WO2011005730A1 - A catalytic laundry detergent composition comprising relatively low levels of water-soluble electrolyte - Google Patents
A catalytic laundry detergent composition comprising relatively low levels of water-soluble electrolyte Download PDFInfo
- Publication number
- WO2011005730A1 WO2011005730A1 PCT/US2010/041020 US2010041020W WO2011005730A1 WO 2011005730 A1 WO2011005730 A1 WO 2011005730A1 US 2010041020 W US2010041020 W US 2010041020W WO 2011005730 A1 WO2011005730 A1 WO 2011005730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laundry detergent
- detergent composition
- composition according
- catalysts
- alkyl
- Prior art date
Links
- 0 *C(C*1=Cc2ccccc2CC1)CO* Chemical compound *C(C*1=Cc2ccccc2CC1)CO* 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
Definitions
- the solid laundry detergent compositions of the present invention are highly catalytic, and comprise relatively low levels of water-soluble electrolytes. These solid detergent compositions exhibit excellent cleaning performance, show improved catalytic deposition on the fabric, and also show improved rinsing profiles. The solid detergent compositions also have extremely good environmental profiles.
- Laundry detergent manufactures continually seek to improve the performance of their solid products, whilst at the same time improve their environmental profile.
- Catalysts such as enzymes and/or bleach catalysts have been used to improve the performance of the detergent product
- Catalytic laundry detergent compositions are known, such as WO2004/074419, which alleges that enzymes can be used to partly or fully replace detergent components such as surfactants, builders, polymers and bleaches and still provide superior cleaning. It is also of course common general knowledge that catalysts lower the activation energy of the reactions they catalyse. However, there is very little understanding about the activation energy reduction achieved by catalysts in a laundry detergent context, and there is little understanding or appreciation about how one must control the catalytic capability of a laundry detergent composition relative to other ingredients present in the detergent matrix.
- the inventors have found that reducing the electrolytic strength of the solid laundry detergent composition relative to the increasing its catalytic capability provides a solid laundry detergent composition having improved cleaning performance and improved rinsing profile.
- the present invention relates to a solid laundry detergent composition defined by claim 1.
- the solid laundry detergent composition comprises multiple catalysts (i.e. more than one), preferably at least three, or at least four, or at least five, or at least six, or at least seven, or at least eight, or at least nine, or at least ten, or at least eleven, or even at least twelve catalysts.
- the catalysts are defined in more detail below.
- the catalytic capability of the solid laundry detergent composition is controlled relative to the electrolytic strength of the laundry detergent composition such that the ratio of (i) the total reduction in activation energy in kilojoules per mole achieved by the catalysts to (ii) the electrolytic strength of the laundry detergent composition at a concentration of lg/1 in de-ionized water and at a temperature of 25°C in mScm "1 laundry detergent composition is at least 30, preferably at least 40, or at least 50, or at least 60, or at least 70, or at least 80, or at least 90, or at least 100, or at least 120, or at leastl40, or at least 160, or at least 180, or even at least 200.
- the composition can be in any suitable solid form, such as free-flowing particulate form, or unit dose form including pouch, tablet, sheet, or any combination thereof.
- Preferred forms include detergent sheets, detergent pouches including single and multi-compartment pouches, detergent powders including agglomerates, spray-dried powder, prills, extrudates, flakes, noodles, needles and any combination thereof.
- the composition is in free-flowing particulate form, for example such that the composition is in the form of separate discrete particles.
- the composition is a fully finished laundry detergent composition.
- the composition comprises a plurality of chemically different particles populations.
- the composition is not just a component of a laundry detergent composition that can be incorporated into a laundry detergent composition (such as an enzyme prill, or a surfactant particle, or a bleach particle), it is a fully finished laundry detergent composition. That said, it is within the scope of the present invention for an additional rinse additive composition (e.g. fabric conditioner or enhancer), or a main wash additive composition (e.g. bleach additive) to also be used in combination with the laundry detergent composition during the method of the present invention. Although, it may be preferred for no bleach additive composition is used in combination with the laundry detergent composition during the method of the present invention.
- an additional rinse additive composition e.g. fabric conditioner or enhancer
- a main wash additive composition e.g. bleach additive
- the electrolytic strength of the laundry detergent composition it is highly preferred to reduce the electrolytic strength of the laundry detergent composition, however care must be taken that the electrolytes one removes from, or reduces the level of in, the composition do not significantly impair the performance of the composition. It is highly preferred to remove electrolytes such as sodium sulphate and/or sodium chloride compared to removing ionic surfactant electrolytes. However, if the electrolytic strength of the composition needs to be reduced further, then the level of ionic surfactants can of course be lowered, or the ionic surfactants can be removed from the formulation.
- the composition comprises from Owt% to 10wt%, preferably to 8wt%, or to 6wt% or to 2wt% sodium sulphate.
- the composition may even be substantially free of sodium sulphate.
- substantially free means comprises no deliberately added, however, substantially free for the purpose of the present invention, does still allow for the trace amounts of sodium sulphate that are typically present in enzyme prills to be incorporated when the enzyme prill is deliberately added to the composition.
- the composition comprises from Owt% to 10wt%, preferably to 8wt%, or to 6wt% or to 2wt% sodium chloride.
- the composition may even be substantially free of sodium chloride. Substantially free means comprises no deliberately added.
- the composition may comprise from Owt% to 10wt% sodium carbonate, or even from Owt% to 8wt%, or even from Owt% to 6wt% sodium carbonate.
- composition preferably comprises less than 10wt% reducing sugar.
- the solid laundry detergent composition comprises multiple catalysts (i.e. more than one), preferably at least three, or at least four, or at least five, or at least six, or at least seven, or at least eight, or at least nine, or at least ten, or at least eleven, or even at least twelve catalysts.
- a mixture of enzymes that act on substantially the same substrate type are considered to be one catalyst.
- two different peptidases (proteases) present in a laundry detergent composition are, for the purpose of the present invention, considered to be single catalyst.
- the activation energy of an uncatalysed detergent reaction is considered to be 5OkJmOl "1 .
- the activation energy against the protein substrate for the composition comprising protease A and protease B is 2OkJmOl "1 , then the reduction in activation energy achieved by the protease present in this composition is considered to be 3OkJmOl "1 total (i.e.
- the catalysts reduce the activation energy by a total of at least lOOkjmol "1 , preferably at least 12OkJmOl “1 , preferably at least 14OkJmOl “1 , preferably at least l ⁇ Okjmol "1 , preferably at least 18OkJmOl “1 , preferably at least 20OkJmOl “1 , preferably at least 22OkJmOl “1 , preferably at least 24OkJmOl “1 , preferably at least 26OkJmOl “1 , preferably at least 28OkJmOl “1 , preferably at least 30OkJmOl "1 , preferably at least 32OkJmOl “1 , preferably at least 34OkJmOl “1 , preferably at least 36OkJmOl “1 , preferably at least 38OkJmOl “1 , preferably at least 40OkJmOl “1 .
- Any enzyme can be a suitable catalyst.
- Preferred suitable catalysts are selected hemicellulases, peroxidases, proteases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, mono-oxygenase, di- oxygenase, carbohydrate oxidase, peroxidase, perhydrolase, choline oxidase, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, ⁇ -glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, oxidoreductases, dehydrogenases, xyloglucanases, amylases, cellulases,
- enzymes that digest substantially the same substrate type, and therefore any combinations thereof would be considered to be one catalyst for the purpose of the present invention are classified accordingly below:
- oxidoreductases categorized as E.C. 1.1.3.x are glucose oxidase, aryl-alcohol oxidase and galactose oxidase.
- a suitable glucose oxidase is OxyGo® 1500 (Danisco).
- Lipases have E.C. classification 3.1.1.3, as defined by EC classification, IUP AC-IUB MB. Suitable lipases include both wild-types and genetically modified variants thereof possessing at least about 90%, at least about 95%, at least about 98%, or at least about 99%, or 100% identity with said lipase.
- the lipase is a variant of the wild- type lipase from Thermomyces lanuginosus comprising the T231R and N233R mutations.
- the wild-type sequence is the 269 amino acids (amino acids 23 - 291) of the Swissprot accession number Swiss-Prot 059952 (derived from Thermomyces lanuginosus (Humicola lanuginosa)).
- Suitable commercially available lipases include Lipolase®, Lipolase Ultra®, Lipex® and Lipolex®, all available from Novozymes A/S.
- Suitable tannases are disclosed in WO 06/002955A2. 8. Enzymes from E.C. 3.1.1.42 (chlorogenate hydrolase)
- Suitable ferulic acid etserases are derived from Aspergillus awamori, Aspergillus tubingensis, Aspergillus niger, Talaromyces stipatus, Piromyces equi cellvibrio japonicus, Talaromyces stipatus and Clostridium Japonicus. Further suitable ferulic acid esterases are disclosed in Acta Biochimica et Biophysica Sinica, 2007, 39(11):811- 828, which is incorporated herein by reference.
- Suitable cutinases as defined by E.C. Class 3.1.1.74. may have at least about 90% or about 95%, or about 98% identity with a wild-type from one of Fusarium solani, Pseudomonas Mendocina or Humicola Insolens.
- Alpha amylases belong to E.C. Class 3.2.1.1. Suitable alpha-amylases include those of bacterial or fungal origin. Chemically or genetically modified mutants (variants) are included.
- a preferred alkaline alpha-amylase is derived from a strain of Bacillus, such as Bacillus licheniformis, Bacillus amyloliquefaciens, Bacillus stearothermophilus, Bacillus subtilis, or other Bacillus sp., such as Bacillus sp. NCIB 12289, NCIB 12512, NCIB 12513, DSM 9375 (USP 7,153,818) DSM 12368, DSMZ no. 12649, KSM AP1378 (WO 97/00324), KSM K36 or KSM K38 (EP 1,022,334).
- Preferred amylases include:
- Suitable commercially available alpha-amylases are DURAMYL®, LIQUEZYME® TERMAMYL®, TERMAMYL ULTRA®, NATALASE®, SUPRAMYL®, STAINZYME®, STAINZYME PLUS®, FUNGAMYL® and BAN® (Novozymes A/S), BIOAMYLASE - D(G), BIOAMYLASE® L (Biocon India Ltd.), KEMZYM® AT 9000 (Biozym Ges. m.b.H, Austria), RAPIDASE®, PURASTAR®, OPTISIZE HT PLUS® and PURASTAR OXAM® (Genencor International Inc.) and KAM® (KAO, Japan).
- preferred amylases are NATALASE®, STAINZYME® and STAINZYME PLUS®.
- Enzymes from E.C. 3.2.1.4 (cellulase), E.C. 3.2.1.21 ( ⁇ -glucosidase) and E.C. 3.2.1.91 (cellulose 1,4- ⁇ -cellobiosidase)
- Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila, Fusarium oxysporum disclosed in US 4,435,3077, US 5,648,263, US 5,691,178, US 5,776,757 and WO 89/09259.
- cellulases are the alkaline or neutral cellulases having colour care benefits.
- Examples of such cellulases are cellulases described in EP 0 495 257, EP 0 531 372, WO 96/1 1262, WO 96/29397, WO 98/08940.
- Other examples are cellulase variants such as those described in WO 94/07998, EP 0 531 315, US 5,457,046, US 5,686,593, US 5,763,254, WO 95/24471 , WO 98/12307 and WO 99/01544, and WO 01/062903.
- cellulases include Celluclean®, Celluzyme®, Renozyme® and Carezyme®; (Novozymes A/S), Clazinase®;, and Puradax HA®; (Genencor
- Particularly suitable cellulases are variants of the Family 44 cellulase showing xyloglucanase activity disclosed in WO 2001/062903 (Novozymes).
- Enzymes from E.C. 3.2.1.155 (xyloglucan-specific exo- ⁇ -l,4-glucanase).
- proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically or genetically modified mutants are included.
- the protease may be a serine protease, preferably an alkaline microbial protease or a trypsin-like protease. Examples of neutral or alkaline proteases include:
- subtilisins EC 3.4.21.62
- Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii, and Cellumonas described in US 6,312,936 Bl, US 5,679,630, US 4,760,025, US5,030,378, WO 05/052146, DEA6022216A1 and DEA 6022224A1.
- trypsin-like proteases are trypsin (e.g., of porcine or bovine origin) and the Fusarium protease described in WO 89/06270.
- Preferred proteases are those derived from the BPN' and Carlsberg families, especially the subtilisin BPN' protease derived from Bacillus amyloliquefaciens.
- the protease is a variant of the subtilisin BPN' wild-type enzyme dervied from Bacillus amyloliquefaciens that contains the Y217L mutation.
- the subtilisin BPN' wild-type enzyme sequence is the 275 amino acids (amino acids 108-382) of the Swissprot accession no. P00782 (derived from Bacillus amyloliquefaciens).
- Preferred commercially available protease enzymes include those sold under the trade names Alcalase®, Savinase®, Primase®, Durazym®, Polarzyme®, Kannase®, Liquanase®, Ovozyme®, Neutrase®, Everlase® and Esperase® by Novozymes A/S (Denmark), those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Properase®, Purafect®, Purafect Prime®, Purafect Ox®, FN3® , FN4®, Excellase® and Purafect OXP® by Genencor International, and those sold under the tradename Opticlean® and Optimase® by Solvay Enzymes.
- the preferred protease is that sold under the tradename Purafect Prime®, supplied by Genencor International. 19. Enzymes from E.C. 4.2.2.2 (pectate lyase)
- the enzyme may comprise a pectate lyase.
- pectate lyases are described in WO 00/42151 and WO 00/42147.
- Preferred pectate lyases are sold under the tradenames Pectawash® and Pectaway® by Novozymes A/S.
- Transition metal bleach catalysts are suitable catalysts.
- the transition metal bleach catalyst typically comprises a transition metal ion, preferably selected from transition metal selected from the group consisting of Mn(II), Mn(III), Mn(IV), Mn(V), Fe(II), Fe(III), Fe(IV), Co(I), Co(II), Co(III), Ni(I), Ni(II), Ni(III), Cu(I), Cu(II), Cu(III), Cr(II), Cr(III), Cr(IV), Cr(V), Cr(VI), V(III), V(IV), V(V), Mo(IV), Mo(V), Mo(VI), W(IV), W(V), W(VI), Pd(II), Ru(II), Ru(III), and Ru(IV), more preferably Mn(II), Mn(III), Mn(IV), Fe(II), Fe(III), Cr(II), Cr(III), Cr(IV), Cr(V), and Cr(VI).
- the transition metal bleach catalyst typically comprises a ligand, preferably a
- the macropolycyclic ligand more preferably a cross-bridged macropolycyclic ligand.
- the transition metal ion is preferably coordinated with the ligand.
- the ligand comprises at least four donor atoms, at least two of which are bridgehead donor atoms.
- the cross-bridged macropolycyclic ligand is coordinated by four or five donor atoms to the same transition metal and comprises:
- an organic macrocycle ring containing four or more donor atoms selected from N and optionally O and S, at least two of these donor atoms being N (preferably at least 3, more preferably at least 4, of these donor atoms are N), separated from each other by covalent linkages of 2 or 3 non-donor atoms, two to five (preferably three to four, more preferably four) of these donor atoms being coordinated to the same transition metal in the complex;
- a cross-bridging chain which covalently connects at least 2 non-adjacent N donor atoms of the organic macrocycle ring, said covalently connected non-adjacent N donor atoms being bridgehead N donor atoms which are coordinated to the same transition metal in the complex, and wherein said cross-bridged chain comprises from 2 to about 10 atoms (preferably the cross-bridged chain is selected from 2, 3 or 4 non-donor atoms, and 4-6 non-donor atoms with a further, preferably N, donor atom); and
- non-macropolycyclic ligands preferably selected from the group consisting of H 2 O, ROH, NR 3 , RCN, OH “ , OOH “ , RS “ , RO “ , RCOO “ , OCN “ , SCN “ , N 3 “ , CN “ , F, Cl “ , Br “ , I “ , O 2 “ , NO 3 “ , NO 2 “ , SO 4 2” , SO 3 2” , PO 4 3” , organic phosphates, organic
- phosphonates organic sulfates, organic sulfonates, and aromatic N donors such as pyridines, pyrazines, pyrazoles, imidazoles, benzimidazoles, pyrimidines, triazoles and thiazoles with R being H, optionally substituted alkyl, optionally substituted aryl.
