WO2011007503A1 - Led backlight control device, led backlight control method, led backlight control module, and display device - Google Patents
Led backlight control device, led backlight control method, led backlight control module, and display device Download PDFInfo
- Publication number
- WO2011007503A1 WO2011007503A1 PCT/JP2010/004194 JP2010004194W WO2011007503A1 WO 2011007503 A1 WO2011007503 A1 WO 2011007503A1 JP 2010004194 W JP2010004194 W JP 2010004194W WO 2011007503 A1 WO2011007503 A1 WO 2011007503A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- led
- average value
- coefficients
- coefficient
- led backlight
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 104
- 238000004364 calculation method Methods 0.000 claims abstract description 61
- 230000009466 transformation Effects 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims description 86
- 238000010586 diagram Methods 0.000 description 26
- 238000013139 quantization Methods 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 20
- 230000004048 modification Effects 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 239000004973 liquid crystal related substance Substances 0.000 description 12
- 230000005236 sound signal Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 241000110058 Candidatus Phytoplasma pini Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3406—Control of illumination source
- G09G3/342—Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
- G09G3/3426—Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2360/00—Aspects of the architecture of display systems
- G09G2360/16—Calculation or use of calculated indices related to luminance levels in display data
Definitions
- the present invention relates to an LED backlight control device, an LED backlight control method, an LED backlight control module, and a display device that control an LED (Light Emitting Diode) backlight that is a kind of backlight for LCD (Liquid Crystal Display). .
- cold cathode fluorescent lamps have been the mainstream light source for liquid crystal backlights.
- Most liquid crystal TVs that use cold cathode fluorescent lamps as backlights always turn on the backlight, which causes “black floating” due to light leakage of the liquid crystal panel. Since the cold-cathode tube is surface emitting, when adjusting the brightness of the image with the backlight, it was only possible to adjust the entire screen uniformly.
- ⁇ LED is a monochromatic light source, so when used as a backlight, the color reproduction range is expanded. Light control can be performed independently for each LED and the light leakage can be considerably reduced by locally adjusting the contrast of the image, so that the contrast of the screen can be greatly increased. In addition, the reproducibility of gradation and gradation in the dark portion is enhanced.
- the power supply unit can be simplified.
- the majority of products use white LED backlights.
- the luminance of the LED is lower than that of the cold cathode tube, but it is expected to exceed that of the cold cathode tube in the future. This leads to reduction of power consumption in combination with local brightness control of the screen.
- Patent Documents 1, 2, and 3 and Non-Patent Documents 1 and 2 disclose LED backlight control techniques.
- the LED backlight can improve the image quality as the number of LEDs used increases.
- a large amount of calculation required to control each LED becomes a problem.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an LED backlight control device and the like that can efficiently reduce the amount of calculation required for controlling the LED backlight. It is.
- an LED backlight control device is an LED (Light Emitting Diode) backlight used for displaying an image, and includes a plurality of LED modules using LEDs.
- Control LED backlight including.
- the LED backlight control device uses DCT (Discrete) of a DC component corresponding to a block to be orthogonally transformed from encoded data generated by performing encoding processing with orthogonal transformation on a block basis for a video.
- C of a plurality of LED modules using an acquisition unit that acquires k (integer of 1 or more) DC coefficients that are Cosine ⁇ Transform) coefficients and a value obtained from the k DC coefficients acquired by the acquisition unit.
- a light amount control unit that controls the light amount of the LED module corresponding to the block corresponding to each DC coefficient.
- the acquisition unit is a DCT coefficient of a direct current component corresponding to a block to be orthogonally transformed from encoded data generated by performing encoding processing with orthogonal transformation on a block basis for a video.
- the light quantity control unit controls the light quantity of the LED module corresponding to the block corresponding to the k DC coefficients among the plurality of LED modules, using a value obtained from the k DC coefficients.
- the calculation amount necessary for the control of the LED backlight can be efficiently reduced by using the DC coefficient obtained from the encoded data.
- k is an integer equal to or greater than 2
- the LED backlight control device further includes a calculation unit that calculates a DC coefficient average value that is an average value of k DC coefficients
- the light amount control unit includes: The light amount of the LED module corresponding to the block corresponding to the DC coefficient average value is controlled using the DC coefficient average value calculated using the k DC coefficients or the value obtained from the DC coefficient average value.
- An LED backlight control method is an LED backlight used for displaying an image, and an LED backlight control device that controls an LED backlight including a plurality of LED modules using LEDs.
- the LED backlight control method uses a DCT coefficient of a DC component corresponding to a block to be orthogonally transformed from encoded data generated by performing encoding processing with orthogonal transformation on a block basis for a video.
- k integer greater than or equal to 1
- a light amount control step for controlling the light amount of the LED module corresponding to the corresponding block.
- k is an integer equal to or greater than 2
- the LED backlight control method further includes a calculation step of calculating a DC coefficient average value that is an average value of k DC coefficients, The light amount of the LED module corresponding to the block corresponding to the DC coefficient average value is controlled using the DC coefficient average value calculated using the k DC coefficients or the value obtained from the DC coefficient average value.
- An LED backlight control module is an LED backlight used for displaying an image, and controls an LED backlight including a plurality of LED modules using LEDs.
- the LED backlight control module uses a DCT coefficient of a DC component corresponding to a block to be orthogonally transformed from encoded data generated by performing encoding processing with orthogonal transformation on a block basis for a video.
- k integer greater than or equal to 1
- a light amount control unit that controls the light amount of the LED module corresponding to the corresponding block.
- k is an integer equal to or greater than 2
- the LED backlight control module further includes a calculation unit that calculates a DC coefficient average value that is an average value of k DC coefficients
- the light amount control unit includes: The light amount of the LED module corresponding to the block corresponding to the DC coefficient average value is controlled using the DC coefficient average value calculated using the k DC coefficients or the value obtained from the DC coefficient average value.
- a display device is an LED backlight used for displaying an image, and controls an LED backlight including a plurality of LED modules using LEDs.
- the display device uses DCT coefficients of DC components corresponding to each of the blocks to be orthogonally transformed from encoded data generated by performing an encoding process involving orthogonal transformation on the video in units of blocks.
- a light amount control unit that controls the light amount of the LED module corresponding to the block to be performed.
- k is an integer equal to or greater than 2
- the display device further includes a calculation unit that calculates a DC coefficient average value that is an average value of k DC coefficients, and the display device includes k DCs.
- the light quantity of the LED module corresponding to the block corresponding to the DC coefficient average value is controlled using the DC coefficient average value calculated using the coefficient or a value obtained from the DC coefficient average value.
- the present invention may be realized not only as such an LED backlight control method but also as a program that causes a computer to execute each step included in such an LED backlight control method. Further, the present invention may be realized as a computer-readable recording medium that stores such a program. Such a program may be distributed via a transmission medium such as the Internet.
- all or some of the plurality of components constituting such an LED backlight control device may be realized as a system LSI (Large Scale Integration).
- the amount of calculation required for controlling the LED backlight can be efficiently reduced.
- FIG. 1 is a block diagram illustrating a configuration of a display device according to the first embodiment.
- FIG. 2 is a diagram illustrating a full HD video as an example.
- FIG. 3 is a diagram for explaining the configuration of one LED module according to the first embodiment.
- FIG. 4 is a diagram illustrating various values corresponding to the size of the light control area.
- FIG. 5 is a diagram illustrating data of luminance Y, color difference Cb, and color difference Cr corresponding to a macro block of the 4: 2: 0 format.
- FIG. 6 is a diagram for explaining the positional relationship between luminance and color difference.
- FIG. 7 is a block diagram illustrating a configuration of a video decoder as an example.
- FIG. 8 is a diagram showing a set of DCT coefficient groups.
- FIG. 9 is a diagram showing six sets of DCT coefficient groups.
- FIG. 10 is a block diagram illustrating a configuration of a video output processing unit as an example.
- FIG. 11 is a flowchart of DC coefficient group acquisition processing.
- FIG. 12 is a flowchart of the backlight control process.
- FIG. 13 is a diagram illustrating an arithmetic circuit as an example.
- FIG. 14 is a diagram illustrating three arithmetic circuits.
- FIG. 15 is a flowchart of the backlight control process A.
- FIG. 16 is an external view of a display device according to the first embodiment and a modification of the first embodiment.
- FIG. 17 is a block diagram showing a characteristic functional configuration of the LED backlight control device.
- FIG. 1 is a block diagram illustrating a configuration of a display device 1000 according to the first embodiment.
- the display device 1000 is, for example, a liquid crystal digital television receiver (hereinafter referred to as a liquid crystal digital TV) including an LCD panel.
- a liquid crystal digital TV liquid crystal digital TV
- FIG. 1 shows a UHF antenna 101 that is not included in the display device 1000.
- a display device 1000 includes a digital tuner 102, a TS (Transport Stream) demultiplexer 103, a video decoder 104, a video output processing unit 105, a light amount calculation unit 106, an audio decoder 107, An audio output processing unit 108, an LCD display control unit 109, an LED backlight module 112, an LCD panel 113, a stereo speaker 114, and a CPU (Central Processing Unit) 115 are provided.
- the display device 1000 includes an LED backlight control device 500 that controls the LED backlight module 112.
- the LED backlight control device 500 is a semiconductor system LSI (Large Scale Integration) realized as an SOC (System-On-a-Chip). That is, the LED backlight control device 500 is an LED backlight control module.
- the LED backlight control device 500 in the present embodiment is exemplified as one component incorporated in the display device 1000 as a liquid crystal digital TV.
- the LED backlight control device 500 includes a digital tuner 102, a TS demultiplexer 103, a video decoder 104, a video output processing unit 105, a light amount calculation unit 106, an audio decoder 107, an audio output processing unit 108, and an LCD.
- a display control unit 109 and a CPU 115 are provided.
- the CPU 115 controls each unit included in the LED backlight control device 500 based on the control program.
- the CPU 115 is also called an embedded microcomputer or MCU.
- the UHF antenna 101 is an instrument for converting a digital TV broadcast wave (radio wave) into a digital broadcast signal as an electric signal.
- the digital broadcast signal is a broadcast signal according to ISDB (Integrated Services Digital Broadcasting) -T or ISDB-S standards.
- the broadcast signal according to ISDB-T is a terrestrial wave.
- the broadcast signal according to the ISDB-S standard is a satellite broadcast wave.
- the digital broadcast signal includes, for example, a transport stream (TS (Transport Stream)) according to the MPEG (Moving Picture Experts Group) standard.
- TS Transport Stream
- MPEG Motion Picture Experts Group
- ES Simple Stream
- the video stream to be processed is a stream (encoded data) obtained by encoding a video signal in accordance with, for example, the MPEG-2 standard. That is, the processing target video stream is a stream (encoded data) generated by performing encoding processing with orthogonal transformation on a video in units of blocks.
- the video stream to be processed is not limited to MPEG-2, but other video coding standards such as H.264. It may be a stream encoded according to the H.264 / AVC standard.
- the audio stream is a stream in which an audio signal is encoded in accordance with, for example, an AAC (Advance Audio Coding) standard.
- AAC Advanced Audio Coding
- the audio stream is not limited to the AAC standard, and may be a stream encoded according to another audio encoding standard.
- a video with full HD resolution can be obtained by decoding a video stream.
- video with full HD resolution is also referred to as full HD video.
- the full HD video is a video having a size of horizontal 1920 ⁇ vertical 1080 pixels.
- FIG. 2 is a diagram showing a full HD video as an example.
- the LED backlight module 112 is disposed on the back surface of the LCD panel 113. Although details will be described later, the LED backlight module 112 irradiates the LCD panel 113 with light from the back surface of the LCD panel 113.
- the LCD panel 113 is a display circuit that displays an image using light emitted from the LED backlight module 112.
- the LCD panel 113 includes m (an integer greater than or equal to 2) pixels for displaying an image.
- the LCD panel 113 is a panel capable of displaying full HD video as an example.
- the number m of pixels included in the LCD panel 113 is 2073600 from 1920 ⁇ 1080.
- the LCD panel 113 is not limited to a full HD video, and may be a panel capable of displaying a video with a resolution lower than 1920 ⁇ 1080 or a video with a resolution higher than 1920 ⁇ 1080.
- Each pixel included in the LCD panel 113 includes an RGB color filter.
- Each pixel constituting the LCD panel 113 functions as a liquid crystal shutter that controls the degree of transmission of light emitted from the LED backlight module 112.
- a video (for example, full HD video) composed of m pixels included in the LCD panel 113 is divided into p (integer of 2 or more) dimming areas.
- the light control region is a region that is a unit of light control of the LED module described later. That is, the light control area is an area that is a unit for controlling the light amount of the LED module as the backlight.
- the dimming area is an aggregate of blocks (hereinafter referred to as MPEG blocks) defined by the MPEG standard.
- An MPEG block is a block (macroblock) that is a processing unit of orthogonal transform (DCT operation). That is, the MPEG block is a block that is an object of orthogonal transformation. As shown in FIG. 2, the size of the MPEG block is assumed to be 8 ⁇ 8 pixels as an example.
- the LED backlight module 112 includes p LED modules respectively corresponding to the p dimming regions.
- the LED module is a module using LEDs.
- the p LED modules are arranged in a matrix.
- Each dimming area is composed of one or more MPEG blocks (macro blocks). That is, each dimming area corresponds to one or more MPEG blocks (macroblocks). That is, each MPEG block (macro block) corresponds to one dimming area. That is, each MPEG block (macro block) corresponds to one LED module.
- the dimming area size is 16 ⁇ 16 pixels and the MPEG block (macro block) size is 8 ⁇ 8 pixels.
- the dimming area corresponds to four MPEG blocks (macro blocks).
- each MPEG block (macro block) corresponds to one dimming area, that is, one LED module.
- FIG. 3 is a diagram for explaining the configuration of one LED module according to the first embodiment.
- R indicates an LED that emits red light (hereinafter referred to as a red LED).
- G indicates an LED that emits green light (hereinafter referred to as a green LED).
- B represents an LED that emits blue light (hereinafter referred to as a blue LED).
- the LED module in the present embodiment includes a red LED, two green LEDs, and a blue LED.
- the red LED, the two green LEDs, and the blue LED constituting the LED module are arranged as shown in FIG.
- the green LED has lower luminous efficiency than the red LED and the blue LED, two green LEDs are used in one LED module as shown in FIG.
- the p LED modules included in the LED backlight module 112 emit light to the aforementioned p dimming regions. Thereby, the LED backlight module 112 can control an LED module independently for every light control area
- FIG. 4 shows the relationship among the size of the light control area, the number of MPEG blocks, and the number of light control areas when the light control area is a square.
- the number of MPEG blocks indicates the number of MPEG blocks corresponding to the size of the dimming area.
- the number of MPEG blocks is indicated by the number of horizontal MPEG blocks and the number of vertical MPEG blocks. For example, when the size of the dimming area is 40 ⁇ 40 pixels, the number of MPEG blocks is 25 from 5 ⁇ 5.
- the number of light control areas indicates the number p of light control areas corresponding to the size of the light control areas. For example, when the size of the dimming area is 16 ⁇ 16 pixels, the number of dimming areas is 8100.
- the size of the dimming area is 32 ⁇ 32 pixels.
- the number of light control areas is 2025. That is, the LED backlight module 112 includes 2025 LED modules.
- the dimming area is not limited to a square, and may be any shape that is an integral multiple of the block in the vertical and horizontal directions.
- the size of each dimming area is increased, the number of LED modules necessary for the backlight can be reduced and the cost can be reduced.
- the brightness of the backlight cannot be controlled for each fine area, the image quality deteriorates.
- Full HD video is encoded in units of macroblocks in accordance with, for example, the MPEG-2 standard.
- the macro block is the above-described MPEG block. That is, the macro block is a block that is an object of orthogonal transformation.
- the size of the macroblock is assumed to be 8 ⁇ 8 pixels. That is, a video stream is generated by encoding full HD video in units of macroblocks.
- the video stream generated by the encoding of the MPEG-2 standard includes data obtained by encoding the luminance Y, color difference Cb, and color difference Cr data corresponding to each macroblock.
- each macroblock is a macroblock of 4: 2: 0 format.
- the video stream to be processed includes, as an example, data on luminance Y, color difference Cb, and color difference Cr corresponding to each macroblock in the 4: 2: 0 format.
- FIG. 5 is a diagram showing data of luminance Y, color difference Cb, and color difference Cr corresponding to a macro block of 4: 2: 0 format.
- the size of each color difference data is half the size of the luminance data in both the vertical and horizontal directions. That is, the information amount of each color difference data is 1/4 of the information amount of luminance data.
- one luminance data corresponds to one pixel.
- one color difference data corresponds to four pixels.
- UHF antenna 101 transmits a digital broadcast signal to digital tuner 102.
- the digital tuner 102 is a tuning circuit.
- the digital tuner 102 obtains a demodulated signal by demodulating the digitally modulated digital broadcast signal. Then, the digital tuner 102 acquires a transport stream of the channel selected (designated) from the demodulated signal.
- the digital tuner 102 transmits the acquired transport stream to the TS demultiplexer 103.
- the TS demultiplexer 103 acquires a video stream and an audio stream by performing a demultiplexing process on the transport stream.
- the TS demultiplexer 103 transmits the video stream and the audio stream to the video decoder 104 and the audio decoder 107, respectively.
- the video decoder 104 acquires a video signal before encoding by decoding the video stream, and transmits the video signal to the video output processing unit 105. Specifically, the video decoder 104 performs the following processing.
- FIG. 7 is a block diagram showing a configuration of the video decoder 104 as an example.
- the video decoder 104 includes an input buffer 201, a variable length decoding unit 202, an inverse quantization unit 203, an inverse DCT unit 204, an adder 205, a motion compensation unit 206, a frame memory. 207 and 208 and an output buffer 209.
- each unit other than the inverse quantization unit 203 is a decoding process according to the MPEG-2 standard, and therefore detailed description will not be repeated. A brief description is given below.
- a video stream is stored in the input buffer 201.
- the variable length decoding unit 202 acquires decoded video data by decoding the video stream.
- the variable length decoding unit 202 transmits the motion vector to the motion compensation unit 206 every time a motion vector is obtained by the decoding process.
- the inverse quantization unit 203 inversely quantizes the decoded video data in units of macroblocks.
- the size of the macroblock is 8 ⁇ 8 pixels.
- the macroblock is a macroblock of 4: 2: 0 format.
- FIG. 8 is a diagram showing a set of DCT coefficient groups.
- the DCT coefficient group is composed of 64 DCT coefficients.
- the DCT coefficient located at the upper left is a DCT coefficient (hereinafter referred to as a DC coefficient) of a DC (direct current) component.
- the DC coefficient is an average value of the pixel values of all the pixels in the corresponding block.
- DCT coefficients other than the DC coefficient are DCT coefficients of AC (alternating current) components.
- FIG. 9 is a diagram showing six sets of DCT coefficient groups.
- blocks Y0, Y1, Y2, and Y3 each represent four sets of DCT coefficient groups.
- the four sets of DCT coefficient groups correspond to the luminance Y. That is, the inverse quantization unit 203 obtains four DC coefficients (hereinafter referred to as luminance DC coefficients) for the luminance Y.
- Block Cb indicates a DCT coefficient group corresponding to the color difference Cb. That is, the inverse quantization unit 203 obtains one DC coefficient (hereinafter referred to as the first color difference DC coefficient) for the color difference Cb.
- a block Cr indicates a DCT coefficient group corresponding to the color difference Cr. That is, the inverse quantization unit 203 obtains one DC coefficient (hereinafter referred to as a second color difference DC coefficient) for the color difference Cr.
- the inverse quantization unit 203 obtains six DC coefficients (four luminance DC coefficients, first color difference DC coefficient, and second color difference DC coefficient) by inverse quantizing the decoded video data in units of macroblocks.
- inverse quantization section 203 transmits six sets of DCT coefficient groups to inverse DCT section 204 and includes six DC coefficients ( Four luminance DC coefficients, a first color difference DC coefficient, and a second color difference DC coefficient) are transmitted to the light amount calculation unit 106.
- the six DC coefficients (four luminance DC coefficients, the first color difference DC coefficient, and the second color difference DC coefficient) corresponding to each macroblock are referred to as a block corresponding DC coefficient group.
- the inverse quantization unit 203 transmits a block-corresponding DC coefficient group to the light amount calculation unit 106 every time inverse quantization is performed in units of macroblocks.
- the inverse DCT unit 204 obtains an image (hereinafter referred to as a first image) by performing an inverse DCT calculation process on each DCT coefficient group. Then, the inverse DCT unit 204 transmits the first image to the adder 205.
