WO2011007518A1 - Membrane-electrode assembly, solid polymer fuel cell, and fuel cell power generation system - Google Patents

Membrane-electrode assembly, solid polymer fuel cell, and fuel cell power generation system Download PDF

Info

Publication number
WO2011007518A1
WO2011007518A1 PCT/JP2010/004375 JP2010004375W WO2011007518A1 WO 2011007518 A1 WO2011007518 A1 WO 2011007518A1 JP 2010004375 W JP2010004375 W JP 2010004375W WO 2011007518 A1 WO2011007518 A1 WO 2011007518A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
fuel cell
layer
anode
polymer electrolyte
Prior art date
Application number
PCT/JP2010/004375
Other languages
French (fr)
Japanese (ja)
Inventor
菅原靖
鵜木重幸
小足直嗣
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011007518A1 publication Critical patent/WO2011007518A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a membrane-electrode assembly, a polymer electrolyte fuel cell, and a fuel cell power generation system, and more particularly to a structure of a membrane-electrode assembly.
  • a polymer electrolyte fuel cell (hereinafter referred to as PEFC) is an electric cell that reacts electrochemically with a fuel gas containing hydrogen obtained by reforming a raw material gas such as city gas and an oxidant gas containing oxygen such as air. And generate heat at the same time.
  • a fuel gas containing hydrogen obtained by reforming a raw material gas such as city gas and an oxidant gas containing oxygen such as air. And generate heat at the same time.
  • the reaction shown in the chemical reaction formula (1) occurs at the anode
  • the reaction shown in the chemical reaction formula (2) occurs at the cathode.
  • a corroded region composed of carbon that is more easily oxidized than the support carbon of the catalyst layer is formed on the separator channel wall surface, the region along the outer edge of the catalyst layer, or the outer edge of the catalyst layer.
  • a fuel cell is known that is arranged in a lattice pattern when viewed from the region along the thickness direction of the catalyst layer. (For example, refer to Patent Document 1).
  • the corrosion region is more easily oxidized than the catalyst layer, so that deterioration of the fuel cell due to oxidation of the catalyst layer can be suppressed.
  • a solid polymer fuel cell that has a water retention layer composed of carbon and ionomer between a catalyst layer and a polymer electrolyte membrane for the purpose of improving the performance of water retention (for example, Patent Documents). 2).
  • the water retention layer is the catalyst layer. It can be oxidized before the degradation of the performance of the fuel cell due to oxidation of the catalyst layer.
  • protons are sufficiently conducted between the membrane and catalyst layers, and protons are sufficiently conducted between the catalyst layers (between the catalyst layers).
  • the ionomer / carbon mass ratio (I / C) of the water retention layer disposed between the catalyst layer and the polymer electrolyte membrane is low, so that the initial voltage decreases. There was a problem.
  • the present invention solves the above-described conventional problems, improves the durability of the catalyst layer against oxidative corrosion reaction, and can suppress the decrease in the initial voltage, the membrane-electrode assembly, and the polymer electrolyte fuel
  • An object is to provide a battery and a fuel cell power generation system.
  • a membrane-electrode assembly comprises an anode having a catalyst-carrying carbon and an ionomer and an anode gas diffusion layer, and a cathode catalyst comprising the catalyst-carrying carbon and the ionomer.
  • a cathode having a layer and a cathode gas diffusion layer; a polymer electrolyte membrane disposed between the anode catalyst layer and the cathode catalyst layer; at least one of the anode catalyst layer and the cathode catalyst layer; and the polymer electrolyte.
  • first carbon layer having carbon and an ionomer, and disposed between at least one of the anode catalyst layer and the anode gas diffusion layer and between the cathode catalyst layer and the cathode gas diffusion layer.
  • at least one carbon layer of a second carbon layer having carbon and an ionomer.
  • the ionization tendency of carbon in the first carbon layer and the second carbon layer is an ionization tendency of at least one catalyst-supporting carbon in the anode catalyst layer and the cathode catalyst layer.
  • the catalyst loading amount of the first carbon layer and the second carbon layer is configured to be smaller than the catalyst loading amount of at least one of the anode catalyst layer and the cathode catalyst layer.
  • the first carbon layer when the first carbon layer is provided, electrons and protons are easily transferred between at least one of the anode catalyst layer and the cathode catalyst layer in the first carbon layer, and the initial voltage is increased. Can be sufficiently suppressed.
  • the second carbon layer when the second carbon layer is included, the second carbon layer has proton conductivity and sufficient gas diffusibility from the gas diffusion layer to the catalyst layer. The decrease can be sufficiently suppressed.
  • carbon in the carbon layer is more easily oxidized than carrier carbon in the catalyst layer, it is possible to suppress deterioration of battery characteristics due to oxidative corrosion of the catalyst layer and to improve durability.
  • the first carbon layer and the second carbon layer may be composed of carbon and ionomer not supporting a catalyst.
  • the ionomer / carbon mass ratio (I / C) of the first carbon layer may be 1.3 or more and 2.0 or less.
  • the ionomer / carbon mass ratio (I / C) of the second carbon layer may be 0.6 or more and 1.3 or less.
  • the EW of the ionomer of the first carbon layer and the second carbon layer may be 700 or more and 1100 or less.
  • the polymer electrolyte fuel cell according to the present invention comprises the membrane-electrode assembly, and a pair of conductive separators arranged in a plate shape so as to sandwich the membrane-electrode assembly. Prepare.
  • the fuel cell power generation system includes the solid polymer fuel cell, a fuel gas supply device that supplies fuel gas to the anode via a fuel gas supply channel, and an oxidant gas supply channel to the cathode.
  • An oxidant gas supply device for supplying an oxidant gas via the gas, an off-fuel gas passage through which a fuel gas not used in the anode flows, a purge air supply device, and a controller.
  • the controller controls the purge air supply so that air is supplied to the anode for purging when the fuel cell power generation system is stopped.
  • the purge air supply device is configured to supply the oxidant gas to the anode from the oxidant gas supply device and the oxidant gas supply device. It may be composed of roads.
  • the purge air supply is connected to the fuel gas supply path or the off-fuel gas flow path, and the atmospheric open flow path having the open air end and the open air flow path And an on-off valve provided in the.
  • the controller may be configured to perform startup processing of the fuel cell power generation system from a standby state in which air is present at the anode and the cathode.
  • the membrane-electrode assembly, the polymer electrolyte fuel cell, and the fuel cell power generation system of the present invention it is possible to suppress the deterioration of the battery characteristics due to the oxidative corrosion of the carbon support in the catalyst layer and to improve the durability. It becomes. Further, by improving the durability of the catalyst layer, the control of the fuel cell power generation system can be simplified, and the system can be simplified and the cost can be reduced.
  • FIG. 1 is a cross-sectional view schematically showing a schematic configuration of the membrane-electrode assembly according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a schematic configuration and operation of a polymer electrolyte fuel cell (solid polymer electrolyte fuel cell according to Embodiment 1 of the present invention) including the membrane-electrode assembly shown in FIG.
  • FIG. 3 is a cross-sectional view schematically showing the operation of the polymer electrolyte fuel cell (solid polymer electrolyte fuel cell according to Embodiment 1) including the membrane-electrode assembly shown in FIG. .
  • FIG. 1 is a cross-sectional view schematically showing a schematic configuration of the membrane-electrode assembly according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a schematic configuration and operation of a polymer electrolyte fuel cell (solid polymer electrolyte fuel cell according to Em
  • FIG. 4 is a cross-sectional view schematically showing a schematic configuration and operation of a polymer electrolyte fuel cell according to Embodiment 2 of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a schematic configuration of the polymer electrolyte fuel cell according to Embodiment 3 of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing a schematic configuration of the membrane-electrode assembly according to Embodiment 4 of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing a schematic configuration and operation of a polymer electrolyte fuel cell including the membrane-electrode assembly shown in FIG. FIG.
  • FIG. 8 is a cross-sectional view schematically showing the operation of the polymer electrolyte fuel cell comprising the membrane-electrode assembly shown in FIG.
  • FIG. 9 is a cross-sectional view schematically showing a schematic configuration and operation of a polymer electrolyte fuel cell according to Embodiment 5 of the present invention.
  • FIG. 10 is a cross-sectional view schematically showing a schematic configuration of the polymer electrolyte fuel cell according to Embodiment 6 of the present invention.
  • FIG. 11 is a cross-sectional view schematically showing a schematic configuration of a polymer electrolyte fuel cell according to Embodiment 7 of the present invention.
  • FIG. 12 is a schematic diagram showing a schematic configuration of a fuel cell power generation system according to Embodiment 8 of the present invention.
  • FIG. 13 is a schematic diagram showing a schematic configuration of a fuel cell power generation system according to Embodiment 9 of the present invention.
  • FIG. 14 is a schematic diagram showing a schematic configuration of the fuel cell power generation system according to Embodiment 10 of the present invention.
  • FIG. 15 is a table showing the voltage and deterioration rate of each polymer electrolyte fuel cell before and after the performance evaluation test.
  • FIG. 16 is a table showing the voltage and deterioration rate of each polymer electrolyte fuel cell before and after the performance evaluation test.
  • Embodiment 1 of the present invention exemplifies a form in which a first carbon layer having carbon and ionomer is disposed between a polymer electrolyte membrane and a cathode catalyst layer.
  • a first carbon layer having carbon and ionomer is disposed between a polymer electrolyte membrane and a cathode catalyst layer.
  • FIG. 1 is a cross-sectional view schematically showing a schematic configuration of a membrane-electrode assembly according to Embodiment 1 of the present invention.
  • FIG. 2 schematically shows the schematic configuration and operation of the polymer electrolyte fuel cell (solid polymer fuel cell according to Embodiment 1) of the present invention provided with the membrane-electrode assembly shown in FIG. It is sectional drawing, and shows a state when gas, such as fuel gas which exists in an anode, is purged with air when a polymer electrolyte fuel cell is stopped.
  • a membrane-electrode assembly 11 includes a cathode 5A having a polymer electrolyte membrane 1, a first carbon layer 2A, a cathode catalyst layer 3A, and a cathode gas diffusion layer 4A. And an anode 5B having an anode catalyst layer 3B and an anode gas diffusion layer 4B.
  • the polymer electrolyte membrane 1 is configured to selectively transport hydrogen, and the first carbon layer 2A is provided on one main surface of the polymer electrolyte membrane 1, and the other main surface. Is provided with an anode catalyst layer 3B.
  • a cathode catalyst layer 3A is provided on the main surface of the first carbon layer 2A on the side not in contact with the polymer electrolyte membrane 1.
  • manifold holes such as a fuel gas supply manifold hole including through holes in the thickness direction are provided in the peripheral edge portion of the main surface of the polymer electrolyte membrane 1 (not shown).
  • the configuration of the anode catalyst layer 3B and the cathode catalyst layer 3A is not particularly limited as long as the anode catalyst layer 3B and the cathode catalyst layer 3A have catalyst-supporting carbon and ionomer, respectively, and the configurations of the anode catalyst layer 3B and the cathode catalyst layer 3A are the same. May be different or different.
  • a catalyst-supporting carbon made of carbon powder (conductive carbon particles) supporting an electrode catalyst and an ionomer (for example, a polymer electrolyte) attached to the catalyst-supporting carbon further include a water-repellent material such as polytetrafluoroethylene. It may be a configuration.
  • the first carbon layer 2A has carbon and ionomer.
  • the carbon used in the first carbon layer 2A is configured such that its ionization tendency is larger than the ionization tendency of carbon used in at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A.
  • the carbon used in the catalyst layer is calcined to reduce the surface functional groups that serve as oxidation starting points, or the specific surface area of the carbon used in the first carbon layer 2A is reduced.
  • the ionization tendency of the carbon used for the first carbon layer 2A can be relatively increased.
  • the carbon used in the first carbon layer 2A is more easily oxidized than the catalyst-carrying carbon (carrier carbon) of the catalyst layer. Can do.
  • the amount of the catalyst supported on the first carbon layer 2A is at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A (in the first embodiment, the anode catalyst layer 3B and the cathode catalyst layer 3A). Both) is configured to be smaller than the amount of catalyst supported. Thereby, it can suppress that it melt
  • the amount of catalyst supported on the first carbon layer 2A is as small as possible.
  • the first carbon layer 2A is more preferably configured not to carry a catalyst. That is, the first carbon layer 2A is preferably composed of carbon and ionomer that do not carry a catalyst. In this case, the first carbon layer 2A does not exclude the inclusion of substances other than carbon and ionomer that do not carry a catalyst.
  • the catalyst loading amount of the first carbon layer 2A is configured to be smaller than the catalyst loading amounts of both the anode catalyst layer 3B and the cathode catalyst layer 3A.
  • the first carbon layer only needs to be configured to be smaller than the amount of catalyst supported on at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A, and more than the amount of catalyst supported on the catalyst layer in contact with the first carbon layer 2A. You may be comprised so that the catalyst load of 2A may become small.
  • the first carbon layer 2A is configured such that the ionomer / carbon mass ratio (I / C) of the first carbon layer 2A is 1.3 or more from the viewpoint of maintaining proton conductivity and normal power generation performance. In view of maintaining electronic conductivity, it is preferable that I / C is 2.0 or less. Furthermore, from the same viewpoint, it is more preferable that the I / C is configured to be 1.9 or less. As a result, the first carbon layer 2A can easily move electrons and protons between the cathode catalyst layer 3A and sufficiently suppress the decrease in the initial voltage.
  • the first carbon layer 2A preferably has an EW of 700 or more from the viewpoint of maintaining the shape stability of the first carbon layer 2A, and from the viewpoint of maintaining the performance of the first carbon layer 2A.
  • the EW is preferably 1100 or less.
  • the polymer electrolyte fuel cell (single cell) 20 includes a membrane-electrode assembly 11, a pair of gaskets 6A and 6B, and a pair of conductive materials. Separators 7A and 7B (cathode separator 7A and anode separator 7B).
  • the gasket 6A is provided around the first carbon layer 2A and the cathode 5A, and the gasket 6B is provided around the anode 5B.
  • the gaskets 6A and 6B are formed in a donut shape here. It is made of fluoro rubber. As a result, the fuel gas and the oxidant gas are suppressed from leaking out of the polymer electrolyte fuel cell 20, and the gas is suppressed from being mixed with each other in the polymer electrolyte fuel cell 20.
  • manifold holes (not shown) such as fuel gas supply manifold holes each having a through hole in the thickness direction are provided in the peripheral portions of the gaskets 6A and 6B.
  • the cathode separator 7A is provided so as to sandwich the membrane-electrode assembly 11 and the gasket 6A
  • the anode separator 7B is provided so as to sandwich the membrane-electrode assembly 11 and the gasket 6A.
  • the membrane-electrode assembly 11 is mechanically fixed, and when the plurality of polymer electrolyte fuel cells 20 are stacked in the thickness direction, the membrane-electrode assembly 11 is electrically connected.
  • these separators 7A and 7B can use the metal excellent in heat conductivity and electroconductivity, graphite, or what mixed graphite and resin, for example, carbon powder and a binder (solvent).
  • a mixture prepared by injection molding or a plate of titanium or stainless steel plated with gold can be used.
  • a groove-like oxidant gas flow path 8 for allowing the oxidant gas to flow therethrough.
  • the main surface (hereinafter referred to as the outer surface) is provided with a groove-like cooling medium flow path 10 through which the cooling medium flows.
  • a groove-like fuel gas flow path 9 through which the fuel gas flows.
  • the main surface (hereinafter referred to as the outer surface) is provided with a groove-like cooling medium flow path 10 through which the cooling medium flows.
  • fuel gas and oxidant gas are supplied to the anode 5B and the cathode 5A, respectively, and these gases react to generate electricity and heat. Further, the generated heat is recovered by passing a cooling medium such as cooling water through the cooling medium flow path 10.
  • each manifold hole such as a fuel gas supply manifold hole provided in the polymer electrolyte membrane 1, the gaskets 6A and 6B, the cathode separator 7A, and the anode separator 7B is formed when the polymer electrolyte fuel cells 20 are stacked.
  • Respective manifolds such as fuel gas supply manifolds are formed in the thickness direction.
  • a current collector plate and an insulating plate are arranged at both ends of the cell stack, a pair of end plates are further arranged at both ends, and fastened with a fastener to form a fuel cell stack (not shown).
  • FIG. 3 is a cross-sectional view schematically showing the operation of the polymer electrolyte fuel cell (solid polymer fuel cell according to Embodiment 1) 20 including the membrane-electrode assembly 11 shown in FIG. A state when starting of the polymer electrolyte fuel cell 20 is started from a state in which air exists in the anode 5B and the cathode 5A.
  • the reaction of the above-described chemical reaction formula (3) is performed in the conventional polymer electrolyte fuel cell. Occurs. Further, in the region where no hydrogen exists in the anode 5B (more precisely, the anode catalyst layer 3B), the reaction of the above chemical reaction formula (4) occurs.
  • the first carbon layer 2A includes: The carbon that is disposed between the polymer electrolyte membrane 1 and the cathode catalyst layer 3A and that is used for the first carbon layer 2A is used for at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A.
  • the ionization tendency is larger than the carbon ionization tendency, that is, the carbon contained in the first carbon layer 2A is more easily oxidized than the carbon contained in the cathode catalyst layer 3A. Yes.
  • the reaction of the chemical reaction formula (3) preferentially occurs in the carbon of the first carbon layer 2A, and the corrosion reaction of the catalyst-supporting carbon contained in the cathode catalyst layer 3A is suppressed.
  • the membrane-electrode assembly 11 according to the first embodiment and the polymer electrolyte fuel cell (solid polymer fuel cell according to the first embodiment) 20 including the membrane-electrode assembly 11 It is possible to suppress deterioration of battery characteristics due to oxidative corrosion and improve durability.
  • Embodiment 2 of the present invention exemplifies a form in which a first carbon layer having carbon and ionomer is disposed between a polymer electrolyte membrane and an anode catalyst layer.
  • FIG. 4 is a cross-sectional view schematically showing a schematic configuration and operation of the polymer electrolyte fuel cell according to Embodiment 2 of the present invention.
  • the fuel gas supplied to the polymer electrolyte fuel cell is temporarily Shows the state when deficient.
  • the polymer electrolyte fuel cell 20 according to the second embodiment of the present invention has a solid polymer fuel cell according to the first embodiment.
  • the basic configuration is the same as that of the molecular fuel cell 20 (the membrane-electrode assembly 11 according to Embodiment 1)
  • the first carbon layer 2A is interposed between the polymer electrolyte membrane 1 and the anode catalyst layer 3B. It is different in the arrangement. Therefore, a detailed description of the configuration of the polymer electrolyte fuel cell 20 according to Embodiment 2 is omitted.
  • the fuel gas (hydrogen gas) supplied to the anode 5B when the fuel gas (hydrogen gas) supplied to the anode 5B is deficient, the fuel gas of the anode 5B (more precisely, the anode catalyst layer 3B) is deficient. In this region, the reaction of the chemical reaction formula (3) occurs, the catalyst-supporting carbon is corroded, the electrode catalyst of the anode 5B is greatly deteriorated, and the performance of the fuel cell is lowered.
  • the first carbon layer 2A is disposed between the polymer electrolyte membrane 1 and the anode catalyst layer 3B. Therefore, the reaction of the chemical reaction formula (3) preferentially occurs in the carbon of the first carbon layer 2A, and the corrosion reaction of the catalyst-supporting carbon contained in the anode catalyst layer 3B is suppressed.
  • the deterioration of the cell characteristics due to the oxidative corrosion of the carbon support in the catalyst layer is suppressed.
  • Durability can be improved.
  • Embodiment 3 of the present invention has a configuration in which a first carbon layer having carbon and ionomer is disposed between the polymer electrolyte membrane and the cathode catalyst layer and between the polymer electrolyte membrane and the anode catalyst layer. This is just an example.
  • FIG. 5 is a cross-sectional view schematically showing a schematic configuration of the polymer electrolyte fuel cell according to Embodiment 3 of the present invention.
  • the polymer electrolyte fuel cell 20 according to the third embodiment of the present invention has a solid polymer fuel cell according to the first embodiment.
  • the basic configuration is the same as that of the molecular fuel cell 20 (the membrane-electrode assembly 11 according to Embodiment 1)
  • the first carbon layer 2A is interposed between the polymer electrolyte membrane 1 and the anode catalyst layer 3B. Is different in that it is also disposed.
  • the polymer electrolyte fuel cell 20 according to the third embodiment membrane-electrode assembly 11 according to the third embodiment
  • the polymer electrolyte fuel cell 20 according to the first embodiment In addition to the operational effects, the operational effects of the polymer electrolyte fuel cell 20 according to Embodiment 2 are exhibited.
  • Embodiment 4 of the present invention exemplifies a form in which a second carbon layer having carbon and ionomer is disposed between a cathode catalyst layer and a cathode gas diffusion layer.
  • a second carbon layer having carbon and ionomer is disposed between a cathode catalyst layer and a cathode gas diffusion layer.
  • FIG. 6 is a cross-sectional view schematically showing a schematic configuration of the membrane-electrode assembly according to Embodiment 4 of the present invention.
  • FIG. 7 schematically shows a schematic configuration and operation of a polymer electrolyte fuel cell (solid polymer fuel cell according to Embodiment 4) of the present invention provided with the membrane-electrode assembly shown in FIG. It is sectional drawing, and shows a state when gas, such as fuel gas which exists in an anode, is purged with air when a polymer electrolyte fuel cell is stopped.
  • a membrane-electrode assembly 11 includes a polymer electrolyte membrane 1, a second carbon layer 2B, a cathode catalyst layer 3A, and a cathode gas diffusion layer 4A.
  • a cathode 5A, an anode catalyst layer 3B, and an anode 5B having an anode gas diffusion layer 4B are provided.
  • the polymer electrolyte membrane 1 is configured to selectively transport hydrogen.
  • a cathode catalyst layer 3A is provided on one main surface of the polymer electrolyte membrane 1, and an anode catalyst layer 3B is provided on the other main surface.
  • a second carbon layer 2B is provided on the main surface of the cathode catalyst layer 3A on the side not in contact with the polymer electrolyte membrane 1.
  • manifold holes such as a fuel gas supply manifold hole including through holes in the thickness direction are provided in the peripheral edge portion of the main surface of the polymer electrolyte membrane 1 (not shown).
  • the configuration of the anode catalyst layer 3B and the cathode catalyst layer 3A is not particularly limited as long as the anode catalyst layer 3B and the cathode catalyst layer 3A have catalyst-supporting carbon and ionomer, respectively, and the configurations of the anode catalyst layer 3B and the cathode catalyst layer 3A are the same. May be different or different.
  • a catalyst-supporting carbon made of carbon powder (conductive carbon particles) supporting an electrode catalyst and an ionomer (for example, a polymer electrolyte) attached to the catalyst-supporting carbon further include a water-repellent material such as polytetrafluoroethylene. It may be a configuration.
  • the second carbon layer 2B has carbon and ionomer.
  • the carbon used for the second carbon layer 2B is configured such that its ionization tendency is larger than the ionization tendency of carbon used for at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A.
  • the carbon used in the second carbon layer 2B such as carbon that has been baked into the carrier carbon used in the catalyst layer to reduce the surface functional group serving as the oxidation start point, is used.
  • the ionization tendency of the carbon used for the second carbon layer 2B can be relatively increased.
  • the carbon used for the second carbon layer 2B is more easily oxidized than the catalyst-carrying carbon (carrier carbon) of the catalyst layer, so that deterioration of battery characteristics due to oxidative corrosion of the catalyst layer is suppressed and durability is improved. Can do.
  • the amount of the catalyst supported on the second carbon layer 2B is at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A (in the first embodiment, the anode catalyst layer 3B and the cathode catalyst layer 3A). Both) is configured to be smaller than the amount of catalyst supported. Thereby, it can suppress that it melt
  • the amount of catalyst supported on the second carbon layer 2B should be as small as possible.
  • the second carbon layer 2B is more preferably configured not to carry a catalyst. That is, the second carbon layer 2B is preferably composed of carbon and ionomer that do not carry a catalyst. In this case, the second carbon layer 2B does not exclude inclusion of substances other than carbon and ionomer not supporting the catalyst.
  • the catalyst loading amount of the second carbon layer 2B is configured to be smaller than the catalyst loading amounts of both the anode catalyst layer 3B and the cathode catalyst layer 3A.
  • the second carbon layer has only to be configured to be smaller than the amount of catalyst supported by at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A, and is larger than the amount of catalyst supported by the catalyst layer in contact with the second carbon layer 2B. You may be comprised so that the catalyst load of 2B may become small.
  • the second carbon layer 2B is configured such that the ionomer / carbon mass ratio (I / C) of the second carbon layer 2B is 0.6 or more from the viewpoint of maintaining the proton conductivity function.
  • the I / C is preferably configured to be 1.3 or less.
  • the second carbon layer 2B has proton conductivity, and has sufficient gas diffusibility from the gas diffusion layer (here, the cathode gas diffusion layer 4A) to the catalyst layer (here, the cathode catalyst layer 3A). Since it has, the fall of an initial voltage can fully be suppressed.
  • the second carbon layer 2B preferably has an EW of 700 or more from the viewpoint of maintaining the shape stability of the second carbon layer 2B, and from the viewpoint of maintaining the performance of the second carbon layer 2B.
  • the EW is preferably 1100 or less.
  • the polymer electrolyte fuel cell (single cell) 20 includes a membrane-electrode assembly 11, a pair of gaskets 6A and 6B, and a pair of conductive materials. Separators 7A and 7B (cathode separator 7A and anode separator 7B).
  • the gasket 6A is provided around the second carbon layer 2B and the cathode 5A, and the gasket 6B is provided around the anode 5B.
  • the gaskets 6A and 6B are formed in a donut shape here. It is made of fluoro rubber. As a result, the fuel gas and the oxidant gas are suppressed from leaking out of the polymer electrolyte fuel cell 20, and the gas is suppressed from being mixed with each other in the polymer electrolyte fuel cell 20.
  • manifold holes (not shown) such as fuel gas supply manifold holes each having a through hole in the thickness direction are provided in the peripheral portions of the gaskets 6A and 6B.
  • the cathode separator 7A is provided so as to sandwich the membrane-electrode assembly 11 and the gasket 6A
  • the anode separator 7B is provided so as to sandwich the membrane-electrode assembly 11 and the gasket 6A.
  • the membrane-electrode assembly 11 is mechanically fixed, and when the plurality of polymer electrolyte fuel cells 20 are stacked in the thickness direction, the membrane-electrode assembly 11 is electrically connected.
  • these separators 7A and 7B can use the metal excellent in heat conductivity and electroconductivity, graphite, or what mixed graphite and resin, for example, carbon powder and a binder (solvent).
  • a mixture prepared by injection molding or a plate of titanium or stainless steel plated with gold can be used.
  • a groove-like oxidant gas flow path 8 for allowing the oxidant gas to flow therethrough.
  • the main surface (hereinafter referred to as the outer surface) is provided with a groove-like cooling medium flow path 10 through which the cooling medium flows.
  • a groove-like fuel gas flow path 9 through which the fuel gas flows.
  • the main surface (hereinafter referred to as the outer surface) is provided with a groove-like cooling medium flow path 10 through which the cooling medium flows.
  • fuel gas and oxidant gas are supplied to the anode 5B and the cathode 5A, respectively, and these gases react to generate electricity and heat. Further, the generated heat is recovered by passing a cooling medium such as cooling water through the cooling medium flow path 10.
  • a cell stack is formed by stacking the polymer electrolyte fuel cells 20 according to Embodiment 4 thus configured in the thickness direction (not shown).
  • each manifold hole such as a fuel gas supply manifold hole provided in the polymer electrolyte membrane 1, the gaskets 6A and 6B, the cathode separator 7A, and the anode separator 7B is formed when the polymer electrolyte fuel cells 20 are stacked.
  • Respective manifolds such as fuel gas supply manifolds are formed in the thickness direction.
  • a current collector plate and an insulating plate are arranged at both ends of the cell stack, a pair of end plates are further arranged at both ends, and fastened with a fastener to form a fuel cell stack (not shown). )
  • FIG. 8 is a cross-sectional view schematically showing the operation of a polymer electrolyte fuel cell (solid polymer fuel cell according to Embodiment 4) 20 including the membrane-electrode assembly 11 shown in FIG. A state when starting of the polymer electrolyte fuel cell 20 is started from a state in which air exists in the anode 5B and the cathode 5A.
  • the reaction of the above-described chemical reaction formula (3) is performed in the conventional polymer electrolyte fuel cell. Occurs. Further, in the region where no hydrogen exists in the anode 5B (more precisely, the anode catalyst layer 3B), the reaction of the above chemical reaction formula (4) occurs.
  • the second carbon layer 2B includes: The carbon that is disposed between the cathode catalyst layer 3A and the cathode gas diffusion layer 4A and that is used for the second carbon layer 2B is used for at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A.
  • the ionization tendency is larger than the ionization tendency of the carbon produced, that is, the carbon contained in the second carbon layer 2B is more easily oxidized than the carbon contained in the cathode catalyst layer 3A. Yes.
  • the reaction of the chemical reaction formula (3) preferentially occurs in the carbon of the second carbon layer 2B, and the corrosion reaction of the catalyst-supporting carbon contained in the cathode catalyst layer 3A is suppressed.
  • the membrane-electrode assembly 11 according to the fourth embodiment and the polymer electrolyte fuel cell (solid polymer fuel cell according to the fourth embodiment) 20 including the membrane-electrode assembly 11 It is possible to suppress deterioration of battery characteristics due to oxidative corrosion and improve durability.
  • Embodiment 5 of the present invention exemplifies a form in which a second carbon layer having carbon and ionomer is disposed between an anode catalyst layer and an anode gas diffusion layer.
  • FIG. 9 is a cross-sectional view schematically showing a schematic configuration and operation of a polymer electrolyte fuel cell according to Embodiment 5 of the present invention.
  • the fuel gas supplied to the polymer electrolyte fuel cell is temporarily Shows the state when deficient.
  • the polymer electrolyte fuel cell 20 according to the fifth embodiment of the present invention (the membrane-electrode assembly 11 according to the fifth embodiment of the present invention) is the same as the solid polymer fuel cell according to the fourth embodiment.
  • the basic configuration is the same as that of the molecular fuel cell 20 (the membrane-electrode assembly 11 according to Embodiment 4), but the second carbon layer 2B is interposed between the anode catalyst layer 3B and the anode gas diffusion layer 4B. It is different in the arrangement. Therefore, a detailed description of the configuration of the polymer electrolyte fuel cell 20 according to Embodiment 5 is omitted.
  • the fuel gas (hydrogen gas) supplied to the anode 5B when the fuel gas (hydrogen gas) supplied to the anode 5B is deficient, the fuel gas of the anode 5B (more precisely, the anode catalyst layer 3B) is deficient. In this region, the reaction of the chemical reaction formula (3) occurs, the catalyst-supporting carbon is corroded, the electrode catalyst of the anode 5B is greatly deteriorated, and the performance of the fuel cell is lowered.
  • the second carbon layer 2B is disposed between the anode catalyst layer 3B and the anode gas diffusion layer 4B. Therefore, the reaction of the chemical reaction formula (3) preferentially occurs in the carbon of the second carbon layer 2B, and the corrosion reaction of the catalyst-supporting carbon contained in the anode catalyst layer 3B is suppressed.
  • the deterioration of the cell characteristics due to the oxidative corrosion of the carbon support in the catalyst layer is suppressed. , Durability can be improved.
  • Embodiment 6 of the present invention a second carbon layer having carbon and ionomer is disposed between the cathode catalyst layer and the cathode gas diffusion layer and between the anode catalyst layer and the anode gas diffusion layer. This is just an example.
  • FIG. 10 is a cross-sectional view schematically showing a schematic configuration of a polymer electrolyte fuel cell according to Embodiment 6 of the present invention.
  • the polymer electrolyte fuel cell 20 according to the sixth embodiment of the present invention has a solid high fuel cell according to the fourth embodiment.
  • the basic configuration is the same as that of the molecular fuel cell 20 (the membrane-electrode assembly 11 according to Embodiment 1), but the second carbon layer 2B is interposed between the anode catalyst layer 3B and the anode gas diffusion layer 4B. Is different in that it is also disposed.
  • the polymer electrolyte fuel cell 20 according to the fourth embodiment membrane-electrode assembly 11 according to the sixth embodiment
  • the polymer electrolyte fuel cell 20 according to the fourth embodiment In addition to the operational effects, the operational effects of the polymer electrolyte fuel cell 20 according to Embodiment 5 are exhibited.
  • Embodiment 7 of the present invention a first carbon layer having carbon and an ionomer is disposed between the polymer electrolyte membrane and the cathode catalyst layer, and carbon and carbon are interposed between the cathode catalyst layer and the cathode gas diffusion layer.
  • the form in which the second carbon layer having an ionomer is disposed is illustrated.
  • FIG. 11 is a cross-sectional view schematically showing a schematic configuration of a polymer electrolyte fuel cell according to Embodiment 7 of the present invention.
  • the polymer electrolyte fuel cell 20 according to the seventh embodiment of the present invention (the membrane-electrode assembly 11 according to the seventh embodiment of the present invention) is the same as the solid polymer fuel cell according to the first embodiment.
  • the basic configuration is the same as that of the molecular fuel cell 20 (the membrane-electrode assembly 11 according to Embodiment 1)
  • the second carbon layer 2B is interposed between the cathode catalyst layer 3A and the cathode gas diffusion layer 4A. It is different in the arrangement. Therefore, a detailed description of the configuration of the polymer electrolyte fuel cell 20 according to Embodiment 7 is omitted.
  • the polymer electrolyte fuel cell 20 according to the first embodiment is used.
  • the operational effects of the polymer electrolyte fuel cell 20 according to Embodiment 4 are exhibited.
  • the first carbon layer 2A is disposed between the polymer electrolyte membrane 1 and the cathode catalyst layer 3A.
  • the present invention is not limited to this, and the polymer electrolyte membrane 1 and the anode catalyst layer 3B are not limited thereto. Or between the polymer electrolyte membrane 1 and the cathode catalyst layer 3A and between the polymer electrolyte membrane 1 and the anode catalyst layer 3B.
  • the second carbon layer 2B is disposed between the cathode catalyst layer 3A and the cathode gas diffusion layer 4A, but is not limited thereto, and is disposed between the anode catalyst layer 3B and the anode gas diffusion layer 4B. Alternatively, it may be disposed both between the cathode catalyst layer 3A and the cathode gas diffusion layer 4A and between the anode catalyst layer 3B and the anode gas diffusion layer 4B.
  • Embodiment 8 of the present invention is a fuel comprising a polymer electrolyte fuel cell, a solid polymer fuel cell in which a carbon layer is disposed between at least one of an anode catalyst layer and a cathode catalyst layer, and a purge air supplier.
  • a mode in which air is supplied to the anode and purged when the stop process of the fuel cell power generation system is performed is illustrated.
  • FIG. 12 is a schematic diagram showing a schematic configuration of a fuel cell power generation system according to Embodiment 8 of the present invention.
  • a fuel cell power generation system 100 includes a polymer electrolyte fuel cell 20, a fuel gas supply device 21, and an oxidant gas supply device according to Embodiment 1. 22, a purge air supply unit 23, and a controller 24.
  • the polymer electrolyte fuel cell 20 is used as a fuel cell stack in which a plurality of single cells are stacked.
  • a hydrogen generator for example, a hydrogen generator, a hydrogen cylinder, a hydrogen storage alloy, or the like can be used for the fuel gas supply device 21.
  • a hydrogen generator for example, a hydrogen generator, a hydrogen cylinder, a hydrogen storage alloy, or the like.
  • an example of a hydrogen generator is shown. Since the hydrogen generator is well known, detailed description thereof is omitted.
  • the fuel gas supply unit 21 is connected to a polymer electrolyte fuel cell 20 (more precisely, an inlet of a fuel gas supply manifold not shown) via a fuel gas supply path 41.
  • a first on-off valve 25 is provided in the middle of the fuel gas supply path 41. Thereby, it is possible to prevent the gas such as the fuel gas from flowing from the fuel gas supply path 41 to the fuel gas supply device 21 from flowing backward.
  • an oxidant gas supply unit 22 is connected to the polymer electrolyte fuel cell 20 (precisely, an inlet of an oxidant gas supply manifold not shown) via an oxidant gas supply path 42.
  • a fan such as a blower or a sirocco fan can be used.
  • fuel gas is supplied from the fuel gas supply device 21 to the anode 5B (see FIGS. 1 to 3) of the polymer electrolyte fuel cell 20, and from the oxidant gas supply device 22 to the cathode of the polymer electrolyte fuel cell 20.
  • Oxidant gas is supplied to 5A (see FIGS. 1 to 3).
  • the supplied fuel gas and oxidant gas react electrochemically to generate water, and electricity and heat are generated.
  • the fuel gas not used in the anode 5B is discharged to a fuel gas discharge manifold (not shown) of the polymer electrolyte fuel cell 20, and the oxidant gas not used in the cathode 5A is discharged to an oxidant gas discharge manifold (not shown). From the fuel cell power generation system 100 through the oxidant gas discharge path 44.
  • the upstream end of the off-fuel gas passage 43 is connected to the outlet of the fuel gas discharge manifold (not shown) of the polymer electrolyte fuel cell 20, and the downstream end thereof is connected to the burner 21 ⁇ / b> A of the fuel gas supply device 21. It is connected. Further, a combustion exhaust gas passage 45 is connected to the burner 21A. Thereby, the fuel gas that has not been used in the anode 5B is supplied from the off-fuel gas flow path 43 to the burner 21A as off-fuel gas. In the burner 21 ⁇ / b> A, the off-fuel gas is used as a combustion fuel, and the combustion exhaust gas after combustion is discharged out of the fuel cell power generation system 100 from the combustion exhaust gas passage 45.
  • the downstream end of the purge air supply path 46 is connected to the downstream side of the first on-off valve 25 of the fuel gas supply path 41, and the purge air supply unit 23 is connected to the upstream end thereof. Yes.
  • a second on-off valve 26 is provided in the middle of the purge air supply path 46.
  • a fan such as a blower or a sirocco fan can be used. Accordingly, the purge air can be supplied from the purge air supply unit 23 to the anode 5B of the polymer electrolyte fuel cell 20 through the purge air supply path 46 and the fuel gas supply path 41.
  • the controller 24 can be constituted by, for example, a microcomputer, a logic circuit, etc., and performs various controls of the fuel cell power generation system 100.
  • the controller means not only a single controller but also a controller group in which a plurality of controllers cooperate to execute control of the fuel cell power generation system 100. For this reason, the controller 24 does not need to be composed of a single controller, and a plurality of controllers may be arranged in a distributed manner so as to control the fuel cell power generation system 100 in cooperation with each other. Good.
  • stopping the operation of the fuel cell power generation system means an operation from when the controller 24 outputs a stop signal until the fuel cell power generation system 100 completes the stop processing. A series of actions aimed at ensuring hearing protection. It should be noted that after the completion of the stop process of the fuel cell power generation system 100, the controller 24 is operating, and the operation of the parts other than the controller 24 is stopped. It shifts to the standby state where the startup process is performed.
  • the controller 24 stops the operation of the fuel gas supplier 21 and the oxidant gas supplier 22 and closes the first on-off valve 25. As a result, the supply of fuel gas and oxidant gas to the polymer electrolyte fuel cell 20 is stopped.
  • the controller 24 opens the second on-off valve 26 and operates the purge air supply 23.
  • the purge air is supplied from the purge air supply unit 23 to the fuel gas supply manifold (not shown) of the polymer electrolyte fuel cell 20 through the purge air supply path 46 and the fuel gas supply path 41.
  • the purge air supplied to the fuel gas supply manifold flows through the fuel gas channel 9 of each single cell to purge the fuel gas existing in the fuel gas channel 9 and the anode 5B (see FIG. 2).
  • the chemical reaction formula is preferentially formed by the carbon of the first carbon layer 2A.
  • the reaction (3) occurs, and the corrosion reaction of the catalyst-supporting carbon contained in the cathode catalyst layer 3A is suppressed.
  • the purged fuel gas is supplied to the burner 21A through the off-fuel gas passage 43, burned by the burner 21A, and discharged out of the fuel cell power generation system 100.
  • the controller 24 stops the operation of the purge air supply 23 when a predetermined time (a time during which the fuel gas in the polymer electrolyte fuel cell 20 is sufficiently purged with air) elapses. Then, the second on-off valve 26 is closed, and a transition is made to a standby state.
  • the controller 24 opens the first on-off valve 25 and operates the fuel gas supply device 21 and the oxidant gas supply device 22. Then, the fuel gas is supplied from the fuel gas supply device 21 to the anode 5B of the polymer electrolyte fuel cell 20, and the oxidant gas is supplied from the oxidant gas supply device 22 to the cathode 5A of the polymer electrolyte fuel cell 20. .
  • the polymer electrolyte fuel cell 20 according to the first embodiment since the polymer electrolyte fuel cell 20 according to the first embodiment is used, even if the inside of the fuel cell is replaced with air, the catalyst layer Deterioration can be suppressed. For this reason, not only simplification and cost reduction of the fuel cell power generation system 100 are possible, but also control of the fuel cell power generation system 100 can be simplified.
  • the polymer electrolyte fuel cell 20 according to the first embodiment is used, but the solid polymer according to any one of the second to seventh embodiments is used.
  • a polymer fuel cell 20 may be used.
  • Embodiment 9 of the present invention is a fuel comprising a polymer electrolyte fuel cell, a solid polymer fuel cell in which a carbon layer is disposed between at least one of an anode catalyst layer and a cathode catalyst layer, and a purge air supplier.
  • the purge air supply unit is exemplified by an oxidant gas supply unit and a bypass flow path.
  • FIG. 13 is a schematic diagram showing a schematic configuration of a fuel cell power generation system according to Embodiment 9 of the present invention.
  • the fuel cell power generation system 100 according to the ninth embodiment of the present invention has the same basic configuration as the fuel cell power generation system 100 according to the eighth embodiment, but the purge air supply device is the same.
  • the oxidant gas supply unit 22 is different from the oxidant gas supply unit 22 in that it is configured to supply an oxidant gas from the oxidant gas supply unit 22 to the anode 5B.
  • the bypass channel 47 has an upstream end connected in the middle of the oxidant gas supply path 42 and a downstream end connected to the downstream side of the first on-off valve 25 of the fuel gas supply path 41. .
  • a third opening / closing valve 27 is provided in the middle of the bypass flow path 47.
  • a fourth on-off valve 28 is provided in the middle of the oxidant gas discharge path 44.
  • the controller 24 stops the operation of the fuel gas supply device 21 and closes the first on-off valve 25. Thereby, the supply of the fuel gas to the polymer electrolyte fuel cell 20 is stopped.
  • the controller 24 opens the third on-off valve 27 and closes the fourth on-off valve 28.
  • the oxidant gas supplied from the oxidant gas supply device 22 to the oxidant gas supply path 42 flows as the purge air through the bypass flow path 47 and the fuel gas supply path 41, and the polymer electrolyte fuel cell 20.
  • a fuel gas supply manifold (not shown).
  • the purge air supplied to the fuel gas supply manifold flows through the fuel gas channel 9 of each single cell to purge the fuel gas existing in the fuel gas channel 9 and the anode 5B (see FIG. 2).
  • the fuel cell power generation system 100 according to the ninth embodiment has the same effects as the fuel cell power generation system 100 according to the eighth embodiment.
  • Embodiment 10 of the present invention is a fuel comprising a polymer electrolyte fuel cell, a polymer electrolyte fuel cell in which a carbon layer is disposed between at least one of an anode catalyst layer and a cathode catalyst layer, and a purge air supplier.
  • the purge air supply unit is configured by an air release channel and an on-off valve provided in the air release channel.
  • FIG. 14 is a schematic diagram showing a schematic configuration of the fuel cell power generation system according to Embodiment 10 of the present invention.
  • the fuel cell power generation system 100 according to the tenth embodiment of the present invention has the same basic configuration as the fuel cell power generation system 100 according to the eighth embodiment.
  • the fifth open / close valve 29 (the open / close valve of the present invention) provided in the open air channel 48 is different.
  • one end of the air release channel 48 is connected to the downstream side of the first on-off valve 25 of the fuel gas supply channel 41, and the other end is open to the atmosphere.
  • a fifth on-off valve 29 is provided in the middle of the air release channel 48.
  • the controller 24 stops the operation of the fuel gas supplier 21 and the oxidant gas supplier 22 and closes the first on-off valve 25. As a result, the supply of the fuel gas and the oxidant gas to the polymer electrolyte fuel cell 20 is stopped.
  • the controller 24 opens the fifth on-off valve 29. Then, since the inside of the polymer electrolyte fuel cell 20 has a negative pressure due to the temperature drop due to the operation stop and the gas consumption of both electrodes due to the cross leak, air (purge air) is discharged from the atmosphere open end of the atmosphere open flow path 48. It flows in, flows through the open air channel 48 and the fuel gas supply channel 41, and is supplied to a fuel gas supply manifold (not shown) of the polymer electrolyte fuel cell 20. The purge air supplied to the fuel gas supply manifold flows through the fuel gas channel 9 of each single cell and mixes with the fuel gas existing in the fuel gas channel 9 and the anode 5B (see FIG. 2). .
  • the fuel cell power generation system 100 according to the tenth embodiment has the same operational effects as the fuel cell power generation system 100 according to the eighth embodiment.
  • Example 1 the polymer electrolyte fuel cell 20 described in Embodiment 1 was produced as follows.
  • SE10072 EW990
  • 10 wt% made by DuPont
  • the coated sheet is cut into a predetermined electrode size (60 mm square) with a punching die, and the cut sheet is applied to one side of a polymer electrolyte membrane 1 (Gore select membrane: manufactured by Gore) at 130 ° C. and 1 MPa.
  • the first carbon layer 2A was thermally transferred from the polypropylene sheet to the polymer electrolyte membrane 1.
  • Ketjen Black EC manufactured by International Co., Ltd.
  • a catalyst carrier was calcined in a nitrogen atmosphere at 2700 ° C. for 10 hours, and the graphitized carbon black was immersed in an aqueous chloroplatinic acid solution for reduction.
  • the platinum catalyst was supported on the surface of the carbon powder by the treatment.
  • the weight ratio of carbon to supported platinum was 1: 1.
  • the slurry was coated on a 50 ⁇ m thick polypropylene sheet with a bar coater so that the weight of platinum was 0.3 mg / cm 2 and dried at room temperature.
  • the coated sheet is cut into a predetermined electrode size (60 mm square) with a punching die, and the cut sheet is placed on both sides of the polymer electrolyte membrane 1 in which the first carbon layer 2A is disposed on one side (more precisely, The main surface of the polymer electrolyte membrane 1 where the first carbon layer 2A is not disposed and the main surface of the first carbon layer 2A which is not in contact with the polymer electrolyte membrane 1) and the first carbon layer 2A
  • the catalyst layer was thermally transferred from the polypropylene sheet to the polymer electrolyte membrane 1 at 130 ° C. and 1 MPa so as to overlap to form the anode catalyst layer 3B and the cathode catalyst layer 3A.
  • a carbon fiber nonwoven fabric (TGP-H-120: manufactured by Toray Industries, Inc.) having a thickness of 360 ⁇ m serving as an electrode was impregnated into a fluororesin-containing aqueous dispersion (neoflon ND1: manufactured by Daikin Industries), and then dried. Further, a water repellent carbon layer is formed on one surface of the carbon nonwoven fabric by applying an ink obtained by mixing a conductive carbon powder and an aqueous solution in which PTFE fine powder is dispersed using a screen printing method. The mixture was heated at 0 ° C.
  • the electrode on which the first carbon layer 2A of the membrane-electrode assembly 11 is disposed is used as the cathode 5A, and is sandwiched between the anode separator 7B and the cathode separator 7A. Cell) 20 was produced.
  • Comparative Example 1 The polymer electrolyte fuel cell 20 of Comparative Example 1 was produced in the same manner as the polymer electrolyte fuel cell 20 of Example 1, except that the first carbon layer 2A was not provided.
  • FIG. 15 is a table showing the voltage and deterioration rate of each polymer electrolyte fuel cell before and after the performance evaluation test.
  • the operation is stopped and started.
  • the anode 5B has a region where hydrogen is present and a region where hydrogen is not present for a long time. The deterioration rate is greatly improved.
  • the initial voltage is not changed as compared with the polymer electrolyte fuel cell 20 of Comparative Example 1, and the first carbon layer 2A is used as the cathode catalyst layer 3A. It has been found that there is almost no influence on the normal power generation performance even if it is disposed between the polymer electrolyte membrane 1 and the polymer electrolyte membrane 1.
  • the effect of the first carbon layer 2A under the condition that the region where hydrogen is present and the region where hydrogen is not present is formed in the anode 5B.
  • an inert gas for example, nitrogen gas or Even in a fuel cell power generation system in which the anode 5B is purged with methane gas or the like and an inert gas is present in the anode 5B in a standby state
  • the battery voltage is low in an OCV state with no load or a power generation state with a high low load ratio. Therefore, it is clear that the first carbon layer 2 ⁇ / b> A is effective in suppressing the oxidative decay of carbon in the catalyst layer.
  • the formation of the first carbon layer 2A was formed by thermal transfer to the polymer electrolyte membrane 1.
  • the present invention is not limited thereto, and a catalyst layer is formed on the main surface of the gas diffusion layer.
  • the first carbon layer 2A may be formed on the main surface of the catalyst layer, or the first carbon layer 2A may be formed on the main surface of the polymer electrolyte membrane 1 by spray coating.
  • Example 4 the polymer electrolyte fuel cell 20 described in Embodiment 4 was produced as follows.
  • Ketjen Black EC manufactured by International Co., Ltd.
  • a catalyst carrier was baked at 2700 ° C. for 10 hours in a nitrogen atmosphere, and the graphitized carbon black was immersed in an aqueous chloroplatinic acid solution, and carbon was reduced by reduction treatment.
  • a platinum catalyst was supported on the surface of the powder. The weight ratio of carbon to supported platinum was 1: 1.
  • the slurry was coated on a 50 ⁇ m thick polypropylene sheet with a bar coater so that the weight of platinum was 0.3 mg / cm 2 and dried at room temperature.
  • the coated sheet was cut into a predetermined electrode size (60 mm square) with a punching die, and the cut sheets were arranged on both surfaces of the polymer electrolyte membrane 1 so as to overlap each other when viewed from the thickness direction.
  • the catalyst layer was thermally transferred from the polypropylene sheet to the polymer electrolyte membrane 1 at 130 ° C. and 1 MPa to form the anode catalyst layer 3B and the cathode catalyst layer 3A.
  • ketjen black EC manufactured by International
  • the ionomer solution SE10072 (EW990), 10 wt%: DuPont
  • I / C 0.6
  • ultrasonic dispersion was performed to make a slurry.
  • this slurry was coated on a polypropylene sheet having a thickness of 50 ⁇ m with a bar coater so that the thickness upon drying was 5 ⁇ m, and dried at room temperature.
  • the coated sheet was cut into a predetermined electrode size (60 mm square) with a punching die, and the cut sheet was placed on the main surface of the cathode catalyst layer 3A of the polymer electrolyte membrane 1.
  • the second carbon layer 2B was thermally transferred from the polypropylene sheet to the main surface of the cathode catalyst layer 3A of the polymer electrolyte membrane 1 at 130 ° C. and 1 MPa.
  • a carbon fiber nonwoven fabric (TGP-H-120: manufactured by Toray Industries, Inc.) having a thickness of 360 ⁇ m serving as an electrode was impregnated into a fluororesin-containing aqueous dispersion (neoflon ND1: manufactured by Daikin Industries), and then dried. Furthermore, a water-repellent carbon layer is formed on one surface of the carbon nonwoven fabric by applying an ink obtained by mixing a conductive carbon powder and an aqueous solution in which PTFE fine powder is dispersed using a screen printing method. The mixture was heated at 0 ° C.
  • the electrode on which the second carbon layer 2B of the membrane-electrode assembly 11 is disposed is used as the cathode 5A, and is sandwiched between the anode separator 7B and the cathode separator 7A. Cell) 20 was produced.
  • Comparative Example 4 The polymer electrolyte fuel cell 20 of Comparative Example 4 was produced in the same manner as the polymer electrolyte fuel cell 20 of Example 4 except that the second carbon layer 2B was not provided.
  • FIG. 16 is a table showing the voltage and deterioration rate of each polymer electrolyte fuel cell before and after the performance evaluation test.
  • the initial voltage is not changed as compared with the polymer electrolyte fuel cell 20 of Comparative Example 4, and the second carbon layer 2B is used as the cathode catalyst. It has been found that even if it is arranged between the layer 3A and the cathode gas diffusion layer 4A, there is almost no influence on the normal power generation performance.
  • the effect of the second carbon layer 2B under the condition that the region where hydrogen is present and the region where the hydrogen is not present is formed in the anode 5B is verified, but an inert gas (for example, nitrogen gas or Even in a fuel cell power generation system in which the anode 5B is purged with methane gas or the like and an inert gas is present in the anode 5B in a standby state, the battery voltage is low in an OCV state with no load or a power generation state with a high low load ratio. Therefore, it is clear that the second carbon layer 2B has an effect of suppressing the oxidative decay of carbon in the catalyst layer.
  • an inert gas for example, nitrogen gas or Even in a fuel cell power generation system in which the anode 5B is purged with methane gas or the like and an inert gas is present in the anode 5B in a standby state
  • the second carbon layer 2B is formed by thermally transferring to the catalyst layer.
  • the present invention is not limited to this, and the catalyst layer is formed on the main surface of the gas diffusion layer.
  • the second carbon layer 2B may be formed on the main surface, or the second carbon layer 2B may be formed on the main surface of the gas diffusion layer by spray coating.
  • the membrane-electrode assembly and solid polymer fuel cell of the present invention can suppress the deterioration of battery characteristics due to oxidative corrosion of the carbon support in the catalyst layer and can improve the durability. Useful.
  • the fuel cell power generation system of the present invention is useful in the technical field of fuel cells because the control of the fuel cell power generation system can be simplified, and the fuel cell power generation system can be simplified and reduced in cost.

