installed a gas-tight valve every 10 cm and inserted a GC analysis septum at the outlet to prevent mixed gas leakage in the column. Air was continuously flowed at the top of the column at a flow rate of 200 mL / min to simulate the description of the atmospheric layer and the redox gradient of the landfill's natural soil layer. Synthetic landfill gas concentrations were 40% CH 4 and 60% CO 2 and fed at 10 and 20 mL / min from bottom to top. All experiments were run in a laboratory at 20 ± 5 ° C.
실험실 규모의 바이오커버에 40% CH4와 60% CO2 (v/v)의 혼합가스를 10 mL/min의 속도로 공급한 경우, 시간 별로 바이오커버 표면 층에서 검출된 CH4 농도를 도 11에 도시하였다. When a mixed gas of 40% CH 4 and 60% CO 2 (v / v) was supplied at a rate of 10 mL / min to a laboratory-scale biocover, the concentration of CH 4 detected in the biocover surface layer over time was shown in FIG. 11. Shown in
또한, 메탄 산화가 안정적으로 관찰되는 시점에서의 바이오커버 각 높이 별로 O2, N2, CH4 그리고 CO2의 농도변화를 도 12에 도시하였다. In addition, the concentration changes of O 2 , N 2 , CH 4 and CO 2 at each height of the biocover when methane oxidation is observed stably are shown in FIG. 12.
바이오커버의 하단(-0.5∼-1 m)은 혐기성 상태로 상부의 환기부에서 유입되고 있는 공기가 하단까지는 충분히 확산되지 못하므로 CH4 역시 거의 대기로 희석되지 않았다. 또한, O2의 농도가 거의 없는 혐기성 환경이므로 메탄산화세균 (methanotrophs)의 활성 역시 미미한 것으로 판단된다. CH4의 농도가 1% (v/v) 이상이고, O2의 농도가 약 1% (v/v)정도로 낮을 때에는 type Ⅱ 메탄산화세균이 type Ⅰ 메탄산화세균 보다 생장률이 우세하므로 미생물에 의한 CH4 산화가 전무하다고는 할 수 없다. The lower end of the biocover (-0.5 to -1 m) is anaerobic, and the CH 4 is hardly diluted into the atmosphere because the air flowing from the upper vent is not sufficiently diffused to the lower end. In addition, because of the anaerobic environment with little concentration of O 2 , the activity of methanetrophs (methanotrophs) is also considered to be insignificant. When the concentration of CH 4 is above 1% (v / v) and the concentration of O 2 is about 1% (v / v), the growth rate of type II methane oxidizing bacteria is higher than that of type I methane oxidizing bacteria. This is not to say that there is no CH 4 oxidation.
두 개의 바이오커버 모두 공기가 확산되어 조성된 호기성 상태인 높이 0∼-0.3 m에서 대부분의 CH4가 산화되었다. 논 토양만 충전한 바이오커버 표면에서는 60,000 ppmv의 CH4가 분해되지 않고 배출되어 약 85%의 메탄산화율을 보였다. 그러나, 논 토양과 지렁이 분변토를 혼합한 바이오커버 (토양 75% + 지렁이 분변토 25%) 표면에서는 약 5,000 ppmv의 CH4가 배출되어 약 99%의 메탄산화율을 확인하였다. 그런데, 이 바이오커버에서 12일차 이후로 채널링 현상이 심화되어 메탄 배출량이 증가하였으나, 충전물을 모두 꺼내 재충전한 이후에는 메탄산화효율이 회복됨을 알 수 있었다. Both biocovers oxidized most of CH 4 at a height of 0–0.3 m, an aerobic state formed by diffusion of air. On the biocover surface filled with paddy soil only, 60,000 ppmv of CH 4 was released without decomposition and showed about 85% methanation rate. However, about 5,000 ppmv of CH 4 was emitted from the biocover surface (75% soil + 25% earthworm fecal soil) in which paddy soil and earthworm fecal soil were mixed. However, the methane emissions increased due to the deepening of the channeling phenomenon after the 12th day in the biocover, but the methane oxidation efficiency was recovered after recharging all the fillers.