- the motion compensation unit 206 performs motion compensation using a motion vector and an image (frame) stored in one of the frame memories 207 and 208. Then, the motion compensation unit 206 transmits an image obtained by motion compensation (hereinafter referred to as a second image) to the adder 205.
- the adder 205 generates a frame (hereinafter referred to as a decoded frame) by synthesizing the first image and the second image.
- the decoded frame is stored in the output buffer 209.
- the decoded frame is stored in one of the frame memories 207 and 208.
- the output buffer 209 stores a plurality of decoded frames. Then, a video signal composed of a plurality of decoded frames is transmitted to the video output processing unit 105.
- the video signal transmitted to the video output processing unit 105 is a video signal in YCbCr format.
- the video output processing unit 105 performs video display processing on the received video signal.
- the video output processing unit 105 transmits the video signal subjected to the video display process to the LCD display control unit 109.
- the video output processing unit 105 performs the following processing.
- FIG. 10 is a block diagram illustrating a configuration of the video output processing unit 105 as an example.
- video output processing unit 105 includes a video adjustment unit 301, a conversion unit 302, a multi-window processing unit 303, an OSD (On-Screen Display) composition unit 304, and an output buffer 305. .
- OSD On-Screen Display
- Video display processing performed by the video output processing unit 105 includes video adjustment processing, conversion processing, multi-window processing, and OSD composition processing.
- the video adjustment unit 301 receives a video signal from the video decoder 104.
- the video adjustment process is a process performed on the video signal received by the video adjustment unit 301.
- the video adjustment process is performed by the video adjustment unit 301.
- contrast correction In the image adjustment processing, contrast correction, ⁇ correction, noise removal processing, and the like are performed. In the video adjustment processing, gradation processing, contour correction processing, and the like are further performed as necessary.
- the video signal subjected to the video adjustment process is transmitted to the conversion unit 302.
- the conversion process is performed by the conversion unit 302.
- the conversion process is a process performed on the video signal received by the conversion unit 302.
- Equation 1 is an expression based on the standard of Recommendation ITU-R BT.709 (Rec.709).
- R ' 1.164 (Y-16) +1.596 (Cr-128)
- G ′ 1.164 (Y ⁇ 16) ⁇ 0.392 (Cb ⁇ 128) ⁇ 0.813
- B ′ 1.164 (Y ⁇ 16) +2.017 (Cb ⁇ 128)
- R ′, G ′, and B ′ represent R, G, and B that are ⁇ -corrected.
- the YCbCr format video signal is converted into an RGB format video signal.
- Multi-window processing is performed by the multi-window processing unit 303.
- the multi-window process is a process performed on the video signal received by the multi-window processing unit 303.
- PoutP processing, PinP processing, thumbnail processing, and the like are performed as necessary.
- the video signal that has been subjected to the multi-window process is transmitted to the OSD synthesis unit 304.
- the OSD synthesis process is performed by the OSD synthesis unit 304.
- the OSD synthesis process is a process performed on the video signal received by the OSD synthesis unit 304.
- the OSD composition processing superimpose processing, text broadcasting processing, graphic display processing, and the like are performed as necessary.
- the video signal that has undergone the OSD synthesis process is stored in the output buffer 305.
- the video signal stored in the output buffer 305 is transmitted to the LCD display control unit 109.
- the LCD display control unit 109 is a digital signal processing circuit.
- the LCD display control unit 109 includes an LED driver IC 110 and an LCD driver IC 111.
- the LCD driver IC 111 performs control for causing the LCD panel 113 to display a video based on the video signal received from the video output processing unit 105.
- the audio output processing unit 108 is an acoustic output circuit.
- the audio output processing unit 108 performs an audio process on the received audio signal to generate an acoustoelectric signal.
- the audio processing includes processing for adjusting the audio of the audio signal, processing for controlling the volume and stereo balance of the audio signal, and the like.
- the audio output processing unit 108 transmits the generated acoustoelectric signal to the stereo speaker 114.
- the stereo speaker 114 converts the acoustoelectric signal into a sound wave.
- the light amount calculation unit 106 calculates a value for setting the light amount of the backlight.
- the LED driver IC 110 is a circuit that controls the light emission of the LED backlight module 112 in accordance with the video to be displayed, details of which will be described later.
- the display device 1000 may receive a wired broadcast through a cable such as a coaxial cable or an optical cable instead of the UHF antenna 101.
- a digital set top box connected to the cable is positioned instead of the UHF antenna 101.
- a stream stored in a storage medium such as a DVD or HDD may be played back on the display device 1000.
- a PS program stream
- the display device 1000 is provided with a PS demultiplexer instead of the TS demultiplexer 103.
- backlight control processing processing for controlling the corresponding LED module for each dimming area
- DC coefficient group acquiring process a process for acquiring a block-corresponding DC coefficient group composed of the above-described six DC coefficients (hereinafter referred to as a DC coefficient group acquiring process) will be described.
- FIG. 11 is a flowchart of DC coefficient group acquisition processing.
- step S111 the inverse quantization unit 203 obtains a block-corresponding DC coefficient group including six DC coefficients by inversely quantizing the decoded video data in units of macroblocks as described above. That is, the inverse quantization unit 203 included in the video decoder 104 inversely quantizes the decoded video data obtained from the video stream as the encoded data in units of macroblocks, thereby four luminance DC coefficients and the first color difference DC. The coefficient and the second color difference DC coefficient are obtained. That is, the video decoder 104 acquires one or more DC coefficients corresponding to the block to be orthogonally transformed from the encoded data.
- step S112 the inverse quantization unit 203 transmits the block-corresponding DC coefficient group to the light amount calculation unit 106.
- FIG. 12 is a flowchart of the backlight control process.
- step S211 the light quantity calculation unit 106 acquires the block-corresponding DC coefficient group from the inverse quantization unit 203.
- step S212 it is determined whether or not the light quantity calculation unit 106 has acquired all the block-corresponding DC coefficient groups corresponding to the u (integer greater than or equal to 1) th dimming area among the p dimming areas described above. judge.
- the initial value of u is 1.
- the size of the light control region is assumed to be 32 ⁇ 32 pixels.
- the number of light control areas is 2025.
- u is 10
- the LED backlight module 112 includes 2025 LED modules.
- the size of the macroblock is 8 ⁇ 8 pixels. Therefore, when the size of the dimming area is 32 ⁇ 32 pixels, all the block-corresponding DC coefficient groups corresponding to the dimming area are four sets of block-corresponding DC coefficient groups respectively corresponding to the four macroblocks.
- the light intensity calculation unit 106 acquires four sets of block-corresponding DC coefficient groups by performing the process of step S211 four times, all the block-corresponding DC coefficients corresponding to the u-th dimming region It is determined that the group has been acquired.
- step S212 If YES in step S212, the process proceeds to step S213. On the other hand, if NO at step S212, the process at step S211 is performed again.
- the light quantity calculation unit 106 has acquired all the block-corresponding DC coefficient groups corresponding to the u-th dimming area by performing the process of step S211 four times, and the process proceeds to step S213.
- all block-corresponding DC coefficient groups corresponding to the dimming area are a set of block-corresponding DC coefficient groups corresponding to one macroblock.
- step S213 DC coefficient average value calculation processing is performed.
- the light quantity calculation unit 106 calculates an average value of four luminance DC coefficients (hereinafter referred to as luminance DC coefficient average value) among the six DC coefficients constituting the block corresponding DC coefficient group. calculate.
- the four luminance DC coefficients are DC coefficients respectively corresponding to the blocks Y0, Y1, Y2, and Y3 in FIG.
- the light quantity calculation unit 106 When the light quantity calculation unit 106 has acquired four sets of block-corresponding DC coefficient groups, an average value of four luminance DC coefficients (luminance DC coefficient average value) included in each block-corresponding DC coefficient group is calculated. The process is repeated four times.
- the four macroblocks corresponding to the four sets of block-corresponding DC coefficient groups are referred to as first, second, third and fourth macroblocks, respectively.
- the following arithmetic circuit 410 is used to calculate the average value of the luminance DC coefficient.
- the arithmetic circuit 410 is a circuit formed inside the light amount calculation unit 106.
- the arithmetic circuit 410 includes a 4-input adder 411 and a 2-bit right shifter 412.
- the 4-input adder 411 calculates a value obtained by adding four values (hereinafter referred to as an added value). Then, the 4-input adder 411 transmits the calculated addition value to the 2-bit right shifter 412.
- the 2-bit right shifter 412 calculates a value obtained by dividing the received addition value by 4.
- the 4-input adder 411 calculates an addition value of the four luminance DC coefficients, and transmits the addition value to the 2-bit right shifter 412.
- the luminance DC coefficient average value is calculated by dividing the addition value received by the 2-bit right shifter 412 by 4.
- the calculated decimal fraction of the average value is rounded down.
- a rounding incrementer is provided after the 2-bit right shifter 412. good.
- the average luminance DC coefficient corresponding to each of the first, second, third, and fourth macroblocks is calculated.
- step S213 in FIG. 12 ends.
- the light amount calculation unit 106 further determines the average value of the luminance DC coefficient average value in the first, second, third, and fourth macroblocks, the first value.
- the average value of the first color difference DC coefficient and the average value of the second color difference DC coefficient are calculated.
- the first color difference DC coefficient is a DC coefficient corresponding to the block Cb in FIG.
- the second color difference DC coefficient is a DC coefficient corresponding to the block Cr in FIG.
- the light quantity calculation unit 106 calculates the average value of the four luminance DC coefficient average values corresponding to the first, second, third, and fourth macroblocks calculated by the above processing (hereinafter, block luminance average). Value).
- the light quantity calculation unit 106 calculates the average luminance DC coefficient value using the four luminance DC coefficients corresponding to each macroblock. Further, the light quantity calculation unit 106 calculates a block luminance average value that is an average value of the luminance DC coefficient average values of the macroblocks using the luminance DC coefficient average values corresponding to the macroblocks. That is, the light quantity calculation unit 106 calculates the block luminance average value using the four luminance DC coefficients corresponding to each macroblock.
- the light quantity calculation unit 106 calculates an average value of the four first color difference DC coefficients corresponding to the first, second, third, and fourth macroblocks (hereinafter referred to as a block first color difference average value). Further, the light amount calculation unit 106 calculates an average value (hereinafter referred to as a block second color difference average value) of four second color difference DC coefficients respectively corresponding to the first, second, third, and fourth macroblocks.
- each of the block luminance average value, the block first color difference average value, and the block second color difference average value is calculated using a plurality of DC coefficients.
- the block first color difference average value for example, three arithmetic circuits 410 described above are used.
- FIG. 14 is a diagram showing three arithmetic circuits 410.
- the calculated block luminance average value, block first color difference average value, and block second color difference average value are average values corresponding to the u-th dimming area.
- four arithmetic circuits 410 may be formed inside the light amount calculation unit 106.
- the DC coefficient average value calculation process ends.
- step S214 the light amount control unit 106 performs light amount control RGB value calculation processing for calculating the light amount control RGB value.
- the light amount control RGB value is an RGB value for controlling the light amount of the LED module corresponding to the u-th dimming region.
- the light quantity control RGB value is composed of a light quantity control R value, a light quantity control G value, and a light quantity control B value.
- the light quantity control R value, the light quantity control G value, and the light quantity control B value are described above using the block luminance average value (Y), the block first color difference average value (Cb), and the block second color difference average value (Cr). It is calculated by Equation 1 of YCbCr-RGB color conversion. Since the calculation method is well known, detailed description will not be repeated.
- step S215 the light amount calculation unit 106 transmits the calculated light amount control RGB value to the LED driver IC 110.
- step S216 the LED driver IC 110 controls the light amount of the LED module corresponding to the u-th dimming region corresponding to the received light amount control RGB value.
- the LED driver IC 110 supplies a current corresponding to the light amount control R value to the red LED of the LED module corresponding to the u-th dimming region.
- the LED driver IC 110 supplies more current to the red LED as the light amount control R value is larger. That is, the larger the light quantity control R value, the larger the light quantity emitted by the red LED.
- the LED driver IC 110 may supply more current to the red LED as the light amount control R value is smaller, for example.
- the LED driver IC 110 supplies a current corresponding to the light amount control G value to each of the two green LEDs of the LED module corresponding to the u-th dimming region. For example, the LED driver IC 110 supplies more current to each green LED as the light amount control G value is larger. That is, the larger the light quantity control G value, the larger the light quantity emitted by the green LED.
- the LED driver IC 110 may supply more current to each green LED as the light amount control G value is smaller.
- the LED driver IC 110 supplies a current corresponding to the light amount control B value to the blue LED of the LED module corresponding to the u-th dimming region. For example, the LED driver IC 110 supplies more current to the blue LED as the light amount control B value is larger. That is, the larger the light quantity control B value, the larger the light quantity emitted by the blue LED.
- the LED driver IC 110 may supply more current to the blue LED as the light amount control B value is smaller, for example, without being limited to the above processing.
- the red LED, the two green LEDs, and the blue LED constituting the LED module emit light. That is, the LED module emits light of a light amount corresponding to the light amount control RGB value.
- the LED driver IC 110 controls the light amount of the LED module corresponding to the macroblock corresponding to the light amount control RGB value according to the light amount control RGB value. That is, the LED driver IC 110 uses the light amount control RGB value to control the light amount of the LED module corresponding to the macroblock corresponding to the light amount control RGB value.
- the light amount control RGB value is a value calculated from the block luminance average value (Y), the block first color difference average value (Cb), and the block second color difference average value (Cr) as DC coefficients.
- the LED driver IC 110 corresponds to the macroblock corresponding to the light control RGB value according to the light control RGB value calculated using the block luminance average value, the first color difference average value, and the second color difference average value.
- the light quantity of the LED module to be controlled is controlled.
- a macro block is a block to be subjected to orthogonal transformation.
- the LED module emits light based on the block luminance average value (Y), the block first color difference average value (Cb), and the block second color difference average value (Cr).
- the LED driver IC 110 uses the block luminance average value (Y), the block first color difference average value (Cb), and the block second color difference average value (Cr) to obtain the LED module. Control the amount of light.
- each of the block luminance average value, the first color difference average value, and the second color difference average value is an average value of a plurality of DC coefficients. That is, each of the block luminance average value, the first color difference average value, and the second color difference average value is a value calculated using a plurality of DC coefficients.
- the LED driver IC 110 uses a value (light quantity control RGB value) obtained from an average value (for example, block luminance average value) of DC coefficients calculated using k (integer of 1 or more) DC coefficients.
- an average value for example, block luminance average value
- k integer of 1 or more
- the LED driver IC 110 uses the value (light quantity control RGB value) obtained from the k DC coefficients corresponding to the macroblock to be orthogonally transformed, and the LED corresponding to the macroblock corresponding to the k DC coefficients. Control the light intensity of the module.
- the DC coefficient is a DCT coefficient of a direct current component.
- the LED driver IC 110 uses the value obtained from the k DC coefficients, and among the plurality of LED modules included in the LED backlight module 112, the LED module corresponding to the macroblock corresponding to the k DC coefficients. Control the amount of light.
- the LED driver IC 110 also performs image brightness adjustment on the LED module.
- step S217 the light amount calculation unit 106 determines whether or not all block-corresponding DC coefficient groups corresponding to one frame image (for example, full HD video) have been acquired. For example, when the number of light control areas is 2025, the light amount calculation unit 106 determines whether 2025 block-corresponding DC coefficient groups have been acquired.
- Each block-corresponding DC coefficient group includes six DC coefficients (four luminance DC coefficients, a first color difference DC coefficient, and a second color difference DC coefficient).
- step S217 If YES in step S217, the backlight control process ends. On the other hand, if NO at step S217, the process proceeds to step S218.
- step S2128 the light amount calculation unit 106 increments the value of u by 1.
- step S211 is performed again.
- step S217 Until the determination in step S217 is YES, the processes in steps S211 to S216 and S218 are repeated by the number of dimming areas, thereby p LEDs corresponding to p dimming areas corresponding to one frame, respectively.
- the light quantity of the module can be controlled.
- the backlight control process is repeated every 1/30 seconds. Thereby, the light quantity of the p LED modules included in the LED backlight module 112 can be controlled.
- video display processing and audio output processing are performed in synchronization with the control of the LED module. That is, a video and audio synchronization process called lip sync is performed. That is, the video stream decoding process and the audio stream decoding process are performed in parallel.
- the LCD driver IC 111 performs control for causing the LCD panel 113 to display a video based on the video signal received from the video output processing unit 105.
- the LCD driver IC 111 drives each pixel of the LCD panel 113 while scanning based on the video signal received from the video output processing unit 105, and also double speed driving, display timing control, contrast adjustment, AD conversion. Also do.
- the audio output processing unit 108 performs control to output audio based on the audio signal received from the audio decoder 107 from the stereo speaker 114.
- the synchronization of the above processes (LED module control, video display process, audio output process) and the like is performed by the CPU 115 controlling each unit in the display device 1000 based on the system control program. As a result, the AV playback timing is synchronized.
- p LEDs included in the LED backlight module 112 using the light amount control RGB value calculated from the block-corresponding DC coefficient group corresponding to each macroblock. Control the light intensity of the module. Six DC coefficients constituting each block corresponding DC coefficient group are obtained when the video stream is decoded. As a result, the amount of computation required to control each LED module can be greatly reduced.
- the scale of an arithmetic circuit (drive circuit) that performs arithmetic operations necessary for controlling the LED backlight module 112 can be significantly reduced.
- the power consumption of the drive circuit of the LED backlight module 112 can be reduced.
- a digital television provided with an LED backlight can be realized at a low price.
- each LED module may be controlled by using an average value of pixel values of a plurality of pixels constituting an image in a block corresponding to each dimming area.
- the scale of the arithmetic circuit related to the color difference whose information amount is 1/4 of the luminance can be reduced to 1/4 compared with the above method.
- each dimming is performed from a video stream using the characteristics of the compressed data structure in encoding based on the MPEG-2 standard. Information for controlling the LED module corresponding to the region can be accurately acquired.
- the display device is, for example, a liquid crystal digital television.
- the average pixel value of the block can be taken out as the DC coefficient of the block subjected to DCT conversion. Therefore, in the present embodiment, a signal for driving each LED module is generated from the luminance Y and the DC coefficients of the color differences Cb and Cr.
- the dimming area serving as the control unit of the backlight is set to an integral multiple of the block, the control value of the corresponding dimming area can be easily obtained as the average value of the DC coefficient of each block.
- each LED module included in the LED backlight module 112 includes only an LED that emits white light (hereinafter, referred to as a white LED).
- the display device in the modification of the first embodiment is the display device 1000 in FIG.
- a video stream decoding process and an audio stream decoding process are performed as in the first embodiment.
- the DC coefficient group acquisition process of FIG. 11 is performed.
- the inverse quantization unit 203 performs inverse quantization in units of macroblocks, the block corresponding DC coefficient group is received.
- a backlight control process A is performed instead of the backlight control process of FIG.
- processes other than the backlight control process A are performed in the same manner as in the first embodiment.
- FIG. 15 is a flowchart of the backlight control process A.
- the process with the same step number as that of FIG. 12 is the same as the process described in the first embodiment, and therefore detailed description will not be repeated.
- step S213A DC coefficient average value calculation processing A is performed.
- the DC coefficient average value calculation process A is different from the DC coefficient average value calculation process in step S213 of FIG. 12 in that the block first color difference average value and the block second color difference average value are not calculated. Other than that, since it is the same as the DC coefficient average value calculation processing, detailed description will not be repeated.
- step S215A is performed.
- step S215A the light amount calculation unit 106 transmits the calculated block luminance average value to the LED driver IC 110.
- step S216A the LED driver IC 110 controls the light amount of the LED module corresponding to the u-th dimming area corresponding to the received block luminance average value.
- the LED driver IC 110 supplies a current corresponding to the block luminance average value to the white LED of the LED module corresponding to the u-th dimming region. For example, the LED driver IC 110 supplies more current to the white LED as the block luminance average value increases. That is, the larger the block luminance average value, the greater the amount of light emitted by the white LED.
- the LED driver IC 110 may supply more current to the white LED as the block luminance average value is smaller.
- This process causes the white LEDs constituting the LED module to emit light. That is, the LED module emits light having a light amount corresponding to the block luminance average value.
- the LED driver IC 110 controls the light amount of the LED module using the block luminance average value as a DC coefficient.
- the block luminance average value is a value calculated using a plurality of DC coefficients.