Abstract

Disclosed is a membrane-electrode assembly provided with an anode (5B), a cathode (5A), a polymer electrolyte membrane (1), and either a first carbon layer (2A) disposed between either an anode catalyst layer (3B) and/or a cathode catalyst layer (3A) and the polymer electrolyte membrane (1) and/or a second carbon layer (2B) disposed either between the anode catalyst layer (3B) and an anode gas diffusion layer (4B) and/or between the cathode catalyst layer (3A) and a cathode gas diffusion layer (4A), wherein the carbon layer is configured such that the ionization tendency of carbon in the carbon layer is larger than the ionization tendency of catalyst-supported carbon in either the anode catalyst layer (3B) and/or the cathode catalyst layer (3A) and the amount of supported catalyst in the carbon layer is smaller than the amount of supported catalyst in either the anode catalyst layer (3B) and/or the cathode catalyst layer (3A).

Description

膜-電極接合体、固体高分子形燃料電池、及び燃料電池発電システムMembrane-electrode assembly, polymer electrolyte fuel cell, and fuel cell power generation system
 本発明は、膜-電極接合体、固体高分子形燃料電池、及び燃料電池発電システムに関し、特に、膜-電極接合体の構造に関する。 The present invention relates to a membrane-electrode assembly, a polymer electrolyte fuel cell, and a fuel cell power generation system, and more particularly to a structure of a membrane-electrode assembly.
 固体高分子形燃料電池(以下、PEFCという)は、都市ガスなどの原料ガスを改質した水素を含む燃料ガスと空気等酸素を含有する酸化剤ガスを電気化学的に反応させることで、電気と熱を同時に発生させるものである。このとき、アノードでは、化学反応式(1)に示す反応が生じ、カソードでは、化学反応式(2)に示す反応が生じる。 A polymer electrolyte fuel cell (hereinafter referred to as PEFC) is an electric cell that reacts electrochemically with a fuel gas containing hydrogen obtained by reforming a raw material gas such as city gas and an oxidant gas containing oxygen such as air. And generate heat at the same time. At this time, the reaction shown in the chemical reaction formula (1) occurs at the anode, and the reaction shown in the chemical reaction formula (2) occurs at the cathode.
 2H→4H+4e・・・(1)
 O+4H+4e→2HO・・・(2)
 ところで、アノード、カソード共に空気が存在している状態から燃料電池を起動させる場合に、触媒担持担体の劣化反応が生じることが知られている(例えば、非特許文献1参照)。アノード、カソード共に空気が存在している状態から燃料電池を起動させる場合に、アノードのガス流路に水素を供給し始めた初期には、燃料ガス流路内に水素が存在する領域と存在しない領域が形成される。これにより、アノード内においても、水素が存在する領域と水素が存在しない領域が形成される。そして、カソードにおけるアノードの水素が存在しない領域と対向する領域では、触媒担持担体の劣化反応が生じる。例えば、触媒担持担体としてカーボンを用いた場合には、化学反応式(3)に示す反応が生じる。
2H 2 → 4H + + 4e (1)
O 2 + 4H + + 4e → 2H 2 O (2)
By the way, it is known that when the fuel cell is started from the state where air exists in both the anode and the cathode, a deterioration reaction of the catalyst-supporting carrier occurs (for example, see Non-Patent Document 1). When starting the fuel cell from a state where air is present in both the anode and the cathode, at the beginning of supplying hydrogen to the gas flow path of the anode, there is no region where hydrogen exists in the fuel gas flow path. A region is formed. Thereby, also in the anode, a region where hydrogen exists and a region where hydrogen does not exist are formed. And in the area | region which opposes the area | region where the hydrogen of the anode of a cathode does not exist, the deterioration reaction of a catalyst carrying | support carrier arises. For example, when carbon is used as the catalyst support, the reaction shown in chemical reaction formula (3) occurs.
 C+2HO→CO+4H+4e・・・(3)
 その結果、Pt等の触媒を担持しているカーボン担体の腐食が起こり、カソードの電極触媒が大きく劣化し、燃料電池の性能を低下させる要因となる。なお、アノードの空気が存在する領域においては、化学反応式(4)に示す反応が生じ、水が生成される。
C + 2H 2 O → CO 2 + 4H + + 4e (3)
As a result, the carbon carrier carrying the catalyst such as Pt is corroded, the cathode electrode catalyst is greatly deteriorated, and the performance of the fuel cell is lowered. In the region where the anode air is present, the reaction shown in the chemical reaction formula (4) occurs and water is generated.
 O+4H+4e→2HO・・・(4)
 このような現象によるカソードの劣化を防止するために、触媒層の担体カーボンより酸化されやすいカーボンで構成される腐食領域をセパレータ流路壁面、触媒層の外縁に沿った領域や触媒層の外縁に沿った領域と触媒層の厚み方向から見て格子状に配置した燃料電池が知られている。(例えば、特許文献1参照)。特許文献1に開示されている燃料電池では、触媒層に比較して腐食領域は酸化され易いので、触媒層の酸化による燃料電池の劣化を抑制することができる。
O 2 + 4H + + 4e → 2H 2 O (4)
In order to prevent cathode deterioration due to such a phenomenon, a corroded region composed of carbon that is more easily oxidized than the support carbon of the catalyst layer is formed on the separator channel wall surface, the region along the outer edge of the catalyst layer, or the outer edge of the catalyst layer. A fuel cell is known that is arranged in a lattice pattern when viewed from the region along the thickness direction of the catalyst layer. (For example, refer to Patent Document 1). In the fuel cell disclosed in Patent Document 1, the corrosion region is more easily oxidized than the catalyst layer, so that deterioration of the fuel cell due to oxidation of the catalyst layer can be suppressed.
 また、保水による性能を向上することを主目的として触媒層と高分子電解質膜との間にカーボンとアイオノマーからなる保水層を備えた固体高分子型燃料電池が知られている(例えば、特許文献2参照)。 In addition, a solid polymer fuel cell is known that has a water retention layer composed of carbon and ionomer between a catalyst layer and a polymer electrolyte membrane for the purpose of improving the performance of water retention (for example, Patent Documents). 2).
特開2006-236631号公報JP 2006-236631 A 特開2007-188768号公報JP 2007-188768 A
 しかしながら、上記特許文献1に開示されている燃料電池では、腐食領域がセパレータ流路壁面に構成されている場合には、プロトン伝導距離が長いため、プロトン伝導性が低くなり、また、腐食領域が触媒層の外縁に沿った領域や格子状に構成されている場合には、
起動時のアノードに空気が存在する領域あるいは発電中のアノードで水素欠乏する領域と、腐食領域とが、一致しない領域もあり、腐食領域が充分に機能しないという課題があった。
However, in the fuel cell disclosed in Patent Document 1, when the corroded region is formed on the separator channel wall surface, the proton conductivity is long, and therefore the proton conductivity is low. If it is configured in a grid or a region along the outer edge of the catalyst layer,
There is a problem that the region where air is present in the anode at the start-up or the region where hydrogen is deficient in the anode during power generation does not coincide with the corrosion region, and the corrosion region does not function sufficiently.
 また、特許文献2に開示されている固体高分子型燃料電池では、アイオノマー比率の高いアイオノマー/カーボン保水層を触媒層と高分子電解質膜との間に配置しているため、保水層が触媒層よりも先に酸化され、触媒層の酸化による燃料電池の性能の劣化を抑制できるが、充分に膜-触媒層間をプロトンが伝導する、また、触媒層間を充分にプロトンが伝導する(触媒層間のプロトン伝導性の低下を抑制する)には触媒層と高分子電解質膜との間に配置されている保水層のアイオノマー/カーボンの質量比(I/C)が低いため、初期電圧が低下するという課題があった。 In the polymer electrolyte fuel cell disclosed in Patent Document 2, since the ionomer / carbon water retention layer having a high ionomer ratio is disposed between the catalyst layer and the polymer electrolyte membrane, the water retention layer is the catalyst layer. It can be oxidized before the degradation of the performance of the fuel cell due to oxidation of the catalyst layer. However, protons are sufficiently conducted between the membrane and catalyst layers, and protons are sufficiently conducted between the catalyst layers (between the catalyst layers). In order to suppress a decrease in proton conductivity, the ionomer / carbon mass ratio (I / C) of the water retention layer disposed between the catalyst layer and the polymer electrolyte membrane is low, so that the initial voltage decreases. There was a problem.
 本発明は、上記従来の課題を解決するものであり、触媒層の酸化腐食反応に対する耐久性を向上させ、初期電圧の低下を抑制することができる、膜-電極接合体、固体高分子形燃料電池、及び燃料電池発電システムを提供することを目的とする。 The present invention solves the above-described conventional problems, improves the durability of the catalyst layer against oxidative corrosion reaction, and can suppress the decrease in the initial voltage, the membrane-electrode assembly, and the polymer electrolyte fuel An object is to provide a battery and a fuel cell power generation system.
 上記課題を解決するために、本発明に係る膜-電極接合体は、触媒担持カーボンとアイオノマーを含むアノード触媒層とアノードガス拡散層とを有する、アノードと、触媒担持カーボンとアイオノマーを含むカソード触媒層とカソードガス拡散層とを有するカソードと、前記アノード触媒層と前記カソード触媒層の間に配置された高分子電解質膜と、前記アノード触媒層及び前記カソード触媒層の少なくとも一方と前記高分子電解質膜との間に配置され、カーボンとアイオノマーを有する第1カーボン層及び前記アノード触媒層と前記アノードガス拡散層との間及び前記カソード触媒層と前記カソードガス拡散層との間の少なくとも一方に配置され、カーボンとアイオノマーを有する第2カーボン層の少なくとも一方のカーボン層と、を備え、前記第1カーボン層及び前記第2カーボン層は、該第1カーボン層及び該第2カーボン層のカーボンのイオン化傾向が前記アノード触媒層及び前記カソード触媒層の少なくとも一方の触媒担持カーボンのイオン化傾向より大きくなるように、かつ、該第1カーボン層及び該第2カーボン層の触媒担持量が前記アノード触媒層及び前記カソード触媒層の少なくとも一方の触媒担持量よりも小さくなるように構成されている。 In order to solve the above problems, a membrane-electrode assembly according to the present invention comprises an anode having a catalyst-carrying carbon and an ionomer and an anode gas diffusion layer, and a cathode catalyst comprising the catalyst-carrying carbon and the ionomer. A cathode having a layer and a cathode gas diffusion layer; a polymer electrolyte membrane disposed between the anode catalyst layer and the cathode catalyst layer; at least one of the anode catalyst layer and the cathode catalyst layer; and the polymer electrolyte. And a first carbon layer having carbon and an ionomer, and disposed between at least one of the anode catalyst layer and the anode gas diffusion layer and between the cathode catalyst layer and the cathode gas diffusion layer. And at least one carbon layer of a second carbon layer having carbon and an ionomer. In the first carbon layer and the second carbon layer, the ionization tendency of carbon in the first carbon layer and the second carbon layer is an ionization tendency of at least one catalyst-supporting carbon in the anode catalyst layer and the cathode catalyst layer. The catalyst loading amount of the first carbon layer and the second carbon layer is configured to be smaller than the catalyst loading amount of at least one of the anode catalyst layer and the cathode catalyst layer. .
 これにより、第1カーボン層を有する場合には、第1カーボン層では、アノード触媒層とカソード触媒層のうち少なくとも一方の触媒層との間で電子とプロトンの移動が容易に行われ、初期電圧の低下を充分に抑制することができる。また、第2カーボン層を有する場合には、第2カーボン層は、プロトン伝導性を有し、また、ガス拡散層から触媒層へのガス拡散性を充分に有しているため、初期電圧の低下を充分に抑制することができる。さらに、カーボン層のカーボンは、触媒層の担体カーボンより酸化され易いため、触媒層の酸化腐食による電池特性の低下を抑制し、耐久性を向上させることができる。 As a result, when the first carbon layer is provided, electrons and protons are easily transferred between at least one of the anode catalyst layer and the cathode catalyst layer in the first carbon layer, and the initial voltage is increased. Can be sufficiently suppressed. Further, when the second carbon layer is included, the second carbon layer has proton conductivity and sufficient gas diffusibility from the gas diffusion layer to the catalyst layer. The decrease can be sufficiently suppressed. Furthermore, since carbon in the carbon layer is more easily oxidized than carrier carbon in the catalyst layer, it is possible to suppress deterioration of battery characteristics due to oxidative corrosion of the catalyst layer and to improve durability.
 また、本発明に係る膜-電極接合体では、前記第1カーボン層及び前記第2カーボン層は、触媒を担持していないカーボン及びアイオノマーから構成されていてもよい。 In the membrane-electrode assembly according to the present invention, the first carbon layer and the second carbon layer may be composed of carbon and ionomer not supporting a catalyst.
 また、本発明に係る膜-電極接合体では、前記第1カーボン層のアイオノマー/カーボンの質量比(I/C)が、1.3以上、かつ、2.0以下であってもよい。 In the membrane-electrode assembly according to the present invention, the ionomer / carbon mass ratio (I / C) of the first carbon layer may be 1.3 or more and 2.0 or less.
 また、本発明に係る膜-電極接合体では、前記第2カーボン層のアイオノマー/カーボンの質量比(I/C)が、0.6以上、かつ、1.3以下であってもよい。 In the membrane-electrode assembly according to the present invention, the ionomer / carbon mass ratio (I / C) of the second carbon layer may be 0.6 or more and 1.3 or less.
 また、本発明に係る膜-電極接合体では、前記第1カーボン層及び前記第2カーボン層のアイオノマーのEWが700以上、かつ、1100以下であってもよい。 In the membrane-electrode assembly according to the present invention, the EW of the ionomer of the first carbon layer and the second carbon layer may be 700 or more and 1100 or less.
 また、本発明に係る固体高分子形燃料電池は、前記膜-電極接合体と、板状で、前記膜-電極接合体を挟持するように配設された一対の導電性のセパレータと、を備える。 The polymer electrolyte fuel cell according to the present invention comprises the membrane-electrode assembly, and a pair of conductive separators arranged in a plate shape so as to sandwich the membrane-electrode assembly. Prepare.
 また、本発明に係る燃料電池発電システムは、前記固体高分子形燃料電池と、前記アノードに燃料ガス供給路を介して燃料ガスを供給する燃料ガス供給器と、前記カソードに酸化剤ガス供給路を介して酸化剤ガスを供給する酸化剤ガス供給器と、前記アノードで使用されなかった燃料ガスが通流するオフ燃料ガス流路と、パージ用空気供給器と、制御器と、を備える、燃料電池発電システムにおいて、前記制御器は、前記燃料電池発電システムの停止処理を行うときに前記アノードに空気を供給してパージするように前記パージ用空気供給器を制御する。 The fuel cell power generation system according to the present invention includes the solid polymer fuel cell, a fuel gas supply device that supplies fuel gas to the anode via a fuel gas supply channel, and an oxidant gas supply channel to the cathode. An oxidant gas supply device for supplying an oxidant gas via the gas, an off-fuel gas passage through which a fuel gas not used in the anode flows, a purge air supply device, and a controller. In the fuel cell power generation system, the controller controls the purge air supply so that air is supplied to the anode for purging when the fuel cell power generation system is stopped.
 また、本発明に係る燃料電池発電システムでは、前記パージ用空気供給器は前記酸化剤ガス供給器と該酸化剤ガス供給器から前記アノードに前記酸化剤ガスを供給するように構成されたバイパス流路で構成されていてもよい。 Further, in the fuel cell power generation system according to the present invention, the purge air supply device is configured to supply the oxidant gas to the anode from the oxidant gas supply device and the oxidant gas supply device. It may be composed of roads.
 また、本発明に係る燃料電池発電システムでは、前記パージ用空気供給器は前記燃料ガス供給路又は前記オフ燃料ガス流路に接続され、大気開放端を有する大気開放流路と前記大気開放流路に設けられた開閉弁とで構成されていてもよい。 Further, in the fuel cell power generation system according to the present invention, the purge air supply is connected to the fuel gas supply path or the off-fuel gas flow path, and the atmospheric open flow path having the open air end and the open air flow path And an on-off valve provided in the.
 さらに、本発明に係る燃料電池発電システムでは、前記制御器は、前記アノード及び前記カソードに空気が存在する待機状態から前記燃料電池発電システムの起動処理を行うように構成されていてもよい。 Furthermore, in the fuel cell power generation system according to the present invention, the controller may be configured to perform startup processing of the fuel cell power generation system from a standby state in which air is present at the anode and the cathode.
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施形態の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
 本発明の膜-電極接合体、固体高分子形燃料電池、及び燃料電池発電システムによれば、触媒層中カーボン担体の酸化腐食による電池特性の低下を抑制し、耐久性を向上させることが可能となる。また、触媒層の耐久性向上により、燃料電池発電システム制御の簡略化が可能となり、システムの簡易化、低コスト化が可能となる。 According to the membrane-electrode assembly, the polymer electrolyte fuel cell, and the fuel cell power generation system of the present invention, it is possible to suppress the deterioration of the battery characteristics due to the oxidative corrosion of the carbon support in the catalyst layer and to improve the durability. It becomes. Further, by improving the durability of the catalyst layer, the control of the fuel cell power generation system can be simplified, and the system can be simplified and the cost can be reduced.
図1は、本発明の実施の形態1に係る膜-電極接合体の概略構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a schematic configuration of the membrane-electrode assembly according to Embodiment 1 of the present invention. 図2は、図1に示す膜-電極接合体を備える固体高分子形燃料電池(本発明の実施の形態1に係る固体高分子電解質形燃料電池)の概略構成及び動作を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a schematic configuration and operation of a polymer electrolyte fuel cell (solid polymer electrolyte fuel cell according to Embodiment 1 of the present invention) including the membrane-electrode assembly shown in FIG. FIG. 図3は、図1に示す膜-電極接合体を備える固体高分子形燃料電池(本発明の実施の形態1に係る固体高分子電解質形燃料電池)の動作を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the operation of the polymer electrolyte fuel cell (solid polymer electrolyte fuel cell according to Embodiment 1) including the membrane-electrode assembly shown in FIG. . 図4は、本発明の実施の形態2に係る固体高分子形燃料電池の概略構成及び動作を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a schematic configuration and operation of a polymer electrolyte fuel cell according to Embodiment 2 of the present invention. 図5は、本発明の実施の形態3に係る固体高分子形燃料電池の概略構成を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a schematic configuration of the polymer electrolyte fuel cell according to Embodiment 3 of the present invention. 図6は、本発明の実施の形態4に係る膜-電極接合体の概略構成を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a schematic configuration of the membrane-electrode assembly according to Embodiment 4 of the present invention. 図7は、図6に示す膜-電極接合体を備える固体高分子形燃料電池の概略構成及び動作を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a schematic configuration and operation of a polymer electrolyte fuel cell including the membrane-electrode assembly shown in FIG. 図8は、図6に示す膜-電極接合体を備える固体高分子形燃料電池の動作を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing the operation of the polymer electrolyte fuel cell comprising the membrane-electrode assembly shown in FIG. 図9は、本発明の実施の形態5に係る固体高分子形燃料電池の概略構成及び動作を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a schematic configuration and operation of a polymer electrolyte fuel cell according to Embodiment 5 of the present invention. 図10は、本発明の実施の形態6に係る固体高分子形燃料電池の概略構成を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a schematic configuration of the polymer electrolyte fuel cell according to Embodiment 6 of the present invention. 図11は、本発明の実施の形態7に係る固体高分子形燃料電池の概略構成を模式的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing a schematic configuration of a polymer electrolyte fuel cell according to Embodiment 7 of the present invention. 図12は、本発明の実施の形態8に係る燃料電池発電システムの概略構成を示す模式図である。FIG. 12 is a schematic diagram showing a schematic configuration of a fuel cell power generation system according to Embodiment 8 of the present invention. 図13は、本発明の実施の形態9に係る燃料電池発電システムの概略構成を示す模式図である。FIG. 13 is a schematic diagram showing a schematic configuration of a fuel cell power generation system according to Embodiment 9 of the present invention. 図14は、本発明の実施の形態10に係る燃料電池発電システムの概略構成を示す模式図である。FIG. 14 is a schematic diagram showing a schematic configuration of the fuel cell power generation system according to Embodiment 10 of the present invention. 図15は、性能評価試験前後の各固体高分子形燃料電池の電圧と劣化率を示した表である。FIG. 15 is a table showing the voltage and deterioration rate of each polymer electrolyte fuel cell before and after the performance evaluation test. 図16は、性能評価試験前後の各固体高分子形燃料電池の電圧と劣化率を示した表である。FIG. 16 is a table showing the voltage and deterioration rate of each polymer electrolyte fuel cell before and after the performance evaluation test.
 以下、本発明の好ましい実施の形態について、図面を参照しながら説明する。なお、全ての図面において、同一または相当部分には同一符号を付し、重複する説明は省略する。また、全ての図面において、本発明を説明するために必要となる構成要素のみを抜粋して図示しており、その他の構成要素については図示を省略している。さらに、本発明は以下の実施の形態に限定されない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, in all the drawings, only components necessary for explaining the present invention are extracted and illustrated, and other components are not illustrated. Furthermore, the present invention is not limited to the following embodiment.
 (実施の形態1)
 本発明の実施の形態1は、高分子電解質膜とカソード触媒層との間に、カーボンとアイオノマーを有する第1カーボン層が配置されている形態を例示するものである。
[膜-電極接合体及びそれを備える固体高分子形燃料電池の構成]
 まず、本発明の実施の形態1に係る膜-電極接合体及びこれを備える固体高分子形燃料電池(本発明の実施の形態1に係る固体高分子形燃料電池)の構成について、図1及び図2を参照しながら説明する。
(Embodiment 1)
Embodiment 1 of the present invention exemplifies a form in which a first carbon layer having carbon and ionomer is disposed between a polymer electrolyte membrane and a cathode catalyst layer.
[Configuration of membrane-electrode assembly and polymer electrolyte fuel cell including the same]
First, regarding the configuration of the membrane-electrode assembly according to Embodiment 1 of the present invention and the polymer electrolyte fuel cell including the membrane-electrode assembly (solid polymer fuel cell according to Embodiment 1 of the present invention), FIG. This will be described with reference to FIG.
 図1は、本発明の実施の形態1に係る膜-電極接合体の概略構成を模式的に示す断面図である。また、図2は、図1に示す膜-電極接合体を備える固体高分子形燃料電池(本発明の実施の形態1に係る固体高分子形燃料電池)の概略構成及び動作を模式的に示す断面図であり、固体高分子形燃料電池を停止するときにアノードに存在する燃料ガス等のガスを空気でパージしているときの状態を示す。 FIG. 1 is a cross-sectional view schematically showing a schematic configuration of a membrane-electrode assembly according to Embodiment 1 of the present invention. FIG. 2 schematically shows the schematic configuration and operation of the polymer electrolyte fuel cell (solid polymer fuel cell according to Embodiment 1) of the present invention provided with the membrane-electrode assembly shown in FIG. It is sectional drawing, and shows a state when gas, such as fuel gas which exists in an anode, is purged with air when a polymer electrolyte fuel cell is stopped.
 図1に示すように、本実施の形態1に係る膜-電極接合体11は、高分子電解質膜1と、第1カーボン層2Aと、カソード触媒層3Aとカソードガス拡散層4Aを有するカソード5Aと、アノード触媒層3Bとアノードガス拡散層4Bを有するアノード5Bと、を備える。高分子電解質膜1は、水素を選択的に輸送するように構成されていて、高分子電解質膜1の一方の主面には、第1カーボン層2Aが設けられていて、その他方の主面には、アノード触媒層3Bが設けられている。また、第1カーボン層2Aの高分子電解質膜1と接触しない側の主面には、カソード触媒層3Aが設けられている。また、高分子電解質膜1の主面の周縁部には、厚み方向の貫通孔からなる燃料ガス供給マニホールド孔等の各マニホールド孔が設けられている(図示せず)。 As shown in FIG. 1, a membrane-electrode assembly 11 according to the first embodiment includes a cathode 5A having a polymer electrolyte membrane 1, a first carbon layer 2A, a cathode catalyst layer 3A, and a cathode gas diffusion layer 4A. And an anode 5B having an anode catalyst layer 3B and an anode gas diffusion layer 4B. The polymer electrolyte membrane 1 is configured to selectively transport hydrogen, and the first carbon layer 2A is provided on one main surface of the polymer electrolyte membrane 1, and the other main surface. Is provided with an anode catalyst layer 3B. A cathode catalyst layer 3A is provided on the main surface of the first carbon layer 2A on the side not in contact with the polymer electrolyte membrane 1. In addition, manifold holes such as a fuel gas supply manifold hole including through holes in the thickness direction are provided in the peripheral edge portion of the main surface of the polymer electrolyte membrane 1 (not shown).
 アノード触媒層3B及びカソード触媒層3Aは、それぞれ、触媒担持カーボンとアイオノマーを有していれば、その構成は特に限定されず、また、アノード触媒層3B及びカソード触媒層3Aの構成は、同一であってもよく、異なっていてもよい。例えば、電極触媒を担持したカーボン粉末(導電性炭素粒子)からなる触媒担持カーボンと触媒担持カーボンに付着したアイオノマー(例えば、高分子電解質)にポリテトラフルオロエチレン等の撥水材料を更に含むような構成であってもよい。 The configuration of the anode catalyst layer 3B and the cathode catalyst layer 3A is not particularly limited as long as the anode catalyst layer 3B and the cathode catalyst layer 3A have catalyst-supporting carbon and ionomer, respectively, and the configurations of the anode catalyst layer 3B and the cathode catalyst layer 3A are the same. May be different or different. For example, a catalyst-supporting carbon made of carbon powder (conductive carbon particles) supporting an electrode catalyst and an ionomer (for example, a polymer electrolyte) attached to the catalyst-supporting carbon further include a water-repellent material such as polytetrafluoroethylene. It may be a configuration.
 一方、第1カーボン層2Aは、カーボンとアイオノマーを有している。第1カーボン層2Aに用いられるカーボンは、アノード触媒層3B及びカソード触媒層3Aの少なくとも一方の触媒層に用いられるカーボンのイオン化傾向よりもそのイオン化傾向が大きくなるように構成されている。具体的には、触媒層に用いられる担体カーボンに焼成したりして酸化開始点となる表面官能基を減少させたカーボンを使用したり、また第1カーボン層2Aに用いられるカーボンの比表面積を触媒層に用いられるカーボンより大きいカーボンを使用することで、相対的に第1カーボン層2Aに用いられるカーボンのイオン化傾向を大きくすることができる。 On the other hand, the first carbon layer 2A has carbon and ionomer. The carbon used in the first carbon layer 2A is configured such that its ionization tendency is larger than the ionization tendency of carbon used in at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A. Specifically, the carbon used in the catalyst layer is calcined to reduce the surface functional groups that serve as oxidation starting points, or the specific surface area of the carbon used in the first carbon layer 2A is reduced. By using carbon larger than the carbon used for the catalyst layer, the ionization tendency of the carbon used for the first carbon layer 2A can be relatively increased.
 これにより、第1カーボン層2Aに用いられるカーボンは、触媒層の触媒担持カーボン(担体カーボン)より酸化され易いため、触媒層の酸化腐食による電池特性の低下を抑制し、耐久性を向上させることができる。 As a result, the carbon used in the first carbon layer 2A is more easily oxidized than the catalyst-carrying carbon (carrier carbon) of the catalyst layer. Can do.
 また、第1カーボン層2Aは、該第1カーボン層2Aの触媒担持量がアノード触媒層3B及びカソード触媒層3Aの少なくとも一方(本実施の形態1においては、アノード触媒層3B及びカソード触媒層3Aの両方)の触媒担持量よりも小さくなるように構成されている。これにより、カーボンの腐食により溶解して、高分子電解質膜1中に析出して、高分子電解質膜1の膜劣化を加速することを抑制することができる。 Further, in the first carbon layer 2A, the amount of the catalyst supported on the first carbon layer 2A is at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A (in the first embodiment, the anode catalyst layer 3B and the cathode catalyst layer 3A). Both) is configured to be smaller than the amount of catalyst supported. Thereby, it can suppress that it melt | dissolves by corrosion of carbon, precipitates in the polymer electrolyte membrane 1, and accelerates the film degradation of the polymer electrolyte membrane 1.