토양 100% 및 토양과 분변토 혼합한 바이오커버의 밀도는 각각 0.83, 0.76이었고, 유기물 함량은 각각 13.6±1.23%, 23.09±0.60% 이었다. 이러한 결과로부터 지렁이 분변토를 혼합 시 필터 베드의 밀도가 낮아져 공기의 확산이 원활히 이루어졌음을 알 수 있었고, 산림 토양보다 유기물이 풍부하므로 메탄산화세균의 생장 및 활성을 높인다고 사료된다. 따라서 지렁이 분변토가 혼합된 복토재를 적용할 때 현재보다 더 얇은 최종복토층을 적용하면서도 높은 메탄산화율도 도출할 수 있음을 확인하였다.The density of 100% soil and biocover mixed with soil and fecal soil were 0.83 and 0.76, respectively, and the organic contents were 13.6 ± 1.23% and 23.09 ± 0.60%, respectively. From these results, it was found that the density of the filter bed was lowered when the earthworm fecal soil was mixed, so that the air was diffused smoothly, and the growth and activity of methane oxidizing bacteria was increased because the organic matter was richer than the forest soil. Therefore, when applying the cover material mixed with the earthworm fecal soil, it was confirmed that the thinning of the final cover layer and the high methane oxidation rate could be derived.
실험실 규모의 바이오커버에 40% CH4와 60% CO2 (v/v)의 혼합가스를 20 mL/min의 속도로 공급한 경우, 시간 별로 바이오커버 표면 층에서 검출된 CH4 농도를 도 13에 도시하였다. When a mixed gas of 40% CH 4 and 60% CO 2 (v / v) was supplied at a rate of 20 mL / min to a laboratory-scale biocover, the concentration of CH 4 detected in the biocover surface layer over time was shown in FIG. 13. Shown in
또한, 메탄 산화가 안정적으로 관찰되는 시점에서의 바이오커버 각 높이 별로 O2, N2, CH4 그리고 CO2의 농도변화를 도 14에 도시하였다. In addition, the concentration changes of O 2 , N 2 , CH 4 and CO 2 at each height of the biocover when methane oxidation is observed stably are shown in FIG. 14.
<실시예 5> 신규의 메탄산화세균 메틸로시스티스속(Methylocystis sp.) M6의 오염물질 분해Example 5 Degradation of Contaminants of a Novel Methylocystis sp. M6
메탄의 분해능이 우수한 메틸로시스티스속(Methylocystis sp.) M6 의 다른 탄화수소화합물 이용가능성을 알아보기 위하여 총 14개의 물질을 선택하여 이 물질들에 대한 M6의 분해능 또는 성장능을 조사하였다.In order to investigate the availability of other hydrocarbon compounds of Methylocystis sp. M6, which has a high resolution of methane, a total of 14 materials were selected to investigate the resolution or growth capacity of M6.
기질 테스트에 사용될 메틸로시스티스속(Methylocystis sp.) M6 균주는 R2A 배지에서 대량 배양되어 세척 후 NMS 배지에 옮겨 접종되었다. 이는 120 mL-혈청병에 4 mL씩 분주되었고, 고무마개로 막은 후 각 물질을 1 ㎕씩 주입하였다. 단 OD600 값의 측정하기 위한 메탄올, 에탄올, 아세톤 및 디젤 분해 확인용 M6 균주는 600 mL-혈청병에 20 mL씩 분주되었고, 고무마개로 막은 후 각 물질은 10 ㎕씩 주입되었다. 메탄올, 에탄올, 아세톤 및 디젤을 이용한 성장능은 OD600 값의 측정을 통해 분석이 이루어졌고, 나머지 10가지 물질의 분해능은 기질의 농도 측정을 통해 분석이 이루어졌는데 이 때 50 ㎕ gas tight syringe를 이용하여 혈청병의 headspace에서 30 ㎕씩 채취하여 왁스컬럼 (Supelco, 30×0.32 mm×0.25 ㎛)이 장착된 가스크로마토그래피 (Agilent 6850N, USA)-불꽃 이온화 검출기를 이용하였다. 분석 온도는 오븐 100℃, 주입부와 검출부는 230℃ 이었다. Methylocystis sp. M6 strains to be used for substrate testing were inoculated in NMS medium after mass cultivation in R2A medium and washing. This was dispensed in 4 mL portions of 120 mL serum bottles, and 1 μl of each substance was injected after closing with a rubber stopper. M6 strains for methanol, ethanol, acetone and diesel decomposition for measuring the OD 600 value were divided into 600 mL-serum bottles by 20 mL, and 10 μl of each material was injected after blocking with a rubber stopper. The growth capacity using methanol, ethanol, acetone and diesel was analyzed by measuring the OD 600 value, and the resolution of the remaining 10 materials was analyzed by measuring the concentration of the substrate, using 50 μl gas tight syringe. 30 μl was collected from the headspace of the serum bottle, and a gas chromatography (Agilent 6850N, USA) -flame ionization detector equipped with a wax column (Supelco, 30 × 0.32 mm × 0.25 μm) was used. The analysis temperature was 100 degreeC of oven, and 230 degreeC of injection part and a detection part.