- a suitable transition metal bleach catalyst comprises a complex of a transition metal and a macropolycyclic rigid ligand, preferably a cross-bridged macropolycyclic ligand, wherein:
- said transition metal is selected from the group consisting of Mn(II), Mn(III), Mn(IV), Mn(V), Fe(II), Fe(III), Fe(IV), Co(I), Co(II), Co(III), Ni(I), Ni(II), Ni(III), Cu(I), Cu(II), Cu(III), Cr(II), Cr(III), Cr(IV), Cr(V), Cr(VI), V(III), V(IV), V(V), Mo(IV), Mo(V), Mo(VI), W(IV), W(V), W(VI), Pd(II), Ru(II), Ru(III), and Ru(IV);
- said macropolycyclic rigid ligand is coordinated by at least four, preferably four or five, donor atoms to the same transition metal and comprises:
- an organic macrocycle ring containing four or more donor atoms preferably at least 3, more preferably at least 4, of these donor atoms are N
- donor atoms preferably at least 3, more preferably at least 4, of these donor atoms are N
- covalent linkages of at least one, preferably 2 or 3, non-donor atoms, two to five (preferably three to four, more preferably four) of these donor atoms being coordinated to the same transition metal in the complex
- linking moiety preferably a cross-bridging chain, which covalently connects at least 2 (preferably non-adjacent) donor atoms of the organic macrocycle ring, said covalently connected (preferably non-adjacent) donor atoms being bridgehead donor atoms which are coordinated to the same transition metal in the complex, and wherein said linking moiety (preferably a cross-bridged chain) comprises from 2 to about 10 atoms (preferably the cross- bridged chain is selected from 2, 3 or 4 non-donor atoms, and 4-6 non-donor atoms with a further donor atom), including for example, a cross-bridge which is the result of a Mannich condensation of ammonia and formaldehyde; and
- non-macropolycyclic ligands preferably monodentate ligands, such as those selected from the group consisting of H2O, ROH, NR3, RCN, OH " , 0OH " ,
- organic phosphates organic phosphonates, organic sulfates, organic sulfonates, and aromatic N donors
- aromatic N donors such as pyridines, pyrazines, pyrazoles, imidazoles, benzimidazoles, pyrimidines, triazoles and thiazoles with R being H, optionally substituted alkyl, optionally substituted aryl (specific examples of monodentate ligands including phenolate, acetate or the like).
- Suitable cross-bridged macropolycyclic ligands include:
- each "E” is the moiety (CR n ) a -X-(CR n ) a ', wherein -X- is selected from the group consisting of O, S, NR and P, or a covalent bond, and preferably X is a covalent bond and for each E the sum of a + a' is independently selected from 1 to 5, more preferably 2 and 3;
- each "R” is independently selected from H, alkyl, alkenyl, alkynyl, aryl, alkylaryl (e.g., benzyl), and heteroaryl, or two or more R are covalently bonded to form an aromatic, heteroaromatic, cycloalkyl, or heterocycloalkyl ring;
- each "D” is a donor atom independently selected from the group consisting of N, O, S, and P, and at least two D atoms are bridgehead donor atoms coordinated to the transition metal (in the preferred embodiments, all donor atoms designated D are donor atoms which coordinate to the transition metal, in contrast with heteroatoms in the structure which are not in D such as those which may be present in E; the non-D heteroatoms can be non-coordinating and indeed are non-coordinating whenever present in the preferred embodiment);
- B is a carbon atom or "D” donor atom, or a cycloalkyl or heterocyclic ring;
- n is an integer independently selected from 1 and 2, completing the valence of the carbon atoms to which the R moieties are covalently bonded;
- each "n"' is an integer independently selected from 0 and 1, completing the valence of the D donor atoms to which the R moieties are covalently bonded;
- each "n”" is an integer independently selected from 0, 1, and 2 completing the valence of the B atoms to which the R moieties are covalently bonded;
- each "a” and “a'” is an integer independently selected from 0-5, preferably a + a' equals 2 or 3, wherein the sum of all "a” plus “a”' in the ligand of formula (I) is within the range of from about 6 (preferably 8) to about 12, the sum of all "a” plus “a”' in the ligand of formula (II) is within the range of from about 8 (preferably 10) to about 15, and the sum of all "a” plus "a”' in the ligand of formula (III) is within the range of from about 10 (preferably 12) to about 18;
- (CR n )J 5 moieties covalently bonded from any D to the B atom is absent as long as at least two (CR n )b covalently bond two of the D donor atoms to the B atom in the formula, and the sum of all "b" is within the range of from about 1 to about 5.
- a suitable cross-bridged macropolycyclic ligand is selected from the group consisting of:
- each "R” is independently selected from H, alkyl, alkenyl, alkynyl, aryl, alkylaryl (e.g., benzyl) and heteroaryl, or two or more R are covalently bonded to form an aromatic,
- heteroaromatic, cycloalkyl, or heterocycloalkyl ring
- n is an integer independently selected from 0, 1 and 2, completing the valence of the carbon atoms to which the R moieties are covalently bonded;
- each "b” is an integer independently selected from 2 and 3;
- each "a” is an integer independently selected from 2 and 3.
- Suitable transition metal bleach catalysts include: Dichloro-5,12-dimethyl-l,5,8,12- tetraazabicyclo[6.6.2]hexadecane Manganese(II); Dichloro-4,10-dimethyl- 1,4,7, 10- tetraazabicyclo[5.5.2]tetradecane Manganese(II); Diaquo-5,12-dimethyl- 1,5,8, 12- tetraazabicyclo[6.6.2]hexadecane Manganese(II) Hexafluorophosphate; Aquo-hydroxy-5,12- dimethyl-l,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(III) Hexafluorophosphate; Diaquo- 4, 10-dimethyl- 1 ,4,7, 10-tetraazabicyclo[5.5.2]tetradecane Manganese(II) Hexafluorophosphate; Diaquo-5,12-dimethyl-l,5,
- Trifluoromethanesulfonate Chloro-5,12,17-trimethyl-l,5,8,12,17-pentaazabicyclo[6.6.5]nonadecane Manganese(II) Hexafluorophosphate; Chloro-4,10,15-trimethyl-l, 4,7, 10,15- pentaazabicyclo[5.5.5]heptadecane Manganese(II) Hexafluorophosphate; Chloro-5,12,17-trimethyl- 1,5,8, 12, 17-pentaazabicyclo[6.6.5]nonadecane Manganese(II) Chloride; Chloro-4,10,15-trimethyl- l,4,7,10,15-pentaazabicyclo[5.5.5]heptadecane Manganese(II) Chloride; Dichloro-5, 12-diethyl- 1,5,8, ⁇ -tetraazabicyclof ⁇ . ⁇ Jhexadecanemanganes
- a suitable transition metal bleach catalyst is a manganese-based catalyst, for example disclosed in U.S. 5,576,282.
- Suitable cobalt bleach catalysts are described, for example, in U.S. 5,597,936 andU.S.
- a suitable transition metal bleach catalyst is a transition metal complex of ligand such as bispidones described in WO 05/042532 Al. Imine bleach catalyst
- Imine bleach catalysts are suitable catalysts.
- Suitable imine bleach catalysts include, but are not limited to: iminium cations and polyions; iminium zwitterions; N-sulphonyl imines; N- phosphonyl imines; N-acyl imines; perfluoroimines; and mixtures thereof.
- Suitable iminium cations and polyions include, but are not limited to, N-methyl-3,4- dihydroisoquinolinium tetrafluoroborate, prepared as described in Tetrahedron (1992), 49(2), 423-38 (see, for example, compound 4, p. 433); N-methyl-3,4-dihydroisoquinolinium p-toluene sulphonate, prepared as described in U.S. Pat. 5,360,569 (see, for example, Column 11, Example 1); and N-octyl-3,4-dihydroisoquinolinium p-toluene sulphonate, prepared as described in U.S. Pat. 5,360,568 (see, for example, Column 10, Example 3).
- Suitable iminium zwitterions include, but are not limited to, N-(3-sulfopropyl)-3,4- dihydroisoquinolinium, inner salt, prepared as described in U.S. Pat. 5,576,282 (see, for example, Column 31, Example II); N-[2-(sulphooxy)dodecyl]-3,4-dihydroisoquinolinium, inner salt, prepared as described in U.S. Pat.
- Suitable N-sulphonyl imine oxygen transfer catalysts include, but are not limited to, 3- methyl-l,2-benzisothiazole 1,1 -dioxide, prepared according to the procedure described in the Journal of Organic Chemistry (1990), 55(4), 1254-61.
- Suitable N-phosphonyl imine oxygen transfer catalysts include, but are not limited to, [R- (E)]-N-[(2-chloro-5-nitrophenyl)methylene]-P-phenyl-P-(2,4,6-trimethylphenyl)- phosphinic amide, which can be made according to the procedures described in the Journal of the Chemical Society, Chemical Communications (1994), (22), 2569-70.
- Suitable N-acyl imine oxygen transfer catalysts include, but are not limited to, [N(E)J-N- (phenylmethylene)acetamide, which can be made according to the procedures described in Polish Journal of Chemistry (2003), 77(5), 577-590.
- Suitable perfluoroimine oxygen transfer catalysts include, but are not limited to, (Z)- 2,2,3,3,4,4,4-heptafluoro-N-(nonafluorobutyl)butanimidoyl fluoride, which can be made according to the procedures described in Tetrahedron Letters (1994), 35(34), 6329-30.
- Suitable cyclic sugar ketone oxygen transfer catalysts include, but are not limited to, l,2:4,5-di-O-isopropylidene-D-erythro-2,3-hexodiuro-2,6-pyranose as prepared in U.S. Pat. 6,649,085 (Column 12, Example 1).
- the imine bleach catalyst comprises an iminium and/or carbonyl functional group and is typically capable of forming an oxaziridinium and/or dioxirane functional group upon acceptance of an oxygen atom, especially upon acceptance of an oxygen atom from a peroxyacid and/or salt thereof.
- the imine bleach catalyst comprises an oxaziridinium functional group and/or is capable of forming an oxaziridinium functional group upon acceptance of an oxygen atom, especially upon acceptance of an oxygen atom from a peroxyacid and/or salt thereof.
- the imine bleach catalyst comprises a cyclic iminium functional group, preferably wherein the cyclic moiety has a ring size of from five to eight atoms (including the nitrogen atom), preferably six atoms.
- the imine bleach catalyst comprises an aryliminium functional group, preferably a bi-cyclic aryliminium functional group, preferably a 3,4-dihydroisoquinolinium functional group.
- the imine functional group is a quaternary imine functional group and is typically capable of forming a quaternary oxaziridinium functional group upon acceptance of an oxygen atom, especially upon acceptance of an oxygen atom from a peroxyacid and/or salt thereof.
- the imine bleach catalyst has a chemical structure corresponding to the following chemical formula
- n and m are independently from 0 to 4, preferably n and m are both 0; each R is independently selected from a substituted or unsubstituted radical selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, fused aryl, heterocyclic ring, fused heterocyclic ring, nitro, halo, cyano, sulphonato, alkoxy, keto, carboxylic, and carboalkoxy radicals; and any two vicinal R 1 substituents may combine to form a fused aryl, fused carbocyclic or fused heterocyclic ring; each R 2 is independently selected from a substituted or unsubstituted radical independently selected from the group consisting of hydrogen, hydroxy, alkyl, cycloalkyl, alkaryl, aryl, aralkyl, alkylenes, heterocyclic ring, alkoxys, arylcarbonyl groups, carboxyalkyl groups and amide groups
- each R is independently selected from the group consisting of alkyl, aryl and heteroaryl, said moieties being substituted or unsubstituted, and whether substituted or unsubsituted said moieties having less than 21 carbons;
- each G is independently selected from the group consisting of CO, SO 2 , SO, PO and PO 2 ;
- R 9 and R 10 are independently selected from the group consisting of H and Ci-C 4 alkyl;
- R 11 and R 12 are independently selected from the group consisting of H and alkyl, or when taken together may join to form a carbonyl;
- b O or 1 ;
- y is an integer from 1 to 6;
- k is an integer from O to 20;
- R 6 is H, or an alkyl, aryl or heteroaryl moiety; said moieties being substituted or unsubstituted; and
- X if present, is a
- the imine bleach catalyst has a structure corresponding to general formula below:
- R 13 is a branched alkyl group containing from three to 24 carbon atoms (including the branching carbon atoms) or a linear alkyl group containing from one to 24 carbon atoms; preferably R 13 is a branched alkyl group containing from eight to 18 carbon atoms or linear alkyl group containing from eight to eighteen carbon atoms; preferably R 13 is selected from the group consisting of 2-ethylhexyl, 2-propylheptyl, 2-butyloctyl, 2-pentylnonyl, 2-hexyldecyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, iso-nonyl, iso-decyl, iso-tridecyl and iso-pentadecyl; preferably R 13 is selected from the group consisting of 2-butyloctyl, 2-
- the imine bleach catalyst has a structure corresponding to general formula below or mixtures thereof.
- G is selected from -O-, -CH 2 O-, -(CH 2 ) 2 -, and -CH 2 -.
- R 1 is selected from H or Ci-C 4 alkyl. Suitable Ci-C 4 alkyl moieties include, but are not limited to methyl, ethyl, iso-propyl, and tert-butyl.
- Each R is independently selected from C 4 -Cg alkyl, benzyl, 2-methylbenzyl, 3- methylbenzyl, 4-methylbenzyl, 4-ethylbenzyl, 4-iso-propylbenzyl and 4-tert-butylbenzyl.
- Suitable C 4 -Cg alkyl moieties include, but are not limited to n-butyl, n-pentyl, cyclopentyl, n- hexyl, cyclohexyl, cyclohexylmethyl, n-heptyl and octyl.
- G is selected from -O- and -CH 2 -.
- R 1 is selected from H, methyl, ethyl, iso-propyl, and tert-butyl.
- Each R 2 is independently selected from C 4 -C 6 alkyl, benzyl, 2-methylbenzyl, 3-methylbenzyl, and 4-methylbenzyl.
- G is -CH 2 -, R 1 is H and each R 2 is independently selected from n-butyl, n-pentyl, n-hexyl, benzyl, 2-methylbenzyl, 3-methylbenzyl, and 4- methylbenzyl.
- the composition comprise from Owt% to 10wt% zeolite builder, preferably to 8wt%,or to 6wt%, or to 4wt%, or even to 2wt% zeolite builder.
- the composition may even be substantially free of zeolite builder, substantially free means "no deliberately added".
- Typical zeolite builders are zeolite A, zeolite P and zeolite MAP.
- the composition comprise from Owt% to 10wt% phosphate builder, preferably to 8wt%,or to 6wt%, or to 4wt%, or even to 2wt% phosphate builder.
- the composition may even be substantially free of phosphate builder, substantially free means "no deliberately added".
- a typical phosphate builder is sodium tri -polyphosphate.
- the composition may comprise from Owt% to 10wt% silicate salt, preferably to 8wt%,or to 6wt%, or to 4wt%, or even to 2wt% silicate salt.
- the composition may even be substantially free of silicate salt, substantially free means "no deliberately added".
- Typical silicate salts are sodium silicate, such as 1.6R sodium silicate and/or 2.0R sodium silicate.
- the composition preferably comprises detersive surfactant, preferably from 10wt% to 40wt%, preferably from 12wt%, or from 15wt%, or even from 18wt% detersive surfactant.
- the composition may also be preferred for the composition to comprise very low levels of ionic surfactant.
- the weight ratio of non-ionic detersive surfactant to ionic detersive surfactant is at least 0.5: 1, preferably at least 0.6: 1, or at least 0.7:1, or at least 0.8:1, or at least 0.9:1, or at least 1:1, or at least 1.5:1, or at least 2.0:1, or at least 2.5:1, or at least 3.0:1, or at least 3.5:1, or at least 4:1, or at least 5:1, or at least 10:1, or even at least 20:1.
- the surfactant comprises alkyl benzene sulphonate and one or more detersive co- surfactants.
- the surfactant preferably comprises C 10 -C 13 alkyl benzene sulphonate and one or more co-surfactants.
- the co-surfactants preferably are selected from the group consisting of Ci 2 -Ci 8 alkyl ethoxylated alcohols, preferably having an average degree of ethoxylation of from 1 to 7; Ci 2 -Ci 8 alkyl ethoxylated sulphates, preferably having an average degree of ethoxylation of from 1 to 5; and mixtures thereof.
- other surfactant systems may be suitable for use in the present invention.
- Suitable detersive surfactants include anionic detersive surfactants, nonionic detersive surfactants, cationic detersive surfactants, zwitterionic detersive surfactants, amphoteric detersive surfactants and mixtures thereof.
- Suitable anionic detersive surfactants include: alkyl sulphates; alkyl sulphonates; alkyl phosphates; alkyl phosphonates; alkyl carboxylates; and mixtures thereof.
- the anionic surfactant can be selected from the group consisting of: C I0 -C I8 alkyl benzene sulphonates (LAS) preferably C 10 -C 13 alkyl benzene sulphonates; C 10 -C 20 primary, branched chain, linear-chain and random-chain alkyl sulphates (AS), typically having the following formula:
- MLAS modified alkylbenzene sulphonate
- MES methyl ester sulphonate
- AOS alpha-olefin sulphonate
- Preferred anionic detersive surfactants include: linear or branched, substituted or unsubstituted alkyl benzene sulphonate detersive surfactants, preferably linear C 8 -Ci 8 alkyl benzene sulphonate detersive surfactants; linear or branched, substituted or unsubstituted alkyl benzene sulphate detersive surfactants; linear or branched, substituted or unsubstituted alkyl sulphate detersive surfactants, including linear C 8 -Ci 8 alkyl sulphate detersive surfactants, Ci-C 3 alkyl branched C 8 -Ci 8 alkyl sulphate detersive surfactants, linear or branched alkoxylated C 8 -Ci 8 alkyl sulphate detersive surfactants and mixtures thereof; linear or branched, substituted or unsubstituted alkyl sulphonate detersive surfact
- alkoxylated alkyl sulphate detersive surfactants are linear or branched, substituted or unsubstituted C 8 - I8 alkyl alkoxylated sulphate detersive surfactants having an average degree of alkoxylation of from 1 to 30, preferably from 1 to 10.
- the alkoxylated alkyl sulphate detersive surfactant is a linear or branched, substituted or
- alkoxylated alkyl sulphate detersive surfactant is a linear
- Preferred anionic detersive surfactants are selected from the group consisting of: linear or branched, substituted or unsubstituted, Ci 2 - I8 alkyl sulphates; linear or branched, substituted or unsubstituted, Cio- 13 alkylbenzene sulphonates, preferably linear Cio- 13 alkylbenzene sulphonates; and mixtures thereof. Highly preferred are linear Cio- 13 alkylbenzene sulphonates.
- linear Cio- 13 alkylbenzene sulphonates that are obtainable, preferably obtained, by sulphonating commercially available linear alkyl benzenes (LAB); suitable LAB include low 2- phenyl LAB, such as those supplied by Sasol under the tradename Isochem® or those supplied by Petresa under the tradename Petrelab®, other suitable LAB include high 2-phenyl LAB, such as those supplied by Sasol under the tradename Hyblene®.
- a suitable anionic detersive surfactant is alkyl benzene sulphonate that is obtained by DETAL catalyzed process, although other synthesis routes, such as HF, may also be suitable.
- Suitable cationic detersive surfactants include: alkyl pyridinium compounds; alkyl quaternary ammonium compounds; alkyl quaternary phosphonium compounds; alkyl ternary sulphonium compounds; and mixtures thereof.
- the cationic detersive surfactant can be selected from the group consisting of: alkoxylate quaternary ammonium (AQA) surfactants as described in more detail in US 6,136,769; dimethyl hydroxyethyl quaternary ammonium as described in more detail in US 6,004,922; polyamine cationic surfactants as described in more detail in WO 98/35002, WO 98/35003, WO 98/35004, WO 98/35005, and WO 98/35006; cationic ester surfactants as described in more detail in US 4,228,042, US 4,239,660, US 4,260,529 and US 6,022,844; amino surfactants as described in more detail in US 6,221,825 and WO 00/47708, specifically amido propyldimethyl amine; and mixtures thereof.
- Preferred cationic detersive surfactants are quaternary ammonium compounds having the general formula:
- R is a linear or branched, substituted or unsubstituted C 6-I8 alkyl or alkenyl moiety
- Ri and R 2 are independently selected from methyl or ethyl moieties
- R 3 is a hydroxyl, hydroxymethyl or a hydroxyethyl moiety
- X is an anion which provides charge neutrality
- preferred anions include halides (such as chloride), sulphate and sulphonate.
- Preferred cationic detersive surfactants are mono-C ⁇ -is alkyl mono-hydroxyethyl di-methyl quaternary ammonium chlorides.
- Highly preferred cationic detersive surfactants are mono-Cg-io alkyl mono- hydroxyethyl di-methyl quaternary ammonium chloride, mono-Cio-i 2 alkyl mono-hydroxyethyl di-methyl quaternary ammonium chloride and mono-Cio alkyl mono-hydroxyethyl di-methyl quaternary ammonium chloride.
- the non-ionic detersive surfactant could be an alkyl polyglucoside and/or an alkyl alkoxylated alcohol.
- the non-ionic detersive surfactant is a linear or branched, substituted or unsubstituted C 8-I8 alkyl ethoxylated alcohol having an average degree of ethoxylation of from 1 to 10, more preferably from 3 to 7.
- the composition preferably comprises polymeric carboxylate. It may be preferred for the composition to comprise at least 5wt% or at least 6wt%, or at least 7wt%, or at least 8wt%, or even at least 9wt%, by weight of the composition, of polymeric carboxylate.
- the polymeric carboxylate can sequester free calcium ions in the wash liquor.
- the carboxylate polymers can also act as soil dispersants and can provide an improved particulate stain removal cleaning benefit.
- Preferred polymeric carboxylates include: polyacrylates, preferably having a weight average molecular weight of from 1,000Da to 20,000Da; co-polymers of maleic acid and acrylic acid, preferably having a molar ratio of maleic acid monomers to acrylic acid monomers of from 1 : 1 to 1 : 10 and a weight average molecular weight of from 10,000Da to 200,000Da, or preferably having a molar ratio of maleic acid monomers to acrylic acid monomers of from 0.3:1 to 3: 1 and a weight average molecular weight of from 1 ,000Da to 50,000Da.
- the composition comprises an enzyme stabilization means.
- Suitable enzyme stabilization means are described in more detail below.
- mass efficient reversible protease inhibitors are protease inhibitors that have a Ki of from about O.OOOOlmM to about 1OmM, from about 0.0001 mM to about 5mM, from about 0.005 mM to about 2mM, or even from about 0.001 mM to about 0.5mM.
- encapsulated proteases are encapsulated proteases having an average particle size of from about 0.05 microns to about 1000 microns, or from about 0.2 microns to about 700 microns or even from about 0.5 microns to about 150 microns.
- encapsulated proteases are in the form of enzyme granulates/prills, said encapsulated proteases typically have particle size of from about 200 microns to about 1000 microns.
- said microcapsules typically have a particle size of from about 100 microns to about 0.05 microns, from about 80 microns to about 0.05 microns, or even from about 50 microns to about 0.05 microns.
- Protease stabilization systems can be selected from one or more of the group comprising:
- Suitable mass efficient reversible protease inhibitors for the inhibition of serine proteases would include derivates of boronic acid, especially phenyl boronic acid and derivatives thereof and peptide aldehydes, including tripeptide aldehydes. Examples of such compounds are disclosed in WO 98/13458 Al, WO 07/113241 Al, and USP 5,972,873.
- the stabilizer may be selected from the group consisting of thiophene-2 boronic acid, thiophene-3 boronic acid, acetamidophenyl boronic acid, benzofuran-2 boronic acid, naphtalene-1 boronic acid, naphtalene-2 boronic acid, 2-fomyl phenyl boronic acid (2-FPBA), 3-FBPA, 4-FPBA, 1-thianthrene boronic acid, 4-dibenzofuran boronic acid, 5-methylthiophene-2 boronic, acid, thionaphtrene boronic acid, furan-2 boronic acid, furan- 3 boronic acid, 4,4 biphenyldiboronic acid, 6-hydroxy-2-naphtalene, 4-(methylthio) phenyl boronic acid, 4 (trimethylsilyl)phenyl boronic acid, 3-bromothiophene boronic acid, 4- methylthiophene
- the mass efficient reversible protease inhibitor may comprise 4-formyl phenyl boronic acid.
- the mass efficient reversible protease inhibitor comprises a reversible peptide protease inhibitor.
- suitable reversible peptide protease inhibitors and processes for making same may be found in USP 6,165,966 and WO 98/13459 Al.
- the tripeptide enzyme inhibitor has the following structure:
- Suitable mass efficient reversible inhibitors for metalloproteases may be selected from the group consisting of:
- thiols including, in one aspect, thiorphan, captopril, tiopronine, and/or N-2- mercapto-propionyl glycine);
- hypoxanthine 6-methyl 6-isopropyl chromone, 3-formyl 6-methyl chromone, and/or chloramphenicol;
- hydroxamic acids including, in one aspect, acetohydroxamic, benzohydroxamic, salicylhydroxamic, and/or leucylhydroxamic;
- dipeptide hydroxamic acids including, in one aspect, hydroxamic acids having a succinyl (dipeptide isostere) motif such as Galardin;
- N-hydroxy urea derivatives including, in one aspect, dipeptide N-hydroxyl urea derivatives
- suitable mass efficient reversible inhibitors can be chosen from those disclosed in EP 0558635 Bl and EP 0558648 Bl.
- the mass efficient reversible inhibitor may be a hydroxamate derivative, such as galardin, or phosphoramidon or bacitracin zinc.
- the mass efficient reversible inhibitor may be galardin.
- Commercial sources for such compounds include Sigma Aldrich (Milwaukee, WI, USA) and Calbiochem (San Diego, CA, USA).
- the mono and dipeptide derivatives disclosed herein may be synthesised by the method described in Nishino, Norikazu; Powers, James C. , Biochemistry (1978), 17(14), 2846-50.
- compositions of the present invention comprise, based on composition weight, from about 0.0001% to about 4%, or from about 0.0002% to about 2%, or from about 0.002% to about 1%, or even from about 0.005% to about 0.5% mass efficient reversible protease inhibitor.
- the 4-formyl phenyl boronic acid and the protease enzyme may be present in the compositions of the present invention at a molar ratio of from about 10: 1 to about 500: 1 , or even from about 30:1 to about 200:1.
- the molar ratio of the reversible peptide protease inhibitor to protease enzyme may be from about 1:1 to about 20:1, or even from about 1:1 to about 10:1.
- an effective mass efficient reversible protease inhibitor needs to bind tightly to the protease within the formulation, but not so tightly that upon dilution in the wash the protease is not effectively released.
- Suitable encapsulated proteases may be prepared by methods such as:
- sol-gel processes including capsules made by reaction of aminoalkylsilane
- polyectrolyte precipitation including capsules formed by reaction of chitosan and alginate or using biopolymer gels such as gellan. Examples of such methods are disclosed in EP 1,502,645 Al.
- the encapsulated protease may comprise at least 0.5%, or at least 1%, or at least 2%, or at least 5%, or at least 10%, or even at least 20% by weight active protease enzyme.
- encapsulated proteases may comprise from about 5% to about 90% active protease by weight.
- Encapsulated proteases may be incorporated into the compositions of the present invention, based on total composition weight, at a level of from 0.001% to about 30%, or from about 0.005% to about 25%, or from about 0.05% to about 10% or even from about 0.01% to about 2%.
- said microcapsules When said encapsulated proteases are in the form of enzyme microcapsules, said microcapsules typically have a particle size of from about 100 microns to about 0.05 microns, from about 80 microns to about 0.05 microns, or even from about 50 microns to about 0.05 microns. Thus, in one aspect, such microcapsules are sized such that they are not typically visible to a consumer when such microcapsules are incorporated into a cleaning composition.
- the encapsulated protease releases at least 80% of its protease load within 10 minutes, within 5 minutes, or even within 2 minutes upon dilution in the wash. In one aspect, these release rates are achievable at ambient temperatures under a 100 fold dilution at 20 0 C with stirring at 150 rpm.
- Protease activity can be determined by any standard method such as use of protease analysis kits available from Sigma Aldrich, Milwaukee, Wisconsin, USA or ASTM method D0348-89 (2003). Without wishing to be bound by theory, it is believed that a better cleaning profile is obtained as the time that the enzymes have to interact with the soil is increased.
- encapsulated proteases may be enzyme granulates/prills, having an average particle size of 200 - 1000 microns.
- Such enzyme granules/prills may be made in accordance with the teachings of USP 4,106,991, USP 4,242,219, USP 4,689,297, USP 5,324,649 and USP 7,018,821 B2.
- such enzyme granulates/prills may comprise a dye and/or pigment.
- such enzyme granulates/prills may comprise a coating comprising
- hydroxpropylmethylcellulose and/or polyvinylalcohol and derivatives thereof are hydroxpropylmethylcellulose and/or polyvinylalcohol and derivatives thereof.
- the composition comprises a bleach activator.
- Suitable bleach activators are compounds which when used in conjunction with a hydrogen peroxide source leads to the in situ production of the peracid corresponding to the bleach activator.
- Various non limiting examples of bleach activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934.
- NOBS nonanoyloxybenzene sulfonate
- TAED activators are typical, and mixtures thereof can also be used. See also U.S. 4,634,551 for other typical bleaches and activators useful herein.
- Another suitable bleach activator is decanoyloxybenzenecarboxylic acid (DOBA).
- a leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the hydroperoxide anion.
- a preferred leaving group is oxybenzenesulfonate.
- bleach activators of the above formulae include (6-octanamido- caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate, (6-decanamido- caproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551, incorporated herein by reference.
- Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incorporated herein by reference.
- a highly preferred activator of the benzoxazin-type is:
- Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae:
- R6 is H or an alkyl, aryl, alkoxyaryl, or alkaryl group containing from 1 to about 12 carbon atoms.
- Highly preferred lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5- trimethylhexanoyl valerolactam and mixtures thereof. See also U.S. Patent 4,545,784, issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl
- caprolactams including benzoyl caprolactam, adsorbed into sodium perborate.
- Highly preferred bleach activators are nonanoyloxybenzene sulfonate (NOBS) and/or tetraacetylethylenediamine (TAED) .
- the weight ratio of bleach activator to source of hydrogen peroxide present in the laundry detergent composition is at least 0.5:1, at least 0.6:1, at least 0.7:1, 0.8:1, preferably at least 0.9:1, or 1.0:1.0, or even 1.2:1 or higher.
- the composition may comprise a chelant.
- Suitable chelants include diethylene triamine pentaacetate, diethylene triamine penta(methyl phosphonic acid), ethylene diamine-N'N'- disuccinic acid, ethylene diamine tetraacetate, ethylene diamine tetra(methylene phosphonic acid) and hydroxyethane di(methylene phosphonic acid).
- a preferred chelant is ethylene diamine-N'N'-disuccinic acid (EDDS) and/or hydroxyethane diphosphonic acid (HEDP).
- the ethylene diamine-N'N'-disuccinic acid is in S'S' enantiomeric form.
- the composition typically comprises other detergent ingredients.
- Suitable detergent ingredients include: transition metal catalysts; enzymes such as amylases, carbohydrases, cellulases, laccases, lipases, bleaching enzymes such as oxidases and peroxidases, proteases, pectate lyases and mannanases; suds suppressing systems such as silicone based suds suppressors; brighteners; hueing agents; photobleach; fabric-softening agents such as clay, silicone and/or quaternary ammonium compounds; flocculants such as polyethylene oxide; dye transfer inhibitors such as polyvinylpyrrolidone, poly 4-vinylpyridine N-oxide and/or co-polymer of vinylpyrrolidone and vinylimidazole; fabric integrity components such as oligomers produced by the condensation of imidazole and epichlorhydrin; soil dispersants and soil anti-redeposition aids such as alkoxylated polyamines and ethoxylated ethyleneimine polymers
- the term "reserve alkalinity” is a measure of the buffering capacity of the laundry detergent composition (g/NaOH/100g detergent composition) determined by titrating a 1% (w/v) solution of detergent composition with hydrochloric acid to pH 7.5 i.e in order to calculate Reserve Alkalinity as defined herein:
- T titre (ml) to pH 7.5
- VoI Total volume (ie. 1000 ml)
- the composition has a reserve alkalinity of 10.0 or less, or 9.0 or less, or 8.0 or less, or 7.0 or less, or 6.0 or less, or 5.0 or less, or 4.0 or less, or 3.0 or less, or 2.0 or less, or 1.0 or less.
- the uncatalysed reaction when calculating the reduction in activation energy achieved by a catalyst, the uncatalysed reaction is considered to have an activation energy of 5OkJmOl "1 .
- the assays used to determine the rate of reaction and associated activation energies are all conducted under high excess of substrate.
- the kinetics of production of the digested products is approximately first order.
- the assays must also be carried out under conditions that have first order kinetics. All assays should be conducted over a period of time t such that the kinetics remain first order (i.e. such that concentration of product is low (and always less than 10% of theoretical maximum) and first order kinetics are obeyed).
- the rate constant k can therefore be calculated by plotting a graph of In c against t, wherein c is the concentration of products produced and t is the time in seconds. These graphs are linear and the gradients of the graphs are the rate constants k whose units are s "1 .
- the optimal way to determine enzyme activity in a detergent sample is to make up a l%w/v detergent composition in an aqueous solution of sodium thiosulphate and calcium chloride (1Og of sodium thiosulphate and 0.5g of CaCl 2 .2H 2 ⁇ dissolved in 1 liter of water) and react this solution with an appropriate solution comprising the substrate dissolved in TRIS buffer at pH 8.3 (12. Ig of sodium thiosulphate and calcium chloride (1Og of sodium thiosulphate and 0.5g of CaCl 2 .2H 2 ⁇ dissolved in 1 liter of water) and react this solution with an appropriate solution comprising the substrate dissolved in TRIS buffer at pH 8.3 (12. Ig of
- tris(hydroxymethyl) aminomethane e.g. sold under tradename TrizmaTM
- TrizmaTM tris(hydroxymethyl) aminomethane
- Most enzyme assays are done colorimetrically such that product formation can be monitored spectrophotometrically. In all cases care must be taken to ensure that the absorbance is less than 2 absorbance units such that the absorbance measurement is directly proportional to the concentration of coloured product being formed.
- the assay is conducted at a series of temperatures at which the enzyme displays suitable activity but is not denatured and in the presence of a high excess of substrate. For non-enzyme catalysts, a similar procedure to that described above may also be used.
- a l%w/v detergent composition in a solution is reacted with a suitable colorimetric substrate under conditions of first order kinetics, and for at least three different temperatures.
- a suitable colorimetric substrate is CI reactive blue 49 dye (e.g. CAS 12236-92-9).
- a suitable colorimetric substrate is beta-Apo-8- carotenal (otherwise known as canthaxanthin).
- any percentage concentration value is considered to be %w/v, unless otherwise indicated.
- the activity of lipase is assayed by measuring the hydrolyis rate of para-nitrophenol palmitate (PNP-palmitate).
- PNP-palmitate para-nitrophenol palmitate
- the lipase cleaves the ester bond releasing the coloured species (paranitrophenol) which can be measured by absorbance at 405nm.
- a one litre TRIS buffer solution is first made by dissolution of 12. Ig of TrizmaTM base, 2.7Og of sodium deoxycholate and 5.Og alpha olephin sulphonate (e.g. Bio Terge AS-90 Beads, lot#24242404) in a litre of water and adjusting pH to 8.3 by addition of concentrated HCl.
- a PNP-palmitate solution is then made by dissolving 0.15g of PNP-palmitate in 50ml of ethanol. 2ml of the PNP-palmitate solution is then dissolved in 48ml of a TRIS buffer solution to provide 50 mis of the PNP-palmitate substrate working solution.
- An enzyme stabilizing solution is made up by dissolving 1Og of sodium thiosulphate and 0.5g of CaCl 2 .2H 2 O in 1 liter of water. 1Og of the detergent product are dissolved in this solution to make one litre of solution (a 1% detergent solution).
- a linear graph is then plotted of In k against -1000/RT whose gradient is equal to the activation energy in kJmol "1 .
- the activity of the protease is assayed using standard analytical methods.
- the substrate used to measure the protease activity for subtilisins is a four amino acid peptide containing a terminal p-nitroanilide group as a chromophore. This material is called N-Succinyl- ALA- ALA- PRO-PHE p-nitroanilide (PNA).
- PNA N-Succinyl- ALA- ALA- PRO-PHE p-nitroanilide
- a solution of protease is introduced to the PNA substrate in solution.
- the enzyme cleaves bonds between amino acids and most importantly the amide bond between the phenolalanine and the p-nitroanilide group liberating p-nitroaniline, thus producing a yellow color.
- the intensity of the color (405 nm) is proportional to the amount of enzyme in the solution.
- a one litre TRIS buffer solution is first made by dissolution of 12. Ig of TrizmaTM base, l.lg of CaCl 2 .2H 2 ⁇ and 5.Og of sodium thiosulphate in a litre of water and adjusting pH to 8.3 by addition of concentrated HCl and/or NaOH.
- a PNA solution is then made by dissolving 0.5g of N-Succinyl- ALA-ALA-PRO-PHE p-nitroanilide (PNA) in 5ml of DMSO. 0.5ml of the PNA solution is then dissolved in 50ml of a TRIS buffer solution to provide the PNA substrate working solution.
- An enzyme stabilizing solution is made up by dissolving 1Og of sodium thiosulphate and 0.5g of CaCl 2 .2H 2 O in 1 liter of water. 1Og of the detergent product are dissolved in this solution to make one litre of solution (a l%w/v detergent solution).
- a plot of In c (where c is the concentration of products formed) versus t (time in seconds) is linear.
- the above assay is conducted at three different temperatures (30 0 C, 37°C and 50 0 C) and at least three time points such that a rate constant k (whose units are s "1 ) is assayed at each temperature.
- a graph is then plotted of In k against -1000/RT whose gradient is equal to the activation energy in kJmol "1 .
- Amylase activity is measured using a maltoheptaoside modified with a p-Nitrophenol chromophore (Infinity Amylase Reagent from Thermo Electron, Woburn, MA, USA, Cat #: TR25421). Release of the chromophore is initiated via amylase action. Amylase activity is measured initially in AMU' s. 1 AMU (amylase unit) is the amount of enzyme which hydrolyzes PNP-G7 (p-nitrophenyl-alpha,D-maltoheptaoside) carbohydrate substrate such that the initial rate of formation of small carbohydrates (G2-4) per minute corresponds to 1 ⁇ mole of 4-Nitrophenol per minute.
- PNP-G7 p-nitrophenyl-alpha,D-maltoheptaoside
- a one litre TRIS buffer solution is first made by dissolution of 12. Ig of TrizmaTM base, 2.7Og of sodium deoxycholate and 5.0g alpha olephin sulphonate (e.g. Bio Terge AS-90 Beads, lot#24242404) in a litre of water and adjusting pH to 8.3 by addition of concentrated HCl and/or NaOH.
- a PNP-palmitate solution is then made by dissolving 0.15g of PNP-palmitate in 50ml of ethanol. 2ml of the PNP-palmitate solution is then dissolved in 48ml of a TRIS buffer solution to provide 50 mis of the PNP-palmitate substrate working solution.
- An enzyme stabilizing solution is made up by dissolving 1Og of sodium thiosulphate and 0.5g of CaCl 2 .2H 2 O in 1 liter of water. 1Og of the detergent product are dissolved in this solution to make one litre of solution (a l%w/v detergent solution).
- a plot of In c (where c is the concentration of products formed) versus t (time in seconds) is linear.
- the above assay is conducted at three different temperatures (20 0 C, 30 0 C and 37°C) and at least three time points such that a rate constant k (whose units are s "1 ) is assayed at each temperature.
- a suitable colourmetric substrate for determining xyloglucanase activity is AZCL- xyloglucan from Megazyme, Ireland. Enzyme activity is determined at three different temperatures using suitable time periods and the activation energy is determined using the above described calculation.
- a suitable colourmetric substrate for determining cellulase activity is Cellazyme C tablets, supplied by Megazyme International Ireland. Enzyme activity is determined at three different temperatures using suitable time periods and the activation energy is determined using the above described calculation.
- the activity and activation energy of glucose oxidase-catalysed oxidation of D-glucose with concomitant formation of hydrogen peroxide can be determined using the methods described in Zia M. A et al., Thermal characterization of purified glucose oxidase from a newly isolated Aspergillus niger UAF-I, (2007) Journal of Clinical Biochemistry and Nutrition, 41 (2), pp. 132-138. Similar procedures can be used for the other oxidoreductases.
- the substrate used is Reactive Blue 49 dye
- the assay is colorimetric titration.
- the principle of the assay is that Reactive Blue 49 dye is added to a 1 % detergent aqueous solution to give a 20ppm Reactive Blue 49 dye concentration.
- the imine bleach catalyst catalyzes a reaction that decolourizes the dye, causing a reduction in the optical density of the solution.
- additional Reactive Blue 49 dye is titred into the reaction solution in order to compensate for the decolourization kinetics and to maintain a constant optical density. This amount of compensating Reactive Blue 49 dye is measured over a time period of five minutes. Performing the reaction at different temperatures allows calculation of Activation energy using Arrhenius equation
- Imine bleach catalyst is sulphuric acid mono-[2-(3,4-dihydro-isoquinolin-2-yl)-l-(2-butyl- octyloxymethyl)-ethyl] ester, internal salt.
- Transition metal bleach catalyst is Dichloro-5,12-diethyl-l,5,8,12- tetraazabicyclo[6.6.2]hexadecanemanganese
- Cutinase is a variant of the wild-type derived from Pseudomonas Mendocina comprising the
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
- Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2012000480A MX2012000480A (en) | 2009-07-09 | 2010-07-06 | A catalytic laundry detergent composition comprising relatively low levels of water-soluble electrolyte. |
EP10734608A EP2451915A1 (en) | 2009-07-09 | 2010-07-06 | A catalytic laundry detergent composition comprising relatively low levels of water-soluble electrolyte |
BR112012000520A BR112012000520A2 (en) | 2009-07-09 | 2010-07-06 | laundry detergent catalyst composition comprising relatively low levels of water-soluble electrolyte |
CN2010800319252A CN102471729A (en) | 2009-07-09 | 2010-07-06 | A catalytic laundry detergent composition comprising relatively low levels of water-soluble electrolyte |
US12/888,495 US8541354B2 (en) | 2009-07-09 | 2010-09-23 | Catalytic laundry detergent composition comprising relatively low levels of water-soluble electrolyte |
ZA2012/00150A ZA201200150B (en) | 2009-07-09 | 2012-01-09 | A catalytic laundry detergent composition comprising relatively low levels of water soluble electrolyte |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22415309P | 2009-07-09 | 2009-07-09 | |
US61/224,153 | 2009-07-09 | ||
US32540310P | 2010-04-19 | 2010-04-19 | |
US61/325,403 | 2010-04-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/888,495 Continuation US8541354B2 (en) | 2009-07-09 | 2010-09-23 | Catalytic laundry detergent composition comprising relatively low levels of water-soluble electrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011005730A1 true WO2011005730A1 (en) | 2011-01-13 |
Family
ID=42753397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/041020 WO2011005730A1 (en) | 2009-07-09 | 2010-07-06 | A catalytic laundry detergent composition comprising relatively low levels of water-soluble electrolyte |
Country Status (8)
Country | Link |
---|---|
US (1) | US8541354B2 (en) |
EP (1) | EP2451915A1 (en) |
CN (1) | CN102471729A (en) |
AR (1) | AR077466A1 (en) |
BR (1) | BR112012000520A2 (en) |
MX (1) | MX2012000480A (en) |
WO (1) | WO2011005730A1 (en) |
ZA (1) | ZA201200150B (en) |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011134809A1 (en) | 2010-04-26 | 2011-11-03 | Novozymes A/S | Enzyme granules |
WO2012175708A2 (en) | 2011-06-24 | 2012-12-27 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2012175401A2 (en) | 2011-06-20 | 2012-12-27 | Novozymes A/S | Particulate composition |
WO2013001087A2 (en) | 2011-06-30 | 2013-01-03 | Novozymes A/S | Method for screening alpha-amylases |
WO2013007594A1 (en) | 2011-07-12 | 2013-01-17 | Novozymes A/S | Storage-stable enzyme granules |
WO2013024021A1 (en) | 2011-08-15 | 2013-02-21 | Novozymes A/S | Polypeptides having cellulase activity and polynucleotides encoding same |
WO2013041689A1 (en) | 2011-09-22 | 2013-03-28 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
EP2592156A2 (en) | 2007-06-08 | 2013-05-15 | Genentech, Inc. | Gene expression markers of tumor resistance to HER2 inhibitor treatment |
WO2013076269A1 (en) | 2011-11-25 | 2013-05-30 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2013092635A1 (en) | 2011-12-20 | 2013-06-27 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2013110766A1 (en) | 2012-01-26 | 2013-08-01 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
WO2013120948A1 (en) | 2012-02-17 | 2013-08-22 | Novozymes A/S | Subtilisin variants and polynucleotides encoding same |
WO2013131964A1 (en) | 2012-03-07 | 2013-09-12 | Novozymes A/S | Detergent composition and substitution of optical brighteners in detergent compositions |
WO2013167581A1 (en) | 2012-05-07 | 2013-11-14 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
WO2013189972A2 (en) | 2012-06-20 | 2013-12-27 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
WO2014096259A1 (en) | 2012-12-21 | 2014-06-26 | Novozymes A/S | Polypeptides having protease activiy and polynucleotides encoding same |
WO2014183921A1 (en) | 2013-05-17 | 2014-11-20 | Novozymes A/S | Polypeptides having alpha amylase activity |
WO2014207224A1 (en) | 2013-06-27 | 2014-12-31 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2014207227A1 (en) | 2013-06-27 | 2014-12-31 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2015001017A2 (en) | 2013-07-04 | 2015-01-08 | Novozymes A/S | Polypeptides having anti-redeposition effect and polynucleotides encoding same |
EP2832853A1 (en) | 2013-07-29 | 2015-02-04 | Henkel AG&Co. KGAA | Detergent composition comprising protease variants |
WO2015049370A1 (en) | 2013-10-03 | 2015-04-09 | Novozymes A/S | Detergent composition and use of detergent composition |
WO2015134737A1 (en) | 2014-03-05 | 2015-09-11 | Novozymes A/S | Compositions and methods for improving properties of cellulosic textile materials with xyloglucan endotransglycosylase |
WO2015134729A1 (en) | 2014-03-05 | 2015-09-11 | Novozymes A/S | Compositions and methods for improving properties of non-cellulosic textile materials with xyloglucan endotransglycosylase |
WO2015150457A1 (en) | 2014-04-01 | 2015-10-08 | Novozymes A/S | Polypeptides having alpha amylase activity |
WO2015189371A1 (en) | 2014-06-12 | 2015-12-17 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2016079305A1 (en) | 2014-11-20 | 2016-05-26 | Novozymes A/S | Alicyclobacillus variants and polynucleotides encoding same |
EP3106508A1 (en) | 2015-06-18 | 2016-12-21 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
WO2017064269A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptide variants |
WO2017064253A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2017207762A1 (en) | 2016-06-03 | 2017-12-07 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2017223287A1 (en) * | 2016-06-22 | 2017-12-28 | University Of Virginia | Iminium salt organocatalysts, methods of making, and methods of using |
WO2018011277A1 (en) | 2016-07-13 | 2018-01-18 | Novozymes A/S | Bacillus cibi dnase variants |
EP3309249A1 (en) | 2013-07-29 | 2018-04-18 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP3321360A2 (en) | 2013-01-03 | 2018-05-16 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
EP3453757A1 (en) | 2013-12-20 | 2019-03-13 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2019081724A1 (en) | 2017-10-27 | 2019-05-02 | Novozymes A/S | Dnase variants |
WO2019084349A1 (en) | 2017-10-27 | 2019-05-02 | The Procter & Gamble Company | Detergent compositions comprising polypeptide variants |
WO2019201793A1 (en) | 2018-04-17 | 2019-10-24 | Novozymes A/S | Polypeptides comprising carbohydrate binding activity in detergent compositions and their use in reducing wrinkles in textile or fabric. |
EP3608403A2 (en) | 2014-12-15 | 2020-02-12 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
EP3611260A1 (en) | 2013-07-29 | 2020-02-19 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP3690037A1 (en) | 2014-12-04 | 2020-08-05 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2020188095A1 (en) | 2019-03-21 | 2020-09-24 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2020207944A1 (en) | 2019-04-10 | 2020-10-15 | Novozymes A/S | Polypeptide variants |
EP3739029A1 (en) | 2014-07-04 | 2020-11-18 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3786269A1 (en) | 2013-06-06 | 2021-03-03 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2021037895A1 (en) | 2019-08-27 | 2021-03-04 | Novozymes A/S | Detergent composition |
WO2021053127A1 (en) | 2019-09-19 | 2021-03-25 | Novozymes A/S | Detergent composition |
WO2021064068A1 (en) | 2019-10-03 | 2021-04-08 | Novozymes A/S | Polypeptides comprising at least two carbohydrate binding domains |
EP3872175A1 (en) | 2015-06-18 | 2021-09-01 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3878960A1 (en) | 2014-07-04 | 2021-09-15 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3892708A1 (en) | 2020-04-06 | 2021-10-13 | Henkel AG & Co. KGaA | Cleaning compositions comprising dispersin variants |
WO2022074037A2 (en) | 2020-10-07 | 2022-04-14 | Novozymes A/S | Alpha-amylase variants |
WO2022171780A2 (en) | 2021-02-12 | 2022-08-18 | Novozymes A/S | Alpha-amylase variants |
WO2022268885A1 (en) | 2021-06-23 | 2022-12-29 | Novozymes A/S | Alpha-amylase polypeptides |
WO2024131880A2 (en) | 2022-12-23 | 2024-06-27 | Novozymes A/S | Detergent composition comprising catalase and amylase |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011005913A1 (en) * | 2009-07-09 | 2011-01-13 | The Procter & Gamble Company | A catalytic laundry detergent composition comprising relatively low levels of water-soluble electrolyte |
CN106336961A (en) * | 2016-08-24 | 2017-01-18 | 郭睿航 | Antibacterial and efficient laundry detergent liquid |
EP3483251B1 (en) * | 2017-11-13 | 2021-11-10 | The Procter & Gamble Company | Detergent composition comprising fatty acid processing enzymes |
Citations (135)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4106991A (en) | 1976-07-07 | 1978-08-15 | Novo Industri A/S | Enzyme granulate composition and process for forming enzyme granulates |
US4228042A (en) | 1978-06-26 | 1980-10-14 | The Procter & Gamble Company | Biodegradable cationic surface-active agents containing ester or amide and polyalkoxy group |
US4239660A (en) | 1978-12-13 | 1980-12-16 | The Procter & Gamble Company | Detergent composition comprising a hydrolyzable cationic surfactant and specific alkalinity source |
US4242219A (en) | 1977-07-20 | 1980-12-30 | Gist-Brocades N.V. | Novel enzyme particles and their preparation |
US4260529A (en) | 1978-06-26 | 1981-04-07 | The Procter & Gamble Company | Detergent composition consisting essentially of biodegradable nonionic surfactant and cationic surfactant containing ester or amide |
US4412934A (en) | 1982-06-30 | 1983-11-01 | The Procter & Gamble Company | Bleaching compositions |
US4430243A (en) | 1981-08-08 | 1984-02-07 | The Procter & Gamble Company | Bleach catalyst compositions and use thereof in laundry bleaching and detergent compositions |
US4435307A (en) | 1980-04-30 | 1984-03-06 | Novo Industri A/S | Detergent cellulase |
US4483779A (en) | 1982-04-26 | 1984-11-20 | The Procter & Gamble Company | Detergent compositions comprising polyglycoside and polyethoxylate surfactants and anionic fluorescer |
US4483780A (en) | 1982-04-26 | 1984-11-20 | The Procter & Gamble Company | Detergent compositions containing polyglycoside and polyethoxylate detergent surfactants |
US4545784A (en) | 1983-04-14 | 1985-10-08 | Interox Chemicals Limited | Particulate sodium perborate monohydrate containing adsorbed activator |
US4565647A (en) | 1982-04-26 | 1986-01-21 | The Procter & Gamble Company | Foaming surfactant compositions |
US4634551A (en) | 1985-06-03 | 1987-01-06 | Procter & Gamble Company | Bleaching compounds and compositions comprising fatty peroxyacids salts thereof and precursors therefor having amide moieties in the fatty chain |
US4689297A (en) | 1985-03-05 | 1987-08-25 | Miles Laboratories, Inc. | Dust free particulate enzyme formulation |
US4728455A (en) | 1986-03-07 | 1988-03-01 | Lever Brothers Company | Detergent bleach compositions, bleaching agents and bleach activators |
US4760025A (en) | 1984-05-29 | 1988-07-26 | Genencor, Inc. | Modified enzymes and methods for making same |
WO1989006270A1 (en) | 1988-01-07 | 1989-07-13 | Novo-Nordisk A/S | Enzymatic detergent |
WO1989009259A1 (en) | 1988-03-24 | 1989-10-05 | Novo-Nordisk A/S | A cellulase preparation |
US4906396A (en) | 1986-02-20 | 1990-03-06 | Albright & Wilson Limited | Protected enzyme systems |
US4915854A (en) | 1986-11-14 | 1990-04-10 | The Procter & Gamble Company | Ion-pair complex conditioning agent and compositions containing same |
US4963655A (en) | 1988-05-27 | 1990-10-16 | Mayo Foundation For Medical Education And Research | Boron analogs of amino acid/peptide protease inhibitors |
US4966723A (en) | 1988-02-11 | 1990-10-30 | Bp Chemicals Limited | Bleach activators in detergent compositions |
US5030378A (en) | 1990-01-02 | 1991-07-09 | The Procter & Gamble Company | Liquid detergents containing anionic surfactant, builder and proteolytic enzyme |
WO1992006162A1 (en) | 1990-09-28 | 1992-04-16 | The Procter & Gamble Company | Detergent containing alkyl sulfate and polyhydroxy fatty acid amide surfactants |
US5114606A (en) | 1990-02-19 | 1992-05-19 | Lever Brothers Company, Division Of Conopco, Inc. | Bleaching composition comprising as a bleaching catalyst a complex of manganese with a non-carboxylate polyhydroxy ligand |
US5114611A (en) | 1989-04-13 | 1992-05-19 | Lever Brothers Company, Divison Of Conopco, Inc. | Bleach activation |
EP0495257A1 (en) | 1991-01-16 | 1992-07-22 | The Procter & Gamble Company | Compact detergent compositions with high activity cellulase |
US5153161A (en) | 1991-11-26 | 1992-10-06 | Lever Brothers Company, Division Of Conopco, Inc. | Synthesis of manganese oxidation catalyst |
US5159060A (en) | 1988-05-27 | 1992-10-27 | Mayo Foundation For Medical Education And Research | Cytotoxic boronic acid peptide analogs |
WO1992019707A1 (en) | 1991-04-30 | 1992-11-12 | The Procter & Gamble Company | Liquid detergents with an aryl boronic acid |
US5194416A (en) | 1991-11-26 | 1993-03-16 | Lever Brothers Company, Division Of Conopco, Inc. | Manganese catalyst for activating hydrogen peroxide bleaching |
EP0531315A1 (en) | 1990-05-09 | 1993-03-17 | Novo Nordisk As | An enzyme capable of degrading cellulose or hemicellulose. |
EP0531372A1 (en) | 1990-05-09 | 1993-03-17 | Novo Nordisk As | A cellulase preparation comprising an endoglucanase enzyme. |
EP0544490A1 (en) | 1991-11-26 | 1993-06-02 | Unilever Plc | Detergent bleach compositions |
EP0544440A2 (en) | 1991-11-20 | 1993-06-02 | Unilever Plc | Bleach catalyst composition, manufacture and use thereof in detergent and/or bleach compositions |
EP0549272A1 (en) | 1991-12-20 | 1993-06-30 | Unilever Plc | Bleach activation |
EP0549271A1 (en) | 1991-12-20 | 1993-06-30 | Unilever Plc | Bleach activation |
US5227084A (en) | 1991-04-17 | 1993-07-13 | Lever Brothers Company, Division Of Conopco, Inc. | Concentrated detergent powder compositions |
US5244594A (en) | 1990-05-21 | 1993-09-14 | Lever Brothers Company, Division Of Conopco, Inc. | Bleach activation multinuclear manganese-based coordination complexes |
US5246612A (en) | 1991-08-23 | 1993-09-21 | Lever Brothers Company, Division Of Conopco, Inc. | Machine dishwashing composition containing peroxygen bleach, manganese complex and enzymes |
WO1993019146A1 (en) | 1992-03-16 | 1993-09-30 | The Procter & Gamble Company | Fluid compositions containing polyhydroxy fatty acid amides |
WO1993019038A1 (en) | 1992-03-26 | 1993-09-30 | The Procter & Gamble Company | Process for reducing the levels of fatty acid contaminants in polyhydroxy fatty acid amide surfactants |
US5256779A (en) | 1992-06-18 | 1993-10-26 | Lever Brothers Company, Division Of Conopco, Inc. | Synthesis of manganese oxidation catalyst |
US5274147A (en) | 1991-07-11 | 1993-12-28 | Lever Brothers Company, Division Of Conopco, Inc. | Process for preparing manganese complexes |
US5280117A (en) | 1992-09-09 | 1994-01-18 | Lever Brothers Company, A Division Of Conopco, Inc. | Process for the preparation of manganese bleach catalyst |
WO1994002597A1 (en) | 1992-07-23 | 1994-02-03 | Novo Nordisk A/S | MUTANT α-AMYLASE, DETERGENT, DISH WASHING AGENT, AND LIQUEFACTION AGENT |
US5284944A (en) | 1992-06-30 | 1994-02-08 | Lever Brothers Company, Division Of Conopco, Inc. | Improved synthesis of 1,4,7-triazacyclononane |
WO1994004653A1 (en) | 1992-08-14 | 1994-03-03 | The Procter & Gamble Company | Liquid detergents containing an alpha-amino boronic acid |
WO1994004654A1 (en) | 1992-08-14 | 1994-03-03 | The Procter & Gamble Company | LIQUID DETERGENT COMPOSITIONS CONTAINING PROTEASE AND CERTAIN β-AMINOALKYLBORONIC ACIDS AND ESTERS |
WO1994007998A1 (en) | 1992-10-06 | 1994-04-14 | Novo Nordisk A/S | Cellulase variants |
WO1994009099A1 (en) | 1992-10-13 | 1994-04-28 | The Procter & Gamble Company | Fluid compositions containing polyhydroxy fatty acid amides |
US5324649A (en) | 1991-10-07 | 1994-06-28 | Genencor International, Inc. | Enzyme-containing granules coated with hydrolyzed polyvinyl alcohol or copolymer thereof |
US5332528A (en) | 1990-09-28 | 1994-07-26 | The Procter & Gamble Company | Polyhydroxy fatty acid amides in soil release agent-containing detergent compositions |
WO1994018314A1 (en) | 1993-02-11 | 1994-08-18 | Genencor International, Inc. | Oxidatively stable alpha-amylase |
US5360569A (en) | 1993-11-12 | 1994-11-01 | Lever Brothers Company, Division Of Conopco, Inc. | Activation of bleach precursors with catalytic imine quaternary salts |
US5360568A (en) | 1993-11-12 | 1994-11-01 | Lever Brothers Company, Division Of Conopco, Inc. | Imine quaternary salts as bleach catalysts |
WO1995012655A1 (en) | 1993-11-05 | 1995-05-11 | The Procter & Gamble Company | Liquid detergents with ortho-substituted phenylboronic acids for inhibition of proteolytic enzyme |
US5442100A (en) | 1992-08-14 | 1995-08-15 | The Procter & Gamble Company | β-aminoalkyl and β-N-peptidylaminoalkyl boronic acids |
WO1995024471A1 (en) | 1994-03-08 | 1995-09-14 | Novo Nordisk A/S | Novel alkaline cellulases |
WO1995029223A1 (en) | 1994-04-26 | 1995-11-02 | Novo Nordisk A/S | Naphthalene boronic acids |
WO1996011262A1 (en) | 1994-10-06 | 1996-04-18 | Novo Nordisk A/S | An enzyme and enzyme preparation with endoglucanase activity |
WO1996023874A1 (en) | 1995-02-03 | 1996-08-08 | Novo Nordisk A/S | A method of designing alpha-amylase mutants with predetermined properties |
WO1996023873A1 (en) | 1995-02-03 | 1996-08-08 | Novo Nordisk A/S | Amylase variants |
WO1996029397A1 (en) | 1995-03-17 | 1996-09-26 | Novo Nordisk A/S | Novel endoglucanases |
US5576282A (en) | 1995-09-11 | 1996-11-19 | The Procter & Gamble Company | Color-safe bleach boosters, compositions and laundry methods employing same |
US5580485A (en) | 1994-06-13 | 1996-12-03 | Lever Brothers Company, Division Of Conopco, Inc. | Bleach activation |
WO1997000324A1 (en) | 1995-06-14 | 1997-01-03 | Kao Corporation | Gene encoding alkaline liquefying alpha-amylase |
US5595967A (en) | 1995-02-03 | 1997-01-21 | The Procter & Gamble Company | Detergent compositions comprising multiperacid-forming bleach activators |
US5597936A (en) | 1995-06-16 | 1997-01-28 | The Procter & Gamble Company | Method for manufacturing cobalt catalysts |
US5648263A (en) | 1988-03-24 | 1997-07-15 | Novo Nordisk A/S | Methods for reducing the harshness of a cotton-containing fabric |
EP0558635B1 (en) | 1990-11-21 | 1997-09-10 | Glycomed Incorporated | Improved matrix metalloprotease inhibitors |
US5679630A (en) | 1993-10-14 | 1997-10-21 | The Procter & Gamble Company | Protease-containing cleaning compositions |
WO1997043424A1 (en) | 1996-05-14 | 1997-11-20 | Genencor International, Inc. | MODIFIED α-AMYLASES HAVING ALTERED CALCIUM BINDING PROPERTIES |
WO1998008940A1 (en) | 1996-08-26 | 1998-03-05 | Novo Nordisk A/S | A novel endoglucanase |
WO1998012307A1 (en) | 1996-09-17 | 1998-03-26 | Novo Nordisk A/S | Cellulase variants |
WO1998013458A1 (en) | 1996-09-24 | 1998-04-02 | The Procter & Gamble Company | Liquid detergents containing proteolytic enzyme and protease inhibitors |
WO1998013459A1 (en) | 1996-09-24 | 1998-04-02 | The Procter & Gamble Company | Liquid detergents containing proteolytic enzyme, peptide aldehyde and calcium ions |
WO1998035005A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | A cleaning composition |
WO1998035004A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Solid detergent compositions |
WO1998035002A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Cleaning compositions |
WO1998035003A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Detergent compound |
WO1998035006A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Liquid cleaning composition |
US5817614A (en) | 1996-08-29 | 1998-10-06 | Procter & Gamble Company | Color-safe bleach boosters, compositions and laundry methods employing same |
US5856164A (en) | 1994-03-29 | 1999-01-05 | Novo Nordisk A/S | Alkaline bacillus amylase |
WO1999001544A1 (en) | 1997-07-04 | 1999-01-14 | Novo Nordisk A/S | FAMILY 6 ENDO-1,4-β-GLUCANASE VARIANTS AND CLEANING COMPOSIT IONS CONTAINING THEM |
WO1999005243A1 (en) | 1997-07-21 | 1999-02-04 | The Procter & Gamble Company | Detergent compositions containing mixtures of crystallinity-disrupted surfactants |
WO1999005241A1 (en) | 1997-07-21 | 1999-02-04 | The Procter & Gamble Company | Cleaning products comprising improved alkylarylsulfonate surfactants prepared via vinylidene olefins and processes for preparation thereof |
WO1999005244A1 (en) | 1997-07-21 | 1999-02-04 | The Procter & Gamble Company | Improved alkyl aryl sulfonate surfactants |
WO1999005084A1 (en) | 1997-07-21 | 1999-02-04 | The Procter & Gamble Company | Process for making alkylbenzenesulfonate surfactants from alcohols and products thereof |
WO1999005082A1 (en) | 1997-07-21 | 1999-02-04 | The Procter & Gamble Company | Improved processes for making alkylbenzenesulfonate surfactants and products thereof |
WO1999005242A1 (en) | 1997-07-21 | 1999-02-04 | The Procter & Gamble Company | Improved alkylbenzenesulfonate surfactants |
WO1999007656A2 (en) | 1997-08-08 | 1999-02-18 | The Procter & Gamble Company | Improved processes for making surfactants via adsorptive separation and products thereof |
WO1999009128A1 (en) | 1997-08-14 | 1999-02-25 | The Procter & Gamble Company | Detergent compositions comprising a mannanase and a protease |
WO1999023211A1 (en) | 1997-10-30 | 1999-05-14 | Novo Nordisk A/S | α-AMYLASE MUTANTS |
US5972873A (en) | 1995-06-13 | 1999-10-26 | Novo Nordisk A/S | 4-substituted-phenyl-boronic acids as enzyme stabilizers |
WO1999064573A1 (en) | 1998-06-10 | 1999-12-16 | Novozymes A/S | Novel mannanases |
US6004922A (en) | 1996-05-03 | 1999-12-21 | The Procter & Gamble Company | Laundry detergent compositions comprising cationic surfactants and modified polyamine soil dispersents |
US6020303A (en) | 1996-04-16 | 2000-02-01 | The Procter & Gamble Company | Mid-chain branched surfactants |
US6022844A (en) | 1996-03-05 | 2000-02-08 | The Procter & Gamble Company | Cationic detergent compounds |
WO2000023548A1 (en) | 1998-10-20 | 2000-04-27 | The Procter & Gamble Company | Laundry detergents comprising modified alkylbenzene sulfonates |
WO2000023549A1 (en) | 1998-10-20 | 2000-04-27 | The Procter & Gamble Company | Laundry detergents comprising modified alkylbenzene sulfonates |
US6060443A (en) | 1996-04-16 | 2000-05-09 | The Procter & Gamble Company | Mid-chain branched alkyl sulfate surfactants |
WO2000042151A1 (en) | 1999-01-14 | 2000-07-20 | The Procter & Gamble Company | Detergent compositions comprising a pectate lyase and a bleach booster |
WO2000042147A1 (en) | 1999-01-14 | 2000-07-20 | The Procter & Gamble Company | Detergent compositions comprising a pectate lyase and a semi-polar nonionic surfactant |
US6093856A (en) | 1996-11-26 | 2000-07-25 | The Procter & Gamble Company | Polyoxyalkylene surfactants |
EP1022334A2 (en) | 1998-12-21 | 2000-07-26 | Kao Corporation | Novel amylases |
WO2000047708A1 (en) | 1999-02-10 | 2000-08-17 | The Procter & Gamble Company | Low density particulate solids useful in laundry detergents |
WO2000060060A2 (en) | 1999-03-31 | 2000-10-12 | Novozymes A/S | Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same |
US6136769A (en) | 1996-05-17 | 2000-10-24 | The Procter & Gamble Company | Alkoxylated cationic detergency ingredients |
US6150322A (en) | 1998-08-12 | 2000-11-21 | Shell Oil Company | Highly branched primary alcohol compositions and biodegradable detergents made therefrom |
US6165966A (en) | 1996-09-24 | 2000-12-26 | The Procter & Gamble Company | Liquid detergents containing proteolytic enzyme and protease inhibitors |
US6221829B1 (en) | 1997-06-30 | 2001-04-24 | Novo Nordisk A/S | Particulate polymeric materials and their use |
US6221825B1 (en) | 1996-12-31 | 2001-04-24 | The Procter & Gamble Company | Thickened, highly aqueous liquid detergent compositions |
US6242405B1 (en) | 1995-12-29 | 2001-06-05 | Novo Nordisk A/S | Enzyme-containing particles and liquid detergent concentrate |
WO2001042408A2 (en) | 1999-12-08 | 2001-06-14 | The Procter & Gamble Company | Ether-capped poly(oxyalkylated) alcohol surfactants |
WO2001062903A1 (en) | 2000-02-24 | 2001-08-30 | Novozymes A/S | Family 44 xyloglucanases |
US6312936B1 (en) | 1997-10-23 | 2001-11-06 | Genencor International, Inc. | Multiply-substituted protease variants |
US6359031B1 (en) | 1995-12-29 | 2002-03-19 | Ciba Specialty Chemicals Water Treatments Limited | Particles having a polymeric shell and their production |
US6482994B2 (en) | 1997-08-02 | 2002-11-19 | The Procter & Gamble Company | Ether-capped poly(oxyalkylated) alcohol surfactants |
US6649085B2 (en) | 2000-11-25 | 2003-11-18 | Clariant Gmbh | Cyclic sugar ketones as catalysts for peroxygen compounds |
EP0558648B1 (en) | 1990-11-21 | 2004-04-28 | GALARDY, Richard, E. | Improved matrix metalloprotease inhibitors |
WO2004074419A2 (en) | 2003-02-18 | 2004-09-02 | Novozymes A/S | Detergent compositions |
EP1502645A1 (en) | 2003-08-01 | 2005-02-02 | The Procter & Gamble Company | Microcapsules |
WO2005028604A1 (en) | 2003-09-19 | 2005-03-31 | Genencor International, Inc. | Silica derived sol-gels sensitive to water content change |
WO2005028603A1 (en) | 2003-09-19 | 2005-03-31 | Genencor International, Inc. | Silicate derived sol-gels sensitive to water content change |
WO2005042532A1 (en) | 2003-10-31 | 2005-05-12 | Unilever Plc | Bispidon-derivated ligands and complex for catalytically bleaching a substrate |
WO2005047264A1 (en) | 2003-11-06 | 2005-05-26 | The Procter & Gamble Company | Process for producing dihydroisoquinoline zwitterions |
WO2005052146A2 (en) | 2003-11-19 | 2005-06-09 | Genencor International, Inc. | Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same |
WO2006002955A2 (en) | 2004-07-02 | 2006-01-12 | Leibniz-Institut Fuer Pflanzengenetik Und Kulturpflanzenforschung | Polypeptides having tannase and/or lipase activity |
WO2006002643A2 (en) | 2004-07-05 | 2006-01-12 | Novozymes A/S | Alpha-amylase variants with altered properties |
US7018821B2 (en) | 2001-06-22 | 2006-03-28 | Genencor International, Inc. | Highly impact-resistant granules |
US7153818B2 (en) | 2000-07-28 | 2006-12-26 | Henkel Kgaa | Amylolytic enzyme extracted from bacillus sp. A 7-7 (DSM 12368) and washing and cleaning agents containing this novel amylolytic enzyme |
WO2007044993A2 (en) | 2005-10-12 | 2007-04-19 | Genencor International, Inc. | Use and production of storage-stable neutral metalloprotease |
WO2007100501A2 (en) | 2006-02-28 | 2007-09-07 | Appleton Papers Inc. | Benefit agent containing delivery particle |
WO2007113241A1 (en) | 2006-03-31 | 2007-10-11 | Novozymes A/S | A stabilized liquid enzyme composition |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4438024A (en) * | 1982-05-10 | 1984-03-20 | The Procter & Gamble Company | Stable liquid detergent compositions |
CN100471916C (en) | 2003-10-27 | 2009-03-25 | 克莱里安特财务(Bvi)有限公司 | Storagestable concentrated aqueous solutions of anionic dis- or tetrazo dyestuffs |
EP1693440A1 (en) * | 2005-02-22 | 2006-08-23 | The Procter & Gamble Company | Detergent compositions |
WO2011005913A1 (en) | 2009-07-09 | 2011-01-13 | The Procter & Gamble Company | A catalytic laundry detergent composition comprising relatively low levels of water-soluble electrolyte |
-
2010
- 2010-07-06 WO PCT/US2010/041020 patent/WO2011005730A1/en active Application Filing
- 2010-07-06 CN CN2010800319252A patent/CN102471729A/en active Pending
- 2010-07-06 MX MX2012000480A patent/MX2012000480A/en active IP Right Grant
- 2010-07-06 BR BR112012000520A patent/BR112012000520A2/en not_active Application Discontinuation
- 2010-07-06 EP EP10734608A patent/EP2451915A1/en not_active Withdrawn
- 2010-07-08 AR ARP100102485A patent/AR077466A1/en not_active Application Discontinuation
- 2010-09-23 US US12/888,495 patent/US8541354B2/en active Active
-
2012
- 2012-01-09 ZA ZA2012/00150A patent/ZA201200150B/en unknown
Patent Citations (146)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4106991A (en) | 1976-07-07 | 1978-08-15 | Novo Industri A/S | Enzyme granulate composition and process for forming enzyme granulates |
US4242219A (en) | 1977-07-20 | 1980-12-30 | Gist-Brocades N.V. | Novel enzyme particles and their preparation |
US4228042A (en) | 1978-06-26 | 1980-10-14 | The Procter & Gamble Company | Biodegradable cationic surface-active agents containing ester or amide and polyalkoxy group |
US4260529A (en) | 1978-06-26 | 1981-04-07 | The Procter & Gamble Company | Detergent composition consisting essentially of biodegradable nonionic surfactant and cationic surfactant containing ester or amide |
US4239660A (en) | 1978-12-13 | 1980-12-16 | The Procter & Gamble Company | Detergent composition comprising a hydrolyzable cationic surfactant and specific alkalinity source |
US4435307A (en) | 1980-04-30 | 1984-03-06 | Novo Industri A/S | Detergent cellulase |
US4430243A (en) | 1981-08-08 | 1984-02-07 | The Procter & Gamble Company | Bleach catalyst compositions and use thereof in laundry bleaching and detergent compositions |
US4483779A (en) | 1982-04-26 | 1984-11-20 | The Procter & Gamble Company | Detergent compositions comprising polyglycoside and polyethoxylate surfactants and anionic fluorescer |
US4483780A (en) | 1982-04-26 | 1984-11-20 | The Procter & Gamble Company | Detergent compositions containing polyglycoside and polyethoxylate detergent surfactants |
US4565647A (en) | 1982-04-26 | 1986-01-21 | The Procter & Gamble Company | Foaming surfactant compositions |
US4565647B1 (en) | 1982-04-26 | 1994-04-05 | Procter & Gamble | Foaming surfactant compositions |
US4412934A (en) | 1982-06-30 | 1983-11-01 | The Procter & Gamble Company | Bleaching compositions |
US4545784A (en) | 1983-04-14 | 1985-10-08 | Interox Chemicals Limited | Particulate sodium perborate monohydrate containing adsorbed activator |
US4760025A (en) | 1984-05-29 | 1988-07-26 | Genencor, Inc. | Modified enzymes and methods for making same |
US4689297A (en) | 1985-03-05 | 1987-08-25 | Miles Laboratories, Inc. | Dust free particulate enzyme formulation |
US4634551A (en) | 1985-06-03 | 1987-01-06 | Procter & Gamble Company | Bleaching compounds and compositions comprising fatty peroxyacids salts thereof and precursors therefor having amide moieties in the fatty chain |
US4906396A (en) | 1986-02-20 | 1990-03-06 | Albright & Wilson Limited | Protected enzyme systems |
US4728455A (en) | 1986-03-07 | 1988-03-01 | Lever Brothers Company | Detergent bleach compositions, bleaching agents and bleach activators |
US4915854A (en) | 1986-11-14 | 1990-04-10 | The Procter & Gamble Company | Ion-pair complex conditioning agent and compositions containing same |
WO1989006270A1 (en) | 1988-01-07 | 1989-07-13 | Novo-Nordisk A/S | Enzymatic detergent |
US4966723A (en) | 1988-02-11 | 1990-10-30 | Bp Chemicals Limited | Bleach activators in detergent compositions |
US5691178A (en) | 1988-03-22 | 1997-11-25 | Novo Nordisk A/S | Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase |
WO1989009259A1 (en) | 1988-03-24 | 1989-10-05 | Novo-Nordisk A/S | A cellulase preparation |
US5648263A (en) | 1988-03-24 | 1997-07-15 | Novo Nordisk A/S | Methods for reducing the harshness of a cotton-containing fabric |
US5776757A (en) | 1988-03-24 | 1998-07-07 | Novo Nordisk A/S | Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof |
US4963655A (en) | 1988-05-27 | 1990-10-16 | Mayo Foundation For Medical Education And Research | Boron analogs of amino acid/peptide protease inhibitors |
US5159060A (en) | 1988-05-27 | 1992-10-27 | Mayo Foundation For Medical Education And Research | Cytotoxic boronic acid peptide analogs |
US5114611A (en) | 1989-04-13 | 1992-05-19 | Lever Brothers Company, Divison Of Conopco, Inc. | Bleach activation |
US5030378A (en) | 1990-01-02 | 1991-07-09 | The Procter & Gamble Company | Liquid detergents containing anionic surfactant, builder and proteolytic enzyme |
US5114606A (en) | 1990-02-19 | 1992-05-19 | Lever Brothers Company, Division Of Conopco, Inc. | Bleaching composition comprising as a bleaching catalyst a complex of manganese with a non-carboxylate polyhydroxy ligand |
EP0531315A1 (en) | 1990-05-09 | 1993-03-17 | Novo Nordisk As | An enzyme capable of degrading cellulose or hemicellulose. |
EP0531372A1 (en) | 1990-05-09 | 1993-03-17 | Novo Nordisk As | A cellulase preparation comprising an endoglucanase enzyme. |
US5686593A (en) | 1990-05-09 | 1997-11-11 | Novo Nordisk A/S | Enzyme capable of degrading cellulose or hemicellulose |
US5457046A (en) | 1990-05-09 | 1995-10-10 | Novo Nordisk A/S | Enzyme capable of degrading cellullose or hemicellulose |
US5763254A (en) | 1990-05-09 | 1998-06-09 | Novo Nordisk A/S | Enzyme capable of degrading cellulose or hemicellulose |
US5246621A (en) | 1990-05-21 | 1993-09-21 | Lever Brothers Company, Division Of Conopco, Inc. | Bleach activation by manganese-based coordination complexes |
US5244594A (en) | 1990-05-21 | 1993-09-14 | Lever Brothers Company, Division Of Conopco, Inc. | Bleach activation multinuclear manganese-based coordination complexes |
US5332528A (en) | 1990-09-28 | 1994-07-26 | The Procter & Gamble Company | Polyhydroxy fatty acid amides in soil release agent-containing detergent compositions |
WO1992006162A1 (en) | 1990-09-28 | 1992-04-16 | The Procter & Gamble Company | Detergent containing alkyl sulfate and polyhydroxy fatty acid amide surfactants |
EP0558648B1 (en) | 1990-11-21 | 2004-04-28 | GALARDY, Richard, E. | Improved matrix metalloprotease inhibitors |
EP0558635B1 (en) | 1990-11-21 | 1997-09-10 | Glycomed Incorporated | Improved matrix metalloprotease inhibitors |
EP0495257A1 (en) | 1991-01-16 | 1992-07-22 | The Procter & Gamble Company | Compact detergent compositions with high activity cellulase |
US5227084A (en) | 1991-04-17 | 1993-07-13 | Lever Brothers Company, Division Of Conopco, Inc. | Concentrated detergent powder compositions |
WO1992019707A1 (en) | 1991-04-30 | 1992-11-12 | The Procter & Gamble Company | Liquid detergents with an aryl boronic acid |
US5472628A (en) | 1991-04-30 | 1995-12-05 | The Procter & Gamble Company | Liquid detergents with an aryl acid for inhibition of proteolytic enzyme |
US5274147A (en) | 1991-07-11 | 1993-12-28 | Lever Brothers Company, Division Of Conopco, Inc. | Process for preparing manganese complexes |
US5246612A (en) | 1991-08-23 | 1993-09-21 | Lever Brothers Company, Division Of Conopco, Inc. | Machine dishwashing composition containing peroxygen bleach, manganese complex and enzymes |
US5324649A (en) | 1991-10-07 | 1994-06-28 | Genencor International, Inc. | Enzyme-containing granules coated with hydrolyzed polyvinyl alcohol or copolymer thereof |
EP0544440A2 (en) | 1991-11-20 | 1993-06-02 | Unilever Plc | Bleach catalyst composition, manufacture and use thereof in detergent and/or bleach compositions |
US5153161A (en) | 1991-11-26 | 1992-10-06 | Lever Brothers Company, Division Of Conopco, Inc. | Synthesis of manganese oxidation catalyst |
US5194416A (en) | 1991-11-26 | 1993-03-16 | Lever Brothers Company, Division Of Conopco, Inc. | Manganese catalyst for activating hydrogen peroxide bleaching |
EP0544490A1 (en) | 1991-11-26 | 1993-06-02 | Unilever Plc | Detergent bleach compositions |
EP0549272A1 (en) | 1991-12-20 | 1993-06-30 | Unilever Plc | Bleach activation |
EP0549271A1 (en) | 1991-12-20 | 1993-06-30 | Unilever Plc | Bleach activation |
WO1993019146A1 (en) | 1992-03-16 | 1993-09-30 | The Procter & Gamble Company | Fluid compositions containing polyhydroxy fatty acid amides |
WO1993019038A1 (en) | 1992-03-26 | 1993-09-30 | The Procter & Gamble Company | Process for reducing the levels of fatty acid contaminants in polyhydroxy fatty acid amide surfactants |
US5256779A (en) | 1992-06-18 | 1993-10-26 | Lever Brothers Company, Division Of Conopco, Inc. | Synthesis of manganese oxidation catalyst |
US5284944A (en) | 1992-06-30 | 1994-02-08 | Lever Brothers Company, Division Of Conopco, Inc. | Improved synthesis of 1,4,7-triazacyclononane |
WO1994002597A1 (en) | 1992-07-23 | 1994-02-03 | Novo Nordisk A/S | MUTANT α-AMYLASE, DETERGENT, DISH WASHING AGENT, AND LIQUEFACTION AGENT |
US5488157A (en) | 1992-08-14 | 1996-01-30 | The Procter & Gamble Company | β-aminoalkyl and β-N-peptidylaminoalkyl boronic acids |
WO1994004654A1 (en) | 1992-08-14 | 1994-03-03 | The Procter & Gamble Company | LIQUID DETERGENT COMPOSITIONS CONTAINING PROTEASE AND CERTAIN β-AMINOALKYLBORONIC ACIDS AND ESTERS |
US5442100A (en) | 1992-08-14 | 1995-08-15 | The Procter & Gamble Company | β-aminoalkyl and β-N-peptidylaminoalkyl boronic acids |
WO1994004653A1 (en) | 1992-08-14 | 1994-03-03 | The Procter & Gamble Company | Liquid detergents containing an alpha-amino boronic acid |
US5280117A (en) | 1992-09-09 | 1994-01-18 | Lever Brothers Company, A Division Of Conopco, Inc. | Process for the preparation of manganese bleach catalyst |
WO1994007998A1 (en) | 1992-10-06 | 1994-04-14 | Novo Nordisk A/S | Cellulase variants |
WO1994009099A1 (en) | 1992-10-13 | 1994-04-28 | The Procter & Gamble Company | Fluid compositions containing polyhydroxy fatty acid amides |
WO1994018314A1 (en) | 1993-02-11 | 1994-08-18 | Genencor International, Inc. | Oxidatively stable alpha-amylase |
US5679630A (en) | 1993-10-14 | 1997-10-21 | The Procter & Gamble Company | Protease-containing cleaning compositions |
WO1995012655A1 (en) | 1993-11-05 | 1995-05-11 | The Procter & Gamble Company | Liquid detergents with ortho-substituted phenylboronic acids for inhibition of proteolytic enzyme |
US5360568A (en) | 1993-11-12 | 1994-11-01 | Lever Brothers Company, Division Of Conopco, Inc. | Imine quaternary salts as bleach catalysts |
US5360569A (en) | 1993-11-12 | 1994-11-01 | Lever Brothers Company, Division Of Conopco, Inc. | Activation of bleach precursors with catalytic imine quaternary salts |
WO1995024471A1 (en) | 1994-03-08 | 1995-09-14 | Novo Nordisk A/S | Novel alkaline cellulases |
US5856164A (en) | 1994-03-29 | 1999-01-05 | Novo Nordisk A/S | Alkaline bacillus amylase |
WO1995029223A1 (en) | 1994-04-26 | 1995-11-02 | Novo Nordisk A/S | Naphthalene boronic acids |
US5580485A (en) | 1994-06-13 | 1996-12-03 | Lever Brothers Company, Division Of Conopco, Inc. | Bleach activation |
WO1996011262A1 (en) | 1994-10-06 | 1996-04-18 | Novo Nordisk A/S | An enzyme and enzyme preparation with endoglucanase activity |
US5595967A (en) | 1995-02-03 | 1997-01-21 | The Procter & Gamble Company | Detergent compositions comprising multiperacid-forming bleach activators |
WO1996023873A1 (en) | 1995-02-03 | 1996-08-08 | Novo Nordisk A/S | Amylase variants |
WO1996023874A1 (en) | 1995-02-03 | 1996-08-08 | Novo Nordisk A/S | A method of designing alpha-amylase mutants with predetermined properties |
WO1996029397A1 (en) | 1995-03-17 | 1996-09-26 | Novo Nordisk A/S | Novel endoglucanases |
US5972873A (en) | 1995-06-13 | 1999-10-26 | Novo Nordisk A/S | 4-substituted-phenyl-boronic acids as enzyme stabilizers |
WO1997000324A1 (en) | 1995-06-14 | 1997-01-03 | Kao Corporation | Gene encoding alkaline liquefying alpha-amylase |
US5597936A (en) | 1995-06-16 | 1997-01-28 | The Procter & Gamble Company | Method for manufacturing cobalt catalysts |
US5576282A (en) | 1995-09-11 | 1996-11-19 | The Procter & Gamble Company | Color-safe bleach boosters, compositions and laundry methods employing same |
US6359031B1 (en) | 1995-12-29 | 2002-03-19 | Ciba Specialty Chemicals Water Treatments Limited | Particles having a polymeric shell and their production |
US6242405B1 (en) | 1995-12-29 | 2001-06-05 | Novo Nordisk A/S | Enzyme-containing particles and liquid detergent concentrate |
US6022844A (en) | 1996-03-05 | 2000-02-08 | The Procter & Gamble Company | Cationic detergent compounds |
US6060443A (en) | 1996-04-16 | 2000-05-09 | The Procter & Gamble Company | Mid-chain branched alkyl sulfate surfactants |
US6020303A (en) | 1996-04-16 | 2000-02-01 | The Procter & Gamble Company | Mid-chain branched surfactants |
US6004922A (en) | 1996-05-03 | 1999-12-21 | The Procter & Gamble Company | Laundry detergent compositions comprising cationic surfactants and modified polyamine soil dispersents |
WO1997043424A1 (en) | 1996-05-14 | 1997-11-20 | Genencor International, Inc. | MODIFIED α-AMYLASES HAVING ALTERED CALCIUM BINDING PROPERTIES |
US6136769A (en) | 1996-05-17 | 2000-10-24 | The Procter & Gamble Company | Alkoxylated cationic detergency ingredients |
WO1998008940A1 (en) | 1996-08-26 | 1998-03-05 | Novo Nordisk A/S | A novel endoglucanase |
US5817614A (en) | 1996-08-29 | 1998-10-06 | Procter & Gamble Company | Color-safe bleach boosters, compositions and laundry methods employing same |
WO1998012307A1 (en) | 1996-09-17 | 1998-03-26 | Novo Nordisk A/S | Cellulase variants |
US6165966A (en) | 1996-09-24 | 2000-12-26 | The Procter & Gamble Company | Liquid detergents containing proteolytic enzyme and protease inhibitors |
WO1998013458A1 (en) | 1996-09-24 | 1998-04-02 | The Procter & Gamble Company | Liquid detergents containing proteolytic enzyme and protease inhibitors |
WO1998013459A1 (en) | 1996-09-24 | 1998-04-02 | The Procter & Gamble Company | Liquid detergents containing proteolytic enzyme, peptide aldehyde and calcium ions |
US6093856A (en) | 1996-11-26 | 2000-07-25 | The Procter & Gamble Company | Polyoxyalkylene surfactants |
US6153577A (en) | 1996-11-26 | 2000-11-28 | The Procter & Gamble Company | Polyoxyalkylene surfactants |
US6221825B1 (en) | 1996-12-31 | 2001-04-24 | The Procter & Gamble Company | Thickened, highly aqueous liquid detergent compositions |
WO1998035006A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Liquid cleaning composition |
WO1998035003A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Detergent compound |
WO1998035002A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Cleaning compositions |
WO1998035004A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Solid detergent compositions |
WO1998035005A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | A cleaning composition |
US6221829B1 (en) | 1997-06-30 | 2001-04-24 | Novo Nordisk A/S | Particulate polymeric materials and their use |
WO1999001544A1 (en) | 1997-07-04 | 1999-01-14 | Novo Nordisk A/S | FAMILY 6 ENDO-1,4-β-GLUCANASE VARIANTS AND CLEANING COMPOSIT IONS CONTAINING THEM |
WO1999005242A1 (en) | 1997-07-21 | 1999-02-04 | The Procter & Gamble Company | Improved alkylbenzenesulfonate surfactants |
WO1999005082A1 (en) | 1997-07-21 | 1999-02-04 | The Procter & Gamble Company | Improved processes for making alkylbenzenesulfonate surfactants and products thereof |
WO1999005084A1 (en) | 1997-07-21 | 1999-02-04 | The Procter & Gamble Company | Process for making alkylbenzenesulfonate surfactants from alcohols and products thereof |
WO1999005244A1 (en) | 1997-07-21 | 1999-02-04 | The Procter & Gamble Company | Improved alkyl aryl sulfonate surfactants |
WO1999005241A1 (en) | 1997-07-21 | 1999-02-04 | The Procter & Gamble Company | Cleaning products comprising improved alkylarylsulfonate surfactants prepared via vinylidene olefins and processes for preparation thereof |
WO1999005243A1 (en) | 1997-07-21 | 1999-02-04 | The Procter & Gamble Company | Detergent compositions containing mixtures of crystallinity-disrupted surfactants |
US6482994B2 (en) | 1997-08-02 | 2002-11-19 | The Procter & Gamble Company | Ether-capped poly(oxyalkylated) alcohol surfactants |
WO1999007656A2 (en) | 1997-08-08 | 1999-02-18 | The Procter & Gamble Company | Improved processes for making surfactants via adsorptive separation and products thereof |
WO1999009128A1 (en) | 1997-08-14 | 1999-02-25 | The Procter & Gamble Company | Detergent compositions comprising a mannanase and a protease |
WO1999009126A1 (en) | 1997-08-14 | 1999-02-25 | The Procter & Gamble Company | Enzymatic cleaning compositions |
US6312936B1 (en) | 1997-10-23 | 2001-11-06 | Genencor International, Inc. | Multiply-substituted protease variants |
WO1999023211A1 (en) | 1997-10-30 | 1999-05-14 | Novo Nordisk A/S | α-AMYLASE MUTANTS |
WO1999064573A1 (en) | 1998-06-10 | 1999-12-16 | Novozymes A/S | Novel mannanases |
US6150322A (en) | 1998-08-12 | 2000-11-21 | Shell Oil Company | Highly branched primary alcohol compositions and biodegradable detergents made therefrom |
WO2000023548A1 (en) | 1998-10-20 | 2000-04-27 | The Procter & Gamble Company | Laundry detergents comprising modified alkylbenzene sulfonates |
WO2000023549A1 (en) | 1998-10-20 | 2000-04-27 | The Procter & Gamble Company | Laundry detergents comprising modified alkylbenzene sulfonates |
EP1022334A2 (en) | 1998-12-21 | 2000-07-26 | Kao Corporation | Novel amylases |
WO2000042151A1 (en) | 1999-01-14 | 2000-07-20 | The Procter & Gamble Company | Detergent compositions comprising a pectate lyase and a bleach booster |
WO2000042147A1 (en) | 1999-01-14 | 2000-07-20 | The Procter & Gamble Company | Detergent compositions comprising a pectate lyase and a semi-polar nonionic surfactant |
WO2000047708A1 (en) | 1999-02-10 | 2000-08-17 | The Procter & Gamble Company | Low density particulate solids useful in laundry detergents |
WO2000060060A2 (en) | 1999-03-31 | 2000-10-12 | Novozymes A/S | Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same |
WO2001042408A2 (en) | 1999-12-08 | 2001-06-14 | The Procter & Gamble Company | Ether-capped poly(oxyalkylated) alcohol surfactants |
WO2001062903A1 (en) | 2000-02-24 | 2001-08-30 | Novozymes A/S | Family 44 xyloglucanases |
US7153818B2 (en) | 2000-07-28 | 2006-12-26 | Henkel Kgaa | Amylolytic enzyme extracted from bacillus sp. A 7-7 (DSM 12368) and washing and cleaning agents containing this novel amylolytic enzyme |
US6649085B2 (en) | 2000-11-25 | 2003-11-18 | Clariant Gmbh | Cyclic sugar ketones as catalysts for peroxygen compounds |
US7018821B2 (en) | 2001-06-22 | 2006-03-28 | Genencor International, Inc. | Highly impact-resistant granules |
WO2004074419A2 (en) | 2003-02-18 | 2004-09-02 | Novozymes A/S | Detergent compositions |
EP1502645A1 (en) | 2003-08-01 | 2005-02-02 | The Procter & Gamble Company | Microcapsules |
WO2005028603A1 (en) | 2003-09-19 | 2005-03-31 | Genencor International, Inc. | Silicate derived sol-gels sensitive to water content change |
WO2005028604A1 (en) | 2003-09-19 | 2005-03-31 | Genencor International, Inc. | Silica derived sol-gels sensitive to water content change |
WO2005042532A1 (en) | 2003-10-31 | 2005-05-12 | Unilever Plc | Bispidon-derivated ligands and complex for catalytically bleaching a substrate |
WO2005047264A1 (en) | 2003-11-06 | 2005-05-26 | The Procter & Gamble Company | Process for producing dihydroisoquinoline zwitterions |
WO2005052146A2 (en) | 2003-11-19 | 2005-06-09 | Genencor International, Inc. | Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same |
WO2006002955A2 (en) | 2004-07-02 | 2006-01-12 | Leibniz-Institut Fuer Pflanzengenetik Und Kulturpflanzenforschung | Polypeptides having tannase and/or lipase activity |
WO2006002643A2 (en) | 2004-07-05 | 2006-01-12 | Novozymes A/S | Alpha-amylase variants with altered properties |
WO2007044993A2 (en) | 2005-10-12 | 2007-04-19 | Genencor International, Inc. | Use and production of storage-stable neutral metalloprotease |
WO2007100501A2 (en) | 2006-02-28 | 2007-09-07 | Appleton Papers Inc. | Benefit agent containing delivery particle |
WO2007113241A1 (en) | 2006-03-31 | 2007-10-11 | Novozymes A/S | A stabilized liquid enzyme composition |
Non-Patent Citations (10)
Title |
---|
ACTA BIOCHIMICA ET BIOPHYSICA SINICA, vol. 39, no. 11, 2007, pages 811 - 828 |
BAUDUIN P., RENONCOURT A., TOURAUD D.,KUNZ W.,NINHAM B.W.: "Hofmeister effect on enzymatic catalysis and colloidal structures", CURRENT OPINION IN COLLOID AND INTERFACE SCIENCE, vol. 9, 2004, Elsevier Ltd, pages 43 - 47, XP002606146, DOI: 10.1016/j.cocis.2004.05.031 * |
JOURNAL OF THE CHEMICAL SOCIETY, CHEMICAL COMMUNICATIONS, 1994, pages 2569 - 70 |
NISHINO, NORIKAZU; POWERS, JAMES C., BIOCHEMISTRY, vol. 17, no. 14, 1978, pages 2846 - 50 |
PARK C., RAINES R.T.: "Quantitative Analysis of the Effect of Salt Concentration on Enzymatic Catalysis", J. AM. CHEM. SOC., vol. 123, 30 October 2001 (2001-10-30), pages 11472 - 11479, XP002606147, DOI: 10.1021/ja0164834 * |
POLISH JOURNAL OF CHEMISTRY, vol. 77, no. 5, 2003, pages 577 - 590 |
TETRAHEDRON LETTERS, vol. 35, no. 34, 1994, pages 6329 - 30 |
TETRAHEDRON, vol. 49, no. 2, 1992, pages 423 - 38 |
THE JOURNAL OF ORGANIC CHEMISTRY, vol. 55, no. 4, 1990, pages 1254 - 61 |
ZIA M.A ET AL.: "Thermal characterization of purified glucose oxidase from a newly isolated Aspergillus niger UAF-1", JOURNAL OF CLINICAL BIOCHEMISTRY AND NUTRITION, vol. 41, no. 2, 2007, pages 132 - 138 |
Cited By (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2592156A2 (en) | 2007-06-08 | 2013-05-15 | Genentech, Inc. | Gene expression markers of tumor resistance to HER2 inhibitor treatment |
EP2840134A1 (en) | 2010-04-26 | 2015-02-25 | Novozymes A/S | Enzyme granules |
WO2011134809A1 (en) | 2010-04-26 | 2011-11-03 | Novozymes A/S | Enzyme granules |
WO2012175401A2 (en) | 2011-06-20 | 2012-12-27 | Novozymes A/S | Particulate composition |
WO2012175708A2 (en) | 2011-06-24 | 2012-12-27 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2013001087A2 (en) | 2011-06-30 | 2013-01-03 | Novozymes A/S | Method for screening alpha-amylases |
EP3543333A2 (en) | 2011-06-30 | 2019-09-25 | Novozymes A/S | Method for screening alpha-amylases |
EP4026901A2 (en) | 2011-06-30 | 2022-07-13 | Novozymes A/S | Method for screening alpha-amylases |
WO2013007594A1 (en) | 2011-07-12 | 2013-01-17 | Novozymes A/S | Storage-stable enzyme granules |
WO2013024021A1 (en) | 2011-08-15 | 2013-02-21 | Novozymes A/S | Polypeptides having cellulase activity and polynucleotides encoding same |
WO2013041689A1 (en) | 2011-09-22 | 2013-03-28 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2013076269A1 (en) | 2011-11-25 | 2013-05-30 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2013092635A1 (en) | 2011-12-20 | 2013-06-27 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2013110766A1 (en) | 2012-01-26 | 2013-08-01 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
WO2013120948A1 (en) | 2012-02-17 | 2013-08-22 | Novozymes A/S | Subtilisin variants and polynucleotides encoding same |
WO2013131964A1 (en) | 2012-03-07 | 2013-09-12 | Novozymes A/S | Detergent composition and substitution of optical brighteners in detergent compositions |
WO2013167581A1 (en) | 2012-05-07 | 2013-11-14 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
WO2013189972A2 (en) | 2012-06-20 | 2013-12-27 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
WO2014096259A1 (en) | 2012-12-21 | 2014-06-26 | Novozymes A/S | Polypeptides having protease activiy and polynucleotides encoding same |
EP3321360A2 (en) | 2013-01-03 | 2018-05-16 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2014183921A1 (en) | 2013-05-17 | 2014-11-20 | Novozymes A/S | Polypeptides having alpha amylase activity |
EP3786269A1 (en) | 2013-06-06 | 2021-03-03 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2014207227A1 (en) | 2013-06-27 | 2014-12-31 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2014207224A1 (en) | 2013-06-27 | 2014-12-31 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2015001017A2 (en) | 2013-07-04 | 2015-01-08 | Novozymes A/S | Polypeptides having anti-redeposition effect and polynucleotides encoding same |
EP2832853A1 (en) | 2013-07-29 | 2015-02-04 | Henkel AG&Co. KGAA | Detergent composition comprising protease variants |
EP3613853A1 (en) | 2013-07-29 | 2020-02-26 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP3611260A1 (en) | 2013-07-29 | 2020-02-19 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP3339436A1 (en) | 2013-07-29 | 2018-06-27 | Henkel AG & Co. KGaA | Detergent composition comprising protease variants |
EP3309249A1 (en) | 2013-07-29 | 2018-04-18 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2015049370A1 (en) | 2013-10-03 | 2015-04-09 | Novozymes A/S | Detergent composition and use of detergent composition |
EP3453757A1 (en) | 2013-12-20 | 2019-03-13 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2015134737A1 (en) | 2014-03-05 | 2015-09-11 | Novozymes A/S | Compositions and methods for improving properties of cellulosic textile materials with xyloglucan endotransglycosylase |
WO2015134729A1 (en) | 2014-03-05 | 2015-09-11 | Novozymes A/S | Compositions and methods for improving properties of non-cellulosic textile materials with xyloglucan endotransglycosylase |
WO2015150457A1 (en) | 2014-04-01 | 2015-10-08 | Novozymes A/S | Polypeptides having alpha amylase activity |
WO2015189371A1 (en) | 2014-06-12 | 2015-12-17 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
EP3739029A1 (en) | 2014-07-04 | 2020-11-18 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3878960A1 (en) | 2014-07-04 | 2021-09-15 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2016079305A1 (en) | 2014-11-20 | 2016-05-26 | Novozymes A/S | Alicyclobacillus variants and polynucleotides encoding same |
EP3690037A1 (en) | 2014-12-04 | 2020-08-05 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
US10760036B2 (en) | 2014-12-15 | 2020-09-01 | Henkel Ag & Co. Kgaa | Detergent composition comprising subtilase variants |
EP3608403A2 (en) | 2014-12-15 | 2020-02-12 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
EP4071244A1 (en) | 2015-06-18 | 2022-10-12 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3872175A1 (en) | 2015-06-18 | 2021-09-01 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3106508A1 (en) | 2015-06-18 | 2016-12-21 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
WO2017064269A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptide variants |
WO2017064253A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
EP4324919A2 (en) | 2015-10-14 | 2024-02-21 | Novozymes A/S | Polypeptide variants |
WO2017207762A1 (en) | 2016-06-03 | 2017-12-07 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2017223287A1 (en) * | 2016-06-22 | 2017-12-28 | University Of Virginia | Iminium salt organocatalysts, methods of making, and methods of using |
US11161102B2 (en) | 2016-06-22 | 2021-11-02 | University Of Virginia Patent Foundation | Iminium salt organocatalysts, method of making, and methods of using |
WO2018011277A1 (en) | 2016-07-13 | 2018-01-18 | Novozymes A/S | Bacillus cibi dnase variants |
EP3950941A2 (en) | 2016-07-13 | 2022-02-09 | Novozymes A/S | Dnase polypeptide variants |
WO2018011276A1 (en) | 2016-07-13 | 2018-01-18 | The Procter & Gamble Company | Bacillus cibi dnase variants and uses thereof |
WO2019081721A1 (en) | 2017-10-27 | 2019-05-02 | Novozymes A/S | Dnase variants |
WO2019084349A1 (en) | 2017-10-27 | 2019-05-02 | The Procter & Gamble Company | Detergent compositions comprising polypeptide variants |
WO2019081724A1 (en) | 2017-10-27 | 2019-05-02 | Novozymes A/S | Dnase variants |
WO2019201793A1 (en) | 2018-04-17 | 2019-10-24 | Novozymes A/S | Polypeptides comprising carbohydrate binding activity in detergent compositions and their use in reducing wrinkles in textile or fabric. |
WO2020188095A1 (en) | 2019-03-21 | 2020-09-24 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2020207944A1 (en) | 2019-04-10 | 2020-10-15 | Novozymes A/S | Polypeptide variants |
WO2021037895A1 (en) | 2019-08-27 | 2021-03-04 | Novozymes A/S | Detergent composition |
WO2021053127A1 (en) | 2019-09-19 | 2021-03-25 | Novozymes A/S | Detergent composition |
WO2021064068A1 (en) | 2019-10-03 | 2021-04-08 | Novozymes A/S | Polypeptides comprising at least two carbohydrate binding domains |
EP3892708A1 (en) | 2020-04-06 | 2021-10-13 | Henkel AG & Co. KGaA | Cleaning compositions comprising dispersin variants |
WO2022074037A2 (en) | 2020-10-07 | 2022-04-14 | Novozymes A/S | Alpha-amylase variants |
WO2022171780A2 (en) | 2021-02-12 | 2022-08-18 | Novozymes A/S | Alpha-amylase variants |
WO2022268885A1 (en) | 2021-06-23 | 2022-12-29 | Novozymes A/S | Alpha-amylase polypeptides |
WO2024131880A2 (en) | 2022-12-23 | 2024-06-27 | Novozymes A/S | Detergent composition comprising catalase and amylase |
Also Published As
Publication number | Publication date |
---|---|
AR077466A1 (en) | 2011-08-31 |
ZA201200150B (en) | 2018-11-28 |
CN102471729A (en) | 2012-05-23 |
EP2451915A1 (en) | 2012-05-16 |
MX2012000480A (en) | 2012-01-27 |
US8541354B2 (en) | 2013-09-24 |
BR112012000520A2 (en) | 2016-02-16 |
US20110015109A1 (en) | 2011-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8541354B2 (en) | Catalytic laundry detergent composition comprising relatively low levels of water-soluble electrolyte | |
US8211848B2 (en) | Catalytic laundry detergent composition comprising relatively low levels of water-soluble electrolyte | |
EP2292725B9 (en) | Method of laundering fabrics at low temperature | |
WO2011005623A1 (en) | Laundry detergent composition comprising low level of bleach | |
US20110257060A1 (en) | Laundry detergent composition comprising bleach particles that are suspended within a continuous liquid phase | |
US20110099725A1 (en) | Method of laundring fabric using a compacted laundry detergent composition | |
TR201802775T4 (en) | Composition comprising substituted cellulosic polymer and amylase. | |
US8586521B2 (en) | Method of laundering fabrics at low temperature | |
TR201808134T4 (en) | Solid free-flowing particulate laundry detergent composition. | |
EP3301155A1 (en) | Laundry detergent composition | |
EP3301156A1 (en) | Laundry detergent composition | |
EP3546559A1 (en) | Laundry detergent composition | |
US20110005004A1 (en) | Method of laundering fabric using a compacted liquid laundry detergent composition | |
EP3301158B1 (en) | Laundry detergent composition | |
EP3301160A1 (en) | Low ph laundry detergent composition | |
US20110005005A1 (en) | Method of laundring fabric using a compacted laundry detergent composition | |
EP3301159B1 (en) | Laundry detergent composition | |
BR0116133B1 (en) | enzymatic detergent composition. | |
EP2451922A1 (en) | Method of laundering fabric using a compacted liquid laundry detergent composition | |
EP3546557B1 (en) | Catalase inhibition during a laundering process | |
WO2011133372A1 (en) | Detergent composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080031925.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10734608 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/000480 Country of ref document: MX |
|
REEP | Request for entry into the european phase |
Ref document number: 2010734608 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010734608 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012000520 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012000520 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120109 |