 なお、第1カーボン層2Aに含まれる触媒が、カーボンの腐食により溶解して、高分子電解質膜1中に析出するのを抑制する観点から、第1カーボン層2Aの触媒担持量はできるだけ少ないほうが好ましく、第1カーボン層2Aは、触媒を担持しないように構成されていることがより好ましい。すなわち、第1カーボン層2Aは、触媒を担持していないカーボン及びアイオノマーから構成されていることが好ましい。この場合、第1カーボン層2Aは、触媒を担持していないカーボン及びアイオノマー以外の物質が含まれるのを除外するものではない。 In addition, from the viewpoint of suppressing the catalyst contained in the first carbon layer 2A from being dissolved due to the corrosion of carbon and precipitating in the polymer electrolyte membrane 1, the amount of catalyst supported on the first carbon layer 2A is as small as possible. Preferably, the first carbon layer 2A is more preferably configured not to carry a catalyst. That is, the first carbon layer 2A is preferably composed of carbon and ionomer that do not carry a catalyst. In this case, the first carbon layer 2A does not exclude the inclusion of substances other than carbon and ionomer that do not carry a catalyst.
 また、本実施の形態1においては、第1カーボン層2Aの触媒担持量がアノード触媒層3B及びカソード触媒層3Aの両方の触媒担持量よりも小さくなるように構成したが、これに限定されず、アノード触媒層3B及びカソード触媒層3Aの少なくとも一方の触媒担持量よりも小さくなるように構成されていればよく、第1カーボン層2Aと接触する触媒層の触媒担持量よりも第1カーボン層2Aの触媒担持量が小さくなるように構成されていてもよい。 In the first embodiment, the catalyst loading amount of the first carbon layer 2A is configured to be smaller than the catalyst loading amounts of both the anode catalyst layer 3B and the cathode catalyst layer 3A. However, the present invention is not limited to this. The first carbon layer only needs to be configured to be smaller than the amount of catalyst supported on at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A, and more than the amount of catalyst supported on the catalyst layer in contact with the first carbon layer 2A. You may be comprised so that the catalyst load of 2A may become small.
 また、第1カーボン層2Aは、プロトン伝導性及び通常の発電性能を維持する観点から、第1カーボン層2Aのアイオノマー/カーボンの質量比(I/C)が、1.3以上で構成されていることが好ましく、電子伝導性を維持する観点から、I/Cが、2.0以下となるように構成されていることが好ましい。さらに、同様の観点から、I/Cが、1.9以下となるように構成されていることがより好ましい。これにより、第1カーボン層2Aは、カソード触媒層3Aとの間で電子とプロトンの移動が容易に行われ、初期電圧の低下を充分に抑制することができる。 Also, the first carbon layer 2A is configured such that the ionomer / carbon mass ratio (I / C) of the first carbon layer 2A is 1.3 or more from the viewpoint of maintaining proton conductivity and normal power generation performance. In view of maintaining electronic conductivity, it is preferable that I / C is 2.0 or less. Furthermore, from the same viewpoint, it is more preferable that the I / C is configured to be 1.9 or less. As a result, the first carbon layer 2A can easily move electrons and protons between the cathode catalyst layer 3A and sufficiently suppress the decrease in the initial voltage.
 さらに、第1カーボン層2Aは、第1カーボン層2Aの形状安定性を維持する観点から、アイオノマーのEWが700以上であることが好ましく、第1カーボン層2Aの性能を維持する観点から、アイオノマーのEWが1100以下であることが好ましい。これにより、電子伝達性を確保しつつ、かつ、よりプロトン伝導性を向上することができ、第1カーボン層2Aに含まれるカーボンがより選択的に酸化腐食され、カソード触媒層3Aの酸化腐食をより効果的に抑制することができる。 Further, the first carbon layer 2A preferably has an EW of 700 or more from the viewpoint of maintaining the shape stability of the first carbon layer 2A, and from the viewpoint of maintaining the performance of the first carbon layer 2A. The EW is preferably 1100 or less. As a result, it is possible to improve the proton conductivity while ensuring the electron transfer property, the carbon contained in the first carbon layer 2A is more selectively oxidized and corroded, and the oxidation corrosion of the cathode catalyst layer 3A is prevented. It can suppress more effectively.
 また、図2に示すように、本実施の形態1に係る固体高分子形燃料電池(単セル)20は、膜-電極接合体11と、一対のガスケット6A、6Bと、一対の導電性のセパレータ7A、7B(カソードセパレータ7A、アノードセパレータ7B)と、を備える。 As shown in FIG. 2, the polymer electrolyte fuel cell (single cell) 20 according to the first embodiment includes a membrane-electrode assembly 11, a pair of gaskets 6A and 6B, and a pair of conductive materials. Separators 7A and 7B (cathode separator 7A and anode separator 7B).
 ガスケット6Aは、第1カーボン層2A及びカソード5Aの周囲に設けられていて、ガスケット6Bは、アノード5Bの周囲に設けられている。また、ガスケット6A、6Bは、ここでは、ドーナツ状に形成されていて。フッ素ゴムで構成されている。これにより、燃料ガスや酸化剤ガスが固体高分子形燃料電池20外にリークされることが抑制され、また、固体高分子形燃料電池20内でこれらのガスが互いに混合されることが抑制される。なお、ガスケット6A、6Bの周縁部には、厚み方向の貫通孔からなる燃料ガス供給マニホールド孔等の各マニホールド孔(図示せず)が設けられている。 The gasket 6A is provided around the first carbon layer 2A and the cathode 5A, and the gasket 6B is provided around the anode 5B. In addition, the gaskets 6A and 6B are formed in a donut shape here. It is made of fluoro rubber. As a result, the fuel gas and the oxidant gas are suppressed from leaking out of the polymer electrolyte fuel cell 20, and the gas is suppressed from being mixed with each other in the polymer electrolyte fuel cell 20. The Note that manifold holes (not shown) such as fuel gas supply manifold holes each having a through hole in the thickness direction are provided in the peripheral portions of the gaskets 6A and 6B.
 また、カソードセパレータ7Aは、膜-電極接合体11とガスケット6Aを挟むように設けられていて、アノードセパレータ7Bは、膜-電極接合体11とガスケット6Aを挟むように設けられている。これにより、膜-電極接合体11が機械的に固定され、複数の固体高分子形燃料電池20をその厚み方向に積層したときには、膜-電極接合体11が電気的に接続される。なお、これらのセパレータ7A、7Bは、熱伝導性及び導電性に優れた金属、黒鉛、または、黒鉛と樹脂を混合したものを使用することができ、例えば、カーボン粉末とバインダー(溶剤)との混合物を射出成形により作製したものやチタンやステンレス鋼製の板の表面に金メッキを施したものを使用することができる。 The cathode separator 7A is provided so as to sandwich the membrane-electrode assembly 11 and the gasket 6A, and the anode separator 7B is provided so as to sandwich the membrane-electrode assembly 11 and the gasket 6A. Thereby, the membrane-electrode assembly 11 is mechanically fixed, and when the plurality of polymer electrolyte fuel cells 20 are stacked in the thickness direction, the membrane-electrode assembly 11 is electrically connected. In addition, these separators 7A and 7B can use the metal excellent in heat conductivity and electroconductivity, graphite, or what mixed graphite and resin, for example, carbon powder and a binder (solvent). A mixture prepared by injection molding or a plate of titanium or stainless steel plated with gold can be used.
 カソードセパレータ7Aのカソード5Aと接触する一方の主面(以下、内面という)には、酸化剤ガスが通流するための溝状の酸化剤ガス流路8が設けられており、また、他方の主面(以下、外面という)には、冷却媒体が通流するための溝状の冷却媒体流路10が設けられている。同様に、アノードセパレータ7Bのアノード5Bと接触する一方の主面(以下、内面という)には、燃料ガスが通流するための溝状の燃料ガス流路9が設けられており、また、他方の主面(以下、外面という)には、冷却媒体が通流するための溝状の冷却媒体流路10が設けられている。 On one main surface (hereinafter referred to as an inner surface) of the cathode separator 7A that is in contact with the cathode 5A, there is provided a groove-like oxidant gas flow path 8 for allowing the oxidant gas to flow therethrough. The main surface (hereinafter referred to as the outer surface) is provided with a groove-like cooling medium flow path 10 through which the cooling medium flows. Similarly, on one main surface (hereinafter referred to as an inner surface) of the anode separator 7B that is in contact with the anode 5B, there is provided a groove-like fuel gas flow path 9 through which the fuel gas flows. The main surface (hereinafter referred to as the outer surface) is provided with a groove-like cooling medium flow path 10 through which the cooling medium flows.
 これにより、アノード5B及びカソード5Aには、それぞれ燃料ガス及び酸化剤ガスが供給され、これらのガスが反応して電気と熱が発生する。また、冷却水等の冷却媒体を冷却媒体流路10に通流させることにより、発生した熱の回収が行われる。 Thus, fuel gas and oxidant gas are supplied to the anode 5B and the cathode 5A, respectively, and these gases react to generate electricity and heat. Further, the generated heat is recovered by passing a cooling medium such as cooling water through the cooling medium flow path 10.
 そして、このように構成された本実施の形態1に係る固体高分子形燃料電池20をその厚み方向に積層することにより、セル積層体が形成される(図示せず)。このとき、高分子電解質膜1、ガスケット6A、6B、カソードセパレータ7A、及びアノードセパレータ7Bに設けられた燃料ガス供給マニホールド孔等の各マニホールド孔は、固体高分子形燃料電池20を積層したときに厚み方向にそれぞれつながって、燃料ガス供給マニホールド等の各マニホールドが、それぞれ形成される。そして、セル積層体の両端に集電板及び絶縁板をそれぞれ配置し、その両端に更に一対の端板を配置して、締結具で締結することにより、燃料電池スタックが形成される(図示せず)。 Then, by stacking the polymer electrolyte fuel cells 20 according to the first embodiment configured in this way in the thickness direction, a cell stack is formed (not shown). At this time, each manifold hole such as a fuel gas supply manifold hole provided in the polymer electrolyte membrane 1, the gaskets 6A and 6B, the cathode separator 7A, and the anode separator 7B is formed when the polymer electrolyte fuel cells 20 are stacked. Respective manifolds such as fuel gas supply manifolds are formed in the thickness direction. Then, a current collector plate and an insulating plate are arranged at both ends of the cell stack, a pair of end plates are further arranged at both ends, and fastened with a fastener to form a fuel cell stack (not shown). )
 [膜-電極接合体及びそれを備える固体高分子形燃料電池の作用効果]
 次に、図1乃至図3を参照しながら、本実施の形態1に係る膜-電極接合体11及びそれを備える固体高分子形燃料電池(本実施の形態1に係る固体高分子形燃料電池)20の作用効果について説明する。
[Effects of membrane-electrode assembly and polymer electrolyte fuel cell including the same]
Next, referring to FIG. 1 to FIG. 3, the membrane-electrode assembly 11 according to the first embodiment and the polymer electrolyte fuel cell having the same (the polymer electrolyte fuel cell according to the first embodiment) ) 20 effects will be described.
 図3は、図1に示す膜-電極接合体11を備える固体高分子形燃料電池(本実施の形態1に係る固体高分子形燃料電池)20の動作を模式的に示す断面図であり、アノード5B及びカソード5Aに空気が存在する状態から固体高分子形燃料電池20の起動を開始したときの状態を示す。 FIG. 3 is a cross-sectional view schematically showing the operation of the polymer electrolyte fuel cell (solid polymer fuel cell according to Embodiment 1) 20 including the membrane-electrode assembly 11 shown in FIG. A state when starting of the polymer electrolyte fuel cell 20 is started from a state in which air exists in the anode 5B and the cathode 5A.
 図2に示すように、固体高分子形燃料電池20の停止処理をするときに、燃料ガス供給マニホールド(図示せず)及び燃料ガス流路9を介して、アノード5Bに空気を供給して、アノード5B(燃料ガス供給マニホールド及び燃料ガス流路9を含む)に存在する燃料ガス等を空気でパージする場合、燃料ガス流路9内に水素が存在する領域と存在しない領域が形成される。 As shown in FIG. 2, when the solid polymer fuel cell 20 is stopped, air is supplied to the anode 5B via a fuel gas supply manifold (not shown) and the fuel gas flow path 9, When the fuel gas or the like existing in the anode 5B (including the fuel gas supply manifold and the fuel gas channel 9) is purged with air, a region where hydrogen exists and a region where hydrogen does not exist are formed in the fuel gas channel 9.
 また、図3に示すように、固体高分子形燃料電池20のアノード5B及びカソード5Aに空気が存在する待機状態から、燃料ガス供給マニホールド(図示せず)及び燃料ガス流路9を介して、アノード5Bに燃料ガスを供給し、酸化剤ガス供給マニホールド(図示せず)及び酸化剤ガス流路8を介して、カソード5Aに酸化剤ガスを供給する(固体高分子形燃料電池20の起動処理)場合、燃料ガス流路9内に水素が存在する領域と存在しない領域が形成される。 Further, as shown in FIG. 3, from a standby state where air is present in the anode 5B and the cathode 5A of the polymer electrolyte fuel cell 20, through a fuel gas supply manifold (not shown) and the fuel gas passage 9, The fuel gas is supplied to the anode 5B, and the oxidant gas is supplied to the cathode 5A via the oxidant gas supply manifold (not shown) and the oxidant gas flow path 8 (starting process of the polymer electrolyte fuel cell 20) ), A region where hydrogen exists and a region where hydrogen does not exist are formed in the fuel gas passage 9.
 そして、燃料ガス流路9内に水素が存在する領域と存在しない領域が形成されると、アノード5B内においても、水素が存在する領域と水素が存在しない領域が形成される。このとき、図2及び図3に示すように、アノード5B(正確には、アノード触媒層3B)内の水素が存在する領域では、上述した化学反応式(1)の反応が生じ、カソード5A(正確には、カソード触媒層3A)内におけるアノード5Bの水素が存在する領域と対向する領域では、上述した化学反応式(2)の反応が生じる。 Then, when a region where hydrogen exists and a region where hydrogen does not exist are formed in the fuel gas flow path 9, a region where hydrogen exists and a region where hydrogen does not exist are also formed in the anode 5B. At this time, as shown in FIGS. 2 and 3, in the region where hydrogen exists in the anode 5B (more precisely, the anode catalyst layer 3B), the reaction of the chemical reaction formula (1) described above occurs, and the cathode 5A ( Precisely, the reaction of the chemical reaction formula (2) described above occurs in a region of the cathode catalyst layer 3A) opposite to the region where the hydrogen of the anode 5B exists.
 一方、カソード5A(正確には、カソード触媒層3A)内におけるアノード5Bの水素が存在しない領域と対向する領域では、従来の固体高分子形燃料電池では、上述した化学反応式(3)の反応が生じる。また、アノード5B(正確には、アノード触媒層3B)内の水素が存在しない領域では、上述した化学反応式(4)の反応が生じる。 On the other hand, in the cathode 5A (more precisely, the cathode catalyst layer 3A) in the region facing the region where the hydrogen of the anode 5B does not exist, the reaction of the above-described chemical reaction formula (3) is performed in the conventional polymer electrolyte fuel cell. Occurs. Further, in the region where no hydrogen exists in the anode 5B (more precisely, the anode catalyst layer 3B), the reaction of the above chemical reaction formula (4) occurs.
 しかしながら、本実施の形態1に係る膜-電極接合体11及びそれを備える固体高分子形燃料電池(本実施の形態1に係る固体高分子形燃料電池)20では、第1カーボン層2Aが、高分子電解質膜1とカソード触媒層3Aとの間に配設されており、また、第1カーボン層2Aに用いられるカーボンは、アノード触媒層3B及びカソード触媒層3Aの少なくとも一方の触媒層に用いられるカーボンのイオン化傾向よりもそのイオン化傾向が大きくなるように、すなわち、第1カーボン層2Aに含まれるカーボンの方が、カソード触媒層3Aに含まれるカーボンよりも酸化されやすくなるように構成されている。このため、第1カーボン層2Aのカーボンで優先的に化学反応式(3)の反応が生じ、カソード触媒層3Aに含まれる触媒担持カーボンの腐食反応が抑制される。 However, in the membrane-electrode assembly 11 according to the first embodiment and the polymer electrolyte fuel cell 20 including the membrane-electrode assembly (the polymer electrolyte fuel cell according to the first embodiment) 20, the first carbon layer 2A includes: The carbon that is disposed between the polymer electrolyte membrane 1 and the cathode catalyst layer 3A and that is used for the first carbon layer 2A is used for at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A. The ionization tendency is larger than the carbon ionization tendency, that is, the carbon contained in the first carbon layer 2A is more easily oxidized than the carbon contained in the cathode catalyst layer 3A. Yes. For this reason, the reaction of the chemical reaction formula (3) preferentially occurs in the carbon of the first carbon layer 2A, and the corrosion reaction of the catalyst-supporting carbon contained in the cathode catalyst layer 3A is suppressed.
 このように本実施の形態1に係る膜-電極接合体11及びそれを備える固体高分子形燃料電池(本実施の形態1に係る固体高分子形燃料電池)20では、触媒層中カーボン担体の酸化腐食による電池特性の低下を抑制し、耐久性を向上させることが可能となる。 As described above, in the membrane-electrode assembly 11 according to the first embodiment and the polymer electrolyte fuel cell (solid polymer fuel cell according to the first embodiment) 20 including the membrane-electrode assembly 11, It is possible to suppress deterioration of battery characteristics due to oxidative corrosion and improve durability.
 (実施の形態2)
 本発明の実施の形態2は、高分子電解質膜とアノード触媒層との間に、カーボンとアイオノマーを有する第1カーボン層が配置されている形態を例示するものである。
(Embodiment 2)
Embodiment 2 of the present invention exemplifies a form in which a first carbon layer having carbon and ionomer is disposed between a polymer electrolyte membrane and an anode catalyst layer.
 図4は、本発明の実施の形態2に係る固体高分子形燃料電池の概略構成及び動作を模式的に示す断面図であり、固体高分子形燃料電池に供給される燃料ガスが一時的に欠乏したときの状態を示す。 FIG. 4 is a cross-sectional view schematically showing a schematic configuration and operation of the polymer electrolyte fuel cell according to Embodiment 2 of the present invention. The fuel gas supplied to the polymer electrolyte fuel cell is temporarily Shows the state when deficient.
 図4に示すように、本発明の実施の形態2に係る固体高分子形燃料電池20(本発明の実施の形態2に係る膜-電極接合体11)は、実施の形態1に係る固体高分子形燃料電池20(実施の形態1に係る膜-電極接合体11)と基本的構成は同じであるが、第1カーボン層2Aが、高分子電解質膜1とアノード触媒層3Bとの間に配設されている点が異なる。このため、本実施の形態2に係る固体高分子形燃料電池20の構成の詳細な説明は省略する。 As shown in FIG. 4, the polymer electrolyte fuel cell 20 according to the second embodiment of the present invention (the membrane-electrode assembly 11 according to the second embodiment of the present invention) has a solid polymer fuel cell according to the first embodiment. Although the basic configuration is the same as that of the molecular fuel cell 20 (the membrane-electrode assembly 11 according to Embodiment 1), the first carbon layer 2A is interposed between the polymer electrolyte membrane 1 and the anode catalyst layer 3B. It is different in the arrangement. Therefore, a detailed description of the configuration of the polymer electrolyte fuel cell 20 according to Embodiment 2 is omitted.
 ところで、従来の固体高分子形燃料電池では、例えば、アノード5Bに供給される燃料ガス(水素ガス)が欠乏したような場合、アノード5B(正確には、アノード触媒層3B)の燃料ガスが欠乏した領域では、化学反応式(3)の反応が生じ、触媒担持カーボンの腐食が起こり、アノード5Bの電極触媒が大きく劣化し、燃料電池の性能を低下させることになる。 By the way, in the conventional polymer electrolyte fuel cell, for example, when the fuel gas (hydrogen gas) supplied to the anode 5B is deficient, the fuel gas of the anode 5B (more precisely, the anode catalyst layer 3B) is deficient. In this region, the reaction of the chemical reaction formula (3) occurs, the catalyst-supporting carbon is corroded, the electrode catalyst of the anode 5B is greatly deteriorated, and the performance of the fuel cell is lowered.
 しかしながら、上記のように構成された本実施の形態2に係る固体高分子形燃料電池20では、第1カーボン層2Aが、高分子電解質膜1とアノード触媒層3Bとの間に配設されているため、第1カーボン層2Aのカーボンで優先的に化学反応式(3)の反応が生じ、アノード触媒層3Bに含まれる触媒担持カーボンの腐食反応が抑制される。 However, in the polymer electrolyte fuel cell 20 according to the second embodiment configured as described above, the first carbon layer 2A is disposed between the polymer electrolyte membrane 1 and the anode catalyst layer 3B. Therefore, the reaction of the chemical reaction formula (3) preferentially occurs in the carbon of the first carbon layer 2A, and the corrosion reaction of the catalyst-supporting carbon contained in the anode catalyst layer 3B is suppressed.
 このように本実施の形態2に係る固体高分子形燃料電池20(本実施の形態2に係る膜-電極接合体11)では、触媒層中カーボン担体の酸化腐食による電池特性の低下を抑制し、耐久性を向上させることが可能となる。 Thus, in the polymer electrolyte fuel cell 20 according to the second embodiment (the membrane-electrode assembly 11 according to the second embodiment), the deterioration of the cell characteristics due to the oxidative corrosion of the carbon support in the catalyst layer is suppressed. , Durability can be improved.
 (実施の形態3)
 本発明の実施の形態3は、高分子電解質膜とカソード触媒層との間及び高分子電解質膜とアノード触媒層との間に、カーボンとアイオノマーを有する第1カーボン層が配置されている形態を例示するものである。
(Embodiment 3)
Embodiment 3 of the present invention has a configuration in which a first carbon layer having carbon and ionomer is disposed between the polymer electrolyte membrane and the cathode catalyst layer and between the polymer electrolyte membrane and the anode catalyst layer. This is just an example.
 図5は、本発明の実施の形態3に係る固体高分子形燃料電池の概略構成を模式的に示す断面図である。 FIG. 5 is a cross-sectional view schematically showing a schematic configuration of the polymer electrolyte fuel cell according to Embodiment 3 of the present invention.
 図5に示すように、本発明の実施の形態3に係る固体高分子形燃料電池20(本発明の実施の形態3に係る膜-電極接合体11)は、実施の形態1に係る固体高分子形燃料電池20(実施の形態1に係る膜-電極接合体11)と基本的構成は同じであるが、第1カーボン層2Aが、高分子電解質膜1とアノード触媒層3Bとの間にも配設されている点が異なる。 As shown in FIG. 5, the polymer electrolyte fuel cell 20 according to the third embodiment of the present invention (the membrane-electrode assembly 11 according to the third embodiment of the present invention) has a solid polymer fuel cell according to the first embodiment. Although the basic configuration is the same as that of the molecular fuel cell 20 (the membrane-electrode assembly 11 according to Embodiment 1), the first carbon layer 2A is interposed between the polymer electrolyte membrane 1 and the anode catalyst layer 3B. Is different in that it is also disposed.
 このように構成された本実施の形態3に係る固体高分子形燃料電池20(本実施の形態3に係る膜-電極接合体11)では、実施の形態1に係る固体高分子形燃料電池20の作用効果だけでなく、実施の形態2に係る固体高分子形燃料電池20の作用効果を奏する。 In the thus configured polymer electrolyte fuel cell 20 according to the third embodiment (membrane-electrode assembly 11 according to the third embodiment), the polymer electrolyte fuel cell 20 according to the first embodiment. In addition to the operational effects, the operational effects of the polymer electrolyte fuel cell 20 according to Embodiment 2 are exhibited.
 (実施の形態4)
 本発明の実施の形態4は、カソード触媒層とカソードガス拡散層との間に、カーボンとアイオノマーを有する第2カーボン層が配置されている形態を例示するものである。
[膜-電極接合体及びそれを備える固体高分子形燃料電池の構成]
 まず、本発明の実施の形態4に係る膜-電極接合体及びこれを備える固体高分子形燃料電池(本発明の実施の形態4に係る固体高分子形燃料電池)の構成について、図6及び図7を参照しながら説明する。
(Embodiment 4)
Embodiment 4 of the present invention exemplifies a form in which a second carbon layer having carbon and ionomer is disposed between a cathode catalyst layer and a cathode gas diffusion layer.
[Configuration of membrane-electrode assembly and polymer electrolyte fuel cell including the same]
First, regarding the configuration of the membrane-electrode assembly according to Embodiment 4 of the present invention and the polymer electrolyte fuel cell including the same (FIG. 6 and FIG. 6), FIG. This will be described with reference to FIG.
 図6は、本発明の実施の形態4に係る膜-電極接合体の概略構成を模式的に示す断面図である。また、図7は、図6に示す膜-電極接合体を備える固体高分子形燃料電池(本発明の実施の形態4に係る固体高分子形燃料電池)の概略構成及び動作を模式的に示す断面図であり、固体高分子形燃料電池を停止するときにアノードに存在する燃料ガス等のガスを空気でパージしているときの状態を示す。 FIG. 6 is a cross-sectional view schematically showing a schematic configuration of the membrane-electrode assembly according to Embodiment 4 of the present invention. FIG. 7 schematically shows a schematic configuration and operation of a polymer electrolyte fuel cell (solid polymer fuel cell according to Embodiment 4) of the present invention provided with the membrane-electrode assembly shown in FIG. It is sectional drawing, and shows a state when gas, such as fuel gas which exists in an anode, is purged with air when a polymer electrolyte fuel cell is stopped.
 図6に示すように、本発明の実施の形態4に係る膜-電極接合体11は、高分子電解質膜1と、第2カーボン層2Bと、カソード触媒層3Aとカソードガス拡散層4Aを有するカソード5Aと、アノード触媒層3Bとアノードガス拡散層4Bを有するアノード5Bと、を備える。高分子電解質膜1は、水素を選択的に輸送するように構成されている。高分子電解質膜1の一方の主面には、カソード触媒層3Aが設けられていて、他方の主面には、アノード触媒層3Bが設けられている。また、カソード触媒層3Aの高分子電解質膜1と接触しない側の主面には、第2カーボン層2Bが設けられている。なお、高分子電解質膜1の主面の周縁部には、厚み方向の貫通孔からなる燃料ガス供給マニホールド孔等の各マニホールド孔が設けられている(図示せず)。 As shown in FIG. 6, a membrane-electrode assembly 11 according to Embodiment 4 of the present invention includes a polymer electrolyte membrane 1, a second carbon layer 2B, a cathode catalyst layer 3A, and a cathode gas diffusion layer 4A. A cathode 5A, an anode catalyst layer 3B, and an anode 5B having an anode gas diffusion layer 4B are provided. The polymer electrolyte membrane 1 is configured to selectively transport hydrogen. A cathode catalyst layer 3A is provided on one main surface of the polymer electrolyte membrane 1, and an anode catalyst layer 3B is provided on the other main surface. A second carbon layer 2B is provided on the main surface of the cathode catalyst layer 3A on the side not in contact with the polymer electrolyte membrane 1. Note that manifold holes such as a fuel gas supply manifold hole including through holes in the thickness direction are provided in the peripheral edge portion of the main surface of the polymer electrolyte membrane 1 (not shown).
 アノード触媒層3B及びカソード触媒層3Aは、それぞれ、触媒担持カーボンとアイオノマーを有していれば、その構成は特に限定されず、また、アノード触媒層3B及びカソード触媒層3Aの構成は、同一であってもよく、異なっていてもよい。例えば、電極触媒を担持したカーボン粉末(導電性炭素粒子)からなる触媒担持カーボンと触媒担持カーボンに付着したアイオノマー(例えば、高分子電解質)にポリテトラフルオロエチレン等の撥水材料を更に含むような構成であってもよい。 The configuration of the anode catalyst layer 3B and the cathode catalyst layer 3A is not particularly limited as long as the anode catalyst layer 3B and the cathode catalyst layer 3A have catalyst-supporting carbon and ionomer, respectively, and the configurations of the anode catalyst layer 3B and the cathode catalyst layer 3A are the same. May be different or different. For example, a catalyst-supporting carbon made of carbon powder (conductive carbon particles) supporting an electrode catalyst and an ionomer (for example, a polymer electrolyte) attached to the catalyst-supporting carbon further include a water-repellent material such as polytetrafluoroethylene. It may be a configuration.
 一方、第2カーボン層2Bは、カーボンとアイオノマーを有している。第2カーボン層2Bに用いられるカーボンは、アノード触媒層3B及びカソード触媒層3Aの少なくとも一方の触媒層に用いられるカーボンのイオン化傾向よりもそのイオン化傾向が大きくなるように構成されている。具体的には、触媒層に用いられる担体カーボンに焼成したりして酸化開始点となる表面官能基を減少させたカーボンを使用したり、また、第2カーボン層2Bに用いられるカーボンの比表面積を触媒層に用いられるカーボンより大きいカーボンを使用することで、相対的に第2カーボン層2Bに用いられるカーボンのイオン化傾向を大きくすることができる。 On the other hand, the second carbon layer 2B has carbon and ionomer. The carbon used for the second carbon layer 2B is configured such that its ionization tendency is larger than the ionization tendency of carbon used for at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A. Specifically, the carbon used in the second carbon layer 2B, such as carbon that has been baked into the carrier carbon used in the catalyst layer to reduce the surface functional group serving as the oxidation start point, is used. By using carbon larger than the carbon used for the catalyst layer, the ionization tendency of the carbon used for the second carbon layer 2B can be relatively increased.
 これにより、第2カーボン層2Bに用いられるカーボンは、触媒層の触媒担持カーボン(担体カーボン)より酸化され易いため、触媒層の酸化腐食による電池特性の低下を抑制し、耐久性を向上させることができる。 As a result, the carbon used for the second carbon layer 2B is more easily oxidized than the catalyst-carrying carbon (carrier carbon) of the catalyst layer, so that deterioration of battery characteristics due to oxidative corrosion of the catalyst layer is suppressed and durability is improved. Can do.