표 2에 나타난 바와 같이, 메틸로시스티스속(Methylocystis sp.) M6 균주는 m-자일렌, p- 자일렌, 메탄올 및 에탄올을 분해할 수 있었다. As shown in Table 2, Methylocystis sp. M6 strain was able to decompose m -xylene, p -xylene, methanol and ethanol.
표 2
Figure PCTKR2009003907-appb-T000002
TABLE 2
Figure PCTKR2009003907-appb-T000002
<실시예 6> 메탄 저감 시스템Example 6 Methane Reduction System
본 발명에 의한 바이오커버를 이용한 메탄 저감 시스템은 다음과 같이 제조하였다.The methane reduction system using the biocover according to the present invention was prepared as follows.
바이오커버의 재료는 일반 토양과 지렁이분변토의 혼합비를 중량 대비 75:25의 비율로 사용하였고, 메탄산화세균으로 메틸로시스티스속(Methylocystis sp.) M6를 사용하였다.The biocover material was used in the ratio of 75:25 to weight ratio of soil and earthworm stool, and Methylocystis sp. M6 was used as methane oxidizing bacterium.
또한, 메탄산화세균이 필요로 하는 산소를 공급하여 바이오커버층의 두께를 얇게 하기 위하여 산소생성제인 과산화마그네슘(MgO2), 과산화칼슘(CaO2)을 혼합하여 바이오커버 층을 제조할 수도 있다. In addition, in order to supply oxygen required by the methane oxidizing bacterium, the biocover layer may be prepared by mixing magnesium peroxide (MgO 2 ) and calcium peroxide (CaO 2 ), which are oxygen generating agents.
도 15a는 본 발명에 따라 매립지의 복토층이나 지표면 위에 설치되는 바이오커버의 설치 예를 보여주는 단면이다. 바이오커버를 이용한 메탄 저감시설은 매립층, 복토층, 바이오커버층, 및 식재층으로 구성되며, 바이오커버층에 산소를 공급하기 위한 방법으로 바이오커버층에 공기를 공급할 수 있도록 모래 및 자갈층으로 둘러싸인 통기관을 설치하고 송풍기로 공기를 공급할 수 있도록 구성하였다.15A is a cross-sectional view showing an example of installation of a biocover installed on the cover layer or the ground surface of the landfill according to the present invention. The methane abatement facility using the biocover consists of a landfill layer, a cover layer, a biocover layer, and a planting layer. Installed and configured to supply air to the blower.
도 15b는 본 발명에 따라 매립지의 복토층이나 지표면 위에 설치되는 또 다른 바이오커버의 설치 예를 보여주는 단면이다. 바이오커버를 이용한 메탄 저감시설은 매립층, 복토층, 모래 및 자갈층, 바이오커버층, 및 식재층으로 구성되며, 바이오커버층에 산소를 공급하기 위해 복토층과 바이오커버층 사이의 모래 및 자갈층에 공기를 공급할 수 있는 통기관을 설치하고 송풍기로 공기를 공급할 수 있도록 구성하였다.15B is a cross-sectional view showing an example of installation of another biocover installed on the cover layer or the ground surface of the landfill according to the present invention. Methane abatement facility using biocover consists of landfill layer, cover layer, sand and gravel layer, biocover layer, and plant layer, and supplies air to sand and gravel layer between cover layer and biocover layer to supply oxygen to biocover layer. Can be installed and configured to supply air to the blower.
본 발명은 메탄 또는 휘발성유기화합물에 대한 분해능이 우수한 신규 균주를 이용하여 메탄을 생물학적으로 분해할 수 있어 매립지 복토층 또는 지표면에 설치되는 바이오커버에 사용될 수 있다. The present invention can biologically decompose methane using a novel strain having excellent degradability for methane or volatile organic compounds, and thus can be used in biocovers installed on landfill cover layers or ground surfaces.

