WO2011007556A1 - Polar modulator - Google Patents

Polar modulator Download PDF

Info

Publication number
WO2011007556A1
WO2011007556A1 PCT/JP2010/004540 JP2010004540W WO2011007556A1 WO 2011007556 A1 WO2011007556 A1 WO 2011007556A1 JP 2010004540 W JP2010004540 W JP 2010004540W WO 2011007556 A1 WO2011007556 A1 WO 2011007556A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
offset
linear regulator
power amplifier
temperature information
Prior art date
Application number
PCT/JP2010/004540
Other languages
French (fr)
Japanese (ja)
Inventor
森本滋
石田薫
中村真木
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011007556A1 publication Critical patent/WO2011007556A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/408Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising three power stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to a power control method and a power control device for a wireless transmitter using a polar modulation circuit, and more specifically, according to changes in the temperature of the power amplifier or the ambient temperature, to ensure good modulation characteristics,
  • the present invention also relates to a polar modulation device that performs high-efficiency operation.
  • Communication devices such as mobile phones and wireless LANs are required to operate with low power consumption while ensuring the accuracy of transmission signals, regardless of changes in the temperature or ambient temperature of the power amplifier or individual variations.
  • a transmission circuit that operates with a small size and high efficiency and outputs a highly linear transmission signal is used.
  • a conventional transmission circuit will be described below.
  • a transmission circuit (hereinafter referred to as an orthogonal modulation circuit) that generates a transmission signal using a modulation method such as orthogonal modulation.
  • a polar modulation circuit is known as a conventional transmission circuit that operates smaller and more efficiently than an orthogonal modulation circuit.
  • Patent Documents 1 and 2 are disclosed as those that operate with low power consumption while ensuring the accuracy of a transmission signal.
  • FIG. 9 is a diagram showing a polar modulation device 900 which is an example of a conventional polar modulation device.
  • a polar modulation device 900 includes a digital block 901, first to third DACs 902 to 904, an offset DAC (hereinafter referred to as OFDAC) 905, an adder 906, a phase modulator 907, a DC / DC A DC converter (hereinafter referred to as DC / DC) 908, first and second LDO linear regulators (hereinafter referred to as LDO) 909 and 910, a power amplifier 911, and a temperature sensor 912 are provided.
  • the digital block 901 includes a signal generation unit 9011 and an offset control unit 9012.
  • the signal generation unit 9011 generates an amplitude signal and a phase signal.
  • the offset control unit 9012 calculates an offset value based on the temperature information Tdet notified from the temperature sensor 912.
  • the temperature sensor 912 measures the temperature of the power amplifier 911 or the ambient temperature, and notifies the digital block 901 of the measured temperature information Tdet.
  • the amplitude signal generated by the signal generation unit 9011 is input to the adder 906 via the second DAC 903.
  • the offset value calculated by the offset control unit 9012 is added to the amplitude signal A (t) output from the second DAC 903.
  • the offset value is input to the adder 906 via the OFDAC 905.
  • the amplitude signal A (t) ′ to which the offset value has been added is input to the first and second LDOs 909 and 910.
  • the first and second LDOs 909 and 910 supply the amplitude signal voltage Vcc controlled according to the input amplitude signal A (t) ′ to the power amplifier 911.
  • the first and second LDOs 909 and 910 supply to the power amplifier 911 an amplitude signal voltage Vcc proportional to the magnitude of the input amplitude signal A (t) ′.
  • the phase signal generated by the signal generation unit 9011 is input to the phase modulator 907 via the third DAC 904.
  • the phase modulator 907 performs phase modulation on the phase signal and outputs a phase modulation signal.
  • the power amplifier 911 amplifies the phase modulation signal with the amplitude signal voltage Vcc supplied from the first and second LDOs 909 and 910 and outputs the amplified signal as a modulation signal.
  • the signal amplified by the power amplifier 911 is output as a transmission signal from the output terminal.
  • the amplitude level of the modulation signal that is the output of the power amplifier 911 is denoted as Vout.
  • FIG. 10A is a diagram showing the relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 at +25 degC and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911.
  • the first and second LDOs 909 and 910 control the amplitude signal voltage Vcc supplied to the power amplifier 911 according to the input amplitude signal A (t) ′. Therefore, the amplitude signal voltage Vcc supplied to the power amplifier 911 is controlled according to the amplitude signal A (t) output from the second DAC 903.
  • FIG. 10B is a diagram showing the relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 at +125 degC and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911.
  • the offset value calculated by the offset control unit 9012 is added to the amplitude signal generated by the signal generation unit 9011.
  • the amplitude signal A (t) ′ shown in FIG. 10B is shifted by +1 mV every +1 degC with respect to the amplitude signal A (t) at +25 degC, which is the reference temperature.
  • the amplitude signal A (t) ′ to which the offset value is added becomes the amplitude signal A (t) + 0.1V output from the second DAC 903.
  • the first and second LDOs 909 and 910 control the amplitude signal voltage Vcc supplied to the power amplifier 911 according to the input amplitude signal A (t) ′.
  • the power amplifier 911 can ensure the same modulation characteristic as the amplitude level Vout of the modulation signal at +25 degC with respect to the amplitude level Vout of the modulation signal at +125 degC.
  • FIG. 10C is a diagram showing the relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 at ⁇ 25 degC and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911.
  • the offset value calculated by the offset control unit 9012 is added to the amplitude signal generated by the signal generation unit 9011.
  • the amplitude signal A (t) ′ shown in FIG. 10C is shifted by ⁇ 1 mV every ⁇ 1 degC with respect to the amplitude signal A (t) at +25 degC which is the reference temperature.
  • the amplitude signal A (t) ′ to which the offset value is added becomes the amplitude signal A (t) ⁇ 0.05 V output from the second DAC 903.
  • the first and second LDOs 909 and 910 control the amplitude signal voltage Vcc supplied to the power amplifier 911 according to the input amplitude signal A (t) ′.
  • the power amplifier 911 can ensure the same modulation characteristics as the amplitude level Vout of the modulation signal at +25 degC with respect to the amplitude level Vout of the modulation signal at ⁇ 25 degC.
  • the amplitude signal generated by the signal generation unit 9011 is changed according to the temperature change by the offset control unit 9012.
  • the offset value calculated in the above is added. That is, as shown in FIGS. 10B and 10C, the amplitude signal A (t) is shifted to A (t) ′.
  • the power amplifier 911 ensures the modulation characteristics of the amplitude level Vout of the modulation signal and ensures the accuracy of the transmission signal.
  • the DC / DC 908 supplies a constant power supply voltage Vback to the first and second LDOs 909 and 910.
  • the power supply voltage Vback needs to be determined based on the amplitude signal voltage Vcc supplied from the first and second LDOs 909 and 910 to the power amplifier 911. If the first and second LDOs 909 and 910 cannot supply the amplitude signal voltage Vcc corresponding to the amplitude signal A (t) ′ to the power amplifier 911, the modulation of the amplitude level Vout of the modulation signal that is the output of the power amplifier 911 is performed. This is because the characteristics cannot be secured.
  • the power supply voltage Vback uses the peak voltage Vpeak and the headroom voltage Vhr of the amplitude signal to secure the modulation characteristic of the amplitude level Vout of the modulation signal that is the output of the power amplifier 911. It is determined based on.
  • the headroom voltage Vhr is obtained by saturating the first and second LDOs 909 and 910 when the amplitude signal voltage Vcc supplied to the power amplifier 911 by the first and second LDOs 909 and 910 approaches the power supply voltage Vback. It is set to prevent the modulation characteristic of the amplitude level Vout of the modulation signal that is the output of the amplifier 911 from deteriorating.
  • Vback Vpeak + Vhr (Equation 1)
  • the peak voltages Vpeak of the amplitude signal A (t) ′ at +25 degC, +125 degC, and ⁇ 25 degC are VpeakA, VpeakB, and VpeakC, respectively.
  • VpeakA 0.9V
  • VpeakB 1.0V
  • VpeakC 0.85V.
  • the power supply voltage Vback supplied from the DC / DC 908 to the first and second LDOs 909 and 910 is set to 1.2 V based on the peak voltage VpeakB (1.0 V) at a high temperature (+125 degC) at a high temperature (+125 degC), At a low temperature ( ⁇ 25 degC), even when the peak voltage VpeakC (0.85 V) is taken into account, it is sufficient to set the power supply voltage Vback to 1.05 V, so that the operating efficiency is lowered.
  • FIG. 10D is a diagram showing the relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911 when adjusting the amplitude signal using a multiplier.
  • the amplitude signal generated by the signal generation unit 9011 is multiplied by an optimum multiplication coefficient by a multiplier.
  • the first and second LDOs 909 and 910 control the amplitude signal voltage Vcc supplied to the power amplifier 911 according to the input amplitude signal A (t) ′.
  • the power amplifier 911 has the modulation signal amplitude level Vout in the standard characteristic of the power amplifier 911 at the predetermined temperature, even if the characteristic of the power amplifier 911 deviates from the standard characteristic at the specific temperature. Similar modulation characteristics are ensured.
  • the peak voltage VpeakD (0.99 V) is taken into consideration. Since it is sufficient to set the power supply voltage Vback to 1.19 V, the operation efficiency is lowered.
  • the conventional field effect transistor requires two positive and negative power supplies, so that it is difficult to reduce the size.
  • a compound semiconductor material such as GaAs, which is a material for the power amplifier, is expensive, and Miniaturization is desired because it is brittle and easy to break.
  • the heat generated due to the current cannot be dissipated because of the vertically stacked configuration despite the small arrangement area. For this reason, the temperature change becomes large and the input / output characteristics of the transistor are likely to change.
  • an object of the present invention is to provide a good modulation characteristic by controlling the offset of the amplitude signal according to the change of the temperature of the power amplifier or the ambient temperature and at the same time variably controlling the power supply voltage supplied to the LDO. It is an object of the present invention to provide a polar modulation device that ensures high efficiency operation.
  • a polar modulation device of the present invention includes a signal generation unit that generates an amplitude signal and a phase signal from an input signal, an LDO linear regulator that outputs an amplitude signal voltage based on the amplitude signal, and a phase A phase modulation unit that phase-modulates the signal, a power amplifier that generates the modulation signal by amplitude-modulating the phase-modulated phase signal using the amplitude signal voltage supplied from the LDO linear regulator as a power supply voltage, and the temperature of the power amplifier or A temperature sensor that measures ambient temperature and outputs it as temperature information, a DC / DC output control unit that outputs a control signal for controlling a power supply voltage for driving the LDO linear regulator according to the temperature information, and a control signal based on the control signal A DC / DC converter for supplying a power supply voltage to the LDO linear regulator.
  • the polar modulation device includes an offset control unit that calculates an offset value to be added to the amplitude signal according to temperature information, and an adder that adds the offset value calculated by the offset control unit to the amplitude signal generated by the signal generation unit And further comprising.
  • the offset control unit calculates an offset value to be added to the amplitude signal by multiplying the offset compensation coefficient caused by the temperature variation of the power amplifier by the difference from the reference temperature of the temperature information.
  • the polar modulator further includes an LUT that stores temperature information and an offset value to be added to the amplitude signal in association with each other.
  • the offset control unit calculates an offset value to be added to the amplitude signal from the LUT according to the temperature information.
  • the DC / DC output control unit calculates a correction voltage for correcting the power supply voltage for driving the LDO linear regulator according to the offset value, and adds the correction voltage and the peak voltage of the amplitude signal when the temperature information is the reference temperature.
  • the control signal is calculated by adding the headroom voltage of the LDO linear regulator.
  • the DC / DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.
  • the DC / DC output control unit uses the increase in the output voltage of the LDO linear regulator due to the addition of the offset value to the amplitude signal as the correction voltage.
  • the offset control unit calculates a multiplication coefficient for multiplying the amplitude signal based on the temperature information.
  • the polar modulation device further includes a multiplier that multiplies the amplitude signal generated by the signal generation unit by a multiplication coefficient.
  • the adder adds an offset value to the amplitude signal multiplied by the multiplication coefficient.
  • the offset control unit calculates an offset value by multiplying the offset compensation coefficient caused by the temperature variation of the power amplifier and the difference from the reference temperature of the temperature information, and obtains the gain caused by the temperature variation of the power amplifier.
  • the multiplication coefficient is calculated by multiplying the compensation coefficient by the difference from the reference temperature of the temperature information.
  • the DC / DC output control unit calculates a correction voltage for correcting the power supply voltage for driving the LDO linear regulator according to the offset value, and corrects the power supply voltage for driving the LDO linear regulator according to the multiplication coefficient.
  • the control signal is calculated by multiplying the peak voltage of the amplitude signal when the temperature information is the reference temperature by the correction coefficient, and adding the correction voltage and the headroom voltage of the LDO linear regulator to the multiplication result. Is calculated.
  • the DC / DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.
  • the DC / DC output control unit sets the increase in the output voltage of the LDO linear regulator due to the addition of the offset value to the amplitude signal as the correction voltage, and the multiplication coefficient as the correction coefficient.
  • the power amplifier is a heterojunction bipolar transistor (HBT / Heterojunction Bipolar Transistor) having a configuration in which different types of semiconductor layers are stacked vertically.
  • HBT Heterojunction Bipolar Transistor
  • the DC / DC output control unit calculates a correction value for correcting the temperature variation of the DC / DC converter and a correction value for correcting the temperature variation of the headroom voltage of the LDO linear regulator according to the temperature information. Then, the control signal is added by adding the calculated correction value of the DC / DC converter and the correction value of the headroom voltage of the LDO linear regulator to the power supply voltage of the LDO linear regulator when the temperature information is the reference temperature. Is calculated.
  • the DC / DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.
  • the polar modulation device is connected to the antenna via the duplexer and the antenna SW, and measures the temperature or ambient temperature of the duplexer and the antenna SW, and outputs a second temperature sensor as second temperature information. Connected.
  • the polar modulation device includes: an offset control unit that calculates a multiplication coefficient to be multiplied to the amplitude signal and an offset value to be added to the amplitude signal according to the temperature information and the second temperature information; and the amplitude generated by the signal generation unit
  • the signal processing apparatus further includes a multiplier that multiplies the signal by a multiplication coefficient, and an adder that adds an offset value to the amplitude signal output from the multiplier.
  • the polar modulation device includes a gain compensation coefficient caused by temperature variation of the power amplifier, an offset compensation coefficient caused by temperature variation of the power amplifier, and a gain compensation coefficient caused by temperature variation of the duplexer and the antenna SW.
  • a stored LUT is further provided.
  • the offset control unit from the LUT, compensates the gain due to the temperature variation of the power amplifier, the offset compensation factor due to the temperature variation of the power amplifier, and the gain compensation due to the temperature variation of the duplexer and the antenna SW.
  • the first correction value is calculated by multiplying the difference from the reference temperature of the temperature information by the gain compensation coefficient due to the temperature variation of the power amplifier read from the LUT, and the second correction value is calculated.
  • the second correction value is calculated by multiplying the difference from the reference temperature of the temperature information by the gain compensation coefficient resulting from the temperature variation of the duplexer and the antenna SW read from the LUT, and the reference temperature of the temperature information Is multiplied by the compensation coefficient of the offset value caused by the temperature variation of the power amplifier read from the LUT, thereby obtaining the third correction value.
  • a plurality of gain compensation coefficients caused by temperature variations of the power amplifier and offset compensation coefficients caused by temperature variations of the power amplifier are set in accordance with the temperature information, and temperature variations of the duplexer and the antenna SW are set.
  • a plurality of gain compensation coefficients resulting from the above may be set according to the second temperature information.
  • the offset control unit reads, from the LUT, the gain compensation coefficient caused by the temperature variation of the power amplifier and the offset compensation coefficient caused by the temperature variation of the power amplifier according to the temperature information, and uses them as the second temperature information. In response, the gain compensation coefficient due to the temperature variation of the duplexer and the antenna SW is read out.
  • the DC / DC output control unit calculates a correction voltage for correcting the power supply voltage for driving the LDO linear regulator according to the offset value, and corrects the power supply voltage for driving the LDO linear regulator according to the multiplication coefficient.
  • the control signal is calculated by multiplying the peak voltage of the amplitude signal when the temperature information is the reference temperature by the correction coefficient, and adding the correction voltage and the headroom voltage of the LDO linear regulator to the multiplication result. Is calculated.
  • the DC / DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.
  • the DC / DC output control unit sets the increase in the output voltage of the LDO linear regulator due to the addition of the offset value to the amplitude signal as the correction voltage, and the multiplication coefficient as the correction coefficient.
  • the polar modulation device measures the temperature or ambient temperature of the LDO linear regulator and outputs a third temperature sensor that outputs the temperature information as third temperature information, and a multiplication that multiplies the amplitude signal according to the temperature information and the third temperature information.
  • An offset control unit that calculates a coefficient and an offset value to be added to the amplitude signal, a multiplier that multiplies the amplitude signal generated by the signal generation unit by a multiplication coefficient, and an offset to the amplitude signal output from the multiplier And an adder for adding values.
  • the polar modulation device includes a gain compensation coefficient caused by temperature variation of the power amplifier, an offset compensation coefficient caused by temperature variation of the power amplifier, a gain compensation coefficient caused by temperature variation of the LDO linear regulator, and an LDO linear Further provided is an LUT that stores a compensation coefficient for offset caused by temperature variation of the regulator.
  • the offset control unit from the LUT, gain compensation coefficient due to power amplifier temperature variation, offset compensation coefficient due to power amplifier temperature variation, and gain compensation coefficient due to LDO linear regulator temperature variation, The offset compensation coefficient caused by the temperature variation of the LDO linear regulator is read, and the difference from the reference temperature of the temperature information is multiplied by the gain compensation factor caused by the temperature variation of the power amplifier read from the LUT.
  • the first correction value is calculated
  • the second correction value is calculated by multiplying the difference from the reference temperature of the temperature information by the compensation coefficient of the offset value caused by the temperature variation of the power amplifier read from the LUT.
  • the calculated difference from the reference temperature of the third temperature information and the LDO linear regulation read from the LUT The third correction value is calculated by multiplying the gain compensation coefficient caused by the temperature variation of the data, the difference from the reference temperature of the third temperature information, and the temperature variation of the LDO linear regulator read from the LUT
  • the fourth correction value is calculated by multiplying the offset compensation coefficient caused by the first correction value, the multiplication coefficient is calculated using the first correction value and the third correction value, and the second correction value is calculated.
  • the offset value is calculated using the value and the fourth correction value.
  • a plurality of gain compensation coefficients due to power amplifier temperature variations and offset compensation coefficients due to power amplifier temperature variations are set in accordance with temperature information, resulting from temperature variations in the LDO linear regulator.
  • a plurality of gain compensation coefficients and offset compensation coefficients caused by temperature variations of the LDO linear regulator may be set according to the third temperature information.
  • the offset control unit reads, from the LUT, the gain compensation coefficient caused by the temperature variation of the power amplifier and the offset compensation coefficient caused by the temperature variation of the power amplifier in accordance with the temperature information, and uses them as the third temperature information.
  • the gain compensation coefficient caused by the temperature variation of the LDO linear regulator and the offset compensation coefficient caused by the temperature variation of the LDO linear regulator are read out.
  • the polar modulator further includes a third temperature sensor that measures the temperature or ambient temperature of the LDO linear regulator and outputs the measured temperature information as third temperature information.
  • the offset control unit calculates an offset value and a multiplication coefficient according to the temperature information, the second temperature information, and the third temperature information.
  • the polar modulation device includes a gain compensation coefficient caused by temperature variation of the power amplifier, an offset compensation coefficient caused by temperature variation of the power amplifier, a gain compensation coefficient caused by temperature variation of the duplexer and the antenna SW, It further includes an LUT that stores a gain compensation coefficient caused by temperature variation of the LDO linear regulator and an offset compensation coefficient caused by temperature variation of the LDO linear regulator.
  • the offset control unit from the LUT, compensates the gain due to the temperature variation of the power amplifier, the offset compensation factor due to the temperature variation of the power amplifier, and the gain compensation due to the temperature variation of the duplexer and the antenna SW.
  • the coefficient, the gain compensation coefficient due to the temperature variation of the LDO linear regulator, and the offset compensation coefficient due to the temperature variation of the LDO linear regulator are read, the difference from the reference temperature of the temperature information, and the power read from the LUT
  • the first correction value is calculated by multiplying the gain compensation coefficient caused by the temperature variation of the amplifier, and the difference from the reference temperature of the temperature information and the offset caused by the temperature variation of the power amplifier read from the LUT
  • the second correction value is calculated by multiplying the compensation coefficient of the value, and the second temperature information is calculated.
  • the third correction value is calculated by multiplying the difference from the reference temperature by the gain compensation coefficient resulting from the temperature variation of the duplexer and the antenna SW read from the LUT, and the third temperature information reference
  • the fourth correction value is calculated by multiplying the difference from the temperature by the gain compensation coefficient resulting from the temperature variation of the LDO linear regulator read from the LUT, and the difference from the reference temperature in the third temperature information
  • the offset compensation coefficient caused by the temperature variation of the LDO linear regulator read from the LUT, the fifth correction value is calculated, and the first correction value, the third correction value,
  • the multiplication coefficient is calculated using the correction value of 4, and the offset value is calculated using the second correction value and the fifth correction value.
  • a plurality of gain compensation coefficients resulting from temperature variations of the power amplifier and offset compensation coefficients resulting from temperature variations of the power amplifier are set according to the temperature information.
  • a plurality of gain compensation coefficients are set according to the second temperature information, and the gain compensation coefficient due to the temperature variation of the LDO linear regulator and the offset compensation coefficient due to the temperature variation of the LDO linear regulator are the first.
  • a plurality may be set according to the temperature information of 3.
  • the offset control unit reads, from the LUT, the gain compensation coefficient caused by the temperature variation of the power amplifier and the offset compensation coefficient caused by the temperature variation of the power amplifier according to the temperature information, and uses them as the second temperature information.
  • the gain compensation coefficient due to the temperature variation of the duplexer and the antenna SW is read out, and the gain compensation coefficient due to the temperature variation of the LDO linear regulator and the temperature of the LDO linear regulator according to the third temperature information Read out the offset compensation coefficient caused by the variation.
  • the DC / DC output control unit calculates a correction voltage for correcting the power supply voltage for driving the LDO linear regulator and a correction value for correcting the temperature variation of the DC / DC converter according to the temperature information, and the temperature information,
  • the correction coefficient for correcting the power supply voltage for driving the LDO linear regulator is calculated according to the second temperature information, and the temperature variation of the headroom voltage of the LDO linear regulator is corrected according to the second temperature information.
  • the correction value is calculated, the peak voltage of the amplitude signal when the temperature information is the reference temperature is multiplied by the correction coefficient, the multiplication result is corrected, the headroom voltage of the LDO linear regulator, and the calculated
  • the control signal is obtained by adding the correction value of the DC / DC converter and the correction value of the headroom voltage of the LDO linear regulator. Calculated to.
  • the DC / DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.
  • the DC / DC output control unit adds the first correction value obtained by multiplying the amplitude signal by the offset compensation coefficient caused by the temperature variation of the power amplifier and the difference from the reference temperature of the temperature information.
  • the second correction value obtained by multiplying the increase of the output voltage of the linear regulator as a correction voltage, the gain compensation coefficient resulting from the temperature variation of the power amplifier, and the difference from the reference temperature of the temperature information, a duplexer, and A result obtained by multiplying the gain compensation coefficient caused by the temperature variation of the antenna SW and the third correction value obtained by multiplying the difference from the reference temperature of the second temperature information is defined as a correction coefficient.
  • good modulation is achieved by performing offset control on the amplitude signal and variably controlling the power supply voltage supplied to the LDO according to changes in the temperature of the power amplifier or the ambient temperature. It is possible to realize a polar modulation device that secures characteristics and performs high-efficiency operation.
  • FIG. 1A is a diagram illustrating a polar modulation device 100 according to a first embodiment of the present invention.
  • FIG. 1B is a diagram showing a polar modulation device 100b according to the first embodiment of the present invention.
  • FIG. 1C is a diagram illustrating an example of an LUT in which temperature information Tdet is associated with an offset value.
  • FIG. 1D is a diagram illustrating an example of an LUT in which temperature information Tdet and correction voltage Vdcdc are associated with each other.
  • FIG. 2 is a flowchart showing the operation of the digital block 101.
  • FIG. 3A is a diagram illustrating a polar modulation device 200 according to the second embodiment of the present invention.
  • FIG. 3B is a diagram illustrating a polar modulation device 200b according to the second embodiment of the present invention.
  • FIG. 3C is a diagram illustrating an example of an LUT in which the temperature information Tdet and the correction coefficient Gdcdc are associated with each other.
  • FIG. 4A shows a polar modulation device 300 according to the third embodiment of the present invention.
  • FIG. 4B is a diagram illustrating a polar modulation device 300b according to the third embodiment of the present invention.
  • FIG. 4C is a diagram illustrating a polar modulation device 300c according to the third embodiment of the present invention.
  • FIG. 5A is a diagram illustrating an example of a loss that occurs in the duplexer 600.
  • FIG. 5B is a diagram for explaining the cause of the characteristic variation that may occur in each part of the polar modulation system.
  • FIG. 6A is a diagram illustrating an example of the temperature coefficient stored in the LUT 302.
  • FIG. 6B is a diagram illustrating an example of the temperature coefficient stored in the LUT 302.
  • FIG. 6C is a diagram illustrating an example of the temperature coefficient stored in the LUT 302.
  • FIG. 7A is a diagram illustrating a configuration of a polar modulation system including a polar modulation device 400 according to the fourth embodiment of the present invention.
  • FIG. 7B is a diagram illustrating a configuration of a polar modulation system including the polar modulation device 400b according to the fourth embodiment of the present invention.
  • FIG. 8A is a diagram illustrating an example of the temperature coefficient stored in the LUT 402.
  • FIG. 8B is a diagram illustrating an example of the temperature coefficient stored in the LUT 402.
  • FIG. 9 is a diagram illustrating a polar modulator 900 which is an example of a conventional polar modulator.
  • FIG. 10A is a diagram showing the relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 at +25 degC and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911.
  • FIG. 10B is a diagram showing the relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 at +125 degC and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911.
  • FIG. 10A is a diagram showing the relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 at +25 degC and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911.
  • FIG. 10C is a diagram showing the relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 at ⁇ 25 degC and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911.
  • FIG. 10D is a diagram illustrating a relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911 when offset control is performed using a multiplier.
  • FIG. 1A is a diagram illustrating a polar modulation device 100 according to a first embodiment of the present invention.
  • a polar modulation device 100 includes a digital block 101, first to third DACs 102 to 104, an OFDAC 105, an adder 106, a phase modulator 107, a DC / DC 108, a first and a second.
  • LDOs 109 and 110, a power amplifier (PA) 111, and a temperature sensor 112 are provided.
  • the digital block 101 includes a signal generation unit 1011, an offset control unit 1012, and a DC / DC output control unit 1013.
  • the signal generation unit 1011 generates an amplitude signal and a phase signal.
  • the offset control unit 1012 calculates an offset value based on the temperature information Tdet notified from the temperature sensor 112.
  • the temperature sensor 112 measures the temperature of the power amplifier 111 or the ambient temperature, and notifies the digital block 101 of the measured temperature information Tdet.
  • the amplitude signal generated by the signal generation unit 1011 is input to the adder 106 via the second DAC 103.
  • the offset value calculated by the offset control unit 1012 is added to the amplitude signal A (t) output from the second DAC 103. Note that the offset value is input to the adder 106 via the OFDAC 105.
  • the amplitude signal A (t) ′ added with the offset value is input to the first and second LDOs 109 and 110.
  • the adder 106 is arranged between the digital block 101 and the second DAC 103, and adds an offset value to the amplitude signal A (t) in the digital domain. You may do.
  • the first and second LDOs 109 and 110 supply the amplitude signal voltage Vcc controlled according to the input amplitude signal A (t) ′ to the power amplifier 111.
  • phase signal generated by the signal generation unit 1011 is input to the phase modulator 107 via the third DAC 104.
  • the phase modulator 107 performs phase modulation on the phase signal and outputs a phase modulation signal.
  • the power amplifier 111 amplifies the phase modulation signal with the amplitude signal voltage Vcc supplied from the first and second LDOs 109 and 110 and outputs the amplified signal as a modulation signal.
  • the signal amplified by the power amplifier 111 is output as a transmission signal from the output terminal.
  • the signal A (t) is shifted to A (t) ′.
  • the basic operation of the polar modulation device 100 according to the first embodiment of the present invention described so far is the same as that of the conventional polar modulation device 900 shown in FIG. 9, but the first embodiment of the present invention.
  • the power supply voltage Vback supplied from the DC / DC 108 to the first and second LDOs 109 and 110 is not constant.
  • the power supply voltage Vback supplied from the DC / DC 108 to the first and second LDOs 109 and 110 will be described below.
  • the digital block 101 further includes a DC / DC output control unit 1013 in addition to the signal generation unit 1011 and the offset control unit 1012.
  • FIG. 2 is a flowchart showing the operation of the digital block 101.
  • the digital block 101 includes a temperature information acquisition command step S201, a temperature information acquisition step S202, an offset value calculation step S203, an offset value output step S204, a correction voltage calculation step S205, and a correction voltage output step S206. And execute.
  • the control unit (not shown) of the digital block 101 acquires the temperature information Tdet from the temperature sensor 112 to the offset control unit 1012 and the DC / DC output control unit 1013. Instruct.
  • the offset control unit 1012 and the DC / DC output control unit 1013 acquire the temperature information Tdet notified from the temperature sensor 112 based on the instruction from the control unit in the temperature information acquisition command step S201. .
  • the offset control unit 1012 calculates an offset value to be added to the amplitude signal generated by the signal generation unit 1011 based on the temperature information Tdet notified from the temperature sensor 112.
  • the offset value is calculated as a value that causes the amplitude signal generated by the signal generation unit 1011 to be shifted by +1 mV every +1 degC.
  • the The polar modulation device 100 may hold in advance a lookup table (LUT) in which the temperature information Tdet is associated with the offset value (see, for example, FIG. 1C). Further, in the LUT, instead of the temperature information Tdet, a difference (Tdet ⁇ Tdet0) between the temperature information Tdet and the reference value Tdet0 of the temperature information may be used.
  • the offset control unit 1012 outputs the offset value calculated in the offset value calculation step S203 to the OFDAC 105.
  • the DC / DC output control unit 1013 calculates the correction voltage Vdcdc based on the temperature information Tdet notified from the temperature sensor 112.
  • the correction voltage Vdcdc is calculated by the following (Equation 2) using the temperature coefficient k (V / degC), the temperature information Tdet (degC), and the reference value Tdet0 (degC) of the temperature information.
  • the reference value of the temperature information may be described as a reference temperature.
  • Vdcdc k ⁇ (Tdet ⁇ Tdet0) (Equation 2)
  • the DC / DC output control unit 1013 outputs a control signal corresponding to the correction voltage Vdcdc calculated in the correction voltage calculation step S205 to the first DAC 102.
  • a control signal corresponding to the correction voltage Vdcdc is input to the DC / DC 108 via the first DAC 102.
  • the DC / DC 108 supplies the power supply voltage Vback to the first and second LDOs 109 and 110 based on the peak voltage Vpeak0 at the temperature information reference value Tdet0 and the correction voltage Vdcdc.
  • the peak voltage Vpeak of (Equation 1) described above is calculated by the following (Equation 3).
  • Vpeak Vpeak0 + Vdcdc (Equation 3)
  • the peak voltage Vpeak0 VpeakA (0.9 V) at the reference value Tdet0 of the temperature information.
  • Vdcdc 0V.
  • the peak voltage Vpeak in (Expression 1) is set to the above-described peak voltage Vpeak0 (0.9V). Therefore, from (Equation 1), from the peak voltage Vpeak (0.9 V) and the headroom voltage Vhr (0.2 V), the DC / DC 108 supplies the power supply voltage Vback (1.1 V) to the first and second LDOs 109 and 110.
  • Vdcdc + 0.1V.
  • the peak voltage Vpeak in (Equation 1) is set to 1.0 V from the above-described peak voltage Vpeak0 (0.9 V) + Vdcdc (0.1 V). Therefore, from (Equation 1), from the peak voltage Vpeak (1.0 V) and the headroom voltage Vhr (0.2 V), the DC / DC 108 supplies the power supply voltage Vback (1.2 V) to the first and second LDOs 109 and 110.
  • Vdcdc ⁇ 0.05V.
  • the DC / DC output control unit 1013 changes the power supply voltage Vback that the DC / DC 108 supplies to the first and second LDOs 109 and 110 according to the change in the temperature of the power amplifier 111 or the ambient temperature.
  • the DC / DC output control unit 1013 calculates the correction voltage Vdcdc according to the above-described (Equation 2), but the DC / DC output control unit 1013 includes the temperature information Tdet and the correction voltage.
  • a lookup table (LUT) associated with Vdcdc may be held (see, for example, FIG. 1D). Further, in the LUT, instead of the temperature information Tdet, a difference (Tdet ⁇ Tdet0) between the temperature information Tdet and the reference value Tdet0 of the temperature information may be used.
  • the offset control unit 1012 performs offset control on the amplitude signal simultaneously with the change in the temperature of the power amplifier or the ambient temperature.
  • the DC / DC output control unit 1013 controls the correction voltage Vdcdc, and the DC / DC 108 variably controls the power supply voltage Vback supplied to the first and second LDOs 109 and 110, thereby ensuring good modulation characteristics. In addition, highly efficient operation can be performed.
  • the power amplifier 111 may be a heterojunction bipolar transistor (HBT) having a configuration in which different types of semiconductor layers are vertically stacked. Since the HBT uses a junction (heterojunction) in which a plurality of electrodes are arranged in the vertical direction and different semiconductor layers are stacked, the arrangement area is small compared to a bipolar transistor having a normal structure. Therefore, the power amplifier 111 can prevent output distortion of the power amplifier caused by heat while reducing the circuit scale. For this reason, the polar modulation device 100 according to the first embodiment of the present invention can ensure better modulation characteristics. In addition, since the HTB has a configuration in which a collector electrode, a base electrode, and an emitter electrode are stacked in the vertical direction, the arrangement area can be reduced, and the cost can be reduced by reducing the size of an expensive GaAs substrate.
  • HBT heterojunction bipolar transistor
  • the correction voltage Vdcdc is the same as the offset value.
  • the correction voltage Vdcdc is not necessarily limited to this, and the correction voltage Vdcdc may be different from the offset value.
  • FIG. 3A is a diagram illustrating a polar modulation device 200 according to the second embodiment of the present invention.
  • the polar modulation device 200 includes a digital block 101, first to third DACs 102 to 104, an OFDAC 105, an adder 106, a phase modulator 107, a DC / DC 108, a first and a second. LDOs 109 and 110, a power amplifier 111, a temperature sensor 112, and a multiplier 201 are provided.
  • the digital block 101 includes a signal generation unit 1011, an offset control unit 1012, and a DC / DC output control unit 1013.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the adder 106 is arranged between the multiplier 201 and the second DAC 103, and adds an offset value to the amplitude signal A (t) in the digital domain. It may be. Although not shown, both the adder 106 and the multiplier 201 may be arranged in the analog region.
  • the polar modulation device 200 according to the second embodiment of the present invention is different from the polar modulation device 100 according to the first embodiment in that a multiplier 201 is provided.
  • the offset control unit 1012 adjusts the amplitude signal using the multiplier 201 when the characteristic of the power amplifier 111 deviates from the standard characteristic at a specific temperature. Thereby, the characteristic of the power amplifier 111 is corrected.
  • the DC / DC output control unit 1013 calculates a correction coefficient Gdcdc, which is an adjustment value from the standard characteristics, and outputs it to the first DAC 102.
  • the correction coefficient Gdcdc is input to the DC / DC 108 via the first DAC 102.
  • the DC / DC 108 is based on the peak voltage Vpeak0 of the amplitude signal in the standard characteristic and the correction coefficient Gdcdc that is an adjustment value from the standard characteristic when the characteristic of the power amplifier 111 deviates from the standard characteristic at the specific temperature.
  • the power supply voltage Vback is supplied to the first and second LDOs 109 and 110.
  • the correction coefficient Gdcdc is calculated by the following (Equation 2) ′ using the temperature coefficient j (degC ⁇ 1 ), the temperature information Tdet (degC), and the reference value Tdet0 (degC) of the temperature information.
  • the Gdcdc j ⁇ (Tdet ⁇ Tdet0) (Equation 2) ′
  • the DC / DC 108 supplies the power supply voltage Vback to the first and second LDOs 109 and 110 based on the peak voltage Vpeak0 at the temperature information reference value Tdet0 and the correction coefficient Gdcdc.
  • the peak voltage Vpeak of (Equation 1) described above is calculated by the following (Equation 3) ′.
  • Vpeak Vpeak0 ⁇ Gdcdc (Equation 3) ′
  • the DC / DC output control unit 1013 causes the DC / DC 108 to change the first and second in accordance with the specific characteristic.
  • the power supply voltage Vback supplied to the LDOs 109 and 110 is changed.
  • the polar modulation device 200 may hold in advance a lookup table (LUT) in which the temperature information Tdet and the correction coefficient Gdcdc are associated (see, for example, FIG. 3C). Further, in the LUT, instead of the temperature information Tdet, a difference (Tdet ⁇ Tdet0) between the temperature information Tdet and the reference value Tdet0 of the temperature information may be used.
  • the offset control unit 1012 multiplies the amplitude signal with respect to the amplitude signal according to the change in the temperature of the power amplifier 111 or the ambient temperature.
  • the DC / DC output control unit 1013 controls the correction coefficient Gdcdc, and the DC / DC 108 variably controls the power supply voltage Vback supplied to the first and second LDOs 109 and 110. Good modulation characteristics can be ensured and highly efficient operation can be performed.
  • the polar modulation device 200 according to the second embodiment of the present invention can also be used for process adjustment in the manufacturing stage.
  • the polar modulation device used for the process adjustment does not variably control the power supply voltage Vback supplied from the DC / DC 108 to the first and second LDOs 109 and 110 in accordance with a change in the temperature of the power amplifier 111 or the ambient temperature.
  • the power supply voltage Vback supplied from the DC / DC 108 to the first and second LDOs 109 and 110 may be adjusted in advance according to the characteristics (individual variation) of the power amplifier 111.
  • FIG. 4A is a diagram illustrating a configuration of a polar modulation system including a polar modulation device 300 according to the third embodiment of the present invention.
  • polar modulator 300 is connected to antenna 602 via duplexer 600 and antenna switch (601) 601.
  • a temperature sensor 603 is installed in the vicinity of the duplexer 600 and the antenna SW 601.
  • FIG. 5A is a diagram illustrating an example of a loss that occurs in the duplexer 600.
  • the loss generated in the duplexer 600 increases, and the rate of increase in loss also changes when the temperature is +25 degC.
  • the antenna SW601 also has a similar tendency of loss. For this reason, when the loss increases due to the temperature rise, the power is lowered, and there is a possibility that the specification lower limit such as 3GPP may not be satisfied. Conversely, there is a risk that the power will not satisfy the upper limit of the specification at low temperatures.
  • FIG. 5B is a diagram for explaining the cause of temperature variation occurring in each part of the polar modulation system.
  • Vback output from DC / DC 108 may include a DC / DC offset error eO DCDC .
  • the headroom voltage Vhr may include a headroom voltage offset error eOhr.
  • the Vcc output from the LDOs 109 and 110 may include an LDO gain error eG LDO and an LDO offset error eO LDO .
  • the output Vout of the power amplifier 111 may include a gain error eG PA of the power amplifier and an offset error eO PA of the power amplifier.
  • the output Vout2 of the duplexer 600 and the antenna SW601 are likely to include the gain errors eG SD duplexer and antenna SW.
  • the third embodiment describes a configuration that compensates for the gain error eG PA of the power amplifier, the offset error eO PA of the power amplifier, and the gain error eG SD of the duplexer and the antenna SW.
  • the polar modulation device 300 corrects the temperature characteristics of the duplexer 600 and the antenna SW 601 in addition to the temperature characteristics of the power amplifying unit 111 with the following configuration, and performs power fluctuation at the end of the antenna 602. To prevent.
  • the polar modulation device 300 includes a digital block 301, first to third DACs 102 to 104, an OFDAC 105, an adder 106, a phase modulator 107, a DC / DC 108, first and second LDOs 109 and 110, , A power amplifier 111, a temperature sensor 112, a multiplier 201, and a lookup table (LUT) 302.
  • the digital block 301 includes a signal generation unit 1011, an offset control unit 3012, and a DC / DC output control unit 3013.
  • a signal generation unit 1011 an offset control unit 3012
  • a DC / DC output control unit 3013 a DC / DC output control unit 3013.
  • the adder 106 is disposed between the multiplier 201 and the second DAC 103, and adds an offset value to the amplitude signal A (t) in the digital domain. It may be. Although not shown, both the adder 106 and the multiplier 201 may be arranged in the analog region.
  • the signal generation unit 1011 generates an amplitude signal and a phase signal.
  • the offset control unit 3012 adjusts the amplitude signal using the multiplier 201 and the adder 106 when the characteristic of the amplitude level Vout2 of the modulation signal from the antenna 602 deviates from the standard characteristic at the specific temperature. Specifically, the offset control unit 3012, based on the temperature information Tdsw notified from the temperature sensor 603 in addition to the temperature information Tdet notified from the temperature sensor 112, a multiplication coefficient a set in the multiplier 201, An offset value b set in the adder 106 is calculated.
  • the temperature sensor 112 measures the temperature of the power amplifier 111 or the ambient temperature, and notifies the digital block 301 of the measured temperature information Tdet.
  • the temperature sensor 603 measures the temperature of the duplexer 600 and the antenna SW 601 or the ambient temperature, and notifies the digital block 301 of the measured temperature information Tdet_SD. It is assumed that there is almost no difference in temperature between duplexer 600 and antenna SW601.
  • the reference value of the temperature information is room temperature
  • the amplitude level Vout2 of the modulation signal from the antenna 602 is obtained by using the attenuation factor n in the duplexer 600 and the antenna SW601 and the amplitude level Vout of the modulation signal that is the output of the power amplifier 111 (Equation 4). Is represented by In addition, when the power amplifier is used in the saturation region, the relationship of the amplitude level Vout of the output modulation signal with respect to the power supply voltage is expressed by using only the zero-order component (offset O PA ) and the first-order component (amplification factor m).
  • a (t) ′ is expressed by (Equation 8) in consideration of temperature changes of the power amplifier 111, the duplexer 600, and the antenna SW601.
  • the coefficients (correction values) cG PA , cG SD , and cO PA used in (Equation 8) are expressed by (Equation 9) to (Equation 11).
  • C GPA is a gain compensation coefficient of the power amplifier 111 due to temperature variation of the power amplifier 111.
  • C GSD is a compensation coefficient of the gain of the duplexer 600 and the antenna SW601 due to the temperature variation of the duplexer 600 and the antenna SW601.
  • C OPA is a compensation coefficient for offset of the power amplifier 111 caused by temperature variation of the power amplifier 111.
  • a (t) ′ cG PA ⁇ cG SD ⁇ A (t) + cO PA (Equation 8)
  • the LUT 302 stores in advance a compensation coefficient C GPA for the gain of the power amplifier 111, a temperature compensation coefficient C OPA for the offset of the power amplifier 111, and a compensation coefficient C GSD for the gain of the duplexer 600 and the antenna SW601 (for example, FIG. 6A).
  • the compensation coefficients C GPA , C OPA , and C GSD may change according to the temperature information (see, for example, FIG. 6B). This is because, as shown in FIG. 5, the rate of increase in loss generated in the duplexer 600, the antenna SW601, and the like changes according to the temperature. Referring to FIG.
  • offset control unit 3012 uses compensation coefficients C GPA1 and C OPA1 when temperature information Tdet_SD from temperature sensor 112 is below room temperature, and temperature information Tdet_SD from temperature sensor 603 is below room temperature. Sometimes the compensation factor C GSD1 is used.
  • the temperature information Tdet_SD from the temperature sensor 112 using a compensation coefficient C GPA2, C OPA2 at room temperature or higher temperature information Tdet_SD from the temperature sensor 603 uses the compensation factor C GSD2 at room temperature or higher.
  • Vback Gdcdc ⁇ Vpeak0 + Vdcdc + Vhr (Equation 14)
  • the DC / DC output control unit 3013 when the characteristic of the amplitude level Vout2 of the modulation signal from the antenna 602 is a specific characteristic that deviates from the standard characteristic, the correction coefficient Gdcdc that is an adjustment value from the standard characteristic, and the correction voltage Vdcdc. Is calculated and output to the first DAC 102.
  • the correction coefficient Gdcdc and the correction voltage Vdcdc are calculated from (Equation 15) and (Equation 16). From (Equation 12) and (Equation 13), the correction coefficient Gdcdc and the correction voltage Vdcdc are expressed as (Equation 17) and (Equation 18) using the multiplication coefficient a and the offset value b.
  • Gdcdc cGPA ⁇ cGSD (Equation 15)
  • Vdcdc h ⁇ cOPA (Expression 16)
  • Gdcdc a (Expression 17)
  • Vdcdc h ⁇ b (Equation 18)
  • a polar modulation system is used.
  • the offset control unit 3012 uses the multiplier based on the temperature information Tdet notified from the temperature sensor 112, the temperature information Tdet_D notified from the temperature sensor 6031, and the temperature information Tdet_S notified from the temperature sensor 6032.
  • LUT 302 includes a compensation coefficient C GPA in the gain of the power amplifier 111, a compensation coefficient C GSD_D gain duplexer 600 may also store the compensation coefficients C GSD_S gain antenna SW601 advance (for example, FIG. 6C).
  • the polar modulation device 300 sets the multiplication coefficient a in the multiplier 201 when the temperature of the power amplifier 111, the duplexer 600, and the antenna SW601 changes, and the adder 106
  • the offset value b in addition to the temperature characteristics of the power amplifier 111, the temperature characteristics of the duplexer 600 and the antenna SW601 can be corrected, and power fluctuation at the end of the antenna 602 can be prevented.
  • the duplexer and antenna SW gain error eG SD , DC / DC offset error eO DCDC , headroom voltage offset error eOhr, and LDO gain error described with reference to FIG. 5B are used.
  • This configuration compensates for an eG LDO , an LDO offset error eO LDO , a power amplifier gain error eG PA, and a power amplifier offset error eO PA .
  • a configuration in which the polar modulation device 400 compensates for all these errors will be described. However, a configuration in which one of these errors or a combination of a plurality of these errors is compensated may be employed.
  • FIG. 7A is a diagram illustrating a configuration of a polar modulation system including a polar modulation device 400 according to the fourth embodiment of the present invention.
  • a polar modulation device 400 includes a digital block 401, first to third DACs 102 to 104, an OFDAC 105, an adder 106, a phase modulator 107, a DC / DC 108, a first and a second. LDOs 109 and 110, a power amplifier 111, a temperature sensor 112, a temperature sensor 403, a multiplier 201, and an LUT 402 are provided.
  • the digital block 401 includes a signal generation unit 1011, an offset control unit 4012, and a DC / DC output control unit 3013.
  • the same components as those in the third embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the adder 106 is disposed between the multiplier 201 and the second DAC 103, and adds an offset value to the amplitude signal A (t) in the digital domain. It may be. Although not shown, both the adder 106 and the multiplier 201 may be arranged in the analog region.
  • the polar modulation device 400 further includes a temperature sensor 403 as compared with the third embodiment.
  • the temperature sensor 403 measures the temperature of the first and second LDOs 109 and 110 or the ambient temperature, and notifies the digital block 401 of the measured temperature information Tdet_LDO. It is assumed that there is almost no difference in temperature between the first LDO 109 and the second LDO 110.
  • the signal generation unit 1011 generates an amplitude signal and a phase signal.
  • the offset control unit 4012 adjusts the amplitude signal using the multiplier 201 and the adder 106 when the characteristic of the amplitude level Vout2 of the modulation signal from the antenna 602 deviates from the standard characteristic at the specific temperature. Specifically, the offset control unit 4012 performs multiplication based on Tdet_LDO notified from the temperature sensor 403 in addition to temperature information Tdet notified from the temperature sensor 112 and temperature information Tdet_SD notified from the temperature sensor 603. The multiplication coefficient a set in the unit 201 and the offset value b set in the adder 106 are calculated.
  • C GLDO is a gain compensation coefficient of the LDOs 109 and 110 caused by temperature variations of the LDOs 109 and 110.
  • C OLDO is a compensation coefficient for offset of the LDOs 109 and 110 caused by temperature variations of the LDOs 109 and 110.
  • a (t) ′ cG PA ⁇ cG SD ⁇ cG LDO ⁇ A (t) + cO PA + cO LDO (Equation 19)
  • the LUT 402 includes a gain compensation coefficient C GPA for the power amplifier 111, a temperature compensation coefficient C OPA for the offset of the power amplifier 111, a gain compensation coefficient C GSD for the duplexer 600 and the antenna SW 601, and gain compensation for the LDOs 109 and 110. and the coefficient C GLDO, previously stores a compensation factor C OLDO offset LDO109,110 (e.g., see FIG. 8A). Note that the compensation coefficients C GPA , C OPA , C GSD , C GLDO , and C OLDO may change according to the temperature information (see, for example, FIG. 8B). This is because, as shown in FIG.
  • offset control unit 4012 uses compensation coefficients C GPA1 and C OPA1 when temperature information Tdet from temperature sensor 112 is below room temperature, and temperature information Tdet_SD from temperature sensor 603 is below room temperature. Sometimes the compensation coefficient C GSD1 is used, and when the temperature information Tdet_LDO from the temperature sensor 403 is less than room temperature, the compensation coefficients C GLDO1 and C OLDDO1 are used.
  • the temperature information Tdet will use the compensation factor C GPA2, C OPA2 at least room temperature from the temperature sensor 112, temperature information Tdet_SD from the temperature sensor 603 using a compensation coefficient C GSD2 at room temperature or higher temperatures
  • the compensation coefficients CGLDO2 and COLDO2 are used.
  • Vback Gdcdc ⁇ Vpeak0 + Vdcdc + Vhr (Equation 24)
  • the DC / DC output control unit 4013 obtains the correction coefficient Gdcdc and the correction voltage Vdcdc, which are adjustment values from the standard characteristic, when the characteristic of the amplitude level Vout2 of the modulation signal from the antenna 602 is out of the standard characteristic. Calculate and output to the first DAC 102.
  • the correction coefficient Gdcdc and the correction voltage Vdcdc can be calculated from (Equation 25) and (Equation 26) as described in the third embodiment.
  • the offset value cO DCDC of the DC / DC 108 is expressed by (Expression 27) using the DC / DC offset error eO DCDC .
  • the offset value cO hr of the headroom voltage is expressed by (Equation 28) using the offset error eOhr of the headroom voltage.
  • cO DCDC ⁇ eO DCDC (Equation 27)
  • cO hr ⁇ eOhr (Equation 28)
  • the polar modulation device 400 corrects the temperature characteristics of the LDOs 109 and 110 in addition to the temperature characteristics of the power amplifying unit 111 and the temperature characteristics of the duplexer 600 and the antenna SW 601, and the antenna 602. The power fluctuation at the end can be prevented.
  • the present invention is useful for a power control method and a power control device for a radio transmitter using a polar modulation device, and particularly for a device using a bipolar transistor that transmits and receives a high-frequency signal (for example, a mobile phone terminal). It can be used, and is suitable for the case where low distortion and high efficiency operation are desired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