 また、第2カーボン層2Bは、該第2カーボン層2Bの触媒担持量がアノード触媒層3B及びカソード触媒層3Aの少なくとも一方(本実施の形態1においては、アノード触媒層3B及びカソード触媒層3Aの両方)の触媒担持量よりも小さくなるように構成されている。これにより、カーボンの腐食により溶解して、高分子電解質膜1中に析出して、高分子電解質膜1の膜劣化を加速することを抑制することができる。 Further, in the second carbon layer 2B, the amount of the catalyst supported on the second carbon layer 2B is at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A (in the first embodiment, the anode catalyst layer 3B and the cathode catalyst layer 3A). Both) is configured to be smaller than the amount of catalyst supported. Thereby, it can suppress that it melt | dissolves by corrosion of carbon, precipitates in the polymer electrolyte membrane 1, and accelerates the film degradation of the polymer electrolyte membrane 1.
 なお、第2カーボン層2Bに含まれる触媒が、カーボンの腐食により溶解して、高分子電解質膜1中に析出するのを抑制する観点から、第2カーボン層2Bの触媒担持量はできるだけ少ないほうが好ましく、第2カーボン層2Bは、触媒を担持しないように構成されていることがより好ましい。すなわち、第2カーボン層2Bは、触媒を担持していないカーボン及びアイオノマーから構成されていることが好ましい。この場合、第2カーボン層2Bは、触媒を担持していないカーボン及びアイオノマー以外の物質が含まれるのを除外するものではない。 From the viewpoint of suppressing the catalyst contained in the second carbon layer 2B from being dissolved by the corrosion of carbon and precipitating in the polymer electrolyte membrane 1, the amount of catalyst supported on the second carbon layer 2B should be as small as possible. Preferably, the second carbon layer 2B is more preferably configured not to carry a catalyst. That is, the second carbon layer 2B is preferably composed of carbon and ionomer that do not carry a catalyst. In this case, the second carbon layer 2B does not exclude inclusion of substances other than carbon and ionomer not supporting the catalyst.
 また、本実施の形態4においては、第2カーボン層2Bの触媒担持量がアノード触媒層3B及びカソード触媒層3Aの両方の触媒担持量よりも小さくなるように構成したが、これに限定されず、アノード触媒層3B及びカソード触媒層3Aの少なくとも一方の触媒担持量よりも小さくなるように構成されていればよく、第2カーボン層2Bと接触する触媒層の触媒担持量よりも第2カーボン層2Bの触媒担持量が小さくなるように構成されていてもよい。 In the fourth embodiment, the catalyst loading amount of the second carbon layer 2B is configured to be smaller than the catalyst loading amounts of both the anode catalyst layer 3B and the cathode catalyst layer 3A. However, the present invention is not limited to this. The second carbon layer has only to be configured to be smaller than the amount of catalyst supported by at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A, and is larger than the amount of catalyst supported by the catalyst layer in contact with the second carbon layer 2B. You may be comprised so that the catalyst load of 2B may become small.
 また、第2カーボン層2Bは、プロトン伝導性の機能を維持する観点から、第2カーボン層2Bのアイオノマー/カーボンの質量比(I/C)が、0.6以上で構成されていることが好ましく、ガス拡散性を維持する観点から、I/Cが、1.3以下となるように構成されていることが好ましい。 The second carbon layer 2B is configured such that the ionomer / carbon mass ratio (I / C) of the second carbon layer 2B is 0.6 or more from the viewpoint of maintaining the proton conductivity function. Preferably, from the viewpoint of maintaining gas diffusibility, the I / C is preferably configured to be 1.3 or less.
 これにより、第2カーボン層2Bは、プロトン伝導性を有し、ガス拡散層(ここでは、カソードガス拡散層4A)から触媒層(ここでは、カソード触媒層3A)へのガス拡散性を充分に有しているため、初期電圧の低下を充分に抑制することができる。 Thereby, the second carbon layer 2B has proton conductivity, and has sufficient gas diffusibility from the gas diffusion layer (here, the cathode gas diffusion layer 4A) to the catalyst layer (here, the cathode catalyst layer 3A). Since it has, the fall of an initial voltage can fully be suppressed.
 さらに、第2カーボン層2Bは、第2カーボン層2Bの形状安定性を維持する観点から、アイオノマーのEWが700以上であることが好ましく、第2カーボン層2Bの性能を維持する観点から、アイオノマーのEWが1100以下であることが好ましい。これにより、電子伝達性を確保しつつ、かつ、よりプロトン伝導性を向上することができ、第2カーボン層2Bに含まれるカーボンがより選択的に酸化腐食され、カソード触媒層3Aの酸化腐食をより効果的に抑制することができる。 Further, the second carbon layer 2B preferably has an EW of 700 or more from the viewpoint of maintaining the shape stability of the second carbon layer 2B, and from the viewpoint of maintaining the performance of the second carbon layer 2B. The EW is preferably 1100 or less. As a result, it is possible to improve the proton conductivity while ensuring the electron transfer property, the carbon contained in the second carbon layer 2B is more selectively oxidized and corroded, and the oxidation corrosion of the cathode catalyst layer 3A is prevented. It can suppress more effectively.
 また、図7に示すように、本実施の形態4に係る固体高分子形燃料電池(単セル)20は、膜-電極接合体11と、一対のガスケット6A、6Bと、一対の導電性のセパレータ7A、7B(カソードセパレータ7A、アノードセパレータ7B)と、を備える。 As shown in FIG. 7, the polymer electrolyte fuel cell (single cell) 20 according to the fourth embodiment includes a membrane-electrode assembly 11, a pair of gaskets 6A and 6B, and a pair of conductive materials. Separators 7A and 7B (cathode separator 7A and anode separator 7B).
 ガスケット6Aは、第2カーボン層2B及びカソード5Aの周囲に設けられていて、ガスケット6Bは、アノード5Bの周囲に設けられている。また、ガスケット6A、6Bは、ここでは、ドーナツ状に形成されていて。フッ素ゴムで構成されている。これにより、燃料ガスや酸化剤ガスが固体高分子形燃料電池20外にリークされることが抑制され、また、固体高分子形燃料電池20内でこれらのガスが互いに混合されることが抑制される。なお、ガスケット6A、6Bの周縁部には、厚み方向の貫通孔からなる燃料ガス供給マニホールド孔等の各マニホールド孔(図示せず)が設けられている。 The gasket 6A is provided around the second carbon layer 2B and the cathode 5A, and the gasket 6B is provided around the anode 5B. In addition, the gaskets 6A and 6B are formed in a donut shape here. It is made of fluoro rubber. As a result, the fuel gas and the oxidant gas are suppressed from leaking out of the polymer electrolyte fuel cell 20, and the gas is suppressed from being mixed with each other in the polymer electrolyte fuel cell 20. The Note that manifold holes (not shown) such as fuel gas supply manifold holes each having a through hole in the thickness direction are provided in the peripheral portions of the gaskets 6A and 6B.
 また、カソードセパレータ7Aは、膜-電極接合体11とガスケット6Aを挟むように設けられていて、アノードセパレータ7Bは、膜-電極接合体11とガスケット6Aを挟むように設けられている。これにより、膜-電極接合体11が機械的に固定され、複数の固体高分子形燃料電池20をその厚み方向に積層したときには、膜-電極接合体11が電気的に接続される。なお、これらのセパレータ7A、7Bは、熱伝導性及び導電性に優れた金属、黒鉛、または、黒鉛と樹脂を混合したものを使用することができ、例えば、カーボン粉末とバインダー(溶剤)との混合物を射出成形により作製したものやチタンやステンレス鋼製の板の表面に金メッキを施したものを使用することができる。 The cathode separator 7A is provided so as to sandwich the membrane-electrode assembly 11 and the gasket 6A, and the anode separator 7B is provided so as to sandwich the membrane-electrode assembly 11 and the gasket 6A. Thereby, the membrane-electrode assembly 11 is mechanically fixed, and when the plurality of polymer electrolyte fuel cells 20 are stacked in the thickness direction, the membrane-electrode assembly 11 is electrically connected. In addition, these separators 7A and 7B can use the metal excellent in heat conductivity and electroconductivity, graphite, or what mixed graphite and resin, for example, carbon powder and a binder (solvent). A mixture prepared by injection molding or a plate of titanium or stainless steel plated with gold can be used.
 カソードセパレータ7Aのカソード5Aと接触する一方の主面(以下、内面という)には、酸化剤ガスが通流するための溝状の酸化剤ガス流路8が設けられており、また、他方の主面(以下、外面という)には、冷却媒体が通流するための溝状の冷却媒体流路10が設けられている。同様に、アノードセパレータ7Bのアノード5Bと接触する一方の主面(以下、内面という)には、燃料ガスが通流するための溝状の燃料ガス流路9が設けられており、また、他方の主面(以下、外面という)には、冷却媒体が通流するための溝状の冷却媒体流路10が設けられている。 On one main surface (hereinafter referred to as an inner surface) of the cathode separator 7A that is in contact with the cathode 5A, there is provided a groove-like oxidant gas flow path 8 for allowing the oxidant gas to flow therethrough. The main surface (hereinafter referred to as the outer surface) is provided with a groove-like cooling medium flow path 10 through which the cooling medium flows. Similarly, on one main surface (hereinafter referred to as an inner surface) of the anode separator 7B that is in contact with the anode 5B, there is provided a groove-like fuel gas flow path 9 through which the fuel gas flows. The main surface (hereinafter referred to as the outer surface) is provided with a groove-like cooling medium flow path 10 through which the cooling medium flows.
 これにより、アノード5B及びカソード5Aには、それぞれ燃料ガス及び酸化剤ガスが供給され、これらのガスが反応して電気と熱が発生する。また、冷却水等の冷却媒体を冷却媒体流路10に通流させることにより、発生した熱の回収が行われる。 Thus, fuel gas and oxidant gas are supplied to the anode 5B and the cathode 5A, respectively, and these gases react to generate electricity and heat. Further, the generated heat is recovered by passing a cooling medium such as cooling water through the cooling medium flow path 10.
 そして、このように構成された本実施の形態4に係る固体高分子形燃料電池20をその厚み方向に積層することにより、セル積層体が形成される(図示せず)。このとき、高分子電解質膜1、ガスケット6A、6B、カソードセパレータ7A、及びアノードセパレータ7Bに設けられた燃料ガス供給マニホールド孔等の各マニホールド孔は、固体高分子形燃料電池20を積層したときに厚み方向にそれぞれつながって、燃料ガス供給マニホールド等の各マニホールドが、それぞれ形成される。そして、セル積層体の両端に集電板及び絶縁板をそれぞれ配置し、その両端に更に一対の端板を配置して、締結具で締結することにより、燃料電池スタックが形成される(図示せず)。 Then, a cell stack is formed by stacking the polymer electrolyte fuel cells 20 according to Embodiment 4 thus configured in the thickness direction (not shown). At this time, each manifold hole such as a fuel gas supply manifold hole provided in the polymer electrolyte membrane 1, the gaskets 6A and 6B, the cathode separator 7A, and the anode separator 7B is formed when the polymer electrolyte fuel cells 20 are stacked. Respective manifolds such as fuel gas supply manifolds are formed in the thickness direction. Then, a current collector plate and an insulating plate are arranged at both ends of the cell stack, a pair of end plates are further arranged at both ends, and fastened with a fastener to form a fuel cell stack (not shown). )
 [膜-電極接合体及びそれを備える固体高分子形燃料電池の作用効果]
 次に、図6乃至図8を参照しながら、本実施の形態4に係る膜-電極接合体11及びそれを備える固体高分子形燃料電池(本実施の形態4に係る固体高分子形燃料電池)20の作用効果について説明する。
[Effects of membrane-electrode assembly and polymer electrolyte fuel cell including the same]
Next, referring to FIGS. 6 to 8, the membrane-electrode assembly 11 according to the fourth embodiment and the polymer electrolyte fuel cell including the same (the polymer electrolyte fuel cell according to the fourth embodiment) ) 20 effects will be described.
 図8は、図6に示す膜-電極接合体11を備える固体高分子形燃料電池(本実施の形態4に係る固体高分子形燃料電池)20の動作を模式的に示す断面図であり、アノード5B及びカソード5Aに空気が存在する状態から固体高分子形燃料電池20の起動を開始したときの状態を示す。 FIG. 8 is a cross-sectional view schematically showing the operation of a polymer electrolyte fuel cell (solid polymer fuel cell according to Embodiment 4) 20 including the membrane-electrode assembly 11 shown in FIG. A state when starting of the polymer electrolyte fuel cell 20 is started from a state in which air exists in the anode 5B and the cathode 5A.
 図7に示すように、固体高分子形燃料電池20の停止処理をするときに、燃料ガス供給マニホールド(図示せず)及び燃料ガス流路9を介して、アノード5Bに空気を供給して、アノード5B(燃料ガス供給マニホールド及び燃料ガス流路9を含む)に存在する燃料ガス等を空気でパージする場合、燃料ガス流路9内に水素が存在する領域と存在しない領域が形成される。 As shown in FIG. 7, when the solid polymer fuel cell 20 is stopped, air is supplied to the anode 5B via the fuel gas supply manifold (not shown) and the fuel gas flow path 9, When the fuel gas or the like existing in the anode 5B (including the fuel gas supply manifold and the fuel gas channel 9) is purged with air, a region where hydrogen exists and a region where hydrogen does not exist are formed in the fuel gas channel 9.
 また、図8に示すように、固体高分子形燃料電池20のアノード5B及びカソード5Aに空気が存在する待機状態から、燃料ガス供給マニホールド(図示せず)及び燃料ガス流路9を介して、アノード5Bに燃料ガスを供給し、酸化剤ガス供給マニホールド(図示せず)及び酸化剤ガス流路8を介して、カソード5Aに酸化剤ガスを供給する(固体高分子形燃料電池20の起動処理)場合、燃料ガス流路9内に水素が存在する領域と存在しない領域が形成される。 Further, as shown in FIG. 8, from the standby state where air is present in the anode 5B and the cathode 5A of the polymer electrolyte fuel cell 20, through a fuel gas supply manifold (not shown) and the fuel gas flow path 9, The fuel gas is supplied to the anode 5B, and the oxidant gas is supplied to the cathode 5A via the oxidant gas supply manifold (not shown) and the oxidant gas flow path 8 (starting process of the polymer electrolyte fuel cell 20) ), A region where hydrogen exists and a region where hydrogen does not exist are formed in the fuel gas passage 9.
 そして、燃料ガス流路9内に水素が存在する領域と存在しない領域が形成されると、アノード5B内においても、水素が存在する領域と水素が存在しない領域が形成される。このとき、図7及び図8に示すように、アノード5B(正確には、アノード触媒層3B)内の水素が存在する領域では、上述した化学反応式(1)の反応が生じ、カソード5A(正確には、カソード触媒層3A)内におけるアノード5Bの水素が存在する領域と対向する領域では、上述した化学反応式(2)の反応が生じる。 Then, when a region where hydrogen exists and a region where hydrogen does not exist are formed in the fuel gas flow path 9, a region where hydrogen exists and a region where hydrogen does not exist are also formed in the anode 5B. At this time, as shown in FIGS. 7 and 8, in the region where hydrogen exists in the anode 5B (more precisely, the anode catalyst layer 3B), the reaction of the chemical reaction formula (1) described above occurs, and the cathode 5A ( Precisely, the reaction of the chemical reaction formula (2) described above occurs in a region of the cathode catalyst layer 3A) opposite to the region where the hydrogen of the anode 5B exists.
 一方、カソード5A(正確には、カソード触媒層3A)内におけるアノード5Bの水素が存在しない領域と対向する領域では、従来の固体高分子形燃料電池では、上述した化学反応式(3)の反応が生じる。また、アノード5B(正確には、アノード触媒層3B)内の水素が存在しない領域では、上述した化学反応式(4)の反応が生じる。 On the other hand, in the cathode 5A (more precisely, the cathode catalyst layer 3A) in the region facing the region where the hydrogen of the anode 5B does not exist, the reaction of the above-described chemical reaction formula (3) is performed in the conventional polymer electrolyte fuel cell. Occurs. Further, in the region where no hydrogen exists in the anode 5B (more precisely, the anode catalyst layer 3B), the reaction of the above chemical reaction formula (4) occurs.
 しかしながら、本実施の形態4に係る膜-電極接合体11及びそれを備える固体高分子形燃料電池(本実施の形態4に係る固体高分子形燃料電池)20では、第2カーボン層2Bが、カソード触媒層3Aとカソードガス拡散層4Aとの間に配設されており、また、第2カーボン層2Bに用いられるカーボンは、アノード触媒層3B及びカソード触媒層3Aの少なくとも一方の触媒層に用いられるカーボンのイオン化傾向よりもそのイオン化傾向が大きくなるように、すなわち、第2カーボン層2Bに含まれるカーボンの方が、カソード触媒層3Aに含まれるカーボンよりも酸化されやすくなるように構成されている。このため、第2カーボン層2Bのカーボンで優先的に化学反応式(3)の反応が生じ、カソード触媒層3Aに含まれる触媒担持カーボンの腐食反応が抑制される。 However, in the membrane-electrode assembly 11 according to the fourth embodiment and the polymer electrolyte fuel cell (solid polymer fuel cell according to the fourth embodiment) 20 including the same, the second carbon layer 2B includes: The carbon that is disposed between the cathode catalyst layer 3A and the cathode gas diffusion layer 4A and that is used for the second carbon layer 2B is used for at least one of the anode catalyst layer 3B and the cathode catalyst layer 3A. The ionization tendency is larger than the ionization tendency of the carbon produced, that is, the carbon contained in the second carbon layer 2B is more easily oxidized than the carbon contained in the cathode catalyst layer 3A. Yes. For this reason, the reaction of the chemical reaction formula (3) preferentially occurs in the carbon of the second carbon layer 2B, and the corrosion reaction of the catalyst-supporting carbon contained in the cathode catalyst layer 3A is suppressed.
 このように本実施の形態4に係る膜-電極接合体11及びそれを備える固体高分子形燃料電池(本実施の形態4に係る固体高分子形燃料電池)20では、触媒層中カーボン担体の酸化腐食による電池特性の低下を抑制し、耐久性を向上させることが可能となる。 As described above, in the membrane-electrode assembly 11 according to the fourth embodiment and the polymer electrolyte fuel cell (solid polymer fuel cell according to the fourth embodiment) 20 including the membrane-electrode assembly 11, It is possible to suppress deterioration of battery characteristics due to oxidative corrosion and improve durability.
 (実施の形態5)
 本発明の実施の形態5は、アノード触媒層とアノードガス拡散層との間に、カーボンとアイオノマーを有する第2カーボン層が配置されている形態を例示するものである。
(Embodiment 5)
Embodiment 5 of the present invention exemplifies a form in which a second carbon layer having carbon and ionomer is disposed between an anode catalyst layer and an anode gas diffusion layer.
 図9は、本発明の実施の形態5に係る固体高分子形燃料電池の概略構成及び動作を模式的に示す断面図であり、固体高分子形燃料電池に供給される燃料ガスが一時的に欠乏したときの状態を示す。 FIG. 9 is a cross-sectional view schematically showing a schematic configuration and operation of a polymer electrolyte fuel cell according to Embodiment 5 of the present invention. The fuel gas supplied to the polymer electrolyte fuel cell is temporarily Shows the state when deficient.
 図9に示すように、本発明の実施の形態5に係る固体高分子形燃料電池20(本発明の実施の形態5に係る膜-電極接合体11)は、実施の形態4に係る固体高分子形燃料電池20(実施の形態4に係る膜-電極接合体11)と基本的構成は同じであるが、第2カーボン層2Bが、アノード触媒層3Bとアノードガス拡散層4Bとの間に配設されている点が異なる。このため、本実施の形態5に係る固体高分子形燃料電池20の構成の詳細な説明は省略する。 As shown in FIG. 9, the polymer electrolyte fuel cell 20 according to the fifth embodiment of the present invention (the membrane-electrode assembly 11 according to the fifth embodiment of the present invention) is the same as the solid polymer fuel cell according to the fourth embodiment. The basic configuration is the same as that of the molecular fuel cell 20 (the membrane-electrode assembly 11 according to Embodiment 4), but the second carbon layer 2B is interposed between the anode catalyst layer 3B and the anode gas diffusion layer 4B. It is different in the arrangement. Therefore, a detailed description of the configuration of the polymer electrolyte fuel cell 20 according to Embodiment 5 is omitted.
 ところで、従来の固体高分子形燃料電池では、例えば、アノード5Bに供給される燃料ガス(水素ガス)が欠乏したような場合、アノード5B(正確には、アノード触媒層3B)の燃料ガスが欠乏した領域では、化学反応式(3)の反応が生じ、触媒担持カーボンの腐食が起こり、アノード5Bの電極触媒が大きく劣化し、燃料電池の性能を低下させることになる。 By the way, in the conventional polymer electrolyte fuel cell, for example, when the fuel gas (hydrogen gas) supplied to the anode 5B is deficient, the fuel gas of the anode 5B (more precisely, the anode catalyst layer 3B) is deficient. In this region, the reaction of the chemical reaction formula (3) occurs, the catalyst-supporting carbon is corroded, the electrode catalyst of the anode 5B is greatly deteriorated, and the performance of the fuel cell is lowered.
 しかしながら、上記のように構成された本実施の形態5に係る固体高分子形燃料電池20では、第2カーボン層2Bが、アノード触媒層3Bとアノードガス拡散層4Bとの間に配設されているため、第2カーボン層2Bのカーボンで優先的に化学反応式(3)の反応が生じ、アノード触媒層3Bに含まれる触媒担持カーボンの腐食反応が抑制される。 However, in the polymer electrolyte fuel cell 20 according to the fifth embodiment configured as described above, the second carbon layer 2B is disposed between the anode catalyst layer 3B and the anode gas diffusion layer 4B. Therefore, the reaction of the chemical reaction formula (3) preferentially occurs in the carbon of the second carbon layer 2B, and the corrosion reaction of the catalyst-supporting carbon contained in the anode catalyst layer 3B is suppressed.
 このように本実施の形態5に係る固体高分子形燃料電池20(本実施の形態5に係る膜-電極接合体11)では、触媒層中カーボン担体の酸化腐食による電池特性の低下を抑制し、耐久性を向上させることが可能となる。 Thus, in the polymer electrolyte fuel cell 20 according to the fifth embodiment (the membrane-electrode assembly 11 according to the fifth embodiment), the deterioration of the cell characteristics due to the oxidative corrosion of the carbon support in the catalyst layer is suppressed. , Durability can be improved.
 (実施の形態6)
 本発明の実施の形態6は、カソード触媒層とカソードガス拡散層との間及びアノード触媒層とアノードガス拡散層との間に、カーボンとアイオノマーを有する第2カーボン層が配置されている形態を例示するものである。
(Embodiment 6)
In Embodiment 6 of the present invention, a second carbon layer having carbon and ionomer is disposed between the cathode catalyst layer and the cathode gas diffusion layer and between the anode catalyst layer and the anode gas diffusion layer. This is just an example.
 図10は、本発明の実施の形態6に係る固体高分子形燃料電池の概略構成を模式的に示す断面図である。 FIG. 10 is a cross-sectional view schematically showing a schematic configuration of a polymer electrolyte fuel cell according to Embodiment 6 of the present invention.
 図10に示すように、本発明の実施の形態6に係る固体高分子形燃料電池20(本発明の実施の形態6に係る膜-電極接合体11)は、実施の形態4に係る固体高分子形燃料電池20(実施の形態1に係る膜-電極接合体11)と基本的構成は同じであるが、第2カーボン層2Bが、アノード触媒層3Bとアノードガス拡散層4Bとの間にも配設されている点が異なる。 As shown in FIG. 10, the polymer electrolyte fuel cell 20 according to the sixth embodiment of the present invention (the membrane-electrode assembly 11 according to the sixth embodiment of the present invention) has a solid high fuel cell according to the fourth embodiment. The basic configuration is the same as that of the molecular fuel cell 20 (the membrane-electrode assembly 11 according to Embodiment 1), but the second carbon layer 2B is interposed between the anode catalyst layer 3B and the anode gas diffusion layer 4B. Is different in that it is also disposed.
 このように構成された本実施の形態6に係る固体高分子形燃料電池20(本実施の形態6に係る膜-電極接合体11)では、実施の形態4に係る固体高分子形燃料電池20の作用効果だけでなく、実施の形態5に係る固体高分子形燃料電池20の作用効果を奏する。 In the thus configured polymer electrolyte fuel cell 20 according to the sixth embodiment (membrane-electrode assembly 11 according to the sixth embodiment), the polymer electrolyte fuel cell 20 according to the fourth embodiment. In addition to the operational effects, the operational effects of the polymer electrolyte fuel cell 20 according to Embodiment 5 are exhibited.
 (実施の形態7)
 本発明の実施の形態7は、高分子電解質膜とカソード触媒層との間に、カーボンとアイオノマーを有する第1カーボン層が配置され、カソード触媒層とカソードガス拡散層との間に、カーボンとアイオノマーを有する第2カーボン層が配置されている形態を例示するものである。
(Embodiment 7)
In Embodiment 7 of the present invention, a first carbon layer having carbon and an ionomer is disposed between the polymer electrolyte membrane and the cathode catalyst layer, and carbon and carbon are interposed between the cathode catalyst layer and the cathode gas diffusion layer. The form in which the second carbon layer having an ionomer is disposed is illustrated.
 図11は、本発明の実施の形態7に係る固体高分子形燃料電池の概略構成を模式的に示す断面図である。 FIG. 11 is a cross-sectional view schematically showing a schematic configuration of a polymer electrolyte fuel cell according to Embodiment 7 of the present invention.
 図11に示すように、本発明の実施の形態7に係る固体高分子形燃料電池20(本発明の実施の形態7に係る膜-電極接合体11)は、実施の形態1に係る固体高分子形燃料電池20(実施の形態1に係る膜-電極接合体11)と基本的構成は同じであるが、第2カーボン層2Bが、カソード触媒層3Aとカソードガス拡散層4Aとの間に配設されている点が異なる。このため、本実施の形態7に係る固体高分子形燃料電池20の構成の詳細な説明は省略する。 As shown in FIG. 11, the polymer electrolyte fuel cell 20 according to the seventh embodiment of the present invention (the membrane-electrode assembly 11 according to the seventh embodiment of the present invention) is the same as the solid polymer fuel cell according to the first embodiment. Although the basic configuration is the same as that of the molecular fuel cell 20 (the membrane-electrode assembly 11 according to Embodiment 1), the second carbon layer 2B is interposed between the cathode catalyst layer 3A and the cathode gas diffusion layer 4A. It is different in the arrangement. Therefore, a detailed description of the configuration of the polymer electrolyte fuel cell 20 according to Embodiment 7 is omitted.
 このように構成された本実施の形態7に係る固体高分子形燃料電池20(本実施の形態7に係る膜-電極接合体11)では、実施の形態1に係る固体高分子形燃料電池20の作用効果だけでなく、実施の形態4に係る固体高分子形燃料電池20の作用効果を奏する。 In the thus configured polymer electrolyte fuel cell 20 according to the seventh embodiment (membrane-electrode assembly 11 according to the seventh embodiment), the polymer electrolyte fuel cell 20 according to the first embodiment is used. In addition to the operational effects, the operational effects of the polymer electrolyte fuel cell 20 according to Embodiment 4 are exhibited.
 なお、本実施の形態7においては、高分子電解質膜1とカソード触媒層3Aとの間に第1カーボン層2Aを配置したが、これに限定されず、高分子電解質膜1とアノード触媒層3Bとの間に配置してもよく、高分子電解質膜1とカソード触媒層3Aとの間及び高分子電解質膜1とアノード触媒層3Bとの間の両方に配置してもよい。同様に、カソード触媒層3Aとカソードガス拡散層4Aとの間に第2カーボン層2Bを配置したが、これに限定されず、アノード触媒層3Bとアノードガス拡散層4Bとの間に配置してもよく、カソード触媒層3Aとカソードガス拡散層4Aとの間及びアノード触媒層3Bとアノードガス拡散層4Bとの間の両方に配置してもよい。 In the seventh embodiment, the first carbon layer 2A is disposed between the polymer electrolyte membrane 1 and the cathode catalyst layer 3A. However, the present invention is not limited to this, and the polymer electrolyte membrane 1 and the anode catalyst layer 3B are not limited thereto. Or between the polymer electrolyte membrane 1 and the cathode catalyst layer 3A and between the polymer electrolyte membrane 1 and the anode catalyst layer 3B. Similarly, the second carbon layer 2B is disposed between the cathode catalyst layer 3A and the cathode gas diffusion layer 4A, but is not limited thereto, and is disposed between the anode catalyst layer 3B and the anode gas diffusion layer 4B. Alternatively, it may be disposed both between the cathode catalyst layer 3A and the cathode gas diffusion layer 4A and between the anode catalyst layer 3B and the anode gas diffusion layer 4B.
 (実施の形態8)
 本発明の実施の形態8は、高分子電解質膜とアノード触媒層及びカソード触媒層の少なくとも一方との間にカーボン層が配置された固体高分子形燃料電池とパージ用空気供給器とを備える燃料電池発電システムにおいて、該燃料電池発電システムの停止処理を行うときにアノードに空気を供給してパージする形態を例示するものである。
(Embodiment 8)
Embodiment 8 of the present invention is a fuel comprising a polymer electrolyte fuel cell, a solid polymer fuel cell in which a carbon layer is disposed between at least one of an anode catalyst layer and a cathode catalyst layer, and a purge air supplier. In the battery power generation system, a mode in which air is supplied to the anode and purged when the stop process of the fuel cell power generation system is performed is illustrated.
 [燃料電池発電システムの構成]
 図12は、本発明の実施の形態8に係る燃料電池発電システムの概略構成を示す模式図である。
[Configuration of fuel cell power generation system]
FIG. 12 is a schematic diagram showing a schematic configuration of a fuel cell power generation system according to Embodiment 8 of the present invention.
 図12に示すように、本発明の実施の形態8に係る燃料電池発電システム100は、実施の形態1に係る固体高分子形燃料電池20と、燃料ガス供給器21と、酸化剤ガス供給器22と、パージ用空気供給器23と、制御器24と、を備える。なお、本実施の形態8においては、固体高分子形燃料電池20は、単セルを複数積層した燃料電池スタックとして用いられている。 As shown in FIG. 12, a fuel cell power generation system 100 according to Embodiment 8 of the present invention includes a polymer electrolyte fuel cell 20, a fuel gas supply device 21, and an oxidant gas supply device according to Embodiment 1. 22, a purge air supply unit 23, and a controller 24. In the eighth embodiment, the polymer electrolyte fuel cell 20 is used as a fuel cell stack in which a plurality of single cells are stacked.