Claims (12)

  1. 메틸로시스티스 속(Methylocystis sp.) M6 KCTC 11519BP. Methylocystis sp. M6 KCTC 11519BP.
  2. 메틸로시스티스 속(Methylocystis sp.) M6 KCTC 11519BP를 포함하는 메탄 저감용 조성물. Methylocystis sp. M6 KCTC 11519BP comprising a composition for reducing methane.
  3. 제2항에 있어서,The method of claim 2,
    토양 및 지렁이 분변토로 이루어진 군으로부터 선택된 하나 이상을 더 포함하는 메탄 저감용 조성물.Methane reducing composition further comprises one or more selected from the group consisting of soil and earthworm fecal soil.
  4. 제3항에 있어서,The method of claim 3,
    토양 및 지렁이 분변토는 중량 대비 50 : 50 내지 90 : 10의 비율로 혼합되는 메탄 저감용 조성물.Soil and earthworm fecal soil methane reduction composition is mixed in a ratio of 50:50 to 90:10 by weight.
  5. 제2항의 메탄 저감용 조성물이 메탄을 분해시키는 단계를 포함하는 메탄 저감방법.Methane reduction method comprising the step of decomposing methane methane reduction composition of claim 2.
  6. 제2항의 메탄 저감용 조성물을 포함하는, 폐기물 매립지의 복토층 또는 지표면에서 발산되는 메탄 저감용 바이오커버.A methane-reducing biocover emanating from the cover layer or surface of a landfill containing the composition for reducing methane of claim 2.
  7. 제6항에 있어서,The method of claim 6,
    메틸로모나스속(Methylomonas), 메틸로마이크로비움속(Methylomicrobium), 메틸로박터속(Methylobacter), 메틸로칼둠속(Methylocaldum), 메틸로파가속(Methylophaga), 메틸로사르시나속(Methylosarcina), 메틸로써머스속(Methylothermus), 메틸로할로비우스속(Methylohalobius), 메틸로스파에라속(Methylosphaera), 메틸로시스티스속(Methylocystis), 메틸로셀라속(Methylocella), 메틸로캅사속(Methylocapsa), 메틸로시너스속(Methylosinus) 및 메틸로코커스속(Methylococcus)으로 이루어진 군으로부터 선택된 하나 이상의 메탄산화세균을 더 포함하는 메탄 저감용 바이오커버.Sar as to Pseudomonas genus (Methylomonas), in Micro-away with methyl (Methylomicrobium), bakteo in (Methylobacter) methyl, methyl local dumsok (Methylocaldum), wave acceleration as methyl (Methylophaga), methyl or when in (Methylosarcina), methyl Methylothermus , Methylohalobius , Methylosphaera , Methylocystis , Methylocella , Methylocapsa , Methylosinus ( Methylosinus ) and Methylococcus ( Methylococcus ) Methane reduction biocover further comprising one or more methane oxidizing bacteria selected from the group consisting of.
  8. 제6항에 있어서,The method of claim 6,
    산소생성제를 더 포함하는 메탄 저감용 바이오커버.Methane reduction biocover further comprising an oxygen generator.
  9. 제8항에 있어서,The method of claim 8,
    산소생성제는 과산화마그네슘, 과산화칼슘 및 과탄산나트륨으로 이루어진 군으로부터 선택된 하나 이상인 메탄 저감용 바이오커버.Oxygen generator is one or more selected from the group consisting of magnesium peroxide, calcium peroxide and sodium percarbonate methane reduction biocover.
  10. 폐기물 매립지의 복토층 또는 지표면 위에 바이오 활성층을 설치하여 복토층 또는 지표면에서 발산되는 메탄을 생물학적으로 분해하는 메탄 저감 시스템에 있어서, 상기 바이오 활성층은 In the methane reduction system for biologically decomposing methane emitted from the cover layer or surface by installing a bio active layer on the cover layer or surface of the landfill, the bio active layer is
    제6항의 바이오커버가 하나 이상 적층된 바이오커버층; 및A biocover layer comprising one or more biocovers of claim 6 stacked thereon; And
    상기 바이오커버층을 둘러싸는 통기층을 포함하는 것을 특징으로 하는 메탄 저감 시스템.And a ventilation layer surrounding the biocover layer.
  11. 폐기물 매립지의 복토층 또는 지표면 위에 바이오 활성층을 설치하여 복토층 또는 지표면에서 발산되는 메탄을 생물학적으로 분해하는 메탄 저감 시스템에 있어서, 상기 바이오 활성층은 In the methane reduction system for biologically decomposing methane emitted from the cover layer or surface by installing a bio active layer on the cover layer or surface of the landfill, the bio active layer is
    제6항의 바이오커버가 하나 이상 적층된 바이오커버층; 및A biocover layer comprising one or more biocovers of claim 6 stacked thereon; And
    상기 바이오커버층 하부에 적층되는 통기층을 포함하는 것을 특징으로 하는 메탄 저감 시스템.Methane reduction system comprising a ventilation layer stacked below the biocover layer.
  12. 제10항 또는 제11항의 메탄 저감 시스템에 시료를 주입하여 메탄을 분해시키는 단계를 포함하는 메탄 저감방법.A method of methane abatement comprising the step of decomposing methane by injecting a sample into the methane abatement system of claim 10.
PCT/KR2009/003907 2009-07-15 2009-07-15 Novel methane oxidizing bacteria, methylocystis microorganism and method for reducing methane using same WO2011007907A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/003907 WO2011007907A1 (en) 2009-07-15 2009-07-15 Novel methane oxidizing bacteria, methylocystis microorganism and method for reducing methane using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/003907 WO2011007907A1 (en) 2009-07-15 2009-07-15 Novel methane oxidizing bacteria, methylocystis microorganism and method for reducing methane using same