- the LED driver IC 110 uses a DC coefficient average value (block luminance average value) calculated using k (integer of 1 or more) DC coefficients, and a macro corresponding to the DC coefficient average value.
- the light quantity of the LED module corresponding to the block is controlled.
- the LED driver IC 110 uses a value (block luminance average value) obtained from the k DC coefficients, and among the plurality of LED modules included in the LED backlight module 112, the macro corresponding to the k DC coefficients. The light quantity of the LED module corresponding to the block is controlled.
- step S217 the same processing as that of the first embodiment is performed, and thus detailed description will not be repeated.
- the backlight control process A is repeated every 1/30 seconds. Thereby, the light quantity of the p LED modules included in the LED backlight module 112 can be controlled.
- the modification of the present embodiment it is not necessary to calculate the block first color difference average value and the block second color difference average value, and it is not necessary to calculate the light amount control RGB value. Therefore, in the modified example of the present embodiment, the amount of calculation required for controlling the p LED modules included in the LED backlight module 112 can be further reduced as compared with the first embodiment.
- the scale of the arithmetic circuit for calculating the value for controlling the light quantity of the LED module can be made smaller than that of the first embodiment.
- the control of the LED backlight module 112 is performed by using the DC coefficient obtained when the video stream is decoded.
- FIG. 16 is an external view of the display device 1000 according to the first embodiment and a modification of the first embodiment.
- FIG. 17 is a block diagram showing a characteristic functional configuration of the LED backlight control device 2000.
- the LED backlight control device 2000 corresponds to either the LED backlight control device 500 or the display device 1000.
- the LED backlight control device 2000 is also an LED backlight control module.
- FIG. 17 is a block diagram showing main functions related to the present invention among the functions of either the LED backlight control device 500 or the display device 1000.
- the LED backlight control device 2000 controls the LED backlight.
- the LED backlight is used for video display.
- the LED backlight includes a plurality of LED modules using LEDs.
- the LED backlight control device 2000 includes an acquisition unit 510 and a light amount control unit 520.
- the obtaining unit 510 obtains k (integer of 1 or more) DC coefficients that are DCT coefficients of the DC component corresponding to the block to be orthogonally transformed from the encoded data.
- the encoded data is data generated by performing an encoding process involving orthogonal transformation on a video in units of blocks.
- the acquisition unit 510 corresponds to, for example, the video decoder 104 including the inverse quantization unit 203 that performs the process of step S111 in FIG. 11 or the light amount calculation unit 106 in step S211 of FIG.
- the light quantity control unit 520 uses a value obtained from the k DC coefficients acquired by the acquisition unit 510, and among the plurality of LED modules included in the LED backlight module 112, a block corresponding to k DC coefficients. The light quantity of the LED module corresponding to is controlled.
- the light quantity control unit 520 corresponds to, for example, the LED driver IC 110 that performs the process of step S216.
- all or part of the acquisition unit 510 and the light amount control unit 520 included in the LED backlight control device 2000 of FIG. 17 may be configured by hardware such as an LSI (Large Scale Integration). Good.
- all or part of the acquisition unit 510 and the light amount control unit 520 may be a program module executed by a processor such as a CPU.
- the LED backlight control device 500 or the display device 1000 according to the present invention has been described based on the embodiments.
- the present invention is not limited to these embodiments. Unless it deviates from the meaning of this invention, the form which carried out various deformation
- all or some of the plurality of components constituting the LED backlight control device 500 may be configured by hardware.
- all or some of the plurality of components constituting the LED backlight control device 500 may be configured by one system LSI (Large Scale Integration).
- each process described in the first embodiment and the modification of the first embodiment may be realized by software. Then, this software may be distributed by software download or the like. Further, this software may be recorded on a recording medium such as a CD-ROM and distributed. This also applies to other embodiments in this specification.
- the CPU 115 may execute each process performed by the video decoder 104 and each process performed by the light amount calculation unit 106 by software.
- the present invention may be realized as an LED backlight control method in which the operation of the characteristic components included in the LED backlight control device 500 is a step. Moreover, you may implement
- the LED backlight control device 500 of the present invention is exemplified as one component incorporated in a liquid crystal digital TV as a display device.
- the present invention is not limited to this.
- the LED backlight control device 500 may be mounted on other video display products such as a portable DVD player.
- the video signal output from the video output processing unit 105 and the video signal output from the video decoder 104 may be different. For this reason, it may be necessary to separately deal with LED backlight control.
- the backlight of the graphics area must be controlled based on the graphics video information.
- a process that invalidates the control of the backlight in the graphics area specifically, a control method for fixing the LED backlight in the graphics area to a certain brightness is considered as one of the options.
- a control method of disabling dimming control of the character display area and fixing the area to a constant light amount is considered as one of the options. It is done.
- the present invention can be used as an LED backlight control device that can efficiently reduce the amount of calculation required for controlling the LED backlight.
- the LED backlight control device is incorporated in a liquid crystal digital TV, a mobile phone, a car navigation system, a portable DVD player, etc. as a circuit for controlling local light control of the LED backlight.
- Video decoder 105 Video output processing unit 106
- Light amount calculation unit 109 LCD display control unit 110 LED driver IC 111 LCD driver IC 112 LED backlight module 113 LCD panel 203
- Inverse quantization unit 410 Arithmetic circuit 500, 2000 LED backlight control device 510 Acquisition unit 520 Light amount control unit 1000 Display device
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Liquid Crystal Display Device Control (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
Disclosed is an LED backlight control device, wherein a light intensity calculation unit (106) acquires DC coefficients which are DCT coefficients of a direct-current component corresponding to blocks which are to undergo orthogonal transformation, performing said acquiring from encoded data generated by encoding processing, which accompanies orthogonal transformation, being performed on a block-by-block basis in an image. Using the values obtained from k DC coefficients, a LED driver IC (110) controls the light intensity of an LED module, which corresponds to blocks that correspond to the k DC coefficients, among a plurality of LED modules included in a LED backlight module (112).
Description
本発明は、LCD(Liquid Crystal Display)向けのバックライトの一種であるLED(Light Emitting Diode)バックライトを制御するLEDバックライト制御装置、LEDバックライト制御方法、LEDバックライト制御モジュールおよび表示装置に関する。
The present invention relates to an LED backlight control device, an LED backlight control method, an LED backlight control module, and a display device that control an LED (Light Emitting Diode) backlight that is a kind of backlight for LCD (Liquid Crystal Display). .
従来、冷陰極管は液晶バックライト用の光源として主流であった。冷陰極管をバックライトとして用いるほとんどの液晶TVはバックライトを常時点灯させるため、液晶パネルの光漏れによる「黒浮き」を招いていた。冷陰極管は面発光なので、バックライトで映像の明暗を調整する場合、画面全体を均一に調整することしかできなかった。
Conventionally, cold cathode fluorescent lamps have been the mainstream light source for liquid crystal backlights. Most liquid crystal TVs that use cold cathode fluorescent lamps as backlights always turn on the backlight, which causes “black floating” due to light leakage of the liquid crystal panel. Since the cold-cathode tube is surface emitting, when adjusting the brightness of the image with the backlight, it was only possible to adjust the entire screen uniformly.
TV、PC用ディスプレイ、携帯電話、カーナビ、ポータブルDVDプレイヤーなどの表示に使われるLCDにLEDバックライトを搭載した製品が、今後徐々に普及すると予想される。
Products with LED backlights on LCDs used for displays in TVs, PC displays, mobile phones, car navigation systems, portable DVD players, etc. are expected to gradually spread.
LEDは単色光源のためバックライトに使用すると、色の再現域が広がる。LED毎に独立して調光し、映像の明暗を局所的に調整することにより、光漏れをかなり低減できるため、画面のコントラストを大きく高められる。また、暗部の階調、グラデーションの再現性が高まる。
¡LED is a monochromatic light source, so when used as a backlight, the color reproduction range is expanded. Light control can be performed independently for each LED and the light leakage can be considerably reduced by locally adjusting the contrast of the image, so that the contrast of the screen can be greatly increased. In addition, the reproducibility of gradation and gradation in the dark portion is enhanced.
また、LEDは高電圧を必要としないので電源部を簡素化できる。バッテリー駆動の携帯電子機器の分野では白色LEDのバックライトを使用した製品が大半を占める。現状、LEDの輝度は冷陰極管の輝度より低いが、将来的に冷陰極管を上回ると期待される。これにより、画面の局所的な輝度制御と合わせて、消費電力の削減につながる。
Also, since the LED does not require a high voltage, the power supply unit can be simplified. In the field of battery-powered portable electronic devices, the majority of products use white LED backlights. At present, the luminance of the LED is lower than that of the cold cathode tube, but it is expected to exceed that of the cold cathode tube in the future. This leads to reduction of power consumption in combination with local brightness control of the screen.
そのため、LEDバックライトの制御の技術が重要になってくる。特許文献1,2,3および非特許文献1,2には、LEDバックライトの制御の技術が開示されている。
Therefore, LED backlight control technology becomes important. Patent Documents 1, 2, and 3 and Non-Patent Documents 1 and 2 disclose LED backlight control techniques.
LEDバックライトは、使用されるLEDの数が多いほど、映像の画質を向上させることができる。しかしながら、多くのLEDを使用したLEDバックライトを制御するためには、各LEDを制御するために必要な演算量の多さが問題となる。
The LED backlight can improve the image quality as the number of LEDs used increases. However, in order to control an LED backlight using many LEDs, a large amount of calculation required to control each LED becomes a problem.
本発明は、上述の問題点を解決するためになされたものであって、その目的は、LEDバックライトの制御に必要な演算量を効率よく削減可能なLEDバックライト制御装置等を提供することである。
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an LED backlight control device and the like that can efficiently reduce the amount of calculation required for controlling the LED backlight. It is.
上述の課題を解決するために、この発明のある局面に従うLEDバックライト制御装置は、映像の表示に使用されるLED(Light Emitting Diode)バックライトであって、LEDを使用した複数のLEDモジュールを含むLEDバックライトを制御する。LEDバックライト制御装置は、直交変換を伴う符号化の処理が、映像に対しブロック単位で行われることにより生成された符号化データから、直交変換の対象のブロックに対応する直流成分のDCT(Discrete Cosine Transform)係数であるDC係数をk(1以上の整数)個取得する取得部と、取得部により取得されたk個のDC係数から得られる値を用いて、複数のLEDモジュールのうち、k個のDC係数に対応するブロックに対応するLEDモジュールの光量を制御する光量制御部とを備える。
In order to solve the above-described problem, an LED backlight control device according to an aspect of the present invention is an LED (Light Emitting Diode) backlight used for displaying an image, and includes a plurality of LED modules using LEDs. Control LED backlight including. The LED backlight control device uses DCT (Discrete) of a DC component corresponding to a block to be orthogonally transformed from encoded data generated by performing encoding processing with orthogonal transformation on a block basis for a video. C of a plurality of LED modules using an acquisition unit that acquires k (integer of 1 or more) DC coefficients that are Cosine 係数 Transform) coefficients and a value obtained from the k DC coefficients acquired by the acquisition unit. A light amount control unit that controls the light amount of the LED module corresponding to the block corresponding to each DC coefficient.
すなわち、取得部は、直交変換を伴う符号化の処理が、映像に対しブロック単位で行われることにより生成された符号化データから、直交変換の対象のブロックに対応する直流成分のDCT係数であるDC係数をk個取得する。光量制御部は、k個のDC係数から得られる値を用いて、複数のLEDモジュールのうち、k個のDC係数に対応するブロックに対応するLEDモジュールの光量を制御する。
That is, the acquisition unit is a DCT coefficient of a direct current component corresponding to a block to be orthogonally transformed from encoded data generated by performing encoding processing with orthogonal transformation on a block basis for a video. Obtain k DC coefficients. The light quantity control unit controls the light quantity of the LED module corresponding to the block corresponding to the k DC coefficients among the plurality of LED modules, using a value obtained from the k DC coefficients.
つまり、LEDバックライトに含まれるLEDモジュールの光量の制御において、符号化データから得られるDC係数を使用することで、LEDバックライトの制御に必要な演算量を効率よく削減することができる。
That is, in the control of the light amount of the LED module included in the LED backlight, the calculation amount necessary for the control of the LED backlight can be efficiently reduced by using the DC coefficient obtained from the encoded data.
また、好ましくは、kは2以上の整数であり、LEDバックライト制御装置は、さらに、k個のDC係数の平均値であるDC係数平均値を算出する算出部を備え、光量制御部は、k個のDC係数を使用して算出されるDC係数平均値、または、該DC係数平均値から得られる値を用いて、DC係数平均値に対応するブロックに対応するLEDモジュールの光量を制御する。
Preferably, k is an integer equal to or greater than 2, and the LED backlight control device further includes a calculation unit that calculates a DC coefficient average value that is an average value of k DC coefficients, and the light amount control unit includes: The light amount of the LED module corresponding to the block corresponding to the DC coefficient average value is controlled using the DC coefficient average value calculated using the k DC coefficients or the value obtained from the DC coefficient average value. .
この発明の他の局面に従うLEDバックライト制御方法は、映像の表示に使用されるLEDバックライトであって、LEDを使用した複数のLEDモジュールを含むLEDバックライトを制御するLEDバックライト制御装置が行う。LEDバックライト制御方法は、直交変換を伴う符号化の処理が、映像に対しブロック単位で行われることにより生成された符号化データから、直交変換の対象のブロックに対応する直流成分のDCT係数であるDC係数をk(1以上の整数)個取得する取得ステップと、取得ステップにより取得されたk個のDC係数から得られる値を用いて、複数のLEDモジュールのうち、k個のDC係数に対応するブロックに対応するLEDモジュールの光量を制御する光量制御ステップとを備える。
An LED backlight control method according to another aspect of the present invention is an LED backlight used for displaying an image, and an LED backlight control device that controls an LED backlight including a plurality of LED modules using LEDs. Do. The LED backlight control method uses a DCT coefficient of a DC component corresponding to a block to be orthogonally transformed from encoded data generated by performing encoding processing with orthogonal transformation on a block basis for a video. Using the acquisition step of acquiring k (integer greater than or equal to 1) DC coefficients and the value obtained from the k DC coefficients acquired in the acquisition step, k DC coefficients of a plurality of LED modules are obtained. A light amount control step for controlling the light amount of the LED module corresponding to the corresponding block.
また、好ましくは、kは2以上の整数であり、LEDバックライト制御方法は、さらに、k個のDC係数の平均値であるDC係数平均値を算出する算出ステップを備え、光量制御ステップでは、k個のDC係数を使用して算出されるDC係数平均値、または、該DC係数平均値から得られる値を用いて、DC係数平均値に対応するブロックに対応するLEDモジュールの光量を制御する。
Preferably, k is an integer equal to or greater than 2, and the LED backlight control method further includes a calculation step of calculating a DC coefficient average value that is an average value of k DC coefficients, The light amount of the LED module corresponding to the block corresponding to the DC coefficient average value is controlled using the DC coefficient average value calculated using the k DC coefficients or the value obtained from the DC coefficient average value. .
この発明のさらに他の局面に従うLEDバックライト制御モジュールは、映像の表示に使用されるLEDバックライトであって、LEDを使用した複数のLEDモジュールを含むLEDバックライトを制御する。LEDバックライト制御モジュールは、直交変換を伴う符号化の処理が、映像に対しブロック単位で行われることにより生成された符号化データから、直交変換の対象のブロックに対応する直流成分のDCT係数であるDC係数をk(1以上の整数)個取得する取得部と、取得部により取得されたk個のDC係数から得られる値を用いて、複数のLEDモジュールのうち、k個のDC係数に対応するブロックに対応するLEDモジュールの光量を制御する光量制御部とを備える。
An LED backlight control module according to still another aspect of the present invention is an LED backlight used for displaying an image, and controls an LED backlight including a plurality of LED modules using LEDs. The LED backlight control module uses a DCT coefficient of a DC component corresponding to a block to be orthogonally transformed from encoded data generated by performing encoding processing with orthogonal transformation on a block basis for a video. Using an obtaining unit that obtains k (integer greater than or equal to 1) DC coefficients and a value obtained from the k DC coefficients obtained by the obtaining unit, k DC coefficients among a plurality of LED modules are obtained. A light amount control unit that controls the light amount of the LED module corresponding to the corresponding block.
また、好ましくは、kは2以上の整数であり、LEDバックライト制御モジュールは、さらに、k個のDC係数の平均値であるDC係数平均値を算出する算出部を備え、光量制御部は、k個のDC係数を使用して算出されるDC係数平均値、または、該DC係数平均値から得られる値を用いて、DC係数平均値に対応するブロックに対応するLEDモジュールの光量を制御する。
Preferably, k is an integer equal to or greater than 2, and the LED backlight control module further includes a calculation unit that calculates a DC coefficient average value that is an average value of k DC coefficients, and the light amount control unit includes: The light amount of the LED module corresponding to the block corresponding to the DC coefficient average value is controlled using the DC coefficient average value calculated using the k DC coefficients or the value obtained from the DC coefficient average value. .
この発明のさらに他の局面に従う表示装置は、映像の表示に使用されるLEDバックライトであって、LEDを使用した複数のLEDモジュールを含むLEDバックライトを制御する。表示装置は、直交変換を伴う符号化の処理が、映像に対しブロック単位で行われることにより生成された符号化データから、直交変換の対象のブロックの各々に対応する直流成分のDCT係数であるDC係数をk(1以上の整数)個取得する取得部と、取得部により取得されたk個のDC係数から得られる値を用いて、複数のLEDモジュールのうち、k個のDC係数に対応するブロックに対応するLEDモジュールの光量を制御する光量制御部とを備える。
A display device according to still another aspect of the present invention is an LED backlight used for displaying an image, and controls an LED backlight including a plurality of LED modules using LEDs. The display device uses DCT coefficients of DC components corresponding to each of the blocks to be orthogonally transformed from encoded data generated by performing an encoding process involving orthogonal transformation on the video in units of blocks. Corresponding to k DC coefficients among a plurality of LED modules using an acquisition unit that acquires k (integer of 1 or more) DC coefficients and a value obtained from the k DC coefficients acquired by the acquisition unit A light amount control unit that controls the light amount of the LED module corresponding to the block to be performed.
また、好ましくは、kは2以上の整数であり、表示装置は、さらに、k個のDC係数の平均値であるDC係数平均値を算出する算出部を備え、表示装置は、k個のDC係数を使用して算出されるDC係数平均値、または、該DC係数平均値から得られる値を用いて、DC係数平均値に対応するブロックに対応するLEDモジュールの光量を制御する。
Preferably, k is an integer equal to or greater than 2, and the display device further includes a calculation unit that calculates a DC coefficient average value that is an average value of k DC coefficients, and the display device includes k DCs. The light quantity of the LED module corresponding to the block corresponding to the DC coefficient average value is controlled using the DC coefficient average value calculated using the coefficient or a value obtained from the DC coefficient average value.
なお、本発明は、このようなLEDバックライト制御方法として実現するだけでなく、このようなLEDバックライト制御方法に含まれる各ステップをコンピュータに実行させるプログラムとして実現してもよい。また、本発明は、そのようなプログラムを格納するコンピュータ読み取り可能な記録媒体として実現されてもよい。そして、そのようなプログラムは、インターネット等の伝送媒体を介して配信されてもよい。
The present invention may be realized not only as such an LED backlight control method but also as a program that causes a computer to execute each step included in such an LED backlight control method. Further, the present invention may be realized as a computer-readable recording medium that stores such a program. Such a program may be distributed via a transmission medium such as the Internet.
また、本発明は、このようなLEDバックライト制御装置を構成する複数の構成要素の全てまたは一部を、システムLSI(Large Scale Integration:大規模集積回路)として実現してもよい。
Further, in the present invention, all or some of the plurality of components constituting such an LED backlight control device may be realized as a system LSI (Large Scale Integration).
本発明により、LEDバックライトの制御に必要な演算量を効率よく削減することができる。
According to the present invention, the amount of calculation required for controlling the LED backlight can be efficiently reduced.
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
<第1の実施の形態>
図1は、第1の実施の形態における表示装置1000の構成を示すブロック図である。表示装置1000は、例えば、LCDパネルを備える液晶ディジタルテレビジョン受像機(以下、液晶ディジタルTVという)である。なお、図1には、説明のために、表示装置1000に含まれない、UHFアンテナ101が示される。 <First Embodiment>
FIG. 1 is a block diagram illustrating a configuration of adisplay device 1000 according to the first embodiment. The display device 1000 is, for example, a liquid crystal digital television receiver (hereinafter referred to as a liquid crystal digital TV) including an LCD panel. For the sake of explanation, FIG. 1 shows a UHF antenna 101 that is not included in the display device 1000.