 燃料ガス供給器21は、例えば、水素生成装置、水素ボンベ、水素吸蔵合金等を用いることができ、本実施の形態においては、水素生成装置である例を示す。なお、水素生成装置は、周知であるため、その詳細な説明は省略する。 For example, a hydrogen generator, a hydrogen cylinder, a hydrogen storage alloy, or the like can be used for the fuel gas supply device 21. In the present embodiment, an example of a hydrogen generator is shown. Since the hydrogen generator is well known, detailed description thereof is omitted.
 燃料ガス供給器21は、燃料ガス供給路41を介して固体高分子形燃料電池20(正確には、図示されない燃料ガス供給マニホールドの入口)に接続されている。また、燃料ガス供給路41の途中には、第1開閉弁25が設けられている。これにより、燃料ガス供給路41から燃料ガス供給器21への燃料ガス等のガスが逆流することを防止することができる。 The fuel gas supply unit 21 is connected to a polymer electrolyte fuel cell 20 (more precisely, an inlet of a fuel gas supply manifold not shown) via a fuel gas supply path 41. A first on-off valve 25 is provided in the middle of the fuel gas supply path 41. Thereby, it is possible to prevent the gas such as the fuel gas from flowing from the fuel gas supply path 41 to the fuel gas supply device 21 from flowing backward.
 また、固体高分子形燃料電池20(正確には、図示されない酸化剤ガス供給マニホールドの入り口)には、酸化剤ガス供給器22が酸化剤ガス供給路42を介して接続されている。酸化剤ガス供給器22は、例えば、ブロワやシロッコファン等のファン類を使用することができる。 Also, an oxidant gas supply unit 22 is connected to the polymer electrolyte fuel cell 20 (precisely, an inlet of an oxidant gas supply manifold not shown) via an oxidant gas supply path 42. For the oxidant gas supply device 22, for example, a fan such as a blower or a sirocco fan can be used.
 これにより、燃料ガス供給器21から固体高分子形燃料電池20のアノード5B(図1乃至図3参照)に燃料ガスが供給され、酸化剤ガス供給器22から固体高分子形燃料電池20のカソード5A(図1乃至図3参照)に酸化剤ガスが供給される。固体高分子形燃料電池20では、上述したように、供給された燃料ガスと酸化剤ガスが電気化学的に反応して、水が生成し、電気と熱が発生する。そして、アノード5Bで使用されなかった燃料ガスは、固体高分子形燃料電池20の図示されない燃料ガス排出マニホールドに排出され、カソード5Aで使用されなかった酸化剤ガスは、図示されない酸化剤ガス排出マニホールドから酸化剤ガス排出路44を通流して、燃料電池発電システム100外に排出される。 As a result, fuel gas is supplied from the fuel gas supply device 21 to the anode 5B (see FIGS. 1 to 3) of the polymer electrolyte fuel cell 20, and from the oxidant gas supply device 22 to the cathode of the polymer electrolyte fuel cell 20. Oxidant gas is supplied to 5A (see FIGS. 1 to 3). In the polymer electrolyte fuel cell 20, as described above, the supplied fuel gas and oxidant gas react electrochemically to generate water, and electricity and heat are generated. The fuel gas not used in the anode 5B is discharged to a fuel gas discharge manifold (not shown) of the polymer electrolyte fuel cell 20, and the oxidant gas not used in the cathode 5A is discharged to an oxidant gas discharge manifold (not shown). From the fuel cell power generation system 100 through the oxidant gas discharge path 44.
 また、固体高分子形燃料電池20の図示されない燃料ガス排出マニホールドの出口には、オフ燃料ガス流路43の上流端が接続されていて、その下流端は、燃料ガス供給器21のバーナ21Aに接続されている。また、バーナ21Aには、燃焼排ガス流路45が接続されている。これにより、アノード5Bで使用されなかった燃料ガスは、オフ燃料ガスとして、オフ燃料ガス流路43からバーナ21Aに供給される。そして、バーナ21Aでは、オフ燃料ガスは、燃焼用燃料として使用され、燃焼後の燃焼排ガスが、燃焼排ガス流路45から燃料電池発電システム100外に排出される。 Further, the upstream end of the off-fuel gas passage 43 is connected to the outlet of the fuel gas discharge manifold (not shown) of the polymer electrolyte fuel cell 20, and the downstream end thereof is connected to the burner 21 </ b> A of the fuel gas supply device 21. It is connected. Further, a combustion exhaust gas passage 45 is connected to the burner 21A. Thereby, the fuel gas that has not been used in the anode 5B is supplied from the off-fuel gas flow path 43 to the burner 21A as off-fuel gas. In the burner 21 </ b> A, the off-fuel gas is used as a combustion fuel, and the combustion exhaust gas after combustion is discharged out of the fuel cell power generation system 100 from the combustion exhaust gas passage 45.
 また、燃料ガス供給路41の第1開閉弁25の下流側には、パージ用空気供給路46の下流端が接続されていて、その上流端には、パージ用空気供給器23が接続されている。また、パージ用空気供給路46の途中には、第2開閉弁26が設けられている。パージ用空気供給器23は、例えば、ブロワやシロッコファン等のファン類を使用することができる。これにより、パージ用空気供給器23からパージ用空気供給路46及び燃料ガス供給路41を介して、固体高分子形燃料電池20のアノード5Bにパージ用空気を供給することができる。 Further, the downstream end of the purge air supply path 46 is connected to the downstream side of the first on-off valve 25 of the fuel gas supply path 41, and the purge air supply unit 23 is connected to the upstream end thereof. Yes. A second on-off valve 26 is provided in the middle of the purge air supply path 46. For the purge air supply unit 23, for example, a fan such as a blower or a sirocco fan can be used. Accordingly, the purge air can be supplied from the purge air supply unit 23 to the anode 5B of the polymer electrolyte fuel cell 20 through the purge air supply path 46 and the fuel gas supply path 41.
 また、制御器24は、例えば、マイクロコンピュータ、論理回路等で構成することができ、燃料電池発電システム100の各種の制御を行う。ここで、本発明において、制御器は、単独の制御器だけでなく、複数の制御器が協働して燃料電池発電システム100の制御を実行する制御器群をも意味する。このため、制御器24は、単独の制御器から構成される必要はなく、複数の制御器が分散配置され、それらが協働して燃料電池発電システム100を制御するように構成されていてもよい。 Further, the controller 24 can be constituted by, for example, a microcomputer, a logic circuit, etc., and performs various controls of the fuel cell power generation system 100. Here, in the present invention, the controller means not only a single controller but also a controller group in which a plurality of controllers cooperate to execute control of the fuel cell power generation system 100. For this reason, the controller 24 does not need to be composed of a single controller, and a plurality of controllers may be arranged in a distributed manner so as to control the fuel cell power generation system 100 in cooperation with each other. Good.
 [燃料電池発電システムの動作]
 次に、本実施の形態8に係る燃料電池発電システム100の動作について、図12を参照しながら説明する。
[Operation of fuel cell power generation system]
Next, the operation of the fuel cell power generation system 100 according to Embodiment 8 will be described with reference to FIG.
 まず、燃料電池発電システム100の運転停止動作について説明する。 First, the operation of stopping the operation of the fuel cell power generation system 100 will be described.
 ここで、「燃料電池発電システムの運転を停止する」とは、制御器24が停止信号を出力してから、燃料電池発電システム100がその停止処理を完了するまでの動作をいい、安全性及び聞き保護を確保することを目的とした一連の動作をいう。なお、燃料電池発電システム100の停止処理の完了後は、制御器24は動作していて、制御器24以外の部分の動作は停止しており、制御器24により起動指令が出力されると速やかに起動処理を行う待機状態に移行する。 Here, “stopping the operation of the fuel cell power generation system” means an operation from when the controller 24 outputs a stop signal until the fuel cell power generation system 100 completes the stop processing. A series of actions aimed at ensuring hearing protection. It should be noted that after the completion of the stop process of the fuel cell power generation system 100, the controller 24 is operating, and the operation of the parts other than the controller 24 is stopped. It shifts to the standby state where the startup process is performed.
 まず、制御器24は、燃料ガス供給器21及び酸化剤ガス供給器22の動作を停止させ、第1開閉弁25を閉止させる。これにより、固体高分子形燃料電池20への燃料ガスと酸化剤ガスの供給が停止する。 First, the controller 24 stops the operation of the fuel gas supplier 21 and the oxidant gas supplier 22 and closes the first on-off valve 25. As a result, the supply of fuel gas and oxidant gas to the polymer electrolyte fuel cell 20 is stopped.
 ついで、制御器24は、第2開閉弁26を開放させ、パージ用空気供給器23を作動させる。すると、パージ用空気が、パージ用空気供給器23からパージ用空気供給路46及び燃料ガス供給路41を介して、固体高分子形燃料電池20の図示されない燃料ガス供給マニホールドに供給される。燃料ガス供給マニホールドに供給されたパージ用空気は、各単セルの燃料ガス流路9を通流して、燃料ガス流路9及びアノード5Bに存在する燃料ガスをパージする(図2参照)。このとき、上述したように、燃料ガス流路9及びアノード5Bには、水素が存在する領域と水素が存在しない領域が形成されるが、第1カーボン層2Aのカーボンで優先的に化学反応式(3)の反応が生じ、カソード触媒層3Aに含まれる触媒担持カーボンの腐食反応が抑制される。なお、パージされた燃料ガスは、オフ燃料ガス流路43を通流してバーナ21Aに供給され、バーナ21Aで燃焼されて、燃料電池発電システム100外に排出される。 Next, the controller 24 opens the second on-off valve 26 and operates the purge air supply 23. Then, the purge air is supplied from the purge air supply unit 23 to the fuel gas supply manifold (not shown) of the polymer electrolyte fuel cell 20 through the purge air supply path 46 and the fuel gas supply path 41. The purge air supplied to the fuel gas supply manifold flows through the fuel gas channel 9 of each single cell to purge the fuel gas existing in the fuel gas channel 9 and the anode 5B (see FIG. 2). At this time, as described above, in the fuel gas channel 9 and the anode 5B, a region where hydrogen is present and a region where hydrogen is not present are formed, but the chemical reaction formula is preferentially formed by the carbon of the first carbon layer 2A. The reaction (3) occurs, and the corrosion reaction of the catalyst-supporting carbon contained in the cathode catalyst layer 3A is suppressed. The purged fuel gas is supplied to the burner 21A through the off-fuel gas passage 43, burned by the burner 21A, and discharged out of the fuel cell power generation system 100.
 そして、制御器24は、予め設定された所定の時間(固体高分子形燃料電池20内の燃料ガスが充分に空気でパージされる時間)が経過すると、パージ用空気供給器23の動作を停止させ、第2開閉弁26を閉止させて、待機状態に移行する。 Then, the controller 24 stops the operation of the purge air supply 23 when a predetermined time (a time during which the fuel gas in the polymer electrolyte fuel cell 20 is sufficiently purged with air) elapses. Then, the second on-off valve 26 is closed, and a transition is made to a standby state.
 次に、燃料電池発電システム100の起動動作(起動処理)について説明する。 Next, the startup operation (startup process) of the fuel cell power generation system 100 will be described.
 制御器24は、第1開閉弁25を開放させ、燃料ガス供給器21及び酸化剤ガス供給器22を作動させる。すると、燃料ガス供給器21から固体高分子形燃料電池20のアノード5Bに燃料ガスが供給され、酸化剤ガス供給器22から固体高分子形燃料電池20のカソード5Aに酸化剤ガスが供給される。 The controller 24 opens the first on-off valve 25 and operates the fuel gas supply device 21 and the oxidant gas supply device 22. Then, the fuel gas is supplied from the fuel gas supply device 21 to the anode 5B of the polymer electrolyte fuel cell 20, and the oxidant gas is supplied from the oxidant gas supply device 22 to the cathode 5A of the polymer electrolyte fuel cell 20. .
 このとき、上述したように、燃料ガス流路9及びアノード5Bには、空気が存在しているため、燃料ガス流路9及びアノード5B内に、水素が存在する領域と水素が存在しない領域が形成されるが、第1カーボン層2Aのカーボンで優先的に化学反応式(3)の反応が生じ、カソード触媒層3Aに含まれる触媒担持カーボンの腐食反応が抑制される(図3参照)。一方、アノード5Bの水素が存在する領域では、上記化学反応式(1)の反応が生じ、また、カソード5Aにおけるアノード5Bの水素が存在する領域と対向する領域では、上記化学反応式(2)の反応が生じる。これにより、固体高分子形燃料電池20内で、電気と熱が発生する。 At this time, as described above, since air is present in the fuel gas channel 9 and the anode 5B, there are regions in the fuel gas channel 9 and the anode 5B where hydrogen is present and regions where hydrogen is not present. Although formed, the reaction of the chemical reaction formula (3) preferentially occurs in the carbon of the first carbon layer 2A, and the corrosion reaction of the catalyst-supported carbon contained in the cathode catalyst layer 3A is suppressed (see FIG. 3). On the other hand, in the region where the hydrogen of the anode 5B exists, the reaction of the chemical reaction formula (1) occurs, and in the region of the cathode 5A facing the region where the hydrogen of the anode 5B exists, the chemical reaction formula (2). Reaction occurs. Thereby, electricity and heat are generated in the polymer electrolyte fuel cell 20.
 このように本実施の形態4に係る燃料電池発電システム100では、実施の形態1に係る固体高分子形燃料電池20を用いているため、燃料電池内を空気で置換しても、触媒層の劣化を抑制することができる。このため、燃料電池発電システム100の簡略化、低コスト化が可能となるだけでなく、燃料電池発電システム100の制御の簡略化も可能となる。 As described above, in the fuel cell power generation system 100 according to the fourth embodiment, since the polymer electrolyte fuel cell 20 according to the first embodiment is used, even if the inside of the fuel cell is replaced with air, the catalyst layer Deterioration can be suppressed. For this reason, not only simplification and cost reduction of the fuel cell power generation system 100 are possible, but also control of the fuel cell power generation system 100 can be simplified.
 なお、本実施の形態8に係る燃料電池発電システム100では、実施の形態1に係る固体高分子形燃料電池20を用いたが、実施の形態2~7のいずれかの実施の形態に係る固体高分子形燃料電池20を用いてもよい。 In the fuel cell power generation system 100 according to the eighth embodiment, the polymer electrolyte fuel cell 20 according to the first embodiment is used, but the solid polymer according to any one of the second to seventh embodiments is used. A polymer fuel cell 20 may be used.
 (実施の形態9)
 本発明の実施の形態9は、高分子電解質膜とアノード触媒層及びカソード触媒層の少なくとも一方との間にカーボン層が配置された固体高分子形燃料電池とパージ用空気供給器とを備える燃料電池発電システムにおいて、パージ用空気供給器が、酸化剤ガス供給器とバイパス流路で構成されている形態を例示するものである。
(Embodiment 9)
Embodiment 9 of the present invention is a fuel comprising a polymer electrolyte fuel cell, a solid polymer fuel cell in which a carbon layer is disposed between at least one of an anode catalyst layer and a cathode catalyst layer, and a purge air supplier. In the battery power generation system, the purge air supply unit is exemplified by an oxidant gas supply unit and a bypass flow path.
 [燃料電池発電システムの構成]
 図13は、本発明の実施の形態9に係る燃料電池発電システムの概略構成を示す模式図である。
[Configuration of fuel cell power generation system]
FIG. 13 is a schematic diagram showing a schematic configuration of a fuel cell power generation system according to Embodiment 9 of the present invention.
 図13に示すように、本発明の実施の形態9に係る燃料電池発電システム100は、実施の形態8に係る燃料電池発電システム100と基本的構成は同じであるが、パージ用空気供給器が、酸化剤ガス供給器22と該酸化剤ガス供給器22からアノード5Bに酸化剤ガスを供給するように構成されたバイパス流路47で構成されている点が異なる。 As shown in FIG. 13, the fuel cell power generation system 100 according to the ninth embodiment of the present invention has the same basic configuration as the fuel cell power generation system 100 according to the eighth embodiment, but the purge air supply device is the same. The oxidant gas supply unit 22 is different from the oxidant gas supply unit 22 in that it is configured to supply an oxidant gas from the oxidant gas supply unit 22 to the anode 5B.
 具体的には、バイパス流路47は、酸化剤ガス供給路42の途中にその上流端が接続され、その下流端が燃料ガス供給路41の第1開閉弁25の下流側と接続されている。また、バイパス流路47の途中には、第3開閉弁27が設けられている。さらに、酸化剤ガス排出路44の途中には、第4開閉弁28が設けられている。 Specifically, the bypass channel 47 has an upstream end connected in the middle of the oxidant gas supply path 42 and a downstream end connected to the downstream side of the first on-off valve 25 of the fuel gas supply path 41. . A third opening / closing valve 27 is provided in the middle of the bypass flow path 47. Further, a fourth on-off valve 28 is provided in the middle of the oxidant gas discharge path 44.
 [燃料電池発電システムの動作]
 次に、本実施の形態9に係る燃料電池発電システム100の運転停止動作について説明する。なお、燃料電池発電システム100の起動処理は、実施の形態8に係る燃料電池発電システム100と同じであるため、その詳細な説明は省略する。
[Operation of fuel cell power generation system]
Next, the operation for stopping operation of the fuel cell power generation system 100 according to Embodiment 9 will be described. In addition, since the starting process of the fuel cell power generation system 100 is the same as that of the fuel cell power generation system 100 according to Embodiment 8, detailed description thereof is omitted.
 まず、制御器24は、燃料ガス供給器21の動作を停止させ、第1開閉弁25を閉止させる。これにより、固体高分子形燃料電池20への燃料ガスの供給が停止する。 First, the controller 24 stops the operation of the fuel gas supply device 21 and closes the first on-off valve 25. Thereby, the supply of the fuel gas to the polymer electrolyte fuel cell 20 is stopped.
 ついで、制御器24は、第3開閉弁27を開放させ、第4開閉弁28を閉止する。すると、酸化剤ガス供給器22から酸化剤ガス供給路42に供給される酸化剤ガスがパージ用空気として、バイパス流路47及び燃料ガス供給路41を通流して、固体高分子形燃料電池20の図示されない燃料ガス供給マニホールドに供給される。燃料ガス供給マニホールドに供給されたパージ用空気は、各単セルの燃料ガス流路9を通流して、燃料ガス流路9及びアノード5Bに存在する燃料ガスをパージする(図2参照)。このとき、上述したように、燃料ガス流路9及びアノード5Bには、水素が存在する領域と水素が存在しない領域が形成されるが、第1カーボン層2Aのカーボンで優先的に化学反応式(3)の反応が生じ、カソード触媒層3Aに含まれる触媒担持カーボンの腐食反応が抑制される。 Next, the controller 24 opens the third on-off valve 27 and closes the fourth on-off valve 28. Then, the oxidant gas supplied from the oxidant gas supply device 22 to the oxidant gas supply path 42 flows as the purge air through the bypass flow path 47 and the fuel gas supply path 41, and the polymer electrolyte fuel cell 20. To a fuel gas supply manifold (not shown). The purge air supplied to the fuel gas supply manifold flows through the fuel gas channel 9 of each single cell to purge the fuel gas existing in the fuel gas channel 9 and the anode 5B (see FIG. 2). At this time, as described above, in the fuel gas channel 9 and the anode 5B, a region where hydrogen is present and a region where hydrogen is not present are formed, but the chemical reaction formula is preferentially formed by the carbon of the first carbon layer 2A. The reaction (3) occurs, and the corrosion reaction of the catalyst-supporting carbon contained in the cathode catalyst layer 3A is suppressed.
 このように、本実施の形態9に係る燃料電池発電システム100であっても、実施の形態8に係る燃料電池発電システム100と同様の作用効果を奏する。 As described above, even the fuel cell power generation system 100 according to the ninth embodiment has the same effects as the fuel cell power generation system 100 according to the eighth embodiment.
 (実施の形態10)
 本発明の実施の形態10は、高分子電解質膜とアノード触媒層及びカソード触媒層の少なくとも一方との間にカーボン層が配置された固体高分子形燃料電池とパージ用空気供給器とを備える燃料電池発電システムにおいて、パージ用空気供給器が、大気開放流路と該大気開放流路に設けられた開閉弁で構成されている形態を例示するものである。
(Embodiment 10)
Embodiment 10 of the present invention is a fuel comprising a polymer electrolyte fuel cell, a polymer electrolyte fuel cell in which a carbon layer is disposed between at least one of an anode catalyst layer and a cathode catalyst layer, and a purge air supplier. In the battery power generation system, an example in which the purge air supply unit is configured by an air release channel and an on-off valve provided in the air release channel.
 [燃料電池発電システムの構成]
 図14は、本発明の実施の形態10に係る燃料電池発電システムの概略構成を示す模式図である。
[Configuration of fuel cell power generation system]
FIG. 14 is a schematic diagram showing a schematic configuration of the fuel cell power generation system according to Embodiment 10 of the present invention.
 図14に示すように、本発明の実施の形態10に係る燃料電池発電システム100は、実施の形態8に係る燃料電池発電システム100と基本的構成は同じであるが、パージ用空気供給器が、大気開放流路48と該大気開放流路48に設けられた第5開閉弁(本発明の開閉弁)29で構成されている点が異なる。 As shown in FIG. 14, the fuel cell power generation system 100 according to the tenth embodiment of the present invention has the same basic configuration as the fuel cell power generation system 100 according to the eighth embodiment. , And the fifth open / close valve 29 (the open / close valve of the present invention) provided in the open air channel 48 is different.
 具体的には、大気開放流路48は、一端が燃料ガス供給路41の第1開閉弁25の下流側と接続され、他端が大気開放されている。また、大気開放流路48の途中には、第5開閉弁29が設けられている。 Specifically, one end of the air release channel 48 is connected to the downstream side of the first on-off valve 25 of the fuel gas supply channel 41, and the other end is open to the atmosphere. A fifth on-off valve 29 is provided in the middle of the air release channel 48.
 [燃料電池発電システムの動作]
 次に、本実施の形態10に係る燃料電池発電システム100の運転停止動作について説明する。なお、燃料電池発電システム100の起動処理は、実施の形態8に係る燃料電池発電システムと同じであるため、その詳細な説明は省略する。
[Operation of fuel cell power generation system]
Next, the operation for stopping the operation of the fuel cell power generation system 100 according to Embodiment 10 will be described. In addition, since the starting process of the fuel cell power generation system 100 is the same as that of the fuel cell power generation system according to Embodiment 8, detailed description thereof is omitted.
 まず、制御器24は、燃料ガス供給器21及び酸化剤ガス供給器22の動作を停止させ、第1開閉弁25を閉止させる。これにより、固体高分子形燃料電池20への燃料ガス及び酸化剤ガスの供給が停止する。 First, the controller 24 stops the operation of the fuel gas supplier 21 and the oxidant gas supplier 22 and closes the first on-off valve 25. As a result, the supply of the fuel gas and the oxidant gas to the polymer electrolyte fuel cell 20 is stopped.
 ついで、制御器24は、第5開閉弁29を開放させる。すると、運転停止による温度低下及びクロスリークによる両極のガス消費により固体高分子形燃料電池20内部は負圧になっているため、大気開放流路48の大気開放端から空気(パージ用空気)が流入して、大気開放流路48及び燃料ガス供給路41を通流して、固体高分子形燃料電池20の図示されない燃料ガス供給マニホールドに供給される。燃料ガス供給マニホールドに供給されたパージ用空気は、各単セルの燃料ガス流路9を通流して、燃料ガス流路9及びアノード5Bに存在する燃料ガスと混合していく(図2参照)。このとき、上述したように、燃料ガス流路9及びアノード5Bには、水素が存在する領域と水素が存在しない領域が形成されるが、第1カーボン層2Aのカーボンで優先的に化学反応式(3)の反応が生じ、カソード触媒層3Aに含まれる触媒担持カーボンの腐食反応が抑制される。 Next, the controller 24 opens the fifth on-off valve 29. Then, since the inside of the polymer electrolyte fuel cell 20 has a negative pressure due to the temperature drop due to the operation stop and the gas consumption of both electrodes due to the cross leak, air (purge air) is discharged from the atmosphere open end of the atmosphere open flow path 48. It flows in, flows through the open air channel 48 and the fuel gas supply channel 41, and is supplied to a fuel gas supply manifold (not shown) of the polymer electrolyte fuel cell 20. The purge air supplied to the fuel gas supply manifold flows through the fuel gas channel 9 of each single cell and mixes with the fuel gas existing in the fuel gas channel 9 and the anode 5B (see FIG. 2). . At this time, as described above, in the fuel gas channel 9 and the anode 5B, a region where hydrogen is present and a region where hydrogen is not present are formed, but the chemical reaction formula is preferentially formed by the carbon of the first carbon layer 2A. The reaction (3) occurs, and the corrosion reaction of the catalyst-supporting carbon contained in the cathode catalyst layer 3A is suppressed.
 このように、本実施の形態10に係る燃料電池発電システム100であっても、実施の形態8に係る燃料電池発電システム100と同様の作用効果を奏する。 Thus, even the fuel cell power generation system 100 according to the tenth embodiment has the same operational effects as the fuel cell power generation system 100 according to the eighth embodiment.
 以下、実施例及び比較例を挙げて、本発明についてさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples.
 まず、第1カーボン層を高分子電解質膜と触媒層の間に設けた固体高分子形燃料電池についての実施例及び比較例について説明する。 First, examples and comparative examples of the polymer electrolyte fuel cell in which the first carbon layer is provided between the polymer electrolyte membrane and the catalyst layer will be described.
 (実施例1)
 実施例1では、実施の形態1で説明した固体高分子形燃料電池20を以下のようにして作製した。
Example 1
In Example 1, the polymer electrolyte fuel cell 20 described in Embodiment 1 was produced as follows.
 第1カーボン層2AのカーボンとしてケッチェンブラックEC(インターナショナル社製)をアイオノマー溶液(SE10072(EW990) 10wt%:デュポン社製)にI/C=2.0となるように混合して、超音波分散を行いスラリー化した。そして、このスラリーを乾燥時の厚さが5μmとなるように、厚さ50μmのポリプロピレンシートにバーコーターで塗工し、室温乾燥した。 Ketjen Black EC (made by International Co., Ltd.) as the carbon of the first carbon layer 2A is mixed with an ionomer solution (SE10072 (EW990), 10 wt%: made by DuPont) so that I / C = 2.0, and ultrasonic waves are obtained. Dispersion was performed to form a slurry. Then, this slurry was coated on a polypropylene sheet having a thickness of 50 μm with a bar coater so that the thickness upon drying was 5 μm, and dried at room temperature.
 次に、上記塗工シートを打ち抜き型で所定の電極サイズ(60mm角)に切断し、切断したシートを高分子電解質膜1(Gore select膜:ゴア社製)の片面に130℃、1MPaで、第1カーボン層2Aをポリプロピレンシートから高分子電解質膜1に熱転写した。 Next, the coated sheet is cut into a predetermined electrode size (60 mm square) with a punching die, and the cut sheet is applied to one side of a polymer electrolyte membrane 1 (Gore select membrane: manufactured by Gore) at 130 ° C. and 1 MPa. The first carbon layer 2A was thermally transferred from the polypropylene sheet to the polymer electrolyte membrane 1.
 次に、触媒担体として、ケッチェンブラックEC(インターナショナル社製)を、窒素雰囲気下にて2700℃、10時間焼成して、黒鉛化処理したグラファイト化カーボンブラックを塩化白金酸水溶液に浸漬し、還元処理によりカーボン粉末の表面に白金触媒を担持させた。カーボンと担持した白金との重量比は1:1とした。 Next, Ketjen Black EC (manufactured by International Co., Ltd.) as a catalyst carrier was calcined in a nitrogen atmosphere at 2700 ° C. for 10 hours, and the graphitized carbon black was immersed in an aqueous chloroplatinic acid solution for reduction. The platinum catalyst was supported on the surface of the carbon powder by the treatment. The weight ratio of carbon to supported platinum was 1: 1.
 ついで、この触媒担持粒子をアイオノマー溶液(SE10072(EW990) 10wt%:デュポン社製)にI/C=0.8となるように分散させ、スラリー化した。そして、上記スラリーを厚さ50μmのポリプロピレンシートに白金重量が0.3mg/cmとなるようバーコーターで塗工し、室温乾燥した。 Next, the catalyst-carrying particles were dispersed in an ionomer solution (SE10072 (EW990) 10 wt%: manufactured by DuPont) so that I / C = 0.8, and slurried. The slurry was coated on a 50 μm thick polypropylene sheet with a bar coater so that the weight of platinum was 0.3 mg / cm 2 and dried at room temperature.
 次に、上記塗工シートを打ち抜き型で所定の電極サイズ(60mm角)に切断し、切断したシートを片面に第1カーボン層2Aが配設された高分子電解質膜1の両面(正確には、高分子電解質膜1の第1カーボン層2Aが配設されていない主面と、第1カーボン層2Aの高分子電解質膜1と接触していない方の主面)に第1カーボン層2Aと重なるように130℃、1MPaで触媒層をポリプロピレンシートから高分子電解質膜1に熱転写し、アノード触媒層3B、カソード触媒層3Aを形成した。 Next, the coated sheet is cut into a predetermined electrode size (60 mm square) with a punching die, and the cut sheet is placed on both sides of the polymer electrolyte membrane 1 in which the first carbon layer 2A is disposed on one side (more precisely, The main surface of the polymer electrolyte membrane 1 where the first carbon layer 2A is not disposed and the main surface of the first carbon layer 2A which is not in contact with the polymer electrolyte membrane 1) and the first carbon layer 2A The catalyst layer was thermally transferred from the polypropylene sheet to the polymer electrolyte membrane 1 at 130 ° C. and 1 MPa so as to overlap to form the anode catalyst layer 3B and the cathode catalyst layer 3A.