Disclosed is a polar modulator that performs high efficiency operations and secures excellent modulating characteristics in response to changes in ambient temperature or the temperature of a power amplifier. A signal generator generates a phase signal and an amplitude signal from an input signal. An LDO linear regulator outputs an amplitude signal voltage on the basis of the amplitude signal. A phase modulator phase-modulates the phase signal. The power amplifier amplitude-modulates the phase-modulated phase signal using the amplitude signal voltage supplied by the LDO linear regulator, generating a modulated signal. A temperature sensor measures the ambient temperature or the temperature of the power generator, and outputs the measured temperature as temperature information. Based on the temperature information, a DC/DC output controller outputs a control signal that controls the power supply voltage that drives the LDO linear regulator. A DC/DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.

Description

ポーラ変調器Polar modulator
 本発明は、ポーラ変調回路を用いた無線送信機の電源制御方法及び電源制御装置に関し、より特定的には、電力増幅器の温度もしくは周辺温度の変化に応じて、良好な変調特性を確保し、かつ高効率動作を行うポーラ変調装置に関する。 The present invention relates to a power control method and a power control device for a wireless transmitter using a polar modulation circuit, and more specifically, according to changes in the temperature of the power amplifier or the ambient temperature, to ensure good modulation characteristics, The present invention also relates to a polar modulation device that performs high-efficiency operation.
 携帯電話や無線LAN等の通信機器は、電力増幅器の温度もしくは周辺温度の変化や個体バラツキに関係なく、送信信号の精度を確保しつつ、かつ低消費電力で動作することが求められている。そして、このような通信機器には、小型かつ高効率に動作し、線形性の高い送信信号を出力する送信回路が用いられる。以下に、従来の送信回路について説明する。 Communication devices such as mobile phones and wireless LANs are required to operate with low power consumption while ensuring the accuracy of transmission signals, regardless of changes in the temperature or ambient temperature of the power amplifier or individual variations. In such a communication device, a transmission circuit that operates with a small size and high efficiency and outputs a highly linear transmission signal is used. A conventional transmission circuit will be described below.
 従来の送信回路としては、例えば、直交変調等の変調方式を利用して、送信信号を生成する送信回路(以下、直交変調回路と称す)があった。さらに、直交変調回路よりも小型かつ高効率に動作する従来の送信回路としては、ポーラ変調回路が知られている。このポーラ変調回路において、送信信号の精度を確保しつつ、かつ低消費電力で動作するものとして、例えば、特許文献1及び2が開示されている。 As a conventional transmission circuit, for example, there has been a transmission circuit (hereinafter referred to as an orthogonal modulation circuit) that generates a transmission signal using a modulation method such as orthogonal modulation. Furthermore, a polar modulation circuit is known as a conventional transmission circuit that operates smaller and more efficiently than an orthogonal modulation circuit. In this polar modulation circuit, for example, Patent Documents 1 and 2 are disclosed as those that operate with low power consumption while ensuring the accuracy of a transmission signal.
 図9は、従来のポーラ変調装置の一例であるポーラ変調装置900を示す図である。図9において、ポーラ変調装置900は、デジタルブロック901と、第1~3のDAC902~904と、オフセットDAC(以下、OFDACと称す)905と、加算器906と、位相変調器907と、DC/DCコンバータ(以下、DC/DCと称す)908と、第1及び第2のLDOリニアレギュレータ(以下、LDOと称す)909及び910と、電力増幅器911と、温度センサ912とを備える。なお、デジタルブロック901は、信号生成部9011と、オフセット制御部9012とを含む。 FIG. 9 is a diagram showing a polar modulation device 900 which is an example of a conventional polar modulation device. 9, a polar modulation device 900 includes a digital block 901, first to third DACs 902 to 904, an offset DAC (hereinafter referred to as OFDAC) 905, an adder 906, a phase modulator 907, a DC / DC A DC converter (hereinafter referred to as DC / DC) 908, first and second LDO linear regulators (hereinafter referred to as LDO) 909 and 910, a power amplifier 911, and a temperature sensor 912 are provided. The digital block 901 includes a signal generation unit 9011 and an offset control unit 9012.
 デジタルブロック901において、信号生成部9011は、振幅信号及び位相信号を生成する。オフセット制御部9012は、温度センサ912から通知された温度情報Tdetに基づいて、オフセット値を算出する。ここで、温度センサ912は、電力増幅器911の温度もしくは周辺温度を測定し、測定した温度情報Tdetをデジタルブロック901に通知している。 In the digital block 901, the signal generation unit 9011 generates an amplitude signal and a phase signal. The offset control unit 9012 calculates an offset value based on the temperature information Tdet notified from the temperature sensor 912. Here, the temperature sensor 912 measures the temperature of the power amplifier 911 or the ambient temperature, and notifies the digital block 901 of the measured temperature information Tdet.
 信号生成部9011によって生成された振幅信号は、第2のDAC903を介して、加算器906に入力される。加算器906において、第2のDAC903から出力された振幅信号A(t)には、オフセット制御部9012によって算出されたオフセット値が加算される。なお、オフセット値は、OFDAC905を介して、加算器906に入力される。加算器906において、オフセット値が加算された振幅信号A(t)'は、第1及び第2のLDO909及び910に入力される。 The amplitude signal generated by the signal generation unit 9011 is input to the adder 906 via the second DAC 903. In the adder 906, the offset value calculated by the offset control unit 9012 is added to the amplitude signal A (t) output from the second DAC 903. The offset value is input to the adder 906 via the OFDAC 905. In the adder 906, the amplitude signal A (t) ′ to which the offset value has been added is input to the first and second LDOs 909 and 910.
 第1及び第2のLDO909及び910は、入力された振幅信号A(t)'に応じて制御された振幅信号電圧Vccを電力増幅器911に供給する。典型的には、第1及び第2のLDO909及び910は、入力された振幅信号A(t)'の大きさに比例した振幅信号電圧Vccを電力増幅器911に供給する。 The first and second LDOs 909 and 910 supply the amplitude signal voltage Vcc controlled according to the input amplitude signal A (t) ′ to the power amplifier 911. Typically, the first and second LDOs 909 and 910 supply to the power amplifier 911 an amplitude signal voltage Vcc proportional to the magnitude of the input amplitude signal A (t) ′.
 信号生成部9011が生成した位相信号は、第3のDAC904を介して位相変調器907に入力される。位相変調器907は、位相信号を位相変調して、位相変調信号を出力する。電力増幅器911は、位相変調信号を第1及び第2のLDO909及び910から供給された振幅信号電圧Vccで増幅し、変調信号として出力する。電力増幅器911で増幅された信号は、出力端子から送信信号として出力される。なお、電力増幅器911の出力である変調信号の振幅レベルをVoutと記す。 The phase signal generated by the signal generation unit 9011 is input to the phase modulator 907 via the third DAC 904. The phase modulator 907 performs phase modulation on the phase signal and outputs a phase modulation signal. The power amplifier 911 amplifies the phase modulation signal with the amplitude signal voltage Vcc supplied from the first and second LDOs 909 and 910 and outputs the amplified signal as a modulation signal. The signal amplified by the power amplifier 911 is output as a transmission signal from the output terminal. The amplitude level of the modulation signal that is the output of the power amplifier 911 is denoted as Vout.
 次に、第1及び第2のLDO909及び910から電力増幅器911に供給される振幅信号電圧Vccと、電力増幅器911の出力である変調信号の振幅レベルVoutとの関係を説明する。図10Aは、+25degCにおける電力増幅器911に供給される振幅信号電圧Vccと電力増幅器911の出力である変調信号の振幅レベルVoutとの関係を示す図である。ここでは、+25degCを基準とするため、信号生成部9011によって生成された振幅信号には、オフセット値が加算されないものとする。すなわち、A(t)'=A(t)である。上述したように、第1及び第2のLDO909及び910は、入力された振幅信号A(t)'に応じて電力増幅器911に供給する振幅信号電圧Vccを制御する。このため、第2のDAC903から出力された振幅信号A(t)に応じて、電力増幅器911に供給される振幅信号電圧Vccが制御される。 Next, the relationship between the amplitude signal voltage Vcc supplied from the first and second LDOs 909 and 910 to the power amplifier 911 and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911 will be described. FIG. 10A is a diagram showing the relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 at +25 degC and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911. Here, since +25 degC is used as a reference, an offset value is not added to the amplitude signal generated by the signal generation unit 9011. That is, A (t) ′ = A (t). As described above, the first and second LDOs 909 and 910 control the amplitude signal voltage Vcc supplied to the power amplifier 911 according to the input amplitude signal A (t) ′. Therefore, the amplitude signal voltage Vcc supplied to the power amplifier 911 is controlled according to the amplitude signal A (t) output from the second DAC 903.
 図10Bは、+125degCにおける電力増幅器911に供給される振幅信号電圧Vccと電力増幅器911の出力である変調信号の振幅レベルVoutとの関係を示す図である。ここでは、+125degCであるため、信号生成部9011によって生成された振幅信号は、オフセット制御部9012によって算出されたオフセット値が加算される。具体的には、図10Bに示す振幅信号A(t)’は、基準温度である+25degCにおける振幅信号A(t)に対して、+1degC毎に+1mVシフトしている。つまり、オフセット値が加算された振幅信号A(t)'は、第2のDAC903から出力された振幅信号A(t)+0.1Vとなる。第1及び第2のLDO909及び910は、入力された振幅信号A(t)'に応じて、電力増幅器911に供給する振幅信号電圧Vccを制御している。これにより、電力増幅器911は、+125degCにおける変調信号の振幅レベルVoutについて、+25degCにおける変調信号の振幅レベルVoutと同様の変調特性を確保することができる。 FIG. 10B is a diagram showing the relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 at +125 degC and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911. Here, since it is +125 degC, the offset value calculated by the offset control unit 9012 is added to the amplitude signal generated by the signal generation unit 9011. Specifically, the amplitude signal A (t) ′ shown in FIG. 10B is shifted by +1 mV every +1 degC with respect to the amplitude signal A (t) at +25 degC, which is the reference temperature. That is, the amplitude signal A (t) ′ to which the offset value is added becomes the amplitude signal A (t) + 0.1V output from the second DAC 903. The first and second LDOs 909 and 910 control the amplitude signal voltage Vcc supplied to the power amplifier 911 according to the input amplitude signal A (t) ′. Thereby, the power amplifier 911 can ensure the same modulation characteristic as the amplitude level Vout of the modulation signal at +25 degC with respect to the amplitude level Vout of the modulation signal at +125 degC.
 図10Cは、-25degCにおける電力増幅器911に供給される振幅信号電圧Vccと電力増幅器911の出力である変調信号の振幅レベルVoutとの関係を示す図である。ここでは、-25degCであるため、信号生成部9011によって生成された振幅信号は、オフセット制御部9012によって算出されたオフセット値が加算される。具体的には、図10Cに示す振幅信号A(t)’は、基準温度である+25degCにおける振幅信号A(t)に対して、-1degC毎に-1mVシフトしている。つまり、オフセット値が加算された振幅信号A(t)'は、第2のDAC903から出力された振幅信号A(t)-0.05Vとなる。第1及び第2のLDO909及び910は、入力された振幅信号A(t)'に応じて電力増幅器911に供給する振幅信号電圧Vccを制御している。これにより、電力増幅器911は、-25degCにおける変調信号の振幅レベルVoutについて、+25degCにおける変調信号の振幅レベルVoutと同様の変調特性を確保することができる。 FIG. 10C is a diagram showing the relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 at −25 degC and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911. Here, since it is −25 degC, the offset value calculated by the offset control unit 9012 is added to the amplitude signal generated by the signal generation unit 9011. Specifically, the amplitude signal A (t) ′ shown in FIG. 10C is shifted by −1 mV every −1 degC with respect to the amplitude signal A (t) at +25 degC which is the reference temperature. That is, the amplitude signal A (t) ′ to which the offset value is added becomes the amplitude signal A (t) −0.05 V output from the second DAC 903. The first and second LDOs 909 and 910 control the amplitude signal voltage Vcc supplied to the power amplifier 911 according to the input amplitude signal A (t) ′. As a result, the power amplifier 911 can ensure the same modulation characteristics as the amplitude level Vout of the modulation signal at +25 degC with respect to the amplitude level Vout of the modulation signal at −25 degC.
 このように、従来のポーラ変調装置900は、電力増幅器911の温度もしくは周辺温度が変化した場合であっても、信号生成部9011によって生成された振幅信号は、オフセット制御部9012によって温度変化に応じて算出されたオフセット値が加算される。つまり、図10B及び図10Cで示したように、振幅信号A(t)をA(t)'にシフトする。これにより、電力増幅器911は、変調信号の振幅レベルVoutの変調特性を確保し、送信信号の精度を確保している。 As described above, in the conventional polar modulation device 900, even when the temperature of the power amplifier 911 or the ambient temperature changes, the amplitude signal generated by the signal generation unit 9011 is changed according to the temperature change by the offset control unit 9012. The offset value calculated in the above is added. That is, as shown in FIGS. 10B and 10C, the amplitude signal A (t) is shifted to A (t) ′. Thereby, the power amplifier 911 ensures the modulation characteristics of the amplitude level Vout of the modulation signal and ensures the accuracy of the transmission signal.
 この際、DC/DC908は、第1及び第2のLDO909及び910に一定の電源電圧Vbuckを供給する。電源電圧Vbuckは、第1及び第2のLDO909及び910が電力増幅器911に供給する振幅信号電圧Vccに基づいて定める必要がある。第1及び第2のLDO909及び910が、振幅信号A(t)'に応じた振幅信号電圧Vccを電力増幅器911に供給できなければ、電力増幅器911の出力である変調信号の振幅レベルVoutの変調特性を確保できなくなるためである。 At this time, the DC / DC 908 supplies a constant power supply voltage Vback to the first and second LDOs 909 and 910. The power supply voltage Vback needs to be determined based on the amplitude signal voltage Vcc supplied from the first and second LDOs 909 and 910 to the power amplifier 911. If the first and second LDOs 909 and 910 cannot supply the amplitude signal voltage Vcc corresponding to the amplitude signal A (t) ′ to the power amplifier 911, the modulation of the amplitude level Vout of the modulation signal that is the output of the power amplifier 911 is performed. This is because the characteristics cannot be secured.
 従って、電源電圧Vbuckは、電力増幅器911の出力である変調信号の振幅レベルVoutの変調特性を確保するために、振幅信号のピーク電圧Vpeak及びヘッドルーム電圧Vhrを用いて、以下の(数1)に基づいて定められる。ヘッドルーム電圧Vhrは、第1及び第2のLDO909及び910が電力増幅器911に供給する振幅信号電圧Vccが電源電圧Vbuckに近づくことによって、第1及び第2のLDO909及び910が飽和して、電力増幅器911の出力である変調信号の振幅レベルVoutの変調特性が劣化することを防ぐために設定される。
  Vbuck=Vpeak+Vhr・・・(数1)
Accordingly, the power supply voltage Vback uses the peak voltage Vpeak and the headroom voltage Vhr of the amplitude signal to secure the modulation characteristic of the amplitude level Vout of the modulation signal that is the output of the power amplifier 911. It is determined based on. The headroom voltage Vhr is obtained by saturating the first and second LDOs 909 and 910 when the amplitude signal voltage Vcc supplied to the power amplifier 911 by the first and second LDOs 909 and 910 approaches the power supply voltage Vback. It is set to prevent the modulation characteristic of the amplitude level Vout of the modulation signal that is the output of the amplifier 911 from deteriorating.
Vback = Vpeak + Vhr (Equation 1)
 図10A~Cに示すように、+25degC、+125degC、及び-25degCにおける振幅信号A(t)'のピーク電圧Vpeakは、それぞれVpeakA、VpeakB、及びVpeakCである。例えば、VpeakA=0.9Vである場合、VpeakB=1.0V、及びVpeakC=0.85Vである。さらに、ヘッドルーム電圧Vhr=0.2Vをした場合、DC/DC908が供給する電源電圧Vbuckは、+125degCにおけるVpeakBに基づいて、Vbuck=1.2Vとなる。つまり、DC/DC908が供給する電源電圧Vbuckを高温時(+125degC)における振幅信号A(t)'のピーク電圧に基づいて定められる。 As shown in FIGS. 10A to 10C, the peak voltages Vpeak of the amplitude signal A (t) ′ at +25 degC, +125 degC, and −25 degC are VpeakA, VpeakB, and VpeakC, respectively. For example, when VpeakA = 0.9V, VpeakB = 1.0V and VpeakC = 0.85V. Further, when the headroom voltage Vhr = 0.2V, the power supply voltage Vback supplied by the DC / DC 908 is Vback = 1.2V based on VpeakB at +125 degC. That is, the power supply voltage Vback supplied by the DC / DC 908 is determined based on the peak voltage of the amplitude signal A (t) ′ at a high temperature (+125 degC).
特表2003-506941号公報Special table 2003-506941 gazette 特開2005-176331号公報JP 2005-176331 A
 しかしながら、DC/DC908から第1及び第2のLDO909及び910に供給される電源電圧Vbuckを、高温時(+125degC)のピーク電圧VpeakB(1.0V)に基づいて、1.2Vに設定した場合、低温時(-25degC)では、ピーク電圧VpeakC(0.85V)を考慮した場合でも電源電圧Vbuckは1.05Vに設定すれば十分であるため、動作効率を低下させていることになる。 However, when the power supply voltage Vback supplied from the DC / DC 908 to the first and second LDOs 909 and 910 is set to 1.2 V based on the peak voltage VpeakB (1.0 V) at a high temperature (+125 degC), At a low temperature (−25 degC), even when the peak voltage VpeakC (0.85 V) is taken into account, it is sufficient to set the power supply voltage Vback to 1.05 V, so that the operating efficiency is lowered.
 なお、ここまでは、電力増幅器911の温度もしくは周辺温度が変化した場合において、加算器906を用いて振幅信号に対してオフセット制御し、電力増幅器911の出力である変調信号の振幅レベルVoutの変調特性を確保する説明を行った。しかし、特定温度において、電力増幅器911の特性が標準特性から外れた特定特性の場合、加算器906だけでなく、乗算器を用いて振幅信号を調整する場合がある。 Up to this point, when the temperature of the power amplifier 911 or the ambient temperature changes, offset control is performed on the amplitude signal using the adder 906, and the modulation of the amplitude level Vout of the modulation signal that is the output of the power amplifier 911 is performed. An explanation was given to ensure the characteristics. However, when the characteristic of the power amplifier 911 deviates from the standard characteristic at a specific temperature, the amplitude signal may be adjusted using not only the adder 906 but also a multiplier.
 図10Dは、乗算器を用いて振幅信号を調整する場合における電力増幅器911に供給される振幅信号電圧Vccと電力増幅器911の出力である変調信号の振幅レベルVoutとの関係を示す図である。この場合、信号生成部9011によって生成された振幅信号は、乗算器によって最適な乗算係数と乗算される。具体的には、所定温度での電力増幅器911の標準特性における振幅信号A(t)に対して、乗算係数m=1.1で乗算した振幅信号A(t)'を生成する。第1及び第2のLDO909及び910は、入力された振幅信号A(t)'に応じて電力増幅器911に供給する振幅信号電圧Vccを制御する。 FIG. 10D is a diagram showing the relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911 when adjusting the amplitude signal using a multiplier. In this case, the amplitude signal generated by the signal generation unit 9011 is multiplied by an optimum multiplication coefficient by a multiplier. Specifically, an amplitude signal A (t) ′ obtained by multiplying the amplitude signal A (t) in the standard characteristic of the power amplifier 911 at a predetermined temperature by the multiplication coefficient m = 1.1 is generated. The first and second LDOs 909 and 910 control the amplitude signal voltage Vcc supplied to the power amplifier 911 according to the input amplitude signal A (t) ′.
 これにより、電力増幅器911は、特定温度において、電力増幅器911の特性が標準特性から外れた特定特性の場合であっても、所定温度での電力増幅器911の標準特性における変調信号の振幅レベルVoutと同様の変調特性を確保している。上述したように、DC/DC908から第1及び第2のLDO909及び910に供給される電源電圧Vbuckを、1.2Vに設定していた場合、ピーク電圧VpeakD(0.99V)を考慮しても電源電圧Vbuckは1.19Vに設定すれば十分であるため、動作効率を低下させていることになる。 As a result, the power amplifier 911 has the modulation signal amplitude level Vout in the standard characteristic of the power amplifier 911 at the predetermined temperature, even if the characteristic of the power amplifier 911 deviates from the standard characteristic at the specific temperature. Similar modulation characteristics are ensured. As described above, when the power supply voltage Vback supplied from the DC / DC 908 to the first and second LDOs 909 and 910 is set to 1.2 V, the peak voltage VpeakD (0.99 V) is taken into consideration. Since it is sufficient to set the power supply voltage Vback to 1.19 V, the operation efficiency is lowered.
 一方、乗算器を用いて振幅信号を調整した結果、ピーク電圧VpeakDが、電源電圧Vbuckとの電圧差が小さくなった場合は、第1及び第2のLDO909及び910が飽和してしまい、電力増幅器911の出力である変調信号の振幅レベルVoutの変調特性を確保することができず、歪みが発生する。 On the other hand, as a result of adjusting the amplitude signal using the multiplier, if the voltage difference between the peak voltage VpeakD and the power supply voltage Vback is small, the first and second LDOs 909 and 910 are saturated, and the power amplifier The modulation characteristic of the amplitude level Vout of the modulation signal that is the output of 911 cannot be ensured, and distortion occurs.
 また、従来の電界効果型トランジスタ(FET)では、正負の2電源が必要であるため小型化が困難であり、その一方、電力増幅器の材料であるGaAs等の化合物半導体材料は高価で、かつ、脆く割れやすいため小型化が望まれている。しかし、小型で多層構造のトランジスタを無線送信機の電力増幅器として使用すると、小さな配置面積にも関わらず、縦積み構成となっているため、電流起因による発熱を放熱できない。このため、温度変化が大きくなりトランジスタの入出力特性が変化しやすい。 Further, the conventional field effect transistor (FET) requires two positive and negative power supplies, so that it is difficult to reduce the size. On the other hand, a compound semiconductor material such as GaAs, which is a material for the power amplifier, is expensive, and Miniaturization is desired because it is brittle and easy to break. However, when a small, multi-layered transistor is used as a power amplifier of a wireless transmitter, the heat generated due to the current cannot be dissipated because of the vertically stacked configuration despite the small arrangement area. For this reason, the temperature change becomes large and the input / output characteristics of the transistor are likely to change.
 それ故に、本発明の目的は、電力増幅器の温度もしくは周辺温度の変化に応じて、振幅信号に対してオフセット制御すると同時に、LDOに供給する電源電圧を可変制御することによって、良好な変調特性を確保しつつ、かつ高効率動作を行うポーラ変調装置を提供することである。 Therefore, an object of the present invention is to provide a good modulation characteristic by controlling the offset of the amplitude signal according to the change of the temperature of the power amplifier or the ambient temperature and at the same time variably controlling the power supply voltage supplied to the LDO. It is an object of the present invention to provide a polar modulation device that ensures high efficiency operation.
 上記目的を達成するために、本発明のポーラ変調装置は、入力信号から振幅信号と位相信号とを生成する信号生成部と、振幅信号に基づいた振幅信号電圧を出力するLDOリニアレギュレータと、位相信号を位相変調する位相変調部と、LDOリニアレギュレータから供給された振幅信号電圧を電源電圧として、位相変調された位相信号を振幅変調して変調信号を生成する電力増幅器と、電力増幅器の温度もしくは周辺温度を測定し、温度情報として出力する温度センサと、温度情報に応じて、LDOリニアレギュレータを駆動させる電源電圧を制御する制御信号を出力するDC/DC出力制御部と、制御信号に基づいた電源電圧を、LDOリニアレギュレータに供給するDC/DCコンバータとを備える。 In order to achieve the above object, a polar modulation device of the present invention includes a signal generation unit that generates an amplitude signal and a phase signal from an input signal, an LDO linear regulator that outputs an amplitude signal voltage based on the amplitude signal, and a phase A phase modulation unit that phase-modulates the signal, a power amplifier that generates the modulation signal by amplitude-modulating the phase-modulated phase signal using the amplitude signal voltage supplied from the LDO linear regulator as a power supply voltage, and the temperature of the power amplifier or A temperature sensor that measures ambient temperature and outputs it as temperature information, a DC / DC output control unit that outputs a control signal for controlling a power supply voltage for driving the LDO linear regulator according to the temperature information, and a control signal based on the control signal A DC / DC converter for supplying a power supply voltage to the LDO linear regulator.
 ポーラ変調装置は、温度情報に応じて、振幅信号に加算するオフセット値を算出するオフセット制御部と、信号生成部で生成された振幅信号に、オフセット制御部が算出したオフセット値を加算する加算器とをさらに備える。 The polar modulation device includes an offset control unit that calculates an offset value to be added to the amplitude signal according to temperature information, and an adder that adds the offset value calculated by the offset control unit to the amplitude signal generated by the signal generation unit And further comprising.
 オフセット制御部は、電力増幅器の温度バラツキに起因するオフセットの補償係数と、温度情報の基準温度からの差分とを乗算することで、振幅信号に加算するオフセット値を算出する。 The offset control unit calculates an offset value to be added to the amplitude signal by multiplying the offset compensation coefficient caused by the temperature variation of the power amplifier by the difference from the reference temperature of the temperature information.
 ポーラ変調装置は、温度情報と振幅信号に加算するオフセット値とを対応付けて記憶したLUTをさらに備える。オフセット制御部は、温度情報に応じて、LUTから振幅信号に加算するオフセット値を算出する。 The polar modulator further includes an LUT that stores temperature information and an offset value to be added to the amplitude signal in association with each other. The offset control unit calculates an offset value to be added to the amplitude signal from the LUT according to the temperature information.
 DC/DC出力制御部は、オフセット値に応じて、LDOリニアレギュレータを駆動させる電源電圧を補正する補正電圧を算出し、温度情報が基準温度であるときの振幅信号のピーク電圧に、補正電圧と、LDOリニアレギュレータのヘッドルーム電圧とを加算することで、制御信号を算出する。DC/DCコンバータは、制御信号に基づいた電源電圧を、LDOリニアレギュレータに供給する。 The DC / DC output control unit calculates a correction voltage for correcting the power supply voltage for driving the LDO linear regulator according to the offset value, and adds the correction voltage and the peak voltage of the amplitude signal when the temperature information is the reference temperature. The control signal is calculated by adding the headroom voltage of the LDO linear regulator. The DC / DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.
 DC/DC出力制御部は、振幅信号にオフセット値を加算したことによる、LDOリニアレギュレータの出力電圧の増加分を、補正電圧とする。 The DC / DC output control unit uses the increase in the output voltage of the LDO linear regulator due to the addition of the offset value to the amplitude signal as the correction voltage.
 オフセット制御部は、温度情報に基づいて、振幅信号に乗算する乗算係数を算出する。ポーラ変調装置は、信号生成部で生成された振幅信号に、乗算係数を乗算する乗算器をさらに備える。加算器は、乗算係数が乗算された振幅信号に、オフセット値を加算する。 The offset control unit calculates a multiplication coefficient for multiplying the amplitude signal based on the temperature information. The polar modulation device further includes a multiplier that multiplies the amplitude signal generated by the signal generation unit by a multiplication coefficient. The adder adds an offset value to the amplitude signal multiplied by the multiplication coefficient.
 オフセット制御部は、電力増幅器の温度バラツキに起因するオフセットの補償係数と、温度情報の基準温度からの差分とを乗算することで、オフセット値を算出し、電力増幅器の温度バラツキに起因するゲインの補償係数と、温度情報の基準温度からの差分とを乗算することで、乗算係数を算出する。 The offset control unit calculates an offset value by multiplying the offset compensation coefficient caused by the temperature variation of the power amplifier and the difference from the reference temperature of the temperature information, and obtains the gain caused by the temperature variation of the power amplifier. The multiplication coefficient is calculated by multiplying the compensation coefficient by the difference from the reference temperature of the temperature information.
 DC/DC出力制御部は、オフセット値に応じて、LDOリニアレギュレータを駆動させる電源電圧を補正する補正電圧を算出し、乗算係数に応じて、LDOリニアレギュレータを駆動させる電源電圧を補正する補正係数を算出し、温度情報が基準温度であるときの振幅信号のピーク電圧に、補正係数を乗算し、当該乗算結果に補正電圧と、LDOリニアレギュレータのヘッドルーム電圧とを加算することで、制御信号を算出する。DC/DCコンバータは、制御信号に基づいた電源電圧を、LDOリニアレギュレータに供給する。 The DC / DC output control unit calculates a correction voltage for correcting the power supply voltage for driving the LDO linear regulator according to the offset value, and corrects the power supply voltage for driving the LDO linear regulator according to the multiplication coefficient. The control signal is calculated by multiplying the peak voltage of the amplitude signal when the temperature information is the reference temperature by the correction coefficient, and adding the correction voltage and the headroom voltage of the LDO linear regulator to the multiplication result. Is calculated. The DC / DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.
 DC/DC出力制御部は、振幅信号にオフセット値を加算したことによる、LDOリニアレギュレータの出力電圧の増加分を、補正電圧とし、乗算係数を、補正係数とする。 The DC / DC output control unit sets the increase in the output voltage of the LDO linear regulator due to the addition of the offset value to the amplitude signal as the correction voltage, and the multiplication coefficient as the correction coefficient.
 電力増幅器は、異種半導体層を縦積みした構成からなるヘテロ接合バイポーラトランジスタ(HBT/Heterojunction Bipolar Transister)である。 The power amplifier is a heterojunction bipolar transistor (HBT / Heterojunction Bipolar Transistor) having a configuration in which different types of semiconductor layers are stacked vertically.
 DC/DC出力制御部は、温度情報に応じて、DC/DCコンバータの温度バラツキを補正するための補正値と、LDOリニアレギュレータのヘッドルーム電圧の温度バラツキを補正するための補正値とを算出し、温度情報が基準温度であるときのLDOリニアレギュレータの電源電圧に、当該算出したDC/DCコンバータの補正値と、LDOリニアレギュレータのヘッドルーム電圧の補正値とを加算することで、制御信号を算出する。DC/DCコンバータは、制御信号に基づいた電源電圧を、LDOリニアレギュレータに供給する。 The DC / DC output control unit calculates a correction value for correcting the temperature variation of the DC / DC converter and a correction value for correcting the temperature variation of the headroom voltage of the LDO linear regulator according to the temperature information. Then, the control signal is added by adding the calculated correction value of the DC / DC converter and the correction value of the headroom voltage of the LDO linear regulator to the power supply voltage of the LDO linear regulator when the temperature information is the reference temperature. Is calculated. The DC / DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.
 ポーラ変調装置は、共用器とアンテナSWとを介して、アンテナと接続されると共に、共用器とアンテナSWの温度もしくは周辺温度を測定し、第2の温度情報として出力する第2の温度センサと接続される。ポーラ変調装置は、温度情報及び第2の温度情報に応じて、振幅信号に乗算する乗算係数と、振幅信号に加算するオフセット値とを算出するオフセット制御部と、信号生成部で生成された振幅信号に、乗算係数を乗算する乗算器と、乗算器から出力された振幅信号に、オフセット値を加算する加算器とをさらに備える。 The polar modulation device is connected to the antenna via the duplexer and the antenna SW, and measures the temperature or ambient temperature of the duplexer and the antenna SW, and outputs a second temperature sensor as second temperature information. Connected. The polar modulation device includes: an offset control unit that calculates a multiplication coefficient to be multiplied to the amplitude signal and an offset value to be added to the amplitude signal according to the temperature information and the second temperature information; and the amplitude generated by the signal generation unit The signal processing apparatus further includes a multiplier that multiplies the signal by a multiplication coefficient, and an adder that adds an offset value to the amplitude signal output from the multiplier.
 ポーラ変調装置は、電力増幅器の温度バラツキに起因するゲインの補償係数と、電力増幅器の温度バラツキに起因するオフセットの補償係数と、共用器及びアンテナSWの温度バラツキに起因するゲインの補償係数とを記憶したLUTをさらに備える。オフセット制御部は、LUTから、電力増幅器の温度バラツキに起因するゲインの補償係数と、電力増幅器の温度バラツキに起因するオフセットの補償係数と、共用器及びアンテナSWの温度バラツキに起因するゲインの補償係数とを読み出し、温度情報の基準温度からの差分と、LUTから読み出した電力増幅器の温度バラツキに起因するゲインの補償係数とを乗算することで、第1の補正値を算出し、第2の温度情報の基準温度からの差分と、LUTから読み出した共用器及びアンテナSWの温度バラツキに起因するゲインの補償係数とを乗算することで、第2の補正値を算出し、温度情報の基準温度からの差分と、LUTから読み出した電力増幅器の温度バラツキに起因するオフセット値の補償係数とを乗算することで、第3の補正値を算出し、第1の補正値と、第2の補正値とを用いて、乗算係数を算出し、第3の補正値を用いてオフセット値を算出する。 The polar modulation device includes a gain compensation coefficient caused by temperature variation of the power amplifier, an offset compensation coefficient caused by temperature variation of the power amplifier, and a gain compensation coefficient caused by temperature variation of the duplexer and the antenna SW. A stored LUT is further provided. The offset control unit, from the LUT, compensates the gain due to the temperature variation of the power amplifier, the offset compensation factor due to the temperature variation of the power amplifier, and the gain compensation due to the temperature variation of the duplexer and the antenna SW. The first correction value is calculated by multiplying the difference from the reference temperature of the temperature information by the gain compensation coefficient due to the temperature variation of the power amplifier read from the LUT, and the second correction value is calculated. The second correction value is calculated by multiplying the difference from the reference temperature of the temperature information by the gain compensation coefficient resulting from the temperature variation of the duplexer and the antenna SW read from the LUT, and the reference temperature of the temperature information Is multiplied by the compensation coefficient of the offset value caused by the temperature variation of the power amplifier read from the LUT, thereby obtaining the third correction value. Calculated by using the first correction value and a second correction value to calculate a multiplication coefficient, and calculates an offset value using the third correction value.
 LUTには、電力増幅器の温度バラツキに起因するゲインの補償係数と、電力増幅器の温度バラツキに起因するオフセットの補償係数とが、温度情報に応じて複数設定され、共用器及びアンテナSWの温度バラツキに起因するゲインの補償係数が第2の温度情報に応じて複数設定されてもよい。オフセット制御部は、LUTから、温度情報に応じて、電力増幅器の温度バラツキに起因するゲインの補償係数と、電力増幅器の温度バラツキに起因するオフセットの補償係数とを読み出し、第2の温度情報に応じて、共用器及びアンテナSWの温度バラツキに起因するゲインの補償係数を読み出す。 In the LUT, a plurality of gain compensation coefficients caused by temperature variations of the power amplifier and offset compensation coefficients caused by temperature variations of the power amplifier are set in accordance with the temperature information, and temperature variations of the duplexer and the antenna SW are set. A plurality of gain compensation coefficients resulting from the above may be set according to the second temperature information. The offset control unit reads, from the LUT, the gain compensation coefficient caused by the temperature variation of the power amplifier and the offset compensation coefficient caused by the temperature variation of the power amplifier according to the temperature information, and uses them as the second temperature information. In response, the gain compensation coefficient due to the temperature variation of the duplexer and the antenna SW is read out.
 DC/DC出力制御部は、オフセット値に応じて、LDOリニアレギュレータを駆動させる電源電圧を補正する補正電圧を算出し、乗算係数に応じて、LDOリニアレギュレータを駆動させる電源電圧を補正する補正係数を算出し、温度情報が基準温度であるときの振幅信号のピーク電圧に、補正係数を乗算し、当該乗算結果に補正電圧と、LDOリニアレギュレータのヘッドルーム電圧とを加算することで、制御信号を算出する。DC/DCコンバータは、制御信号に基づいた電源電圧を、LDOリニアレギュレータに供給する。 The DC / DC output control unit calculates a correction voltage for correcting the power supply voltage for driving the LDO linear regulator according to the offset value, and corrects the power supply voltage for driving the LDO linear regulator according to the multiplication coefficient. The control signal is calculated by multiplying the peak voltage of the amplitude signal when the temperature information is the reference temperature by the correction coefficient, and adding the correction voltage and the headroom voltage of the LDO linear regulator to the multiplication result. Is calculated. The DC / DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.
 DC/DC出力制御部は、振幅信号にオフセット値を加算したことによる、LDOリニアレギュレータの出力電圧の増加分を、補正電圧とし、乗算係数を、補正係数とする。 The DC / DC output control unit sets the increase in the output voltage of the LDO linear regulator due to the addition of the offset value to the amplitude signal as the correction voltage, and the multiplication coefficient as the correction coefficient.
 ポーラ変調装置は、LDOリニアレギュレータの温度もしくは周辺温度を測定し、第3の温度情報として出力する第3の温度センサと、温度情報及び第3の温度情報に応じて、振幅信号に乗算する乗算係数と、振幅信号に加算するオフセット値とを算出するオフセット制御部と、信号生成部で生成された振幅信号に、乗算係数を乗算する乗算器と、乗算器から出力された振幅信号に、オフセット値を加算する加算器とをさらに備える。 The polar modulation device measures the temperature or ambient temperature of the LDO linear regulator and outputs a third temperature sensor that outputs the temperature information as third temperature information, and a multiplication that multiplies the amplitude signal according to the temperature information and the third temperature information. An offset control unit that calculates a coefficient and an offset value to be added to the amplitude signal, a multiplier that multiplies the amplitude signal generated by the signal generation unit by a multiplication coefficient, and an offset to the amplitude signal output from the multiplier And an adder for adding values.
 ポーラ変調装置は、電力増幅器の温度バラツキに起因するゲインの補償係数と、電力増幅器の温度バラツキに起因するオフセットの補償係数と、LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを記憶したLUTをさらに備える。オフセット制御部は、LUTから、電力増幅器の温度バラツキに起因するゲインの補償係数と、電力増幅器の温度バラツキに起因するオフセットの補償係数と、LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを読み出し、温度情報の基準温度からの差分と、LUTから読み出した電力増幅器の温度バラツキに起因するゲインの補償係数とを乗算することで、第1の補正値を算出し、温度情報の基準温度からの差分と、LUTから読み出した電力増幅器の温度バラツキに起因するオフセット値の補償係数とを乗算することで、第2の補正値を算出し、第3の温度情報の基準温度からの差分と、LUTから読み出したLDOリニアレギュレータの温度バラツキに起因するゲインの補償係数とを乗算することで、第3の補正値を算出し、第3の温度情報の基準温度からの差分と、LUTから読み出したLDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを乗算することで、第4の補正値を算出し、第1の補正値と、第3の補正値とを用いて、乗算係数を算出し、第2の補正値と、第4の補正値とを用いてオフセット値を算出する。 The polar modulation device includes a gain compensation coefficient caused by temperature variation of the power amplifier, an offset compensation coefficient caused by temperature variation of the power amplifier, a gain compensation coefficient caused by temperature variation of the LDO linear regulator, and an LDO linear Further provided is an LUT that stores a compensation coefficient for offset caused by temperature variation of the regulator. The offset control unit, from the LUT, gain compensation coefficient due to power amplifier temperature variation, offset compensation coefficient due to power amplifier temperature variation, and gain compensation coefficient due to LDO linear regulator temperature variation, The offset compensation coefficient caused by the temperature variation of the LDO linear regulator is read, and the difference from the reference temperature of the temperature information is multiplied by the gain compensation factor caused by the temperature variation of the power amplifier read from the LUT. The first correction value is calculated, and the second correction value is calculated by multiplying the difference from the reference temperature of the temperature information by the compensation coefficient of the offset value caused by the temperature variation of the power amplifier read from the LUT. The calculated difference from the reference temperature of the third temperature information and the LDO linear regulation read from the LUT The third correction value is calculated by multiplying the gain compensation coefficient caused by the temperature variation of the data, the difference from the reference temperature of the third temperature information, and the temperature variation of the LDO linear regulator read from the LUT The fourth correction value is calculated by multiplying the offset compensation coefficient caused by the first correction value, the multiplication coefficient is calculated using the first correction value and the third correction value, and the second correction value is calculated. The offset value is calculated using the value and the fourth correction value.
 LUTには、電力増幅器の温度バラツキに起因するゲインの補償係数と、電力増幅器の温度バラツキに起因するオフセットの補償係数とが温度情報に応じて複数設定され、LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とが第3の温度情報に応じて複数設定されてもよい。オフセット制御部は、LUTから、温度情報に応じて、電力増幅器の温度バラツキに起因するゲインの補償係数と、電力増幅器の温度バラツキに起因するオフセットの補償係数とを読み出し、第3の温度情報に応じて、LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを読み出す。 In the LUT, a plurality of gain compensation coefficients due to power amplifier temperature variations and offset compensation coefficients due to power amplifier temperature variations are set in accordance with temperature information, resulting from temperature variations in the LDO linear regulator. A plurality of gain compensation coefficients and offset compensation coefficients caused by temperature variations of the LDO linear regulator may be set according to the third temperature information. The offset control unit reads, from the LUT, the gain compensation coefficient caused by the temperature variation of the power amplifier and the offset compensation coefficient caused by the temperature variation of the power amplifier in accordance with the temperature information, and uses them as the third temperature information. In response, the gain compensation coefficient caused by the temperature variation of the LDO linear regulator and the offset compensation coefficient caused by the temperature variation of the LDO linear regulator are read out.
 ポーラ変調装置は、LDOリニアレギュレータの温度もしくは周辺温度を測定し、第3の温度情報として出力する第3の温度センサをさらに備える。オフセット制御部は、温度情報と、第2の温度情報と、第3の温度情報とに応じて、オフセット値と、乗算係数とを算出する。 The polar modulator further includes a third temperature sensor that measures the temperature or ambient temperature of the LDO linear regulator and outputs the measured temperature information as third temperature information. The offset control unit calculates an offset value and a multiplication coefficient according to the temperature information, the second temperature information, and the third temperature information.
 ポーラ変調装置は、電力増幅器の温度バラツキに起因するゲインの補償係数と、電力増幅器の温度バラツキに起因するオフセットの補償係数と、共用器及びアンテナSWの温度バラツキに起因するゲインの補償係数と、LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを記憶したLUTをさらに備える。オフセット制御部は、LUTから、電力増幅器の温度バラツキに起因するゲインの補償係数と、電力増幅器の温度バラツキに起因するオフセットの補償係数と、共用器及びアンテナSWの温度バラツキに起因するゲインの補償係数と、LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを読み出し、温度情報の基準温度からの差分と、LUTから読み出した電力増幅器の温度バラツキに起因するゲインの補償係数とを乗算することで、第1の補正値を算出し、温度情報の基準温度からの差分と、LUTから読み出した電力増幅器の温度バラツキに起因するオフセット値の補償係数とを乗算することで、第2の補正値を算出し、第2の温度情報の基準温度からの差分と、LUTから読み出した共用器及びアンテナSWの温度バラツキに起因するゲインの補償係数とを乗算することで、第3の補正値を算出し、第3の温度情報の基準温度からの差分と、LUTから読み出したLDOリニアレギュレータの温度バラツキに起因するゲインの補償係数とを乗算することで、第4の補正値を算出し、第3の温度情報の基準温度からの差分と、LUTから読み出したLDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを乗算することで、第5の補正値を算出し、第1の補正値と、第3の補正値と、第4の補正値とを用いて乗算係数を算出し、第2の補正値と、第5の補正値とを用いてオフセット値を算出する。 The polar modulation device includes a gain compensation coefficient caused by temperature variation of the power amplifier, an offset compensation coefficient caused by temperature variation of the power amplifier, a gain compensation coefficient caused by temperature variation of the duplexer and the antenna SW, It further includes an LUT that stores a gain compensation coefficient caused by temperature variation of the LDO linear regulator and an offset compensation coefficient caused by temperature variation of the LDO linear regulator. The offset control unit, from the LUT, compensates the gain due to the temperature variation of the power amplifier, the offset compensation factor due to the temperature variation of the power amplifier, and the gain compensation due to the temperature variation of the duplexer and the antenna SW. The coefficient, the gain compensation coefficient due to the temperature variation of the LDO linear regulator, and the offset compensation coefficient due to the temperature variation of the LDO linear regulator are read, the difference from the reference temperature of the temperature information, and the power read from the LUT The first correction value is calculated by multiplying the gain compensation coefficient caused by the temperature variation of the amplifier, and the difference from the reference temperature of the temperature information and the offset caused by the temperature variation of the power amplifier read from the LUT The second correction value is calculated by multiplying the compensation coefficient of the value, and the second temperature information is calculated. The third correction value is calculated by multiplying the difference from the reference temperature by the gain compensation coefficient resulting from the temperature variation of the duplexer and the antenna SW read from the LUT, and the third temperature information reference The fourth correction value is calculated by multiplying the difference from the temperature by the gain compensation coefficient resulting from the temperature variation of the LDO linear regulator read from the LUT, and the difference from the reference temperature in the third temperature information And the offset compensation coefficient caused by the temperature variation of the LDO linear regulator read from the LUT, the fifth correction value is calculated, and the first correction value, the third correction value, The multiplication coefficient is calculated using the correction value of 4, and the offset value is calculated using the second correction value and the fifth correction value.
 LUTには、電力増幅器の温度バラツキに起因するゲインの補償係数と、電力増幅器の温度バラツキに起因するオフセットの補償係数とが温度情報に応じて複数設定され、共用器及びアンテナSWの温度バラツキに起因するゲインの補償係数が第2の温度情報に応じて複数設定され、LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とが第3の温度情報に応じて複数設定されてもよい。オフセット制御部は、LUTから、温度情報に応じて、電力増幅器の温度バラツキに起因するゲインの補償係数と、電力増幅器の温度バラツキに起因するオフセットの補償係数とを読み出し、第2の温度情報に応じて、共用器及びアンテナSWの温度バラツキに起因するゲインの補償係数を読み出し、第3の温度情報に応じて、LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを読み出す。 In the LUT, a plurality of gain compensation coefficients resulting from temperature variations of the power amplifier and offset compensation coefficients resulting from temperature variations of the power amplifier are set according to the temperature information. A plurality of gain compensation coefficients are set according to the second temperature information, and the gain compensation coefficient due to the temperature variation of the LDO linear regulator and the offset compensation coefficient due to the temperature variation of the LDO linear regulator are the first. A plurality may be set according to the temperature information of 3. The offset control unit reads, from the LUT, the gain compensation coefficient caused by the temperature variation of the power amplifier and the offset compensation coefficient caused by the temperature variation of the power amplifier according to the temperature information, and uses them as the second temperature information. Accordingly, the gain compensation coefficient due to the temperature variation of the duplexer and the antenna SW is read out, and the gain compensation coefficient due to the temperature variation of the LDO linear regulator and the temperature of the LDO linear regulator according to the third temperature information Read out the offset compensation coefficient caused by the variation.
 DC/DC出力制御部は、温度情報に応じて、LDOリニアレギュレータを駆動させる電源電圧を補正する補正電圧と、DC/DCコンバータの温度バラツキを補正するための補正値を算出し、温度情報、及び第2の温度情報に応じて、LDOリニアレギュレータを駆動させる電源電圧を補正する補正係数を算出し、第2の温度情報に応じて、LDOリニアレギュレータのヘッドルーム電圧の温度バラツキを補正するための補正値とを算出し、温度情報が基準温度であるときの振幅信号のピーク電圧に、補正係数を乗算し、当該乗算結果に補正電圧と、LDOリニアレギュレータのヘッドルーム電圧と、当該算出したDC/DCコンバータの補正値と、LDOリニアレギュレータのヘッドルーム電圧の補正値とを加算することで、制御信号を算出する。DC/DCコンバータは、制御信号に基づいた電源電圧を、LDOリニアレギュレータに供給する。 The DC / DC output control unit calculates a correction voltage for correcting the power supply voltage for driving the LDO linear regulator and a correction value for correcting the temperature variation of the DC / DC converter according to the temperature information, and the temperature information, The correction coefficient for correcting the power supply voltage for driving the LDO linear regulator is calculated according to the second temperature information, and the temperature variation of the headroom voltage of the LDO linear regulator is corrected according to the second temperature information. The correction value is calculated, the peak voltage of the amplitude signal when the temperature information is the reference temperature is multiplied by the correction coefficient, the multiplication result is corrected, the headroom voltage of the LDO linear regulator, and the calculated The control signal is obtained by adding the correction value of the DC / DC converter and the correction value of the headroom voltage of the LDO linear regulator. Calculated to. The DC / DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.
 DC/DC出力制御部は、振幅信号に、電力増幅器の温度バラツキに起因するオフセットの補償係数と、温度情報の基準温度からの差分とを乗算した第1の補正値を加えたことによる、LDOリニアレギュレータの出力電圧の増加分を、補正電圧とし、電力増幅器の温度バラツキに起因するゲインの補償係数と、温度情報の基準温度からの差分とを乗算した第2の補正値と、共用器及びアンテナSWの温度バラツキに起因するゲインの補償係数と、第2の温度情報の基準温度からの差分とを乗算した第3の補正値とを乗算した結果を、補正係数とする。 The DC / DC output control unit adds the first correction value obtained by multiplying the amplitude signal by the offset compensation coefficient caused by the temperature variation of the power amplifier and the difference from the reference temperature of the temperature information. The second correction value obtained by multiplying the increase of the output voltage of the linear regulator as a correction voltage, the gain compensation coefficient resulting from the temperature variation of the power amplifier, and the difference from the reference temperature of the temperature information, a duplexer, and A result obtained by multiplying the gain compensation coefficient caused by the temperature variation of the antenna SW and the third correction value obtained by multiplying the difference from the reference temperature of the second temperature information is defined as a correction coefficient.
 上述のように、本発明によれば、電力増幅器の温度もしくは周辺温度の変化に応じて、振幅信号に対してオフセット制御すると同時に、LDOに供給する電源電圧を可変制御することによって、良好な変調特性を確保しつつ、かつ高効率動作を行うポーラ変調装置を実現することができる。 As described above, according to the present invention, good modulation is achieved by performing offset control on the amplitude signal and variably controlling the power supply voltage supplied to the LDO according to changes in the temperature of the power amplifier or the ambient temperature. It is possible to realize a polar modulation device that secures characteristics and performs high-efficiency operation.
図1Aは、本発明の第1の実施形態に係るポーラ変調装置100を示す図である。FIG. 1A is a diagram illustrating a polar modulation device 100 according to a first embodiment of the present invention. 図1Bは、本発明の第1の実施形態に係るポーラ変調装置100bを示す図である。FIG. 1B is a diagram showing a polar modulation device 100b according to the first embodiment of the present invention. 図1Cは、温度情報Tdetとオフセット値とを対応付けたLUTの一例を示す図である。FIG. 1C is a diagram illustrating an example of an LUT in which temperature information Tdet is associated with an offset value. 図1Dは、温度情報Tdetと補正電圧Vdcdcとを対応付けたLUTの一例を示す図である。FIG. 1D is a diagram illustrating an example of an LUT in which temperature information Tdet and correction voltage Vdcdc are associated with each other. 図2は、デジタルブロック101の動作を示すフローチャートである。FIG. 2 is a flowchart showing the operation of the digital block 101. 図3Aは、本発明の第2の実施形態に係るポーラ変調装置200を示す図である。FIG. 3A is a diagram illustrating a polar modulation device 200 according to the second embodiment of the present invention. 図3Bは、本発明の第2の実施形態に係るポーラ変調装置200bを示す図である。FIG. 3B is a diagram illustrating a polar modulation device 200b according to the second embodiment of the present invention. 図3Cは、温度情報Tdetと補正係数Gdcdcとを対応付けたLUTの一例を示す図である。FIG. 3C is a diagram illustrating an example of an LUT in which the temperature information Tdet and the correction coefficient Gdcdc are associated with each other. 図4Aは、本発明の第3の実施形態に係るポーラ変調装置300を示す図である。FIG. 4A shows a polar modulation device 300 according to the third embodiment of the present invention. 図4Bは、本発明の第3の実施形態に係るポーラ変調装置300bを示す図である。FIG. 4B is a diagram illustrating a polar modulation device 300b according to the third embodiment of the present invention. 図4Cは、本発明の第3の実施形態に係るポーラ変調装置300cを示す図である。FIG. 4C is a diagram illustrating a polar modulation device 300c according to the third embodiment of the present invention. 図5Aは、共用器600で発生するロスの一例を示す図である。FIG. 5A is a diagram illustrating an example of a loss that occurs in the duplexer 600. 図5Bは、ポーラ変調システムの各部で発生する可能性がある特性バラツキの原因を説明する図である。FIG. 5B is a diagram for explaining the cause of the characteristic variation that may occur in each part of the polar modulation system. 図6Aは、LUT302に格納された温度係数の一例を示す図である。FIG. 6A is a diagram illustrating an example of the temperature coefficient stored in the LUT 302. 図6Bは、LUT302に格納された温度係数の一例を示す図である。FIG. 6B is a diagram illustrating an example of the temperature coefficient stored in the LUT 302. 図6Cは、LUT302に格納された温度係数の一例を示す図である。FIG. 6C is a diagram illustrating an example of the temperature coefficient stored in the LUT 302. 図7Aは、本発明の第4の実施形態に係るポーラ変調装置400を備えるポーラ変調システムの構成を示す図である。FIG. 7A is a diagram illustrating a configuration of a polar modulation system including a polar modulation device 400 according to the fourth embodiment of the present invention. 図7Bは、本発明の第4の実施形態に係るポーラ変調装置400bを備えるポーラ変調システムの構成を示す図である。FIG. 7B is a diagram illustrating a configuration of a polar modulation system including the polar modulation device 400b according to the fourth embodiment of the present invention. 図8Aは、LUT402に格納された温度係数の一例を示す図である。FIG. 8A is a diagram illustrating an example of the temperature coefficient stored in the LUT 402. 図8Bは、LUT402に格納された温度係数の一例を示す図である。FIG. 8B is a diagram illustrating an example of the temperature coefficient stored in the LUT 402. 図9は、従来のポーラ変調装置の一例であるポーラ変調装置900を示す図である。FIG. 9 is a diagram illustrating a polar modulator 900 which is an example of a conventional polar modulator. 図10Aは、+25degCにおける電力増幅器911に供給される振幅信号電圧Vccと電力増幅器911の出力である変調信号の振幅レベルVoutとの関係を示す図である。FIG. 10A is a diagram showing the relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 at +25 degC and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911. 図10Bは、+125degCにおける電力増幅器911に供給される振幅信号電圧Vccと電力増幅器911の出力である変調信号の振幅レベルVoutとの関係を示す図である。FIG. 10B is a diagram showing the relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 at +125 degC and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911. 図10Cは、-25degCにおける電力増幅器911に供給される振幅信号電圧Vccと電力増幅器911の出力である変調信号の振幅レベルVoutとの関係を示す図である。FIG. 10C is a diagram showing the relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 at −25 degC and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911. 図10Dは、乗算器を用いてオフセット制御する場合における電力増幅器911に供給される振幅信号電圧Vccと電力増幅器911の出力である変調信号の振幅レベルVoutとの関係を示す図である。FIG. 10D is a diagram illustrating a relationship between the amplitude signal voltage Vcc supplied to the power amplifier 911 and the amplitude level Vout of the modulation signal that is the output of the power amplifier 911 when offset control is performed using a multiplier.
 以下、本発明の各実施形態を、図面を参照しながら説明する。
 <第1の実施形態>
 図1Aは、本発明の第1の実施形態に係るポーラ変調装置100を示す図である。図1Aにおいて、ポーラ変調装置100は、デジタルブロック101と、第1~3のDAC102~104と、OFDAC105と、加算器106と、位相変調器107と、DC/DC108と、第1及び第2のLDO109及び110と、電力増幅器(PA)111と、温度センサ112とを備える。なお、デジタルブロック101は、信号生成部1011と、オフセット制御部1012と、DC/DC出力制御部1013とを含む。
Hereinafter, each embodiment of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1A is a diagram illustrating a polar modulation device 100 according to a first embodiment of the present invention. In FIG. 1A, a polar modulation device 100 includes a digital block 101, first to third DACs 102 to 104, an OFDAC 105, an adder 106, a phase modulator 107, a DC / DC 108, a first and a second. LDOs 109 and 110, a power amplifier (PA) 111, and a temperature sensor 112 are provided. The digital block 101 includes a signal generation unit 1011, an offset control unit 1012, and a DC / DC output control unit 1013.