図1は、第1の実施の形態における表示装置1000の構成を示すブロック図である。表示装置1000は、例えば、LCDパネルを備える液晶ディジタルテレビジョン受像機(以下、液晶ディジタルTVという)である。なお、図1には、説明のために、表示装置1000に含まれない、UHFアンテナ101が示される。 <First Embodiment>
FIG. 1 is a block diagram illustrating a configuration of a
図1を参照して、表示装置1000は、ディジタルチューナー102と、TS(Transport Stream)デマルチプレクサ103と、ビデオデコーダ104と、ビデオ出力処理部105と、光量計算部106と、オーディオデコーダ107と、オーディオ出力処理部108と、LCD表示制御部109と、LEDバックライトモジュール112と、LCDパネル113と、ステレオスピーカー114と、CPU(Central Processing Unit)115とを備える。
Referring to FIG. 1, a display device 1000 includes a digital tuner 102, a TS (Transport Stream) demultiplexer 103, a video decoder 104, a video output processing unit 105, a light amount calculation unit 106, an audio decoder 107, An audio output processing unit 108, an LCD display control unit 109, an LED backlight module 112, an LCD panel 113, a stereo speaker 114, and a CPU (Central Processing Unit) 115 are provided.
また、表示装置1000は、LEDバックライトモジュール112を制御するLEDバックライト制御装置500を備える。LEDバックライト制御装置500は、SOC(System-On-a-Chip)として実現される半導体システムLSI(Large Scale Integration)である。すなわち、LEDバックライト制御装置500は、LEDバックライト制御モジュールである。
The display device 1000 includes an LED backlight control device 500 that controls the LED backlight module 112. The LED backlight control device 500 is a semiconductor system LSI (Large Scale Integration) realized as an SOC (System-On-a-Chip). That is, the LED backlight control device 500 is an LED backlight control module.
すなわち、本実施の形態におけるLEDバックライト制御装置500は、液晶ディジタルTVとしての表示装置1000に内蔵される一構成要素として例示される。
That is, the LED backlight control device 500 in the present embodiment is exemplified as one component incorporated in the display device 1000 as a liquid crystal digital TV.
LEDバックライト制御装置500は、ディジタルチューナー102と、TSデマルチプレクサ103と、ビデオデコーダ104と、ビデオ出力処理部105と、光量計算部106と、オーディオデコーダ107と、オーディオ出力処理部108と、LCD表示制御部109と、CPU115とを備える。
The LED backlight control device 500 includes a digital tuner 102, a TS demultiplexer 103, a video decoder 104, a video output processing unit 105, a light amount calculation unit 106, an audio decoder 107, an audio output processing unit 108, and an LCD. A display control unit 109 and a CPU 115 are provided.
なお、DRAMやフラッシュEEPROM、その他の受動部品および詳細な制御信号などは、図1には示されていない。
Note that DRAM, flash EEPROM, other passive components, and detailed control signals are not shown in FIG.
CPU115は、制御プログラムに基づいて、LEDバックライト制御装置500に含まれる各部を制御する。CPU115は、組み込みマイコン、MCUとも呼ばれる。
The CPU 115 controls each unit included in the LED backlight control device 500 based on the control program. The CPU 115 is also called an embedded microcomputer or MCU.
UHFアンテナ101は、ディジタルTV放送波(電波)を電気信号としてのディジタル放送信号に変換するための器具である。ディジタル放送信号は、一例として、ISDB(Integrated Services Digital Broadcasting)-TまたはISDB-S規格に従った放送信号である。ISDB-Tに従った放送信号は、地上波である。ISDB-S規格に従った放送信号は、衛星放送波である。
The UHF antenna 101 is an instrument for converting a digital TV broadcast wave (radio wave) into a digital broadcast signal as an electric signal. As an example, the digital broadcast signal is a broadcast signal according to ISDB (Integrated Services Digital Broadcasting) -T or ISDB-S standards. The broadcast signal according to ISDB-T is a terrestrial wave. The broadcast signal according to the ISDB-S standard is a satellite broadcast wave.
ディジタル放送信号は、例えば、MPEG(Moving Picture Experts Group)規格に従ったトランスポートストリーム(TS(Transport Stream))を含む。当該トランスポートストリームには、ES(Elementary Stream)としてのビデオストリームおよびオーディオストリームが多重化される。
The digital broadcast signal includes, for example, a transport stream (TS (Transport Stream)) according to the MPEG (Moving Picture Experts Group) standard. In the transport stream, a video stream and an audio stream as ES (Elementary Stream) are multiplexed.
本実施の形態において処理対象のビデオストリームは、映像信号が、例えば、MPEG-2規格に従って符号化されたストリーム(符号化データ)である。すなわち、処理対象のビデオストリームは、直交変換を伴う符号化の処理が、映像に対しブロック単位で行われることにより生成されたストリーム(符号化データ)である。
In the present embodiment, the video stream to be processed is a stream (encoded data) obtained by encoding a video signal in accordance with, for example, the MPEG-2 standard. That is, the processing target video stream is a stream (encoded data) generated by performing encoding processing with orthogonal transformation on a video in units of blocks.
なお、処理対象のビデオストリームは、MPEG-2に限定されることなく、他の動画像符号化規格、例えば、H.264/AVC規格に従って符号化されたストリームであってもよい。
Note that the video stream to be processed is not limited to MPEG-2, but other video coding standards such as H.264. It may be a stream encoded according to the H.264 / AVC standard.
オーディオストリームは、音声信号が、例えば、AAC(Advance Audio Coding)規格に従って符号化されたストリームである。なお、オーディオストリームは、AAC規格に限定されることなく、他の音声符号化規格に従って符号化されたストリームであってもよい。
The audio stream is a stream in which an audio signal is encoded in accordance with, for example, an AAC (Advance Audio Coding) standard. Note that the audio stream is not limited to the AAC standard, and may be a stream encoded according to another audio encoding standard.
本実施の形態では、ビデオストリームを復号することにより、フルHDの解像度の映像が得られるとする。以下においては、フルHDの解像度の映像を、フルHD映像ともいう。フルHD映像は、横1920×縦1080画素のサイズの映像である。
In this embodiment, it is assumed that a video with full HD resolution can be obtained by decoding a video stream. In the following, video with full HD resolution is also referred to as full HD video. The full HD video is a video having a size of horizontal 1920 × vertical 1080 pixels.
図2は、一例としてのフルHD映像を示す図である。
FIG. 2 is a diagram showing a full HD video as an example.
再び、図1を参照して、LEDバックライトモジュール112は、LCDパネル113の背面に配置される。詳細は後述するが、LEDバックライトモジュール112は、LCDパネル113の背面から、LCDパネル113に対し光を照射する。
Referring to FIG. 1 again, the LED backlight module 112 is disposed on the back surface of the LCD panel 113. Although details will be described later, the LED backlight module 112 irradiates the LCD panel 113 with light from the back surface of the LCD panel 113.
LCDパネル113は、LEDバックライトモジュール112から照射される光を利用して映像を表示する表示回路である。LCDパネル113は、映像を表示するためのm(2以上の整数)個の画素を含む。
The LCD panel 113 is a display circuit that displays an image using light emitted from the LED backlight module 112. The LCD panel 113 includes m (an integer greater than or equal to 2) pixels for displaying an image.
LCDパネル113は、一例として、フルHD映像を表示可能なパネルであるとする。この場合、LCDパネル113に含まれる画素の数mは、1920×1080より、2073600である。
Suppose that the LCD panel 113 is a panel capable of displaying full HD video as an example. In this case, the number m of pixels included in the LCD panel 113 is 2073600 from 1920 × 1080.
なお、LCDパネル113は、フルHD映像に限定されることなく、1920×1080未満の解像度の映像または1920×1080より大きい解像度の映像を表示可能なパネルであってもよい。
Note that the LCD panel 113 is not limited to a full HD video, and may be a panel capable of displaying a video with a resolution lower than 1920 × 1080 or a video with a resolution higher than 1920 × 1080.
LCDパネル113に含まれる各画素は、RGBカラーフィルタを含む。また、LCDパネル113を構成する各画素は、LEDバックライトモジュール112から照射される光の透過度合いを制御する液晶シャッターとして機能する。
Each pixel included in the LCD panel 113 includes an RGB color filter. Each pixel constituting the LCD panel 113 functions as a liquid crystal shutter that controls the degree of transmission of light emitted from the LED backlight module 112.
LCDパネル113に含まれるm個の画素から構成される映像(例えば、フルHD映像)は、p(2以上の整数)個の調光領域に分割される。ここで、調光領域は、後述するLEDモジュールの調光の単位となる領域である。すなわち、調光領域は、バックライトとしてのLEDモジュールの光量を制御する単位となる領域である。
A video (for example, full HD video) composed of m pixels included in the LCD panel 113 is divided into p (integer of 2 or more) dimming areas. Here, the light control region is a region that is a unit of light control of the LED module described later. That is, the light control area is an area that is a unit for controlling the light amount of the LED module as the backlight.
本実施の形態において、調光領域は、MPEG規格で規定されるブロック(以下、MPEGブロックという)の集合体であるとする。MPEGブロックは、直交変換(DCT演算)の処理単位となるブロック(マクロブロック)である。すなわち、MPEGブロックは、直交変換の対象となるブロックである。MPEGブロックのサイズは、図2に示されるように、一例として、横8×縦8画素であるとする。
In the present embodiment, it is assumed that the dimming area is an aggregate of blocks (hereinafter referred to as MPEG blocks) defined by the MPEG standard. An MPEG block is a block (macroblock) that is a processing unit of orthogonal transform (DCT operation). That is, the MPEG block is a block that is an object of orthogonal transformation. As shown in FIG. 2, the size of the MPEG block is assumed to be 8 × 8 pixels as an example.
LEDバックライトモジュール112は、p個の調光領域にそれぞれ対応するp個のLEDモジュールを含む。LEDモジュールは、LEDを使用したモジュールである。p個のLEDモジュールは、行列状に配列される。
The LED backlight module 112 includes p LED modules respectively corresponding to the p dimming regions. The LED module is a module using LEDs. The p LED modules are arranged in a matrix.
各調光領域は、1以上のMPEGブロック(マクロブロック)から構成される。すなわち、各調光領域は、1以上のMPEGブロック(マクロブロック)に対応する。つまり、各MPEGブロック(マクロブロック)は、1個の調光領域に対応する。つまり、各MPEGブロック(マクロブロック)は、1個のLEDモジュールに対応する。
Each dimming area is composed of one or more MPEG blocks (macro blocks). That is, each dimming area corresponds to one or more MPEG blocks (macroblocks). That is, each MPEG block (macro block) corresponds to one dimming area. That is, each MPEG block (macro block) corresponds to one LED module.
例えば、調光領域のサイズが横16×縦16画素であり、MPEGブロック(マクロブロック)のサイズが横8×縦8画素であるとする。この場合、調光領域は、4個のMPEGブロック(マクロブロック)に対応する。また、この場合、各MPEGブロック(マクロブロック)は、1個の調光領域、すなわち、1個のLEDモジュールに対応する。
For example, it is assumed that the dimming area size is 16 × 16 pixels and the MPEG block (macro block) size is 8 × 8 pixels. In this case, the dimming area corresponds to four MPEG blocks (macro blocks). In this case, each MPEG block (macro block) corresponds to one dimming area, that is, one LED module.
次に、LEDモジュールの構成について説明する。
Next, the configuration of the LED module will be described.
図3は、第1の実施の形態における1個のLEDモジュールの構成を説明するための図である。
FIG. 3 is a diagram for explaining the configuration of one LED module according to the first embodiment.
図3を参照して、Rは赤色の光を発するLED(以下、赤色LEDという)を示す。Gは、緑色の光を発するLED(以下、緑色LEDという)を示す。Bは青色の光を発するLED(以下、青色LEDという)を示す。
Referring to FIG. 3, R indicates an LED that emits red light (hereinafter referred to as a red LED). G indicates an LED that emits green light (hereinafter referred to as a green LED). B represents an LED that emits blue light (hereinafter referred to as a blue LED).
本実施の形態におけるLEDモジュールは、赤色LED、2個の緑色LEDおよび青色LEDから構成される。LEDモジュールを構成する赤色LED、2個の緑色LEDおよび青色LEDは、図3のように配置される。
The LED module in the present embodiment includes a red LED, two green LEDs, and a blue LED. The red LED, the two green LEDs, and the blue LED constituting the LED module are arranged as shown in FIG.
緑色LEDは、赤色LEDと青色LEDに比べ発光効率が低いので、図3のように1個のLEDモジュール中に2個の緑色LEDが使われる。
Since the green LED has lower luminous efficiency than the red LED and the blue LED, two green LEDs are used in one LED module as shown in FIG.
LEDバックライトモジュール112に含まれるp個のLEDモジュールは、それぞれ前述のp個の調光領域に対して光を発する。これにより、LEDバックライトモジュール112は、調光領域毎に独立してLEDモジュールを制御することができる。
The p LED modules included in the LED backlight module 112 emit light to the aforementioned p dimming regions. Thereby, the LED backlight module 112 can control an LED module independently for every light control area | region.
ここで、調光領域が正方形である場合における、当該調光領域のサイズ、MPEGブロックの数および調光領域数の関係を、図4に示す。
Here, FIG. 4 shows the relationship among the size of the light control area, the number of MPEG blocks, and the number of light control areas when the light control area is a square.
図4を参照して、MPEGブロックの数とは、調光領域のサイズに対応するMPEGブロックの数を示す。MPEGブロックの数は、横方向のMPEGブロックの数と縦方向のMPEGブロックの数とから示される。例えば、調光領域のサイズが、40×40画素である場合、MPEGブロックの数は、5×5より25個となる。
Referring to FIG. 4, the number of MPEG blocks indicates the number of MPEG blocks corresponding to the size of the dimming area. The number of MPEG blocks is indicated by the number of horizontal MPEG blocks and the number of vertical MPEG blocks. For example, when the size of the dimming area is 40 × 40 pixels, the number of MPEG blocks is 25 from 5 × 5.
また、調光領域数とは、調光領域のサイズに対応する調光領域の数pを示す。例えば、調光領域のサイズが、16×16画素である場合、調光領域数は、8100である。
Further, the number of light control areas indicates the number p of light control areas corresponding to the size of the light control areas. For example, when the size of the dimming area is 16 × 16 pixels, the number of dimming areas is 8100.
なお、本実施の形態では、一例として、調光領域のサイズが、32×32画素であるとする。この場合、調光領域数は、2025である。すなわち、LEDバックライトモジュール112は、2025個のLEDモジュールを含むとする。
In the present embodiment, as an example, it is assumed that the size of the dimming area is 32 × 32 pixels. In this case, the number of light control areas is 2025. That is, the LED backlight module 112 includes 2025 LED modules.
なお、調光領域は正方形に限定されることはなく、縦および横方向にブロックの整数倍の形状であれば良い。各調光領域のサイズを大きくした場合、バックライトのために必要なLEDモジュールの数が減ってコストを削減できるが、細かい領域毎にバックライトの明るさを制御できないので画質は劣化する。
Note that the dimming area is not limited to a square, and may be any shape that is an integral multiple of the block in the vertical and horizontal directions. When the size of each dimming area is increased, the number of LED modules necessary for the backlight can be reduced and the cost can be reduced. However, since the brightness of the backlight cannot be controlled for each fine area, the image quality deteriorates.
前述したように、本実施の形態では、ビデオストリームを復号することにより、フルHD映像が得られるとする。
As described above, in this embodiment, it is assumed that a full HD video is obtained by decoding a video stream.
フルHD映像は、例えば、MPEG-2規格に従って、マクロブロック単位で符号化される。ここで、マクロブロックは、前述したMPEGブロックである。すなわち、マクロブロックは、直交変換の対象となるブロックである。マクロブロックのサイズは、横8×縦8画素のサイズであるとする。すなわち、フルHD映像が、マクロブロック単位で符号化されることによりビデオストリームが生成される。
Full HD video is encoded in units of macroblocks in accordance with, for example, the MPEG-2 standard. Here, the macro block is the above-described MPEG block. That is, the macro block is a block that is an object of orthogonal transformation. The size of the macroblock is assumed to be 8 × 8 pixels. That is, a video stream is generated by encoding full HD video in units of macroblocks.
MPEG-2規格の符号化により生成されたビデオストリームは、各マクロブロックに対応する輝度Y、色差Cbおよび色差Crデータが符号化されたデータを含む。本実施の形態において、各マクロブロックは、4:2:0フォーマットのマクロブロックであるとする。
The video stream generated by the encoding of the MPEG-2 standard includes data obtained by encoding the luminance Y, color difference Cb, and color difference Cr data corresponding to each macroblock. In the present embodiment, it is assumed that each macroblock is a macroblock of 4: 2: 0 format.
この場合、処理対象となるビデオストリームは、一例として、4:2:0フォーマットの各マクロブロックに対応する輝度Y、色差Cbおよび色差Crのデータを含む。
In this case, the video stream to be processed includes, as an example, data on luminance Y, color difference Cb, and color difference Cr corresponding to each macroblock in the 4: 2: 0 format.
図5は、4:2:0フォーマットのマクロブロックに対応する輝度Y、色差Cbおよび色差Crのデータを示す図である。
FIG. 5 is a diagram showing data of luminance Y, color difference Cb, and color difference Cr corresponding to a macro block of 4: 2: 0 format.
図5に示されるように、各色差データのサイズは、縦および横方向ともに、輝度データのサイズの半分である。すなわち、各色差データの情報量は、輝度データの情報量の1/4である。
As shown in FIG. 5, the size of each color difference data is half the size of the luminance data in both the vertical and horizontal directions. That is, the information amount of each color difference data is 1/4 of the information amount of luminance data.
また、画素に対する輝度と色差との位置関係は、図6のように示される。
Further, the positional relationship between the luminance and the color difference with respect to the pixel is shown in FIG.
図6において、1つの輝度のデータは、1つの画素に対応する。一方、1つの色差のデータは、4画素に対応する。
In FIG. 6, one luminance data corresponds to one pixel. On the other hand, one color difference data corresponds to four pixels.
再び、図1を参照して、UHFアンテナ101は、ディジタル放送信号を、ディジタルチューナー102へ送信する。
Again referring to FIG. 1, UHF antenna 101 transmits a digital broadcast signal to digital tuner 102.
ディジタルチューナー102は、同調回路である。ディジタルチューナー102は、ディジタル変調されたディジタル放送信号を復調することにより復調信号を得る。そして、ディジタルチューナー102は、復調信号から、選局(指定)されたチャンネルのトランスポートストリームを取得する。ディジタルチューナー102は、取得したトランスポートストリームを、TSデマルチプレクサ103へ送信する。
The digital tuner 102 is a tuning circuit. The digital tuner 102 obtains a demodulated signal by demodulating the digitally modulated digital broadcast signal. Then, the digital tuner 102 acquires a transport stream of the channel selected (designated) from the demodulated signal. The digital tuner 102 transmits the acquired transport stream to the TS demultiplexer 103.
TSデマルチプレクサ103は、当該トランスポートストリームに対し逆多重化処理を行うことにより、ビデオストリームおよびオーディオストリームを取得する。TSデマルチプレクサ103は、ビデオストリームおよびオーディオストリームを、それぞれ、ビデオデコーダ104およびオーディオデコーダ107へ送信する。
The TS demultiplexer 103 acquires a video stream and an audio stream by performing a demultiplexing process on the transport stream. The TS demultiplexer 103 transmits the video stream and the audio stream to the video decoder 104 and the audio decoder 107, respectively.
ビデオデコーダ104は、ビデオストリームを復号することにより、符号化前の映像信号を取得し、当該映像信号を、ビデオ出力処理部105へ送信する。具体的には、ビデオデコーダ104において、以下の処理が行われる。
The video decoder 104 acquires a video signal before encoding by decoding the video stream, and transmits the video signal to the video output processing unit 105. Specifically, the video decoder 104 performs the following processing.
図7は、一例としてのビデオデコーダ104の構成を示すブロック図である。
FIG. 7 is a block diagram showing a configuration of the video decoder 104 as an example.
図7を参照して、ビデオデコーダ104は、入力バッファ201と、可変長復号部202と、逆量子化部203と、逆DCT部204と、加算器205と、動き補償部206と、フレームメモリ207,208と、出力バッファ209とを含む。
Referring to FIG. 7, the video decoder 104 includes an input buffer 201, a variable length decoding unit 202, an inverse quantization unit 203, an inverse DCT unit 204, an adder 205, a motion compensation unit 206, a frame memory. 207 and 208 and an output buffer 209.