 一方、電極となる厚さ360μmのカーボン繊維不織布(TGP-H-120:東レ社製)を、フッ素樹脂含有の水性ディスパージョン(ネオフロンND1:ダイキン工業製)に含浸した後、これを乾燥した。さらに、このカーボン不織布の一方の面に、導電性カーボン粉末とPTFE微粉末を分散させた水溶液とを混合したインクを、スクリーン印刷法を用いて塗布することで撥水カーボン層を形成し、400℃で30分加熱して、溶媒に含まれる界面活性剤を分解除去し、これを電極サイズ(60mm角)の打ち抜き型で打ち抜き、ガス拡散層を得た。このガス拡散層を2つ用意し、これらのガス拡散層で膜-触媒層接合体の両側より挟持し、シリコンゴム/ポリエーテルイミド/シリコンゴムの3層に積層した複合材料で構成された一対のガスケット6A、6Bを電極の外周部に配置し、130℃、1MPaで10分間熱圧着して膜-電極接合体11を得た。この膜-電極接合体11の第1カーボン層2Aが配設された方の電極をカソード5Aとして、アノードセパレータ7B及びカソードセパレータ7Aで狭持して実施例1の固体高分子形燃料電池(単セル)20を作製した。 On the other hand, a carbon fiber nonwoven fabric (TGP-H-120: manufactured by Toray Industries, Inc.) having a thickness of 360 μm serving as an electrode was impregnated into a fluororesin-containing aqueous dispersion (neoflon ND1: manufactured by Daikin Industries), and then dried. Further, a water repellent carbon layer is formed on one surface of the carbon nonwoven fabric by applying an ink obtained by mixing a conductive carbon powder and an aqueous solution in which PTFE fine powder is dispersed using a screen printing method. The mixture was heated at 0 ° C. for 30 minutes to decompose and remove the surfactant contained in the solvent, and this was punched with a punch having an electrode size (60 mm square) to obtain a gas diffusion layer. Two gas diffusion layers are prepared and sandwiched between both sides of the membrane-catalyst layer assembly by these gas diffusion layers, and a pair of layers composed of a composite material of silicon rubber / polyetherimide / silicon rubber is laminated. The gaskets 6A and 6B were placed on the outer periphery of the electrode and thermocompression bonded at 130 ° C. and 1 MPa for 10 minutes to obtain a membrane-electrode assembly 11. The electrode on which the first carbon layer 2A of the membrane-electrode assembly 11 is disposed is used as the cathode 5A, and is sandwiched between the anode separator 7B and the cathode separator 7A. Cell) 20 was produced.
 (実施例2)
 実施例2の固体高分子形燃料電池20は、第1カーボン層2AのI/C=1.9として構成した以外は、実施例1の固体高分子形燃料電池20と同様に作製した。
(Example 2)
The polymer electrolyte fuel cell 20 of Example 2 was fabricated in the same manner as the polymer electrolyte fuel cell 20 of Example 1 except that the first carbon layer 2A was configured with I / C = 1.9.
 (実施例3)
 実施例2の固体高分子形燃料電池20は、第1カーボン層2AのI/C=1.3として構成した以外は、実施例1の固体高分子形燃料電池20と同様に作製した。
(Example 3)
The polymer electrolyte fuel cell 20 of Example 2 was produced in the same manner as the polymer electrolyte fuel cell 20 of Example 1 except that the first carbon layer 2A was configured with I / C = 1.3.
 (比較例1)
 比較例1の固体高分子形燃料電池20は、第1カーボン層2Aを設けない構成とした以外は、実施例1の固体高分子形燃料電池20と同様に作製した。
(Comparative Example 1)
The polymer electrolyte fuel cell 20 of Comparative Example 1 was produced in the same manner as the polymer electrolyte fuel cell 20 of Example 1, except that the first carbon layer 2A was not provided.
 (比較例2)
 比較例2の固体高分子形燃料電池20は、第1カーボン層2AのI/C=1.2として構成した以外は、実施例1の固体高分子形燃料電池20と同様に作製した。
(Comparative Example 2)
The polymer electrolyte fuel cell 20 of Comparative Example 2 was produced in the same manner as the polymer electrolyte fuel cell 20 of Example 1 except that the first carbon layer 2A was configured with I / C = 1.2.
 (比較例3)
 比較例3の固体高分子形燃料電池20は、第1カーボン層2AのI/C=2.1として構成した以外は、実施例1の固体高分子形燃料電池20と同様に作製した。
(Comparative Example 3)
The polymer electrolyte fuel cell 20 of Comparative Example 3 was produced in the same manner as the polymer electrolyte fuel cell 20 of Example 1, except that the first carbon layer 2A was configured with I / C = 2.1.
 次に、これらの固体高分子形燃料電池を用いて、性能評価試験を行った。 Next, a performance evaluation test was conducted using these polymer electrolyte fuel cells.
 (性能評価試験)
 性能評価試験では、運転停止時に燃料電池のガス経路(発電運転時に燃料ガス又は酸化剤ガスが通流する経路)を大気開放するシステム(実施の形態8及び図12参照)を想定した起動停止試験を以下の手順で行った。発電条件は、電流密度0.2A/cm、水素利用率70%、酸素利用率50%、燃料ガスには水素75%、二酸化炭素25%の混合ガスを用いて、酸化剤ガスには空気を用いて、燃料ガスの露点を70℃、酸化剤ガスの露点を70℃、及び電池温度を70℃として、電気負荷を切断後に、カソード5Aは加湿空気供給停止させて大気開放し、アノード5Bは発電時の水素流量の2%の流量で無加湿空気を流通した。発電時間30分及び停止時間30分のサイクルを4000回繰返した。そして、試験前後の電圧及び劣化率を測定し、その結果を図15に示した。図15は、性能評価試験前後の各固体高分子形燃料電池の電圧と劣化率を示した表である。
(Performance evaluation test)
In the performance evaluation test, a start / stop test assuming a system (see Embodiment 8 and FIG. 12) that opens the gas path of the fuel cell (the path through which fuel gas or oxidant gas flows during power generation operation) to the atmosphere. Was performed according to the following procedure. The power generation conditions are: current density 0.2 A / cm 2 , hydrogen utilization 70%, oxygen utilization 50%, fuel gas 75% hydrogen, carbon dioxide 25% mixed gas, oxidant gas air , The dew point of the fuel gas is set to 70 ° C., the dew point of the oxidant gas is set to 70 ° C., and the battery temperature is set to 70 ° C. After the electric load is cut off, the cathode 5A is stopped by supplying the humidified air and opened to the atmosphere. Circulated non-humidified air at a flow rate of 2% of the hydrogen flow rate during power generation. The cycle of power generation time 30 minutes and stop time 30 minutes was repeated 4000 times. And the voltage and deterioration rate before and behind a test were measured, and the result was shown in FIG. FIG. 15 is a table showing the voltage and deterioration rate of each polymer electrolyte fuel cell before and after the performance evaluation test.
 図15に示すように、第1カーボン層2Aをカソード触媒層3Aと高分子電解質1との間に配置した、実施例1乃至3の固体高分子形燃料電池20では、運転停止時及び起動時にアノード5Bに水素が存在する領域と存在しない領域が長時間形成されているにも関らず、第1カーボン層2Aを有しない比較例1の固体高分子形燃料電池20と比較して、その劣化率が大きく改善されている。また、実施例1乃至3の固体高分子形燃料電池20では、比較例1の固体高分子形燃料電池20と比較して、その初期電圧が変わらず、第1カーボン層2Aをカソード触媒層3Aと高分子電解質膜1との間に配置しても通常の発電性能への影響はほとんどないことがわかった。 As shown in FIG. 15, in the polymer electrolyte fuel cells 20 of Examples 1 to 3 in which the first carbon layer 2A is disposed between the cathode catalyst layer 3A and the polymer electrolyte 1, the operation is stopped and started. Compared with the polymer electrolyte fuel cell 20 of Comparative Example 1 that does not have the first carbon layer 2A, the anode 5B has a region where hydrogen is present and a region where hydrogen is not present for a long time. The deterioration rate is greatly improved. Further, in the polymer electrolyte fuel cells 20 of Examples 1 to 3, the initial voltage is not changed as compared with the polymer electrolyte fuel cell 20 of Comparative Example 1, and the first carbon layer 2A is used as the cathode catalyst layer 3A. It has been found that there is almost no influence on the normal power generation performance even if it is disposed between the polymer electrolyte membrane 1 and the polymer electrolyte membrane 1.
 一方、比較例2の固体高分子形燃料電池20では、比較例1の固体高分子形燃料電池20と比較すると、劣化率の改善は見られるが初期電池電圧の低下が大きいことがわかった。また、比較例3の固体高分子形燃料電池20では、比較例1の固体高分子形燃料電池20と比較すると、初期電圧の改善は見られるが、劣化率が低下していることがわかった。 On the other hand, in the polymer electrolyte fuel cell 20 of Comparative Example 2, it was found that although the deterioration rate was improved, the initial cell voltage was greatly reduced as compared with the polymer electrolyte fuel cell 20 of Comparative Example 1. Further, in the polymer electrolyte fuel cell 20 of Comparative Example 3, it was found that although the improvement of the initial voltage was seen as compared with the polymer electrolyte fuel cell 20 of Comparative Example 1, the deterioration rate was lowered. .
 これらの結果から、第1カーボン層2A中のカーボンが、カソード触媒層3Aのカーボンよりイオン化傾向の大きいカーボンを使用しているため、第1カーボン層2A中のカーボンが優先的に酸化腐食されるため、カソード触媒層3Aのカーボンが酸化腐食されないことによることが示された。また、第1カーボン層2A中のI/Cが1.3よりも小さい(比較例2 I/C=1.2)と、第1カーボン層2Aのプロトン伝導性が低くなり、初期電圧が低下することが示唆され、第1カーボン層2A中のI/Cが2.0よりも大きい(比較例3 I/C=2.1)と、電子伝導性が低くなり、第1カーボン層2Aの性能(触媒層の酸化劣化を抑制)が低下することが示唆された。 From these results, the carbon in the first carbon layer 2A is preferentially oxidatively corroded because the carbon in the first carbon layer 2A uses carbon having a higher ionization tendency than the carbon in the cathode catalyst layer 3A. Therefore, it was shown that the carbon of the cathode catalyst layer 3A is not oxidized and corroded. Further, when the I / C in the first carbon layer 2A is smaller than 1.3 (Comparative Example 2 I / C = 1.2), the proton conductivity of the first carbon layer 2A is lowered and the initial voltage is lowered. If the I / C in the first carbon layer 2A is larger than 2.0 (Comparative Example 3 I / C = 2.1), the electron conductivity is lowered, and the first carbon layer 2A It was suggested that the performance (suppressing oxidative deterioration of the catalyst layer) is reduced.
 なお、本実施例では、アノード5Bに水素が存在する領域と存在しない領域が形成される条件での第1カーボン層2Aの効果を検証したが、停止処理時に不活性ガス(例えば、窒素ガスやメタンガス等)でアノード5Bをパージし、待機状態でアノード5Bに不活性ガスが存在するような燃料電池発電システムにおいても、無負荷でのOCV状態や低負荷比率の多い発電状態等では、電池電圧が高く維持されるため、触媒層のカーボンの酸化腐敗が生じるため、第1カーボン層2Aを配設することにより、触媒層のカーボンの酸化腐敗を抑制する効果があることは明らかである。 In the present embodiment, the effect of the first carbon layer 2A under the condition that the region where hydrogen is present and the region where hydrogen is not present is formed in the anode 5B. However, an inert gas (for example, nitrogen gas or Even in a fuel cell power generation system in which the anode 5B is purged with methane gas or the like and an inert gas is present in the anode 5B in a standby state, the battery voltage is low in an OCV state with no load or a power generation state with a high low load ratio. Therefore, it is clear that the first carbon layer 2 </ b> A is effective in suppressing the oxidative decay of carbon in the catalyst layer.
 また、本実施例においては、第1カーボン層2Aの形成を高分子電解質膜1に熱転写することで形成したが、これに限定されず、ガス拡散層の主面に触媒層を形成して、該触媒層の主面に第1カーボン層2Aを形成してもよく、また、高分子電解質膜1の主面にスプレー塗工により第1カーボン層2Aを形成してもよい。 In the present embodiment, the formation of the first carbon layer 2A was formed by thermal transfer to the polymer electrolyte membrane 1. However, the present invention is not limited thereto, and a catalyst layer is formed on the main surface of the gas diffusion layer. The first carbon layer 2A may be formed on the main surface of the catalyst layer, or the first carbon layer 2A may be formed on the main surface of the polymer electrolyte membrane 1 by spray coating.
 次に、第2カーボン層を触媒層とガス拡散層との間に設けた固体高分子形燃料電池についての実施例及び比較例について説明する。 Next, examples and comparative examples of the polymer electrolyte fuel cell in which the second carbon layer is provided between the catalyst layer and the gas diffusion layer will be described.
 (実施例4)
 実施例4では、実施の形態4で説明した固体高分子形燃料電池20を以下のようにして作製した。
Example 4
In Example 4, the polymer electrolyte fuel cell 20 described in Embodiment 4 was produced as follows.
 触媒担体として、ケッチェンブラックEC(インターナショナル社製)を、窒素雰囲気下にて2700℃、10時間焼成して、黒鉛化処理したグラファイト化カーボンブラックを塩化白金酸水溶液に浸漬し、還元処理によりカーボン粉末の表面に白金触媒を担持させた。カーボンと担持した白金との重量比は1:1とした。 Ketjen Black EC (manufactured by International Co., Ltd.) as a catalyst carrier was baked at 2700 ° C. for 10 hours in a nitrogen atmosphere, and the graphitized carbon black was immersed in an aqueous chloroplatinic acid solution, and carbon was reduced by reduction treatment. A platinum catalyst was supported on the surface of the powder. The weight ratio of carbon to supported platinum was 1: 1.
 ついで、この触媒担持粒子をアイオノマー溶液(SE10072(EW990) 10wt%:デュポン社製)にI/C=0.8となるように分散させ、スラリー化した。そして、上記スラリーを厚さ50μmのポリプロピレンシートに白金重量が0.3mg/cmとなるようバーコーターで塗工し、室温乾燥した。 Next, the catalyst-carrying particles were dispersed in an ionomer solution (SE10072 (EW990) 10 wt%: manufactured by DuPont) so that I / C = 0.8, and slurried. The slurry was coated on a 50 μm thick polypropylene sheet with a bar coater so that the weight of platinum was 0.3 mg / cm 2 and dried at room temperature.
 次に、上記塗工シートを打ち抜き型で所定の電極サイズ(60mm角)に切断し、切断したシートを、その厚み方向から見て互いに重なり合うように、高分子電解質膜1の両面に配置した。そして、130℃、1MPaで触媒層をポリプロピレンシートから高分子電解質膜1に熱転写し、アノード触媒層3B、カソード触媒層3Aを形成した。 Next, the coated sheet was cut into a predetermined electrode size (60 mm square) with a punching die, and the cut sheets were arranged on both surfaces of the polymer electrolyte membrane 1 so as to overlap each other when viewed from the thickness direction. Then, the catalyst layer was thermally transferred from the polypropylene sheet to the polymer electrolyte membrane 1 at 130 ° C. and 1 MPa to form the anode catalyst layer 3B and the cathode catalyst layer 3A.
 次に、第2カーボン層2BのカーボンとしてケッチェンブラックEC(インターナショナル社製)をアイオノマー溶液(SE10072(EW990) 10wt%:デュポン社製)にI/C=0.6となるように混合して、超音波分散を行いスラリー化した。そして、このスラリーを乾燥時の厚さが5μmとなるように、厚さ50μmのポリプロピレンシートにバーコーターで塗工し、室温乾燥した。 Next, ketjen black EC (manufactured by International) was mixed with the ionomer solution (SE10072 (EW990), 10 wt%: DuPont) as the carbon of the second carbon layer 2B so that I / C = 0.6. Then, ultrasonic dispersion was performed to make a slurry. Then, this slurry was coated on a polypropylene sheet having a thickness of 50 μm with a bar coater so that the thickness upon drying was 5 μm, and dried at room temperature.
 次に、上記塗工シートを打ち抜き型で所定の電極サイズ(60mm角)に切断し、切断したシートを高分子電解質膜1のカソード触媒層3Aの主面の上に配置した。そして、130℃、1MPaで、第2カーボン層2Bをポリプロピレンシートから高分子電解質膜1のカソード触媒層3Aの主面に熱転写した。 Next, the coated sheet was cut into a predetermined electrode size (60 mm square) with a punching die, and the cut sheet was placed on the main surface of the cathode catalyst layer 3A of the polymer electrolyte membrane 1. Then, the second carbon layer 2B was thermally transferred from the polypropylene sheet to the main surface of the cathode catalyst layer 3A of the polymer electrolyte membrane 1 at 130 ° C. and 1 MPa.
 一方、電極となる厚さ360μmのカーボン繊維不織布(TGP-H-120:東レ社製)を、フッ素樹脂含有の水性ディスパージョン(ネオフロンND1:ダイキン工業製)に含浸した後、これを乾燥した。さらに、このカーボン不織布の一方の面に、導電性カーボン粉末とPTFE微粉末を分散させた水溶液とを混合したインクを、スクリーン印刷法を用いて塗布することで撥水カーボン層を形成し、400℃で30分加熱して、溶媒に含まれる界面活性剤を分解除去し、これを電極サイズ(60mm角)の打ち抜き型で打ち抜き、ガス拡散層を得た。このガス拡散層を2つ用意し、これらのガス拡散層で膜-触媒層接合体の両側より挟持し、シリコンゴム/ポリエーテルイミド/シリコンゴムの3層に積層した複合材料で構成された一対のガスケット6A、6Bを電極の外周部に配置し、130℃、1MPaで10分間熱圧着して膜-電極接合体11を得た。この膜-電極接合体11の第2カーボン層2Bが配設された方の電極をカソード5Aとして、アノードセパレータ7B及びカソードセパレータ7Aで狭持して実施例1の固体高分子形燃料電池(単セル)20を作製した。 On the other hand, a carbon fiber nonwoven fabric (TGP-H-120: manufactured by Toray Industries, Inc.) having a thickness of 360 μm serving as an electrode was impregnated into a fluororesin-containing aqueous dispersion (neoflon ND1: manufactured by Daikin Industries), and then dried. Furthermore, a water-repellent carbon layer is formed on one surface of the carbon nonwoven fabric by applying an ink obtained by mixing a conductive carbon powder and an aqueous solution in which PTFE fine powder is dispersed using a screen printing method. The mixture was heated at 0 ° C. for 30 minutes to decompose and remove the surfactant contained in the solvent, and this was punched with a punch having an electrode size (60 mm square) to obtain a gas diffusion layer. Two gas diffusion layers are prepared and sandwiched between both sides of the membrane-catalyst layer assembly by these gas diffusion layers, and a pair of layers composed of a composite material of silicon rubber / polyetherimide / silicon rubber is laminated. The gaskets 6A and 6B were placed on the outer periphery of the electrode and thermocompression bonded at 130 ° C. and 1 MPa for 10 minutes to obtain a membrane-electrode assembly 11. The electrode on which the second carbon layer 2B of the membrane-electrode assembly 11 is disposed is used as the cathode 5A, and is sandwiched between the anode separator 7B and the cathode separator 7A. Cell) 20 was produced.
 (実施例5)
 実施例5の固体高分子形燃料電池20は、第2カーボン層2BのI/C=1.3として構成した以外は、実施例4の固体高分子形燃料電池20と同様に作製した。
(Example 5)
The polymer electrolyte fuel cell 20 of Example 5 was produced in the same manner as the polymer electrolyte fuel cell 20 of Example 4 except that the second carbon layer 2B was configured with I / C = 1.3.
 (比較例4)
 比較例4の固体高分子形燃料電池20は、第2カーボン層2Bを設けない構成とした以外は、実施例4の固体高分子形燃料電池20と同様に作製した。
(Comparative Example 4)
The polymer electrolyte fuel cell 20 of Comparative Example 4 was produced in the same manner as the polymer electrolyte fuel cell 20 of Example 4 except that the second carbon layer 2B was not provided.
 (比較例5)
 比較例5の固体高分子形燃料電池20は、第2カーボン層2BのI/C=1.4として構成した以外は、実施例4の固体高分子形燃料電池20と同様に作製した。
(Comparative Example 5)
The polymer electrolyte fuel cell 20 of Comparative Example 5 was produced in the same manner as the polymer electrolyte fuel cell 20 of Example 4 except that the second carbon layer 2B was configured with I / C = 1.4.
 (比較例6)
 比較例6の固体高分子形燃料電池20は、第2カーボン層2BのI/C=0.5として構成した以外は、実施例4の固体高分子形燃料電池20と同様に作製した。
(Comparative Example 6)
The polymer electrolyte fuel cell 20 of Comparative Example 6 was produced in the same manner as the polymer electrolyte fuel cell 20 of Example 4 except that the second carbon layer 2B was configured with I / C = 0.5.
 次に、これらの固体高分子形燃料電池を用いて、性能評価試験を行った。 Next, a performance evaluation test was conducted using these polymer electrolyte fuel cells.
 (性能評価試験)
 性能評価試験では、運転停止時に燃料電池のガス経路(発電運転時に燃料ガス又は酸化剤ガスが通流する経路)を大気開放するシステム(実施の形態8及び図12参照)を想定した起動停止試験を以下の手順で行った。発電条件は、電流密度0.2A/cm、水素利用率70%、酸素利用率50%、燃料ガスには水素75%、二酸化炭素25%の混合ガスを用いて、酸化剤ガスには空気を用いて、燃料ガスの露点を70℃、酸化剤ガスの露点を70℃、及び電池温度を70℃として、電気負荷を切断後に、カソード5Aは加湿空気供給停止させて大気開放し、アノード5Bは発電時の水素流量の2%の流量で無加湿空気を流通した。発電時間30分及び停止時間30分のサイクルを4000回繰返した。そして、試験前後の電圧及び劣化率を測定し、その結果を図16に示した。図16は、性能評価試験前後の各固体高分子形燃料電池の電圧と劣化率を示した表である。
(Performance evaluation test)
In the performance evaluation test, a start / stop test assuming a system (see Embodiment 8 and FIG. 12) that opens the gas path of the fuel cell (the path through which fuel gas or oxidant gas flows during power generation operation) to the atmosphere. Was performed according to the following procedure. The power generation conditions are: current density 0.2 A / cm 2 , hydrogen utilization 70%, oxygen utilization 50%, fuel gas 75% hydrogen, carbon dioxide 25% mixed gas, oxidant gas air , The dew point of the fuel gas is set to 70 ° C., the dew point of the oxidant gas is set to 70 ° C., and the battery temperature is set to 70 ° C. Circulated non-humidified air at a flow rate of 2% of the hydrogen flow rate during power generation. The cycle of power generation time 30 minutes and stop time 30 minutes was repeated 4000 times. And the voltage and deterioration rate before and behind a test were measured, and the result was shown in FIG. FIG. 16 is a table showing the voltage and deterioration rate of each polymer electrolyte fuel cell before and after the performance evaluation test.
 図16に示すように、第2カーボン層2Bをカソード触媒層3Aとカソードガス拡散層4Aとの間に配置した、実施例4及び実施例5の固体高分子形燃料電池20では、運転停止時及び起動時にアノード5Bに水素が存在する領域と存在しない領域が長時間形成されているにも関らず、第2カーボン層2Bを有しない比較例4の固体高分子形燃料電池20と比較して、その劣化率が大きく改善されている。また、実施例4及び実施例5の固体高分子形燃料電池20では、比較例4の固体高分子形燃料電池20と比較して、その初期電圧が変わらず、第2カーボン層2Bをカソード触媒層3Aとカソードガス拡散層4Aとの間に配置しても通常の発電性能への影響はほとんどないことがわかった。 As shown in FIG. 16, in the polymer electrolyte fuel cells 20 of Example 4 and Example 5 in which the second carbon layer 2B is disposed between the cathode catalyst layer 3A and the cathode gas diffusion layer 4A, the operation is stopped. Compared with the polymer electrolyte fuel cell 20 of Comparative Example 4 that does not have the second carbon layer 2B, although the region where hydrogen is present and the region where it is not present are formed for a long time at the anode 5B during startup. The deterioration rate is greatly improved. Further, in the polymer electrolyte fuel cells 20 of Example 4 and Example 5, the initial voltage is not changed as compared with the polymer electrolyte fuel cell 20 of Comparative Example 4, and the second carbon layer 2B is used as the cathode catalyst. It has been found that even if it is arranged between the layer 3A and the cathode gas diffusion layer 4A, there is almost no influence on the normal power generation performance.
 一方、比較例5の固体高分子形燃料電池20では、比較例4の固体高分子形燃料電池20と比較すると、劣化率の改善は見られるが初期電池電圧の低下が大きいことがわかった。また、比較例6の固体高分子形燃料電池20では、比較例4の固体高分子形燃料電池20と比較すると、初期電圧の改善は見られるが、劣化率が低下していることがわかった。 On the other hand, in the polymer electrolyte fuel cell 20 of Comparative Example 5, it was found that although the deterioration rate was improved as compared with the polymer electrolyte fuel cell 20 of Comparative Example 4, the decrease in the initial cell voltage was large. Further, in the polymer electrolyte fuel cell 20 of Comparative Example 6, it was found that although the initial voltage was improved as compared with the polymer electrolyte fuel cell 20 of Comparative Example 4, the deterioration rate was lowered. .
 これらの結果から、第2カーボン層2B中のカーボンが、カソード触媒層3Aのカーボンよりイオン化傾向の大きいカーボンを使用しているため、第2カーボン層2B中のカーボンが優先的に酸化腐食されるため、カソード触媒層3Aのカーボンが酸化腐食されないことによることが示された。また、第2カーボン層2B中のI/Cが1.3よりも大きい(比較例5 I/C=1.4)と、第2カーボン層2Bのガス拡散性が低くなり、初期電圧が低下することが示唆され、第2カーボン層2B中のI/Cが0.6よりも小さい(比較例6 I/C=0.5)と、プロトン伝導性が低くなり、第2カーボン層2Bの性能(触媒層の酸化劣化を抑制)が低下することが示唆された。 From these results, the carbon in the second carbon layer 2B is preferentially oxidatively corroded because the carbon in the second carbon layer 2B uses carbon having a higher ionization tendency than the carbon in the cathode catalyst layer 3A. Therefore, it was shown that the carbon of the cathode catalyst layer 3A is not oxidized and corroded. Further, if the I / C in the second carbon layer 2B is larger than 1.3 (Comparative Example 5 I / C = 1.4), the gas diffusibility of the second carbon layer 2B is lowered and the initial voltage is lowered. When the I / C in the second carbon layer 2B is smaller than 0.6 (Comparative Example 6 I / C = 0.5), the proton conductivity decreases, and the second carbon layer 2B It was suggested that the performance (suppressing oxidative deterioration of the catalyst layer) is reduced.
 なお、本実施例では、アノード5Bに水素が存在する領域と存在しない領域が形成される条件での第2カーボン層2Bの効果を検証したが、停止処理時に不活性ガス(例えば、窒素ガスやメタンガス等)でアノード5Bをパージし、待機状態でアノード5Bに不活性ガスが存在するような燃料電池発電システムにおいても、無負荷でのOCV状態や低負荷比率の多い発電状態等では、電池電圧が高く維持されるため、触媒層のカーボンの酸化腐敗が生じるため、第2カーボン層2Bを配設することにより、触媒層のカーボンの酸化腐敗を抑制する効果があることは明らかである。 In the present embodiment, the effect of the second carbon layer 2B under the condition that the region where hydrogen is present and the region where the hydrogen is not present is formed in the anode 5B is verified, but an inert gas (for example, nitrogen gas or Even in a fuel cell power generation system in which the anode 5B is purged with methane gas or the like and an inert gas is present in the anode 5B in a standby state, the battery voltage is low in an OCV state with no load or a power generation state with a high low load ratio. Therefore, it is clear that the second carbon layer 2B has an effect of suppressing the oxidative decay of carbon in the catalyst layer.
 また、本実施例においては、第2カーボン層2Bの形成を触媒層に熱転写することで形成したが、これに限定されず、ガス拡散層の主面に触媒層を形成して、該触媒層の主面に第2カーボン層2Bを形成してもよく、また、ガス拡散層の主面にスプレー塗工により第2カーボン層2Bを形成してもよい。 In this embodiment, the second carbon layer 2B is formed by thermally transferring to the catalyst layer. However, the present invention is not limited to this, and the catalyst layer is formed on the main surface of the gas diffusion layer. The second carbon layer 2B may be formed on the main surface, or the second carbon layer 2B may be formed on the main surface of the gas diffusion layer by spray coating.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の形態を当業者に教示する目的で提供されたものである。本発明の要旨を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the scope of the invention. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment.
 本発明の膜-電極接合体及び固体高分子形燃料電池は、触媒層中カーボン担体の酸化腐食による電池特性の低下を抑制し、耐久性を向上させることができるため、燃料電池の技術分野で有用である。 The membrane-electrode assembly and solid polymer fuel cell of the present invention can suppress the deterioration of battery characteristics due to oxidative corrosion of the carbon support in the catalyst layer and can improve the durability. Useful.
 また、本発明の燃料電池発電システムは、燃料電池発電システム制御の簡略化ができ、また、燃料電池発電システムの簡易化、低コスト化ができるため、燃料電池の技術分野で有用である。 The fuel cell power generation system of the present invention is useful in the technical field of fuel cells because the control of the fuel cell power generation system can be simplified, and the fuel cell power generation system can be simplified and reduced in cost.
 1 高分子電解質膜
 2A 第1カーボン層
 2B 第2カーボン層
 3A カソード触媒層
 3B アノード触媒層
 4A カソードガス拡散層
 4B アノードガス拡散層
 5A カソード
 5B アノード
 6A ガスケット
 6B ガスケット
 7A カソードセパレータ
 7B アノードセパレータ
 8 酸化剤ガス流路
 9 燃料ガス流路
 10 冷却媒体流路
 11 膜-電極接合体
 20 固体高分子形燃料電池
 21 燃料ガス供給器
 21A バーナ
 22 酸化剤ガス供給器
 23 パージ用空気供給器
 24 制御器
 25 第1開閉弁
 26 第2開閉弁
 27 第3開閉弁
 28 第4開閉弁
 29 第5開閉弁
 41 燃料ガス供給路
 42 酸化剤ガス供給路
 43 オフ燃料ガス流路
 44 酸化剤ガス排出路
 45 燃焼排ガス流路
 46 パージ用空気供給路
 47 バイパス流路
 48 大気開放流路
 100 燃料電池発電システム
DESCRIPTION OF SYMBOLS 1 Polymer electrolyte membrane 2A 1st carbon layer 2B 2nd carbon layer 3A Cathode catalyst layer 3B Anode catalyst layer 4A Cathode gas diffusion layer 4B Anode gas diffusion layer 5A Cathode 5B Anode 6A Gasket 6B Gasket 7A Cathode separator 7B Anode separator 8 Oxidizing agent Gas flow path 9 Fuel gas flow path 10 Cooling medium flow path 11 Membrane-electrode assembly 20 Polymer electrolyte fuel cell 21 Fuel gas supply 21A Burner 22 Oxidant gas supply 23 Purge air supply 24 Controller 25 1 on-off valve 26 second on-off valve 27 third on-off valve 28 fourth on-off valve 29 fifth on-off valve 41 fuel gas supply passage 42 oxidant gas supply passage 43 off-fuel gas passage 44 oxidant gas discharge passage 45 combustion exhaust gas flow Path 46 Purge air supply path 47 Bypass flow path 48 Atmospheric release flow path 00 fuel cell power generation system