 デジタルブロック101において、信号生成部1011は、振幅信号及び位相信号を生成する。オフセット制御部1012は、温度センサ112から通知された温度情報Tdetに基づいて、オフセット値を算出する。ここで、温度センサ112は、電力増幅器111の温度もしくは周辺温度を測定し、測定した温度情報Tdetをデジタルブロック101に通知している。 In the digital block 101, the signal generation unit 1011 generates an amplitude signal and a phase signal. The offset control unit 1012 calculates an offset value based on the temperature information Tdet notified from the temperature sensor 112. Here, the temperature sensor 112 measures the temperature of the power amplifier 111 or the ambient temperature, and notifies the digital block 101 of the measured temperature information Tdet.
 信号生成部1011によって生成された振幅信号は、第2のDAC103を介して、加算器106に入力される。加算器106において、第2のDAC103から出力された振幅信号A(t)には、オフセット制御部1012によって算出されたオフセット値が加算される。なお、オフセット値は、OFDAC105を介して、加算器106に入力されている。加算器106において、オフセット値が加算された振幅信号A(t)'は、第1及び第2のLDO109及び110に入力される。 The amplitude signal generated by the signal generation unit 1011 is input to the adder 106 via the second DAC 103. In the adder 106, the offset value calculated by the offset control unit 1012 is added to the amplitude signal A (t) output from the second DAC 103. Note that the offset value is input to the adder 106 via the OFDAC 105. In the adder 106, the amplitude signal A (t) ′ added with the offset value is input to the first and second LDOs 109 and 110.
 なお、図1Bに示すポーラ変調装置100bのように、加算器106は、デジタルブロック101と、第2のDAC103との間に配置され、デジタル領域で、振幅信号A(t)にオフセット値を加算するものであってもよい。 Note that, like the polar modulation device 100b shown in FIG. 1B, the adder 106 is arranged between the digital block 101 and the second DAC 103, and adds an offset value to the amplitude signal A (t) in the digital domain. You may do.
 第1及び第2のLDO109及び110は、入力された振幅信号A(t)'に応じて制御された振幅信号電圧Vccを電力増幅器111に供給する。 The first and second LDOs 109 and 110 supply the amplitude signal voltage Vcc controlled according to the input amplitude signal A (t) ′ to the power amplifier 111.
 また、信号生成部1011が生成した位相信号は、第3のDAC104を介して、位相変調器107に入力される。位相変調器107は、位相信号を位相変調して、位相変調信号を出力する。電力増幅器111は、位相変調信号を第1及び第2のLDO109及び110から供給された振幅信号電圧Vccで増幅し、変調信号として出力する。電力増幅器111で増幅された信号は、出力端子から送信信号として出力される。 In addition, the phase signal generated by the signal generation unit 1011 is input to the phase modulator 107 via the third DAC 104. The phase modulator 107 performs phase modulation on the phase signal and outputs a phase modulation signal. The power amplifier 111 amplifies the phase modulation signal with the amplitude signal voltage Vcc supplied from the first and second LDOs 109 and 110 and outputs the amplified signal as a modulation signal. The signal amplified by the power amplifier 111 is output as a transmission signal from the output terminal.
 なお、本発明の第1の実施形態に係るポーラ変調装置100においても、図10A~Cに示したように、基準温度である+25degCにおけるA(t)に対して、+125degC、及び-25degCにおける振幅信号A(t)をA(t)'にシフトしている。 Also in the polar modulation device 100 according to the first embodiment of the present invention, as shown in FIGS. 10A to 10C, the amplitudes at +125 degC and −25 degC with respect to A (t) at +25 degC that is the reference temperature. The signal A (t) is shifted to A (t) ′.
 ここまで述べた本発明の第1の実施形態に係るポーラ変調装置100の基本的な動作は、図9で示した従来のポーラ変調装置900と同様であるが、本発明の第1の実施形態に係るポーラ変調装置100では、DC/DC108が第1及び第2のLDO109及び110に供給する電源電圧Vbuckは一定ではない。以下に、DC/DC108が第1及び第2のLDO109及び110に供給する電源電圧Vbuckについて説明する。 The basic operation of the polar modulation device 100 according to the first embodiment of the present invention described so far is the same as that of the conventional polar modulation device 900 shown in FIG. 9, but the first embodiment of the present invention. In the polar modulation device 100 according to the above, the power supply voltage Vback supplied from the DC / DC 108 to the first and second LDOs 109 and 110 is not constant. The power supply voltage Vback supplied from the DC / DC 108 to the first and second LDOs 109 and 110 will be described below.
 本発明の第1の実施形態に係るポーラ変調装置100において、デジタルブロック101は、信号生成部1011及びオフセット制御部1012に、さらにDC/DC出力制御部1013を含んでいる。図2は、デジタルブロック101の動作を示すフローチャートである。図2において、デジタルブロック101は、温度情報取得命令ステップS201と、温度情報取得ステップS202と、オフセット値算出ステップS203と、オフセット値出力ステップS204と、補正電圧算出ステップS205と、補正電圧出力ステップS206とを実行する。 In the polar modulation device 100 according to the first embodiment of the present invention, the digital block 101 further includes a DC / DC output control unit 1013 in addition to the signal generation unit 1011 and the offset control unit 1012. FIG. 2 is a flowchart showing the operation of the digital block 101. In FIG. 2, the digital block 101 includes a temperature information acquisition command step S201, a temperature information acquisition step S202, an offset value calculation step S203, an offset value output step S204, a correction voltage calculation step S205, and a correction voltage output step S206. And execute.
 温度情報取得命令ステップS201において、デジタルブロック101の制御部(図示せず)は、オフセット制御部1012及びDC/DC出力制御部1013に対して、温度センサ112からの温度情報Tdetを取得するように指示する。 In the temperature information acquisition command step S201, the control unit (not shown) of the digital block 101 acquires the temperature information Tdet from the temperature sensor 112 to the offset control unit 1012 and the DC / DC output control unit 1013. Instruct.
 温度情報取得ステップS202において、オフセット制御部1012及びDC/DC出力制御部1013は、温度情報取得命令ステップS201における制御部からの指示に基づいて、温度センサ112から通知された温度情報Tdetを取得する。 In the temperature information acquisition step S202, the offset control unit 1012 and the DC / DC output control unit 1013 acquire the temperature information Tdet notified from the temperature sensor 112 based on the instruction from the control unit in the temperature information acquisition command step S201. .
 オフセット値算出ステップS203において、オフセット制御部1012は、温度センサ112から通知された温度情報Tdetに基づいて、信号生成部1011によって生成された振幅信号に加算すべきオフセット値を算出する。ここで、オフセット値は、例えば、従来のポーラ変調装置900のオフセット制御部9012で算出したように、信号生成部1011によって生成された振幅信号を+1degC毎に+1mVシフトとするような値として算出される。なお、ポーラ変調装置100は、温度情報Tdetとオフセット値とを対応付けたルックアップテーブル(LUT)を予め保持しておいても構わない(例えば、図1C参照)。また、LUTにおいて、温度情報Tdetの代わりに、温度情報Tdetと、温度情報の基準値Tdet0との差分(Tdet-Tdet0)を用いてもよい。 In the offset value calculation step S203, the offset control unit 1012 calculates an offset value to be added to the amplitude signal generated by the signal generation unit 1011 based on the temperature information Tdet notified from the temperature sensor 112. Here, for example, as calculated by the offset control unit 9012 of the conventional polar modulation device 900, the offset value is calculated as a value that causes the amplitude signal generated by the signal generation unit 1011 to be shifted by +1 mV every +1 degC. The The polar modulation device 100 may hold in advance a lookup table (LUT) in which the temperature information Tdet is associated with the offset value (see, for example, FIG. 1C). Further, in the LUT, instead of the temperature information Tdet, a difference (Tdet−Tdet0) between the temperature information Tdet and the reference value Tdet0 of the temperature information may be used.
 オフセット値出力ステップS204において、オフセット制御部1012は、オフセット値算出ステップS203において算出されたオフセット値をOFDAC105に出力する。 In the offset value output step S204, the offset control unit 1012 outputs the offset value calculated in the offset value calculation step S203 to the OFDAC 105.
 一方、補正電圧算出ステップS205において、DC/DC出力制御部1013は、温度センサ112から通知された温度情報Tdetに基づいて、補正電圧Vdcdcを算出する。ここで、補正電圧Vdcdcは、温度係数k(V/degC)と、温度情報Tdet(degC)と、温度情報の基準値Tdet0(degC)とを用いて、以下の(数2)により算出される。ここで、温度情報の基準値のことを基準温度と記してもよい。
  Vdcdc=k×(Tdet-Tdet0)・・・(数2)
On the other hand, in the correction voltage calculation step S205, the DC / DC output control unit 1013 calculates the correction voltage Vdcdc based on the temperature information Tdet notified from the temperature sensor 112. Here, the correction voltage Vdcdc is calculated by the following (Equation 2) using the temperature coefficient k (V / degC), the temperature information Tdet (degC), and the reference value Tdet0 (degC) of the temperature information. . Here, the reference value of the temperature information may be described as a reference temperature.
Vdcdc = k × (Tdet−Tdet0) (Equation 2)
 補正電圧出力ステップS206において、DC/DC出力制御部1013は、補正電圧算出ステップS205において算出された補正電圧Vdcdcに応じた制御信号を第1のDAC102に出力する。 In the correction voltage output step S206, the DC / DC output control unit 1013 outputs a control signal corresponding to the correction voltage Vdcdc calculated in the correction voltage calculation step S205 to the first DAC 102.
 補正電圧Vdcdcに応じた制御信号は、第1のDAC102を介して、DC/DC108に入力される。DC/DC108は、温度情報の基準値Tdet0におけるピーク電圧Vpeak0と、補正電圧Vdcdcとに基づいて、第1及び第2のLDO109及び110に電源電圧Vbuckを供給する。ここで、上述した(数1)のピーク電圧Vpeakは、以下の(数3)により算出される。
  Vpeak=Vpeak0+Vdcdc・・・(数3)
A control signal corresponding to the correction voltage Vdcdc is input to the DC / DC 108 via the first DAC 102. The DC / DC 108 supplies the power supply voltage Vback to the first and second LDOs 109 and 110 based on the peak voltage Vpeak0 at the temperature information reference value Tdet0 and the correction voltage Vdcdc. Here, the peak voltage Vpeak of (Equation 1) described above is calculated by the following (Equation 3).
Vpeak = Vpeak0 + Vdcdc (Equation 3)
 例えば、温度情報の基準値Tdet0=+25degCとし、温度係数k=1mV/degCとした場合について、以下、具体的に説明する。なお、図10Aに示すように、温度情報の基準値(Tdet0=+25degC)であるため、温度情報の基準値Tdet0におけるピーク電圧Vpeak0=VpeakA(0.9V)となる。 For example, the temperature information reference value Tdet0 = + 25 degC and the temperature coefficient k = 1 mV / degC will be specifically described below. As shown in FIG. 10A, since the reference value of the temperature information (Tdet0 = + 25 degC), the peak voltage Vpeak0 = VpeakA (0.9 V) at the reference value Tdet0 of the temperature information.
 図10Aより、+25degCの場合、Tdet=+25degCであるため、Vdcdc=0Vとなる。ここで、補正電圧Vdcdc=0Vは、第1のDAC102を介して、DC/DC108に入力される。DC/DC108において、補正電圧Vdcdc=0Vであるため、(数1)におけるピーク電圧Vpeakを、上述したピーク電圧Vpeak0(0.9V)とする。従って、(数1)より、ピーク電圧Vpeak(0.9V)及びヘッドルーム電圧Vhr(0.2V)から、DC/DC108は、電源電圧Vbuck(1.1V)を第1及び第2のLDO109及び110に供給する。 10A, in the case of +25 degC, since Tdet = + 25 degC, Vdcdc = 0V. Here, the correction voltage Vdcdc = 0V is input to the DC / DC 108 via the first DAC 102. In the DC / DC 108, since the correction voltage Vdcdc = 0V, the peak voltage Vpeak in (Expression 1) is set to the above-described peak voltage Vpeak0 (0.9V). Therefore, from (Equation 1), from the peak voltage Vpeak (0.9 V) and the headroom voltage Vhr (0.2 V), the DC / DC 108 supplies the power supply voltage Vback (1.1 V) to the first and second LDOs 109 and 110.
 図10Bより、+125degCの場合、Tdet=+125degCであるため、Vdcdc=+0.1Vとなる。ここで、補正電圧Vdcdc=+0.1Vは、第1のDAC102を介して、DC/DC108に入力される。DC/DC108において、補正電圧Vdcdc=+0.1Vであるため、(数1)におけるピーク電圧Vpeakを、上述したピーク電圧Vpeak0(0.9V)+Vdcdc(0.1V)から、1.0Vとする。従って、(数1)より、ピーク電圧Vpeak(1.0V)及びヘッドルーム電圧Vhr(0.2V)から、DC/DC108は、電源電圧Vbuck(1.2V)を第1及び第2のLDO109及び110に供給する。 10B, in the case of +125 degC, since Tdet = + 125 degC, Vdcdc = + 0.1V. Here, the correction voltage Vdcdc = + 0.1 V is input to the DC / DC 108 via the first DAC 102. In the DC / DC 108, since the correction voltage Vdcdc = + 0.1 V, the peak voltage Vpeak in (Equation 1) is set to 1.0 V from the above-described peak voltage Vpeak0 (0.9 V) + Vdcdc (0.1 V). Therefore, from (Equation 1), from the peak voltage Vpeak (1.0 V) and the headroom voltage Vhr (0.2 V), the DC / DC 108 supplies the power supply voltage Vback (1.2 V) to the first and second LDOs 109 and 110.
 図10Cより、-25degCの場合、Tdet=-25degCであるため、Vdcdc=-0.05Vとなる。ここで、補正電圧Vdcdc=-0.05Vは、第1のDAC102を介して、DC/DC108に入力される。DC/DC108において、補正電圧Vdcdc=-0.05Vであるため、(数1)におけるピーク電圧Vpeakを、上述したピーク電圧Vpeak0(0.9V)+Vdcdc(-0.05V)から、0.85Vとする。従って、(数1)より、ピーク電圧Vpeak(0.85V)及びヘッドルーム電圧Vhr(0.2V)から、DC/DC108は、電源電圧Vbuck(1.05V)を第1及び第2のLDO109及び110に供給する。 From FIG. 10C, in the case of −25 degC, since Tdet = −25 degC, Vdcdc = −0.05V. Here, the correction voltage Vdcdc = −0.05 V is input to the DC / DC 108 via the first DAC 102. Since the correction voltage Vdcdc = −0.05 V in the DC / DC 108, the peak voltage Vpeak in (Equation 1) is 0.85 V from the above-described peak voltage Vpeak0 (0.9 V) + Vdcdc (−0.05 V). To do. Therefore, from (Equation 1), from the peak voltage Vpeak (0.85 V) and the headroom voltage Vhr (0.2 V), the DC / DC 108 supplies the power supply voltage Vback (1.05 V) to the first and second LDOs 109 and 110.
 このように、DC/DC出力制御部1013は、電力増幅器111の温度もしくは周辺温度の変化に応じて、DC/DC108が第1及び第2のLDO109及び110に供給する電源電圧Vbuckを変化させる。 As described above, the DC / DC output control unit 1013 changes the power supply voltage Vback that the DC / DC 108 supplies to the first and second LDOs 109 and 110 according to the change in the temperature of the power amplifier 111 or the ambient temperature.
 なお、補正電圧算出ステップS205において、DC/DC出力制御部1013は、上述した(数2)によって、補正電圧Vdcdcを算出したが、DC/DC出力制御部1013は、温度情報Tdetと、補正電圧Vdcdcとを対応付けたルックアップテーブル(LUT)を保持しておいても構わない(例えば、図1D参照)。また、LUTにおいて、温度情報Tdetの代わりに、温度情報Tdetと、温度情報の基準値Tdet0との差分(Tdet-Tdet0)を用いてもよい。 Note that, in the correction voltage calculation step S205, the DC / DC output control unit 1013 calculates the correction voltage Vdcdc according to the above-described (Equation 2), but the DC / DC output control unit 1013 includes the temperature information Tdet and the correction voltage. A lookup table (LUT) associated with Vdcdc may be held (see, for example, FIG. 1D). Further, in the LUT, instead of the temperature information Tdet, a difference (Tdet−Tdet0) between the temperature information Tdet and the reference value Tdet0 of the temperature information may be used.
 以上のように、本発明の第1の実施形態に係るポーラ変調装置100によれば、電力増幅器の温度もしくは周辺温度の変化に応じて、オフセット制御部1012が振幅信号に対してオフセット制御すると同時に、DC/DC出力制御部1013が補正電圧Vdcdcを制御し、DC/DC108が第1及び第2のLDO109及び110に供給する電源電圧Vbuckを可変制御することによって、良好な変調特性を確保し、かつ高効率動作を行うことができる。 As described above, according to the polar modulation device 100 according to the first embodiment of the present invention, the offset control unit 1012 performs offset control on the amplitude signal simultaneously with the change in the temperature of the power amplifier or the ambient temperature. The DC / DC output control unit 1013 controls the correction voltage Vdcdc, and the DC / DC 108 variably controls the power supply voltage Vback supplied to the first and second LDOs 109 and 110, thereby ensuring good modulation characteristics. In addition, highly efficient operation can be performed.
 なお、本実施形態に係るポーラ変調装置100において、電力増幅器111は、異種半導体層を縦積みした構成からなるヘテロ接合バイポーラトランジスタ(HBT:Heterojunction Bipolar Transister)であってもよい。HBTは、複数電極を縦方向に配置し、異種半導体層を重ね合わせて作る接合(ヘテロ接合)を利用しているため、通常構造のバイポーラトランジスタと比べて配置面積が小さい。従って、電力増幅器111は、回路規模を小さくしつつ、熱によって発生する電力増幅器の出力歪みを防止することができる。このため、本発明の第1の実施形態に係るポーラ変調装置100は、より良好な変調特性を確保することができる。また、HTBはコレクタ電極、ベース電極とエミッタ電極を縦方向に積層した構成をとるため配置面積を削減し、高価なGaAs基板サイズを小さくすることで低コスト化が図れる。 In the polar modulation device 100 according to the present embodiment, the power amplifier 111 may be a heterojunction bipolar transistor (HBT) having a configuration in which different types of semiconductor layers are vertically stacked. Since the HBT uses a junction (heterojunction) in which a plurality of electrodes are arranged in the vertical direction and different semiconductor layers are stacked, the arrangement area is small compared to a bipolar transistor having a normal structure. Therefore, the power amplifier 111 can prevent output distortion of the power amplifier caused by heat while reducing the circuit scale. For this reason, the polar modulation device 100 according to the first embodiment of the present invention can ensure better modulation characteristics. In addition, since the HTB has a configuration in which a collector electrode, a base electrode, and an emitter electrode are stacked in the vertical direction, the arrangement area can be reduced, and the cost can be reduced by reducing the size of an expensive GaAs substrate.
 なお、本実施形態において、補正電圧Vdcdcはオフセット値と同様であったが、必ずしもこれに限定されるものではなく、補正電圧Vdcdcとオフセット値とが異なる値でも構わない。 In the present embodiment, the correction voltage Vdcdc is the same as the offset value. However, the correction voltage Vdcdc is not necessarily limited to this, and the correction voltage Vdcdc may be different from the offset value.
 <第2の実施形態>
 図3Aは、本発明の第2の実施形態に係るポーラ変調装置200を示す図である。図3Aにおいて、ポーラ変調装置200は、デジタルブロック101と、第1~3のDAC102~104と、OFDAC105と、加算器106と、位相変調器107と、DC/DC108と、第1及び第2のLDO109及び110と、電力増幅器111と、温度センサ112と、乗算器201とを備える。なお、デジタルブロック101は、信号生成部1011と、オフセット制御部1012と、DC/DC出力制御部1013とを含む。図3Aにおいて、第1の実施形態と同様の構成については、同様の参照符号を付して、説明を省略する。
<Second Embodiment>
FIG. 3A is a diagram illustrating a polar modulation device 200 according to the second embodiment of the present invention. 3A, the polar modulation device 200 includes a digital block 101, first to third DACs 102 to 104, an OFDAC 105, an adder 106, a phase modulator 107, a DC / DC 108, a first and a second. LDOs 109 and 110, a power amplifier 111, a temperature sensor 112, and a multiplier 201 are provided. The digital block 101 includes a signal generation unit 1011, an offset control unit 1012, and a DC / DC output control unit 1013. In FIG. 3A, the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 なお、図3Bに示すポーラ変調装置200bのように、加算器106は、乗算器201と第2のDAC103との間に配置され、デジタル領域で振幅信号A(t)にオフセット値を加算するものであってもよい。また、図示しないが、加算器106、及び乗算器201が共に、アナログ領域に配置されていてもよい。 As in the polar modulation device 200b shown in FIG. 3B, the adder 106 is arranged between the multiplier 201 and the second DAC 103, and adds an offset value to the amplitude signal A (t) in the digital domain. It may be. Although not shown, both the adder 106 and the multiplier 201 may be arranged in the analog region.
 本発明の第2の実施形態に係るポーラ変調装置200は、乗算器201を備える点で、第1の実施形態に係るポーラ変調装置100と異なる。オフセット制御部1012は、図10Dで示したように、特定温度において、電力増幅器111の特性が標準特性から外れた特定特性の場合、乗算器201を用いて振幅信号を調整する。これにより、電力増幅器111の特性を補正する。DC/DC出力制御部1013は、標準特性からの調整値である補正係数Gdcdcを算出し、第1のDAC102に出力する。 The polar modulation device 200 according to the second embodiment of the present invention is different from the polar modulation device 100 according to the first embodiment in that a multiplier 201 is provided. As shown in FIG. 10D, the offset control unit 1012 adjusts the amplitude signal using the multiplier 201 when the characteristic of the power amplifier 111 deviates from the standard characteristic at a specific temperature. Thereby, the characteristic of the power amplifier 111 is corrected. The DC / DC output control unit 1013 calculates a correction coefficient Gdcdc, which is an adjustment value from the standard characteristics, and outputs it to the first DAC 102.
 補正係数Gdcdcは、第1のDAC102を介して、DC/DC108に入力される。DC/DC108は、特定温度において、電力増幅器111の特性が標準特性から外れた特定特性の場合、標準特性における振幅信号のピーク電圧Vpeak0と、標準特性からの調整値である補正係数Gdcdcとに基づいて、第1及び第2のLDO109及び110に電源電圧Vbuckを供給する。 The correction coefficient Gdcdc is input to the DC / DC 108 via the first DAC 102. The DC / DC 108 is based on the peak voltage Vpeak0 of the amplitude signal in the standard characteristic and the correction coefficient Gdcdc that is an adjustment value from the standard characteristic when the characteristic of the power amplifier 111 deviates from the standard characteristic at the specific temperature. Thus, the power supply voltage Vback is supplied to the first and second LDOs 109 and 110.
 ここで、補正係数Gdcdcは、温度係数j(degC-1)と、温度情報Tdet(degC)と、温度情報の基準値Tdet0(degC)とを用いて、以下の(数2)’により算出される。
  Gdcdc=j×(Tdet-Tdet0)・・・(数2)’
Here, the correction coefficient Gdcdc is calculated by the following (Equation 2) ′ using the temperature coefficient j (degC −1 ), the temperature information Tdet (degC), and the reference value Tdet0 (degC) of the temperature information. The
Gdcdc = j × (Tdet−Tdet0) (Equation 2) ′
 DC/DC108は、温度情報の基準値Tdet0におけるピーク電圧Vpeak0と、補正係数Gdcdcとに基づいて、第1及び第2のLDO109及び110に電源電圧Vbuckを供給する。ここで、上述した(数1)のピーク電圧Vpeakは、以下の(数3)’により算出される。
  Vpeak=Vpeak0×Gdcdc・・・(数3)’
The DC / DC 108 supplies the power supply voltage Vback to the first and second LDOs 109 and 110 based on the peak voltage Vpeak0 at the temperature information reference value Tdet0 and the correction coefficient Gdcdc. Here, the peak voltage Vpeak of (Equation 1) described above is calculated by the following (Equation 3) ′.
Vpeak = Vpeak0 × Gdcdc (Equation 3) ′
 例えば、温度情報の基準値Tdet0=+25degCとし、温度係数j=0.011degC-1とした場合について、以下、具体的に説明する。なお、図10Dに示すように、振幅制御電圧Vccとの切片が0.1Vであり、温度情報の基準値Tdet0=+25degCである場合、温度情報の基準値Tdet0におけるピーク電圧Vpeak0=1.0Vとなる。ここで、特定温度+125degCに変化した場合、Tdet=+125degCであるため、Gdcdc=1.1となる。その結果、Vpeakは、1.09V(=0.1V+0.9V×1.1)と算出され、Vpeakを(数1)に適用してVbuckを算出し出力する。 For example, a case where the temperature information reference value Tdet0 = + 25 degC and the temperature coefficient j = 0.111 degC −1 will be specifically described below. As shown in FIG. 10D, when the intercept with respect to the amplitude control voltage Vcc is 0.1 V and the temperature information reference value Tdet0 = + 25 degC, the peak voltage Vpeak0 at the temperature information reference value Tdet0 is 1.0 V. Become. Here, when the temperature changes to the specific temperature +125 degC, Tdet = + 125 degC, so that Gdcdc = 1.1. As a result, Vpeak is calculated to be 1.09 V (= 0.1 V + 0.9 V × 1.1), and Vback is calculated and output by applying Vpeak to (Equation 1).
 このように、DC/DC出力制御部1013は、特定温度において、電力増幅器111の特性が標準特性から外れた特定特性となる場合、当該特定特性に応じて、DC/DC108が第1及び第2のLDO109及び110に供給する電源電圧Vbuckを変化させる。なお、ポーラ変調装置200は、温度情報Tdetと補正係数Gdcdcとを対応付けたルックアップテーブル(LUT)を予め保持しておいても構わない(例えば、図3C参照)。また、LUTにおいて、温度情報Tdetの代わりに、温度情報Tdetと、温度情報の基準値Tdet0との差分(Tdet-Tdet0)を用いてもよい。 As described above, when the characteristic of the power amplifier 111 becomes a specific characteristic deviating from the standard characteristic at the specific temperature, the DC / DC output control unit 1013 causes the DC / DC 108 to change the first and second in accordance with the specific characteristic. The power supply voltage Vback supplied to the LDOs 109 and 110 is changed. The polar modulation device 200 may hold in advance a lookup table (LUT) in which the temperature information Tdet and the correction coefficient Gdcdc are associated (see, for example, FIG. 3C). Further, in the LUT, instead of the temperature information Tdet, a difference (Tdet−Tdet0) between the temperature information Tdet and the reference value Tdet0 of the temperature information may be used.
 以上のように、本発明の第2の実施形態に係るポーラ変調装置200によれば、電力増幅器111の温度もしくは周辺温度の変化に応じて、オフセット制御部1012が振幅信号に対して、乗算器201を用いてオフセット制御すると同時に、DC/DC出力制御部1013が補正係数Gdcdcを制御し、DC/DC108が第1及び第2のLDO109及び110に供給する電源電圧Vbuckを可変制御することによって、良好な変調特性を確保し、かつ高効率動作を行うことができる。 As described above, according to the polar modulation device 200 according to the second embodiment of the present invention, the offset control unit 1012 multiplies the amplitude signal with respect to the amplitude signal according to the change in the temperature of the power amplifier 111 or the ambient temperature. Simultaneously with the offset control using 201, the DC / DC output control unit 1013 controls the correction coefficient Gdcdc, and the DC / DC 108 variably controls the power supply voltage Vback supplied to the first and second LDOs 109 and 110. Good modulation characteristics can be ensured and highly efficient operation can be performed.
 なお、本発明の第2の実施形態に係るポーラ変調装置200は、製造段階における工程調整に用いることもできる。また、工程調整に用いるポーラ変調装置は、電力増幅器111の温度もしくは周辺温度の変化に応じて、DC/DC108が第1及び第2のLDO109及び110に供給する電源電圧Vbuckを可変制御するものではなく、電力増幅器111の特性(個体バラツキ)に応じて、DC/DC108が第1及び第2のLDO109及び110に供給する電源電圧Vbuckを予め調整するものであっても構わない。 Note that the polar modulation device 200 according to the second embodiment of the present invention can also be used for process adjustment in the manufacturing stage. In addition, the polar modulation device used for the process adjustment does not variably control the power supply voltage Vback supplied from the DC / DC 108 to the first and second LDOs 109 and 110 in accordance with a change in the temperature of the power amplifier 111 or the ambient temperature. Alternatively, the power supply voltage Vback supplied from the DC / DC 108 to the first and second LDOs 109 and 110 may be adjusted in advance according to the characteristics (individual variation) of the power amplifier 111.
 <第3の実施形態>
 図4Aは、本発明の第3の実施形態に係るポーラ変調装置300を備えるポーラ変調システムの構成を示す図である。図4Aにおいて、ポーラ変調装置300は、共用器(duplexer)600と、アンテナSW(antenna switch)601とを介して、アンテナ602に接続される。また、共用器600とアンテナSW601との近傍には、温度センサ603が設置されている。
<Third Embodiment>
FIG. 4A is a diagram illustrating a configuration of a polar modulation system including a polar modulation device 300 according to the third embodiment of the present invention. In FIG. 4A, polar modulator 300 is connected to antenna 602 via duplexer 600 and antenna switch (601) 601. In addition, a temperature sensor 603 is installed in the vicinity of the duplexer 600 and the antenna SW 601.
 図4Aに示すようなオープンループのポーラ変調システムでは、共用器600とアンテナSW601とでロスが発生していた。ロスを考慮してパワーを予め増加させておいても、ロスが温度により変動するので(すなわち、温度によって共用器600とアンテナSW601の特性にバラツキが発生するので)、アンテナ602端で無視できないパワー変動が発生する恐れがあった。図5Aは、共用器600で発生するロスの一例を示す図である。図5Aに示す例では、温度が上がる程、共用器600で発生するロスが増加し、ロスの増加割合も温度が+25degCの時を境に変化している。また、図示しないがアンテナSW601でも同様の傾向のロスが発生する。このため、温度上昇によりロスが増大したときにパワーが低下し、3GPP等の仕様下限を満たさなくなる恐れがあった。また、逆に、低温時にパワーが仕様上限を満たさなくなる恐れがあった。 In the open-loop polar modulation system as shown in FIG. 4A, a loss has occurred between the duplexer 600 and the antenna SW601. Even if the power is increased in consideration of the loss, since the loss varies depending on the temperature (that is, the characteristics of the duplexer 600 and the antenna SW 601 vary depending on the temperature), the power that cannot be ignored at the end of the antenna 602 There was a risk of fluctuations. FIG. 5A is a diagram illustrating an example of a loss that occurs in the duplexer 600. In the example shown in FIG. 5A, as the temperature rises, the loss generated in the duplexer 600 increases, and the rate of increase in loss also changes when the temperature is +25 degC. Although not shown, the antenna SW601 also has a similar tendency of loss. For this reason, when the loss increases due to the temperature rise, the power is lowered, and there is a possibility that the specification lower limit such as 3GPP may not be satisfied. Conversely, there is a risk that the power will not satisfy the upper limit of the specification at low temperatures.
 図5Bは、ポーラ変調システムの各部で発生する温度バラツキの原因を説明する図である。図5Bを参照して、DC/DC108が出力するVbuckには、DC/DCのオフセットエラーeODCDCが含まれる可能性がある。また、ヘッドルーム電圧Vhrには、ヘッドルーム電圧のオフセットエラーeOhrが含まれる可能性がある。また、LDO109,110が出力するVccには、LDOのゲインエラーeGLDOと、LDOのオフセットエラーeOLDOとが含まれる可能性がある。また、電力増幅器111の出力Voutには、電力増幅器のゲインエラーeGPAと、電力増幅器のオフセットエラーeOPAとが含まれる可能性がある。また、共用器600及びアンテナSW601の出力Vout2には、共用器及びアンテナSWのゲインエラーeGSDが含まれる可能性ある。このうち、第3の実施形態は、電力増幅器のゲインエラーeGPAと、電力増幅器のオフセットエラーeOPAと、共用器及びアンテナSWのゲインエラーeGSDとを補償する構成について説明する。 FIG. 5B is a diagram for explaining the cause of temperature variation occurring in each part of the polar modulation system. Referring to FIG. 5B, Vback output from DC / DC 108 may include a DC / DC offset error eO DCDC . Further, the headroom voltage Vhr may include a headroom voltage offset error eOhr. The Vcc output from the LDOs 109 and 110 may include an LDO gain error eG LDO and an LDO offset error eO LDO . Further, the output Vout of the power amplifier 111 may include a gain error eG PA of the power amplifier and an offset error eO PA of the power amplifier. Further, the output Vout2 of the duplexer 600 and the antenna SW601 are likely to include the gain errors eG SD duplexer and antenna SW. Among these, the third embodiment describes a configuration that compensates for the gain error eG PA of the power amplifier, the offset error eO PA of the power amplifier, and the gain error eG SD of the duplexer and the antenna SW.
 第3の実施形態に係るポーラ変調装置300は、以下の構成により、電力増幅部111の温度特性に加えて、共用器600及びアンテナSW601の温度特性を補正し、アンテナ602端でのパワー変動を防止する。ポーラ変調装置300は、デジタルブロック301と、第1~3のDAC102~104と、OFDAC105と、加算器106と、位相変調器107と、DC/DC108と、第1及び第2のLDO109及び110と、電力増幅器111と、温度センサ112と、乗算器201と、ルックアップテーブル(LUT)302とを備える。なお、デジタルブロック301は、信号生成部1011と、オフセット制御部3012と、DC/DC出力制御部3013とを含む。図4Aにおいて、第1及び第2の実施形態と同様の構成については、同様の参照符号を付して、説明を省略する。 The polar modulation device 300 according to the third embodiment corrects the temperature characteristics of the duplexer 600 and the antenna SW 601 in addition to the temperature characteristics of the power amplifying unit 111 with the following configuration, and performs power fluctuation at the end of the antenna 602. To prevent. The polar modulation device 300 includes a digital block 301, first to third DACs 102 to 104, an OFDAC 105, an adder 106, a phase modulator 107, a DC / DC 108, first and second LDOs 109 and 110, , A power amplifier 111, a temperature sensor 112, a multiplier 201, and a lookup table (LUT) 302. The digital block 301 includes a signal generation unit 1011, an offset control unit 3012, and a DC / DC output control unit 3013. In FIG. 4A, the same components as those in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 なお、図4Bに示すポーラ変調装置300bのように、加算器106は、乗算器201と第2のDAC103との間に配置され、デジタル領域で振幅信号A(t)にオフセット値を加算するものであってもよい。また、図示しないが、加算器106、及び乗算器201が共に、アナログ領域に配置されていてもよい。 4B, the adder 106 is disposed between the multiplier 201 and the second DAC 103, and adds an offset value to the amplitude signal A (t) in the digital domain. It may be. Although not shown, both the adder 106 and the multiplier 201 may be arranged in the analog region.
 デジタルブロック301において、信号生成部1011は、振幅信号及び位相信号を生成する。オフセット制御部3012は、特定温度において、アンテナ602からの変調信号の振幅レベルVout2の特性が標準特性から外れた特定特性の場合、乗算器201及び加算器106を用いて振幅信号を調整する。具体的には、オフセット制御部3012は、温度センサ112から通知された温度情報Tdetに加えて、温度センサ603から通知された温度情報Tdswに基づいて、乗算器201に設定する乗算係数aと、加算器106に設定するオフセット値bとを算出する。ここで、温度センサ112は、電力増幅器111の温度もしくは周辺温度を測定し、測定した温度情報Tdetをデジタルブロック301に通知している。また、温度センサ603は、共用器600とアンテナSW601との温度、もしくは周辺温度を測定し、測定した温度情報Tdet_SDをデジタルブロック301に通知している。なお、共用器600とアンテナSW601との温度は、ほとんど差がないことを前提としている。 In the digital block 301, the signal generation unit 1011 generates an amplitude signal and a phase signal. The offset control unit 3012 adjusts the amplitude signal using the multiplier 201 and the adder 106 when the characteristic of the amplitude level Vout2 of the modulation signal from the antenna 602 deviates from the standard characteristic at the specific temperature. Specifically, the offset control unit 3012, based on the temperature information Tdsw notified from the temperature sensor 603 in addition to the temperature information Tdet notified from the temperature sensor 112, a multiplication coefficient a set in the multiplier 201, An offset value b set in the adder 106 is calculated. Here, the temperature sensor 112 measures the temperature of the power amplifier 111 or the ambient temperature, and notifies the digital block 301 of the measured temperature information Tdet. The temperature sensor 603 measures the temperature of the duplexer 600 and the antenna SW 601 or the ambient temperature, and notifies the digital block 301 of the measured temperature information Tdet_SD. It is assumed that there is almost no difference in temperature between duplexer 600 and antenna SW601.
 ここで、温度情報の基準値を室温とし、Tdet0=+25degC、Tdet0_SD=+25degCとする。このとき、アンテナ602からの変調信号の振幅レベルVout2は、共用器600とアンテナSW601での減衰率nと、電力増幅器111の出力である変調信号の振幅レベルVoutとを用いて、(数4)により表される。また、電力増幅器を飽和領域にて使用した場合の、電源電圧に対する出力変調信号の振幅レベルVoutの関係を、その0次成分(オフセットOPA)と、1次成分(増幅率m)のみを用いて簡易的に表すと、(数5)のようになる。また、Vccは、LDO109,110の増幅率hを用いて、(数6)により表される。また、A(t)’は、乗算係数aと、オフセット値bとを用いて、(数7)により表される。
  Vout2=n・Vout ・・・(数4)
  Vout=m・(Vcc-OPA) ・・・(数5)
  Vcc=h・A(t)’  ・・・(数6)
  A(t)’=a・A(t)+b ・・・(数7)
Here, the reference value of the temperature information is room temperature, and Tdet0 = + 25 degC and Tdet0_SD = + 25 degC. At this time, the amplitude level Vout2 of the modulation signal from the antenna 602 is obtained by using the attenuation factor n in the duplexer 600 and the antenna SW601 and the amplitude level Vout of the modulation signal that is the output of the power amplifier 111 (Equation 4). Is represented by In addition, when the power amplifier is used in the saturation region, the relationship of the amplitude level Vout of the output modulation signal with respect to the power supply voltage is expressed by using only the zero-order component (offset O PA ) and the first-order component (amplification factor m). In simple terms, (Expression 5) is obtained. Vcc is expressed by (Equation 6) using the amplification factor h of the LDOs 109 and 110. A (t) ′ is expressed by (Equation 7) using the multiplication coefficient a and the offset value b.
Vout2 = n · Vout (Expression 4)
Vout = m · (Vcc−O PA ) (Expression 5)
Vcc = h · A (t) ′ (Expression 6)
A (t) ′ = a · A (t) + b (Expression 7)
 また、A(t)’は、電力増幅器111、共用器600及びアンテナSW601の温度変化を考慮すると、(数8)により表される。ここで、(数8)に用いられる、係数(補正値)cGPA、cGSD、cOPAは、(数9)~(数11)により表される。ただし、CGPAは、電力増幅器111の温度バラツキに起因する、電力増幅器111のゲインの補償係数である。CGSDは、共用器600及びアンテナSW601の温度バラツキに起因する、共用器600及びアンテナSW601のゲインの補償係数である。COPAは、電力増幅器111の温度バラツキに起因する、電力増幅器111のオフセットの補償係数である。
  A(t)’=cGPA×cGSD×A(t)+cOPA  ・・・(数8)
  cGPA=1/eGPA
      =CGPA×(Tdet-Tdet0)  ・・・(数9)
  cGSD=1/eGSD
     =CGSD×(Tdet_SD-Tdet0_SD)  ・・(数10)
  cOPA=-1/h×eOPA
     =1/h×COPA×(Tdet-Tdet0) ・・(数11)
Further, A (t) ′ is expressed by (Equation 8) in consideration of temperature changes of the power amplifier 111, the duplexer 600, and the antenna SW601. Here, the coefficients (correction values) cG PA , cG SD , and cO PA used in (Equation 8) are expressed by (Equation 9) to (Equation 11). Here, C GPA is a gain compensation coefficient of the power amplifier 111 due to temperature variation of the power amplifier 111. C GSD is a compensation coefficient of the gain of the duplexer 600 and the antenna SW601 due to the temperature variation of the duplexer 600 and the antenna SW601. C OPA is a compensation coefficient for offset of the power amplifier 111 caused by temperature variation of the power amplifier 111.
A (t) ′ = cG PA × cG SD × A (t) + cO PA (Equation 8)
cG PA = 1 / eG PA
= C GPA x (Tdet-Tdet0) (Equation 9)
cG SD = 1 / eG SD
= C GSD × (Tdet_SD−Tdet0_SD) (Equation 10)
cO PA = -1 / h × eO PA
= 1 / h x C OPA x (Tdet-Tdet0) (Equation 11)
 次に、(数8)~(数11)を用いて、(数7)の乗算係数aと、オフセット値bとを算出すると、乗算係数aは(数12)を用いて、オフセット値bは(数13)を用いて表すことができる。
  a=cGSD×cGPA  ・・・(数12)
  b=cOPA      ・・・(数13)
Next, when the multiplication coefficient a and the offset value b of (Expression 7) are calculated using (Expression 8) to (Expression 11), the multiplication coefficient a is calculated using (Expression 12) and the offset value b is (Expression 13) can be used.
a = cG SD × cG PA (Equation 12)
b = cO PA (Expression 13)
 LUT302は、電力増幅器111のゲインの補償係数CGPAと、電力増幅器111のオフセットの温度補償計数COPAと、共用器600及びアンテナSW601のゲインの補償係数CGSDとを予め格納する(例えば、図6A参照)。なお、補償係数CGPA、COPA、CGSDは、温度情報に応じて変化するものであってもよい(例えば、図6B参照)。これは、図5に示すように、共用器600及びアンテナSW601等で発生するロスの増加割合が、温度に応じて変化するためである。図6Bを参照して、オフセット制御部3012は、温度センサ112からの温度情報Tdet_SDが室温未満のときに補償係数CGPA1、OPA1を使用し、温度センサ603からの温度情報Tdet_SDが室温未満のときに補償係数CGSD1を使用する。また、温度センサ112からの温度情報Tdet_SDが室温以上のときに補償係数CGPA2、OPA2を使用し、温度センサ603からの温度情報Tdet_SDが室温以上のときに補償係数CGSD2を使用する。 The LUT 302 stores in advance a compensation coefficient C GPA for the gain of the power amplifier 111, a temperature compensation coefficient C OPA for the offset of the power amplifier 111, and a compensation coefficient C GSD for the gain of the duplexer 600 and the antenna SW601 (for example, FIG. 6A). Note that the compensation coefficients C GPA , C OPA , and C GSD may change according to the temperature information (see, for example, FIG. 6B). This is because, as shown in FIG. 5, the rate of increase in loss generated in the duplexer 600, the antenna SW601, and the like changes according to the temperature. Referring to FIG. 6B, offset control unit 3012 uses compensation coefficients C GPA1 and C OPA1 when temperature information Tdet_SD from temperature sensor 112 is below room temperature, and temperature information Tdet_SD from temperature sensor 603 is below room temperature. Sometimes the compensation factor C GSD1 is used. The temperature information Tdet_SD from the temperature sensor 112 using a compensation coefficient C GPA2, C OPA2 at room temperature or higher temperature information Tdet_SD from the temperature sensor 603 uses the compensation factor C GSD2 at room temperature or higher.
 ここで、電力増幅器111と、共用器600及びアンテナSW601との温度変化を考慮すると、電源電圧Vbuckは、(数14)により補正される。
 Vbuck=Gdcdc×Vpeak0+Vdcdc+Vhr
                      ・・・(数14)
Here, in consideration of temperature changes of the power amplifier 111, the duplexer 600, and the antenna SW601, the power supply voltage Vback is corrected by (Equation 14).
Vback = Gdcdc × Vpeak0 + Vdcdc + Vhr
(Equation 14)
 また、DC/DC出力制御部3013は、アンテナ602からの変調信号の振幅レベルVout2の特性が標準特性から外れた特定特性の場合、標準特性からの調整値である補正係数Gdcdc、及び補正電圧Vdcdcを算出し、第1のDAC102に出力する。ここで、補正係数Gdcdc、及び補正電圧Vdcdcは、(数15)及び(数16)から算出される。また、(数12)及び(数13)より、補正係数Gdcdc、及び補正電圧Vdcdcは、乗算係数aとオフセット値bとを用いて(数17)及び(数18)のように表される。
 Gdcdc = cGPA×cGSD ・・・(数15)
 Vdcdc = h×cOPA ・・・(数16)
 Gdcdc = a ・・・(数17)
 Vdcdc = h×b ・・・(数18)
Further, the DC / DC output control unit 3013, when the characteristic of the amplitude level Vout2 of the modulation signal from the antenna 602 is a specific characteristic that deviates from the standard characteristic, the correction coefficient Gdcdc that is an adjustment value from the standard characteristic, and the correction voltage Vdcdc. Is calculated and output to the first DAC 102. Here, the correction coefficient Gdcdc and the correction voltage Vdcdc are calculated from (Equation 15) and (Equation 16). From (Equation 12) and (Equation 13), the correction coefficient Gdcdc and the correction voltage Vdcdc are expressed as (Equation 17) and (Equation 18) using the multiplication coefficient a and the offset value b.
Gdcdc = cGPA × cGSD (Equation 15)
Vdcdc = h × cOPA (Expression 16)
Gdcdc = a (Expression 17)
Vdcdc = h × b (Equation 18)
 なお、上述した説明では、共用器600とアンテナSW601との温度は、ほとんど差がないことを前提としたが、共用器600とアンテナSW601との温度に差が想定される場合は、ポーラ変調システムは、共用器600の温度又は周辺温度を測定する温度センサ6031と、アンテナSW601の温度又は周辺温度を測定する温度センサ6032とを別々に備えることも可能である(例えば、図4C参照)。この場合、オフセット制御部3012は、温度センサ112から通知された温度情報Tdetと、温度センサ6031から通知された温度情報Tdet_Dと、温度センサ6032から通知された温度情報Tdet_Sとに基づいて、乗算器201に設定する乗算係数aと、加算器106に設定するオフセット値bとを算出することができる。また、LUT302は、電力増幅器111のゲインの補償係数CGPAと、共用器600のゲインの補償係数CGSD_Dと、アンテナSW601のゲインの補償係数CGSD_Sとを予め格納してもよい(例えば、図6C参照)。 In the above description, it is assumed that there is almost no difference in temperature between duplexer 600 and antenna SW601. However, when a temperature difference between duplexer 600 and antenna SW601 is assumed, a polar modulation system is used. Can also include a temperature sensor 6031 that measures the temperature of the duplexer 600 or the ambient temperature and a temperature sensor 6032 that measures the temperature of the antenna SW 601 or the ambient temperature (see, for example, FIG. 4C). In this case, the offset control unit 3012 uses the multiplier based on the temperature information Tdet notified from the temperature sensor 112, the temperature information Tdet_D notified from the temperature sensor 6031, and the temperature information Tdet_S notified from the temperature sensor 6032. The multiplication coefficient a set to 201 and the offset value b set to the adder 106 can be calculated. Further, LUT 302 includes a compensation coefficient C GPA in the gain of the power amplifier 111, a compensation coefficient C GSD_D gain duplexer 600 may also store the compensation coefficients C GSD_S gain antenna SW601 advance (for example, FIG. 6C).
 このように、第3の実施形態に係るポーラ変調装置300は、電力増幅器111、共用器600及びアンテナSW601の温度が変化したときに、乗算器201に乗算係数aを設定し、加算器106にオフセット値bを設定することで、電力増幅部111の温度特性に加えて、共用器600及びアンテナSW601の温度特性を補正し、アンテナ602端でのパワー変動を防止することができる。 As described above, the polar modulation device 300 according to the third embodiment sets the multiplication coefficient a in the multiplier 201 when the temperature of the power amplifier 111, the duplexer 600, and the antenna SW601 changes, and the adder 106 By setting the offset value b, in addition to the temperature characteristics of the power amplifier 111, the temperature characteristics of the duplexer 600 and the antenna SW601 can be corrected, and power fluctuation at the end of the antenna 602 can be prevented.
 (第4の実施形態)
 第4の実施形態は、図5Bを用いて説明した、共用器及びアンテナSWのゲインエラーeGSDと、DC/DCのオフセットエラーeODCDCと、ヘッドルーム電圧のオフセットエラーeOhrと、LDOのゲインエラーeGLDOと、LDOのオフセットエラーeOLDOと、電力増幅器のゲインエラーeGPAと、電力増幅器のオフセットエラーeOPAとを補償する構成である。以下では、ポーラ変調装置400が、これらの全てのエラーを補償する構成を説明するが、これらのエラーの内の1つ、又は複数の組み合わせのいずれかを補償する構成であってもよい。
(Fourth embodiment)
In the fourth embodiment, the duplexer and antenna SW gain error eG SD , DC / DC offset error eO DCDC , headroom voltage offset error eOhr, and LDO gain error described with reference to FIG. 5B are used. This configuration compensates for an eG LDO , an LDO offset error eO LDO , a power amplifier gain error eG PA, and a power amplifier offset error eO PA . In the following, a configuration in which the polar modulation device 400 compensates for all these errors will be described. However, a configuration in which one of these errors or a combination of a plurality of these errors is compensated may be employed.
 図7Aは、本発明の第4の実施形態に係るポーラ変調装置400を備えるポーラ変調システムの構成を示す図である。図7Aにおいて、ポーラ変調装置400は、デジタルブロック401と、第1~3のDAC102~104と、OFDAC105と、加算器106と、位相変調器107と、DC/DC108と、第1及び第2のLDO109及び110と、電力増幅器111と、温度センサ112と、温度センサ403と、乗算器201と、LUT402とを備える。なお、デジタルブロック401は、信号生成部1011と、オフセット制御部4012と、DC/DC出力制御部3013とを含む。図7Aにおいて、第3の実施形態と同様の構成については、同様の参照符号を付して、説明を省略する。 FIG. 7A is a diagram illustrating a configuration of a polar modulation system including a polar modulation device 400 according to the fourth embodiment of the present invention. In FIG. 7A, a polar modulation device 400 includes a digital block 401, first to third DACs 102 to 104, an OFDAC 105, an adder 106, a phase modulator 107, a DC / DC 108, a first and a second. LDOs 109 and 110, a power amplifier 111, a temperature sensor 112, a temperature sensor 403, a multiplier 201, and an LUT 402 are provided. The digital block 401 includes a signal generation unit 1011, an offset control unit 4012, and a DC / DC output control unit 3013. In FIG. 7A, the same components as those in the third embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 なお、図7Bに示すポーラ変調装置400bのように、加算器106は、乗算器201と第2のDAC103との間に配置され、デジタル領域で振幅信号A(t)にオフセット値を加算するものであってもよい。また、図示しないが、加算器106、及び乗算器201が共に、アナログ領域に配置されていてもよい。 7B, the adder 106 is disposed between the multiplier 201 and the second DAC 103, and adds an offset value to the amplitude signal A (t) in the digital domain. It may be. Although not shown, both the adder 106 and the multiplier 201 may be arranged in the analog region.
 本発明の第4の実施形態に係るポーラ変調装置400は、第3の実施形態と比較して、温度センサ403をさらに備える。温度センサ403は、第1及び第2のLDO109及び110の温度、もしくは周辺温度を測定し、測定した温度情報Tdet_LDOをデジタルブロック401に通知している。なお、第1のLDO109と第2のLDO110との温度は、ほとんど差がないことを前提としている。 The polar modulation device 400 according to the fourth embodiment of the present invention further includes a temperature sensor 403 as compared with the third embodiment. The temperature sensor 403 measures the temperature of the first and second LDOs 109 and 110 or the ambient temperature, and notifies the digital block 401 of the measured temperature information Tdet_LDO. It is assumed that there is almost no difference in temperature between the first LDO 109 and the second LDO 110.
 デジタルブロック401において、信号生成部1011は、振幅信号及び位相信号を生成する。オフセット制御部4012は、特定温度において、アンテナ602からの変調信号の振幅レベルVout2の特性が標準特性から外れた特定特性の場合、乗算器201及び加算器106を用いて振幅信号を調整する。具体的には、オフセット制御部4012は、温度センサ112から通知された温度情報Tdetと、温度センサ603から通知された温度情報Tdet_SDに加えて、温度センサ403から通知されたTdet_LDOに基づいて、乗算器201に設定する乗算係数aと、加算器106に設定するオフセット値bとを算出する。 In the digital block 401, the signal generation unit 1011 generates an amplitude signal and a phase signal. The offset control unit 4012 adjusts the amplitude signal using the multiplier 201 and the adder 106 when the characteristic of the amplitude level Vout2 of the modulation signal from the antenna 602 deviates from the standard characteristic at the specific temperature. Specifically, the offset control unit 4012 performs multiplication based on Tdet_LDO notified from the temperature sensor 403 in addition to temperature information Tdet notified from the temperature sensor 112 and temperature information Tdet_SD notified from the temperature sensor 603. The multiplication coefficient a set in the unit 201 and the offset value b set in the adder 106 are calculated.
 温度情報の基準値を室温とし、Tdet0=+25degC、Tdet0_SD=+25degC、Tdet0_LDO=+25degCとする。このときも、上記の(数4)~(数7)の関係が成立する。また、A(t)’は、電力増幅器111、共用器600及びアンテナSW601、及びLDO109,110の温度変化を考慮すると、(数19)により表される。ただし、(数19)で用いられる、係数cGPA、cGSD、cOPAは、上述した(数9)~(数11)により表される。また、係数(補正値)cGLDO、及びcOLDOは、(数20)~(数21)により表される。ここで、CGLDOは、LDO109,110の温度バラツキに起因する、LDO109,110のゲインの補償係数である。COLDOは、LDO109,110の温度バラツキに起因する、LDO109,110のオフセットの補償係数である。
  A(t)’=cGPA×cGSD×cGLDO×A(t)+cOPA+cOLDO
                         ・・・(数19)
  cGLDO=1/eGLDO
      =CGLDO×(Tdet_LDO-Tdet0_LDO) ・・(数20)
  cOLDO=-1/h×eOLDO
      =1/h×COLDO×(Tdet_LDO-Tdet0_LDO) ・・(数21)
The reference value of the temperature information is room temperature, and Tdet0 = + 25 degC, Tdet0_SD = + 25 degC, and Tdet0_LDO = + 25 degC. Also at this time, the relationship of the above (Equation 4) to (Equation 7) is established. Further, A (t) ′ is expressed by (Equation 19) in consideration of temperature changes of the power amplifier 111, the duplexer 600, the antenna SW601, and the LDOs 109 and 110. However, the coefficients cG PA , cG SD , and cO PA used in (Equation 19) are expressed by the above (Equation 9) to (Equation 11). The coefficients (correction values) cG LDO and cO LDO are expressed by (Equation 20) to (Equation 21). Here, C GLDO is a gain compensation coefficient of the LDOs 109 and 110 caused by temperature variations of the LDOs 109 and 110. C OLDO is a compensation coefficient for offset of the LDOs 109 and 110 caused by temperature variations of the LDOs 109 and 110.
A (t) ′ = cG PA × cG SD × cG LDO × A (t) + cO PA + cO LDO
(Equation 19)
cG LDO = 1 / eG LDO
= C GLDO x (Tdet_LDO-Tdet0_LDO) (Equation 20)
cO LDO = -1 / h × eO LDO
= 1 / h x C OLDO x (Tdet_LDO-Tdet0_LDO) (Equation 21)
 次に、(数9)~(数11)、及び(数19)~(数21)を用いて、(数7)の乗算係数aと、オフセット値bとを算出すると、乗算係数aは(数22)を用いて、オフセット値bは(数23)を用いて表すことができる。
  a=cGSD×cGPA×cGLDO  ・・・(数22)
  b=cOLDO+cOPA   ・・・(数23)
Next, when the multiplication coefficient a and the offset value b of (Equation 7) are calculated using (Equation 9) to (Equation 11) and (Equation 19) to (Equation 21), the multiplication coefficient a is ( Using equation (22), the offset value b can be expressed using equation (23).
a = cG SD × cG PA × cG LDO (Expression 22)
b = cO LDO + cO PA (Expression 23)
 LUT402は、電力増幅器111のゲインの補償係数CGPAと、電力増幅器111のオフセットの温度補償計数COPAと、共用器600及びアンテナSW601のゲインの補償係数CGSDと、LDO109及び110のゲインの補償係数CGLDOと、LDO109,110のオフセットの補償係数COLDOとを予め格納する(例えば、図8A参照)。なお、補償係数CGPA、COPA、CGSD、CGLDO、COLDOは、温度情報に応じて変化するものであってもよい(例えば、図8B参照)。これは、図5に示すように、共用器600及びアンテナSW601等で発生するロスの増加割合が、温度に応じて変化するためである。図8Bを参照して、オフセット制御部4012は、温度センサ112からの温度情報Tdetが室温未満のときに補償係数CGPA1、COPA1を使用し、温度センサ603からの温度情報Tdet_SDが室温未満のときに補償係数CGSD1を使用し、温度センサ403からの温度情報Tdet_LDOが室温未満のときに補償係数CGLDO1、COLDO1を使用する。また、温度センサ112からの温度情報Tdetが室温以上のときに補償係数CGPA2、COPA2を使用し、温度センサ603からの温度情報Tdet_SDが室温以上のときに補償係数CGSD2を使用し、温度センサ403からの温度情報Tdet_LDOが室温以上のときに補償係数CGLDO2、COLDO2を使用する。 The LUT 402 includes a gain compensation coefficient C GPA for the power amplifier 111, a temperature compensation coefficient C OPA for the offset of the power amplifier 111, a gain compensation coefficient C GSD for the duplexer 600 and the antenna SW 601, and gain compensation for the LDOs 109 and 110. and the coefficient C GLDO, previously stores a compensation factor C OLDO offset LDO109,110 (e.g., see FIG. 8A). Note that the compensation coefficients C GPA , C OPA , C GSD , C GLDO , and C OLDO may change according to the temperature information (see, for example, FIG. 8B). This is because, as shown in FIG. 5, the rate of increase in loss generated in the duplexer 600, the antenna SW601, and the like changes according to the temperature. Referring to FIG. 8B, offset control unit 4012 uses compensation coefficients C GPA1 and C OPA1 when temperature information Tdet from temperature sensor 112 is below room temperature, and temperature information Tdet_SD from temperature sensor 603 is below room temperature. Sometimes the compensation coefficient C GSD1 is used, and when the temperature information Tdet_LDO from the temperature sensor 403 is less than room temperature, the compensation coefficients C GLDO1 and C OLDDO1 are used. The temperature information Tdet will use the compensation factor C GPA2, C OPA2 at least room temperature from the temperature sensor 112, temperature information Tdet_SD from the temperature sensor 603 using a compensation coefficient C GSD2 at room temperature or higher temperatures When the temperature information Tdet_LDO from the sensor 403 is equal to or higher than room temperature, the compensation coefficients CGLDO2 and COLDO2 are used.
 ここで、電力増幅器111、共用器600及びアンテナSW601、LDO109,110の温度変化を考慮すると、電源電圧Vbuckは、(数24)により補正される。
 Vbuck=Gdcdc×Vpeak0+Vdcdc+Vhr
                      ・・・(数24)
Here, in consideration of temperature changes of the power amplifier 111, the duplexer 600, the antenna SW601, and the LDOs 109 and 110, the power supply voltage Vback is corrected by (Equation 24).
Vback = Gdcdc × Vpeak0 + Vdcdc + Vhr
(Equation 24)
 また、DC/DC出力制御部4013は、アンテナ602からの変調信号の振幅レベルVout2の特性が標準特性から外れた特定特性の場合、標準特性からの調整値である補正係数Gdcdc及び補正電圧Vdcdcを算出し、第1のDAC102に出力する。ここで、補正係数Gdcdc及び補正電圧Vdcdcは、第3の実施形態で説明したように(数25)及び(数26)から算出可能である。また、LDO109、110の温度バラツキは、(数22)、(数23)を用いて加算器106と乗算器201にて補正されるため、LDO109、110の温度バラツキによって、LDO出力である振幅信号のピーク電圧Vpeakは変化しない。そのため、LDO109、110の温度バラツキに起因して、電源電圧Vbuckと振幅信号のピーク電圧Vpeakとの差分値であるヘッドルーム電圧Vhrが変わることがないため、補正係数Gdcdc及び補正電圧Vdcdcの補正は実施する必要がない。
 Gdcdc = cGPA×cGSD ・・・(数25)
 Vdcdc = cODCDC+cOhr+h×cOPA ・・・(数26)
Also, the DC / DC output control unit 4013 obtains the correction coefficient Gdcdc and the correction voltage Vdcdc, which are adjustment values from the standard characteristic, when the characteristic of the amplitude level Vout2 of the modulation signal from the antenna 602 is out of the standard characteristic. Calculate and output to the first DAC 102. Here, the correction coefficient Gdcdc and the correction voltage Vdcdc can be calculated from (Equation 25) and (Equation 26) as described in the third embodiment. Further, since the temperature variations of the LDOs 109 and 110 are corrected by the adder 106 and the multiplier 201 using (Equation 22) and (Equation 23), the temperature signal of the LDOs 109 and 110 causes an amplitude signal that is an LDO output. The peak voltage Vpeak does not change. For this reason, the headroom voltage Vhr, which is the difference between the power supply voltage Vback and the peak voltage Vpeak of the amplitude signal, does not change due to the temperature variation of the LDOs 109 and 110, so that the correction coefficient Gdcdc and the correction voltage Vdcdc are corrected. There is no need to implement.
Gdcdc = cG PA × cG SD (Equation 25)
Vdcdc = cO DCDC + cO hr + h × cO PA (Equation 26)
 ただし、DC/DC108のオフセット値cODCDCは、DC/DCのオフセットエラーeODCDCを用いて、(数27)で表される。また、ヘッドルーム電圧のオフセット値cOhrは、ヘッドルーム電圧のオフセットエラーeOhrを用いて、(数28)で表される。
 cODCDC=-eODCDC  ・・(数27)
 cOhr=-eOhr  ・・(数28)
However, the offset value cO DCDC of the DC / DC 108 is expressed by (Expression 27) using the DC / DC offset error eO DCDC . The offset value cO hr of the headroom voltage is expressed by (Equation 28) using the offset error eOhr of the headroom voltage.
cO DCDC = −eO DCDC (Equation 27)
cO hr = −eOhr (Equation 28)
 このように、第4の実施形態に係るポーラ変調装置400は、電力増幅部111の温度特性、共用器600及びアンテナSW601の温度特性に加えて、LDO109及び110の温度特性を補正し、アンテナ602端でのパワー変動を防止することができる。 As described above, the polar modulation device 400 according to the fourth embodiment corrects the temperature characteristics of the LDOs 109 and 110 in addition to the temperature characteristics of the power amplifying unit 111 and the temperature characteristics of the duplexer 600 and the antenna SW 601, and the antenna 602. The power fluctuation at the end can be prevented.
 本発明は、ポーラ変調装置を用いた無線送信機の電源制御方法及び電源制御装置等に有用であり、特に、高周波信号の送受信を行うバイポーラトランジスタを用いた装置(例えば、携帯電話端末)等に利用可能であり、低歪み、かつ高効率動作を実現したい場合等に適している。 INDUSTRIAL APPLICABILITY The present invention is useful for a power control method and a power control device for a radio transmitter using a polar modulation device, and particularly for a device using a bipolar transistor that transmits and receives a high-frequency signal (for example, a mobile phone terminal). It can be used, and is suitable for the case where low distortion and high efficiency operation are desired.
100、200、300、400、900  ポーラ変調装置
101、301、401、901  デジタルブロック
102~104、902~904  DAC
105、905  OFDAC
106、906  加算器
107、907  位相変調器
108、908  DC/DC
109、110、909、910  LDO
111、911  電力増幅器
112、403、603、912  温度センサ
1011、9011  信号生成部
1012、3012、4012、9012  オフセット制御部
1013、3013、4013  DC/DC出力制御部
201  乗算器
302、402 LUT
600  共用器
601  アンテナSW
602  アンテナ
100, 200, 300, 400, 900 Polar modulator 101, 301, 401, 901 Digital block 102-104, 902-904 DAC
105, 905 OFDAC
106,906 Adder 107,907 Phase modulator 108,908 DC / DC
109, 110, 909, 910 LDO
111, 911 Power amplifier 112, 403, 603, 912 Temperature sensor 1011, 9011 Signal generation unit 1012, 3012, 4012, 9012 Offset control unit 1013, 3013, 4013 DC / DC output control unit 201 Multiplier 302, 402 LUT
600 Duplexer 601 Antenna SW
602 antenna

Claims (25)

  1.  ポーラ変調装置であって、
     入力信号から振幅信号と位相信号とを生成する信号生成部と、
     前記振幅信号に基づいた振幅信号電圧を出力するLDOリニアレギュレータと、
     前記位相信号を位相変調する位相変調部と、
     前記LDOリニアレギュレータから供給された振幅信号電圧を電源電圧として、前記位相変調された位相信号を振幅変調して変調信号を生成する電力増幅器と、
     前記電力増幅器の温度もしくは周辺温度を測定し、温度情報として出力する温度センサと、
     前記温度情報に応じて、前記LDOリニアレギュレータを駆動させる電源電圧を制御する制御信号を出力するDC/DC出力制御部と、
     前記制御信号に基づいた電源電圧を、前記LDOリニアレギュレータに供給するDC/DCコンバータとを備える、ポーラ変調装置。
    A polar modulation device,
    A signal generator that generates an amplitude signal and a phase signal from the input signal;
    An LDO linear regulator that outputs an amplitude signal voltage based on the amplitude signal;
    A phase modulation unit for phase modulating the phase signal;
    A power amplifier that generates a modulated signal by amplitude-modulating the phase-modulated phase signal, using the amplitude signal voltage supplied from the LDO linear regulator as a power supply voltage;
    A temperature sensor that measures the temperature or ambient temperature of the power amplifier and outputs the temperature information; and
    A DC / DC output control unit that outputs a control signal for controlling a power supply voltage for driving the LDO linear regulator according to the temperature information;
    A polar modulation device comprising: a DC / DC converter that supplies a power supply voltage based on the control signal to the LDO linear regulator.
  2.  前記ポーラ変調装置は、
      前記温度情報に応じて、前記振幅信号に加算するオフセット値を算出するオフセット制御部と、
      前記信号生成部で生成された前記振幅信号に、前記オフセット制御部が算出した前記オフセット値を加算する加算器とをさらに備えることを特徴とする、請求項1に記載のポーラ変調装置。
    The polar modulator is
    An offset control unit that calculates an offset value to be added to the amplitude signal according to the temperature information;
    The polar modulation device according to claim 1, further comprising an adder that adds the offset value calculated by the offset control unit to the amplitude signal generated by the signal generation unit.
  3.  前記オフセット制御部は、前記電力増幅器の温度バラツキに起因するオフセットの補償係数と、前記温度情報の基準温度からの差分とを乗算することで、前記振幅信号に加算するオフセット値を算出することを特徴とする、請求項2に記載のポーラ変調装置。 The offset control unit calculates an offset value to be added to the amplitude signal by multiplying an offset compensation coefficient caused by temperature variation of the power amplifier by a difference from a reference temperature of the temperature information. The polar modulation device according to claim 2, characterized in that it is characterized in that:
  4.  前記ポーラ変調装置は、前記温度情報と前記振幅信号に加算するオフセット値とを対応付けて記憶したLUTをさらに備え、
     前記オフセット制御部は、前記温度情報に応じて、前記LUTから前記振幅信号に加算するオフセット値を算出することを特徴とする、請求項2に記載のポーラ変調装置。
    The polar modulator further includes an LUT that stores the temperature information and an offset value to be added to the amplitude signal in association with each other,
    The polar modulation device according to claim 2, wherein the offset control unit calculates an offset value to be added to the amplitude signal from the LUT according to the temperature information.
  5.  前記DC/DC出力制御部は、前記オフセット値に応じて、前記LDOリニアレギュレータを駆動させる電源電圧を補正する補正電圧を算出し、前記温度情報が基準温度であるときの前記振幅信号のピーク電圧に、前記補正電圧と、前記LDOリニアレギュレータのヘッドルーム電圧とを加算することで、前記制御信号を算出し、
     前記DC/DCコンバータは、前記制御信号に基づいた電源電圧を、前記LDOリニアレギュレータに供給することを特徴とする、請求項2に記載のポーラ変調装置。
    The DC / DC output control unit calculates a correction voltage for correcting a power supply voltage for driving the LDO linear regulator according to the offset value, and a peak voltage of the amplitude signal when the temperature information is a reference temperature. In addition, the control signal is calculated by adding the correction voltage and the headroom voltage of the LDO linear regulator,
    The polar modulation device according to claim 2, wherein the DC / DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.
  6.  前記DC/DC出力制御部は、前記振幅信号に前記オフセット値を加算したことによる、前記LDOリニアレギュレータの出力電圧の増加分を、前記補正電圧とすることを特徴とする、請求項5に記載のポーラ変調装置。 6. The DC / DC output control unit according to claim 5, wherein an increase in the output voltage of the LDO linear regulator due to the addition of the offset value to the amplitude signal is used as the correction voltage. Polar modulation device.
  7.  前記オフセット制御部は、前記温度情報に基づいて、前記振幅信号に乗算する乗算係数を算出し、
     前記ポーラ変調装置は、前記信号生成部で生成された前記振幅信号に、前記乗算係数を乗算する乗算器をさらに備え、
     前記加算器は、前記乗算係数が乗算された前記振幅信号に、前記オフセット値を加算することを特徴とする、請求項2に記載のポーラ変調装置。
    The offset control unit calculates a multiplication coefficient for multiplying the amplitude signal based on the temperature information,
    The polar modulation device further includes a multiplier that multiplies the multiplication signal by the amplitude signal generated by the signal generation unit,
    The polar modulator according to claim 2, wherein the adder adds the offset value to the amplitude signal multiplied by the multiplication coefficient.
  8.  前記オフセット制御部は、
      前記電力増幅器の温度バラツキに起因するオフセットの補償係数と、前記温度情報の基準温度からの差分とを乗算することで、前記オフセット値を算出し、
      前記電力増幅器の温度バラツキに起因するゲインの補償係数と、前記温度情報の基準温度からの差分とを乗算することで、前記乗算係数を算出することを特徴とする、請求項7に記載のポーラ変調装置。
    The offset control unit
    The offset value is calculated by multiplying the offset compensation coefficient due to the temperature variation of the power amplifier by the difference from the reference temperature of the temperature information,
    The polar coefficient according to claim 7, wherein the multiplication coefficient is calculated by multiplying a gain compensation coefficient caused by temperature variation of the power amplifier by a difference from a reference temperature of the temperature information. Modulation device.
  9.  前記DC/DC出力制御部は、前記オフセット値に応じて、前記LDOリニアレギュレータを駆動させる電源電圧を補正する補正電圧を算出し、前記乗算係数に応じて、前記LDOリニアレギュレータを駆動させる電源電圧を補正する補正係数を算出し、前記温度情報が基準温度であるときの前記振幅信号のピーク電圧に、前記補正係数を乗算し、当該乗算結果に前記補正電圧と、前記LDOリニアレギュレータのヘッドルーム電圧とを加算することで、前記制御信号を算出し、
     前記DC/DCコンバータは、前記制御信号に基づいた電源電圧を、前記LDOリニアレギュレータに供給する、請求項7に記載のポーラ変調装置。
    The DC / DC output control unit calculates a correction voltage for correcting a power supply voltage for driving the LDO linear regulator according to the offset value, and a power supply voltage for driving the LDO linear regulator according to the multiplication coefficient. A correction coefficient for correcting the correction is calculated, the peak voltage of the amplitude signal when the temperature information is a reference temperature is multiplied by the correction coefficient, and the multiplication result is multiplied by the correction voltage and the headroom of the LDO linear regulator. The control signal is calculated by adding the voltage,
    The polar modulation device according to claim 7, wherein the DC / DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.
  10.  前記DC/DC出力制御部は、前記振幅信号に前記オフセット値を加算したことによる、前記LDOリニアレギュレータの出力電圧の増加分を、前記補正電圧とし、前記乗算係数を、前記補正係数とすることを特徴とする、請求項9に記載のポーラ変調装置。 The DC / DC output control unit sets an increase in the output voltage of the LDO linear regulator due to the addition of the offset value to the amplitude signal as the correction voltage, and sets the multiplication coefficient as the correction coefficient. The polar modulation device according to claim 9.
  11.  前記電力増幅器は、異種半導体層を縦積みした構成からなるヘテロ接合バイポーラトランジスタ(HBT/Heterojunction Bipolar Transister)であることを特徴とする、請求項1に記載のポーラ変調装置。 The polar modulation device according to claim 1, wherein the power amplifier is a heterojunction bipolar transistor (HBT / Heterojunction Bipolar Transistor) having a configuration in which different kinds of semiconductor layers are stacked vertically.
  12.  前記DC/DC出力制御部は、前記温度情報に応じて、前記DC/DCコンバータの温度バラツキを補正するための補正値と、前記LDOリニアレギュレータのヘッドルーム電圧の温度バラツキを補正するための補正値とを算出し、前記温度情報が基準温度であるときの前記LDOリニアレギュレータの電源電圧に、当該算出した前記DC/DCコンバータの補正値と、前記LDOリニアレギュレータのヘッドルーム電圧の補正値とを加算することで、前記制御信号を算出し、
     前記DC/DCコンバータは、前記制御信号に基づいた電源電圧を、前記LDOリニアレギュレータに供給する、請求項1に記載のポーラ変調装置。
    The DC / DC output control unit corrects a temperature variation of the DC / DC converter according to the temperature information and a correction for correcting a temperature variation of the headroom voltage of the LDO linear regulator. A power supply voltage of the LDO linear regulator when the temperature information is a reference temperature, and the calculated correction value of the DC / DC converter and a correction value of the headroom voltage of the LDO linear regulator, To calculate the control signal,
    The polar modulation device according to claim 1, wherein the DC / DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.
  13.  前記ポーラ変調装置は、共用器とアンテナSWとを介して、アンテナと接続されると共に、前記共用器と前記アンテナSWの温度もしくは周辺温度を測定し、第2の温度情報として出力する第2の温度センサと接続されており、
     前記ポーラ変調装置は、
      前記温度情報及び第2の温度情報に応じて、前記振幅信号に乗算する乗算係数と、前記振幅信号に加算するオフセット値とを算出するオフセット制御部と、
      前記信号生成部で生成された前記振幅信号に、前記乗算係数を乗算する乗算器と、
      前記乗算器から出力された前記振幅信号に、前記オフセット値を加算する加算器とをさらに備える、請求項1に記載のポーラ変調装置。
    The polar modulation device is connected to an antenna via a duplexer and an antenna SW, and measures a temperature or an ambient temperature of the duplexer and the antenna SW and outputs a second temperature information as a second temperature information. Connected to the temperature sensor,
    The polar modulator is
    An offset control unit that calculates a multiplication coefficient for multiplying the amplitude signal and an offset value to be added to the amplitude signal according to the temperature information and the second temperature information;
    A multiplier for multiplying the amplitude signal generated by the signal generation unit by the multiplication coefficient;
    The polar modulation device according to claim 1, further comprising an adder that adds the offset value to the amplitude signal output from the multiplier.
  14.  前記ポーラ変調装置は、前記電力増幅器の温度バラツキに起因するゲインの補償係数と、前記電力増幅器の温度バラツキに起因するオフセットの補償係数と、前記共用器及び前記アンテナSWの温度バラツキに起因するゲインの補償係数とを記憶したLUTをさらに備え、
     前記オフセット制御部は、
      前記LUTから、前記電力増幅器の温度バラツキに起因するゲインの補償係数と、前記電力増幅器の温度バラツキに起因するオフセットの補償係数と、前記共用器及び前記アンテナSWの温度バラツキに起因するゲインの補償係数とを読み出し、
      前記温度情報の基準温度からの差分と、前記LUTから読み出した前記電力増幅器の温度バラツキに起因するゲインの補償係数とを乗算することで、第1の補正値を算出し、
      前記第2の温度情報の前記基準温度からの差分と、前記LUTから読み出した前記共用器及び前記アンテナSWの温度バラツキに起因するゲインの補償係数とを乗算することで、第2の補正値を算出し、
      前記温度情報の基準温度からの差分と、前記LUTから読み出した前記電力増幅器の温度バラツキに起因するオフセット値の補償係数とを乗算することで、第3の補正値を算出し、
      前記第1の補正値と、前記第2の補正値とを用いて、前記乗算係数を算出し、前記第3の補正値を用いて前記オフセット値を算出する、請求項13に記載のポーラ変調装置。
    The polar modulation device includes a gain compensation coefficient caused by temperature variation of the power amplifier, an offset compensation coefficient caused by temperature variation of the power amplifier, and a gain caused by temperature variation of the duplexer and the antenna SW. An LUT that stores the compensation coefficient of
    The offset control unit
    From the LUT, a gain compensation coefficient caused by temperature variation of the power amplifier, an offset compensation coefficient caused by temperature variation of the power amplifier, and gain compensation caused by temperature variation of the duplexer and the antenna SW Read the coefficients and
    The first correction value is calculated by multiplying the difference from the reference temperature of the temperature information by the gain compensation coefficient resulting from the temperature variation of the power amplifier read from the LUT,
    By multiplying the difference of the second temperature information from the reference temperature by the gain compensation coefficient resulting from the temperature variation of the duplexer and the antenna SW read from the LUT, the second correction value is obtained. Calculate
    A third correction value is calculated by multiplying the difference from the reference temperature of the temperature information by the offset coefficient compensation coefficient caused by the temperature variation of the power amplifier read from the LUT,
    The polar modulation according to claim 13, wherein the multiplication coefficient is calculated using the first correction value and the second correction value, and the offset value is calculated using the third correction value. apparatus.
  15.  前記LUTには、前記電力増幅器の温度バラツキに起因するゲインの補償係数と、前記電力増幅器の温度バラツキに起因するオフセットの補償係数とが、前記温度情報に応じて複数設定され、前記共用器及び前記アンテナSWの温度バラツキに起因するゲインの補償係数が前記第2の温度情報に応じて複数設定され、
     前記オフセット制御部は、前記LUTから、前記温度情報に応じて、前記電力増幅器の温度バラツキに起因するゲインの補償係数と、前記電力増幅器の温度バラツキに起因するオフセットの補償係数とを読み出し、前記第2の温度情報に応じて、前記共用器及び前記アンテナSWの温度バラツキに起因するゲインの補償係数を読み出すことを特徴とする、請求項14に記載のポーラ変調装置。
    In the LUT, a plurality of gain compensation coefficients resulting from temperature variations of the power amplifier and offset compensation coefficients resulting from temperature variations of the power amplifier are set according to the temperature information, and the duplexer and A plurality of gain compensation coefficients resulting from temperature variations of the antenna SW are set according to the second temperature information,
    The offset control unit reads, from the LUT, a gain compensation coefficient caused by temperature variation of the power amplifier and an offset compensation coefficient caused by temperature variation of the power amplifier according to the temperature information, The polar modulation device according to claim 14, wherein a gain compensation coefficient due to temperature variation of the duplexer and the antenna SW is read in accordance with second temperature information.
  16.  前記DC/DC出力制御部は、前記オフセット値に応じて、前記LDOリニアレギュレータを駆動させる電源電圧を補正する補正電圧を算出し、前記乗算係数に応じて、前記LDOリニアレギュレータを駆動させる電源電圧を補正する補正係数を算出し、前記温度情報が基準温度であるときの前記振幅信号のピーク電圧に、前記補正係数を乗算し、当該乗算結果に前記補正電圧と、前記LDOリニアレギュレータのヘッドルーム電圧とを加算することで、前記制御信号を算出し、
     前記DC/DCコンバータは、前記制御信号に基づいた電源電圧を、前記LDOリニアレギュレータに供給する、請求項13に記載のポーラ変調装置。
    The DC / DC output control unit calculates a correction voltage for correcting a power supply voltage for driving the LDO linear regulator according to the offset value, and a power supply voltage for driving the LDO linear regulator according to the multiplication coefficient. A correction coefficient for correcting the correction is calculated, the peak voltage of the amplitude signal when the temperature information is a reference temperature is multiplied by the correction coefficient, and the multiplication result is multiplied by the correction voltage and the headroom of the LDO linear regulator. The control signal is calculated by adding the voltage,
    The polar modulation device according to claim 13, wherein the DC / DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.
  17.  前記DC/DC出力制御部は、前記振幅信号に前記オフセット値を加算したことによる、前記LDOリニアレギュレータの出力電圧の増加分を、前記補正電圧とし、前記乗算係数を、前記補正係数とすることを特徴とする、請求項16に記載のポーラ変調装置。 The DC / DC output control unit sets an increase in the output voltage of the LDO linear regulator due to the addition of the offset value to the amplitude signal as the correction voltage, and sets the multiplication coefficient as the correction coefficient. The polar modulation device according to claim 16, wherein:
  18.  前記ポーラ変調装置は、
      前記LDOリニアレギュレータの温度もしくは周辺温度を測定し、第3の温度情報として出力する第3の温度センサと、
      前記温度情報及び前記第3の温度情報に応じて、前記振幅信号に乗算する乗算係数と、前記振幅信号に加算するオフセット値とを算出するオフセット制御部と、
      前記信号生成部で生成された前記振幅信号に、前記乗算係数を乗算する乗算器と、
      前記乗算器から出力された前記振幅信号に、前記オフセット値を加算する加算器とをさらに備える、請求項1に記載のポーラ変調装置。
    The polar modulator is
    A third temperature sensor that measures the temperature or ambient temperature of the LDO linear regulator and outputs it as third temperature information;
    An offset control unit that calculates a multiplication coefficient for multiplying the amplitude signal and an offset value to be added to the amplitude signal according to the temperature information and the third temperature information;
    A multiplier for multiplying the amplitude signal generated by the signal generation unit by the multiplication coefficient;
    The polar modulation device according to claim 1, further comprising an adder that adds the offset value to the amplitude signal output from the multiplier.
  19.  前記ポーラ変調装置は、前記電力増幅器の温度バラツキに起因するゲインの補償係数と、前記電力増幅器の温度バラツキに起因するオフセットの補償係数と、前記LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、前記LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを記憶したLUTをさらに備え、
     前記オフセット制御部は、
      前記LUTから、前記電力増幅器の温度バラツキに起因するゲインの補償係数と、前記電力増幅器の温度バラツキに起因するオフセットの補償係数と、前記LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、前記LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを読み出し、
      前記温度情報の基準温度からの差分と、前記LUTから読み出した前記電力増幅器の温度バラツキに起因するゲインの補償係数とを乗算することで、第1の補正値を算出し、
      前記温度情報の基準温度からの差分と、前記LUTから読み出した前記電力増幅器の温度バラツキに起因するオフセット値の補償係数とを乗算することで、第2の補正値を算出し、
      前記第3の温度情報の前記基準温度からの差分と、前記LUTから読み出した前記LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数とを乗算することで、第3の補正値を算出し、
      前記第3の温度情報の前記基準温度からの差分と、前記LUTから読み出した前記LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを乗算することで、第4の補正値を算出し、
      前記第1の補正値と、前記第3の補正値とを用いて、前記乗算係数を算出し、前記第2の補正値と、前記第4の補正値とを用いて前記オフセット値を算出する、請求項18に記載のポーラ変調装置。
    The polar modulation device includes a gain compensation coefficient caused by temperature variation of the power amplifier, an offset compensation coefficient caused by temperature variation of the power amplifier, and a gain compensation coefficient caused by temperature variation of the LDO linear regulator. And an LUT that stores a compensation coefficient of offset caused by temperature variation of the LDO linear regulator,
    The offset control unit
    From the LUT, a gain compensation factor due to temperature variation of the power amplifier, an offset compensation factor due to temperature variation of the power amplifier, and a gain compensation factor due to temperature variation of the LDO linear regulator, Read offset compensation coefficient due to temperature variation of the LDO linear regulator,
    The first correction value is calculated by multiplying the difference from the reference temperature of the temperature information by the gain compensation coefficient resulting from the temperature variation of the power amplifier read from the LUT,
    A second correction value is calculated by multiplying the difference from the reference temperature of the temperature information by the compensation coefficient of the offset value caused by the temperature variation of the power amplifier read from the LUT,
    A third correction value is calculated by multiplying the difference of the third temperature information from the reference temperature by the gain compensation coefficient resulting from the temperature variation of the LDO linear regulator read from the LUT,
    A fourth correction value is calculated by multiplying the difference of the third temperature information from the reference temperature by the offset compensation coefficient caused by the temperature variation of the LDO linear regulator read from the LUT,
    The multiplication coefficient is calculated using the first correction value and the third correction value, and the offset value is calculated using the second correction value and the fourth correction value. The polar modulation device according to claim 18.
  20.  前記LUTには、前記電力増幅器の温度バラツキに起因するゲインの補償係数と、前記電力増幅器の温度バラツキに起因するオフセットの補償係数とが前記温度情報に応じて複数設定され、前記LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、前記LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とが前記第3の温度情報に応じて複数設定され、
     前記オフセット制御部は、前記LUTから、前記温度情報に応じて、前記電力増幅器の温度バラツキに起因するゲインの補償係数と、前記電力増幅器の温度バラツキに起因するオフセットの補償係数とを読み出し、前記第3の温度情報に応じて、前記LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、前記LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを読み出すことを特徴とする、請求項19に記載のポーラ変調装置。
    In the LUT, a plurality of gain compensation coefficients caused by temperature variations of the power amplifier and offset compensation coefficients caused by temperature variations of the power amplifier are set according to the temperature information, and the LDO linear regulator A plurality of gain compensation coefficients resulting from temperature variations and offset compensation coefficients resulting from temperature variations of the LDO linear regulator are set according to the third temperature information,
    The offset control unit reads, from the LUT, a gain compensation coefficient caused by temperature variation of the power amplifier and an offset compensation coefficient caused by temperature variation of the power amplifier according to the temperature information, The gain compensation coefficient caused by temperature variation of the LDO linear regulator and the offset compensation coefficient caused by temperature variation of the LDO linear regulator are read out according to third temperature information. The polar modulator according to claim 19.
  21.  前記ポーラ変調装置は、前記LDOリニアレギュレータの温度もしくは周辺温度を測定し、第3の温度情報として出力する第3の温度センサをさらに備え、
     前記オフセット制御部は、前記温度情報と、前記第2の温度情報と、前記第3の温度情報とに応じて、前記オフセット値と、前記乗算係数とを算出することを特徴とする、請求項13に記載のポーラ変調装置。
    The polar modulation device further includes a third temperature sensor that measures the temperature or ambient temperature of the LDO linear regulator and outputs the temperature as third temperature information,
    The offset control unit calculates the offset value and the multiplication coefficient according to the temperature information, the second temperature information, and the third temperature information. 13. The polar modulation device according to 13.
  22.  前記ポーラ変調装置は、前記電力増幅器の温度バラツキに起因するゲインの補償係数と、前記電力増幅器の温度バラツキに起因するオフセットの補償係数と、前記共用器及び前記アンテナSWの温度バラツキに起因するゲインの補償係数と、前記LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、前記LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを記憶したLUTをさらに備え、
     前記オフセット制御部は、
      前記LUTから、前記電力増幅器の温度バラツキに起因するゲインの補償係数と、前記電力増幅器の温度バラツキに起因するオフセットの補償係数と、前記共用器及び前記アンテナSWの温度バラツキに起因するゲインの補償係数と、前記LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、前記LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを読み出し、
      前記温度情報の基準温度からの差分と、前記LUTから読み出した前記電力増幅器の温度バラツキに起因するゲインの補償係数とを乗算することで、第1の補正値を算出し、
      前記温度情報の基準温度からの差分と、前記LUTから読み出した前記電力増幅器の温度バラツキに起因するオフセット値の補償係数とを乗算することで、第2の補正値を算出し、
      前記第2の温度情報の前記基準温度からの差分と、前記LUTから読み出した前記共用器及び前記アンテナSWの温度バラツキに起因するゲインの補償係数とを乗算することで、第3の補正値を算出し、
      前記第3の温度情報の前記基準温度からの差分と、前記LUTから読み出した前記LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数とを乗算することで、第4の補正値を算出し、
      前記第3の温度情報の前記基準温度からの差分と、前記LUTから読み出した前記LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを乗算することで、第5の補正値を算出し、
      前記第1の補正値と、前記第3の補正値と、前記第4の補正値とを用いて前記乗算係数を算出し、前記第2の補正値と、前記第5の補正値とを用いて前記オフセット値を算出する、請求項21に記載のポーラ変調装置。
    The polar modulation device includes a gain compensation coefficient caused by temperature variation of the power amplifier, an offset compensation coefficient caused by temperature variation of the power amplifier, and a gain caused by temperature variation of the duplexer and the antenna SW. An LUT that stores a compensation coefficient of gain, a compensation coefficient of gain caused by temperature variation of the LDO linear regulator, and an offset compensation coefficient caused by temperature variation of the LDO linear regulator,
    The offset control unit
    From the LUT, a gain compensation coefficient caused by temperature variation of the power amplifier, an offset compensation coefficient caused by temperature variation of the power amplifier, and gain compensation caused by temperature variation of the duplexer and the antenna SW A coefficient, a gain compensation coefficient due to temperature variation of the LDO linear regulator, and an offset compensation coefficient due to temperature variation of the LDO linear regulator,
    The first correction value is calculated by multiplying the difference from the reference temperature of the temperature information by the gain compensation coefficient resulting from the temperature variation of the power amplifier read from the LUT,
    A second correction value is calculated by multiplying the difference from the reference temperature of the temperature information by the compensation coefficient of the offset value caused by the temperature variation of the power amplifier read from the LUT,
    The third correction value is obtained by multiplying the difference from the reference temperature of the second temperature information by the gain compensation coefficient resulting from the temperature variation of the duplexer and the antenna SW read from the LUT. Calculate
    A fourth correction value is calculated by multiplying the difference from the reference temperature of the third temperature information by the gain compensation coefficient resulting from the temperature variation of the LDO linear regulator read from the LUT,
    A fifth correction value is calculated by multiplying the difference of the third temperature information from the reference temperature by the offset compensation coefficient caused by the temperature variation of the LDO linear regulator read from the LUT,
    The multiplication coefficient is calculated using the first correction value, the third correction value, and the fourth correction value, and the second correction value and the fifth correction value are used. The polar modulation device according to claim 21, wherein the offset value is calculated.
  23.  前記LUTには、前記電力増幅器の温度バラツキに起因するゲインの補償係数と、前記電力増幅器の温度バラツキに起因するオフセットの補償係数とが前記温度情報に応じて複数設定され、前記共用器及び前記アンテナSWの温度バラツキに起因するゲインの補償係数が前記第2の温度情報に応じて複数設定され、前記LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、前記LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とが前記第3の温度情報に応じて複数設定され、
     前記オフセット制御部は、前記LUTから、前記温度情報に応じて、前記電力増幅器の温度バラツキに起因するゲインの補償係数と、前記電力増幅器の温度バラツキに起因するオフセットの補償係数とを読み出し、前記第2の温度情報に応じて、前記共用器及び前記アンテナSWの温度バラツキに起因するゲインの補償係数を読み出し、前記第3の温度情報に応じて、前記LDOリニアレギュレータの温度バラツキに起因するゲインの補償係数と、前記LDOリニアレギュレータの温度バラツキに起因するオフセットの補償係数とを読み出すことを特徴とする、請求項22に記載のポーラ変調装置。
    In the LUT, a plurality of gain compensation coefficients resulting from temperature variations of the power amplifier and offset compensation coefficients resulting from temperature variations of the power amplifier are set according to the temperature information, and the duplexer and the A plurality of gain compensation coefficients caused by the temperature variation of the antenna SW are set in accordance with the second temperature information, and the gain compensation coefficient caused by the temperature variation of the LDO linear regulator and the temperature variation of the LDO linear regulator are set. A plurality of offset compensation coefficients are set according to the third temperature information,
    The offset control unit reads, from the LUT, a gain compensation coefficient caused by temperature variation of the power amplifier and an offset compensation coefficient caused by temperature variation of the power amplifier according to the temperature information, According to the second temperature information, a gain compensation coefficient due to the temperature variation of the duplexer and the antenna SW is read, and according to the third temperature information, the gain due to the temperature variation of the LDO linear regulator 23. The polar modulation device according to claim 22, wherein a compensation coefficient for the offset and a compensation coefficient for an offset due to temperature variation of the LDO linear regulator are read out.
  24.  前記DC/DC出力制御部は、
      前記温度情報に応じて、前記LDOリニアレギュレータを駆動させる電源電圧を補正する補正電圧と、前記DC/DCコンバータの温度バラツキを補正するための補正値を算出し、
      前記温度情報、及び前記第2の温度情報に応じて、前記LDOリニアレギュレータを駆動させる電源電圧を補正する補正係数を算出し、前記第2の温度情報に応じて、前記LDOリニアレギュレータのヘッドルーム電圧の温度バラツキを補正するための補正値とを算出し、
      前記温度情報が基準温度であるときの前記振幅信号のピーク電圧に、前記補正係数を乗算し、当該乗算結果に前記補正電圧と、前記LDOリニアレギュレータのヘッドルーム電圧と、当該算出した前記DC/DCコンバータの補正値と、前記LDOリニアレギュレータのヘッドルーム電圧の補正値とを加算することで、制御信号を算出し、
     前記DC/DCコンバータは、前記制御信号に基づいた電源電圧を、前記LDOリニアレギュレータに供給する、請求項21に記載のポーラ変調装置。
    The DC / DC output controller is
    According to the temperature information, a correction voltage for correcting a power supply voltage for driving the LDO linear regulator and a correction value for correcting a temperature variation of the DC / DC converter are calculated,
    A correction coefficient for correcting a power supply voltage for driving the LDO linear regulator is calculated according to the temperature information and the second temperature information, and a headroom of the LDO linear regulator is calculated according to the second temperature information. Calculate the correction value to correct the temperature variation of the voltage,
    The peak voltage of the amplitude signal when the temperature information is a reference temperature is multiplied by the correction coefficient, and the multiplication result is multiplied by the correction voltage, the headroom voltage of the LDO linear regulator, and the calculated DC / A control signal is calculated by adding the correction value of the DC converter and the correction value of the headroom voltage of the LDO linear regulator,
    The polar modulation device according to claim 21, wherein the DC / DC converter supplies a power supply voltage based on the control signal to the LDO linear regulator.
  25.  前記DC/DC出力制御部は、
      前記振幅信号に、前記電力増幅器の温度バラツキに起因するオフセットの補償係数と、前記温度情報の前記基準温度からの差分とを乗算した第1の補正値を加えたことによる、前記LDOリニアレギュレータの出力電圧の増加分を、前記補正電圧とし、
      前記電力増幅器の温度バラツキに起因するゲインの補償係数と、前記温度情報の前記基準温度からの差分とを乗算した第2の補正値と、前記共用器及び前記アンテナSWの温度バラツキに起因するゲインの補償係数と、前記第2の温度情報の前記基準温度からの差分とを乗算した第3の補正値とを乗算した結果を、前記補正係数とすることを特徴とする、請求項24に記載のポーラ変調装置。
    The DC / DC output controller is
    The LDO linear regulator is obtained by adding a first correction value obtained by multiplying the amplitude signal by a compensation coefficient of an offset caused by temperature variation of the power amplifier and a difference from the reference temperature of the temperature information. The increase in the output voltage is the correction voltage,
    A gain resulting from temperature variation of the duplexer and the antenna SW, a second correction value obtained by multiplying a gain compensation coefficient due to temperature variation of the power amplifier, and a difference from the reference temperature of the temperature information. 25. The result obtained by multiplying the compensation coefficient by a third correction value obtained by multiplying the difference from the reference temperature of the second temperature information is defined as the correction coefficient. Polar modulation device.
PCT/JP2010/004540 2009-07-13 2010-07-13 Polar modulator WO2011007556A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009164847 2009-07-13
JP2009-164847 2009-07-13

Publications (1)

Publication Number Publication Date
WO2011007556A1 true WO2011007556A1 (en) 2011-01-20

Family

ID=43449166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004540 WO2011007556A1 (en) 2009-07-13 2010-07-13 Polar modulator

Country Status (1)

Country Link
WO (1) WO2011007556A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019493A1 (en) * 2012-07-30 2014-02-06 华为终端有限公司 Power amplifier consumption reducing device, method, and mobile terminal
WO2014116608A3 (en) * 2013-01-28 2014-12-04 Qualcomm Incorporated Dynamic headroom for envelope tracking
WO2018188946A1 (en) * 2017-04-10 2018-10-18 TRUMPF Hüttinger GmbH + Co. KG Method for producing a high-frequency power at a predefined frequency, and power converter
CN111164885A (en) * 2017-10-17 2020-05-15 株式会社Kmw Method and device for correcting performance of power amplifier
US12027764B2 (en) 2019-11-26 2024-07-02 Samsung Electronics Co., Ltd. Method and apparatus for supplying voltage to amplifier using multiple linear regulators

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100938A (en) * 2000-09-25 2002-04-05 Toshiba Corp High-output amplifier
JP2005057599A (en) * 2003-08-06 2005-03-03 Mitsubishi Electric Corp Multi-stage high output amplifier
JP2006100948A (en) * 2004-09-28 2006-04-13 Hitachi Kokusai Electric Inc Pre-distortion compensation amplifier
WO2006118015A1 (en) * 2005-04-26 2006-11-09 Matsushita Electric Industrial Co., Ltd. Polar coordinate modulating circuit, integrated circuit and radio apparatus
WO2008015970A1 (en) * 2006-08-04 2008-02-07 Panasonic Corporation Transmission circuit and communication apparatus
JP2008206142A (en) * 2007-01-22 2008-09-04 Matsushita Electric Ind Co Ltd Transmission circuit comprising multistage amplifier, and communication device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100938A (en) * 2000-09-25 2002-04-05 Toshiba Corp High-output amplifier
JP2005057599A (en) * 2003-08-06 2005-03-03 Mitsubishi Electric Corp Multi-stage high output amplifier
JP2006100948A (en) * 2004-09-28 2006-04-13 Hitachi Kokusai Electric Inc Pre-distortion compensation amplifier
WO2006118015A1 (en) * 2005-04-26 2006-11-09 Matsushita Electric Industrial Co., Ltd. Polar coordinate modulating circuit, integrated circuit and radio apparatus
WO2008015970A1 (en) * 2006-08-04 2008-02-07 Panasonic Corporation Transmission circuit and communication apparatus
JP2008206142A (en) * 2007-01-22 2008-09-04 Matsushita Electric Ind Co Ltd Transmission circuit comprising multistage amplifier, and communication device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019493A1 (en) * 2012-07-30 2014-02-06 华为终端有限公司 Power amplifier consumption reducing device, method, and mobile terminal
WO2014116608A3 (en) * 2013-01-28 2014-12-04 Qualcomm Incorporated Dynamic headroom for envelope tracking
US9537450B2 (en) 2013-01-28 2017-01-03 Qualcomm Incorporated Dynamic headroom for envelope tracking
WO2018188946A1 (en) * 2017-04-10 2018-10-18 TRUMPF Hüttinger GmbH + Co. KG Method for producing a high-frequency power at a predefined frequency, and power converter
CN111164885A (en) * 2017-10-17 2020-05-15 株式会社Kmw Method and device for correcting performance of power amplifier
CN111164885B (en) * 2017-10-17 2024-03-15 株式会社Kmw Performance correction method and device for power amplifier
US12027764B2 (en) 2019-11-26 2024-07-02 Samsung Electronics Co., Ltd. Method and apparatus for supplying voltage to amplifier using multiple linear regulators

Similar Documents

Publication Publication Date Title
JP4608487B2 (en) Amplifier, information communication device, and amplification method
US9065394B2 (en) Apparatus and method for expanding operation region of power amplifier
JP4583979B2 (en) Transmitting apparatus and wireless communication apparatus
JP4845574B2 (en) Polar modulation circuit, integrated circuit, and wireless device
EP1580881B1 (en) High-frequency power amplifier and communication apparatus
WO2011007556A1 (en) Polar modulator
EP2230759A1 (en) Amplifying device and transmitter apparatus
US20100066433A1 (en) Bias controller
JPWO2007004252A1 (en) Power amplifier having distortion compensation circuit
WO2010044346A1 (en) Power amplifier
US8841967B2 (en) Noise optimized envelope tracking system for power amplifiers
JP2009517891A (en) Transmission circuit and communication device using the same
JP2008206142A (en) Transmission circuit comprising multistage amplifier, and communication device
US8466755B2 (en) Polar modulation apparatus and communication device
JP3874747B2 (en) Transmission device, transmission power control method, and wireless communication device
JP5441817B2 (en) Transmission circuit and transmission method
JP2015099972A (en) Transmitter module
JP2009260816A (en) Amplitude control circuit, polar modulation transmission circuit, and polar modulation method
JP5121734B2 (en) Power supply voltage forming apparatus and polar modulation transmitting apparatus
US7747230B2 (en) Transmission modulation apparatus
US7940859B2 (en) Transmission circuit and communication device
JP2012015708A (en) Power amplification device
JP2016119664A (en) System and method for efficient multi-channel SATCOM by dynamic power supply and digital predistortion
JP2016100622A (en) Amplification device
WO2010143406A1 (en) Amplitude control circuit, polar modulation transmission circuit, and polar modulation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP