WO2011007645A1 - Thin-film actuator and inkjet head - Google Patents

Thin-film actuator and inkjet head Download PDF

Info

Publication number
WO2011007645A1
WO2011007645A1 PCT/JP2010/060513 JP2010060513W WO2011007645A1 WO 2011007645 A1 WO2011007645 A1 WO 2011007645A1 JP 2010060513 W JP2010060513 W JP 2010060513W WO 2011007645 A1 WO2011007645 A1 WO 2011007645A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
stress
displacement
thin film
substrate
Prior art date
Application number
PCT/JP2010/060513
Other languages
French (fr)
Japanese (ja)
Inventor
松田 伸也
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011522768A priority Critical patent/JPWO2011007645A1/en
Publication of WO2011007645A1 publication Critical patent/WO2011007645A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • H10N30/2048Membrane type having non-planar shape

Definitions

  • the present invention relates to a thin film actuator and an inkjet head.
  • a thin film actuator having a cantilever structure (single cantilever beam) in which a piezoelectric body, a shape memory alloy, a bimetal, etc. are formed in a thin film (displacement film) on the surface of a substrate is known. ing. Since the thin film actuator can efficiently convert expansion / contraction deformation along the film surface of the displacement film into displacement in a direction perpendicular to the film surface, a highly sensitive pressure sensor and various drive elements can be configured.
  • the thin-film actuator with a cantilever structure has a problem that it has a low rigidity because the tip of the beam (displacement film) is not fixed, and is easily deformed or twisted by an external force.
  • Patent Document 1 a method for increasing the rigidity of the displacement film by using a double beam structure in which both ends of the displacement film are fixed or a diaphragm structure in which the peripheral edge is fixed.
  • the thin film actuator having a double beam structure or a diaphragm structure as described in Patent Document 1 has a displacement film having high rigidity, so that the generated pressure can be increased, and the displacement film can be stably deformed by an external force.
  • the central part of the substrate can be moved in parallel with the substrate, and that it can be used for a pump for transferring gas or liquid by a sealed structure.
  • the thin film actuator having such a structure has both ends or peripheral edges of the displacement film fixed, even if the displacement film is deformed in the contraction direction along the film surface, the displacement in the direction perpendicular to the film surface is almost not. I can't get it.
  • the thin film actuator described in Patent Document 1 is configured such that a displacement in the vertical direction can be obtained by deforming the displacement film in the extending direction along the film surface.
  • FIG. 5 is a schematic cross-sectional view showing a driving deformation mode of a displacement film in a thin-film actuator having a double-beam structure as described in Patent Document 1.
  • the displacement film 504 is fixed at a portion 504e slightly below the center line 504c in the thickness direction at both ends, and has an asymmetric structure in the thickness direction.
  • the displacement film 504 is in a flat state as shown in FIG. Supported by holdings.
  • the displacement film 504 when a driving voltage is applied, the displacement film 504 generates lateral strain due to the piezoelectric lateral effect and deforms in the extending direction along the film surface, but both ends are fixed by the portions 504e. At 504, a compressive stress is generated.
  • the driving voltage applied to the displacement film 504 is small and the compressive stress generated in the displacement film 504 is smaller than Euler's buckling stress ⁇ E shown in the following formula (1), as shown in FIG. Even when a driving voltage is applied, the thickness of the displacement film 504 increases around the fixed portion 504e, but displacement in a direction perpendicular to the film surface hardly occurs.
  • FIG. 6 shows the relationship between the compressive stress ⁇ of the displacement film 504 and the displacement amount ⁇ y in the direction perpendicular to the film surface.
  • the output of the thin film actuator is the product of the displacement in the direction perpendicular to the film surface and the generated force. For this reason, in the initial region A, the output of the thin film actuator becomes almost zero, and the input energy cannot be taken out as an output, and the driving efficiency is greatly reduced.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a thin film actuator and an ink jet head having excellent driving efficiency.
  • a thin film layer having a displacement film that expands and contracts in a direction along the film surface by a drive signal;
  • a thin film actuator comprising: a substrate for fixing a peripheral portion of the thin film layer so as to displace the thin film layer in a direction perpendicular to the film surface by extension of the displacement film by the driving signal; The thin film actuator, wherein the thin film layer has an initial stress in an extending direction along the film surface when not driven.
  • the thin film layer is formed in a lower layer and an upper layer of the displacement film, and has two stress films each having a first initial stress and a second initial stress in the extension direction along the film surface,
  • the displacement film has a third initial stress in a direction along the film surface; 3.
  • a nozzle substrate that is bonded to a surface opposite to the surface of the substrate on which the thin film layer is fixed and has nozzle holes that communicate with openings formed in the substrate and eject ink.
  • the thin film layer has an initial stress in the extension direction along the film surface when not driven.
  • the initial stress By setting the initial stress to an appropriate value (for example, greater than or equal to the buckling stress), the initial stress can cover the stress required to exceed the dead band, and the applied drive signal (drive voltage) is small. Even in this case, the thin film layer can be displaced in a direction perpendicular to the film surface in accordance with the driving voltage. Thereby, drive efficiency can be improved.
  • FIG. 1A to FIG. 1I are schematic cross-sectional views showing a manufacturing process of the thin film actuator 1 and a mode of non-driving stress generated in the thin film actuator 1 (hereinafter also referred to as initial stress). .
  • the substrate 101 is prepared (FIG. 1A).
  • silicon, glass, ceramics, or the like can be used, but crystalline silicon (Si) widely used for MEMS (Micro Electro Mechanical Systems) is preferable. In this embodiment, crystalline silicon is used. An example using this will be described.
  • the substrate 101 is put in a heating furnace and heated at a temperature of about 1500 ° C. for a predetermined time to form a thermal oxide film (quartz: SiO 2 ) that becomes the lower stress film 102 on the surface of the substrate 101 (FIG. 1 ( b1)).
  • the substrate 101 on which the lower stress film 102 is formed is cooled to room temperature.
  • a compressive stress in the extension direction is generated in the lower stress film 102 along the film surface (FIG. 1). (B2); Arrow X1).
  • the lower electrode film 103 is formed on the surface of the lower stress film 102 (FIG. 1C).
  • a material of the lower electrode film 101 for example, titanium, platinum or the like can be used.
  • a method for forming the lower electrode film 101 for example, a sputtering method can be used.
  • the substrate 101 on which the lower electrode film 103 is formed is again put in a heating furnace, and is heated at a temperature of about 600 ° C. for a predetermined time to form a displacement film 104 on the surface of the lower electrode film 103 (FIG. 1 ( d1)).
  • a material of the displacement film 104 for example, lead zirconate titanate (PZT) which is a piezoelectric material can be used.
  • PZT lead zirconate titanate
  • a method of forming the displacement film 104 for example, a sputtering method can be used.
  • the substrate 101 on which the displacement film 104 is formed is cooled to room temperature.
  • the upper electrode film 105 is formed on the surface of the displacement film 104 (FIG. 1E).
  • a material of the upper electrode film 105 for example, chromium, gold, or the like can be used.
  • a method for forming the upper electrode film 105 for example, a sputtering method can be used.
  • the substrate 101 on which the upper electrode film 105 is formed is again put into a heating furnace, and is heated by holding at a temperature of about 400 ° C. for a predetermined time, and chemical vapor deposition (CVD) is performed using ethyl silicate (TEOS) as a raw material. Then, quartz (SiO 2 ) to be the upper stress film 106 is formed (FIG. 1 (f1)). Subsequently, the substrate 101 on which the upper stress film 106 is formed is cooled to room temperature.
  • CVD chemical vapor deposition
  • a photosensitive resin is applied to the back surface of the substrate 101 by using a spin coating method to form a resist film 80 (FIG. 1G). Subsequently, the resist film 80 is patterned by exposure through a photomask (FIG. 1 (h)).
  • the substrate 101 is etched using a reactive ion etching method to form an opening 101a (FIG. 1 (i1)), and the thin film actuator 1 is completed.
  • the peripheral edge of the thin film layer is fixed to the substrate 101 to form a diaphragm structure.
  • the compressive stress in the extension direction (arrow X1) is applied to the lower stress film 102
  • the tensile stress in the contraction direction (arrow X2) is applied to the displacement film 104
  • the extension direction (arrow is applied to the upper stress film 106). Since the compressive stress of X3) acts, for example, the entire film (thin film layer) can be formed in a convex shape in the direction of the opening 101a of the substrate 101 by the stress balance of these films as described later (FIG. 1). (I2)).
  • the substrate 101 is warped in a convex shape in the direction of the thin film layer.
  • the thickness of the substrate 101 is sufficiently larger than the thickness of each film, the amount of warpage can be ignored. It is.
  • the thermal expansion coefficient of Si which is the material of the substrate 101, is 3 ppm / K
  • the thermal expansion coefficient of SiO 2 that is the stress film 102 is 0.5 ppm / K
  • the thermal expansion coefficient of PZT which is the material of the displacement film 104, is 8 ppm. / K.
  • a stress (first initial stress) of about ⁇ 300 MPa is applied to the lower stress film 102 (quartz: SiO 2 ) due to thermal oxidation, and an about ⁇ 300 MPa stress is applied to the displacement film 104 (PZT).
  • a stress of +100 MPa (third initial stress) occurs, and a stress of about ⁇ 100 MPa (second initial stress) is generated in the upper stress film 106 (quartz: SiO 2 ) by the CVD method.
  • ⁇ sign indicates compressive stress in the direction in which the film extends
  • + sign indicates tensile stress in the direction in which the film contracts.
  • the force applied to the film is determined by the product of the stress and the film thickness.
  • the initial stress covers the stress (buckling stress ⁇ E ) necessary to exceed the dead zone (FIG. 6: region A). Even when a drive signal (drive voltage) to be applied is small, the thin film layer can be displaced in a direction perpendicular to the film surface in accordance with the drive voltage. Thereby, drive efficiency can be improved.
  • the displacement direction is controlled by making the thin film layer an asymmetric structure in the thickness direction. Specifically, as described above, the initial stress (first initial stress and second initial stress) generated in the lower stress film 102 and the upper stress film 106 is made different to provide an asymmetric structure.
  • the thin film layer is formed on the substrate as shown in FIG.
  • a convex shape can be formed in the direction of the opening 101a. That is, the displacement direction of the thin film layer can be controlled in the direction of the opening 101 a of the substrate 101.
  • the initial deformation amount increases.
  • the displacement amount ⁇ y in the direction perpendicular to the film surface at the time of non-driving when no driving voltage is applied becomes large.
  • the increase rate of the displacement amount ⁇ y with respect to the stress at the time of driving becomes gentler than in the case of the region B shown in FIG. 6, and the driving efficiency is lowered.
  • the drive efficiency is maximized by setting the difference between the initial stresses of the lower stress film 102 and the upper stress film 106 to the minimum within a range in which the displacement direction of the thin film layer is stabilized depending on the conditions during manufacture and use. be able to.
  • the magnitudes of these initial stresses are the same as those when the respective films (the lower stress film 102, the upper stress film 106, and the displacement film 104) are formed. It is determined by the temperature, the difference in thermal expansion coefficient between the material of each film and the material of the substrate 101, and the like. Further, the amount of deformation of the film is determined by the thickness, area, rigidity, etc. of the film in addition to the stress described above. In addition, since the material constituting the film has inherent fracture stress, the above variables are adjusted to control the stress value so that the stress value is within that range, including during driving deformation described later. There is a need to.
  • FIG. 3A is a schematic cross-sectional view showing a mode when the thin film actuator 1 is not driven
  • FIG. 3B is a schematic cross-sectional view showing a mode when the thin film actuator 1 is driven.
  • the displacement film 104 made of PZT is dielectrically polarized in a direction perpendicular to the film surface (FIG. 3A; arrow P).
  • the displacement film 104 expands and contracts in a direction perpendicular to the film surface and a direction along the film surface. It expands and contracts in a phase opposite to (Fig. 3 (b); arrow X). Expansion and contraction of the displacement film 104 in the direction along the film surface is equivalent to the increase or decrease of the internal stress described above, and the displacement film 104 is displaced in a direction perpendicular to the film surface (FIG. 3B; arrow Y ).
  • the region B shown in FIG. 6 can be driven efficiently.
  • the thin film layer was set as the structure which has the initial stress of an expansion
  • the initial stress to an appropriate value (for example, Euler's buckling stress ⁇ E shown in equation (1))
  • the stress necessary to exceed the dead band FOG. 6: region A
  • the thin film layer can be displaced in a direction perpendicular to the film surface in accordance with the driving voltage. Thereby, drive efficiency can be improved.
  • FIG. 4 is a schematic cross-sectional view illustrating a schematic configuration of the inkjet head 1A.
  • the inkjet head 1A includes a nozzle substrate 2, a body substrate (substrate) 101, a lower stress film 102, a common electrode film (lower electrode film) 103, a displacement film 104, a drive electrode film (upper electrode film). ) 105 and the above-described thin film actuator 1 having the upper stress film 106 and the like.
  • the nozzle substrate 2 has a plurality of nozzle holes 2a for discharging ink.
  • a material for the nozzle substrate 2 silicon, glass, a ceramic material, or the like can be used, but silicon is preferable.
  • the body substrate 101 of the thin film actuator 1 is bonded to the upper surface side of the nozzle substrate 2. Inside the body substrate 101, a pressure chamber (opening) 101 a configured by bonding the nozzle substrate 2, an ink supply path (not shown), and the like are formed.
  • the pressure chamber 101a is formed corresponding to each of the plurality of nozzle holes 2a and stores ink.
  • the displacement film 104 vibrates, and this vibration is formed on the body substrate 101 to store the ink.
  • the pressure in the chamber 101 a is changed, and ink droplets are ejected from the nozzle holes 2 a formed in the nozzle substrate 2.
  • the thin film actuator 1 having high driving efficiency As the driving element of the inkjet head 1A, ink droplets can be efficiently discharged.
  • the present invention has been described above with reference to the embodiments. However, the present invention should not be construed as being limited to the above-described embodiments, and can be changed or improved as appropriate.
  • the displacement film 104 PZT
  • the stress film lower stress film 102, upper stress film
  • the stress film according is unnecessary.
  • a material such as a metal whose thermal expansion coefficient is larger than that of the displacement film 104 (PZT) is used as a material of the substrate 101, or a thermal expansion coefficient of the substrate 101 (Si) as a material of the displacement film 104.
  • the SiO 2 film is used as the stress film (the lower stress film 102 and the upper stress film 106).
  • the material has a smaller thermal expansion coefficient than the substrate 101 (Si)
  • diamond or the like is used. It can also be used.
  • PZT is used as the displacement film 104
  • a piezoelectric film such as barium titanate, a shape memory alloy film such as titanium nickel alloy, a bimetal such as iron nickel alloy, or the like may be used.
  • the initial stress (the lower stress film 102, the upper stress film 106, the displacement film 104) of the fixed position of the thin film layer and the respective films (the lower stress film 102, the upper stress film 106, and the displacement film 104)
  • the first initial stress, the second initial stress, the third initial stress) and the like can be mentioned, but the same effect can be obtained by changing the rigidity, film thickness, diameter, etc. of each film.
  • thermo expansion coefficient As a method for generating an initial stress in each film, temperature control at the time of film formation using a thermal expansion coefficient is used.
  • the density of the material element can be changed by changing the gas pressure or the input power.
  • the gas pressure When the gas pressure is lowered, the energy of the material element is converted into film formation energy without being attenuated, so that a denser film is formed.
  • the compressive stress increases. Similar effects can be obtained when the input power is lowered.
  • the stress can be controlled by adding a trace amount of impurities to the material.
  • the thin film layer has a diaphragm structure, but may have a double beam structure in which both ends of the thin film layer are fixed. In this case, the same effect as that of the diaphragm structure can be obtained.
  • Inkjet head 1 Thin film actuator 101 Substrate (body substrate) 101a Opening (pressure chamber) 102 Lower stress film 103 Lower electrode film (common electrode film) 104 Displacement film 105 Upper electrode film (drive electrode film) 106 Upper stress film 2 Nozzle substrate 2a Nozzle hole

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

Provided is a thin-film actuator, which comprises a thin-film layer having a displacement film that expands and contracts in the direction of the film surface in accordance with drive signals, and a substrate, to which both ends or the edges of the thin-film layer are anchored such that the thin-film layer is displaced in the direction orthogonal to the film surface with the expansion of the displacement film produced by the drive signals. The thin-film layer has initial stress in the direction of expansion along the film surface when not driven.

Description

薄膜アクチュエータ、及びインクジェットヘッドThin film actuator and inkjet head
 本発明は、薄膜アクチュエータ、及びインクジェットヘッドに関する。 The present invention relates to a thin film actuator and an inkjet head.
 従来、微小変位を発生させる為のマイクロアクチュエータとして、圧電体や形状記憶合金、バイメタル等を基板の表面に薄い膜状(変位膜)に形成したカンチレバー構造(片もち梁)の薄膜アクチュエータが知られている。薄膜アクチュエータは、変位膜の膜面に沿う伸縮変形を膜面に垂直な方向の変位に効率よく変換することができる為、感度の高い圧力センサや各種駆動素子を構成することができる。 Conventionally, as a microactuator for generating a minute displacement, a thin film actuator having a cantilever structure (single cantilever beam) in which a piezoelectric body, a shape memory alloy, a bimetal, etc. are formed in a thin film (displacement film) on the surface of a substrate is known. ing. Since the thin film actuator can efficiently convert expansion / contraction deformation along the film surface of the displacement film into displacement in a direction perpendicular to the film surface, a highly sensitive pressure sensor and various drive elements can be configured.
 一方、カンチレバー構造(片もち梁)の薄膜アクチュエータは、梁(変位膜)の先端が固定されていない自由端の為、剛性が低く、外力による変形や捩れ等が生じやすいという問題があった。 On the other hand, the thin-film actuator with a cantilever structure (one-sided beam) has a problem that it has a low rigidity because the tip of the beam (displacement film) is not fixed, and is easily deformed or twisted by an external force.
 そこで、このような問題に対応する為、変位膜の両端を固定した両もち梁構造や周縁を固定したダイヤフラム構造にすることにより、変位膜の剛性を高める方法が提案されている(特許文献1参照)。 Therefore, in order to cope with such a problem, there has been proposed a method for increasing the rigidity of the displacement film by using a double beam structure in which both ends of the displacement film are fixed or a diaphragm structure in which the peripheral edge is fixed (Patent Document 1). reference).
 特許文献1に記載されているような両もち梁構造やダイヤフラム構造の薄膜アクチュエータは、変位膜の剛性が高くなる為、発生圧力を大きくできる、外部からの力により安定して変形できる、変位膜の中心部を基板に平行に移動できる、密閉構造により気体や液体を移送するポンプに活用できる等の利点がある。 The thin film actuator having a double beam structure or a diaphragm structure as described in Patent Document 1 has a displacement film having high rigidity, so that the generated pressure can be increased, and the displacement film can be stably deformed by an external force. There is an advantage that the central part of the substrate can be moved in parallel with the substrate, and that it can be used for a pump for transferring gas or liquid by a sealed structure.
 一方、このような構造の薄膜アクチュエータは、変位膜の両端、または周縁が固定されている為、変位膜を膜面に沿って収縮方向に変形させても膜面に垂直な方向の変位はほとんど得られない。 On the other hand, since the thin film actuator having such a structure has both ends or peripheral edges of the displacement film fixed, even if the displacement film is deformed in the contraction direction along the film surface, the displacement in the direction perpendicular to the film surface is almost not. I can't get it.
 そこで、特許文献1に記載の薄膜アクチュエータは、変位膜を膜面に沿って伸長方向に変形させることにより垂直な方向の変位が得られるような構成としている。 Therefore, the thin film actuator described in Patent Document 1 is configured such that a displacement in the vertical direction can be obtained by deforming the displacement film in the extending direction along the film surface.
特開平8-114408号公報JP-A-8-114408
 しかしながら、特許文献1に記載のような薄膜アクチュエータにおいては、駆動信号(駆動電圧)により変位膜に膜面に沿って伸長方向の圧縮応力を発生させても、駆動電圧が所定の電圧に達するまでの初期の状態では、固定されている変位膜の両端、または周縁の厚みが増加するのみで、膜面に垂直な方向への変位には至らない領域、すなわち、不感帯域が存在する。この不感帯域は、変位膜に入力されたエネルギーが必要な変位に変換されない為、駆動効率が低下する。 However, in the thin film actuator as described in Patent Document 1, even if a compressive stress in the extension direction is generated along the film surface on the displacement film by a drive signal (drive voltage), the drive voltage reaches a predetermined voltage. In the initial state, only the thickness of both ends or the periphery of the fixed displacement film increases, and there is a region that does not lead to displacement in the direction perpendicular to the film surface, that is, a dead zone. In this dead zone, the energy input to the displacement film is not converted into the required displacement, so that the driving efficiency is lowered.
 ここで、図5を用いてその詳細を説明する。図5は、特許文献1に記載のような両もち梁構造の薄膜アクチュエータにおける、変位膜の駆動変形の態様を示す断面模式図である。 Here, the details will be described with reference to FIG. FIG. 5 is a schematic cross-sectional view showing a driving deformation mode of a displacement film in a thin-film actuator having a double-beam structure as described in Patent Document 1.
 図5に示すように、変位膜504は、その両端の厚み方向の中心線504cより僅か下方の部位504eで固定され、厚み方向に非対称な構造になっている。 As shown in FIG. 5, the displacement film 504 is fixed at a portion 504e slightly below the center line 504c in the thickness direction at both ends, and has an asymmetric structure in the thickness direction.
 先ず、変位膜504を挟んで上下に設けられた図示しない電極膜間に駆動電圧が印加されていない初期状態では、図5(a)に示すように、変位膜504は、平らな状態で両持ち状に支持されている。 First, in an initial state where a driving voltage is not applied between electrode films (not shown) provided above and below with the displacement film 504 interposed therebetween, the displacement film 504 is in a flat state as shown in FIG. Supported by holdings.
 次に、駆動電圧が印加されると、変位膜504は、圧電横効果により横歪が発生し膜面に沿って伸長方向に変形するが、両端が部位504eで固定されているので、変位膜504には圧縮応力が発生する。変位膜504に印加されている駆動電圧が小さく、変位膜504に発生する圧縮応力が下記式(1)に示すオイラーの座屈応力σより小さい場合には、図5(b)に示すように、駆動電圧が印加されていても、変位膜504は、固定されている部位504eを中心にその厚みが増大するが、膜面に垂直な方向への変位は、ほとんど発生しない。 Next, when a driving voltage is applied, the displacement film 504 generates lateral strain due to the piezoelectric lateral effect and deforms in the extending direction along the film surface, but both ends are fixed by the portions 504e. At 504, a compressive stress is generated. When the driving voltage applied to the displacement film 504 is small and the compressive stress generated in the displacement film 504 is smaller than Euler's buckling stress σ E shown in the following formula (1), as shown in FIG. Even when a driving voltage is applied, the thickness of the displacement film 504 increases around the fixed portion 504e, but displacement in a direction perpendicular to the film surface hardly occurs.
 σ=C(πE)/λ     (1)
 但し、
 C:定数
 E:変位膜のヤング率
 λ:変位膜の長さLと厚みTの比
 次に、駆動電圧を大きくして、ある電圧値で変位膜504の圧縮応力がオイラーの座屈応力σを越えると、図5(c)に示すように、変位膜407が座屈して湾曲し始め、その中央部が膜面に垂直な方向へ変位する。このとき、変位膜504の固定されている部位504eが中心線504cよりも僅か下方に位置し、部位504eの上方の厚みが下方の厚みよりも厚い為、圧縮応力は、上方が下方よりも大きくなる。これにより、変位膜504は、上方に湾曲し、その中央部が上方に変位し平行移動する。
σ E = C (π 2 E) / λ 2 (1)
However,
C: constant E: Young's modulus of displacement film λ: ratio of length L and thickness T of displacement film Next, the driving voltage is increased, and the compressive stress of the displacement film 504 becomes Euler's buckling stress σ at a certain voltage value. When E is exceeded, as shown in FIG. 5C, the displacement film 407 starts to buckle and bend, and its central portion is displaced in a direction perpendicular to the film surface. At this time, the portion 504e to which the displacement film 504 is fixed is located slightly below the center line 504c, and the upper thickness of the portion 504e is thicker than the lower thickness. Become. As a result, the displacement film 504 is curved upward, and its central portion is displaced upward and translated.
 図6に、変位膜504の圧縮応力σと膜面に垂直な方向の変位量Δyの関係を示す。 FIG. 6 shows the relationship between the compressive stress σ of the displacement film 504 and the displacement amount Δy in the direction perpendicular to the film surface.
 変位膜504の圧縮応力σが座屈応力σよりも小さい初期の領域Aでは、変位はほとんど発生しない。圧縮応力σが座屈応力σを超えた領域Bでは、変位膜504が座屈して湾曲し始め、圧縮応力σに応じて変位量Δyが急速に増大する。圧縮応力σがさらに大きくなると、変位量Δyの増加は、次第に減少する(領域C)。 In the initial region A where the compressive stress σ of the displacement film 504 is smaller than the buckling stress σ E , almost no displacement occurs. The compression stress sigma exceeds the buckling stress sigma E region B, the displacement layer 504 begins to bend buckling, displacement Δy increases rapidly in response to compressive stress sigma. As the compressive stress σ further increases, the increase in the displacement amount Δy gradually decreases (region C).
 領域B、領域Cにおける、変位膜504の膜面に沿った伸長方向の変形量Δxと膜面に垂直な方向の変位量Δyの関係は、下記式(2)で表される。 The relationship between the deformation amount Δx in the extending direction along the film surface of the displacement film 504 and the displacement amount Δy in the direction perpendicular to the film surface in the regions B and C is expressed by the following equation (2).
 Δy=C(x・Δx)0.5     (2)
 但し、
 C:定数
 x:変位膜の駆動電圧が印加されていない状態での長さ
 このように、圧縮応力σと変位量Δyとは非線形な関係にあり、特に圧縮応力σが座屈応力σより小さい初期の領域Aでは、駆動電圧が印加されていても、ほとんど変位に寄与しない。
Δy = C (x · Δx) 0.5 (2)
However,
C: Constant x: Length of the displacement film when no driving voltage is applied As described above, the compressive stress σ and the displacement amount Δy are in a non-linear relationship. In particular, the compressive stress σ is greater than the buckling stress σ E. In the small initial region A, even if a drive voltage is applied, it hardly contributes to displacement.
 薄膜アクチュエータの出力は、膜面に垂直な方向の変位量とその発生力の積となる。この為、初期の領域Aでは薄膜アクチュエータの出力は、ほぼゼロとなり、入力したエネルギーは、出力として取り出すことができず駆動効率が大きく低下する。 The output of the thin film actuator is the product of the displacement in the direction perpendicular to the film surface and the generated force. For this reason, in the initial region A, the output of the thin film actuator becomes almost zero, and the input energy cannot be taken out as an output, and the driving efficiency is greatly reduced.
 本発明は、上記課題を鑑みてなされたもので、駆動効率の優れた薄膜アクチュエータ、及びインクジェットヘッドを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a thin film actuator and an ink jet head having excellent driving efficiency.
 上記目的は、下記の1から5の何れか1項に記載の発明によって達成される。 The above object is achieved by the invention described in any one of 1 to 5 below.
 1.駆動信号により膜面に沿った方向に伸縮する変位膜を有する薄膜層と、
 前記駆動信号による前記変位膜の伸長により、該薄膜層を膜面に垂直な方向に変位させるように、前記薄膜層の周縁部を固定する基板と、を備えた薄膜アクチュエータであって、
 前記薄膜層は、非駆動時、膜面に沿って伸長方向の初期応力を有していることを特徴とする薄膜アクチュエータ。
1. A thin film layer having a displacement film that expands and contracts in a direction along the film surface by a drive signal;
A thin film actuator comprising: a substrate for fixing a peripheral portion of the thin film layer so as to displace the thin film layer in a direction perpendicular to the film surface by extension of the displacement film by the driving signal;
The thin film actuator, wherein the thin film layer has an initial stress in an extending direction along the film surface when not driven.
 2.前記初期応力は、前記薄膜層を、該薄膜層の膜面に垂直な方向に湾曲させ始める座屈応力よりも大きいことを特徴とする前記1に記載の薄膜アクチュエータ。 2. 2. The thin film actuator according to 1 above, wherein the initial stress is larger than a buckling stress that starts bending the thin film layer in a direction perpendicular to a film surface of the thin film layer.
 3.前記薄膜層は、前記変位膜の下層および上層に形成され、それぞれ膜面に沿って伸長方向の第1の初期応力、第2の初期応力を有する2つの応力膜を有し、
 前記変位膜は、膜面に沿った方向の第3の初期応力を有し、
 前記初期応力は、前記第1の初期応力と前記第2の初期応力と前記第3の初期応力との和であることを特徴とする前記2に記載の薄膜アクチュエータ。
3. The thin film layer is formed in a lower layer and an upper layer of the displacement film, and has two stress films each having a first initial stress and a second initial stress in the extension direction along the film surface,
The displacement film has a third initial stress in a direction along the film surface;
3. The thin film actuator according to 2, wherein the initial stress is a sum of the first initial stress, the second initial stress, and the third initial stress.
 4.前記第1の初期応力と前記第2の初期応力とは、異なる値であることを特徴とする前記3に記載の薄膜アクチュエータ。 4. 4. The thin film actuator according to item 3, wherein the first initial stress and the second initial stress have different values.
 5.前記1から4の何れか1項に記載の薄膜アクチュエータと、
 前記基板の前記薄膜層を固定している面と反対側の面に接合され、該基板に形成された開口に連通しインクを吐出するノズル孔が形成されたノズル基板と、を有し、
 前記開口の内部は、前記インクを収容し、前記変位膜の変位により圧力を発生する圧力室であることを特徴とするインクジェットヘッド。
5. The thin film actuator according to any one of 1 to 4,
A nozzle substrate that is bonded to a surface opposite to the surface of the substrate on which the thin film layer is fixed and has nozzle holes that communicate with openings formed in the substrate and eject ink.
The ink jet head according to claim 1, wherein the inside of the opening is a pressure chamber that accommodates the ink and generates pressure by displacement of the displacement film.
 本発明によれば、薄膜層は、非駆動時、膜面に沿って伸長方向の初期応力を有する構成とした。初期応力を適切な値(例えば座屈応力以上)に設定することにより、前述の不感帯域を超えるのに必要な応力を該初期応力で賄うことができ、印加する駆動信号(駆動電圧)が小さい場合でも、薄膜層を、駆動電圧に応じて、膜面に垂直な方向へ変位させることができる。これにより、駆動効率を高めることができる。 According to the present invention, the thin film layer has an initial stress in the extension direction along the film surface when not driven. By setting the initial stress to an appropriate value (for example, greater than or equal to the buckling stress), the initial stress can cover the stress required to exceed the dead band, and the applied drive signal (drive voltage) is small. Even in this case, the thin film layer can be displaced in a direction perpendicular to the film surface in accordance with the driving voltage. Thereby, drive efficiency can be improved.
本発明の実施形態に係わる薄膜アクチュエータの製造工程、及び薄膜アクチュエータの初期応力の態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows the manufacturing process of the thin film actuator concerning embodiment of this invention, and the aspect of the initial stress of a thin film actuator. 薄膜層の圧縮応力と変位量の関係を示す図である。It is a figure which shows the relationship between the compressive stress of a thin film layer, and a displacement amount. 薄膜アクチュエータの駆動変形の態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows the aspect of a drive deformation | transformation of a thin film actuator. 本発明の実施形態に係わるインクジェットヘッドの概略構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows schematic structure of the inkjet head concerning embodiment of this invention. 従来の薄膜アクチュエータの変位膜の駆動変形の態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows the aspect of the drive deformation | transformation of the displacement film | membrane of the conventional thin film actuator. 従来の薄膜アクチュエータの変位膜の圧縮応力と変位量の関係を示す図である。It is a figure which shows the relationship between the compressive stress and displacement amount of the displacement film | membrane of the conventional thin film actuator.
 以下図面に基づいて、本発明の実施形態に係る薄膜アクチュエータ、及びインクジェットヘッドを説明する。尚、本発明は該実施の形態に限られない。 Hereinafter, a thin film actuator and an inkjet head according to an embodiment of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiment.
 最初に、本発明の実施形態に係る薄膜アクチュエータの構成、及びその製造方法を図1を用いて説明する。図1(a)~図1(i)は、薄膜アクチュエータ1の製造工程、及び薄膜アクチュエータ1に発生させる非駆動時の応力(以下、初期応力とも記する)の態様を示す断面模式図である。 First, a configuration of a thin film actuator according to an embodiment of the present invention and a manufacturing method thereof will be described with reference to FIG. FIG. 1A to FIG. 1I are schematic cross-sectional views showing a manufacturing process of the thin film actuator 1 and a mode of non-driving stress generated in the thin film actuator 1 (hereinafter also referred to as initial stress). .
 最初に、基板101を準備する(図1(a))。基板101の材料としては、シリコンやガラス、セラミックス等を用いることができるがMEMS(Micro Electro Mechanical Systems)等に広く用いられている結晶シリコン(Si)が好適であり、本実施形態においては結晶シリコンを用いた例を説明する。 First, the substrate 101 is prepared (FIG. 1A). As the material of the substrate 101, silicon, glass, ceramics, or the like can be used, but crystalline silicon (Si) widely used for MEMS (Micro Electro Mechanical Systems) is preferable. In this embodiment, crystalline silicon is used. An example using this will be described.
 次に、基板101を加熱炉に入れ、1500℃程度に所定時間保持して加熱し、基板101の表面に下応力膜102となる熱酸化膜(石英:SiO)を形成する(図1(b1))。続いて、下応力膜102が形成された基板101を常温まで冷却する。この時、基板101(Si)と下応力膜102(石英:SiO)の熱膨張係数の差により、下応力膜102には、膜面に沿って伸長方向の圧縮応力が発生する(図1(b2);矢印X1)。 Next, the substrate 101 is put in a heating furnace and heated at a temperature of about 1500 ° C. for a predetermined time to form a thermal oxide film (quartz: SiO 2 ) that becomes the lower stress film 102 on the surface of the substrate 101 (FIG. 1 ( b1)). Subsequently, the substrate 101 on which the lower stress film 102 is formed is cooled to room temperature. At this time, due to the difference in thermal expansion coefficient between the substrate 101 (Si) and the lower stress film 102 (quartz: SiO 2 ), a compressive stress in the extension direction is generated in the lower stress film 102 along the film surface (FIG. 1). (B2); Arrow X1).
 次に、下応力膜102の表面に下電極膜103を形成する(図1(c))。下電極膜101の材料としては、例えばチタン、白金等を用いることができる。下電極膜101の形成方法としては、例えばスパッタ法を用いることができる。 Next, the lower electrode film 103 is formed on the surface of the lower stress film 102 (FIG. 1C). As a material of the lower electrode film 101, for example, titanium, platinum or the like can be used. As a method for forming the lower electrode film 101, for example, a sputtering method can be used.
 次に、下電極膜103が形成された基板101を再度加熱炉に入れ、600℃程度に所定時間保持して加熱し、下電極膜103の表面に、変位膜104を形成する(図1(d1))。変位膜104の材料としては、例えば圧電材料であるチタン酸ジルコン酸鉛(PZT)を用いることができる。変位膜104の形成方法としては、例えばスパッタ法を用いることができる。続いて、変位膜104が形成された基板101を常温まで冷却する。この時、基板101(Si)と変位膜104(PZT)の熱膨張係数の差により、変位膜104には、膜面に沿って収縮方向の引張応力が発生する(図1(d2);矢印X2)。 Next, the substrate 101 on which the lower electrode film 103 is formed is again put in a heating furnace, and is heated at a temperature of about 600 ° C. for a predetermined time to form a displacement film 104 on the surface of the lower electrode film 103 (FIG. 1 ( d1)). As a material of the displacement film 104, for example, lead zirconate titanate (PZT) which is a piezoelectric material can be used. As a method of forming the displacement film 104, for example, a sputtering method can be used. Subsequently, the substrate 101 on which the displacement film 104 is formed is cooled to room temperature. At this time, due to the difference in thermal expansion coefficient between the substrate 101 (Si) and the displacement film 104 (PZT), a tensile stress in the contraction direction is generated along the film surface in the displacement film 104 (FIG. 1 (d2); arrow X2).
 次に、変位膜104の表面に上電極膜105を形成する(図1(e))。上電極膜105の材料としては、例えばクロム、金等を用いることができる。上電極膜105の形成方法としては、例えばスパッタ法を用いることができる。 Next, the upper electrode film 105 is formed on the surface of the displacement film 104 (FIG. 1E). As a material of the upper electrode film 105, for example, chromium, gold, or the like can be used. As a method for forming the upper electrode film 105, for example, a sputtering method can be used.
 次に、上電極膜105が形成された基板101を再度加熱炉に入れ、400℃程度に所定時間保持して加熱し、珪酸エチル(TEOS)を原材料として化学気相成長法(CVD法)を用いて、上応力膜106となる石英(SiO)を形成する(図1(f1))。続いて、上応力膜106が形成された基板101を常温まで冷却する。この時、基板101(Si)と上応力膜106(石英:SiO)の熱膨張係数の差により、上応力膜106には、膜面に沿って伸長方向の圧縮応力が発生する(図1(f2);矢印X3)。 Next, the substrate 101 on which the upper electrode film 105 is formed is again put into a heating furnace, and is heated by holding at a temperature of about 400 ° C. for a predetermined time, and chemical vapor deposition (CVD) is performed using ethyl silicate (TEOS) as a raw material. Then, quartz (SiO 2 ) to be the upper stress film 106 is formed (FIG. 1 (f1)). Subsequently, the substrate 101 on which the upper stress film 106 is formed is cooled to room temperature. At this time, due to the difference in thermal expansion coefficient between the substrate 101 (Si) and the upper stress film 106 (quartz: SiO 2 ), a compressive stress in the extension direction is generated along the film surface in the upper stress film 106 (FIG. 1). (F2); Arrow X3).
 このようにして、下応力膜102、下電極膜103、変位膜104、上電極膜105、上応力膜106等から構成される薄膜層が形成される。 In this way, a thin film layer composed of the lower stress film 102, the lower electrode film 103, the displacement film 104, the upper electrode film 105, the upper stress film 106, and the like is formed.
 次に、基板101の裏面に感光性樹脂をスピンコート法を用いて塗布し、レジスト膜80を成膜する(図1(g))。続いて、フォトマスクを介して露光しレジスト膜80をパターン化する(図1(h))。 Next, a photosensitive resin is applied to the back surface of the substrate 101 by using a spin coating method to form a resist film 80 (FIG. 1G). Subsequently, the resist film 80 is patterned by exposure through a photomask (FIG. 1 (h)).
 次に、反応性イオンエッチング法を用いて基板101をエッチングし、開口101aを形成し(図1(i1))、薄膜アクチュエータ1を完成させる。 Next, the substrate 101 is etched using a reactive ion etching method to form an opening 101a (FIG. 1 (i1)), and the thin film actuator 1 is completed.
 この時、薄膜層の周縁が基板101に固定された状態となり、ダイヤフラム構造となる。そして、前述のように、下応力膜102には伸長方向(矢印X1)の圧縮応力が、変位膜104には収縮方向(矢印X2)の引張応力が、上応力膜106には伸長方向(矢印X3)の圧縮応力が作用している為、後述のようにこれらの膜の応力バランスにより、例えば膜全体(薄膜層)を基板101の開口101aの方向に凸形状とすることができる(図1(i2))。 At this time, the peripheral edge of the thin film layer is fixed to the substrate 101 to form a diaphragm structure. As described above, the compressive stress in the extension direction (arrow X1) is applied to the lower stress film 102, the tensile stress in the contraction direction (arrow X2) is applied to the displacement film 104, and the extension direction (arrow is applied to the upper stress film 106). Since the compressive stress of X3) acts, for example, the entire film (thin film layer) can be formed in a convex shape in the direction of the opening 101a of the substrate 101 by the stress balance of these films as described later (FIG. 1). (I2)).
 また、この時、基板101は、薄膜層の方向に凸形状となる反りが生じるが、基板101の厚みが上記各膜の厚みに比べて十分に大きい場合には、その反り量は無視できるものである。 At this time, the substrate 101 is warped in a convex shape in the direction of the thin film layer. However, when the thickness of the substrate 101 is sufficiently larger than the thickness of each film, the amount of warpage can be ignored. It is.
 尚、基板101の材料であるSiの熱膨張係数は3ppm/K、応力膜102となるSiOの熱膨張係数は0.5ppm/K、変位膜104の材料であるPZTの熱膨張係数は8ppm/Kである。 The thermal expansion coefficient of Si, which is the material of the substrate 101, is 3 ppm / K, the thermal expansion coefficient of SiO 2 that is the stress film 102 is 0.5 ppm / K, and the thermal expansion coefficient of PZT, which is the material of the displacement film 104, is 8 ppm. / K.
 以上のような設定で各膜を形成すると、熱酸化による下応力膜102(石英:SiO)には約-300MPaの応力(第1の初期応力)が、変位膜104(PZT)には約+100MPaの応力(第3の初期応力)が、CVD法による上応力膜106(石英:SiO)には約-100MPaの応力(第2の初期応力)が発生する。尚、-符号は膜が伸長する方向の圧縮応力、+符号は膜が収縮する方向の引張応力を示す。また、膜に掛かる力は、応力と膜厚の積で求められる。 When each film is formed with the above setting, a stress (first initial stress) of about −300 MPa is applied to the lower stress film 102 (quartz: SiO 2 ) due to thermal oxidation, and an about −300 MPa stress is applied to the displacement film 104 (PZT). A stress of +100 MPa (third initial stress) occurs, and a stress of about −100 MPa (second initial stress) is generated in the upper stress film 106 (quartz: SiO 2 ) by the CVD method. In addition, − sign indicates compressive stress in the direction in which the film extends, and + sign indicates tensile stress in the direction in which the film contracts. Further, the force applied to the film is determined by the product of the stress and the film thickness.
 ここで、前述の式(1)で示したオイラーの座屈応力σの値を、例えば100MPaとすると、下応力膜102、変位膜104、上応力膜106の膜厚の比を1:5:3に設定することで、各膜で発生する初期応力の総和は、1×(-300)+5×(+100)+3×(-100)=-100となり、薄膜層全体として座屈応力σに等しい100MPaの圧縮応力を発生させることができる。 Here, if the Euler's buckling stress σ E shown in the above-described equation (1) is 100 MPa, for example, the ratio of the thicknesses of the lower stress film 102, the displacement film 104, and the upper stress film 106 is 1: 5. : 3, the sum of the initial stresses generated in each film is 1 × (−300) + 5 × (+100) + 3 × (−100) = − 100, and the buckling stress σ E for the entire thin film layer A compressive stress of 100 MPa can be generated.
 すなわち、各膜の初期応力と膜厚を適切に設定することにより、前述の不感帯域(図6:領域A)を超えるのに必要な応力(座屈応力σ)を該初期応力で賄うことができ、印加する駆動信号(駆動電圧)が小さい場合でも、薄膜層を、駆動電圧に応じて、膜面に垂直な方向へ変位させることができる。これにより、駆動効率を高めることができる。 That is, by appropriately setting the initial stress and film thickness of each film, the initial stress covers the stress (buckling stress σ E ) necessary to exceed the dead zone (FIG. 6: region A). Even when a drive signal (drive voltage) to be applied is small, the thin film layer can be displaced in a direction perpendicular to the film surface in accordance with the drive voltage. Thereby, drive efficiency can be improved.
 ところで、両もち梁構造やダイヤフラム構造の薄膜アクチュエータを伸長変形で用いると、変形時に薄膜層の変位方向が定まらないという問題がある。そこで、本発明の実施形態に係る薄膜アクチュエータ1においては、薄膜層を、その厚み方向に非対称な構造とすることで、その変位方向を制御している。具体的には、前述のように、下応力膜102と上応力膜106に発生させる初期応力(第1の初期応力、第2の初期応力)に差異を設けることで、非対称な構造としている。そして、下応力膜102と上応力膜106の前述の膜厚の比率に対し、上応力膜106の膜厚を数%増加させると、図1(i2)で示したように、薄膜層を基板101の開口101aの方向に凸形状とすることができる。すなわち、薄膜層の変位方向を基板101の開口101a方向に制御することができる。 By the way, when a thin-film actuator having a beam structure or a diaphragm structure is used for extension deformation, there is a problem that the displacement direction of the thin-film layer is not determined at the time of deformation. Therefore, in the thin film actuator 1 according to the embodiment of the present invention, the displacement direction is controlled by making the thin film layer an asymmetric structure in the thickness direction. Specifically, as described above, the initial stress (first initial stress and second initial stress) generated in the lower stress film 102 and the upper stress film 106 is made different to provide an asymmetric structure. When the thickness of the upper stress film 106 is increased by several percent with respect to the above-described ratio of the thickness of the lower stress film 102 and the upper stress film 106, the thin film layer is formed on the substrate as shown in FIG. A convex shape can be formed in the direction of the opening 101a. That is, the displacement direction of the thin film layer can be controlled in the direction of the opening 101 a of the substrate 101.
 このように、下応力膜102と上応力膜106の初期応力(第1の初期応力、第2の初期応力)の差が大きい程、初期の変位方向を確実に制御することができる。 Thus, the larger the difference between the initial stresses (the first initial stress and the second initial stress) between the lower stress film 102 and the upper stress film 106, the more reliably the initial displacement direction can be controlled.
 しかしながら、一方で、下応力膜102と上応力膜106の初期応力(第1の初期応力、第2の初期応力)の差が大きくなる程、初期の変形量が大きくなる為、図2に示すように、駆動電圧が印加されていない非駆動時(図2:位置S)の膜面に垂直な方向の変位量Δyが大きくなる。また、駆動時の応力に対する変位量Δyの増加率も前述の図6で示した領域Bの場合よりも穏やかになり、駆動効率が低下する。尚、図2は、下応力膜102と上応力膜106の初期応力(第1の初期応力、第2の初期応力)の差が大きい場合の薄膜層の圧縮応力σと膜面に垂直な方向の変位量Δyの関係を示す図である。 However, on the other hand, as the difference between the initial stresses (the first initial stress and the second initial stress) between the lower stress film 102 and the upper stress film 106 increases, the initial deformation amount increases. As described above, the displacement amount Δy in the direction perpendicular to the film surface at the time of non-driving when no driving voltage is applied (FIG. 2: position S) becomes large. Further, the increase rate of the displacement amount Δy with respect to the stress at the time of driving becomes gentler than in the case of the region B shown in FIG. 6, and the driving efficiency is lowered. 2 shows a direction perpendicular to the compressive stress σ of the thin film layer and the film surface when the difference between the initial stresses (the first initial stress and the second initial stress) between the lower stress film 102 and the upper stress film 106 is large. It is a figure which shows the relationship of displacement amount (DELTA) y.
 そこで、製造時や使用時の条件により薄膜層の変位方向が安定する範囲内で、下応力膜102と上応力膜106の初期応力の差を最小に設定することにより、駆動効率を最大化することができる。 Therefore, the drive efficiency is maximized by setting the difference between the initial stresses of the lower stress film 102 and the upper stress film 106 to the minimum within a range in which the displacement direction of the thin film layer is stabilized depending on the conditions during manufacture and use. be able to.
 これらの初期応力(第1の初期応力、第2の初期応力、第3の初期応力)の大きさは、各膜(下応力膜102、上応力膜106、変位膜104)を形成するときの温度、各膜の材料と基板101の材料の熱膨張係数の差異等で決まる。また、膜の変形量は、前述の応力に加えて、膜の厚み、面積、剛性等で決まる。また、膜を構成する材料には固有の破壊応力が存在する為、後述の駆動変形時を含めて、応力の値がその範囲内に収まるように、上記変数を調整し、応力の値を制御する必要がある。 The magnitudes of these initial stresses (the first initial stress, the second initial stress, and the third initial stress) are the same as those when the respective films (the lower stress film 102, the upper stress film 106, and the displacement film 104) are formed. It is determined by the temperature, the difference in thermal expansion coefficient between the material of each film and the material of the substrate 101, and the like. Further, the amount of deformation of the film is determined by the thickness, area, rigidity, etc. of the film in addition to the stress described above. In addition, since the material constituting the film has inherent fracture stress, the above variables are adjusted to control the stress value so that the stress value is within that range, including during driving deformation described later. There is a need to.
 次に、薄膜アクチュエータ1の駆動時の変形について、図3を用いて説明する。図3(a)は、薄膜アクチュエータ1の非駆動時の態様を示す断面模式図、図3(b)は、薄膜アクチュエータ1の駆動時の態様を示す断面模式図である。 Next, deformation during driving of the thin film actuator 1 will be described with reference to FIG. FIG. 3A is a schematic cross-sectional view showing a mode when the thin film actuator 1 is not driven, and FIG. 3B is a schematic cross-sectional view showing a mode when the thin film actuator 1 is driven.
 PZTからなる変位膜104は、膜面に垂直な方向に誘電分極している(図3(a);矢印P)。上電極膜105と下電極膜103の間にAC電圧を印加すると(図3(b);矢印E)、変位膜104は、膜面に垂直な方向に伸縮するとともに、膜面に沿った方向に反対の位相で伸縮する(図3(b);矢印X)。変位膜104が膜面に沿った方向に伸縮することは、前述の内部応力が増減することに等しく、変位膜104は、膜面に垂直な方向に変位する(図3(b);矢印Y)。 The displacement film 104 made of PZT is dielectrically polarized in a direction perpendicular to the film surface (FIG. 3A; arrow P). When an AC voltage is applied between the upper electrode film 105 and the lower electrode film 103 (FIG. 3B; arrow E), the displacement film 104 expands and contracts in a direction perpendicular to the film surface and a direction along the film surface. It expands and contracts in a phase opposite to (Fig. 3 (b); arrow X). Expansion and contraction of the displacement film 104 in the direction along the film surface is equivalent to the increase or decrease of the internal stress described above, and the displacement film 104 is displaced in a direction perpendicular to the film surface (FIG. 3B; arrow Y ).
 前述のように、変位膜104が伸長変形する方向に電界を加えることにより、図6で示した領域Bにおいて、効率よく駆動することができる。 As described above, by applying an electric field in the direction in which the displacement film 104 expands and deforms, the region B shown in FIG. 6 can be driven efficiently.
 このように本発明の実施形態に係る薄膜アクチュエータ1においては、薄膜層は、非駆動時、膜面に沿って伸長方向の初期応力を有する構成とした。初期応力を適切な値(例えば、式(1)に示したオイラーの座屈応力σ)に設定することにより、前述の不感帯域(図6:領域A)を超えるのに必要な応力を該初期応力で賄うことができ、印加する駆動信号(駆動電圧)が小さい場合でも、薄膜層を、駆動電圧に応じて、膜面に垂直な方向へ変位させることができる。これにより、駆動効率を高めることができる。 Thus, in the thin film actuator 1 which concerns on embodiment of this invention, the thin film layer was set as the structure which has the initial stress of an expansion | extension direction along a film surface at the time of non-driving. By setting the initial stress to an appropriate value (for example, Euler's buckling stress σ E shown in equation (1)), the stress necessary to exceed the dead band (FIG. 6: region A) Even when the applied driving signal (driving voltage) is small, the thin film layer can be displaced in a direction perpendicular to the film surface in accordance with the driving voltage. Thereby, drive efficiency can be improved.
 次に、本発明の実施形態に係るインクジェットヘッドの構成を図4を用いて説明する。図4は、インクジェットヘッド1Aの概略構成を示す断面模式図である。 Next, the configuration of the inkjet head according to the embodiment of the present invention will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view illustrating a schematic configuration of the inkjet head 1A.
 インクジェットヘッド1Aは、図4に示すように、ノズル基板2、及びボディ基板(基板)101、下応力膜102、共通電極膜(下電極膜)103、変位膜104、駆動電極膜(上電極膜)105、上応力膜106等を有する前述の薄膜アクチュエータ1等から構成される。 As shown in FIG. 4, the inkjet head 1A includes a nozzle substrate 2, a body substrate (substrate) 101, a lower stress film 102, a common electrode film (lower electrode film) 103, a displacement film 104, a drive electrode film (upper electrode film). ) 105 and the above-described thin film actuator 1 having the upper stress film 106 and the like.
 ノズル基板2には、インクを吐出する複数のノズル孔2aが形成されている。ノズル基板2の材料としては、シリコンやガラス、セラミックス材料等を用いることができるがシリコンが好適である。ノズル基板2の上面側には、薄膜アクチュエータ1のボディ基板101が接合されている。ボディ基板101の内側には、ノズル基板2を接合することにより構成される圧力室(開口)101aや図示しないインク供給路等が形成されている。圧力室101aは、複数のノズル孔2aに対応してそれぞれ形成されインクを収容する。 The nozzle substrate 2 has a plurality of nozzle holes 2a for discharging ink. As a material for the nozzle substrate 2, silicon, glass, a ceramic material, or the like can be used, but silicon is preferable. The body substrate 101 of the thin film actuator 1 is bonded to the upper surface side of the nozzle substrate 2. Inside the body substrate 101, a pressure chamber (opening) 101 a configured by bonding the nozzle substrate 2, an ink supply path (not shown), and the like are formed. The pressure chamber 101a is formed corresponding to each of the plurality of nozzle holes 2a and stores ink.
 駆動電極膜105と共通電極膜103との間に、外部の図示しない駆動回路から駆動信号が印加されると、変位膜104は振動し、この振動がボディ基板101に形成されインクを収容する圧力室101aの圧力を変化させ、ノズル基板2に形成されたノズル孔2aからインク滴を吐出させる。 When a drive signal is applied between the drive electrode film 105 and the common electrode film 103 from an external drive circuit (not shown), the displacement film 104 vibrates, and this vibration is formed on the body substrate 101 to store the ink. The pressure in the chamber 101 a is changed, and ink droplets are ejected from the nozzle holes 2 a formed in the nozzle substrate 2.
 インクジェットヘッド1Aの駆動素子として、前述の駆動効率の高い薄膜アクチュエータ1を用いることにより、インク液滴を効率よく吐出することができる。 By using the thin film actuator 1 having high driving efficiency as the driving element of the inkjet head 1A, ink droplets can be efficiently discharged.
 以上、本発明を実施の形態を参照して説明してきたが、本発明は前述の実施の形態に限定して解釈されるべきでなく、適宜変更、改良が可能であることは勿論である。例えば、前述の実施形態においては、基板101(Si)に対して変位膜104(PZT)が引張応力を有する為、その下層および上層に圧縮応力を有する応力膜(下応力膜102、上応力膜103)であるSiO層を設ける構成としたが、変位膜自体が圧縮応力を有する構成とする場合は、係る応力膜は不要である。 The present invention has been described above with reference to the embodiments. However, the present invention should not be construed as being limited to the above-described embodiments, and can be changed or improved as appropriate. For example, in the above-described embodiment, since the displacement film 104 (PZT) has tensile stress with respect to the substrate 101 (Si), the stress film (lower stress film 102, upper stress film) having compressive stress in the lower layer and upper layer thereof. 103) and configured to provide a SiO 2 layer is, but if the displacement film itself configured to have a compressive stress, the stress film according is unnecessary.
 具体的には、例えば、基板101の材料として、金属等その熱膨張係数が変位膜104(PZT)より大きな材料を用いる、あるいは、変位膜104の材料として、熱膨張係数が基板101(Si)より小さい材料を用いる、等により、前述の条件を満たすことができ、応力膜(SiO)を無くすことができる。 Specifically, for example, a material such as a metal whose thermal expansion coefficient is larger than that of the displacement film 104 (PZT) is used as a material of the substrate 101, or a thermal expansion coefficient of the substrate 101 (Si) as a material of the displacement film 104. By using a smaller material, the above-described conditions can be satisfied, and the stress film (SiO 2 ) can be eliminated.
 また、前述の実施形態においては、応力膜(下応力膜102、上応力膜106)としてSiO膜を用いたが、基板101(Si)より熱膨張係数の小さい材料であれば、ダイヤモンド等を用いることもできる。 In the above-described embodiment, the SiO 2 film is used as the stress film (the lower stress film 102 and the upper stress film 106). However, if the material has a smaller thermal expansion coefficient than the substrate 101 (Si), diamond or the like is used. It can also be used.
 また、変位膜104としてPZTを用いたが、チタン酸バリウム等の圧電膜、チタンニッケル合金等の形状記憶合金膜、鉄ニッケル合金等のバイメタル等を用いてもよい。 Further, although PZT is used as the displacement film 104, a piezoelectric film such as barium titanate, a shape memory alloy film such as titanium nickel alloy, a bimetal such as iron nickel alloy, or the like may be used.
 膜の材料により、剛性、破壊応力、熱膨張係数、形成時の加熱温度等に差異がある為、組み合わせることにより要求仕様に最適な初期変形形状、初期変形量、駆動変形量等を得ることができる。 Depending on the material of the film, there are differences in rigidity, fracture stress, thermal expansion coefficient, heating temperature at the time of formation, etc., so it is possible to obtain the initial deformation shape, initial deformation amount, drive deformation amount, etc. optimal for the required specifications by combining it can.
 また、薄膜層を、その厚み方向に非対称な構造とする方法として、薄膜層の固定位置、薄膜層を構成する各膜(下応力膜102、上応力膜106、変位膜104)の初期応力(第1の初期応力、第2の初期応力、第3の初期応力)のバランス等が挙げられるが、各膜の剛性、膜厚、直径等を変えることでも同様の効果を得ることができる。 Further, as a method of making the thin film layer an asymmetric structure in the thickness direction, the initial stress (the lower stress film 102, the upper stress film 106, the displacement film 104) of the fixed position of the thin film layer and the respective films (the lower stress film 102, the upper stress film 106, and the displacement film 104) The first initial stress, the second initial stress, the third initial stress) and the like can be mentioned, but the same effect can be obtained by changing the rigidity, film thickness, diameter, etc. of each film.
 また、前述の実施形態においては、各膜に初期応力を発生させる方法として、熱膨張係数を利用した成膜時の温度制御を用いたが、例えば、金属膜等のスパッタ法では成膜時のガス圧力や投入パワーを変えることにより、材料元素の密度を変化させることができる。ガスの圧力を下げると、材料元素のエネルギーが減衰することなく成膜エネルギーに変換される為、より緻密な膜が形成される。その結果、圧縮応力が増大する。投入パワーを下げた場合も同様の効果を得ることができる。また、この他にも材料に微量な不純物を添加することにより応力を制御することも可能である。 In the above-described embodiment, as a method for generating an initial stress in each film, temperature control at the time of film formation using a thermal expansion coefficient is used. The density of the material element can be changed by changing the gas pressure or the input power. When the gas pressure is lowered, the energy of the material element is converted into film formation energy without being attenuated, so that a denser film is formed. As a result, the compressive stress increases. Similar effects can be obtained when the input power is lowered. In addition, the stress can be controlled by adding a trace amount of impurities to the material.
 また、前述の実施形態においては、薄膜層はダイヤフラム構造としたが、薄膜層の両端を固定した両もち梁構造であってもよい。この場合もダイヤフラム構造の場合と同様の効果を得ることができる。 In the above-described embodiment, the thin film layer has a diaphragm structure, but may have a double beam structure in which both ends of the thin film layer are fixed. In this case, the same effect as that of the diaphragm structure can be obtained.
 1A インクジェットヘッド
 1 薄膜アクチュエータ
 101 基板(ボディ基板)
 101a 開口(圧力室)
 102 下応力膜
 103 下電極膜(共通電極膜)
 104 変位膜
 105 上電極膜(駆動電極膜)
 106 上応力膜
 2 ノズル基板
 2a ノズル孔
1A Inkjet head 1 Thin film actuator 101 Substrate (body substrate)
101a Opening (pressure chamber)
102 Lower stress film 103 Lower electrode film (common electrode film)
104 Displacement film 105 Upper electrode film (drive electrode film)
106 Upper stress film 2 Nozzle substrate 2a Nozzle hole

Claims (5)

  1.  駆動信号により膜面に沿った方向に伸縮する変位膜を有する薄膜層と、
     前記駆動信号による前記変位膜の伸長により、該薄膜層を膜面に垂直な方向に変位させるように、前記薄膜層の周縁部を固定する基板と、を備えた薄膜アクチュエータであって、
     前記薄膜層は、非駆動時、膜面に沿って伸長方向の初期応力を有していることを特徴とする薄膜アクチュエータ。
    A thin film layer having a displacement film that expands and contracts in a direction along the film surface by a drive signal;
    A thin film actuator comprising: a substrate for fixing a peripheral portion of the thin film layer so as to displace the thin film layer in a direction perpendicular to the film surface by extension of the displacement film by the driving signal;
    The thin film actuator, wherein the thin film layer has an initial stress in an extending direction along the film surface when not driven.
  2.  前記初期応力は、前記薄膜層を、該薄膜層の膜面に垂直な方向に湾曲させ始める座屈応力よりも大きいことを特徴とする請求項1に記載の薄膜アクチュエータ。 2. The thin film actuator according to claim 1, wherein the initial stress is larger than a buckling stress that starts bending the thin film layer in a direction perpendicular to a film surface of the thin film layer.
  3.  前記薄膜層は、前記変位膜の下層および上層に形成され、それぞれ膜面に沿って伸長方向の第1の初期応力、第2の初期応力を有する2つの応力膜を有し、
     前記変位膜は、膜面に沿った方向の第3の初期応力を有し、
     前記初期応力は、前記第1の初期応力と前記第2の初期応力と前記第3の初期応力との和であることを特徴とする請求項2に記載の薄膜アクチュエータ。
    The thin film layer is formed in a lower layer and an upper layer of the displacement film, and has two stress films each having a first initial stress and a second initial stress in the extension direction along the film surface,
    The displacement film has a third initial stress in a direction along the film surface;
    The thin film actuator according to claim 2, wherein the initial stress is a sum of the first initial stress, the second initial stress, and the third initial stress.
  4.  前記第1の初期応力と前記第2の初期応力とは、異なる値であることを特徴とする請求項3に記載の薄膜アクチュエータ。 The thin film actuator according to claim 3, wherein the first initial stress and the second initial stress have different values.
  5.  請求項1から4の何れか1項に記載の薄膜アクチュエータと、
     前記基板の前記薄膜層を固定している面と反対側の面に接合され、該基板に形成された開口に連通しインクを吐出するノズル孔が形成されたノズル基板と、を有し、
     前記開口の内部は、前記インクを収容し、前記変位膜の変位により圧力を発生する圧力室であることを特徴とするインクジェットヘッド。
    The thin film actuator according to any one of claims 1 to 4,
    A nozzle substrate that is bonded to a surface opposite to the surface of the substrate on which the thin film layer is fixed and has nozzle holes that communicate with openings formed in the substrate and eject ink.
    The ink jet head according to claim 1, wherein the inside of the opening is a pressure chamber that accommodates the ink and generates pressure by displacement of the displacement film.
PCT/JP2010/060513 2009-07-15 2010-06-22 Thin-film actuator and inkjet head WO2011007645A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011522768A JPWO2011007645A1 (en) 2009-07-15 2010-06-22 Thin film actuator and inkjet head

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009166463 2009-07-15
JP2009-166463 2009-07-15

Publications (1)

Publication Number Publication Date
WO2011007645A1 true WO2011007645A1 (en) 2011-01-20

Family

ID=43449255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060513 WO2011007645A1 (en) 2009-07-15 2010-06-22 Thin-film actuator and inkjet head

Country Status (2)

Country Link
JP (1) JPWO2011007645A1 (en)
WO (1) WO2011007645A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193163A (en) * 2014-03-31 2015-11-05 ブラザー工業株式会社 piezoelectric actuator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11334063A (en) * 1998-05-22 1999-12-07 Seiko Epson Corp Ink jet recording head and ink jet recording device
JP2000141644A (en) * 1998-11-05 2000-05-23 Seiko Epson Corp Ink jet recording head and ink jet recorded
JP2001260348A (en) * 1999-02-18 2001-09-25 Seiko Epson Corp Ink jet recording head and ink jet recorder
JP2002113866A (en) * 2000-08-04 2002-04-16 Ricoh Co Ltd Electrostatic actuator, method of manufacturing the electrostatic actuator, electrostatic micro pump with the electrostatic actuator, ink jet recording head with the electrostatic actuator and ink jet recorder with the ink jet recording head
JP2008246797A (en) * 2007-03-29 2008-10-16 Seiko Epson Corp Liquid jet head and its manufacturing method
JP2009073122A (en) * 2007-09-21 2009-04-09 Fujifilm Corp Liquid ejection head, liquid ejection device and liquid ejection head manufacturing method
JP2009081262A (en) * 2007-09-26 2009-04-16 Seiko Epson Corp Method for manufacturing actuator device, and method for manufacturing liquid spray head

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11334063A (en) * 1998-05-22 1999-12-07 Seiko Epson Corp Ink jet recording head and ink jet recording device
JP2000141644A (en) * 1998-11-05 2000-05-23 Seiko Epson Corp Ink jet recording head and ink jet recorded
JP2001260348A (en) * 1999-02-18 2001-09-25 Seiko Epson Corp Ink jet recording head and ink jet recorder
JP2002113866A (en) * 2000-08-04 2002-04-16 Ricoh Co Ltd Electrostatic actuator, method of manufacturing the electrostatic actuator, electrostatic micro pump with the electrostatic actuator, ink jet recording head with the electrostatic actuator and ink jet recorder with the ink jet recording head
JP2008246797A (en) * 2007-03-29 2008-10-16 Seiko Epson Corp Liquid jet head and its manufacturing method
JP2009073122A (en) * 2007-09-21 2009-04-09 Fujifilm Corp Liquid ejection head, liquid ejection device and liquid ejection head manufacturing method
JP2009081262A (en) * 2007-09-26 2009-04-16 Seiko Epson Corp Method for manufacturing actuator device, and method for manufacturing liquid spray head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193163A (en) * 2014-03-31 2015-11-05 ブラザー工業株式会社 piezoelectric actuator

Also Published As

Publication number Publication date
JPWO2011007645A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
US7024738B2 (en) Method for controlling a direction of polarization of a piezoelectric thin film
JP3521499B2 (en) Piezoelectric / electrostrictive film type element
US8409900B2 (en) Fabricating MEMS composite transducer including compliant membrane
JP5605952B2 (en) Electromechanical transducer device and manufacturing method thereof
US20120266686A1 (en) Mems composite transducer including compliant membrane
JPH06350155A (en) Piezoelectric/electrostriction film type element
JP6365690B2 (en) Method for manufacturing piezoelectric device
JP2015530728A (en) Piezoelectric element, piezoelectric actuator, hard disk drive, inkjet printer device, and piezoelectric sensor
JPH06204580A (en) Piezoelectric/electrostrictive film type element
WO2014188649A1 (en) Power generating apparatus
JP2009291030A (en) Mems variable capacitor
WO2010150610A1 (en) Thin film actuator and inkjet head
JP3891190B2 (en) Piezoelectric element, piezoelectric device and angular velocity sensor
WO2011007645A1 (en) Thin-film actuator and inkjet head
JP5435798B2 (en) Turbulent flow control device and method of manufacturing turbulent flow control actuator
US6171420B1 (en) Manufacturing process of functional film element
JP2012040619A (en) Capacity type mems sensor and method of manufacturing the same
JP5556181B2 (en) Thin film actuator and inkjet head
JP2007529113A (en) Piezoelectric diaphragm with IDT electrode
JP2007125626A (en) Mems element
JP2003008096A (en) Piezoelectric/electrostrictive film element
JP2011142153A (en) Thin-film actuator, and ink jet head
JP2000183413A (en) Displacement element and its manufacture
JP2004198421A (en) Piezoelectric transducer
JP2009193804A (en) Actuator, and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799706

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011522768

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799706

Country of ref document: EP

Kind code of ref document: A1