Publications (1)

Publication Number Publication Date
WO2011007907A1 true WO2011007907A1 (en) 2011-01-20

Family

ID=43449515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003907 WO2011007907A1 (en) 2009-07-15 2009-07-15 Novel methane oxidizing bacteria, methylocystis microorganism and method for reducing methane using same

Country Status (1)

Country Link
WO (1) WO2011007907A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682461A1 (en) * 2012-04-25 2014-01-08 Ewha University-Industry Collaboration Foundation Carrier for immobilizing methanotroph and method for removing methane employing the same
CN106929540A (en) * 2017-04-05 2017-07-07 中国科学院青岛生物能源与过程研究所 A kind of method for improving anaerobic fermentation methane phase efficiency and methane content of bilogas
KR20190091947A (en) * 2018-01-30 2019-08-07 건국대학교 산학협력단 Macro-porous particles for immobilization of Methanotrophs and methode for production of methanol using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024255A1 (en) * 2005-08-22 2007-03-01 Herrema-Kimmel, Llc., Process for the treatment of methane emissions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024255A1 (en) * 2005-08-22 2007-03-01 Herrema-Kimmel, Llc., Process for the treatment of methane emissions

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK 16 May 2009 (2009-05-16), Database accession no. FJ775133 *
HANS-PETER HORZ ET AL.: "Methane-Oxidizing Bacteria in a California Upland Grassland Soil: Diversity and Response to Simulated Global Change", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 71, no. 5, May 2005 (2005-05-01), pages 2642 - 2652 *
IR MCDONALD ET AL.: "The Soluble Methane Monooxygenase Gene Cluster of the Trichloroethylene-Degrading Methanotroph Methlocystis sp. Strain M", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 63, no. 5, May 1997 (1997-05-01), pages 1898 - 1904, XP002547889 *
MOHAMED BAANI ET AL.: "Two isozymes of particulate methane monoox ygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2", PNAS, vol. 105, no. 29, 22 July 2008 (2008-07-22), pages 10203 - 10208 *
S GROSSE ET AL.: "Purification and Characterization of the Soluble Methane Monooxygenase of the Type II Methanotrophic Bacterium Methylocystis sp. Strain WI 14", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 65, no. 9, September 1999 (1999-09-01), pages 3929 - 3935, XP002540704 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682461A1 (en) * 2012-04-25 2014-01-08 Ewha University-Industry Collaboration Foundation Carrier for immobilizing methanotroph and method for removing methane employing the same
CN106929540A (en) * 2017-04-05 2017-07-07 中国科学院青岛生物能源与过程研究所 A kind of method for improving anaerobic fermentation methane phase efficiency and methane content of bilogas
KR20190091947A (en) * 2018-01-30 2019-08-07 건국대학교 산학협력단 Macro-porous particles for immobilization of Methanotrophs and methode for production of methanol using the same
KR102091313B1 (en) * 2018-01-30 2020-03-19 건국대학교 산학협력단 Macro-porous particles for immobilization of Methanotrophs and methode for production of methanol using the same

Similar Documents

Publication Publication Date Title
WO2012111875A1 (en) Novel sphingomonas sp. microorganism, and method for decomposing methane or odor-producing compounds using same
KR101095478B1 (en) Novel methane-oxidizing bacterium, Methylocystis sp. M6 and method for removing methane using the same
Sekiguchi et al. Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level
Belova et al. Acetate utilization as a survival strategy of peat‐inhabiting Methylocystis spp.
Purnomo et al. DDT degradation potential of cattle manure compost
Holmes et al. Methylosulfonomonas methylovora gen. nov., sp. nov., and Marinosulfonomonas methylotropha gen. nov., sp. nov.: novel methylotrophs able to grow on methanesulfonic acid
Lee et al. Characterization of methane oxidation by a methanotroph isolated from a landfill cover soil, South Korea
WO2011078601A2 (en) Mixed strain culture for the disposal of food waste, and food waste disposal method using same
Sahin et al. Pandoraea oxalativorans sp. nov., Pandoraea faecigallinarum sp. nov. and Pandoraea vervacti sp. nov., isolated from oxalate-enriched culture
Liu et al. Screening of PAH-degrading bacteria in a mangrove swamp using PCR–RFLP
Purwanti et al. Biodegradation of diesel by bacteria isolated from Scirpus mucronatus rhizosphere in diesel-contaminated sand
Lebrero et al. Toluene biodegradation in an algal-bacterial airlift photobioreactor: Influence of the biomass concentration and of the presence of an organic phase
Lee et al. Isolation and characterization of a facultative methanotroph degrading malodor-causing volatile sulfur compounds
Su et al. Microbial community and function of enrichment cultures with methane and toluene
WO2011007907A1 (en) Novel methane oxidizing bacteria, methylocystis microorganism and method for reducing methane using same
Stępniewska et al. Enrichment culture and identification of endophytic methanotrophs isolated from peatland plants
Kong et al. Effects of trichloroethylene on community structure and activity of methanotrophs in landfill cover soils
Yao et al. Enhanced removal of methanethiol and its conversion products in the presence of methane in biofilters
Borin et al. Microbial succession in a compost-packed biofilter treating benzene-contaminated air
Yang et al. Characterization of the bacterial community associated with methane and odor in a pilot-scale landfill biocover under moderately thermophilic conditions
KR101095476B1 (en) Novel methane-oxidizing bacterium, Cupriavidus sp. MBT 14 and method for removing methane and volatile organic compounds using the same
Alonso-Gutiérrez et al. Alcanivorax strain detected among the cultured bacterial community from sediments affected by the ‘Prestige’oil spill
Yin et al. Biodegradation of 1-methylindole and 3-methylindole by mangrove sediment enrichment cultures and a pure culture of an isolated Pseudomonas aeruginosa Gs
Wang et al. Enhanced degradation of methanethiol in enrichment cultures in the presence of methane
WO2011007906A1 (en) Novel methanotrophs cupriavidus spp. and method for simultaneous-reducing methane and volatile organic compounds using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847364

Country of ref document: EP

Kind code of ref document: A1