ビデオデコーダ104において、逆量子化部203を除いた各部で行われる処理は、MPEG-2規格に従った復号処理であるので詳細な説明は繰り返さない。以下、簡単に説明する。
In the video decoder 104, the processing performed in each unit other than the inverse quantization unit 203 is a decoding process according to the MPEG-2 standard, and therefore detailed description will not be repeated. A brief description is given below.
まず、入力バッファ201にビデオストリームが記憶される。可変長復号部202は、ビデオストリームを復号することにより復号ビデオデータを取得する。なお、可変長復号部202は、復号処理により動きベクトルが得られる毎に、当該動きベクトルを、動き補償部206へ送信する。
First, a video stream is stored in the input buffer 201. The variable length decoding unit 202 acquires decoded video data by decoding the video stream. The variable length decoding unit 202 transmits the motion vector to the motion compensation unit 206 every time a motion vector is obtained by the decoding process.
逆量子化部203は、復号ビデオデータをマクロブロック単位で逆量子化する。ここで、マクロブロックのサイズは、8×8画素であるとする。前述したように、マクロブロックは、4:2:0フォーマットのマクロブロックであるとする。この処理により、輝度Y、色差Cbおよび色差Crに対応する6組のDCT係数群が得られる。
The inverse quantization unit 203 inversely quantizes the decoded video data in units of macroblocks. Here, it is assumed that the size of the macroblock is 8 × 8 pixels. As described above, it is assumed that the macroblock is a macroblock of 4: 2: 0 format. By this processing, six sets of DCT coefficient groups corresponding to the luminance Y, the color difference Cb, and the color difference Cr are obtained.
図8は、1組のDCT係数群を示す図である。
FIG. 8 is a diagram showing a set of DCT coefficient groups.
図8において、DCT係数群は、64個のDCT係数から構成される。64個のDCT係数のうち、左上に位置するDCT係数が、DC(直流)成分のDCT係数(以下、DC係数という)である。DC係数は、対応するブロックの全画素の画素値の平均値である。64個のDCT係数のうち、DC係数以外のDCT係数は、AC(交流)成分のDCT係数である。
In FIG. 8, the DCT coefficient group is composed of 64 DCT coefficients. Of the 64 DCT coefficients, the DCT coefficient located at the upper left is a DCT coefficient (hereinafter referred to as a DC coefficient) of a DC (direct current) component. The DC coefficient is an average value of the pixel values of all the pixels in the corresponding block. Of the 64 DCT coefficients, DCT coefficients other than the DC coefficient are DCT coefficients of AC (alternating current) components.
逆量子化部203が、復号ビデオデータを逆量子化することにより得られる6組のDCT係数群は、以下に示される。
6 sets of DCT coefficient groups obtained by the inverse quantization unit 203 performing inverse quantization on the decoded video data are shown below.
図9は、6組のDCT係数群を示す図である。
FIG. 9 is a diagram showing six sets of DCT coefficient groups.
図9において、ブロックY0,Y1,Y2,Y3は、それぞれ、4組のDCT係数群を示す。当該4組のDCT係数群は、輝度Yに対応する。すなわち、逆量子化部203は、輝度Yについては、4つのDC係数(以下、輝度DC係数という)を得る。
In FIG. 9, blocks Y0, Y1, Y2, and Y3 each represent four sets of DCT coefficient groups. The four sets of DCT coefficient groups correspond to the luminance Y. That is, the inverse quantization unit 203 obtains four DC coefficients (hereinafter referred to as luminance DC coefficients) for the luminance Y.
ブロックCbは、色差Cbに対応するDCT係数群を示す。すなわち、逆量子化部203は、色差Cbについては、1つのDC係数(以下、第1色差DC係数という)を得る。ブロックCrは、色差Crに対応するDCT係数群を示す。すなわち、逆量子化部203は、色差Crについては、1つのDC係数(以下、第2色差DC係数という)を得る。
Block Cb indicates a DCT coefficient group corresponding to the color difference Cb. That is, the inverse quantization unit 203 obtains one DC coefficient (hereinafter referred to as the first color difference DC coefficient) for the color difference Cb. A block Cr indicates a DCT coefficient group corresponding to the color difference Cr. That is, the inverse quantization unit 203 obtains one DC coefficient (hereinafter referred to as a second color difference DC coefficient) for the color difference Cr.
すなわち、逆量子化部203は、復号ビデオデータをマクロブロック単位で逆量子化することにより、6つのDC係数(4つの輝度DC係数、第1色差DC係数、第2色差DC係数)を得る。
That is, the inverse quantization unit 203 obtains six DC coefficients (four luminance DC coefficients, first color difference DC coefficient, and second color difference DC coefficient) by inverse quantizing the decoded video data in units of macroblocks.
再び、図7を参照して、逆量子化部203は、マクロブロック単位で逆量子化を行う毎に、6組のDCT係数群を、逆DCT部204へ送信するとともに、6つのDC係数(4つの輝度DC係数、第1色差DC係数、第2色差DC係数)を、光量計算部106へ送信する。
Referring again to FIG. 7, every time inverse quantization is performed in units of macroblocks, inverse quantization section 203 transmits six sets of DCT coefficient groups to inverse DCT section 204 and includes six DC coefficients ( Four luminance DC coefficients, a first color difference DC coefficient, and a second color difference DC coefficient) are transmitted to the light amount calculation unit 106.
以下においては、各マクロブロックに対応する6つのDC係数(4つの輝度DC係数、第1色差DC係数、第2色差DC係数)を、ブロック対応DC係数群という。
Hereinafter, the six DC coefficients (four luminance DC coefficients, the first color difference DC coefficient, and the second color difference DC coefficient) corresponding to each macroblock are referred to as a block corresponding DC coefficient group.
すなわち、逆量子化部203は、マクロブロック単位で逆量子化を行う毎に、ブロック対応DC係数群を、光量計算部106へ送信する。
That is, the inverse quantization unit 203 transmits a block-corresponding DC coefficient group to the light amount calculation unit 106 every time inverse quantization is performed in units of macroblocks.
逆DCT部204は、各DCT係数群に対し、逆DCT演算処理を行うことにより、画像(以下、第1画像という)を得る。そして、逆DCT部204は、第1画像を、加算器205へ送信する。
The inverse DCT unit 204 obtains an image (hereinafter referred to as a first image) by performing an inverse DCT calculation process on each DCT coefficient group. Then, the inverse DCT unit 204 transmits the first image to the adder 205.
動き補償部206は、動きベクトルと、フレームメモリ207,208のいずれかに記憶されている画像(フレーム)とを使用して動き補償を行う。そして、動き補償部206は、動き補償により得られた画像(以下、第2画像という)を、加算器205へ送信する。
The motion compensation unit 206 performs motion compensation using a motion vector and an image (frame) stored in one of the frame memories 207 and 208. Then, the motion compensation unit 206 transmits an image obtained by motion compensation (hereinafter referred to as a second image) to the adder 205.
加算器205は、第1画像と第2画像とを合成することによりフレーム(以下、復号フレームという)を生成する。復号フレームは、出力バッファ209に記憶される。また、復号フレームは、フレームメモリ207,208のいずれかに記憶される。
The adder 205 generates a frame (hereinafter referred to as a decoded frame) by synthesizing the first image and the second image. The decoded frame is stored in the output buffer 209. The decoded frame is stored in one of the frame memories 207 and 208.
上記処理が繰り返し行われることにより、出力バッファ209には複数の復号フレームが記憶される。そして、複数の復号フレームから構成される映像信号が、ビデオ出力処理部105へ送信される。ビデオ出力処理部105へ送信される映像信号は、YCbCr形式の映像信号である。
By repeatedly performing the above processing, the output buffer 209 stores a plurality of decoded frames. Then, a video signal composed of a plurality of decoded frames is transmitted to the video output processing unit 105. The video signal transmitted to the video output processing unit 105 is a video signal in YCbCr format.
再び、図1を参照して、ビデオ出力処理部105は、受信した映像信号に対し映像表示処理を行う。ビデオ出力処理部105は、映像表示処理が行われた映像信号を、LCD表示制御部109へ送信する。
Referring to FIG. 1 again, the video output processing unit 105 performs video display processing on the received video signal. The video output processing unit 105 transmits the video signal subjected to the video display process to the LCD display control unit 109.
具体的には、ビデオ出力処理部105において、以下の処理が行われる。
Specifically, the video output processing unit 105 performs the following processing.
図10は、一例としてのビデオ出力処理部105の構成を示すブロック図である。
FIG. 10 is a block diagram illustrating a configuration of the video output processing unit 105 as an example.
図10を参照して、ビデオ出力処理部105は、映像調整部301と、変換部302と、マルチウィンドウ処理部303と、OSD(On-Screen Display)合成部304と、出力バッファ305とを含む。
Referring to FIG. 10, video output processing unit 105 includes a video adjustment unit 301, a conversion unit 302, a multi-window processing unit 303, an OSD (On-Screen Display) composition unit 304, and an output buffer 305. .
ビデオ出力処理部105が行う映像表示処理は、映像調整処理と、変換処理と、マルチウィンドウ処理と、OSD合成処理とを含む。
Video display processing performed by the video output processing unit 105 includes video adjustment processing, conversion processing, multi-window processing, and OSD composition processing.
映像調整部301は、ビデオデコーダ104から映像信号を受信する。映像調整処理は、映像調整部301が受信した映像信号に対し行われる処理である。映像調整処理は、映像調整部301により行われる。
The video adjustment unit 301 receives a video signal from the video decoder 104. The video adjustment process is a process performed on the video signal received by the video adjustment unit 301. The video adjustment process is performed by the video adjustment unit 301.
映像調整処理では、コントラスト補正、γ補正、ノイズ除去処理等が行われる。また、映像調整処理では、必要に応じて、さらに、グラデーション処理、輪郭補正処理等が行われる。映像調整処理が行われた映像信号は、変換部302へ送信される。
In the image adjustment processing, contrast correction, γ correction, noise removal processing, and the like are performed. In the video adjustment processing, gradation processing, contour correction processing, and the like are further performed as necessary. The video signal subjected to the video adjustment process is transmitted to the conversion unit 302.
変換処理は、変換部302により行われる。変換処理は、変換部302が受信した映像信号に対し行われる処理である。
The conversion process is performed by the conversion unit 302. The conversion process is a process performed on the video signal received by the conversion unit 302.
変換処理では、色空間変換処理が行われる。色空間変換処理は、YCbCr-RGB色変換である。YCbCr-RGB色変換は、以下の式1に基づいて行われる。式1は、Recommendation ITU-R BT.709(Rec.709)の規格に基づく式である。
(式1)
R'=1.164(Y-16) +1.596(Cr-128)
G'=1.164(Y-16)-0.392(Cb-128)-0.813(Cr-128)
B'=1.164(Y-16)+2.017(Cb-128)
ただし、式1において、R',G',B'はγ補正されたR,G,Bを表す。 In the conversion process, a color space conversion process is performed. The color space conversion process is YCbCr-RGB color conversion. YCbCr-RGB color conversion is performed based onEquation 1 below. Expression 1 is an expression based on the standard of Recommendation ITU-R BT.709 (Rec.709).
(Formula 1)
R '= 1.164 (Y-16) +1.596 (Cr-128)
G ′ = 1.164 (Y−16) −0.392 (Cb−128) −0.813 (Cr−128)
B ′ = 1.164 (Y−16) +2.017 (Cb−128)
InEquation 1, R ′, G ′, and B ′ represent R, G, and B that are γ-corrected.
(式1)
R'=1.164(Y-16) +1.596(Cr-128)
G'=1.164(Y-16)-0.392(Cb-128)-0.813(Cr-128)
B'=1.164(Y-16)+2.017(Cb-128)
ただし、式1において、R',G',B'はγ補正されたR,G,Bを表す。 In the conversion process, a color space conversion process is performed. The color space conversion process is YCbCr-RGB color conversion. YCbCr-RGB color conversion is performed based on
(Formula 1)
R '= 1.164 (Y-16) +1.596 (Cr-128)
G ′ = 1.164 (Y−16) −0.392 (Cb−128) −0.813 (Cr−128)
B ′ = 1.164 (Y−16) +2.017 (Cb−128)
In
上記色空間変換処理が行われることにより、YCbCr形式の映像信号が、RGB形式の映像信号に変換される。
By performing the color space conversion process, the YCbCr format video signal is converted into an RGB format video signal.
また、変換処理では、必要に応じて、さらに、フレームレート変換、リサイズ処理、IP変換等が行われる。変換処理が行われた映像信号は、マルチウィンドウ処理部303へ送信される。
In the conversion process, frame rate conversion, resizing process, IP conversion, and the like are further performed as necessary. The video signal that has been subjected to the conversion process is transmitted to the multi-window processing unit 303.
マルチウィンドウ処理は、マルチウィンドウ処理部303により行われる。マルチウィンドウ処理は、マルチウィンドウ処理部303が受信した映像信号に対し行われる処理である。マルチウィンドウ処理では、必要に応じて、PoutP処理、PinP処理、サムネイル処理等が行われる。マルチウィンドウ処理が行われた映像信号は、OSD合成部304へ送信される。
Multi-window processing is performed by the multi-window processing unit 303. The multi-window process is a process performed on the video signal received by the multi-window processing unit 303. In multi-window processing, PoutP processing, PinP processing, thumbnail processing, and the like are performed as necessary. The video signal that has been subjected to the multi-window process is transmitted to the OSD synthesis unit 304.
OSD合成処理は、OSD合成部304により行われる。OSD合成処理は、OSD合成部304が受信した映像信号に対し行われる処理である。OSD合成処理では、必要に応じて、スーパーインポーズ処理、文字放送処理、グラフィック表示処理等が行われる。OSD合成処理が行われた映像信号は、出力バッファ305に記憶される。
The OSD synthesis process is performed by the OSD synthesis unit 304. The OSD synthesis process is a process performed on the video signal received by the OSD synthesis unit 304. In the OSD composition processing, superimpose processing, text broadcasting processing, graphic display processing, and the like are performed as necessary. The video signal that has undergone the OSD synthesis process is stored in the output buffer 305.
そして、出力バッファ305に記憶された映像信号は、LCD表示制御部109へ送信される。
Then, the video signal stored in the output buffer 305 is transmitted to the LCD display control unit 109.
LCD表示制御部109は、ディジタル信号処理回路である。LCD表示制御部109は、LEDドライバIC110と、LCDドライバIC111とを含む。
The LCD display control unit 109 is a digital signal processing circuit. The LCD display control unit 109 includes an LED driver IC 110 and an LCD driver IC 111.
LCDドライバIC111は、ビデオ出力処理部105から受信した映像信号に基づく映像を、LCDパネル113に表示させるための制御を行う。
The LCD driver IC 111 performs control for causing the LCD panel 113 to display a video based on the video signal received from the video output processing unit 105.
オーディオデコーダ107は、TSデマルチプレクサ103から受信したオーディオストリームを復号することにより符号化前の音声信号を取得し、取得した音声信号を、オーディオ出力処理部108へ送信する。
The audio decoder 107 acquires the audio signal before encoding by decoding the audio stream received from the TS demultiplexer 103, and transmits the acquired audio signal to the audio output processing unit 108.
オーディオ出力処理部108は、音響出力回路である。オーディオ出力処理部108は、受信した音声信号に音声処理を行うことにより、音響電気信号を生成する。音声処理は、音声信号の音声を調整する処理、音声信号の音量やステレオバランスを制御する処理等である。オーディオ出力処理部108は、生成した音響電気信号を、ステレオスピーカー114へ送信する。
The audio output processing unit 108 is an acoustic output circuit. The audio output processing unit 108 performs an audio process on the received audio signal to generate an acoustoelectric signal. The audio processing includes processing for adjusting the audio of the audio signal, processing for controlling the volume and stereo balance of the audio signal, and the like. The audio output processing unit 108 transmits the generated acoustoelectric signal to the stereo speaker 114.
ステレオスピーカー114は、音響電気信号を音波に変換する。
The stereo speaker 114 converts the acoustoelectric signal into a sound wave.
光量計算部106は、詳細は後述するが、バックライトの光量を設定するための値を計算する。
Although the details will be described later, the light amount calculation unit 106 calculates a value for setting the light amount of the backlight.
LEDドライバIC110は、詳細は後述するが、表示する映像に応じて、LEDバックライトモジュール112の発光を制御する回路である。
The LED driver IC 110 is a circuit that controls the light emission of the LED backlight module 112 in accordance with the video to be displayed, details of which will be described later.
なお、表示装置1000は、UHFアンテナ101の代わりに、同軸ケーブルや光ケーブルなどのケーブルを通じて、有線放送を受信してもよい。この場合、ケーブルに接続されたデジタルセットトップボックスがUHFアンテナ101の代わりに位置付けられる。
Note that the display device 1000 may receive a wired broadcast through a cable such as a coaxial cable or an optical cable instead of the UHF antenna 101. In this case, a digital set top box connected to the cable is positioned instead of the UHF antenna 101.
また、DVDやHDDなど蓄積系の媒体に記憶されているストリームを表示装置1000において再生してもよい。この場合、ディジタルチューナー102から伝送されるTSの代わりにDVDプレイヤーなどからPS(プログラムストリーム)が読み取られる。この場合、表示装置1000には、TSデマルチプレクサ103の代わりにPSデマルチプレクサが設けられる。
Further, a stream stored in a storage medium such as a DVD or HDD may be played back on the display device 1000. In this case, a PS (program stream) is read from a DVD player or the like instead of the TS transmitted from the digital tuner 102. In this case, the display device 1000 is provided with a PS demultiplexer instead of the TS demultiplexer 103.
次に、調光領域毎に、対応するLEDモジュールを制御するための処理(バックライト制御処理という)について説明する。
Next, processing for controlling the corresponding LED module for each dimming area (referred to as backlight control processing) will be described.
まず、前述した6つのDC係数からなるブロック対応DC係数群を取得するための処理(以下、DC係数群取得処理という)について説明する。
First, a process for acquiring a block-corresponding DC coefficient group composed of the above-described six DC coefficients (hereinafter referred to as a DC coefficient group acquiring process) will be described.
図11は、DC係数群取得処理のフローチャートである。
FIG. 11 is a flowchart of DC coefficient group acquisition processing.
ステップS111では、逆量子化部203が、前述したように、復号ビデオデータをマクロブロック単位で逆量子化することにより、6つのDC係数からなるブロック対応DC係数群を取得する。すなわち、ビデオデコーダ104に含まれる逆量子化部203は、符号化データとしてのビデオストリームから得られる復号ビデオデータをマクロブロック単位で逆量子化することにより、4つの輝度DC係数、第1色差DC係数および第2色差DC係数を取得する。つまり、ビデオデコーダ104は、符号化データから、直交変換の対象のブロックに対応する1以上のDC係数を取得する。
In step S111, the inverse quantization unit 203 obtains a block-corresponding DC coefficient group including six DC coefficients by inversely quantizing the decoded video data in units of macroblocks as described above. That is, the inverse quantization unit 203 included in the video decoder 104 inversely quantizes the decoded video data obtained from the video stream as the encoded data in units of macroblocks, thereby four luminance DC coefficients and the first color difference DC. The coefficient and the second color difference DC coefficient are obtained. That is, the video decoder 104 acquires one or more DC coefficients corresponding to the block to be orthogonally transformed from the encoded data.
ステップS112では、逆量子化部203が、ブロック対応DC係数群を光量計算部106へ送信する。
In step S112, the inverse quantization unit 203 transmits the block-corresponding DC coefficient group to the light amount calculation unit 106.
図11のDC係数群取得処理は、逆量子化部203が、マクロブロック単位で逆量子化を行う毎に繰り返し行われる。
11 is repeatedly performed every time the inverse quantization unit 203 performs inverse quantization in units of macroblocks.
図12は、バックライト制御処理のフローチャートである。
FIG. 12 is a flowchart of the backlight control process.
ステップS211では、光量計算部106が、逆量子化部203からブロック対応DC係数群を受信することにより取得する。
In step S211, the light quantity calculation unit 106 acquires the block-corresponding DC coefficient group from the inverse quantization unit 203.
ステップS212では、光量計算部106が、前述したp個の調光領域のうち、u(1以上の整数)番目の調光領域に対応する全てのブロック対応DC係数群を取得したか否かを判定する。uの初期値は1である。
In step S212, it is determined whether or not the light quantity calculation unit 106 has acquired all the block-corresponding DC coefficient groups corresponding to the u (integer greater than or equal to 1) th dimming area among the p dimming areas described above. judge. The initial value of u is 1.
前述したように、本実施の形態では、一例として、調光領域のサイズが、32×32画素であるとする。この場合、調光領域数は、2025である。例えば、uが10である場合、ステップS212では、2025個の調光領域のうち、10番目の調光領域に対応する全てのブロック対応DC係数群を取得したか否かが判定される。
As described above, in the present embodiment, as an example, the size of the light control region is assumed to be 32 × 32 pixels. In this case, the number of light control areas is 2025. For example, when u is 10, in step S212, it is determined whether or not all the block-corresponding DC coefficient groups corresponding to the 10th dimming area among 2025 dimming areas have been acquired.
また、この場合、LEDバックライトモジュール112は、2025個のLEDモジュールを含む。ここで、マクロブロックのサイズは、8×8画素であるとする。したがって、調光領域のサイズが32×32画素である場合、調光領域に対応する全てのブロック対応DC係数群は、4つのマクロブロックにそれぞれ対応する4組のブロック対応DC係数群である。
In this case, the LED backlight module 112 includes 2025 LED modules. Here, it is assumed that the size of the macroblock is 8 × 8 pixels. Therefore, when the size of the dimming area is 32 × 32 pixels, all the block-corresponding DC coefficient groups corresponding to the dimming area are four sets of block-corresponding DC coefficient groups respectively corresponding to the four macroblocks.
すなわち、この場合、ステップS211の処理が4回行われることにより、4組のブロック対応DC係数群を光量計算部106が取得した場合、u番目の調光領域に対応する全てのブロック対応DC係数群を取得したと判定される。
That is, in this case, when the light intensity calculation unit 106 acquires four sets of block-corresponding DC coefficient groups by performing the process of step S211 four times, all the block-corresponding DC coefficients corresponding to the u-th dimming region It is determined that the group has been acquired.
ステップS212において、YESならば、処理はステップS213に移行する。一方、ステップS212において、NOならば、再度、ステップS211の処理が行われる。ここでは、ステップS211の処理が4回行われることにより、光量計算部106が、u番目の調光領域に対応する全てのブロック対応DC係数群を取得したとして、処理はステップS213に移行する。
If YES in step S212, the process proceeds to step S213. On the other hand, if NO at step S212, the process at step S211 is performed again. Here, it is assumed that the light quantity calculation unit 106 has acquired all the block-corresponding DC coefficient groups corresponding to the u-th dimming area by performing the process of step S211 four times, and the process proceeds to step S213.
なお、調光領域のサイズが8×8画素である場合、調光領域に対応する全てのブロック対応DC係数群は、1つのマクロブロックに対応する1組のブロック対応DC係数群である。
When the size of the dimming area is 8 × 8 pixels, all block-corresponding DC coefficient groups corresponding to the dimming area are a set of block-corresponding DC coefficient groups corresponding to one macroblock.
ステップS213では、DC係数平均値算出処理が行われる。DC係数平均値算出処理では、まず、光量計算部106が、ブロック対応DC係数群を構成する6つのDC係数のうち、4つの輝度DC係数の平均値(以下、輝度DC係数平均値という)を算出する。当該4つの輝度DC係数は、図9のブロックY0,Y1,Y2,Y3にそれぞれ対応するDC係数である。
In step S213, DC coefficient average value calculation processing is performed. In the DC coefficient average value calculation process, first, the light quantity calculation unit 106 calculates an average value of four luminance DC coefficients (hereinafter referred to as luminance DC coefficient average value) among the six DC coefficients constituting the block corresponding DC coefficient group. calculate. The four luminance DC coefficients are DC coefficients respectively corresponding to the blocks Y0, Y1, Y2, and Y3 in FIG.
なお、光量計算部106が、4組のブロック対応DC係数群を取得している場合、各ブロック対応DC係数群に含まれる4つの輝度DC係数の平均値(輝度DC係数平均値)を算出する処理が4回繰り返し行われる。以下においては、4組のブロック対応DC係数群にそれぞれ対応する4つのマクロブロックを、第1、第2、第3および第4マクロブロックという。
When the light quantity calculation unit 106 has acquired four sets of block-corresponding DC coefficient groups, an average value of four luminance DC coefficients (luminance DC coefficient average value) included in each block-corresponding DC coefficient group is calculated. The process is repeated four times. In the following, the four macroblocks corresponding to the four sets of block-corresponding DC coefficient groups are referred to as first, second, third and fourth macroblocks, respectively.
輝度DC係数平均値の算出には、例えば、以下の演算回路410が使用される。この場合、演算回路410は、光量計算部106の内部に形成される回路である。
For example, the following arithmetic circuit 410 is used to calculate the average value of the luminance DC coefficient. In this case, the arithmetic circuit 410 is a circuit formed inside the light amount calculation unit 106.
図13は、一例としての演算回路410を示す図である。
FIG. 13 is a diagram showing an arithmetic circuit 410 as an example.
図13を参照して、演算回路410は、4入力加算器411と、2ビット右シフタ412とを含む。
Referring to FIG. 13, the arithmetic circuit 410 includes a 4-input adder 411 and a 2-bit right shifter 412.
4入力加算器411は、4つの値を加算した値(以下、加算値という)を算出する。そして、4入力加算器411は、算出した加算値を、2ビット右シフタ412へ送信する。
The 4-input adder 411 calculates a value obtained by adding four values (hereinafter referred to as an added value). Then, the 4-input adder 411 transmits the calculated addition value to the 2-bit right shifter 412.
2ビット右シフタ412は、受信した加算値を4で除算した値を算出する。
The 2-bit right shifter 412 calculates a value obtained by dividing the received addition value by 4.
ここで、4入力加算器411には、4つの輝度DC係数が入力されるとする。この場合、4入力加算器411は、4つの輝度DC係数の加算値を算出し、当該加算値を、2ビット右シフタ412へ送信する。
Here, it is assumed that four luminance DC coefficients are input to the four-input adder 411. In this case, the 4-input adder 411 calculates an addition value of the four luminance DC coefficients, and transmits the addition value to the 2-bit right shifter 412.
そして、2ビット右シフタ412が受信した加算値を4で除算することにより輝度DC係数平均値が算出される。
Then, the luminance DC coefficient average value is calculated by dividing the addition value received by the 2-bit right shifter 412 by 4.
なお、演算回路410の構成によれば、算出された平均値の小数は切り捨てられるが、平均値の小数を四捨五入する場合、2ビット右シフタ412の後段に、丸め用の増分器を設ければ良い。
According to the configuration of the arithmetic circuit 410, the calculated decimal fraction of the average value is rounded down. However, when rounding off the decimal fraction of the average value, a rounding incrementer is provided after the 2-bit right shifter 412. good.
以上の輝度DC係数平均値を算出する処理が4回行われることにより、第1、第2、第3および第4マクロブロックの各々に対応する輝度DC係数平均値が算出される。
By performing the above process for calculating the average luminance DC coefficient four times, the average luminance DC coefficient corresponding to each of the first, second, third, and fourth macroblocks is calculated.
なお、光量計算部106が、1組のブロック対応DC係数群のみを取得している場合、図12のステップS213のDC係数平均値算出処理は終了する。
If the light quantity calculation unit 106 has acquired only one set of block-corresponding DC coefficient groups, the DC coefficient average value calculation process in step S213 in FIG. 12 ends.
再び、図12を参照して、DC係数平均値算出処理では、さらに、光量計算部106が、第1、第2、第3および第4マクロブロックにおける、輝度DC係数平均値の平均値、第1色差DC係数の平均値および第2色差DC係数の平均値を算出する。前述したように、第1色差DC係数は、図9のブロックCbに対応するDC係数である。また、第2色差DC係数は、図9のブロックCrに対応するDC係数である。
Referring to FIG. 12 again, in the DC coefficient average value calculation process, the light amount calculation unit 106 further determines the average value of the luminance DC coefficient average value in the first, second, third, and fourth macroblocks, the first value. The average value of the first color difference DC coefficient and the average value of the second color difference DC coefficient are calculated. As described above, the first color difference DC coefficient is a DC coefficient corresponding to the block Cb in FIG. The second color difference DC coefficient is a DC coefficient corresponding to the block Cr in FIG.
具体的には、光量計算部106が、上記処理により算出された第1、第2、第3および第4マクロブロックにそれぞれ対応する4つの輝度DC係数平均値の平均値(以下、ブロック輝度平均値という)を算出する。
Specifically, the light quantity calculation unit 106 calculates the average value of the four luminance DC coefficient average values corresponding to the first, second, third, and fourth macroblocks calculated by the above processing (hereinafter, block luminance average). Value).
すなわち、光量計算部106は、各マクロブロックに対応する4つの輝度DC係数を用いて、輝度DC係数平均値を算出する。また、光量計算部106は、当該各マクロブロックに対応する輝度DC係数平均値を用いて、当該各マクロブロックの輝度DC係数平均値の平均値であるブロック輝度平均値を算出する。つまり、光量計算部106は、各マクロブロックの各々に対応する4つの輝度DC係数を用いて、ブロック輝度平均値を算出する。
That is, the light quantity calculation unit 106 calculates the average luminance DC coefficient value using the four luminance DC coefficients corresponding to each macroblock. Further, the light quantity calculation unit 106 calculates a block luminance average value that is an average value of the luminance DC coefficient average values of the macroblocks using the luminance DC coefficient average values corresponding to the macroblocks. That is, the light quantity calculation unit 106 calculates the block luminance average value using the four luminance DC coefficients corresponding to each macroblock.
また、光量計算部106が、第1、第2、第3および第4マクロブロックにそれぞれ対応する4つの第1色差DC係数の平均値(以下、ブロック第1色差平均値という)を算出する。また、光量計算部106が、第1、第2、第3および第4マクロブロックにそれぞれ対応する4つの第2色差DC係数の平均値(以下、ブロック第2色差平均値という)を算出する。
Further, the light quantity calculation unit 106 calculates an average value of the four first color difference DC coefficients corresponding to the first, second, third, and fourth macroblocks (hereinafter referred to as a block first color difference average value). Further, the light amount calculation unit 106 calculates an average value (hereinafter referred to as a block second color difference average value) of four second color difference DC coefficients respectively corresponding to the first, second, third, and fourth macroblocks.
すなわち、ブロック輝度平均値、ブロック第1色差平均値およびブロック第2色差平均値の各々は、複数のDC係数を使用して算出される。
That is, each of the block luminance average value, the block first color difference average value, and the block second color difference average value is calculated using a plurality of DC coefficients.
ブロック輝度平均値、ブロック第1色差平均値およびブロック第2色差平均値の算出には、例えば、前述した演算回路410が3つ使用される。
For the calculation of the block luminance average value, the block first color difference average value, and the block second color difference average value, for example, three arithmetic circuits 410 described above are used.
図14は、3つの演算回路410を示す図である。
FIG. 14 is a diagram showing three arithmetic circuits 410.
ブロック輝度平均値、ブロック第1色差平均値およびブロック第2色差平均値の算出の処理は、前述した輝度DC係数平均値の算出の処理と同様なので詳細な説明は繰り返さない。
Since the process of calculating the block luminance average value, the block first color difference average value, and the block second color difference average value is the same as the process of calculating the luminance DC coefficient average value described above, detailed description will not be repeated.
算出されたブロック輝度平均値、ブロック第1色差平均値およびブロック第2色差平均値は、u番目の調光領域に対応する平均値である。
The calculated block luminance average value, block first color difference average value, and block second color difference average value are average values corresponding to the u-th dimming area.
ブロック輝度平均値、ブロック第1色差平均値およびブロック第2色差平均値を算出するためには、光量計算部106の内部に4つの演算回路410が形成されればよい。
In order to calculate the block luminance average value, the block first color difference average value, and the block second color difference average value, four arithmetic circuits 410 may be formed inside the light amount calculation unit 106.
再び、図12を参照して、ブロック輝度平均値、ブロック第1色差平均値およびブロック第2色差平均値が算出されると、DC係数平均値算出処理は終了する。
Referring to FIG. 12 again, when the block luminance average value, the block first color difference average value, and the block second color difference average value are calculated, the DC coefficient average value calculation process ends.
ステップS214では、光量制御RGB値を算出するための光量制御RGB値算出処理が光量計算部106により行われる。光量制御RGB値は、u番目の調光領域に対応するLEDモジュールの光量を制御するためのRGB値である。
In step S214, the light amount control unit 106 performs light amount control RGB value calculation processing for calculating the light amount control RGB value. The light amount control RGB value is an RGB value for controlling the light amount of the LED module corresponding to the u-th dimming region.
光量制御RGB値は、光量制御R値、光量制御G値および光量制御B値から構成される。
The light quantity control RGB value is composed of a light quantity control R value, a light quantity control G value, and a light quantity control B value.
光量制御R値、光量制御G値および光量制御B値は、ブロック輝度平均値(Y)、ブロック第1色差平均値(Cb)およびブロック第2色差平均値(Cr)を使用して、前述したYCbCr-RGB色変換の式1により算出される。なお、算出方法は、周知であるので詳細な説明は繰り返さない。
The light quantity control R value, the light quantity control G value, and the light quantity control B value are described above using the block luminance average value (Y), the block first color difference average value (Cb), and the block second color difference average value (Cr). It is calculated by Equation 1 of YCbCr-RGB color conversion. Since the calculation method is well known, detailed description will not be repeated.
ステップS215では、光量計算部106が、算出した光量制御RGB値を、LEDドライバIC110へ送信する。
In step S215, the light amount calculation unit 106 transmits the calculated light amount control RGB value to the LED driver IC 110.
ステップS216では、LEDドライバIC110が、受信した光量制御RGB値に対応するu番目の調光領域に対応するLEDモジュールの光量を制御する。
In step S216, the LED driver IC 110 controls the light amount of the LED module corresponding to the u-th dimming region corresponding to the received light amount control RGB value.
具体的には、LEDドライバIC110が、u番目の調光領域に対応するLEDモジュールの赤色LEDへ、光量制御R値に応じた電流を供給する。LEDドライバIC110は、例えば、光量制御R値が大きい程、多くの電流を、赤色LEDへ供給する。すなわち、光量制御R値が大きい程、赤色LEDが発する光量は大きくなる。
Specifically, the LED driver IC 110 supplies a current corresponding to the light amount control R value to the red LED of the LED module corresponding to the u-th dimming region. For example, the LED driver IC 110 supplies more current to the red LED as the light amount control R value is larger. That is, the larger the light quantity control R value, the larger the light quantity emitted by the red LED.
なお、上記処理に限定されず、LEDドライバIC110は、例えば、光量制御R値が小さい程、多くの電流を、赤色LEDへ供給してもよい。
The LED driver IC 110 may supply more current to the red LED as the light amount control R value is smaller, for example.
また、LEDドライバIC110が、u番目の調光領域に対応するLEDモジュールの2個の緑色LEDの各々へ、光量制御G値に応じた電流を供給する。LEDドライバIC110は、例えば、光量制御G値が大きい程、多くの電流を、各緑色LEDへ供給する。すなわち、光量制御G値が大きい程、緑色LEDが発する光量は大きくなる。
Further, the LED driver IC 110 supplies a current corresponding to the light amount control G value to each of the two green LEDs of the LED module corresponding to the u-th dimming region. For example, the LED driver IC 110 supplies more current to each green LED as the light amount control G value is larger. That is, the larger the light quantity control G value, the larger the light quantity emitted by the green LED.
なお、上記処理に限定されず、LEDドライバIC110は、光量制御G値が小さい程、多くの電流を、各緑色LEDへ供給してもよい。
The LED driver IC 110 may supply more current to each green LED as the light amount control G value is smaller.
また、LEDドライバIC110が、u番目の調光領域に対応するLEDモジュールの青色LEDへ、光量制御B値に応じた電流を供給する。LEDドライバIC110は、例えば、光量制御B値が大きい程、多くの電流を、青色LEDへ供給する。すなわち、光量制御B値が大きい程、青色LEDが発する光量は大きくなる。
Further, the LED driver IC 110 supplies a current corresponding to the light amount control B value to the blue LED of the LED module corresponding to the u-th dimming region. For example, the LED driver IC 110 supplies more current to the blue LED as the light amount control B value is larger. That is, the larger the light quantity control B value, the larger the light quantity emitted by the blue LED.
なお、上記処理に限定されず、LEDドライバIC110は、例えば、光量制御B値が小さい程、多くの電流を、青色LEDへ供給してもよい。
Note that the LED driver IC 110 may supply more current to the blue LED as the light amount control B value is smaller, for example, without being limited to the above processing.
この処理により、LEDモジュールを構成する、赤色LED、2個の緑色LEDおよび青色LEDは発光する。すなわち、LEDモジュールは、光量制御RGB値に応じた光量の光を発する。
By this processing, the red LED, the two green LEDs, and the blue LED constituting the LED module emit light. That is, the LED module emits light of a light amount corresponding to the light amount control RGB value.
すなわち、LEDドライバIC110は、光量制御RGB値に応じて、当該光量制御RGB値に対応するマクロブロックに対応するLEDモジュールの光量を制御する。つまり、LEDドライバIC110は、光量制御RGB値を利用して、当該光量制御RGB値に対応するマクロブロックに対応するLEDモジュールの光量を制御する。
That is, the LED driver IC 110 controls the light amount of the LED module corresponding to the macroblock corresponding to the light amount control RGB value according to the light amount control RGB value. That is, the LED driver IC 110 uses the light amount control RGB value to control the light amount of the LED module corresponding to the macroblock corresponding to the light amount control RGB value.
光量制御RGB値は、DC係数としてのブロック輝度平均値(Y)、ブロック第1色差平均値(Cb)およびブロック第2色差平均値(Cr)から算出される値である。
The light amount control RGB value is a value calculated from the block luminance average value (Y), the block first color difference average value (Cb), and the block second color difference average value (Cr) as DC coefficients.
すなわち、LEDドライバIC110は、ブロック輝度平均値、第1色差平均値および第2色差平均値を使用して算出される光量制御RGB値に応じて、当該光量制御RGB値に対応するマクロブロックに対応するLEDモジュールの光量を制御する。マクロブロックは、直交変換の対象となるブロックである。
That is, the LED driver IC 110 corresponds to the macroblock corresponding to the light control RGB value according to the light control RGB value calculated using the block luminance average value, the first color difference average value, and the second color difference average value. The light quantity of the LED module to be controlled is controlled. A macro block is a block to be subjected to orthogonal transformation.
したがって、LEDモジュールは、ブロック輝度平均値(Y)、ブロック第1色差平均値(Cb)およびブロック第2色差平均値(Cr)に基づいて発光する。すなわち、LEDドライバIC110は、ブロック輝度平均値(Y)、ブロック第1色差平均値(Cb)およびブロック第2色差平均値(Cr)から得られる値(光量制御RGB値)を用いて、LEDモジュールの光量を制御する。
Therefore, the LED module emits light based on the block luminance average value (Y), the block first color difference average value (Cb), and the block second color difference average value (Cr). In other words, the LED driver IC 110 uses the block luminance average value (Y), the block first color difference average value (Cb), and the block second color difference average value (Cr) to obtain the LED module. Control the amount of light.
ここで、ブロック輝度平均値、第1色差平均値および第2色差平均値の各々は、複数のDC係数の平均値である。すなわち、ブロック輝度平均値、第1色差平均値および第2色差平均値の各々は、複数のDC係数を使用して算出された値である。
Here, each of the block luminance average value, the first color difference average value, and the second color difference average value is an average value of a plurality of DC coefficients. That is, each of the block luminance average value, the first color difference average value, and the second color difference average value is a value calculated using a plurality of DC coefficients.
つまり、LEDドライバIC110は、k(1以上の整数)個のDC係数を使用して算出されるDC係数の平均値(例えば、ブロック輝度平均値)から得られる値(光量制御RGB値)を用いて、当該DC係数の平均値に対応するマクロブロックに対応するLEDモジュールの光量を制御する。
That is, the LED driver IC 110 uses a value (light quantity control RGB value) obtained from an average value (for example, block luminance average value) of DC coefficients calculated using k (integer of 1 or more) DC coefficients. Thus, the light quantity of the LED module corresponding to the macro block corresponding to the average value of the DC coefficient is controlled.
すなわち、LEDドライバIC110は、直交変換の対象のマクロブロックに対応するk個のDC係数から得られる値(光量制御RGB値)を用いて、k個のDC係数に対応するマクロブロックに対応するLEDモジュールの光量を制御する。当該DC係数は、直流成分のDCT係数である。
In other words, the LED driver IC 110 uses the value (light quantity control RGB value) obtained from the k DC coefficients corresponding to the macroblock to be orthogonally transformed, and the LED corresponding to the macroblock corresponding to the k DC coefficients. Control the light intensity of the module. The DC coefficient is a DCT coefficient of a direct current component.
つまり、LEDドライバIC110は、k個のDC係数から得られる値を用いて、LEDバックライトモジュール112に含まれる複数のLEDモジュールのうち、k個のDC係数に対応するマクロブロックに対応するLEDモジュールの光量を制御する。
That is, the LED driver IC 110 uses the value obtained from the k DC coefficients, and among the plurality of LED modules included in the LED backlight module 112, the LED module corresponding to the macroblock corresponding to the k DC coefficients. Control the amount of light.
なお、LEDドライバIC110は、LEDモジュールに対し画像の明暗調整なども行う。
The LED driver IC 110 also performs image brightness adjustment on the LED module.
ステップS217では、光量計算部106が、1フレームの画像(例えば、フルHD映像)に対応する全てのブロック対応DC係数群を取得したか否かを判定する。例えば、調光領域数が2025である場合、光量計算部106は、2025個のブロック対応DC係数群を取得したか否かを判定する。各ブロック対応DC係数群は、6つのDC係数(4つの輝度DC係数、第1色差DC係数、第2色差DC係数)から構成される。
In step S217, the light amount calculation unit 106 determines whether or not all block-corresponding DC coefficient groups corresponding to one frame image (for example, full HD video) have been acquired. For example, when the number of light control areas is 2025, the light amount calculation unit 106 determines whether 2025 block-corresponding DC coefficient groups have been acquired. Each block-corresponding DC coefficient group includes six DC coefficients (four luminance DC coefficients, a first color difference DC coefficient, and a second color difference DC coefficient).
ステップS217において、YESならば、このバックライト制御処理は終了する。一方、ステップS217において、NOならば、処理はステップS218に移行する。
If YES in step S217, the backlight control process ends. On the other hand, if NO at step S217, the process proceeds to step S218.
ステップS218では、光量計算部106が、uの値を1インクリメントする。
In step S218, the light amount calculation unit 106 increments the value of u by 1.
そして、再度、ステップS211の処理が行われる。
Then, the process of step S211 is performed again.
ステップS217でYESと判定されるまで、ステップS211~S216,S218の処理が、調光領域の数だけ繰り返されることにより、1フレームに対応するp個の調光領域にそれぞれ対応するp個のLEDモジュールの光量を制御することができる。
Until the determination in step S217 is YES, the processes in steps S211 to S216 and S218 are repeated by the number of dimming areas, thereby p LEDs corresponding to p dimming areas corresponding to one frame, respectively. The light quantity of the module can be controlled.
LCDパネル113が、例えば、1秒間に30フレームの映像を表示する場合、バックライト制御処理は、1/30秒毎に繰り返し行なわれる。これにより、LEDバックライトモジュール112に含まれるp個のLEDモジュールの光量を制御することができる。
For example, when the LCD panel 113 displays an image of 30 frames per second, the backlight control process is repeated every 1/30 seconds. Thereby, the light quantity of the p LED modules included in the LED backlight module 112 can be controlled.
なお、上記のLEDモジュールの制御と同期して、映像表示処理、音声出力処理が行われる。すなわち、リップシンクと呼ばれる映像と音響の同期化処理が施される。すなわち、ビデオストリームの復号処理およびオーディオストリームの復号処理は、並列して行われる。
In addition, video display processing and audio output processing are performed in synchronization with the control of the LED module. That is, a video and audio synchronization process called lip sync is performed. That is, the video stream decoding process and the audio stream decoding process are performed in parallel.
映像表示処理では、LCDドライバIC111が、ビデオ出力処理部105から受信する映像信号に基づく映像を、LCDパネル113に表示させるための制御を行う。
In the video display process, the LCD driver IC 111 performs control for causing the LCD panel 113 to display a video based on the video signal received from the video output processing unit 105.
具体的には、LCDドライバIC111は、ビデオ出力処理部105から受信する映像信号に基づいて、LCDパネル113の各画素をスキャンしながら駆動させると共に、倍速駆動、表示タイミング制御、コントラスト調整、AD変換なども行う。
Specifically, the LCD driver IC 111 drives each pixel of the LCD panel 113 while scanning based on the video signal received from the video output processing unit 105, and also double speed driving, display timing control, contrast adjustment, AD conversion. Also do.
音声出力処理では、オーディオ出力処理部108が、オーディオデコーダ107から受信した音声信号に基づく音声を、ステレオスピーカー114から出力させる制御を行う。
In the audio output process, the audio output processing unit 108 performs control to output audio based on the audio signal received from the audio decoder 107 from the stereo speaker 114.
上記各処理(LEDモジュールの制御、映像表示処理、音声出力処理)等の同期は、CPU115がシステム制御プログラムに基づいて、表示装置1000内の各部を制御することにより行われる。これにより、AV再生タイミングが同期する。
The synchronization of the above processes (LED module control, video display process, audio output process) and the like is performed by the CPU 115 controlling each unit in the display device 1000 based on the system control program. As a result, the AV playback timing is synchronized.
以上説明したように、本実施の形態によれば、各マクロブロックに対応するブロック対応DC係数群から算出された光量制御RGB値を使用して、LEDバックライトモジュール112に含まれるp個のLEDモジュールの光量を制御する。各ブロック対応DC係数群を構成する6つのDC係数は、ビデオストリームの復号時に得られる。そのため、各LEDモジュールを制御するために必要な演算量を大幅に削減することができる。
As described above, according to the present embodiment, p LEDs included in the LED backlight module 112 using the light amount control RGB value calculated from the block-corresponding DC coefficient group corresponding to each macroblock. Control the light intensity of the module. Six DC coefficients constituting each block corresponding DC coefficient group are obtained when the video stream is decoded. As a result, the amount of computation required to control each LED module can be greatly reduced.
すなわち、ビデオストリームの復号時に得られるDC係数を使用することにより、LEDバックライトモジュール112の制御に必要な演算量を効率よく削減することができる。
That is, by using the DC coefficient obtained at the time of decoding the video stream, it is possible to efficiently reduce the calculation amount necessary for controlling the LED backlight module 112.
したがって、LEDバックライトモジュール112の制御に必要な演算を行う演算回路(駆動回路)の規模を大幅に小さくすることができる。その結果、LEDバックライトモジュール112の駆動回路の消費電力を低減できる。また、バックライト駆動回路のコストを削減することにより、LEDバックライトを備えるディジタルテレビを低価格で実現できる。
Therefore, the scale of an arithmetic circuit (drive circuit) that performs arithmetic operations necessary for controlling the LED backlight module 112 can be significantly reduced. As a result, the power consumption of the drive circuit of the LED backlight module 112 can be reduced. In addition, by reducing the cost of the backlight driving circuit, a digital television provided with an LED backlight can be realized at a low price.
なお、各調光領域に対応するブロック内の画像を構成する複数の画素の画素値の平均値を利用することで、各LEDモジュールを制御することも考えられる。しかしながら、この手法では、RGB色空間で平均値を計算する必要がある。
It should be noted that each LED module may be controlled by using an average value of pixel values of a plurality of pixels constituting an image in a block corresponding to each dimming area. However, in this method, it is necessary to calculate an average value in the RGB color space.
しかしながら、本実施の形態では、YCbCr空間で平均値を計算することにより、情報量が輝度の1/4である色差に関する演算回路の規模を、上記手法に比べ1/4に削減することができる。
However, in the present embodiment, by calculating the average value in the YCbCr space, the scale of the arithmetic circuit related to the color difference whose information amount is 1/4 of the luminance can be reduced to 1/4 compared with the above method. .
本実施の形態では、ブロック単位で符号化された映像(動画)を表示する表示装置において、MPEG-2規格に基づく符号化における圧縮データ構造の特性を利用して、ビデオストリームから、各調光領域に対応するLEDモジュールを制御するための情報を的確に取得することができる。当該表示装置は、例えば、液晶ディジタルテレビである。
In the present embodiment, in a display device that displays video (moving image) encoded in units of blocks, each dimming is performed from a video stream using the characteristics of the compressed data structure in encoding based on the MPEG-2 standard. Information for controlling the LED module corresponding to the region can be accurately acquired. The display device is, for example, a liquid crystal digital television.
ブロックの平均画素値は、DCT変換されたブロックのDC係数として取り出せる。そのため、本実施の形態では、輝度Y及び色差Cb,CrのDC係数から、各LEDモジュールを駆動させるための信号を生成する。
The average pixel value of the block can be taken out as the DC coefficient of the block subjected to DCT conversion. Therefore, in the present embodiment, a signal for driving each LED module is generated from the luminance Y and the DC coefficients of the color differences Cb and Cr.
また、バックライトの制御単位となる調光領域をブロックの整数倍に設定すれば、該当する調光領域の制御値を各ブロックのDC係数の平均値として簡単に求めることができる。
Also, if the dimming area serving as the control unit of the backlight is set to an integral multiple of the block, the control value of the corresponding dimming area can be easily obtained as the average value of the DC coefficient of each block.
<第1の実施の形態の変形例>
第1の実施の形態の変形例では、LEDモジュールの構成のみが、第1の実施の形態と異なる。すなわち、図1のLEDバックライトモジュール112に含まれるp個のLEDモジュールの構成のみが異なる。 <Modification of the first embodiment>
In the modification of the first embodiment, only the configuration of the LED module is different from that of the first embodiment. That is, only the configuration of the p LED modules included in theLED backlight module 112 of FIG. 1 is different.
第1の実施の形態の変形例では、LEDモジュールの構成のみが、第1の実施の形態と異なる。すなわち、図1のLEDバックライトモジュール112に含まれるp個のLEDモジュールの構成のみが異なる。 <Modification of the first embodiment>
In the modification of the first embodiment, only the configuration of the LED module is different from that of the first embodiment. That is, only the configuration of the p LED modules included in the
第1の実施の形態の変形例では、LEDバックライトモジュール112に含まれる各LEDモジュールは、白色の光を発するLED(以下、白色LEDという)のみで構成される。
In the modification of the first embodiment, each LED module included in the LED backlight module 112 includes only an LED that emits white light (hereinafter, referred to as a white LED).
第1の実施の形態の変形例における表示装置は、図1の表示装置1000である。
The display device in the modification of the first embodiment is the display device 1000 in FIG.
本実施の形態の変形例においても、第1の実施の形態と同様に、ビデオストリームの復号処理、オーディオストリームの復号処理が行われる。
Also in the modification of the present embodiment, a video stream decoding process and an audio stream decoding process are performed as in the first embodiment.
また、第1の実施の形態と同様に、図11のDC係数群取得処理が行われる。
Also, as in the first embodiment, the DC coefficient group acquisition process of FIG. 11 is performed.
これにより、逆量子化部203が、マクロブロック単位で逆量子化を行う毎に、ブロック対応DC係数群を受信する。
Thus, every time the inverse quantization unit 203 performs inverse quantization in units of macroblocks, the block corresponding DC coefficient group is received.
本実施の形態の変形例では、図12のバックライト制御処理の代わりにバックライト制御処理Aが行われる。本実施の形態の変形例では、バックライト制御処理A以外の処理は、第1の実施の形態と同様に行われる。
In the modification of the present embodiment, a backlight control process A is performed instead of the backlight control process of FIG. In the modification of the present embodiment, processes other than the backlight control process A are performed in the same manner as in the first embodiment.
図15は、バックライト制御処理Aのフローチャートである。図15において、図12のステップ番号と同じステップ番号の処理は、第1の実施の形態で説明した処理と同様な処理が行なわれるので詳細な説明は繰り返さない。
FIG. 15 is a flowchart of the backlight control process A. In FIG. 15, the process with the same step number as that of FIG. 12 is the same as the process described in the first embodiment, and therefore detailed description will not be repeated.
ステップS213Aでは、DC係数平均値算出処理Aが行われる。DC係数平均値算出処理Aでは、図12のステップS213のDC係数平均値算出処理と比較して、ブロック第1色差平均値およびブロック第2色差平均値の算出が行われない点が異なる。それ以外は、DC係数平均値算出処理と同様なので詳細な説明は繰り返さない。
In step S213A, DC coefficient average value calculation processing A is performed. The DC coefficient average value calculation process A is different from the DC coefficient average value calculation process in step S213 of FIG. 12 in that the block first color difference average value and the block second color difference average value are not calculated. Other than that, since it is the same as the DC coefficient average value calculation processing, detailed description will not be repeated.
すなわち、DC係数平均値算出処理Aでは、ブロック輝度平均値のみが算出される。
That is, in the DC coefficient average value calculation process A, only the block luminance average value is calculated.
そして、ステップS215Aの処理が行われる。
Then, the process of step S215A is performed.
ステップS215Aでは、光量計算部106が、算出したブロック輝度平均値を、LEDドライバIC110へ送信する。
In step S215A, the light amount calculation unit 106 transmits the calculated block luminance average value to the LED driver IC 110.
ステップS216Aでは、LEDドライバIC110が、受信したブロック輝度平均値に対応するu番目の調光領域に対応するLEDモジュールの光量を制御する。
In step S216A, the LED driver IC 110 controls the light amount of the LED module corresponding to the u-th dimming area corresponding to the received block luminance average value.
具体的には、LEDドライバIC110が、u番目の調光領域に対応するLEDモジュールの白色LEDへ、ブロック輝度平均値に応じた電流を供給する。LEDドライバIC110は、例えば、ブロック輝度平均値が大きい程、多くの電流を、白色LEDへ供給する。すなわち、ブロック輝度平均値が大きい程、白色LEDが発する光量は大きくなる。
Specifically, the LED driver IC 110 supplies a current corresponding to the block luminance average value to the white LED of the LED module corresponding to the u-th dimming region. For example, the LED driver IC 110 supplies more current to the white LED as the block luminance average value increases. That is, the larger the block luminance average value, the greater the amount of light emitted by the white LED.
なお、上記処理に限定されず、LEDドライバIC110は、ブロック輝度平均値が小さい程、多くの電流を、白色LEDへ供給してもよい。
The LED driver IC 110 may supply more current to the white LED as the block luminance average value is smaller.
この処理により、LEDモジュールを構成する白色LEDは発光する。すなわち、LEDモジュールは、ブロック輝度平均値に応じた光量の光を発する。
This process causes the white LEDs constituting the LED module to emit light. That is, the LED module emits light having a light amount corresponding to the block luminance average value.
すなわち、LEDドライバIC110は、DC係数としてのブロック輝度平均値を使用して、LEDモジュールの光量を制御する。ブロック輝度平均値は、複数のDC係数を使用して算出された値である。
That is, the LED driver IC 110 controls the light amount of the LED module using the block luminance average value as a DC coefficient. The block luminance average value is a value calculated using a plurality of DC coefficients.
つまり、LEDドライバIC110は、k(1以上の整数)個のDC係数を使用して算出されるDC係数の平均値(ブロック輝度平均値)を用いて、当該DC係数の平均値に対応するマクロブロックに対応するLEDモジュールの光量を制御する。
That is, the LED driver IC 110 uses a DC coefficient average value (block luminance average value) calculated using k (integer of 1 or more) DC coefficients, and a macro corresponding to the DC coefficient average value. The light quantity of the LED module corresponding to the block is controlled.
つまり、LEDドライバIC110は、k個のDC係数から得られる値(ブロック輝度平均値)を用いて、LEDバックライトモジュール112に含まれる複数のLEDモジュールのうち、k個のDC係数に対応するマクロブロックに対応するLEDモジュールの光量を制御する。
That is, the LED driver IC 110 uses a value (block luminance average value) obtained from the k DC coefficients, and among the plurality of LED modules included in the LED backlight module 112, the macro corresponding to the k DC coefficients. The light quantity of the LED module corresponding to the block is controlled.
ステップS217では、第1の実施の形態と同様な処理が行なわれるので詳細な説明は繰り返さない。
In step S217, the same processing as that of the first embodiment is performed, and thus detailed description will not be repeated.
LCDパネル113が、例えば、1秒間に30フレームの映像を表示する場合、バックライト制御処理Aは、1/30秒毎に繰り返し行なわれる。これにより、LEDバックライトモジュール112に含まれるp個のLEDモジュールの光量を制御することができる。
For example, when the LCD panel 113 displays an image of 30 frames per second, the backlight control process A is repeated every 1/30 seconds. Thereby, the light quantity of the p LED modules included in the LED backlight module 112 can be controlled.
以上説明したように、本実施の形態の変形例によれば、ブロック第1色差平均値およびブロック第2色差平均値の算出が不要であり、また、光量制御RGB値の算出も不要である。したがって、本実施の形態の変形例では、第1の実施の形態よりもさらに、LEDバックライトモジュール112に含まれるp個のLEDモジュールを制御するために必要な演算量を削減することができる。
As described above, according to the modification of the present embodiment, it is not necessary to calculate the block first color difference average value and the block second color difference average value, and it is not necessary to calculate the light amount control RGB value. Therefore, in the modified example of the present embodiment, the amount of calculation required for controlling the p LED modules included in the LED backlight module 112 can be further reduced as compared with the first embodiment.
その結果、LEDモジュールの光量を制御するための値を演算するための演算回路の規模を、第1の実施の形態よりもさらに小さくすることができる。
As a result, the scale of the arithmetic circuit for calculating the value for controlling the light quantity of the LED module can be made smaller than that of the first embodiment.
なお、当然のことながら、本実施の形態の変形例によれば、第1の実施の形態と同様に、ビデオストリームの復号時に得られるDC係数を使用することにより、LEDバックライトモジュール112の制御に必要な演算量を効率よく削減することができるという効果も奏する。
As a matter of course, according to the modification of the present embodiment, as in the first embodiment, the control of the LED backlight module 112 is performed by using the DC coefficient obtained when the video stream is decoded. There is also an effect that it is possible to efficiently reduce the amount of calculation required for.
なお、第1の実施の形態および第1の実施の形態の変形例におけるLEDバックライト制御装置500は、例えば、図16に示されるような液晶ディジタルTVに内蔵される。すなわち、図16は、第1の実施の形態および第1の実施の形態の変形例における表示装置1000の外観図である。
Note that the LED backlight control device 500 in the first embodiment and the modified example of the first embodiment is incorporated in a liquid crystal digital TV as shown in FIG. 16, for example. That is, FIG. 16 is an external view of the display device 1000 according to the first embodiment and a modification of the first embodiment.
(機能ブロック図)
図17は、LEDバックライト制御装置2000の特徴的な機能構成を示すブロック図である。LEDバックライト制御装置2000は、LEDバックライト制御装置500および表示装置1000のいずれかに相当する。また、LEDバックライト制御装置2000は、LEDバックライト制御モジュールでもある。 (Function block diagram)
FIG. 17 is a block diagram showing a characteristic functional configuration of the LEDbacklight control device 2000. The LED backlight control device 2000 corresponds to either the LED backlight control device 500 or the display device 1000. The LED backlight control device 2000 is also an LED backlight control module.
図17は、LEDバックライト制御装置2000の特徴的な機能構成を示すブロック図である。LEDバックライト制御装置2000は、LEDバックライト制御装置500および表示装置1000のいずれかに相当する。また、LEDバックライト制御装置2000は、LEDバックライト制御モジュールでもある。 (Function block diagram)
FIG. 17 is a block diagram showing a characteristic functional configuration of the LED
つまり、図17は、LEDバックライト制御装置500および表示装置1000のいずれかの有する機能のうち、本発明に関わる主要な機能を示すブロック図である。
That is, FIG. 17 is a block diagram showing main functions related to the present invention among the functions of either the LED backlight control device 500 or the display device 1000.
LEDバックライト制御装置2000は、LEDバックライトを制御する。当該LEDバックライトは、映像の表示に使用される。また、当該LEDバックライトは、LEDを使用した複数のLEDモジュールを含む。
The LED backlight control device 2000 controls the LED backlight. The LED backlight is used for video display. The LED backlight includes a plurality of LED modules using LEDs.
LEDバックライト制御装置2000は、機能的には、取得部510と、光量制御部520とを備える。
Functionally, the LED backlight control device 2000 includes an acquisition unit 510 and a light amount control unit 520.
取得部510は、符号化データから、直交変換の対象のブロックに対応する直流成分のDCT係数であるDC係数をk(1以上の整数)個取得する。当該符号化データは、直交変換を伴う符号化の処理が、映像に対しブロック単位で行われることにより生成されたデータである。
The obtaining unit 510 obtains k (integer of 1 or more) DC coefficients that are DCT coefficients of the DC component corresponding to the block to be orthogonally transformed from the encoded data. The encoded data is data generated by performing an encoding process involving orthogonal transformation on a video in units of blocks.
取得部510は、例えば、図11のステップS111の処理を行う逆量子化部203を含むビデオデコーダ104、または、図12のステップS211における光量計算部106に相当する。
The acquisition unit 510 corresponds to, for example, the video decoder 104 including the inverse quantization unit 203 that performs the process of step S111 in FIG. 11 or the light amount calculation unit 106 in step S211 of FIG.
光量制御部520は、取得部510により取得されたk個のDC係数から得られる値を用いて、LEDバックライトモジュール112に含まれる複数のLEDモジュールのうち、k個のDC係数に対応するブロックに対応するLEDモジュールの光量を制御する。
The light quantity control unit 520 uses a value obtained from the k DC coefficients acquired by the acquisition unit 510, and among the plurality of LED modules included in the LED backlight module 112, a block corresponding to k DC coefficients. The light quantity of the LED module corresponding to is controlled.
光量制御部520は、例えば、ステップS216の処理を行うLEDドライバIC110に相当する。
The light quantity control unit 520 corresponds to, for example, the LED driver IC 110 that performs the process of step S216.
なお、図17のLEDバックライト制御装置2000に含まれる、取得部510および光量制御部520の全てまたは一部は、LSI(Large Scale Integration:大規模集積回路)等のハードウエアで構成されてもよい。また、取得部510および光量制御部520の全てまたは一部は、CPU等のプロセッサにより実行されるプログラムのモジュールであってもよい。
Note that all or part of the acquisition unit 510 and the light amount control unit 520 included in the LED backlight control device 2000 of FIG. 17 may be configured by hardware such as an LSI (Large Scale Integration). Good. In addition, all or part of the acquisition unit 510 and the light amount control unit 520 may be a program module executed by a processor such as a CPU.
以上、本発明におけるLEDバックライト制御装置500又は表示装置1000について、実施の形態に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、あるいは異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
As described above, the LED backlight control device 500 or the display device 1000 according to the present invention has been described based on the embodiments. However, the present invention is not limited to these embodiments. Unless it deviates from the meaning of this invention, the form which carried out various deformation | transformation which those skilled in the art can think to this embodiment, or the structure constructed | assembled combining the component in different embodiment is also contained in the scope of the present invention. .
また、上記のLEDバックライト制御装置500を構成する複数の構成要素の全てまたは一部は、ハードウエアで構成されてもよい。例えば、上記のLEDバックライト制御装置500を構成する複数の構成要素の全てまたは一部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されてもよい。
Further, all or some of the plurality of components constituting the LED backlight control device 500 may be configured by hardware. For example, all or some of the plurality of components constituting the LED backlight control device 500 may be configured by one system LSI (Large Scale Integration).
また、第1の実施の形態および第1の実施の形態の変形例において説明した各処理は、ソフトウェアで実現されても良い。そして、このソフトウェアをソフトウェアダウンロード等により配布しても良い。また、このソフトウェアをCD-ROMなどの記録媒体に記録して流布しても良い。なお、このことは、本明細書における他の実施の形態においても該当する。
In addition, each process described in the first embodiment and the modification of the first embodiment may be realized by software. Then, this software may be distributed by software download or the like. Further, this software may be recorded on a recording medium such as a CD-ROM and distributed. This also applies to other embodiments in this specification.
例えば、ビデオデコーダ104が行う各処理、光量計算部106が行う各処理を、CPU115がソフトウェアにより実行してもよい。
For example, the CPU 115 may execute each process performed by the video decoder 104 and each process performed by the light amount calculation unit 106 by software.
また、本発明は、LEDバックライト制御装置500が備える特徴的な構成部の動作をステップとするLEDバックライト制御方法として実現してもよい。また、そのような再生方法に含まれるステップをコンピュータに実行させるプログラムとして実現してもよい。また、本発明は、そのようなプログラムを格納するコンピュータ読み取り可能な記録媒体として実現されてもよい。そして、そのようなプログラムは、インターネット等の伝送媒体を介して配信されてもよい。
Further, the present invention may be realized as an LED backlight control method in which the operation of the characteristic components included in the LED backlight control device 500 is a step. Moreover, you may implement | achieve as a program which makes a computer perform the step contained in such a reproduction | regeneration method. Further, the present invention may be realized as a computer-readable recording medium that stores such a program. Such a program may be distributed via a transmission medium such as the Internet.
なお、上記第1の実施の形態および第1の実施の形態の変形例において、本発明のLEDバックライト制御装置500を、表示装置としての液晶ディジタルTVに内蔵される一構成要素として例示したが、これに限定されることはない。LEDバックライト制御装置500は、ポータブルDVDプレイヤーなど他の映像ディスプレイ製品に搭載されてもよい。
In the first embodiment and the modification of the first embodiment, the LED backlight control device 500 of the present invention is exemplified as one component incorporated in a liquid crystal digital TV as a display device. However, the present invention is not limited to this. The LED backlight control device 500 may be mounted on other video display products such as a portable DVD player.
なお、ビデオ出力処理部105から出力される映像信号とビデオデコーダ104から出力される映像信号とは異なる場合がある。そのため、LEDバックライト制御に別途対処が必要になる可能性がある。
Note that the video signal output from the video output processing unit 105 and the video signal output from the video decoder 104 may be different. For this reason, it may be necessary to separately deal with LED backlight control.
例えば、ビデオデコーダ104の出力映像をサムネイルとして矩形領域内に縮小表示し、他の領域にグラフィクス情報を表示する場合、グラフィクス領域のバックライトを当該グラフィクス映像情報に基づいて制御しなければならない。
For example, when the output video of the video decoder 104 is reduced and displayed as a thumbnail in the rectangular area and the graphics information is displayed in another area, the backlight of the graphics area must be controlled based on the graphics video information.
この場合、グラフィクス領域のバックライトの制御を無効化するような処理、具体的に、グラフィクス領域のLEDバックライトを一定の明度に固定する制御方法が選択肢の一つとして考えられる。
In this case, a process that invalidates the control of the backlight in the graphics area, specifically, a control method for fixing the LED backlight in the graphics area to a certain brightness is considered as one of the options.
例えば、ビデオデコーダ104により復号された映像情報に文字情報を重ね合わせて表示する場合、文字表示領域の調光制御を無効化し、該領域を一定光量に固定する制御方法が選択肢の一つとして考えられる。
For example, when displaying character information superimposed on video information decoded by the video decoder 104, a control method of disabling dimming control of the character display area and fixing the area to a constant light amount is considered as one of the options. It is done.
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
本発明は、LEDバックライトの制御に必要な演算量を効率よく削減可能なLEDバックライト制御装置として、利用することができる。
The present invention can be used as an LED backlight control device that can efficiently reduce the amount of calculation required for controlling the LED backlight.
また、本発明に係るLEDバックライト制御装置は、LEDバックライトの局所的調光を制御する回路として、液晶ディジタルTVや携帯電話、カーナビ、ポータブルDVDプレイヤーなどに組み込まれる。
Also, the LED backlight control device according to the present invention is incorporated in a liquid crystal digital TV, a mobile phone, a car navigation system, a portable DVD player, etc. as a circuit for controlling local light control of the LED backlight.
104 ビデオデコーダ
105 ビデオ出力処理部
106 光量計算部
109 LCD表示制御部
110 LEDドライバIC
111 LCDドライバIC
112 LEDバックライトモジュール
113 LCDパネル
203 逆量子化部
410 演算回路
500,2000 LEDバックライト制御装置
510 取得部
520 光量制御部
1000 表示装置104 Video decoder 105 Video output processing unit 106 Light amount calculation unit 109 LCD display control unit 110 LED driver IC
111 LCD driver IC
112LED backlight module 113 LCD panel 203 Inverse quantization unit 410 Arithmetic circuit 500, 2000 LED backlight control device 510 Acquisition unit 520 Light amount control unit 1000 Display device
105 ビデオ出力処理部
106 光量計算部
109 LCD表示制御部
110 LEDドライバIC
111 LCDドライバIC
112 LEDバックライトモジュール
113 LCDパネル
203 逆量子化部
410 演算回路
500,2000 LEDバックライト制御装置
510 取得部
520 光量制御部
1000 表示装置
111 LCD driver IC
112
Claims (8)
- 映像の表示に使用されるLED(Light Emitting Diode)バックライトであって、LEDを使用した複数のLEDモジュールを含むLEDバックライトを制御するLEDバックライト制御装置であって、
直交変換を伴う符号化の処理が、映像に対しブロック単位で行われることにより生成された符号化データから、前記直交変換の対象のブロックに対応する直流成分のDCT(Discrete Cosine Transform)係数であるDC係数をk(1以上の整数)個取得する取得部と、
前記取得部により取得されたk個の前記DC係数から得られる値を用いて、前記複数のLEDモジュールのうち、前記k個のDC係数に対応するブロックに対応するLEDモジュールの光量を制御する光量制御部と
を備えるLEDバックライト制御装置。 An LED (Light Emitting Diode) backlight used to display an image, and an LED backlight control device that controls an LED backlight including a plurality of LED modules using LEDs,
It is a DCT (Discrete Cosine Transform) coefficient of a direct current component corresponding to the block to be subjected to the orthogonal transformation from the coded data generated by performing the encoding process with the orthogonal transformation on a block basis. An acquisition unit for acquiring k (integer of 1 or more) DC coefficients;
A light amount for controlling a light amount of an LED module corresponding to a block corresponding to the k DC coefficients among the plurality of LED modules, using a value obtained from the k DC coefficients obtained by the obtaining unit. An LED backlight control device comprising: a control unit. - kは2以上の整数であり、
前記LEDバックライト制御装置は、さらに、
前記k個のDC係数の平均値であるDC係数平均値を算出する算出部を備え、
前記光量制御部は、前記k個のDC係数を使用して算出される前記DC係数平均値、または、該DC係数平均値から得られる値を用いて、前記DC係数平均値に対応するブロックに対応するLEDモジュールの光量を制御する
請求項1に記載のLEDバックライト制御装置。 k is an integer greater than or equal to 2,
The LED backlight control device further includes:
A calculation unit that calculates a DC coefficient average value that is an average value of the k DC coefficients;
The light quantity control unit uses the DC coefficient average value calculated using the k DC coefficients or a value obtained from the DC coefficient average value to a block corresponding to the DC coefficient average value. The LED backlight control device according to claim 1, wherein the light amount of the corresponding LED module is controlled. - 映像の表示に使用されるLEDバックライトであって、LEDを使用した複数のLEDモジュールを含むLEDバックライトを制御するLEDバックライト制御装置が行うLEDバックライト制御方法であって、
直交変換を伴う符号化の処理が、映像に対しブロック単位で行われることにより生成された符号化データから、前記直交変換の対象のブロックに対応する直流成分のDCT係数であるDC係数をk(1以上の整数)個取得する取得ステップと、
前記取得ステップにより取得されたk個の前記DC係数から得られる値を用いて、前記複数のLEDモジュールのうち、前記k個のDC係数に対応するブロックに対応するLEDモジュールの光量を制御する光量制御ステップと
を備えるLEDバックライト制御方法。 An LED backlight used for displaying an image, and an LED backlight control method performed by an LED backlight control device that controls an LED backlight including a plurality of LED modules using LEDs,
A DC coefficient, which is a DCT coefficient of a DC component corresponding to the block to be subjected to the orthogonal transformation, is obtained from coding data generated by performing an encoding process involving the orthogonal transformation on the video in units of blocks. An acquisition step of acquiring an integer of 1 or more,
A light amount for controlling the light amount of the LED module corresponding to the block corresponding to the k DC coefficients among the plurality of LED modules, using the value obtained from the k DC coefficients obtained in the obtaining step. An LED backlight control method comprising: a control step. - kは2以上の整数であり、
前記LEDバックライト制御方法は、さらに、
前記k個のDC係数の平均値であるDC係数平均値を算出する算出ステップを備え、
前記光量制御ステップでは、前記k個のDC係数を使用して算出される前記DC係数平均値、または、該DC係数平均値から得られる値を用いて、前記DC係数平均値に対応するブロックに対応するLEDモジュールの光量を制御する
請求項3に記載のLEDバックライト制御方法。 k is an integer greater than or equal to 2,
The LED backlight control method further includes:
A calculation step of calculating a DC coefficient average value that is an average value of the k DC coefficients;
In the light amount control step, a block corresponding to the DC coefficient average value is calculated using the DC coefficient average value calculated using the k DC coefficients or a value obtained from the DC coefficient average value. The LED backlight control method according to claim 3, wherein the light quantity of the corresponding LED module is controlled. - 映像の表示に使用されるLEDバックライトであって、LEDを使用した複数のLEDモジュールを含むLEDバックライトを制御するLEDバックライト制御モジュールであって、
直交変換を伴う符号化の処理が、映像に対しブロック単位で行われることにより生成された符号化データから、前記直交変換の対象のブロックに対応する直流成分のDCT係数であるDC係数をk(1以上の整数)個取得する取得部と、
前記取得部により取得されたk個の前記DC係数から得られる値を用いて、前記複数のLEDモジュールのうち、前記k個のDC係数に対応するブロックに対応するLEDモジュールの光量を制御する光量制御部と
を備えるLEDバックライト制御モジュール。 An LED backlight used for displaying an image, and an LED backlight control module for controlling an LED backlight including a plurality of LED modules using LEDs,
A DC coefficient, which is a DCT coefficient of a DC component corresponding to the block to be subjected to the orthogonal transformation, is obtained from coding data generated by performing an encoding process involving the orthogonal transformation on the video in units of blocks. An integer greater than or equal to 1)
A light amount for controlling the light amount of the LED module corresponding to the block corresponding to the k DC coefficients among the plurality of LED modules, using a value obtained from the k DC coefficients obtained by the obtaining unit. With control
LED backlight control module comprising: - kは2以上の整数であり、
前記LEDバックライト制御モジュールは、さらに、
前記k個のDC係数の平均値であるDC係数平均値を算出する算出部を備え、
前記光量制御部は、前記k個のDC係数を使用して算出される前記DC係数平均値、または、該DC係数平均値から得られる値を用いて、前記DC係数平均値に対応するブロックに対応するLEDモジュールの光量を制御する
請求項5に記載のLEDバックライト制御モジュール。 k is an integer greater than or equal to 2,
The LED backlight control module further includes:
A calculation unit that calculates a DC coefficient average value that is an average value of the k DC coefficients;
The light quantity control unit uses the DC coefficient average value calculated using the k DC coefficients or a value obtained from the DC coefficient average value to a block corresponding to the DC coefficient average value. The LED backlight control module according to claim 5, wherein the light quantity of the corresponding LED module is controlled. - 映像の表示に使用されるLEDバックライトであって、LEDを使用した複数のLEDモジュールを含むLEDバックライトを制御する表示装置であって、
直交変換を伴う符号化の処理が、映像に対しブロック単位で行われることにより生成された符号化データから、前記直交変換の対象のブロックに対応する直流成分のDCT係数であるDC係数をk(1以上の整数)個取得する取得部と、
前記取得部により取得されたk個の前記DC係数から得られる値を用いて、前記複数のLEDモジュールのうち、前記k個のDC係数に対応するブロックに対応するLEDモジュールの光量を制御する光量制御部と
を備える表示装置。 An LED backlight used for displaying an image, and a display device for controlling an LED backlight including a plurality of LED modules using LEDs,
A DC coefficient, which is a DCT coefficient of a DC component corresponding to the block to be subjected to the orthogonal transformation, is obtained from coding data generated by performing an encoding process involving the orthogonal transformation on the video in units of blocks. (An integer greater than or equal to 1)
A light amount for controlling a light amount of an LED module corresponding to a block corresponding to the k DC coefficients among the plurality of LED modules, using a value obtained from the k DC coefficients obtained by the obtaining unit. A display device comprising: a control unit. - kは2以上の整数であり、
前記表示装置は、さらに、
前記k個のDC係数の平均値であるDC係数平均値を算出する算出部を備え、
前記表示装置は、前記k個のDC係数を使用して算出される前記DC係数平均値、または、該DC係数平均値から得られる値を用いて、前記DC係数平均値に対応するブロックに対応するLEDモジュールの光量を制御する
請求項7に記載の表示装置。
k is an integer greater than or equal to 2,
The display device further includes:
A calculation unit that calculates a DC coefficient average value that is an average value of the k DC coefficients;
The display device corresponds to a block corresponding to the DC coefficient average value using the DC coefficient average value calculated using the k DC coefficients or a value obtained from the DC coefficient average value. The display device according to claim 7, wherein the light amount of the LED module to be controlled is controlled.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009165097 | 2009-07-13 | ||
JP2009-165097 | 2009-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011007503A1 true WO2011007503A1 (en) | 2011-01-20 |
Family
ID=43449115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/004194 WO2011007503A1 (en) | 2009-07-13 | 2010-06-24 | Led backlight control device, led backlight control method, led backlight control module, and display device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011007503A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09307910A (en) * | 1996-03-14 | 1997-11-28 | Matsushita Electric Ind Co Ltd | Image signal processing apparatus and image signal processing method |
JP2005241677A (en) * | 2004-02-24 | 2005-09-08 | Matsushita Electric Ind Co Ltd | Display device and display method |
JP2005295510A (en) * | 2004-03-09 | 2005-10-20 | Canon Inc | Resolution conversion method and apparatus |
JP2008058896A (en) * | 2006-09-04 | 2008-03-13 | Mitsubishi Electric Corp | Image display device and image display method |
JP2009042651A (en) * | 2007-08-10 | 2009-02-26 | Victor Co Of Japan Ltd | Liquid crystal display device and image display method thereof |
-
2010
- 2010-06-24 WO PCT/JP2010/004194 patent/WO2011007503A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09307910A (en) * | 1996-03-14 | 1997-11-28 | Matsushita Electric Ind Co Ltd | Image signal processing apparatus and image signal processing method |
JP2005241677A (en) * | 2004-02-24 | 2005-09-08 | Matsushita Electric Ind Co Ltd | Display device and display method |
JP2005295510A (en) * | 2004-03-09 | 2005-10-20 | Canon Inc | Resolution conversion method and apparatus |
JP2008058896A (en) * | 2006-09-04 | 2008-03-13 | Mitsubishi Electric Corp | Image display device and image display method |
JP2009042651A (en) * | 2007-08-10 | 2009-02-26 | Victor Co Of Japan Ltd | Liquid crystal display device and image display method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11178412B2 (en) | Method and apparatus of encoding and decoding a color picture | |
US7483486B2 (en) | Method and apparatus for encoding high dynamic range video | |
US11006151B2 (en) | Method and device for encoding both a HDR picture and a SDR picture obtained from said HDR picture using color mapping functions | |
US11032579B2 (en) | Method and a device for encoding a high dynamic range picture, corresponding decoding method and decoding device | |
JP5358482B2 (en) | Display drive circuit | |
US10666990B2 (en) | Method and device for matching colors between color pictures of different dynamic range | |
KR102176398B1 (en) | A image processing device and a image processing method | |
JP2009512896A (en) | Display device, display control device, and display method | |
US20180005357A1 (en) | Method and device for mapping a hdr picture to a sdr picture and corresponding sdr to hdr mapping method and device | |
JP2009518682A (en) | Display device and display method | |
AU2016203181B2 (en) | Method, apparatus and system for determining a luma value | |
CN110830804A (en) | Method and apparatus for signaling picture/video format | |
US9374576B2 (en) | Fused region-based VDR prediction | |
JP4375313B2 (en) | Image / audio output system, image / audio data output apparatus, audio processing program, and recording medium | |
EP3051489A1 (en) | A method and apparatus of encoding and decoding a color picture | |
WO2011007503A1 (en) | Led backlight control device, led backlight control method, led backlight control module, and display device | |
JP5096986B2 (en) | Moving image display device, moving image display method, and integrated circuit | |
EP3099073A1 (en) | Method and device of encoding/decoding a hdr and a sdr picture in/from a scalable bitstream | |
JP2014186275A (en) | Display device, television receiver, and method of controlling display device | |
JP6628400B2 (en) | Video processing apparatus, video processing method and program | |
CN117396953A (en) | Pixel modification to reduce power consumption of display devices | |
HK40081874A (en) | A method and apparatus of encoding and decoding a color picture | |
WO2024126030A1 (en) | Method and device for encoding and decoding attenuation map for energy aware images | |
WO2024213421A1 (en) | Method and device for energy reduction of visual content based on attenuation map using mpeg display adaptation | |
CN107592552A (en) | Display system, source device, receiving device and image display method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10799567 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10799567 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |