WO2011007827A1 - Method for starting dme engine - Google Patents

Method for starting dme engine Download PDF

Info

Publication number
WO2011007827A1
WO2011007827A1 PCT/JP2010/061965 JP2010061965W WO2011007827A1 WO 2011007827 A1 WO2011007827 A1 WO 2011007827A1 JP 2010061965 W JP2010061965 W JP 2010061965W WO 2011007827 A1 WO2011007827 A1 WO 2011007827A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
pressure
starting
engine
line
Prior art date
Application number
PCT/JP2010/061965
Other languages
French (fr)
Japanese (ja)
Inventor
カンドカー・アブ ライハン
中園 徹
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to KR1020117031160A priority Critical patent/KR101333392B1/en
Priority to CN201080032642XA priority patent/CN102472203B/en
Publication of WO2011007827A1 publication Critical patent/WO2011007827A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/08Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for non-gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0209Hydrocarbon fuels, e.g. methane or acetylene
    • F02M21/0212Hydrocarbon fuels, e.g. methane or acetylene comprising at least 3 C-Atoms, e.g. liquefied petroleum gas [LPG], propane or butane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0287Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0803Circuits or control means specially adapted for starting of engines characterised by means for initiating engine start or stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/20Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a DME engine starting method in a fuel supply system including a fuel circuit that supplies DME fuel in a fuel tank to a DME engine via a supply line by a feed pump.
  • a fuel supply system for supplying DME (dimethyl ether) fuel to a DME engine is known.
  • the fuel supply system includes a fuel circuit that supplies DME fuel in a fuel tank to a DME engine via a supply line by a feed pump.
  • the fuel circuit is configured to circulate the fuel, and the fuel supplied to the engine is returned to the fuel tank or the supply line.
  • the DME engine is started in the fuel supply system as follows. First, the feed pump is activated. Thereby, the circulation of the fuel in the fuel circuit is started. Next, it is confirmed whether or not the pressure in the supply line has reached a predetermined pressure. When the pressure does not reach the predetermined pressure, the supply line is purged manually, for example. Thereafter, the engine is started.
  • Patent Document 1 discloses an example of a method for starting a DME engine.
  • the fuel supply device of Patent Document 1 includes a plurality of feed pumps between a fuel tank and an engine.
  • the pressure of each feed pump is controlled to reach the target pressure.
  • the target pressure is a value that is equal to or higher than the saturated vapor pressure of DME, and that DME must be liquid.
  • the target pressure is specified based on a graph showing the relationship between the temperature of the DME and the vapor pressure.
  • the control device of Patent Document 1 detects the temperature of the DME and the pressure on the inlet side of each feed pump, and sets the output of each feed pump so that the pressure is equal to or higher than the vapor pressure corresponding to the temperature. To do. As a result, bubbles (DME vapor) are prevented from being mixed into the DME supplied by each feed pump. When all the feed pump pressures reach the target pressure, the control device starts the engine.
  • the present invention provides a DME engine starting method that not only prevents DME vaporization but also removes air entering the fuel circuit before starting the DME engine.
  • One aspect of the present invention is a method for starting a DME engine in a fuel supply system including a fuel circuit that supplies DME fuel in a fuel tank to a DME engine via a supply line using a feed pump, Starting a fuel cooler that cools the fuel in at least a part of the circuit; starting a cooler; opening the supply line; opening the line; and starting the feed pump after the line opening process. And after the pump starting step, the supply line is kept in the atmosphere until the pressure difference between the outlet side and the inlet side of the feed pump is equal to or greater than a predetermined pressure difference and the pressure on the outlet side of the feed pump is equal to or greater than a predetermined pressure.
  • the fuel circuit After the purge step and the cooler start-up step that are opened in, the fuel circuit is in a predetermined position in the fuel circuit.
  • a temperature lowering standby step for waiting until the temperature of the fuel becomes lower than a predetermined temperature; and a starter starting step for starting the starter of the DME engine after the purge step and the temperature lowering standby step are completed.
  • a method for starting the DME engine is provided.
  • the start method of the DME engine according to one aspect of the present invention can preferably employ configurations (a) to (c).
  • Each said process is performed in order of a cooler starting process, a line open process, a pump starting process, the said purge process, the said temperature fall standby process, and the said starter starting process.
  • the pressure on the outlet side of the feed pump is detected at a position close to the feed pump and a position close to the DME engine, and a pressure for comparison with the predetermined pressure difference
  • the difference is the pressure difference between the pressure on the inlet side of the feed pump and the pressure near the feed pump, and the pressure for comparison with the predetermined pressure is the pressure near the DME engine.
  • the fuel circuit includes a return line for returning the fuel from the DME engine to the fuel tank, and the fuel circulates between the DME engine and the fuel tank.
  • the present invention not only prevents the vaporization of DME but also removes air entering the fuel circuit before starting the DME engine.
  • FIG. 1 is a schematic diagram showing a fuel supply system and a DME supply source 100.
  • the fuel supply system is a system that supplies DME fuel to the engine 2.
  • the DME supply source 100 supplies DME fuel to the fuel tank 3 of the fuel supply system.
  • the fuel supply system includes a fuel circuit 1 for supplying fuel.
  • the fuel circuit 1 includes an engine 2, a fuel tank 3, and a high pressure pump 4.
  • the fuel circuit 1 includes a supply line 10 that supplies fuel from the fuel tank 3 to the engine 2, a return line 20 that returns fuel from the engine 2 to the fuel tank 3, and a bypass line that connects the supply line 10 and the return line 20 to each other.
  • the supply line 10 includes a first sub supply line 11, a second sub supply line 12, a third sub supply line 13, and a fourth sub supply line 14.
  • the return line 20 includes a first sub return line 21, a second sub return line 22, a third sub return line 23, and a fourth sub return line 24.
  • the bypass line 30 includes a first sub bypass line 31 and a second sub bypass line 32.
  • the fuel circuit 1 further includes three purge lines 71, 72, and 73 and a leak line 80.
  • the first purge line 71, the second purge line 72, and the third purge line 73 are lines for releasing the gas in the fuel circuit 1 into the atmosphere.
  • the first purge line 71 is open to the atmosphere.
  • the second purge line 72 joins the downstream portion of the first purge line 71 at the joining portion 1c.
  • the third purge line 73 joins the downstream portion of the second purge line 72 at the joining portion 1d.
  • the leak line 80 is a line for collecting the fuel leaked from each part in the fuel circuit 1 in the fuel tank 3.
  • the high-pressure pump (feed pump) 4 is disposed between the first sub supply line 11 and the second sub supply line 12.
  • the engine 2 is disposed between the fourth sub supply line 14 and the first sub return line 21.
  • the fuel tank 3 is disposed between the fourth sub return line 24 and the first sub supply line 11.
  • the branch part 1 a is a connection part between the supply line 10 and the bypass line 30.
  • the second sub supply line 12 branches into a third sub supply line 13 and a first sub bypass line 31 in the branching section 1a.
  • the junction 1 b is a connection between the return line 20 and the bypass line 30.
  • the second sub bypass line 32 and the third sub return line 23 merge with the fourth sub return line 24 at the junction 1b.
  • the fuel circuit 1 includes two solenoid valves CV-1 and CV-2.
  • the first electromagnetic valve CV-1 is disposed between the third sub supply line 13 and the fourth sub supply line 14.
  • the second electromagnetic valve CV-2 is disposed between the first sub return line 21 and the second sub return line 22.
  • the fuel circuit 1 includes two pressure regulating valves 41 and 42.
  • the first pressure regulating valve 41 is disposed between the first sub bypass line 31 and the second sub bypass line 32.
  • the second pressure regulating valve 42 is disposed between the second sub return line 22 and the third sub return line 23.
  • the two pressure regulating valves 41 and 42 are provided to keep the pressure of the fuel supplied to the engine 2 constant.
  • the pressure from the high pressure pump 4 to the upstream side of the two pressure regulating valves 41 and 42 is kept high.
  • the pressure from the downstream side of the two pressure regulating valves 41 and 42 to the high pressure pump 4 is low.
  • the high pressure is 1.6 MPa and the low pressure is 0.6 MPa.
  • the fuel circuit 1 includes two check valves 43 and 44.
  • the check valve 43 is disposed between the fourth sub return line 24 and the fuel tank 3.
  • the check valve 44 is disposed between the leak line 80 and the fuel tank 3. The check valves 43 and 44 prevent fuel from flowing back from the fuel tank 3 to the lines 24 and 80.
  • the fuel circuit 1 includes two solenoid valves RV-1 and RV-2 and two shutoff valves 91 and 92 for purging.
  • the first electromagnetic valve RV-1 is disposed on the second purge line 72 between the merging portion 1c and the merging portion 1d.
  • the second solenoid valve RV-2 is disposed on the first purge line 71 on the upstream side of the junction 1c.
  • the first shut-off valve 91 is disposed between the fourth sub supply line 14 and the second purge line 72.
  • the second shut-off valve 92 is disposed between the first sub return line 21 and the third purge line 73.
  • the gas in the fourth sub supply line 14 is released to the atmosphere via the second purge line 72.
  • the gas in the first sub return line 21 is released to the atmosphere via the third purge line 73.
  • the second electromagnetic valve RV-2 is opened, the gas in the fuel tank 3 is released into the atmosphere via the first purge line 71.
  • the fuel supply system includes six pressure sensors PS-2, PS-3, PS-4, PS-5, PS-6, and PS-7 for detecting the pressure of the fuel at each part in the fuel circuit 1. .
  • the second pressure sensor PS-2 detects the pressure of the fuel in the first sub supply line 11. Here, the pressure of the fuel in the first sub supply line 11 is equal to the pressure of the fuel in the fuel tank 3.
  • the third pressure sensor PS-3 detects the pressure of the fuel in the second upstream supply line 12.
  • the fourth pressure sensor PS-4 detects the pressure of the fuel in the fourth sub supply line 14.
  • the fifth pressure sensor PS-5 detects the fuel pressure in the second sub-return line 22.
  • the sixth pressure sensor PS-6 detects the pressure of the fuel in the fourth sub return line 24.
  • the seventh pressure sensor PS-7 detects the pressure of the fuel in the leak line 80.
  • the fuel supply system includes two fuel coolers 51 and 52 for cooling the fuel in the fuel circuit 1.
  • the fuel coolers 51 and 52 are chillers (devices for cooling the refrigerant).
  • the first fuel cooler 51 cools the fuel in the supply line 10.
  • the heat exchanger 51 a of the first fuel cooler 51 is disposed in the second sub supply line 12.
  • the second fuel cooler 52 cools the fuel in the return line 20.
  • the heat exchanger 52 a of the second fuel cooler 52 is disposed in the fourth sub return line 24.
  • the fuel supply system includes eight temperature sensors 61 to 68 for detecting the temperature of the fuel in each part of the fuel circuit 1.
  • the first temperature sensor 61 detects the temperature of the fuel in the first sub supply line 11.
  • the second temperature sensor 62 and the third temperature sensor 63 detect the temperature of the fuel on the upstream side and the downstream side of the first heat exchanger 51 in the second sub supply line 12.
  • the fourth temperature sensor 64 detects the temperature of the fuel at the end of the supply line 10, that is, at the inlet of the engine 2.
  • the fifth temperature sensor 65 detects the temperature of the fuel at the start end of the return line 20, that is, at the outlet of the engine 2.
  • the sixth temperature sensor 66 and the seventh temperature sensor 67 detect the temperature of the fuel on the upstream side and the downstream side of the second heat exchanger 52 in the fourth sub return line 24.
  • the eighth temperature sensor 68 detects the temperature of the fuel in the leak line 80.
  • the fuel supply system includes a control device 6.
  • the control device 6 can control driving of the engine 2, the high-pressure pump 4, and the fuel coolers 51 and 52.
  • the control device 6 can maintain or change the opening degree of the two electromagnetic valves CV-1 and CV-2.
  • the control device 6 can confirm detection information from the six pressure sensors PS-2 to PS-7 and the eight temperature sensors 61 to 68.
  • the fuel in the fuel tank 3 is supplied to the engine 2 through the supply line 10 by the operation of the high-pressure pump 4.
  • the fuel supplied to the engine 2 passes through the engine 2 and then returns to the fuel tank 3 through the return line 20. Further, part of the fuel supplied to the supply line 10 is returned to the fuel tank 3 through the bypass line 30 and the return line 20 without passing through the engine 2.
  • the fuel is cooled by the first fuel cooler 51 in the supply line 10 and is cooled by the second fuel cooler 52 in the return line 20. Due to the presence of the bypass line 30, the flow rate of the fuel passing through the fuel coolers 51 and 52 is increased. For this reason, the fuel is easily cooled.
  • FIG. 2 is a flowchart showing a method for starting the DME engine 2.
  • the control device 6 executes engine start control according to the flow of FIG.
  • the engine start control includes the following steps.
  • the fuel supply system includes a start switch for starting the engine 2.
  • step S1 when detecting that the start switch has been pressed, the control device 6 starts engine start control.
  • step S2 the control device 6 activates the two fuel coolers 51 and 52.
  • the process of step S2 is a cooler starting process.
  • step S3 the control device 6 opens the two solenoid valves CV-1 and CV-2. As a result, the fuel can flow through the supply line 10 and the return line 20.
  • the process of step S3 is a line opening process.
  • step S4 the control device 6 activates the high-pressure pump (feed pump) 4. As a result, fuel begins to flow in the fuel circuit 1.
  • the process of step S4 is a feed pump starting process.
  • step S5 the control device 6 waits for execution of the next step S6 for a predetermined first waiting time.
  • the first waiting time is set to a time until the high-pressure pump 4 reaches steady rotation, for example. In the present embodiment, the first waiting time is 5 seconds.
  • the processing from step S6 to S12 is a purge process for performing a purge of gas.
  • the process in the purge process is a loop process in which steps S6 to S12 are repeatedly executed under a predetermined condition. This loop processing ends when the determination results in steps S6 and S7 are both Yes. When any determination result in step S6 or S7 is No, the loop process is repeatedly executed.
  • step S6 the control device 6 determines whether or not the pressure difference between the outlet side and the inlet side of the high-pressure pump 4 is greater than or equal to a predetermined pressure difference.
  • the control device 6 can grasp the pressure on the inlet side of the high-pressure pump 4 based on the detection information by the second pressure sensor PS-2.
  • the control device 6 can grasp the pressure on the outlet side of the high-pressure pump 4 based on the detection information by the third pressure sensor PS-3. This pressure difference is obtained by subtracting the inlet side pressure from the outlet side pressure. Therefore, the control device 6 can grasp the pressure difference between the outlet side and the inlet side of the high-pressure pump 4.
  • the predetermined pressure difference is set as an index for knowing the operating state of the high-pressure pump 4. That is, when the pressure difference in the high-pressure pump 4 exceeds the predetermined pressure difference, the high-pressure pump 4 is operating properly.
  • the predetermined pressure difference is 0.3 MPa in the present embodiment.
  • the control device 6 shifts the process to step S7.
  • the control device 6 shifts the process to step S8.
  • step S7 the control device 6 determines whether the pressure on the outlet side of the high-pressure pump 4 is equal to or higher than a predetermined pressure.
  • the control device 6 can grasp the pressure on the outlet side of the high-pressure pump 4 based on the detection information by the fourth pressure sensor PS-4.
  • the predetermined pressure is set as an index for knowing the pressure of the fuel supplied to the engine 2. That is, when the pressure on the outlet side of the high pressure pump 4 exceeds a predetermined pressure, the pressure of the fuel supplied to the engine 2 is appropriate.
  • the predetermined pressure is 1.5 MPa in the present embodiment.
  • the pressure on the outlet side in step S7 is preferably a pressure close to the engine 2. Therefore, in step S7, the detection value of the fourth pressure sensor PS-4 is used instead of the detection value of the third pressure sensor PS-3 used in step S6.
  • the control device 6 shifts the process to step S13. That is, the control device 6 ends the loop processing from step S6 to S12.
  • the control device 6 shifts the process to step S8.
  • step S8 the control device 6 opens the first electromagnetic valve RV-1 and the shut-off valves 91 and 92. As a result, the gas (air and DME vapor) in the supply line 10 and the return line 20 is purged into the atmosphere.
  • step S9 the control device 6 waits for execution of the next step S10 for a predetermined second waiting time.
  • the second standby time is set as the air bleeding time.
  • the second waiting time is 1 second in the present embodiment. During the second waiting time, a gas purge is performed.
  • step S10 the control device 6 closes the first electromagnetic valve RV-1 and the shutoff valves 91 and 92. As a result, the purge of gas is completed.
  • step S11 the control device 6 waits for execution of the next step S10 for a predetermined third standby time.
  • the third standby time is set as the time required for the fuel in the fuel circuit 1 to stabilize after the purge is executed.
  • the third waiting time is 40 seconds in this embodiment.
  • step S12 the control device 6 determines whether or not the pressure on the outlet side of the high-pressure pump 4 has continuously exceeded the predetermined pressure for a predetermined first duration time.
  • the first duration time is set as an index for knowing the degree of stability of driving of the high-pressure pump 4.
  • the first duration is 40 seconds in this embodiment.
  • the control device 6 shifts the process to step S6.
  • the control device 6 determines that an error has occurred and starts the engine. End control.
  • the processing from step S13 to S15 is a temperature decrease standby process for waiting until the fuel cools.
  • the process in the temperature decrease standby process is a loop process in which steps S13 to S15 are repeatedly executed under a predetermined condition. This loop processing ends when the determination result in step S13 is Yes. If the determination result in step S13 is No, the loop process is repeatedly executed.
  • step S13 the control device 6 determines whether or not the temperature of the fuel at the inlet of the engine 2 is lower than a predetermined temperature.
  • the control device 6 can grasp the temperature of the fuel at the inlet of the engine 2 based on information detected by the fourth temperature sensor 64.
  • the predetermined temperature is set as an index for knowing the operating state of the fuel coolers 51 and 52.
  • the predetermined temperature is 30 ° C. in the present embodiment.
  • control device 6 shifts the process to step S16.
  • the control device 6 shifts the process to step S14.
  • step S14 the control device 6 waits for execution of the next step S15 for a predetermined fourth waiting time.
  • the fourth standby time is set as a time sufficient for the temperature of the fuel to become lower than the predetermined temperature when the fuel coolers 51 and 52 are operating normally.
  • the fourth waiting time is 3 minutes in this embodiment.
  • step S15 the control device 6 determines whether or not the temperature of the fuel is continuously lower than the predetermined temperature for a predetermined second duration.
  • the second duration time is set as an index for knowing the degree of stability of driving of the fuel coolers 51 and 52. In the present embodiment, the second duration is 5 minutes.
  • the control device 6 shifts the process to step S13. On the other hand, if the detected value of the fourth temperature sensor 64 does not continuously become less than 30 ° C. during the second duration time, the control device 6 determines that an error has occurred and ends the engine start control.
  • step S16 the control device 6 starts the starter of the engine 2. That is, the engine 2 is activated.
  • step S17 the control device 6 ends the engine start control.
  • This embodiment has the following operations and effects. While the pressure difference between the outlet side and the inlet side of the high pressure pump 4 is smaller than the predetermined pressure difference and / or while the pressure at the inlet of the engine 2 is lower than the predetermined pressure, the engine is not started and the gas (air And DME vapor). For this reason, this embodiment can remove the air that has entered the fuel circuit 1 before starting the engine 2. Therefore, this embodiment can avoid the malfunction that the high-pressure pump 4 does not operate correctly due to the entry of air into the fuel circuit 1.
  • this embodiment can prevent vaporization of DME fuel before starting the engine 2. Therefore, this embodiment can avoid the trouble that the high pressure pump 4 does not operate correctly and the trouble that the engine 2 does not start up properly due to the DME vapor in the fuel circuit 1.
  • the present invention can employ the following modifications.
  • each process in the engine start control includes (1) a cooler start process, (2) a line open process, (3) a pump start process, (4) a purge process, (5) a temperature decrease standby process, and ( 6) It is executed in the order of the starter starting process.
  • the execution order of each process should just satisfy
  • the (2) line opening process, (3) pump activation process, and (5) purge process need to be executed in the order of (2), (3), and (4).
  • the (1) cooler start-up process and (5) temperature decrease standby process need to be executed in the order of (1) and (5).
  • the order of execution of the process groups (2), (3), and (4) and the process groups (1) and (5) is not limited.
  • the (1) cooler starting process may be performed after the (3) pump starting process.
  • (4) the purge step and (5) the temperature decrease standby step may be performed in parallel so that the execution times overlap.
  • the pressure on the outlet side of the high pressure pump 4 is detected at a position close to the high pressure pump 4 and a position close to the engine 2.
  • the third pressure sensor PS-3 is relatively close to the high-pressure pump 4
  • the fourth pressure sensor PS-4 is relatively close to the engine 2.
  • the pressure difference for comparison with the predetermined pressure difference is the pressure difference between the pressure on the inlet side of the high pressure pump 4 and the pressure close to the high pressure pump 4.
  • the pressure for comparison with the predetermined pressure is a pressure close to the engine 2.
  • the pressure on the outlet side of the high-pressure pump 4 may be detected at the same position instead of the two different positions as described above.
  • the temperature of the fuel in the fuel circuit 1 for comparison with the predetermined temperature in the temperature decrease standby step (step S7) is a temperature close to the engine 2.
  • the fourth temperature sensor 64 detects the temperature near the engine 2.
  • the temperature of the fuel for comparison with the predetermined temperature may be a temperature at a predetermined position in the fuel circuit 1 and is not limited to a temperature close to the engine 2.
  • the fuel circuit 1 includes a supply line 10, a return line 20, and a bypass line 30. For this reason, some fuel circulates through the engine 2 and the fuel tank 3, and other fuel circulates through the fuel tank 3 without passing through the engine 2.
  • the fuel circuit 1 is not limited to this configuration.
  • the fuel circuit may be configured without the bypass line 30.
  • the return line from the engine 2 may join in the middle of the supply line 10 instead of the fuel tank 3.
  • Fuel circuit 2 DME engine 3
  • Fuel tank 4 High-pressure pump (feed pump) DESCRIPTION OF SYMBOLS 10 Supply line 20
  • Return line 51 1st fuel cooler 52
  • 2nd fuel cooler 64 4th temperature sensor (sensor which detects the temperature of the position near an engine)
  • 71 1st purge line 72
  • 2nd purge line 73 3rd purge line
  • 80 Leak line
  • PS-2 2nd pressure sensor (sensor which detects the pressure of the inlet side of a feed pump)
  • PS-3 Third pressure sensor (sensor that detects the pressure near the feed pump on the outlet side of the feed pump)
  • PS-4 Fourth pressure sensor sensor that detects the pressure close to the engine on the outlet side of the feed pump)

Abstract

A method for starting a DME engine is provided with a cooler starting step at which fuel coolers (51, 52) for cooling a fuel in a supply line (10) and a return line (20) are operated; a line opening step at which the supply line (10) is opened; a pump starting step at which a high pressure pump (4) is operated after the line opening step; a purge step at which the supply line (10) is opened to the atmosphere after the pump starting step until a pressure difference between a third pressure sensor (PS-3) and a second pressure sensor (PS-2) is above a predetermined pressure difference and the pressure at a forth pressure sensor (PS-4) is above a predetermined pressure; a temperature drop waiting step at which the process waits until the temperature of the fuel detected by a fourth temperature sensor (64) is lower than a predetermined temperature, after the cooler starting step; and a starter operating step at which a starter for the engine (2) is operated after the completion of the purge step and the temperature drop waiting step.

Description

DMEエンジンの起動方法How to start the DME engine
 燃料タンク内のDME燃料をフィードポンプにより供給ラインを介してDMEエンジンに供給する燃料回路を備えている燃料供給システムにおける、DMEエンジンの起動方法に関する。 The present invention relates to a DME engine starting method in a fuel supply system including a fuel circuit that supplies DME fuel in a fuel tank to a DME engine via a supply line by a feed pump.
 DMEエンジンにDME(ジメチルエーテル)燃料を供給する燃料供給システムが知られている。燃料供給システムは、燃料タンク内のDME燃料をフィードポンプにより供給ラインを介してDMEエンジンに供給する燃料回路を備えている。この燃料回路は、燃料が循環するように構成されており、エンジンに供給された燃料は、燃料タンク又は供給ライン上に戻される。 A fuel supply system for supplying DME (dimethyl ether) fuel to a DME engine is known. The fuel supply system includes a fuel circuit that supplies DME fuel in a fuel tank to a DME engine via a supply line by a feed pump. The fuel circuit is configured to circulate the fuel, and the fuel supplied to the engine is returned to the fuel tank or the supply line.
 従来、燃料供給システムにおけるDMEエンジンの起動は、次のように行われている。まず、フィードポンプの起動が行われる。これにより、燃料回路内における燃料の循環が開始される。次に、供給ライン内の圧力が所定圧力に到達しているか否かが、確認される。圧力が所定圧力に到達していない場合は、例えば手動により、供給ラインのパージが実行される。その後、エンジンが起動される。 Conventionally, the DME engine is started in the fuel supply system as follows. First, the feed pump is activated. Thereby, the circulation of the fuel in the fuel circuit is started. Next, it is confirmed whether or not the pressure in the supply line has reached a predetermined pressure. When the pressure does not reach the predetermined pressure, the supply line is purged manually, for example. Thereafter, the engine is started.
 特許文献1には、DMEエンジンの起動方法の一例が開示されている。特許文献1の燃料供給装置は、燃料タンクからエンジンまでの間に、複数のフィードポンプを備えている。特許文献1では、エンジンの起動前に、各フィードポンプの圧力が目標圧力に到達するように制御される。目標圧力は、DMEの飽和蒸気圧以上の値であって、DMEが必ず液体となるような値である。目標圧力は、DMEの温度と蒸気圧との関係を示すグラフに基づいて、特定される。このため、特許文献1の制御装置は、DMEの温度と、各フィードポンプの入口側における圧力とを検出し、温度に対応する蒸気圧以上の圧力となるように、各フィードポンプの出力を設定する。この結果、各フィードポンプによって供給されるDME中に気泡(DME蒸気)が混入することが、防止される。そして、全てのフィードポンプの圧力が目標圧力に到達すると、制御装置は、エンジンを始動する。 Patent Document 1 discloses an example of a method for starting a DME engine. The fuel supply device of Patent Document 1 includes a plurality of feed pumps between a fuel tank and an engine. In Patent Document 1, before starting the engine, the pressure of each feed pump is controlled to reach the target pressure. The target pressure is a value that is equal to or higher than the saturated vapor pressure of DME, and that DME must be liquid. The target pressure is specified based on a graph showing the relationship between the temperature of the DME and the vapor pressure. For this reason, the control device of Patent Document 1 detects the temperature of the DME and the pressure on the inlet side of each feed pump, and sets the output of each feed pump so that the pressure is equal to or higher than the vapor pressure corresponding to the temperature. To do. As a result, bubbles (DME vapor) are prevented from being mixed into the DME supplied by each feed pump. When all the feed pump pressures reach the target pressure, the control device starts the engine.
特開2005-98260号公報JP 2005-98260 A
 エンジンの停止状態において、DMEはエンジンの燃料噴射ポンプからパージされ、及び/又は、DMEは燃料回路からリークされる。この結果、燃料回路内から出たDMEの代わりに、燃料回路内にエアが進入する。 During engine shutdown, DME is purged from the engine fuel injection pump and / or DME is leaked from the fuel circuit. As a result, air enters the fuel circuit instead of the DME exiting from the fuel circuit.
 エンジンの起動時には、フィードポンプが起動される。このとき、燃料回路内のエアは、フィードポンプによるキャビテーションの原因となる。キャビテーションはフィードポンプの駆動を妨げる。この結果、DMEの圧力が正しく上昇しない。つまり、燃料回路内のエアの存在が、エンジンの起動の妨げとなる。一方、特許文献1の技術は、温度上昇によるDMEの気化を防止できても、燃料回路内に進入したエアを除去できるものではない。 ∙ When the engine is started, the feed pump is started. At this time, the air in the fuel circuit causes cavitation by the feed pump. Cavitation prevents the feed pump from being driven. As a result, the pressure of DME does not rise correctly. That is, the presence of air in the fuel circuit hinders engine startup. On the other hand, even if the technique of Patent Document 1 can prevent the vaporization of DME due to the temperature rise, it cannot remove the air that has entered the fuel circuit.
 そこで、本発明は、DMEエンジンを起動する前に、DMEの気化を防止するだけでなく、燃料回路内に進入しているエアを除去できるDMEエンジンの起動方法を提供する。 Therefore, the present invention provides a DME engine starting method that not only prevents DME vaporization but also removes air entering the fuel circuit before starting the DME engine.
 本発明の1つの観点は、燃料タンク内のDME燃料をフィードポンプにより供給ラインを介してDMEエンジンに供給する燃料回路を備えている燃料供給システムにおける、DMEエンジンの起動方法であって、前記燃料回路の少なくとも一部において前記燃料を冷却する燃料クーラーを起動する、クーラー起動工程と、前記供給ラインを開放する、ライン開放工程と、前記ライン開放工程後に、前記フィードポンプを起動する、ポンプ起動工程と、前記ポンプ起動工程後に、前記フィードポンプの出口側と入口側とにおける圧力差が所定圧力差以上、且つ、前記フィードポンプの出口側の圧力が所定圧以上となるまで、前記供給ラインを大気中に開放する、パージ工程と、前記クーラー起動工程後に、前記燃料回路内の所定位置における前記燃料の温度が所定温度未満となるまで待機する、温度低下待機工程と、前記パージ工程及び前記温度低下待機工程の完了後に、前記DMEエンジンのスターターを起動する、スターター起動工程と、を備えている、DMEエンジンの起動方法を提供する。 One aspect of the present invention is a method for starting a DME engine in a fuel supply system including a fuel circuit that supplies DME fuel in a fuel tank to a DME engine via a supply line using a feed pump, Starting a fuel cooler that cools the fuel in at least a part of the circuit; starting a cooler; opening the supply line; opening the line; and starting the feed pump after the line opening process. And after the pump starting step, the supply line is kept in the atmosphere until the pressure difference between the outlet side and the inlet side of the feed pump is equal to or greater than a predetermined pressure difference and the pressure on the outlet side of the feed pump is equal to or greater than a predetermined pressure. After the purge step and the cooler start-up step that are opened in, the fuel circuit is in a predetermined position in the fuel circuit. A temperature lowering standby step for waiting until the temperature of the fuel becomes lower than a predetermined temperature; and a starter starting step for starting the starter of the DME engine after the purge step and the temperature lowering standby step are completed. A method for starting the DME engine is provided.
 本発明の1つの観点に係るDMEエンジンの起動方法は、好ましくは、構成(a)~(c)を採用できる。 The start method of the DME engine according to one aspect of the present invention can preferably employ configurations (a) to (c).
(a)前記各工程が、クーラー起動工程、ライン開放工程、ポンプ起動工程、前記パージ工程、前記温度低下待機工程、及び前記スターター起動工程の順序で、実行される。 (A) Each said process is performed in order of a cooler starting process, a line open process, a pump starting process, the said purge process, the said temperature fall standby process, and the said starter starting process.
(b)前記パージ工程において、前記フィードポンプの出口側の圧力が、前記フィードポンプに近い位置と前記DMEエンジンに近い位置とで検出されるものであり、前記所定圧力差と比較するための圧力差が、前記フィードポンプの入口側の圧力と前記フィードポンプに近い位置の圧力との圧力差であり、前記所定圧と比較するための前記圧力が、前記DMEエンジンに近い位置の圧力である。 (B) In the purge step, the pressure on the outlet side of the feed pump is detected at a position close to the feed pump and a position close to the DME engine, and a pressure for comparison with the predetermined pressure difference The difference is the pressure difference between the pressure on the inlet side of the feed pump and the pressure near the feed pump, and the pressure for comparison with the predetermined pressure is the pressure near the DME engine.
(c)前記燃料回路が、前記DMEエンジンから前記燃料タンクに前記燃料を戻すリターンラインを備えており、前記燃料が前記DMEエンジンと前記燃料タンクとを循環するようになっている。 (C) The fuel circuit includes a return line for returning the fuel from the DME engine to the fuel tank, and the fuel circulates between the DME engine and the fuel tank.
 本発明は、DMEエンジンを起動する前に、DMEの気化を防止するだけでなく、燃料回路内に進入しているエアを除去できる。 The present invention not only prevents the vaporization of DME but also removes air entering the fuel circuit before starting the DME engine.
燃料供給システムを示す概略図である。It is the schematic which shows a fuel supply system. DMEエンジンの起動方法を示すフローチャートである。It is a flowchart which shows the starting method of a DME engine.
 図1は、燃料供給システム及びDME供給源100を示す概略図である。燃料供給システムは、エンジン2にDME燃料を供給するシステムである。DME供給源100は、燃料供給システムの燃料タンク3に、DME燃料を供給する。 FIG. 1 is a schematic diagram showing a fuel supply system and a DME supply source 100. The fuel supply system is a system that supplies DME fuel to the engine 2. The DME supply source 100 supplies DME fuel to the fuel tank 3 of the fuel supply system.
 燃料供給システムは、燃料を供給するための燃料回路1を備えている。燃料回路1は、エンジン2と、燃料タンク3と、高圧ポンプ4と、を備えている。 The fuel supply system includes a fuel circuit 1 for supplying fuel. The fuel circuit 1 includes an engine 2, a fuel tank 3, and a high pressure pump 4.
 燃料回路1は、燃料タンク3からエンジン2に燃料を供給する供給ライン10と、エンジン2から燃料タンク3に燃料を戻すリターンライン20と、供給ライン10とリターンライン20とを連通接続するバイパスライン30と、を備えている。供給ライン10は、第1サブ供給ライン11と、第2サブ供給ライン12と、第3サブ供給ライン13と、第4サブ供給ライン14と、からなっている。リターンライン20は、第1サブリターンライン21と、第2サブリターンライン22と、第3サブリターンライン23と、第4サブリターンライン24と、からなっている。バイパスライン30は、第1サブバイパスライン31と、第2サブバイパスライン32と、からなっている。 The fuel circuit 1 includes a supply line 10 that supplies fuel from the fuel tank 3 to the engine 2, a return line 20 that returns fuel from the engine 2 to the fuel tank 3, and a bypass line that connects the supply line 10 and the return line 20 to each other. 30. The supply line 10 includes a first sub supply line 11, a second sub supply line 12, a third sub supply line 13, and a fourth sub supply line 14. The return line 20 includes a first sub return line 21, a second sub return line 22, a third sub return line 23, and a fourth sub return line 24. The bypass line 30 includes a first sub bypass line 31 and a second sub bypass line 32.
 燃料回路1は、更に、3つのパージライン71、72及び73と、リークライン80と、を備えている。第1パージライン71、第2パージライン72、及び第3パージライン73は、燃料回路1内のガスを大気中に放出するラインである。第1パージライン71は、大気中に開放されている。第2パージライン72は、合流部1cにおいて、第1パージライン71の下流側部分に合流している。第3パージライン73は、合流部1dにおいて、第2パージライン72の下流側部分に合流している。リークライン80は、燃料回路1内の各部からリークした燃料を燃料タンク3に回収するラインである。 The fuel circuit 1 further includes three purge lines 71, 72, and 73 and a leak line 80. The first purge line 71, the second purge line 72, and the third purge line 73 are lines for releasing the gas in the fuel circuit 1 into the atmosphere. The first purge line 71 is open to the atmosphere. The second purge line 72 joins the downstream portion of the first purge line 71 at the joining portion 1c. The third purge line 73 joins the downstream portion of the second purge line 72 at the joining portion 1d. The leak line 80 is a line for collecting the fuel leaked from each part in the fuel circuit 1 in the fuel tank 3.
 高圧ポンプ(フィードポンプ)4は、第1サブ供給ライン11と第2サブ供給ライン12との間に配置されている。エンジン2は、第4サブ供給ライン14と第1サブリターンライン21との間に配置されている。燃料タンク3は、第4サブリターンライン24と第1サブ供給ライン11との間に配置されている。 The high-pressure pump (feed pump) 4 is disposed between the first sub supply line 11 and the second sub supply line 12. The engine 2 is disposed between the fourth sub supply line 14 and the first sub return line 21. The fuel tank 3 is disposed between the fourth sub return line 24 and the first sub supply line 11.
 分岐部1aは、供給ライン10とバイパスライン30との接続部である。第2サブ供給ライン12は、分岐部1aにおいて、第3サブ供給ライン13と第1サブバイパスライン31とに分岐している。合流部1bは、リターンライン20とバイパスライン30との接続部である。第2サブバイパスライン32及び第3サブリターンライン23は、合流部1bにおいて、第4サブリターンライン24に合流している。 The branch part 1 a is a connection part between the supply line 10 and the bypass line 30. The second sub supply line 12 branches into a third sub supply line 13 and a first sub bypass line 31 in the branching section 1a. The junction 1 b is a connection between the return line 20 and the bypass line 30. The second sub bypass line 32 and the third sub return line 23 merge with the fourth sub return line 24 at the junction 1b.
 燃料回路1は、2つの電磁弁CV-1、CV-2を備えている。第1電磁弁CV-1は、第3サブ供給ライン13と第4サブ供給ライン14との間に配置されている。第2電磁弁CV-2は、第1サブリターンライン21と第2サブリターンライン22との間に配置されている。 The fuel circuit 1 includes two solenoid valves CV-1 and CV-2. The first electromagnetic valve CV-1 is disposed between the third sub supply line 13 and the fourth sub supply line 14. The second electromagnetic valve CV-2 is disposed between the first sub return line 21 and the second sub return line 22.
 燃料回路1は、2つの圧力調整弁41、42を備えている。第1圧力調整弁41は、第1サブバイパスライン31と第2サブバイパスライン32との間に配置されている。第2圧力調整弁42は、第2サブリターンライン22と第3サブリターンライン23との間に配置されている。2つの圧力調整弁41、42は、エンジン2に供給される燃料の圧力を、一定に保つために設けられている。高圧ポンプ4から2つの圧力調整弁41、42の上流側までの圧力は、高圧に保たれている。2つの圧力調整弁41、42の下流側から高圧ポンプ4までは、低圧である。本実施形態では、高圧は1.6MPaであり、低圧は0.6MPaである。 The fuel circuit 1 includes two pressure regulating valves 41 and 42. The first pressure regulating valve 41 is disposed between the first sub bypass line 31 and the second sub bypass line 32. The second pressure regulating valve 42 is disposed between the second sub return line 22 and the third sub return line 23. The two pressure regulating valves 41 and 42 are provided to keep the pressure of the fuel supplied to the engine 2 constant. The pressure from the high pressure pump 4 to the upstream side of the two pressure regulating valves 41 and 42 is kept high. The pressure from the downstream side of the two pressure regulating valves 41 and 42 to the high pressure pump 4 is low. In this embodiment, the high pressure is 1.6 MPa and the low pressure is 0.6 MPa.
 燃料回路1は、2つの逆止弁43、44を備えている。逆止弁43は、第4サブリターンライン24と燃料タンク3との間に配置されている。逆止弁44は、リークライン80と燃料タンク3との間に配置されている。逆止弁43、44は、燃料タンク3からライン24、80に燃料が逆流することを防止する。 The fuel circuit 1 includes two check valves 43 and 44. The check valve 43 is disposed between the fourth sub return line 24 and the fuel tank 3. The check valve 44 is disposed between the leak line 80 and the fuel tank 3. The check valves 43 and 44 prevent fuel from flowing back from the fuel tank 3 to the lines 24 and 80.
 燃料回路1は、パージのために、2つの電磁弁RV-1、RV-2と、2つの遮断弁91、92と、を備えている。第1電磁弁RV-1は、合流部1cと合流部1dとの間で、第2パージライン72上に配置されている。第2電磁弁RV-2は、合流部1cの上流側において、第1パージライン71上に配置されている。第1遮断弁91は、第4サブ供給ライン14と第2パージライン72との間に配置されている。第2遮断弁92は、第1サブリターンライン21と第3パージライン73との間に配置されている。 The fuel circuit 1 includes two solenoid valves RV-1 and RV-2 and two shutoff valves 91 and 92 for purging. The first electromagnetic valve RV-1 is disposed on the second purge line 72 between the merging portion 1c and the merging portion 1d. The second solenoid valve RV-2 is disposed on the first purge line 71 on the upstream side of the junction 1c. The first shut-off valve 91 is disposed between the fourth sub supply line 14 and the second purge line 72. The second shut-off valve 92 is disposed between the first sub return line 21 and the third purge line 73.
 第1電磁弁RV-1及び第1遮断弁91が開放されると、第4サブ供給ライン14内のガスが、第2パージライン72を介して大気中に解放される。第1電磁弁RV-1及び第2遮断弁92が開放されると、第1サブリターンライン21内のガスが、第3パージライン73を介して大気中に解放される。第2電磁弁RV-2が開放されると、燃料タンク3内のガスが第1パージライン71を介して大気中に解放される。 When the first electromagnetic valve RV-1 and the first shut-off valve 91 are opened, the gas in the fourth sub supply line 14 is released to the atmosphere via the second purge line 72. When the first electromagnetic valve RV-1 and the second shut-off valve 92 are opened, the gas in the first sub return line 21 is released to the atmosphere via the third purge line 73. When the second electromagnetic valve RV-2 is opened, the gas in the fuel tank 3 is released into the atmosphere via the first purge line 71.
 燃料供給システムは、燃料回路1内の各部に、燃料の圧力を検出する6つの圧力センサPS-2、PS-3、PS-4、PS-5、PS-6、PS-7を備えている。第2圧力センサPS-2は、第1サブ供給ライン11内の燃料の圧力を検出する。ここで、第1サブ供給ライン11内の燃料の圧力は、燃料タンク3内の燃料の圧力に等しい。第3圧力センサPS-3は、第2上流供給ライン12内の燃料の圧力を検出する。第4圧力センサPS-4は、第4サブ供給ライン14内の燃料の圧力を検出する。第5圧力センサPS-5は、第2サブリターンライン22内の燃料の圧力を検出する。第6圧力センサPS-6は、第4サブリターンライン24内の燃料の圧力を検出する。第7圧力センサPS-7は、リークライン80内の燃料の圧力を検出する。 The fuel supply system includes six pressure sensors PS-2, PS-3, PS-4, PS-5, PS-6, and PS-7 for detecting the pressure of the fuel at each part in the fuel circuit 1. . The second pressure sensor PS-2 detects the pressure of the fuel in the first sub supply line 11. Here, the pressure of the fuel in the first sub supply line 11 is equal to the pressure of the fuel in the fuel tank 3. The third pressure sensor PS-3 detects the pressure of the fuel in the second upstream supply line 12. The fourth pressure sensor PS-4 detects the pressure of the fuel in the fourth sub supply line 14. The fifth pressure sensor PS-5 detects the fuel pressure in the second sub-return line 22. The sixth pressure sensor PS-6 detects the pressure of the fuel in the fourth sub return line 24. The seventh pressure sensor PS-7 detects the pressure of the fuel in the leak line 80.
 燃料供給システムは、燃料回路1内の燃料を冷却するための2つの燃料クーラー51、52を備えている。燃料クーラー51、52は、チラー(冷媒を冷やす装置)である。第1燃料クーラー51は、供給ライン10内の燃料を冷却する。第1燃料クーラー51の熱交換器51aは、第2サブ供給ライン12内に配置されている。第2燃料クーラー52は、リターンライン20内の燃料を冷却する。第2燃料クーラー52の熱交換器52aは、第4サブリターンライン24内に配置されている。 The fuel supply system includes two fuel coolers 51 and 52 for cooling the fuel in the fuel circuit 1. The fuel coolers 51 and 52 are chillers (devices for cooling the refrigerant). The first fuel cooler 51 cools the fuel in the supply line 10. The heat exchanger 51 a of the first fuel cooler 51 is disposed in the second sub supply line 12. The second fuel cooler 52 cools the fuel in the return line 20. The heat exchanger 52 a of the second fuel cooler 52 is disposed in the fourth sub return line 24.
 燃料供給システムは、燃料回路1内の各部に、燃料の温度を検出する8つの温度センサ61~68を備えている。第1温度センサ61は、第1サブ供給ライン11内の燃料の温度を検出する。第2温度センサ62及び第3温度センサ63は、第2サブ供給ライン12において、第1熱交換器51の上流側及び下流側の燃料の温度を検出する。第4温度センサ64は、供給ライン10の終端部、つまりエンジン2の入口における燃料の温度を検出する。第5温度センサ65は、リターンライン20の始端部、つまりエンジン2の出口における燃料の温度を検出する。第6温度センサ66及び第7温度センサ67は、第4サブリターンライン24において、第2熱交換器52の上流側及び下流側の燃料の温度を検出する。第8温度センサ68は、リークライン80内の燃料の温度を検出する。 The fuel supply system includes eight temperature sensors 61 to 68 for detecting the temperature of the fuel in each part of the fuel circuit 1. The first temperature sensor 61 detects the temperature of the fuel in the first sub supply line 11. The second temperature sensor 62 and the third temperature sensor 63 detect the temperature of the fuel on the upstream side and the downstream side of the first heat exchanger 51 in the second sub supply line 12. The fourth temperature sensor 64 detects the temperature of the fuel at the end of the supply line 10, that is, at the inlet of the engine 2. The fifth temperature sensor 65 detects the temperature of the fuel at the start end of the return line 20, that is, at the outlet of the engine 2. The sixth temperature sensor 66 and the seventh temperature sensor 67 detect the temperature of the fuel on the upstream side and the downstream side of the second heat exchanger 52 in the fourth sub return line 24. The eighth temperature sensor 68 detects the temperature of the fuel in the leak line 80.
 燃料供給システムは、制御装置6を備えている。制御装置6は、エンジン2、高圧ポンプ4、及び燃料クーラー51、52の駆動を制御できる。制御装置6は、2つの電磁弁CV-1、CV-2の開度を維持又は変更できる。制御装置6は、6つの圧力センサPS-2~PS-7及び8つの温度センサ61~68による検出情報を確認できる。 The fuel supply system includes a control device 6. The control device 6 can control driving of the engine 2, the high-pressure pump 4, and the fuel coolers 51 and 52. The control device 6 can maintain or change the opening degree of the two electromagnetic valves CV-1 and CV-2. The control device 6 can confirm detection information from the six pressure sensors PS-2 to PS-7 and the eight temperature sensors 61 to 68.
 燃料供給システムの駆動中における大まかな作動を説明する。燃料供給システムにおいて、高圧ポンプ4の作動により、燃料タンク3内の燃料が、供給ライン10を介してエンジン2に供給される。エンジン2に供給された燃料は、エンジン2を通過した後、リターンライン20を介して、燃料タンク3内に戻される。また、供給ライン10に供給された燃料の一部は、バイパスライン30及びリターンライン20を介して、エンジン2を通過することなく、燃料タンク3内に戻される。燃料は、供給ライン10において第1燃料クーラー51によって冷却されると共に、リターンライン20において第2燃料クーラー52によって冷却される。バイパスライン30の存在によって、燃料クーラー51、52を通過する燃料の流量が増大している。このため、燃料が冷却されやすくなっている。 説明 Explain the general operation of the fuel supply system during operation. In the fuel supply system, the fuel in the fuel tank 3 is supplied to the engine 2 through the supply line 10 by the operation of the high-pressure pump 4. The fuel supplied to the engine 2 passes through the engine 2 and then returns to the fuel tank 3 through the return line 20. Further, part of the fuel supplied to the supply line 10 is returned to the fuel tank 3 through the bypass line 30 and the return line 20 without passing through the engine 2. The fuel is cooled by the first fuel cooler 51 in the supply line 10 and is cooled by the second fuel cooler 52 in the return line 20. Due to the presence of the bypass line 30, the flow rate of the fuel passing through the fuel coolers 51 and 52 is increased. For this reason, the fuel is easily cooled.
 図2を参照して、燃料供給システムにおけるエンジン2の起動方法を説明する。図2は、DMEエンジン2の起動方法を示すフローチャートである。制御装置6は、図2のフローにしたがって、エンジン起動制御を実行する。エンジン起動制御は、後述の各工程を含んでいる。 Referring to FIG. 2, a method for starting the engine 2 in the fuel supply system will be described. FIG. 2 is a flowchart showing a method for starting the DME engine 2. The control device 6 executes engine start control according to the flow of FIG. The engine start control includes the following steps.
 エンジン2の停止状態において、つまりエンジン起動制御の開始時点において、4つの電磁弁CV-1、CV-2、RV-1、及びRV-2と、2つの遮断弁91、92とは、全て閉じられている。また、エンジン2、高圧ポンプ4、及び2つの燃料クーラー51、52の駆動も、停止している。 When the engine 2 is stopped, that is, when the engine start control is started, the four solenoid valves CV-1, CV-2, RV-1, and RV-2 and the two shut-off valves 91 and 92 are all closed. It has been. Further, the driving of the engine 2, the high-pressure pump 4, and the two fuel coolers 51 and 52 are also stopped.
 燃料供給システムは、エンジン2を起動するための起動スイッチを備えている。ステップS1において、制御装置6は、起動スイッチが押されたことを検出すると、エンジン起動制御を開始する。 The fuel supply system includes a start switch for starting the engine 2. In step S1, when detecting that the start switch has been pressed, the control device 6 starts engine start control.
 ステップS2において、制御装置6は、2つの燃料クーラー51、52を起動させる。ステップS2の処理は、クーラー起動工程である。 In step S2, the control device 6 activates the two fuel coolers 51 and 52. The process of step S2 is a cooler starting process.
 ステップS3において、制御装置6は、2つの電磁弁CV-1、CV-2を開放する。この結果、燃料が、供給ライン10及びリターンライン20内を流れうる状態となる。ステップS3の処理は、ライン開放工程である。 In step S3, the control device 6 opens the two solenoid valves CV-1 and CV-2. As a result, the fuel can flow through the supply line 10 and the return line 20. The process of step S3 is a line opening process.
 ステップS4において、制御装置6は、高圧ポンプ(フィードポンプ)4を起動する。この結果、燃料が燃料回路1内を流れ始める。ステップS4の処理は、フィードポンプ起動工程である。 In step S4, the control device 6 activates the high-pressure pump (feed pump) 4. As a result, fuel begins to flow in the fuel circuit 1. The process of step S4 is a feed pump starting process.
 ステップS5において、制御装置6は、所定の第1待機時間だけ、次のステップS6の実行を待機する。第1待機時間は、例えば、高圧ポンプ4が定常回転に到達するまでの時間に設定される。本実施形態では、第1待機時間は、5秒間である。 In step S5, the control device 6 waits for execution of the next step S6 for a predetermined first waiting time. The first waiting time is set to a time until the high-pressure pump 4 reaches steady rotation, for example. In the present embodiment, the first waiting time is 5 seconds.
 ステップS6からS12までの処理は、ガスのパージを実行するためのパージ工程である。パージ工程における処理は、所定条件の下でステップS6からS12までが繰り返し実行されるループ処理である。このループ処理は、ステップS6及びS7における判定結果が共にYesの場合に終了する。ステップS6又はS7におけるいずれかの判定結果がNoの場合、ループ処理が繰り返し実行される。 The processing from step S6 to S12 is a purge process for performing a purge of gas. The process in the purge process is a loop process in which steps S6 to S12 are repeatedly executed under a predetermined condition. This loop processing ends when the determination results in steps S6 and S7 are both Yes. When any determination result in step S6 or S7 is No, the loop process is repeatedly executed.
 ステップS6において、制御装置6は、高圧ポンプ4の出口側と入口側とにおける圧力差が所定圧力差以上であるか否か、を判定する。制御装置6は、第2圧力センサPS-2による検出情報に基づいて、高圧ポンプ4の入口側の圧力を把握できる。制御装置6は、第3圧力センサPS-3による検出情報に基づいて、高圧ポンプ4の出口側の圧力を把握できる。この圧力差は、出口側の圧力から入口側の圧力を減じることによって得られる。したがって、制御装置6は、高圧ポンプ4の出口側と入口側とにおける圧力差を把握できる。所定圧力差は、高圧ポンプ4の作動状態を知るための指標として、設定されている。つまり、高圧ポンプ4における圧力差が所定圧力差を越えている場合、高圧ポンプ4が適切に作動している。所定圧力差は、本実施形態では、0.3MPaである。 In step S6, the control device 6 determines whether or not the pressure difference between the outlet side and the inlet side of the high-pressure pump 4 is greater than or equal to a predetermined pressure difference. The control device 6 can grasp the pressure on the inlet side of the high-pressure pump 4 based on the detection information by the second pressure sensor PS-2. The control device 6 can grasp the pressure on the outlet side of the high-pressure pump 4 based on the detection information by the third pressure sensor PS-3. This pressure difference is obtained by subtracting the inlet side pressure from the outlet side pressure. Therefore, the control device 6 can grasp the pressure difference between the outlet side and the inlet side of the high-pressure pump 4. The predetermined pressure difference is set as an index for knowing the operating state of the high-pressure pump 4. That is, when the pressure difference in the high-pressure pump 4 exceeds the predetermined pressure difference, the high-pressure pump 4 is operating properly. The predetermined pressure difference is 0.3 MPa in the present embodiment.
 高圧ポンプ4における圧力差が所定圧力差(0.3MPa)以上である場合、制御装置6は、処理をステップS7に移行させる。高圧ポンプ4における圧力差が所定圧力差未満である場合、制御装置6は、処理をステップS8に移行させる。 When the pressure difference in the high-pressure pump 4 is equal to or greater than the predetermined pressure difference (0.3 MPa), the control device 6 shifts the process to step S7. When the pressure difference in the high-pressure pump 4 is less than the predetermined pressure difference, the control device 6 shifts the process to step S8.
 ステップS7において、制御装置6は、高圧ポンプ4の出口側の圧力が所定圧以上であるか否かを、判定する。制御装置6は、第4圧力センサPS-4による検出情報に基づいて、高圧ポンプ4の出口側の圧力を把握できる。所定圧は、エンジン2に供給される燃料の圧力を知るための指標として、設定されている。つまり、高圧ポンプ4の出口側の圧力が所定圧を越えている場合、エンジン2に供給される燃料の圧力は適切である。所定圧は、本実施形態では、1.5MPaである。なお、ステップS7における出口側の圧力は、エンジン2に近い位置の圧力が好ましい。このため、ステップS7では、ステップS6で用いられた第3圧力センサPS-3の検出値の代わりに、第4圧力センサPS-4の検出値が用いられている。 In step S7, the control device 6 determines whether the pressure on the outlet side of the high-pressure pump 4 is equal to or higher than a predetermined pressure. The control device 6 can grasp the pressure on the outlet side of the high-pressure pump 4 based on the detection information by the fourth pressure sensor PS-4. The predetermined pressure is set as an index for knowing the pressure of the fuel supplied to the engine 2. That is, when the pressure on the outlet side of the high pressure pump 4 exceeds a predetermined pressure, the pressure of the fuel supplied to the engine 2 is appropriate. The predetermined pressure is 1.5 MPa in the present embodiment. The pressure on the outlet side in step S7 is preferably a pressure close to the engine 2. Therefore, in step S7, the detection value of the fourth pressure sensor PS-4 is used instead of the detection value of the third pressure sensor PS-3 used in step S6.
 出口側の圧力が所定圧(1.5MPa)以上である場合、制御装置6は、処理をステップS13に移行させる。つまり、制御装置6は、ステップS6からS12までのループ処理を終了させる。出口側の圧力が所定圧未満である場合、制御装置6は、処理をステップS8に移行させる。 When the pressure on the outlet side is equal to or higher than the predetermined pressure (1.5 MPa), the control device 6 shifts the process to step S13. That is, the control device 6 ends the loop processing from step S6 to S12. When the pressure on the outlet side is less than the predetermined pressure, the control device 6 shifts the process to step S8.
 ステップS8において、制御装置6は、第1電磁弁RV-1及び遮断弁91、92を開放する。この結果、供給ライン10及びリターンライン20内のガス(エア及びDME蒸気)が大気中にパージされる。 In step S8, the control device 6 opens the first electromagnetic valve RV-1 and the shut-off valves 91 and 92. As a result, the gas (air and DME vapor) in the supply line 10 and the return line 20 is purged into the atmosphere.
 ステップS9において、制御装置6は、所定の第2待機時間だけ、次のステップS10の実行を待機する。第2待機時間は、エア抜き時間として設定されている。第2待機時間は、本実施形態では、1秒間である。第2待機時間の間、ガスのパージが実行される。 In step S9, the control device 6 waits for execution of the next step S10 for a predetermined second waiting time. The second standby time is set as the air bleeding time. The second waiting time is 1 second in the present embodiment. During the second waiting time, a gas purge is performed.
 ステップS10において、制御装置6は、第1電磁弁RV-1及び遮断弁91、92を閉鎖する。この結果、ガスのパージが終了する。 In step S10, the control device 6 closes the first electromagnetic valve RV-1 and the shutoff valves 91 and 92. As a result, the purge of gas is completed.
 ステップS11において、制御装置6は、所定の第3待機時間だけ、次のステップS10の実行を待機する。第3待機時間は、パージの実行後に燃料回路1内の燃料が安定するのに要する時間として、設定されている。第3待機時間は、本実施形態では、40秒間である。 In step S11, the control device 6 waits for execution of the next step S10 for a predetermined third standby time. The third standby time is set as the time required for the fuel in the fuel circuit 1 to stabilize after the purge is executed. The third waiting time is 40 seconds in this embodiment.
 ステップS12において、制御装置6は、所定の第1継続時間の間、高圧ポンプ4の出口側の圧力が継続的に所定圧を越えていたか否かを、判定する。第1継続時間は、高圧ポンプ4の駆動の安定度合いを知るための指標として設定されている。第1継続時間は、本実施形態では、40秒間である。 In step S12, the control device 6 determines whether or not the pressure on the outlet side of the high-pressure pump 4 has continuously exceeded the predetermined pressure for a predetermined first duration time. The first duration time is set as an index for knowing the degree of stability of driving of the high-pressure pump 4. The first duration is 40 seconds in this embodiment.
 第1継続時間(40秒間)の間、第4圧力センサPS-4の検出値が継続的に1.5MPaを越えている場合、制御装置6は、処理をステップS6に移行させる。一方、第1継続時間の間、第4圧力センサPS-4の検出値が継続的に1.5MPaを越えることができなかった場合、制御装置6は、エラーが発生したと判断し、エンジン起動制御を終了させる。 When the detected value of the fourth pressure sensor PS-4 continuously exceeds 1.5 MPa for the first duration (40 seconds), the control device 6 shifts the process to step S6. On the other hand, if the detected value of the fourth pressure sensor PS-4 cannot continuously exceed 1.5 MPa during the first duration time, the control device 6 determines that an error has occurred and starts the engine. End control.
 ステップS13からS15までの処理は、燃料が冷却するまで待機するための温度低下待機工程である。温度低下待機工程における処理は、所定条件の下でステップS13からS15までが繰り返し実行されるループ処理である。このループ処理は、ステップS13における判定結果がYesの場合に終了する。ステップS13における判定結果がNoの場合、ループ処理が繰り返し実行される。 The processing from step S13 to S15 is a temperature decrease standby process for waiting until the fuel cools. The process in the temperature decrease standby process is a loop process in which steps S13 to S15 are repeatedly executed under a predetermined condition. This loop processing ends when the determination result in step S13 is Yes. If the determination result in step S13 is No, the loop process is repeatedly executed.
 ステップS13において、制御装置6は、エンジン2の入口における燃料の温度が所定温度未満であるか否かを、判定する。制御装置6は、第4温度センサ64による検出情報に基づいて、エンジン2の入口における燃料の温度を把握できる。所定温度は、燃料クーラー51、52の作動状態を知るための指標として、設定されている。所定温度は、本実施形態では、30℃である。 In step S13, the control device 6 determines whether or not the temperature of the fuel at the inlet of the engine 2 is lower than a predetermined temperature. The control device 6 can grasp the temperature of the fuel at the inlet of the engine 2 based on information detected by the fourth temperature sensor 64. The predetermined temperature is set as an index for knowing the operating state of the fuel coolers 51 and 52. The predetermined temperature is 30 ° C. in the present embodiment.
 エンジンの入口の温度が所定温度(30℃)未満である場合、制御装置6は、処理をステップS16に移行させる。エンジンの入口の温度が所定温度以上である場合、制御装置6は、処理をステップS14に移行させる。 When the temperature at the engine inlet is lower than the predetermined temperature (30 ° C.), the control device 6 shifts the process to step S16. When the temperature at the inlet of the engine is equal to or higher than the predetermined temperature, the control device 6 shifts the process to step S14.
 ステップS14において、制御装置6は、所定の第4待機時間だけ、次のステップS15の実行を待機する。第4待機時間は、燃料クーラー51、52が正常に作動しているときに、燃料の温度が所定温度未満となるのに十分な時間として、設定されている。第4待機時間は、本実施形態では、3分間である。 In step S14, the control device 6 waits for execution of the next step S15 for a predetermined fourth waiting time. The fourth standby time is set as a time sufficient for the temperature of the fuel to become lower than the predetermined temperature when the fuel coolers 51 and 52 are operating normally. The fourth waiting time is 3 minutes in this embodiment.
 ステップS15において、制御装置6は、所定の第2継続時間の間、燃料の温度が継続的に所定温度未満であったか否かを、判定する。第2継続時間は、燃料クーラー51、52の駆動の安定度合いを知るための指標として設定されている。第2継続時間は、本実施形態では、5分間である。 In step S15, the control device 6 determines whether or not the temperature of the fuel is continuously lower than the predetermined temperature for a predetermined second duration. The second duration time is set as an index for knowing the degree of stability of driving of the fuel coolers 51 and 52. In the present embodiment, the second duration is 5 minutes.
 第2継続時間(5分間)の間、第4温度センサ64の検出値が継続的に30℃未満であった場合、制御装置6は、処理をステップS13に移行させる。一方、第2継続時間の間、第4温度センサ64の検出値が継続的に30℃未満にならなかった場合、制御装置6は、エラーが発生したと判断し、エンジン起動制御を終了させる。 When the detected value of the fourth temperature sensor 64 is continuously lower than 30 ° C. during the second duration (5 minutes), the control device 6 shifts the process to step S13. On the other hand, if the detected value of the fourth temperature sensor 64 does not continuously become less than 30 ° C. during the second duration time, the control device 6 determines that an error has occurred and ends the engine start control.
 ステップS16において、制御装置6は、エンジン2のスターターを起動させる。つまり、エンジン2の起動が実行される。 In step S16, the control device 6 starts the starter of the engine 2. That is, the engine 2 is activated.
 次に、ステップS17において、制御装置6は、エンジン起動制御を終了させる。 Next, in step S17, the control device 6 ends the engine start control.
 本実施形態は、次の作用、効果を有する。高圧ポンプ4の出口側と入口側との圧力差が所定圧力差より小さい間、及び/又は、エンジン2の入口の圧力が所定圧より低い間は、エンジンが起動されることなく、ガス(エア及びDME蒸気)がパージされる。このため、本実施形態は、エンジン2を起動する前に、燃料回路1内に進入しているエアを除去できる。したがって、本実施形態は、燃料回路1内へのエアの進入により、高圧ポンプ4が正しく作動しない不具合を回避できる。 This embodiment has the following operations and effects. While the pressure difference between the outlet side and the inlet side of the high pressure pump 4 is smaller than the predetermined pressure difference and / or while the pressure at the inlet of the engine 2 is lower than the predetermined pressure, the engine is not started and the gas (air And DME vapor). For this reason, this embodiment can remove the air that has entered the fuel circuit 1 before starting the engine 2. Therefore, this embodiment can avoid the malfunction that the high-pressure pump 4 does not operate correctly due to the entry of air into the fuel circuit 1.
 また、エンジン2の入口の温度が所定温度よりも高い間は、エンジン2が起動されない。このため、本実施形態は、エンジン2を起動する前に、DME燃料の気化を防止できる。したがって、本実施形態は、燃料回路1内のDME蒸気により、高圧ポンプ4が正しく作動しない不具合や、エンジン2が適切に起動しない不具合を、回避できる。 Further, the engine 2 is not started while the temperature at the inlet of the engine 2 is higher than the predetermined temperature. For this reason, this embodiment can prevent vaporization of DME fuel before starting the engine 2. Therefore, this embodiment can avoid the trouble that the high pressure pump 4 does not operate correctly and the trouble that the engine 2 does not start up properly due to the DME vapor in the fuel circuit 1.
 本発明は、次の変形例を採用できる。 The present invention can employ the following modifications.
 エンジン起動制御における各工程は、本実施形態では、(1)クーラー起動工程、(2)ライン開放工程、(3)ポンプ起動工程、(4)パージ工程、(5)温度低下待機工程、及び(6)スターター起動工程の順序で、実行される。ここで、各工程の実行順序は、次の条件を満たせばよい。(2)ライン開放工程、(3)ポンプ起動工程、及び(5)パージ工程は、(2)、(3)、及び(4)の順序で実行される必要がある。(1)クーラー起動工程、(5)温度低下待機工程は、(1)、(5)の順序で実行される必要がある。しかし、(2)、(3)、及び(4)の工程群と、(1)及び(5)の工程群とは、実行順序が限定されるものではない。例えば、(3)ポンプ起動工程の後に(1)クーラー起動工程が実行されても良い。あるいは、(4)パージ工程及び(5)温度低下待機工程が、実行時間が重なるように、並列的に実行されても良い。 In this embodiment, each process in the engine start control includes (1) a cooler start process, (2) a line open process, (3) a pump start process, (4) a purge process, (5) a temperature decrease standby process, and ( 6) It is executed in the order of the starter starting process. Here, the execution order of each process should just satisfy | fill the following conditions. The (2) line opening process, (3) pump activation process, and (5) purge process need to be executed in the order of (2), (3), and (4). The (1) cooler start-up process and (5) temperature decrease standby process need to be executed in the order of (1) and (5). However, the order of execution of the process groups (2), (3), and (4) and the process groups (1) and (5) is not limited. For example, the (1) cooler starting process may be performed after the (3) pump starting process. Alternatively, (4) the purge step and (5) the temperature decrease standby step may be performed in parallel so that the execution times overlap.
 本実施形態では、高圧ポンプ4の出口側の圧力が、高圧ポンプ4に近い位置とエンジン2に近い位置とで検出される。第3圧力センサPS-3は、比較的高圧ポンプ4に近い位置であり、第4圧力センサPS-4は、比較的エンジン2に近い位置にある。パージ工程(ステップS5)において、所定圧力差と比較するための圧力差が、高圧ポンプ4の入口側の圧力と高圧ポンプ4に近い位置の圧力との圧力差である。同じくパージ工程(ステップS6)において、前記所定圧と比較するための圧力が、エンジン2に近い位置の圧力である。高圧ポンプ4の出口側の圧力は、上述のような異なる2つの位置ではなく、同一位置において検出されても良い。 In the present embodiment, the pressure on the outlet side of the high pressure pump 4 is detected at a position close to the high pressure pump 4 and a position close to the engine 2. The third pressure sensor PS-3 is relatively close to the high-pressure pump 4, and the fourth pressure sensor PS-4 is relatively close to the engine 2. In the purge process (step S5), the pressure difference for comparison with the predetermined pressure difference is the pressure difference between the pressure on the inlet side of the high pressure pump 4 and the pressure close to the high pressure pump 4. Similarly, in the purge process (step S6), the pressure for comparison with the predetermined pressure is a pressure close to the engine 2. The pressure on the outlet side of the high-pressure pump 4 may be detected at the same position instead of the two different positions as described above.
 本実施形態では、温度低下待機工程(ステップS7)において、所定温度と比較するための燃料回路1内の燃料の温度は、エンジン2に近い位置の温度が用いられている。第4温度センサ64が、エンジン2に近い位置の温度を検出する。所定温度と比較するための燃料の温度は、燃料回路1内の所定位置における温度であればよく、エンジン2に近い位置の温度に限定されない。 In the present embodiment, the temperature of the fuel in the fuel circuit 1 for comparison with the predetermined temperature in the temperature decrease standby step (step S7) is a temperature close to the engine 2. The fourth temperature sensor 64 detects the temperature near the engine 2. The temperature of the fuel for comparison with the predetermined temperature may be a temperature at a predetermined position in the fuel circuit 1 and is not limited to a temperature close to the engine 2.
 本実施形態では、燃料回路1は、供給ライン10、リターンライン20、及びバイパスライン30を備えている。このため、一部の燃料がエンジン2及び燃料タンク3を循環すると共に、他の燃料がエンジン2を通過することなく燃料タンク3を循環する。燃料回路1としては、この構成に限定されない。燃料回路は、バイパスライン30を備えない構成であっても良い。燃料回路において、エンジン2からの戻りラインが、燃料タンク3ではなく、供給ライン10の途中に合流しても良い。 In the present embodiment, the fuel circuit 1 includes a supply line 10, a return line 20, and a bypass line 30. For this reason, some fuel circulates through the engine 2 and the fuel tank 3, and other fuel circulates through the fuel tank 3 without passing through the engine 2. The fuel circuit 1 is not limited to this configuration. The fuel circuit may be configured without the bypass line 30. In the fuel circuit, the return line from the engine 2 may join in the middle of the supply line 10 instead of the fuel tank 3.
  1 燃料回路
  2 DMEエンジン
  3 燃料タンク
  4 高圧ポンプ(フィードポンプ)
  10 供給ライン
  20 リターンライン
  51 第1燃料クーラー
  52 第2燃料クーラー
  64 第4温度センサ(エンジンに近い位置の温度を検出するセンサ)
  71 第1パージライン
  72 第2パージライン
  73 第3パージライン
  80 リークライン
  PS-2 第2圧力センサ(フィードポンプの入口側の圧力を検出するセンサ)
  PS-3 第3圧力センサ(フィードポンプの出口側でフィードポンプに近い位置の圧力を検出するセンサ)
  PS-4 第4圧力センサ(フィードポンプの出口側でエンジンに近い位置の圧力を検出するセンサ)
1 Fuel circuit 2 DME engine 3 Fuel tank 4 High-pressure pump (feed pump)
DESCRIPTION OF SYMBOLS 10 Supply line 20 Return line 51 1st fuel cooler 52 2nd fuel cooler 64 4th temperature sensor (sensor which detects the temperature of the position near an engine)
71 1st purge line 72 2nd purge line 73 3rd purge line 80 Leak line PS-2 2nd pressure sensor (sensor which detects the pressure of the inlet side of a feed pump)
PS-3 Third pressure sensor (sensor that detects the pressure near the feed pump on the outlet side of the feed pump)
PS-4 Fourth pressure sensor (sensor that detects the pressure close to the engine on the outlet side of the feed pump)

Claims (4)

  1.  燃料タンク内のDME燃料をフィードポンプにより供給ラインを介してDMEエンジンに供給する燃料回路を備えている燃料供給システムにおける、DMEエンジンの起動方法であって、
     前記燃料回路の少なくとも一部において前記燃料を冷却する燃料クーラーを起動する、クーラー起動工程と、
     前記供給ラインを開放する、ライン開放工程と、
     前記ライン開放工程後に、前記フィードポンプを起動する、ポンプ起動工程と、
     前記ポンプ起動工程後に、前記フィードポンプの出口側と入口側とにおける圧力差が所定圧力差以上、且つ、前記フィードポンプの出口側の圧力が所定圧以上となるまで、前記供給ラインを大気中に開放する、パージ工程と、
     前記クーラー起動工程後に、前記燃料回路内の所定位置における前記燃料の温度が所定温度未満となるまで待機する、温度低下待機工程と、
     前記パージ工程及び前記温度低下待機工程の完了後に、前記DMEエンジンのスターターを起動する、スターター起動工程と、
     を備えている、DMEエンジンの起動方法。
    A method for starting a DME engine in a fuel supply system comprising a fuel circuit for supplying DME fuel in a fuel tank to a DME engine via a supply line by a feed pump,
    Starting a fuel cooler for cooling the fuel in at least a part of the fuel circuit;
    A line opening step of opening the supply line;
    A pump starting step of starting the feed pump after the line opening step;
    After the pump activation step, the supply line is brought into the atmosphere until the pressure difference between the outlet side and the inlet side of the feed pump is equal to or greater than a predetermined pressure difference and the pressure on the outlet side of the feed pump is equal to or greater than a predetermined pressure. Opening the purge step;
    Waiting until the temperature of the fuel at a predetermined position in the fuel circuit becomes lower than a predetermined temperature after the cooler starting step,
    A starter starting step of starting a starter of the DME engine after completion of the purge step and the temperature decrease standby step;
    A method for starting a DME engine.
  2.  前記各工程が、クーラー起動工程、ライン開放工程、ポンプ起動工程、前記パージ工程、前記温度低下待機工程、及び前記スターター起動工程の順序で、実行される、
     請求項1に記載のDMEエンジンの起動方法。
    Each of the steps is performed in the order of a cooler starting step, a line opening step, a pump starting step, the purge step, the temperature decrease standby step, and the starter starting step.
    The method for starting the DME engine according to claim 1.
  3.  前記パージ工程において、前記フィードポンプの出口側の圧力が、前記フィードポンプに近い位置と前記DMEエンジンに近い位置とで検出されるものであり、
     前記所定圧力差と比較するための圧力差が、前記フィードポンプの入口側の圧力と前記フィードポンプに近い位置の圧力との圧力差であり、
     前記所定圧と比較するための前記圧力が、前記DMEエンジンに近い位置の圧力である、
     請求項1に記載のDMEエンジンの起動方法。
    In the purge step, the pressure on the outlet side of the feed pump is detected at a position close to the feed pump and a position close to the DME engine,
    The pressure difference for comparison with the predetermined pressure difference is a pressure difference between the pressure on the inlet side of the feed pump and the pressure close to the feed pump,
    The pressure for comparison with the predetermined pressure is a pressure close to the DME engine.
    The method for starting the DME engine according to claim 1.
  4.  前記燃料回路が、前記DMEエンジンから前記燃料タンクに前記燃料を戻すリターンラインを備えており、
     前記燃料が前記DMEエンジンと前記燃料タンクとを循環するようになっている、
     請求項1に記載のDMEエンジンの起動方法。
    The fuel circuit includes a return line for returning the fuel from the DME engine to the fuel tank;
    The fuel circulates between the DME engine and the fuel tank;
    The method for starting the DME engine according to claim 1.
PCT/JP2010/061965 2009-07-16 2010-07-15 Method for starting dme engine WO2011007827A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117031160A KR101333392B1 (en) 2009-07-16 2010-07-15 Method for starting dme engine
CN201080032642XA CN102472203B (en) 2009-07-16 2010-07-15 Method for starting DME engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009167932A JP5259514B2 (en) 2009-07-16 2009-07-16 How to start the DME engine
JP2009-167932 2009-07-16

Publications (1)

Publication Number Publication Date
WO2011007827A1 true WO2011007827A1 (en) 2011-01-20

Family

ID=43449436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061965 WO2011007827A1 (en) 2009-07-16 2010-07-15 Method for starting dme engine

Country Status (4)

Country Link
JP (1) JP5259514B2 (en)
KR (1) KR101333392B1 (en)
CN (1) CN102472203B (en)
WO (1) WO2011007827A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160123276A1 (en) * 2014-11-04 2016-05-05 Toyota Jidosha Kabushiki Kaisha Liquefied gas fuel supplying apparatus
WO2016080404A1 (en) * 2014-11-20 2016-05-26 いすゞ自動車株式会社 Dimethyl ether automobile fuel supply device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281947A (en) * 1988-09-17 1990-03-22 Daihatsu Motor Co Ltd Fuel pump control method
JP2000110683A (en) * 1998-10-09 2000-04-18 Nkk Corp Diesel engine for low boiling point fuel
JP2002276473A (en) * 2001-03-22 2002-09-25 Isuzu Motors Ltd Fuel supply system for dimethyl ether engine
JP2005098260A (en) * 2003-09-26 2005-04-14 Isuzu Motors Ltd Fuel supply device
JP2007263064A (en) * 2006-03-29 2007-10-11 Isuzu Motors Ltd Dimethyl ether engine-mounted vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127902A (en) 1998-10-26 2000-05-09 Matsushita Electric Works Ltd Engine starting system and engine device equipped therewith
JP3932190B2 (en) * 2002-05-16 2007-06-20 ボッシュ株式会社 DME fuel supply system for diesel engine
KR100747240B1 (en) * 2006-03-16 2007-08-07 현대자동차주식회사 Lpi(liquefied petroleum gas injection) injector system and gas leakage preventing method and poor start preventing method using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281947A (en) * 1988-09-17 1990-03-22 Daihatsu Motor Co Ltd Fuel pump control method
JP2000110683A (en) * 1998-10-09 2000-04-18 Nkk Corp Diesel engine for low boiling point fuel
JP2002276473A (en) * 2001-03-22 2002-09-25 Isuzu Motors Ltd Fuel supply system for dimethyl ether engine
JP2005098260A (en) * 2003-09-26 2005-04-14 Isuzu Motors Ltd Fuel supply device
JP2007263064A (en) * 2006-03-29 2007-10-11 Isuzu Motors Ltd Dimethyl ether engine-mounted vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160123276A1 (en) * 2014-11-04 2016-05-05 Toyota Jidosha Kabushiki Kaisha Liquefied gas fuel supplying apparatus
WO2016080404A1 (en) * 2014-11-20 2016-05-26 いすゞ自動車株式会社 Dimethyl ether automobile fuel supply device

Also Published As

Publication number Publication date
CN102472203A (en) 2012-05-23
KR101333392B1 (en) 2013-11-28
KR20120024861A (en) 2012-03-14
JP2011021557A (en) 2011-02-03
CN102472203B (en) 2013-08-14
JP5259514B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
US9410486B2 (en) System and method for washing and purging the liquid fuel system of a turbine with water
RU2607910C2 (en) Device to create excess pressure and corresponding method
KR20200021091A (en) Ship
US20150308318A1 (en) Apparatus and method of disabling a waste heat recovery apparatus working fluid flow
US20110186012A1 (en) Liquid fuel injection engine
US9803563B2 (en) Fuel supply apparatus
JP5259514B2 (en) How to start the DME engine
KR101370065B1 (en) System And Method For Fuel Gas Supply
JP2007177697A (en) Fuel device of liquefied gas engine
JP6310707B2 (en) Operation method of fuel heating system
CN115199409A (en) Fuel system and method for purging
JP2016535828A (en) Equipment for self-pressurization of tanks
RU2626881C2 (en) Cooling method
KR101273675B1 (en) Dme fuel supply system and method for cooling dme fuel
WO2017037810A1 (en) Lng gasification system for use in ship, ship equipped with same, and lng gasification method for use in ship
RU2610371C2 (en) System and method of fuel purge (versions)
KR101933883B1 (en) Gas turbine generating apparatus and startup operating method of the same
CN100591974C (en) Installation to deliver gaseous fuel and start program of such an installation
JP2004301377A (en) Liquefied gas vaporizing system
JP2005030327A (en) Fuel supply equipment of liquefied-gas engine
JP4038647B2 (en) Liquefied gas supply device
JP3894982B2 (en) Engine liquefied gas fuel supply method and supply device
JPH09183986A (en) Hotting-up apparatus for low-temperature liquefied gas pump
JP5137593B2 (en) Power generation system and control method for water supply system
JP2004211672A (en) Fuel gas feed system for gas turbine and its feed method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032642.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117031160

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799885

Country of ref document: EP

Kind code of ref document: A1