Claims (10)

  1.  触媒担持カーボンとアイオノマーを含むアノード触媒層とアノードガス拡散層とを有する、アノードと、
     触媒担持カーボンとアイオノマーを含むカソード触媒層とカソードガス拡散層とを有するカソードと、
     前記アノード触媒層と前記カソード触媒層の間に配置された高分子電解質膜と、
     前記アノード触媒層及び前記カソード触媒層の少なくとも一方と前記高分子電解質膜との間に配置され、カーボンとアイオノマーを有する第1カーボン層及び前記アノード触媒層と前記アノードガス拡散層との間及び前記カソード触媒層と前記カソードガス拡散層との間の少なくとも一方に配置され、カーボンとアイオノマーを有する第2カーボン層の少なくとも一方のカーボン層と、を備え、
     前記第1カーボン層及び前記第2カーボン層は、該第1カーボン層及び該第2カーボン層のカーボンのイオン化傾向が前記アノード触媒層及び前記カソード触媒層の少なくとも一方の触媒担持カーボンのイオン化傾向より大きくなるように、かつ、該第1カーボン層及び該第2カーボン層の触媒担持量が前記アノード触媒層及び前記カソード触媒層の少なくとも一方の触媒担持量よりも小さくなるように構成されている、膜-電極接合体。
    An anode having an anode catalyst layer comprising a catalyst-supporting carbon and an ionomer and an anode gas diffusion layer;
    A cathode having a cathode catalyst layer including a catalyst-supporting carbon and an ionomer and a cathode gas diffusion layer;
    A polymer electrolyte membrane disposed between the anode catalyst layer and the cathode catalyst layer;
    A first carbon layer disposed between at least one of the anode catalyst layer and the cathode catalyst layer and the polymer electrolyte membrane, and having carbon and an ionomer; and between the anode catalyst layer and the anode gas diffusion layer; and At least one carbon layer disposed between at least one of the cathode catalyst layer and the cathode gas diffusion layer and having carbon and an ionomer;
    In the first carbon layer and the second carbon layer, the ionization tendency of carbon in the first carbon layer and the second carbon layer is based on the ionization tendency of the catalyst-supporting carbon in at least one of the anode catalyst layer and the cathode catalyst layer. The catalyst loading amount of the first carbon layer and the second carbon layer is configured to be smaller than the catalyst loading amount of at least one of the anode catalyst layer and the cathode catalyst layer. Membrane-electrode assembly.
  2.  前記第1カーボン層及び前記第2カーボン層は、触媒を担持していないカーボン及びアイオノマーから構成されている、請求項1に記載の膜-電極接合体。 The membrane-electrode assembly according to claim 1, wherein the first carbon layer and the second carbon layer are composed of carbon and ionomer not supporting a catalyst.
  3.  前記第1カーボン層のアイオノマー/カーボンの質量比(I/C)が、1.3以上、かつ、2.0以下である、請求項1に記載の膜-電極接合体。 The membrane-electrode assembly according to claim 1, wherein an ionomer / carbon mass ratio (I / C) of the first carbon layer is 1.3 or more and 2.0 or less.
  4.  前記第2カーボン層のアイオノマー/カーボンの質量比(I/C)が、0.6以上、かつ、1.3以下である、請求項1又は3に記載の膜-電極接合体。 The membrane-electrode assembly according to claim 1 or 3, wherein an ionomer / carbon mass ratio (I / C) of the second carbon layer is 0.6 or more and 1.3 or less.
  5.  前記第1カーボン層及び前記第2カーボン層のアイオノマーのEWが700以上、かつ、1100以下である、請求項2~4のいずれかに記載の膜-電極接合体。 The membrane-electrode assembly according to any one of claims 2 to 4, wherein the EW of the ionomer of the first carbon layer and the second carbon layer is 700 or more and 1100 or less.
  6.  請求項1~5のいずれかに記載の膜-電極接合体と、
     板状で、前記膜-電極接合体を挟持するように配設された一対の導電性のセパレータと、を備える、固体高分子形燃料電池。
    A membrane-electrode assembly according to any one of claims 1 to 5;
    A solid polymer fuel cell comprising: a pair of conductive separators arranged in a plate shape so as to sandwich the membrane-electrode assembly.
  7.  請求項6に記載の固体高分子形燃料電池と、
     前記アノードに燃料ガス供給路を介して燃料ガスを供給する燃料ガス供給器と、
     前記カソードに酸化剤ガス供給路を介して酸化剤ガスを供給する酸化剤ガス供給器と、
     前記アノードで使用されなかった燃料ガスが通流するオフ燃料ガス流路と、
     パージ用空気供給器と、
     制御器と、を備える、燃料電池発電システムにおいて、
     前記制御器は、前記燃料電池発電システムの停止処理を行うときに前記アノードに空気を供給してパージするように前記パージ用空気供給器を制御する、燃料電池発電システム。
    A polymer electrolyte fuel cell according to claim 6;
    A fuel gas supplier for supplying fuel gas to the anode via a fuel gas supply path;
    An oxidant gas supply device for supplying an oxidant gas to the cathode via an oxidant gas supply path;
    An off-fuel gas flow path through which fuel gas not used in the anode flows;
    A purge air supply;
    A fuel cell power generation system comprising a controller;
    The controller is configured to control the purge air supply unit so as to supply and purge air to the anode when the fuel cell power generation system is stopped.
  8.  前記パージ用空気供給器は前記酸化剤ガス供給器と該酸化剤ガス供給器から前記アノードに前記酸化剤ガスを供給するように構成されたバイパス流路で構成されている、請求項7に記載の燃料電池発電システム。 The purge air supply device is configured by the oxidant gas supply device and a bypass flow path configured to supply the oxidant gas from the oxidant gas supply device to the anode. Fuel cell power generation system.
  9.  前記パージ用空気供給器は前記燃料ガス供給路又は前記オフ燃料ガス流路に接続され、大気開放端を有する大気開放流路と前記大気開放流路に設けられた開閉弁とで構成されている、請求項7に記載の燃料電池発電システム。 The purge air supply is connected to the fuel gas supply path or the off-fuel gas flow path, and includes an air open flow path having an air open end and an open / close valve provided in the air open flow path. The fuel cell power generation system according to claim 7.
  10.  前記制御器は、前記アノード及び前記カソードに空気が存在する待機状態から前記燃料電池発電システムの起動処理を行うように構成されている、請求項7に記載の燃料電池発電システム。 The fuel cell power generation system according to claim 7, wherein the controller is configured to perform a startup process of the fuel cell power generation system from a standby state in which air exists in the anode and the cathode.
PCT/JP2010/004375 2009-07-14 2010-07-05 Membrane-electrode assembly, solid polymer fuel cell, and fuel cell power generation system WO2011007518A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009165271 2009-07-14
JP2009165270 2009-07-14
JP2009-165270 2009-07-14
JP2009-165271 2009-07-14

Publications (1)

Publication Number Publication Date
WO2011007518A1 true WO2011007518A1 (en) 2011-01-20

Family

ID=43449130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004375 WO2011007518A1 (en) 2009-07-14 2010-07-05 Membrane-electrode assembly, solid polymer fuel cell, and fuel cell power generation system

Country Status (1)

Country Link
WO (1) WO2011007518A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523056A (en) * 2000-02-08 2003-07-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Anode structure containing carbon-based components with almost no corrosion resistance
JP2006012476A (en) * 2004-06-23 2006-01-12 Nissan Motor Co Ltd Membrane-electrode assembly for fuel cell
JP2006507647A (en) * 2002-11-26 2006-03-02 ユーティーシー フューエル セルズ,エルエルシー Method for shutting down fuel cell apparatus using air purge
JP2006134802A (en) * 2004-11-09 2006-05-25 Nissan Motor Co Ltd Fuel cell
WO2006057139A1 (en) * 2004-11-25 2006-06-01 Nissan Motor Co., Ltd. Solid polymer type fuel cell
JP2006216260A (en) * 2005-02-01 2006-08-17 Nissan Motor Co Ltd Fuel cell
JP2006236631A (en) * 2005-02-22 2006-09-07 Nissan Motor Co Ltd Polymer electrolyte fuel cell and vehicle mounting the same
JP2006286330A (en) * 2005-03-31 2006-10-19 Equos Research Co Ltd Fuel cell and catalyst layer therefor
JP2007188768A (en) * 2006-01-13 2007-07-26 Nissan Motor Co Ltd Polymer electrolyte fuel cell
JP2008047520A (en) * 2006-07-24 2008-02-28 Gm Global Technology Operations Inc Using sacrificial material to mitigate catalyst support corrosion in fuel cell electrode
JP2008270019A (en) * 2007-04-23 2008-11-06 Toyota Motor Corp Fuel cell and jointed body for fuel cell
JP2008293735A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp Fuel cell and fuel cell system
JP2009059556A (en) * 2007-08-31 2009-03-19 Toyota Motor Corp Fuel cell system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523056A (en) * 2000-02-08 2003-07-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Anode structure containing carbon-based components with almost no corrosion resistance
JP2006507647A (en) * 2002-11-26 2006-03-02 ユーティーシー フューエル セルズ,エルエルシー Method for shutting down fuel cell apparatus using air purge
JP2006012476A (en) * 2004-06-23 2006-01-12 Nissan Motor Co Ltd Membrane-electrode assembly for fuel cell
JP2006134802A (en) * 2004-11-09 2006-05-25 Nissan Motor Co Ltd Fuel cell
WO2006057139A1 (en) * 2004-11-25 2006-06-01 Nissan Motor Co., Ltd. Solid polymer type fuel cell
JP2006216260A (en) * 2005-02-01 2006-08-17 Nissan Motor Co Ltd Fuel cell
JP2006236631A (en) * 2005-02-22 2006-09-07 Nissan Motor Co Ltd Polymer electrolyte fuel cell and vehicle mounting the same
JP2006286330A (en) * 2005-03-31 2006-10-19 Equos Research Co Ltd Fuel cell and catalyst layer therefor
JP2007188768A (en) * 2006-01-13 2007-07-26 Nissan Motor Co Ltd Polymer electrolyte fuel cell
JP2008047520A (en) * 2006-07-24 2008-02-28 Gm Global Technology Operations Inc Using sacrificial material to mitigate catalyst support corrosion in fuel cell electrode
JP2008270019A (en) * 2007-04-23 2008-11-06 Toyota Motor Corp Fuel cell and jointed body for fuel cell
JP2008293735A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp Fuel cell and fuel cell system
JP2009059556A (en) * 2007-08-31 2009-03-19 Toyota Motor Corp Fuel cell system

Similar Documents

Publication Publication Date Title
JP3778506B2 (en) Electrode for polymer electrolyte fuel cell
JP5214602B2 (en) Fuel cell, membrane-electrode assembly, and membrane-catalyst layer assembly
JP2006294594A (en) Electrode catalyst layer for fuel cell, and fuel cell using the same
JP2020145044A (en) Cathode catalyst layer of fuel cell and fuel cell
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
JP2010073586A (en) Electrolyte membrane-electrode assembly
JP2004172105A (en) Operation method of fuel cell system and fuel cell system
US8278012B2 (en) Membrane electrode assembly for fuel cell, and fuel cell system including the same
JP2007026783A (en) Solid polymer fuel cell
JP2007005126A (en) Polymer electrolyte fuel cell stack and polymer electrolyte fuel cell using this
US20090202882A1 (en) Polymer electrolyte fuel cell and fuel cell system including the same
JP7225691B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP2005158298A (en) Operation method of fuel cell power generation system, and fuel cell power generation system
JP5132203B2 (en) Fuel cell, membrane-electrode assembly, and membrane-catalyst layer assembly
JP2007335163A (en) Membrane catalyst layer assembly, membrane electrode assembly, and polymer-electrolyte fuel cell
WO2010100872A1 (en) Separator for fuel cell, and fuel cell comprising same
JPWO2011059087A1 (en) Fuel cell and vehicle equipped with fuel cell
JP2005222720A (en) Fuel cell
JP2005197195A (en) Solid polymer fuel cell
JP2005235522A (en) Polymer electrolyte fuel cell and operation method of the same
JP2006012449A (en) Membrane electrode junction body and solid polymer fuel cell using above
WO2011007518A1 (en) Membrane-electrode assembly, solid polymer fuel cell, and fuel cell power generation system
JP2007305427A (en) Polymer electrolyte fuel cell
JP2006216285A (en) Solid polymer electrolyte membrane, solid polymer electrolyte membrane electrode assembly, and solid polymer electrolyte fuel cell
JP5470131B2 (en) Household fuel cell system for home use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP