WO2011004688A1 - Phthalocyanine compounds - Google Patents

Phthalocyanine compounds Download PDF

Info

Publication number
WO2011004688A1
WO2011004688A1 PCT/JP2010/060334 JP2010060334W WO2011004688A1 WO 2011004688 A1 WO2011004688 A1 WO 2011004688A1 JP 2010060334 W JP2010060334 W JP 2010060334W WO 2011004688 A1 WO2011004688 A1 WO 2011004688A1
Authority
WO
WIPO (PCT)
Prior art keywords
phthalocyanine compound
oxide
octakis
och
phthalocyanine
Prior art date
Application number
PCT/JP2010/060334
Other languages
French (fr)
Japanese (ja)
Inventor
武藤豪志
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN2010800269183A priority Critical patent/CN102471601B/en
Priority to JP2011521871A priority patent/JP4967074B2/en
Publication of WO2011004688A1 publication Critical patent/WO2011004688A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/067Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile
    • C09B47/0675Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile having oxygen or sulfur linked directly to the skeleton

Definitions

  • the present invention relates to phthalocyanine compounds and the like useful as materials for photoelectric conversion elements, optical recording media, optical filters and the like.
  • a phthalocyanine compound is an organic semiconductor that is chemically stable and has a narrow band gap. It is known that a thin film of a phthalocyanine compound having such characteristics is formed and used as an organic photovoltaic element or a near-infrared absorbing material (for example, Patent Document 1 and Patent Document 2).
  • the phthalocyanine compound Since the phthalocyanine compound is generally insoluble in a solvent, it is usually thinned by a vacuum deposition method or the like. However, in Patent Document 2, a phthalocyanine compound having a specific substituent has solubility in a solvent. It is disclosed to show.
  • phthalocyanine compounds are used according to various uses, there is a problem that there are few phthalocyanine compounds having desirable characteristics and the range of material selection is narrow depending on the use.
  • some phthalocyanine compounds exhibit solubility in a solvent as described above, but are preferably used as a P-type organic semiconductor material that is soluble in a solvent and can absorb near-infrared light. Has not been obtained yet.
  • an object of the present invention is to provide a phthalocyanine compound or the like that can be formed by a simple process and has a desirable absorption region as a material for a photoelectric conversion element or the like.
  • the phthalocyanine compound in the present invention is a phthalocyanine compound represented by the following general formula (I), wherein R1 to R8 are linear halogenated alkoxy groups having 5 or less carbon atoms, or 5 carbon atoms. It represents one of the following branched alkoxy groups. These substituents R1 to R8 may be the same or different.
  • R1 to R8 in the above general formula (I) are preferably selected from the group of 1a to 1g represented by the following chemical formula (II).
  • the light absorbing material of the present invention is characterized by containing the above-mentioned phthalocyanine compound.
  • the light absorbing material is preferably formed into a film and heated at a temperature of more than 60 ° C. and not more than 150 ° C.
  • the photoelectric conversion element of the present invention is characterized by including a photoelectric conversion layer containing the above-described light absorbing material.
  • a phthalocyanine compound or the like that is soluble in a solvent, can be formed by a simple process such as a coating method, and has a desirable absorption region as a material for a photoelectric conversion element or the like.
  • FIG. 1 shows the molecular formula of the phthalocyanine compound of the present invention.
  • the phthalocyanine compound 10 of the present invention contains vanadium oxide (VO) as a central metal compound and substituents R1 to R8.
  • the substituents R1 to R8 are either a linear halogenated alkoxy group having 5 or less carbon atoms or a branched alkoxy group having 5 or less carbon atoms, and may be the same or different. Good.
  • the straight-chain halogenated alkoxy group having 5 or less carbon atoms is a group in which a part of methoxy group, ethoxy group, propoxy group, butoxy group or pentyloxy group is halogenated.
  • halogen element fluorine (F) or chlorine (Cl) is preferable.
  • phthalocyanine compound examples include 1,4,5,8,9,12,13,16-octakis (monofluoromethoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12, 13,16-octakis (difluoromethoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis (trifluoromethoxy) phthalocyaninatovanadium oxide, 1,4,5,8 , 9,12,13,16-octakis (monochloromethoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis (dichloromethoxy) phthalocyaninatovanadium oxide, 1,4 , 5,8,9,12,13,16-octakis (trichloromethoxy) phthalocyanine Tovanadium oxide, 1,4,5,8,9,12,13,16-octakis (2-
  • substituents R1 to R8 are preferably selected from the group of 1a to 1g represented by the following chemical formula (II).
  • the substituents R1 to R8 selected from the group of 1a to 1g may be the same or different. That is, the above-mentioned compounds having the same substituents R1 to R8, for example, 1,4,5,8,9,12,13,16-octakis (2,2,2-trifluoroethoxy) phthalocyaninato Vanadium oxide, 1,4,5,8,9,12,13,16-octakis (2,2,2-trichloroethoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13, 16-octakis (3,3,3-trifluoropropoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis (3,3,3-trichloropropoxy) phthalocyaninato Vanadium oxide, 1,4,5,8,9,12,13,16-octakis-iso-propoxyphthalocyaninatovanadium oxide, 1, , 5,8,
  • the phthalocyanine compound 10 has excellent solubility in organic solvents. It is considered that the solubility in organic solvents is mainly brought about by the substituents R1 to R8. That is, the solubility of the phthalocyanine compound 10 is improved by having a linear halogenated alkoxy group having 5 or less carbon atoms or a branched alkoxy group having 5 or less carbon atoms as a substituent. From the viewpoint of improving solubility, the substituent is more preferably selected from the group of 1a to 1g represented by the chemical formula (II), and a halogenated alkoxy such as 2,2,2-trifluoroethoxy group (1a). Particularly preferred is a group.
  • the phthalocyanine compound 10 is light absorptive and can particularly efficiently absorb near infrared light. It is considered that the absorption of near infrared light is mainly due to the high crystallinity of the phthalocyanine compound 10.
  • the crystallinity of the phthalocyanine compound 10 is that the oxygen ion of vanadium oxide at the center protrudes to one of the planes of the phthalocyanine compound 10 having a substantially planar structure, and the carbon number of the substituent R is suppressed to 5 or less. Is brought about by being.
  • the absorption wavelength preferably has a maximum absorption wavelength in the wavelength region of 700 to 1100 nm, and more preferably has a maximum absorption wavelength in the wavelength region of 800 to 1000 nm.
  • the phthalocyanine compound 10 When the phthalocyanine compound 10 is used as a light absorbing material, it is preferable to form a film (hereinafter sometimes referred to as a thin film).
  • the method for forming the film is not limited. However, since the phthalocyanine compound 10 has excellent solubility in an organic solvent, it can be formed by a coating method.
  • the coating method is a method in which the phthalocyanine compound 10 is dissolved in a suitable solvent to form a coating solution, and the coating solution is applied to a substrate to form a film.
  • Solvents used include alcohols such as methyl alcohol and ethyl alcohol, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, hydrocarbons such as toluene and xylene, dichloromethane, chloroform, chlorobenzene and the like. Examples thereof include halogenated hydrocarbons.
  • the concentration of the phthalocyanine compound 10 in the solvent is preferably 0.01 to 20% by mass.
  • the substrate for example, a glass plate, a plastic film or the like can be used.
  • the plastic film include films made of polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyvinyl chloride, polystyrene, and polyimide.
  • the thickness of the substrate is about 10 ⁇ m to 5 mm.
  • a gas barrier layer or a conductive layer may be provided on these substrates.
  • the gas barrier layer include a layer made of silica or silicon nitride
  • the conductive layer include a layer made of indium oxide, tin oxide, tin-doped indium oxide (ITO), or zinc oxide.
  • Examples of the method for applying the coating liquid to the substrate include a spin coating method, a bar coating method, a gravure coating method, and a spray coating method. After applying the coating solution by these methods, the film of the phthalocyanine compound is formed by heating as necessary to remove the solvent.
  • the thickness of the formed film is not particularly limited and may be determined according to the application and purpose, but is usually about 10 nm to 10 ⁇ m. Note that a vacuum deposition method, a sputtering method, or the like can also be used as a film formation method.
  • the heating temperature is preferably higher than 60 ° C. and 150 ° C. or lower.
  • the heating method is not limited, and it can be performed by a method such as using a hot plate or an oven (a constant temperature bath).
  • the heating time is about 1 minute to 1 hour, preferably about 2 minutes to 30 minutes.
  • the heating atmosphere may be air, or may be under reduced pressure, filled with nitrogen or an inert gas. Moreover, you may perform simultaneously drying and heat processing of a coating film.
  • FIG. 2 is a light absorption spectrum of the phthalocyanine compound 101a of the present invention (described later).
  • the light absorption spectrum of the phthalocyanine compound 101a differs between the solution and the film. That is, in the case of a solution, the maximum absorption wavelength is in the vicinity of 740 nm as shown by the broken line, whereas in the case of a film, the maximum absorption wavelength is about 836 nm as shown by the solid line.
  • the film-like phthalocyanine compound 101a is obtained by applying a coating solution to a glass substrate to form a thin film and heating at 150 ° C.
  • the thin-film phthalocyanine compound 101a has a light absorption spectrum shown by a solid line in FIG. 2, but the light absorption spectrum is changed by heating.
  • the solution in FIG. 2 uses chlorobenzene as a solvent. And about chlorobenzene, since absorption is not recognized by 740 nm vicinity, it can be said that the change of the maximum absorption wavelength in FIG. 2 originates in the phthalocyanine compound 101a.
  • FIG. 3 shows changes in the light absorption spectrum when the heating temperature of the thinned phthalocyanine compound 101a shown in FIG. 2 is changed.
  • the heating temperature when heated at 60 ° C., it has a light absorption spectrum (dashed line) close to a solution.
  • the heating temperature is 80 ° C.
  • the absorption intensity peak shifts to the near infrared region.
  • the maximum absorption wavelength shows almost the same value as in the case of 80 ° C. while shifting to the near infrared region, and has a stable absorption intensity peak. It can be seen that it is.
  • the phthalocyanine compound 101a can be suitably used in a field where an absorption band in the near infrared region is required.
  • the fall of absorption intensity is recognized as shown in figure. For this reason, it is preferable to heat the phthalocyanine compound 101a in a temperature range exceeding 60 ° C. and 150 ° C. or less.
  • the phthalocyanine compound 101a when the thin film of the phthalocyanine compound 101a after heating is observed with a microscope, a birefringent domain exhibiting high crystallinity is observed. This also suggests that the phthalocyanine compound 101a is crystallized by heating and has an absorption band in the near infrared region when it has a crystal structure.
  • the phthalocyanine compound 10 can be performed using a known method for producing a phthalocyanine compound, but it is preferable to use a cyclization reaction using a phthalonitrile compound and a metal salt. Hereinafter, the manufacturing method of the phthalocyanine compound 10 using a cyclization reaction is demonstrated.
  • 1,4-bis (2,2,2-trifluoroethoxy) phthalonitrile (by reaction of dicyanohydroquinone and 2,2,2-trifluoroethyl tosylate) Compound 12) is synthesized.
  • This synthesis is performed by adding dicyanohydroquinone and 2,2,2-trifluoroethyl tosylate in a solvent such as N, N-dimethylformamide (DMF) and stirring at 80 to 130 ° C. for about 1 to 60 hours. Is called.
  • a solvent such as N, N-dimethylformamide (DMF)
  • DMF N, N-dimethylformamide
  • 2,2,2-trifluoroethyl tosylate can be obtained, for example, by the method described in paragraph 0360 of JP-A-2005-84584.
  • the obtained compound 12 can be separated, washed and purified by a known method.
  • the obtained compound 12, vanadium salt and urea are added to a solvent such as benzonitrile and dichlorobenzene, and stirred at 100 to 170 ° C. for about 10 to 120 minutes.
  • the compound 101a which is one of the phthalocyanine compounds 10 that is, 1, 4, 5, 8, 9, 12, 13, 16-octakis (2,2,2-trifluoroethoxy) Phthalocyaninatovanadium oxide
  • the vanadium salt vanadium dichloride, vanadium trichloride, vanadium pentoxide, or the like can be used.
  • the obtained 1,4,5,8,9,12,13,16-octakis (2,2,2-trifluoroethoxy) phthalocyaninatovanadium oxide can be separated, washed and purified by known methods. Can do.
  • the phthalocyanine compound having —OCH 2 CF 3 as a substituent has been described.
  • the —OCH 2 CF 3 of the compound 12 may be another linear halogenated alkoxy group having 5 or less carbon atoms, or the number of carbon atoms. If the branched alkoxy group is 5 or less, the phthalocyanine compound 10 having those substituents can be obtained.
  • the photoelectric conversion layer of the present invention includes a light absorbing material containing the phthalocyanine compound 10.
  • the photoelectric conversion element generally has two electrodes, that is, an anode and a cathode, and has a structure including a photoelectric conversion layer between them. At least one of the anode and the cathode needs to transmit light, but the anode is usually a light-transmitting electrode.
  • Examples of the conductive material for forming the anode include indium oxide, tin oxide, tin-doped indium oxide (ITO), iridium oxide, zinc oxide, and gallium-doped zinc oxide. However, the conductivity and transparency are good. Tin-doped indium oxide (ITO) and gallium-doped zinc oxide are preferred. Examples of the conductive material for forming the cathode include metals such as platinum, gold, aluminum, iridium, and chromium, and carbon nanotubes.
  • the anode and the cathode can be obtained, for example, by forming a layer made of a conductive material on a substrate or a photoelectric conversion layer by a PVD (physical vapor deposition) method such as vacuum deposition, sputtering, or ion plating.
  • a glass plate or a plastic film is preferable.
  • the plastic film include films made of polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyvinyl chloride, polystyrene, and polyimide.
  • the thickness of the substrate is about 10 ⁇ m to 5 mm.
  • the thickness of the anode and the cathode is preferably 10 to 500 nm, respectively.
  • the photoelectric conversion layer is a layer having a function of absorbing light and converting light energy into electric energy.
  • a layer in which a p-type semiconductor layer and an n-type semiconductor layer are stacked may be used.
  • the phthalocyanine compound is a p-type semiconductor, and the phthalocyanine compound 10 of the present invention functions as a p-type semiconductor layer in such a photoelectric conversion layer.
  • the n-type semiconductor may be an inorganic semiconductor or an organic semiconductor.
  • the inorganic semiconductor include silicon doped with arsenic or phosphorus
  • examples of the organic semiconductor include fullerene and fullerene derivatives such as [6,6] -phenyl-C 61 -methyl butyrate (PCBM).
  • an intrinsic semiconductor (i-type semiconductor) layer may be provided between the p-type semiconductor layer and the n-type semiconductor layer. Conversion efficiency can be improved by making a photoelectric converting layer into such a structure.
  • Each layer constituting the photoelectric conversion layer is formed by a coating method such as PVD (physical vapor deposition) such as vacuum deposition, sputtering, ion plating, spin coating method, bar coating method, gravure coating method, spray coating method, etc. can do.
  • the thickness of the photoelectric conversion layer is preferably 10 nm to 3 ⁇ m.
  • a buffer layer may be provided in the photoelectric conversion element.
  • the buffer layer include a layer containing bathocuproine (2,9-dimethyl-4,7diphenyl-1,10-phenanthroline) as a hole blocking material.
  • This buffer layer (hole blocking material) is usually provided between the n-type semiconductor layer and the cathode.
  • a photoelectric conversion element a solar cell, an optical sensor, etc. are mentioned, for example.
  • Solubility test The phthalocyanine compound was added to each solvent and stirred so that the concentration of the phthalocyanine compound was 10% by mass, the solubility of the phthalocyanine compound was visually observed, and the solubility was observed depending on the presence or absence of undissolved substances. .
  • Dichloromethane, chloroform, chlorobenzene, tetrahydrofuran, acetone, ethyl acetate, and toluene were used as the solvent. Measurement was performed using a light absorption spectrophotometer (“UV-3101PC” manufactured by Shimadzu Corporation). Confirmation of crystallinity It was observed at a magnification of 10 using a polarizing microscope (OLYMPUS "BX51").
  • Example 1 As shown in the reaction formula (1) in FIG. 4, 1,4-bis (2,2,2-trifluoroethoxy) phthalonitrile (Compound 12) was synthesized from dicyanohydroquinone (manufactured by Tokyo Chemical Industry Co., Ltd.). That is, a solution obtained by dissolving 2.3 g of metal sodium in 80 ml of methanol (solvent) at room temperature under a nitrogen stream was added to 8.0 g of dicyanohydroquinone, stirred at room temperature for 30 minutes, and unreacted methanol was removed under reduced pressure. Removed.
  • dicyanohydroquinone manufactured by Tokyo Chemical Industry Co., Ltd.
  • phthalocyanine compound 101a 1,4,5,8,9,12,13,16-octakis (2,2,2-trifluoroethoxy) phthalocyaninatovanadium oxide. It was confirmed that there was. The evaluation result of this phthalocyanine compound 101a is shown.
  • the phthalocyanine compound 101a is crystallized by heating and has an absorption band in the near infrared region when it has a crystal structure.
  • a photoelectric conversion element was produced and evaluated using the obtained phthalocyanine compound 101a.
  • ITO glass cleaned by cleaning and UV (ultraviolet light) -ozone treatment transparent conductive glass having a tin-doped indium oxide (ITO) film formed on a glass substrate, resistance value 14 ⁇ / sq) ITO film (anode
  • the obtained phthalocyanine compound 101a was laminated to a thickness of 50 nm under the conditions of a pressure of 3.3 ⁇ 10 ⁇ 4 Pa and a deposition rate of 0.4 K / sec.
  • fullerene manufactured by Nano-C
  • fullerene as an n-type organic semiconductor on the phthalocyanine compound 101a layer so as to have a thickness of 50 nm under the conditions of a pressure of 1.1 ⁇ 10 ⁇ 4 Pa and a deposition rate of 0.5 kg / sec. Laminated.
  • bathocuproin As a hole blocking agent was laminated on the fullerene layer to a thickness of 10 nm under the conditions of 8.5 ⁇ 10 ⁇ 5 Pa and a deposition rate of 0.4 kg / sec.
  • a silver (Nihon Kojun Kagaku Co., Ltd.) silver as a cathode was stacked on the bathocuproine layer at a thickness of 8.2 ⁇ 10 ⁇ 5 Pa and a deposition rate of 0.4 ⁇ / sec to produce a photoelectric conversion element.
  • a photoelectric conversion element was irradiated with light from the ITO glass side using a tungsten lamp (100 W) and the current value at the time of short circuit was measured, a current value of 27.4 ⁇ A was obtained, and a photoelectric conversion element showing good characteristics was obtained. Obtained.
  • Comparative Example 1 In Comparative Example 1 in which the central metal is copper and Comparative Example 2 in which the central metal compound is dichlorotin, the phthalocyanine compound having the same substituent R as the phthalocyanine compound 101a has an absorption band in the near infrared region. It was confirmed not to.
  • the phthalocyanine compound 10 can be formed into a film by a coating method such as spin coating which is simpler than the conventional vapor deposition method. Moreover, since the phthalocyanine compound 10 of the present invention has light absorption performance, it can be suitably used for photovoltaic elements such as organic thin-film solar cells and optical sensors, optical recording media, and the like.
  • the phthalocyanine compound 10 can easily shift the absorption band to the near infrared region by heat treatment. Therefore, the phthalocyanine compound 10 satisfies the performance particularly required in the field of P-type organic semiconductor materials, and can be said to be useful in this respect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Photovoltaic Devices (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

Disclosed are phthalocyanine compounds, which are to be subjected to film formation and then heating. When the temperature of the heating is raised from 60°C to 80°C, 150°C or 200°C, the light absorption bands of the phthalocyanine compounds are shifted to the near-infrared region. Therefore, the phthalocyanine compounds are suitable for use in fields wherein an absorption band in the near-infrared region is necessitated. Further, the phthalocyanine compounds exhibit excellent solubility in organic solvents and thus can be easily formed into films by spin coating or other simple methods.

Description

フタロシアニン化合物Phthalocyanine compounds
 本発明は、光電変換素子、光記録媒体、光フィルター等の材料として有用なフタロシアニン化合物等に関する。 The present invention relates to phthalocyanine compounds and the like useful as materials for photoelectric conversion elements, optical recording media, optical filters and the like.
 フタロシアニン化合物は、化学的に安定であって狭いバンドギャップを有する有機半導体である。このような特徴を有するフタロシアニン化合物の薄膜を形成し、有機光起電力素子、あるいは近赤外線吸収材料として用いることが知られている(例えば、特許文献1および特許文献2)。 A phthalocyanine compound is an organic semiconductor that is chemically stable and has a narrow band gap. It is known that a thin film of a phthalocyanine compound having such characteristics is formed and used as an organic photovoltaic element or a near-infrared absorbing material (for example, Patent Document 1 and Patent Document 2).
 フタロシアニン化合物は、一般的に溶媒に対して不溶性であるため、通常、真空蒸着法などにより薄膜化されているが、特許文献2には特定の置換基を有するフタロシアニン化合物が溶媒への溶解性を示すことが開示されている。 Since the phthalocyanine compound is generally insoluble in a solvent, it is usually thinned by a vacuum deposition method or the like. However, in Patent Document 2, a phthalocyanine compound having a specific substituent has solubility in a solvent. It is disclosed to show.
特開平5-152594号公報JP-A-5-152594 特開2000-63693号公報JP 2000-63693 A
 フタロシアニン化合物を真空蒸着法などにより薄膜化する場合、比較的大規模な装置と複雑な工程が必要となる。このため、フタロシアニン化合物を成膜して光電変換層等を製造する際には、コストが増大し、大面積化が困難になるといった問題が生じ得る。 When a phthalocyanine compound is thinned by a vacuum deposition method or the like, a relatively large-scale apparatus and a complicated process are required. For this reason, when manufacturing a photoelectric converting layer etc. by forming a phthalocyanine compound into a film, the problem that a cost increases and enlargement of an area becomes difficult may arise.
 また、各種用途に応じて様々なフタロシアニン化合物が使用されているものの、用途によっては、望ましい特徴を兼ね備えたフタロシアニン化合物が少なく、材料選択の幅が狭いという問題もある。例えば、一部のフタロシアニン化合物は、上述のように溶媒への溶解性を示すものの、溶媒に可溶であるとともに近赤外光を吸収可能なP型有機半導体の材料として好適に用いられるフタロシアニン化合物は、未だ得られていない。 In addition, although various phthalocyanine compounds are used according to various uses, there is a problem that there are few phthalocyanine compounds having desirable characteristics and the range of material selection is narrow depending on the use. For example, some phthalocyanine compounds exhibit solubility in a solvent as described above, but are preferably used as a P-type organic semiconductor material that is soluble in a solvent and can absorb near-infrared light. Has not been obtained yet.
 そこで本発明は、簡易な工程により成膜が可能であるとともに、光電変換素子などの材料として望ましい吸収域を有するフタロシアニン化合物等を提供することを目的とする。 Therefore, an object of the present invention is to provide a phthalocyanine compound or the like that can be formed by a simple process and has a desirable absorption region as a material for a photoelectric conversion element or the like.
 本発明におけるフタロシアニン化合物は、下記一般式(I)で表されるフタロシアニン化合物であって、式中R1~R8は、炭素数が5以下の直鎖状のハロゲン化アルコキシ基、あるいは炭素数が5以下の分岐状のアルコキシ基のいずれかを表す。これらの置換基R1~R8は、それぞれ同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000002
 
 
 
The phthalocyanine compound in the present invention is a phthalocyanine compound represented by the following general formula (I), wherein R1 to R8 are linear halogenated alkoxy groups having 5 or less carbon atoms, or 5 carbon atoms. It represents one of the following branched alkoxy groups. These substituents R1 to R8 may be the same or different.
Figure JPOXMLDOC01-appb-C000002


 上述の一般式(I)中のR1~R8は、下記化学式(II)で示される1aから1gの群から選択されることが好ましい。
[化学式(II)]
1a:-OCHCF
1b:-OCHCHCF
1c:-OCHCCl
1d:-OCHCHCCl
1e:-OCH(CH
1f:-OCHCH(CH
1g:-OCHCHCH(CH
R1 to R8 in the above general formula (I) are preferably selected from the group of 1a to 1g represented by the following chemical formula (II).
[Chemical formula (II)]
1a: —OCH 2 CF 3
1b: —OCH 2 CH 2 CF 3
1c: —OCH 2 CCl 3
1d: —OCH 2 CH 2 CCl 3
1e: —OCH (CH 3 ) 2
1f: —OCH 2 CH (CH 3 ) 2
1 g: —OCH 2 CH 2 CH (CH 3 ) 2
 本発明の光吸収材料は、上述のフタロシアニン化合物を含むことを特徴とする。光吸収材料は、膜状にして60℃を超え150℃以下の温度で加熱することが好ましい。 The light absorbing material of the present invention is characterized by containing the above-mentioned phthalocyanine compound. The light absorbing material is preferably formed into a film and heated at a temperature of more than 60 ° C. and not more than 150 ° C.
 本発明の光電変換素子は、上述の光吸収材料を含む光電変換層を備えたことを特徴とする。 The photoelectric conversion element of the present invention is characterized by including a photoelectric conversion layer containing the above-described light absorbing material.
 本発明によれば、溶媒可溶性であり、塗布法などの簡易な工程により成膜が可能であるとともに、光電変換素子などの材料として望ましい吸収域を有するフタロシアニン化合物等を実現できる。 According to the present invention, it is possible to realize a phthalocyanine compound or the like that is soluble in a solvent, can be formed by a simple process such as a coating method, and has a desirable absorption region as a material for a photoelectric conversion element or the like.
本発明のフタロシアニン化合物の分子式を示す図である。It is a figure which shows the molecular formula of the phthalocyanine compound of this invention. フタロシアニン化合物の光吸収スペクトルを示す図である。It is a figure which shows the light absorption spectrum of a phthalocyanine compound. 加熱処理によるフタロシアニン化合物の光吸収スペクトルの変化を示す図である。It is a figure which shows the change of the light absorption spectrum of the phthalocyanine compound by heat processing. 本発明のフタロシアニン化合物の中間体を生成する反応式を示す図である。It is a figure which shows the reaction formula which produces | generates the intermediate body of the phthalocyanine compound of this invention. 中間体からフタロシアニン化合物を生成する反応式を示す図である。It is a figure which shows the reaction formula which produces | generates a phthalocyanine compound from an intermediate body.
 以下、本発明のフタロシアニン化合物につき説明する。図1は、本発明のフタロシアニン化合物の分子式を示す図である。 Hereinafter, the phthalocyanine compound of the present invention will be described. FIG. 1 shows the molecular formula of the phthalocyanine compound of the present invention.
 本発明のフタロシアニン化合物10は、中心金属化合物としてのバナジウムオキサイド(VO)と、置換基R1~R8とを含む。置換基R1~R8は、炭素数が5以下の直鎖状のハロゲン化アルコキシ基、あるいは炭素数が5以下の分岐状のアルコキシ基のいずれかであり、それぞれ同一であっても異なっていてもよい。 The phthalocyanine compound 10 of the present invention contains vanadium oxide (VO) as a central metal compound and substituents R1 to R8. The substituents R1 to R8 are either a linear halogenated alkoxy group having 5 or less carbon atoms or a branched alkoxy group having 5 or less carbon atoms, and may be the same or different. Good.
 炭素数が5以下の直鎖状のハロゲン化アルコキシ基は、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基あるいはペンチルオキシ基の一部がハロゲン化されたものである。ハロゲン元素としては、フッ素(F)又は塩素(Cl)が好ましい。フタロシアニン化合物は具体的な例としては、1,4,5,8,9,12,13,16-オクタキス(モノフルオロメトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(ジフルオロメトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(トリフルオロメトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(モノクロロメトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(ジクロロメトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(トリクロロメトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(2-モノフルオロエトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(2,2-ジフルオロエトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(2,2,2-トリフルオロエトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(2-モノクロロエトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(2,2-ジクロロエトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(2,2,2-トリクロロエトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(3-モノフルオロプロポキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(3,3-ジフルオロプロポキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(3,3,3-トリフルオロプロポキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(3-モノクロロプロポキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(3,3-ジクロロプロポキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(3,3,3-トリクロロプロポキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(4-モノフルオロブトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(4,4-ジフルオロブトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(4,4,4-トリフルオロブトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(4-モノクロロブトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(4,4-ジクロロブトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(4,4,4-トリクロロブトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(5-モノフルオロペンチルオキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(5,5-ジフルオロエペンチルオキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(5,5,5-トリフルオロペンチルオキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(5-モノクロロペンチルオキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(5,5-ジクロロペンチルオキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(5,5,5-トリクロロペンチルオキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス-iso-プロポキシフタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス-iso-ブトキシフタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス-tert-ブトキシフタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス-iso-ペンチルオキシフタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス-ネオペンチルオキシフタロシアニナトバナジウムオキサイド等があげられる。 The straight-chain halogenated alkoxy group having 5 or less carbon atoms is a group in which a part of methoxy group, ethoxy group, propoxy group, butoxy group or pentyloxy group is halogenated. As the halogen element, fluorine (F) or chlorine (Cl) is preferable. Specific examples of the phthalocyanine compound include 1,4,5,8,9,12,13,16-octakis (monofluoromethoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12, 13,16-octakis (difluoromethoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis (trifluoromethoxy) phthalocyaninatovanadium oxide, 1,4,5,8 , 9,12,13,16-octakis (monochloromethoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis (dichloromethoxy) phthalocyaninatovanadium oxide, 1,4 , 5,8,9,12,13,16-octakis (trichloromethoxy) phthalocyanine Tovanadium oxide, 1,4,5,8,9,12,13,16-octakis (2-monofluoroethoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16- Octakis (2,2-difluoroethoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis (2,2,2-trifluoroethoxy) phthalocyaninatovanadium oxide, 1 , 4,5,8,9,12,13,16-octakis (2-monochloroethoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis (2,2- Dichloroethoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis (2,2,2- Lichloroethoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis (3-monofluoropropoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9, 12,13,16-octakis (3,3-difluoropropoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis (3,3,3-trifluoropropoxy) phthalate Russian ninato vanadium oxide, 1,4,5,8,9,12,13,16-octakis (3-monochloropropoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16- Octakis (3,3-dichloropropoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,1 2,13,16-octakis (3,3,3-trichloropropoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis (4-monofluorobutoxy) phthalocyaninato Vanadium oxide, 1,4,5,8,9,12,13,16-octakis (4,4-difluorobutoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16- Octakis (4,4,4-trifluorobutoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis (4-monochlorobutoxy) phthalocyaninatovanadium oxide, 1,4 , 5,8,9,12,13,16-octakis (4,4-dichlorobutoxy) phthalocyaninatovanadium 1,4,5,8,9,12,13,16-octakis (4,4,4-trichlorobutoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16 Octakis (5-monofluoropentyloxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis (5,5-difluoroepentyloxy) phthalocyaninatovanadium oxide, 1 , 4,5,8,9,12,13,16-octakis (5,5,5-trifluoropentyloxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16- Octakis (5-monochloropentyloxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octa (5,5-dichloropentyloxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis (5,5,5-trichloropentyloxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis-iso-propoxyphthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis-iso-butoxyphthalocyanine Ninato vanadium oxide, 1,4,5,8,9,12,13,16-octakis-tert-butoxyphthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis-iso -Pentyloxyphthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-o Examples include kutakis-neopentyloxyphthalocyaninatovanadium oxide.
 ここで、置換基R1~R8は、下記化学式(II)で表わされる1aから1gの群から選択されることが好ましい。
[化学式(II)]
1a:-OCHCF
1b:-OCHCHCF
1c:-OCHCCl
1d:-OCHCHCCl
1e:-OCH(CH
1f:-OCHCH(CH
1g:-OCHCHCH(CH
Here, the substituents R1 to R8 are preferably selected from the group of 1a to 1g represented by the following chemical formula (II).
[Chemical formula (II)]
1a: —OCH 2 CF 3
1b: —OCH 2 CH 2 CF 3
1c: —OCH 2 CCl 3
1d: —OCH 2 CH 2 CCl 3
1e: —OCH (CH 3 ) 2
1f: —OCH 2 CH (CH 3 ) 2
1 g: —OCH 2 CH 2 CH (CH 3 ) 2
 1aから1gの群から選択される置換基R1~R8は、それぞれ同一であってもよいし異なっていてもよい。すなわち、置換基R1~R8がいずれも同一である上述の化合物、例えば、1,4,5,8,9,12,13,16-オクタキス(2,2,2-トリフルオロエトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(2,2,2-トリクロロエトキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(3,3,3-トリフルオロプロポキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス(3,3,3-トリクロロプロポキシ)フタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス-iso-プロポキシフタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス-iso-ブトキシフタロシアニナトバナジウムオキサイド、1,4,5,8,9,12,13,16-オクタキス-iso-ペンチルオキシフタロシアニナトバナジウムオキサイド等には限定されない。例えば、1,4,5,8,9,12,13,16位の置換基R1~R8として、上述の1aから1gのうちいずれかを重複させても良い。 The substituents R1 to R8 selected from the group of 1a to 1g may be the same or different. That is, the above-mentioned compounds having the same substituents R1 to R8, for example, 1,4,5,8,9,12,13,16-octakis (2,2,2-trifluoroethoxy) phthalocyaninato Vanadium oxide, 1,4,5,8,9,12,13,16-octakis (2,2,2-trichloroethoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13, 16-octakis (3,3,3-trifluoropropoxy) phthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis (3,3,3-trichloropropoxy) phthalocyaninato Vanadium oxide, 1,4,5,8,9,12,13,16-octakis-iso-propoxyphthalocyaninatovanadium oxide, 1, , 5,8,9,12,13,16-octakis-iso-butoxyphthalocyaninatovanadium oxide, 1,4,5,8,9,12,13,16-octakis-iso-pentyloxyphthalocyaninatovanadium It is not limited to oxide or the like. For example, as the substituents R1 to R8 at the 1,4,5,8,9,12,13,16 positions, any one of the above 1a to 1g may be overlapped.
 フタロシアニン化合物10は、有機溶媒に対する溶解性に優れている。有機溶媒に対する溶解性は、主として置換基R1~R8によりもたらされると考えられる。すなわち、炭素数が5以下の直鎖状のハロゲン化アルコキシ基、あるいは炭素数が5以下の分岐状のアルコキシ基を置換基として有することにより、フタロシアニン化合物10の溶解性が向上されている。溶解性向上の観点では、置換基は、前記化学式(II)で表わされる1aから1gの群から選ばれることがより好ましく、2,2,2-トリフルオロエトキシ基(1a)などのハロゲン化アルコキシ基であることが特に好ましい。 The phthalocyanine compound 10 has excellent solubility in organic solvents. It is considered that the solubility in organic solvents is mainly brought about by the substituents R1 to R8. That is, the solubility of the phthalocyanine compound 10 is improved by having a linear halogenated alkoxy group having 5 or less carbon atoms or a branched alkoxy group having 5 or less carbon atoms as a substituent. From the viewpoint of improving solubility, the substituent is more preferably selected from the group of 1a to 1g represented by the chemical formula (II), and a halogenated alkoxy such as 2,2,2-trifluoroethoxy group (1a). Particularly preferred is a group.
 フタロシアニン化合物10は、光吸収性であり、特に近赤外光を効率的に吸収することができる。近赤外光の吸収は、主としてフタロシアニン化合物10の高い結晶性によるものと考えられる。フタロシアニン化合物10の結晶性は、中心にあるバナジウムオキサイドの酸素イオンが、概ね平面構造をとるフタロシアニン化合物10の平面の一方に突出していること、および置換基Rの炭素数が5以下に抑えられていることにより、もたらされている。仮に、炭素数が5よりも多い嵩高い置換基Rを設けた場合、置換基Rが立体障害となり、フタロシアニン化合物10の結晶性が低下すると考えられる。また、図1に示すように、置換基R1~R8が1、4、5、8、9、12、13、16位に設けられていることも、フタロシアニン化合物10の優れた結晶性に寄与していると考えられる。フタロシアニン化合物10の結晶化を立体的に妨げ易い、2、3位等に設けられた置換基Rを含んでいないためである。吸収波長としては、700~1100nmの波長領域に極大吸収波長を有することが好ましく、800~1000nmの波長領域に極大吸収波長を有することがより好ましい。 The phthalocyanine compound 10 is light absorptive and can particularly efficiently absorb near infrared light. It is considered that the absorption of near infrared light is mainly due to the high crystallinity of the phthalocyanine compound 10. The crystallinity of the phthalocyanine compound 10 is that the oxygen ion of vanadium oxide at the center protrudes to one of the planes of the phthalocyanine compound 10 having a substantially planar structure, and the carbon number of the substituent R is suppressed to 5 or less. Is brought about by being. If a bulky substituent R having more than 5 carbon atoms is provided, it is considered that the substituent R becomes a steric hindrance and the crystallinity of the phthalocyanine compound 10 is lowered. Further, as shown in FIG. 1, the fact that the substituents R1 to R8 are provided at positions 1, 4, 5, 8, 9, 12, 13, 16 contributes to the excellent crystallinity of the phthalocyanine compound 10. It is thought that. This is because it does not contain a substituent R provided at the 2, 3-position or the like, which tends to sterically hinder crystallization of the phthalocyanine compound 10. The absorption wavelength preferably has a maximum absorption wavelength in the wavelength region of 700 to 1100 nm, and more preferably has a maximum absorption wavelength in the wavelength region of 800 to 1000 nm.
 フタロシアニン化合物10を光吸収材料として用いる場合は、膜状にすること(以下、薄膜化ということがある)が好ましい。膜の形成方法は限定されないが、フタロシアニン化合物10は有機溶媒への溶解性が優れているので、塗布法により形成することが可能である。塗布法は、適当な溶媒にフタロシアニン化合物10を溶解して塗布液とし、塗布液を基板に塗布して膜を形成する方法である。用いられる溶媒としては、メチルアルコール、エチルアルコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、トルエン、キシレン等の炭化水素類、ジクロロメタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素等が挙げられる。フタロシアニン化合物10の溶媒中の濃度は、0.01~20質量%であることが好ましい。 When the phthalocyanine compound 10 is used as a light absorbing material, it is preferable to form a film (hereinafter sometimes referred to as a thin film). The method for forming the film is not limited. However, since the phthalocyanine compound 10 has excellent solubility in an organic solvent, it can be formed by a coating method. The coating method is a method in which the phthalocyanine compound 10 is dissolved in a suitable solvent to form a coating solution, and the coating solution is applied to a substrate to form a film. Solvents used include alcohols such as methyl alcohol and ethyl alcohol, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, hydrocarbons such as toluene and xylene, dichloromethane, chloroform, chlorobenzene and the like. Examples thereof include halogenated hydrocarbons. The concentration of the phthalocyanine compound 10 in the solvent is preferably 0.01 to 20% by mass.
 基板としては、例えば、ガラス板、プラスチックフィルム等を用いることができる。プラスチックフィルムとしては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリ塩化ビニル、ポリスチレン、ポリイミド等からなるフィルムが挙げられる。基板の厚さは、10μm~5mm程度である。また、これらの基板にはガスバリア層や導電層が設けられていてもよい。ガスバリア層としては、例えば、シリカや窒化珪素からなる層が挙げられ、導電層としては、酸化インジウム、酸化錫、錫ドープ酸化インジウム(ITO)や酸化亜鉛からなる層が挙げられる。 As the substrate, for example, a glass plate, a plastic film or the like can be used. Examples of the plastic film include films made of polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyvinyl chloride, polystyrene, and polyimide. The thickness of the substrate is about 10 μm to 5 mm. In addition, a gas barrier layer or a conductive layer may be provided on these substrates. Examples of the gas barrier layer include a layer made of silica or silicon nitride, and examples of the conductive layer include a layer made of indium oxide, tin oxide, tin-doped indium oxide (ITO), or zinc oxide.
 塗布液を基板に塗布する方法としては、例えば、スピンコート法、バーコート法、グラビアコート法、スプレーコート法等があげられる。これらの方法で塗布液を塗布した後、必要により加熱して溶媒を除去することによりフタロシアニン化合物の膜が形成される。形成された膜の厚さは特に限定されず、用途や目的に応じて決めればよいが、通常10nm~10μm程度である。なお、膜の形成方法として、真空蒸着法やスパッタリング法などを用いることも可能である。 Examples of the method for applying the coating liquid to the substrate include a spin coating method, a bar coating method, a gravure coating method, and a spray coating method. After applying the coating solution by these methods, the film of the phthalocyanine compound is formed by heating as necessary to remove the solvent. The thickness of the formed film is not particularly limited and may be determined according to the application and purpose, but is usually about 10 nm to 10 μm. Note that a vacuum deposition method, a sputtering method, or the like can also be used as a film formation method.
 また、薄膜化したフタロシアニン化合物10を加熱することも好ましい。加熱を行うことによって、フタロシアニン化合物10の最大吸収波長をシフトさせることができる。加熱温度は60℃を超えて150℃以下で行うことが好ましい。加熱方法は限定されず、ホットプレートやオーブン(恒温槽)を用いるなどの方法で行うことができる。加熱時間は、1分~1時間、好ましくは2分~30分程度である。加熱雰囲気は大気中でもよいし、減圧下、窒素あるいは不活性ガス充填下でよい。また、塗布膜の乾燥と熱処理を同時に行ってもよい。 It is also preferable to heat the thinned phthalocyanine compound 10. By performing the heating, the maximum absorption wavelength of the phthalocyanine compound 10 can be shifted. The heating temperature is preferably higher than 60 ° C. and 150 ° C. or lower. The heating method is not limited, and it can be performed by a method such as using a hot plate or an oven (a constant temperature bath). The heating time is about 1 minute to 1 hour, preferably about 2 minutes to 30 minutes. The heating atmosphere may be air, or may be under reduced pressure, filled with nitrogen or an inert gas. Moreover, you may perform simultaneously drying and heat processing of a coating film.
 ここで、フタロシアニン化合物10の光吸収スペクトルについて説明する。図2は、本発明のフタロシアニン化合物101a(後出)の光吸収スペクトルである。図2に示すように、フタロシアニン化合物101aの光吸収スペクトルは、溶液と膜状とで異なる。すなわち、溶液であるときには、破線で示されるように740nm付近に極大吸収波長があるのに対し、膜状であるときには、実線で示されるように極大吸収波長が約836nmとなっている。なお、膜状のフタロシアニン化合物101aは、ガラス基板に塗布液を塗布して薄膜化し、150℃で加熱したものである。 Here, the light absorption spectrum of the phthalocyanine compound 10 will be described. FIG. 2 is a light absorption spectrum of the phthalocyanine compound 101a of the present invention (described later). As shown in FIG. 2, the light absorption spectrum of the phthalocyanine compound 101a differs between the solution and the film. That is, in the case of a solution, the maximum absorption wavelength is in the vicinity of 740 nm as shown by the broken line, whereas in the case of a film, the maximum absorption wavelength is about 836 nm as shown by the solid line. The film-like phthalocyanine compound 101a is obtained by applying a coating solution to a glass substrate to form a thin film and heating at 150 ° C.
 さらに、薄膜状のフタロシアニン化合物101aは、図2の実線に示される光吸収スペクトルを有しているが、加熱によって光吸収スペクトルが変化する。なお図2の溶液は、溶媒としてクロロベンゼンを用いたものである。そしてクロロベンゼンについては、740nm付近に吸収が認められることはないため、図2における極大吸収波長の変化は、フタロシアニン化合物101aに起因しているといえる。 Furthermore, the thin-film phthalocyanine compound 101a has a light absorption spectrum shown by a solid line in FIG. 2, but the light absorption spectrum is changed by heating. The solution in FIG. 2 uses chlorobenzene as a solvent. And about chlorobenzene, since absorption is not recognized by 740 nm vicinity, it can be said that the change of the maximum absorption wavelength in FIG. 2 originates in the phthalocyanine compound 101a.
 図3は、図2に示した薄膜化したフタロシアニン化合物101aの加熱温度を変更した場合の光吸収スペクトルの変化を示したものである。図3に示すように、60℃で加熱した場合は、溶液状に近い光吸収スペクトル(破線)を有する。そして、加熱温度を80℃とすると、吸収強度のピークが近赤外領域にシフトする。さらに、加熱温度を150℃、200℃とした場合も、極大吸収波長は近赤外領域にシフトしつつ80℃の場合とほぼ同じ値を示しており、安定した吸収強度のピークを有するフタロシアニン化合物であることがわかる。このためフタロシアニン化合物101aは、近赤外領域の吸収帯が必要とされる分野で好適に用いられ得る。なお、200℃で加熱すると、図示されたように、吸収強度の低下が認められる。このため、60℃を超え、150℃以下の温度範囲でフタロシアニン化合物101aを加熱することが好ましい。 FIG. 3 shows changes in the light absorption spectrum when the heating temperature of the thinned phthalocyanine compound 101a shown in FIG. 2 is changed. As shown in FIG. 3, when heated at 60 ° C., it has a light absorption spectrum (dashed line) close to a solution. When the heating temperature is 80 ° C., the absorption intensity peak shifts to the near infrared region. Further, even when the heating temperature is 150 ° C. and 200 ° C., the maximum absorption wavelength shows almost the same value as in the case of 80 ° C. while shifting to the near infrared region, and has a stable absorption intensity peak. It can be seen that it is. Therefore, the phthalocyanine compound 101a can be suitably used in a field where an absorption band in the near infrared region is required. In addition, when it heats at 200 degreeC, the fall of absorption intensity is recognized as shown in figure. For this reason, it is preferable to heat the phthalocyanine compound 101a in a temperature range exceeding 60 ° C. and 150 ° C. or less.
 なお、加熱後のフタロシアニン化合物101aの薄膜を顕微鏡で観察すると、高い結晶性を示す複屈折性のドメインが観測される。このことからも、フタロシアニン化合物101aは、加熱によって結晶化され、結晶構造を有するときに近赤外領域に吸収帯を有するものと考えられる。 In addition, when the thin film of the phthalocyanine compound 101a after heating is observed with a microscope, a birefringent domain exhibiting high crystallinity is observed. This also suggests that the phthalocyanine compound 101a is crystallized by heating and has an absorption band in the near infrared region when it has a crystal structure.
 フタロシアニン化合物10は、公知のフタロシアニン化合物の製造方法を利用して行うことができるが、フタロニトリル化合物と金属塩を用いた環化反応を利用することが好ましい。以下、環化反応を利用したフタロシアニン化合物10の製造方法を説明する。 The phthalocyanine compound 10 can be performed using a known method for producing a phthalocyanine compound, but it is preferable to use a cyclization reaction using a phthalonitrile compound and a metal salt. Hereinafter, the manufacturing method of the phthalocyanine compound 10 using a cyclization reaction is demonstrated.
 図4の反応式(1)に示すように、ジシアノハイドロキノンと2,2,2-トリフルオロエチルトシレートの反応により、1,4-ビス(2,2,2-トリフルオロエトキシ)フタロニトリル(化合物12)を合成する。この合成は、N,N-ジメチルホルムアミド(DMF)などの溶媒中に、ジシアノハイドロキノンと2,2,2-トリフルオロエチルトシレートを加え、80~130℃で1~60時間程度撹拌して行われる。なお、2,2,2-トリフルオロエチルトシレートは、例えば、特開2005-84584号公報の段落0360に記載された方法により得ることができる。また、得られた化合物12は公知の方法により分離、洗浄及び精製することができる。 As shown in the reaction formula (1) in FIG. 4, 1,4-bis (2,2,2-trifluoroethoxy) phthalonitrile (by reaction of dicyanohydroquinone and 2,2,2-trifluoroethyl tosylate) Compound 12) is synthesized. This synthesis is performed by adding dicyanohydroquinone and 2,2,2-trifluoroethyl tosylate in a solvent such as N, N-dimethylformamide (DMF) and stirring at 80 to 130 ° C. for about 1 to 60 hours. Is called. Incidentally, 2,2,2-trifluoroethyl tosylate can be obtained, for example, by the method described in paragraph 0360 of JP-A-2005-84584. Moreover, the obtained compound 12 can be separated, washed and purified by a known method.
 次に、図5に示されるように、ベンゾニトリル、ジクロロベンゼンなどの溶媒に、得られた化合物12、バナジウム塩及び尿素(Urea)を加え、100~170℃で10分から120分程度撹拌することにより、上述のフタロシアニン化合物10(図1参照)の一つである化合物101a、すなわち、1、4、5、8、9、12、13、16-オクタキス(2,2,2-トリフルオロエトキシ)フタロシアニナトバナジウムオキサイドを合成することができる。バナジウム塩としては、二塩化バナジウム、三塩化バナジウム、五酸化バナジウム等を用いることができる。得られた1、4、5、8、9、12、13、16-オクタキス(2,2,2-トリフルオロエトキシ)フタロシアニナトバナジウムオキサイドは、公知の方法により、分離、洗浄及び精製することができる。 Next, as shown in FIG. 5, the obtained compound 12, vanadium salt and urea (Urea) are added to a solvent such as benzonitrile and dichlorobenzene, and stirred at 100 to 170 ° C. for about 10 to 120 minutes. Thus, the compound 101a which is one of the phthalocyanine compounds 10 (see FIG. 1), that is, 1, 4, 5, 8, 9, 12, 13, 16-octakis (2,2,2-trifluoroethoxy) Phthalocyaninatovanadium oxide can be synthesized. As the vanadium salt, vanadium dichloride, vanadium trichloride, vanadium pentoxide, or the like can be used. The obtained 1,4,5,8,9,12,13,16-octakis (2,2,2-trifluoroethoxy) phthalocyaninatovanadium oxide can be separated, washed and purified by known methods. Can do.
 ここで、置換基として-OCHCFを有するフタロシアニン化合物について説明したが、化合物12の-OCHCFを他の炭素数が5以下の直鎖状のハロゲン化アルコキシ基、あるいは炭素数が5以下の分岐状のアルコキシ基とすれば、それらの置換基を有するフタロシアニン化合物10を得ることができる。 Here, the phthalocyanine compound having —OCH 2 CF 3 as a substituent has been described. However, the —OCH 2 CF 3 of the compound 12 may be another linear halogenated alkoxy group having 5 or less carbon atoms, or the number of carbon atoms. If the branched alkoxy group is 5 or less, the phthalocyanine compound 10 having those substituents can be obtained.
 次に、本発明の光電変換素子について説明する。本発明の光電変換層は、フタロシアニン化合物10を含む光吸収材料を備えている。光電変換素子は、一般に二つの電極、すなわち陽極と陰極を有し、それらの間に光電変換層を備えた構造を有している。陽極または陰極のうち少なくとも一方が光を透過する必要があるが、通常、陽極を光透過性電極とする。 Next, the photoelectric conversion element of the present invention will be described. The photoelectric conversion layer of the present invention includes a light absorbing material containing the phthalocyanine compound 10. The photoelectric conversion element generally has two electrodes, that is, an anode and a cathode, and has a structure including a photoelectric conversion layer between them. At least one of the anode and the cathode needs to transmit light, but the anode is usually a light-transmitting electrode.
 陽極を形成する導電材料としては、酸化インジウム、酸化錫、錫ドープ酸化インジウム(ITO)、酸化イリジウム、酸化亜鉛、ガリウムドープ酸化亜鉛などが挙げられるが、導電性及び透明性が良好であることから、錫ドープ酸化インジウム(ITO)、ガリウムドープ酸化亜鉛が好ましい。また、陰極を形成する導電材料としては、白金、金、アルミニウム、イリジウム、クロムなどの金属、カーボンナノチューブ等が挙げられる。 Examples of the conductive material for forming the anode include indium oxide, tin oxide, tin-doped indium oxide (ITO), iridium oxide, zinc oxide, and gallium-doped zinc oxide. However, the conductivity and transparency are good. Tin-doped indium oxide (ITO) and gallium-doped zinc oxide are preferred. Examples of the conductive material for forming the cathode include metals such as platinum, gold, aluminum, iridium, and chromium, and carbon nanotubes.
 陽極及び陰極は、例えば、基板あるいは光電変換層上に、真空蒸着、スパッタリング、イオンプレーティング等のPVD(物理気相蒸着)の手法によって導電材料からなる層を形成することにより得られる。基板としては、ガラス板やプラスチックフィルムが好ましい。プラスチックフィルムとしては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリ塩化ビニル、ポリスチレン、ポリイミド等からなるフィルムが挙げられる。基板の厚さは、10μm~5mm程度である。陽極及び陰極の厚さは、それぞれ10~500nmであることが好ましい。 The anode and the cathode can be obtained, for example, by forming a layer made of a conductive material on a substrate or a photoelectric conversion layer by a PVD (physical vapor deposition) method such as vacuum deposition, sputtering, or ion plating. As the substrate, a glass plate or a plastic film is preferable. Examples of the plastic film include films made of polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyvinyl chloride, polystyrene, and polyimide. The thickness of the substrate is about 10 μm to 5 mm. The thickness of the anode and the cathode is preferably 10 to 500 nm, respectively.
 光電変換層は、光を吸収し光エネルギーを電気エネルギーに変換する機能を有する層であり、例えば、p型半導体層とn型半導体層を積層したものが挙げられる。フタロシアニン化合物はp型半導体であり、本発明のフタロシアニン化合物10は、このような光電変換層においてp型半導体層として機能する。 The photoelectric conversion layer is a layer having a function of absorbing light and converting light energy into electric energy. For example, a layer in which a p-type semiconductor layer and an n-type semiconductor layer are stacked may be used. The phthalocyanine compound is a p-type semiconductor, and the phthalocyanine compound 10 of the present invention functions as a p-type semiconductor layer in such a photoelectric conversion layer.
 なお、n型半導体は無機半導体であっても有機半導体であってもよい。無機半導体としては砒素あるいはリンをドープしたシリコン、有機半導体としては、フラーレン、[6,6]-フェニル-C61-酪酸メチル(PCBM)などのフラーレン誘導体が挙げられる。 The n-type semiconductor may be an inorganic semiconductor or an organic semiconductor. Examples of the inorganic semiconductor include silicon doped with arsenic or phosphorus, and examples of the organic semiconductor include fullerene and fullerene derivatives such as [6,6] -phenyl-C 61 -methyl butyrate (PCBM).
 光電変換層には、真性半導体(i型半導体)層をp型半導体層とn型半導体層との間に設けてもよい。光電変換層をこのような構成とすることにより変換効率を向上させることができる。 In the photoelectric conversion layer, an intrinsic semiconductor (i-type semiconductor) layer may be provided between the p-type semiconductor layer and the n-type semiconductor layer. Conversion efficiency can be improved by making a photoelectric converting layer into such a structure.
 光電変換層を構成する各層は、例えば、真空蒸着、スパッタリング、イオンプレーティングなどのPVD(物理気相蒸着)、スピンコート法、バーコート法、グラビアコート法、スプレーコート法等の塗布法により形成することができる。光電変換層の厚さは、10nm~3μmであることが好ましい。 Each layer constituting the photoelectric conversion layer is formed by a coating method such as PVD (physical vapor deposition) such as vacuum deposition, sputtering, ion plating, spin coating method, bar coating method, gravure coating method, spray coating method, etc. can do. The thickness of the photoelectric conversion layer is preferably 10 nm to 3 μm.
 また、光電変換素子にはバッファ層を設けてもよい。バッファ層としては、正孔ブロッキング材としてのバソクプロイン(2,9-ジメチル-4,7ジフェニル-1,10-フェナントロリン)を含む層が挙げられる。このバッファ層(正孔ブロッキング材)は、通常、n型半導体層と陰極の間に設けられる。光電変換素子としては、例えば、太陽電池や光センサー等が挙げられる。 Further, a buffer layer may be provided in the photoelectric conversion element. Examples of the buffer layer include a layer containing bathocuproine (2,9-dimethyl-4,7diphenyl-1,10-phenanthroline) as a hole blocking material. This buffer layer (hole blocking material) is usually provided between the n-type semiconductor layer and the cathode. As a photoelectric conversion element, a solar cell, an optical sensor, etc. are mentioned, for example.
 以下、実施例を挙げて本発明を更に詳細に説明するが、本発明は、以下の実施例になんら限定されるものではない。
 なお、化合物の構造の確認、溶解性、光吸収性及び結晶性の測定・評価は以下の通り行った。
 
 化合物の構造の確認
H NMR測定及びIR測定により確認した。H NMR測定は、核磁気共鳴装置(NMR)(Bruker社製、「Avance500」)を用い、IR測定は、フーリエ変換赤外吸収(FT-IR)測定装置(PERKIN ELMER社製、「SPECTRUM ONE」)を用いて、臭化カリウム(KBr)錠剤法により測定した。
 
 溶解性試験
フタロシアニン化合物の濃度が10質量%になるように、それぞれの溶媒にフタロシアニン化合物を加えて撹拌し、フタロシアニン化合物の溶解性を目視で観察し、未溶解物の有無により溶解性を観察した。溶媒として、ジクロロメタン、クロロホルム、クロロベンゼン、テトラヒドロフラン、アセトン、酢酸エチル、トルエンを用いた。
 
 光吸収性
分光光度計(株式会社島津製作所製、「UV-3101PC」)を用いて測定した。
 
 結晶性の確認
偏光顕微鏡(オリンパス株式会社製 「BX51」)を用いて倍率10倍で観察した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to a following example at all.
In addition, confirmation of the structure of the compound, and measurement / evaluation of solubility, light absorption and crystallinity were performed as follows.

Confirmation of compound structure
This was confirmed by 1 H NMR measurement and IR measurement. 1 H NMR measurement uses a nuclear magnetic resonance apparatus (NMR) (manufactured by Bruker, “Avance 500”), and IR measurement uses a Fourier transform infrared absorption (FT-IR) measuring apparatus (manufactured by PERKIN ELMER, “SPECTRUM ONE”. )) Was measured by the potassium bromide (KBr) tablet method.

Solubility test The phthalocyanine compound was added to each solvent and stirred so that the concentration of the phthalocyanine compound was 10% by mass, the solubility of the phthalocyanine compound was visually observed, and the solubility was observed depending on the presence or absence of undissolved substances. . Dichloromethane, chloroform, chlorobenzene, tetrahydrofuran, acetone, ethyl acetate, and toluene were used as the solvent.

Measurement was performed using a light absorption spectrophotometer (“UV-3101PC” manufactured by Shimadzu Corporation).

Confirmation of crystallinity It was observed at a magnification of 10 using a polarizing microscope (OLYMPUS "BX51").
 (実施例1)
図4の反応式(1)に示されるように、ジシアノハイドロキノン(東京化成株式会社製)から1,4-ビス(2,2,2-トリフルオロエトキシ)フタロニトリル(化合物12)を合成した。すなわち、窒素気流下、室温で、金属ナトリウム2.3gをメタノール(溶媒)80mlに溶解させた溶液を、ジシアノハイドロキノン8.0gに加え、室温で30分間撹拌し、減圧下において未反応のメタノールを除去した。これに2,2,2-トリフルオロエチルトシレート40.0g及び溶媒としてN,N-ジメチルホルムアミド(DMF)を加え、120℃に昇温して48時間、撹拌した。この反応混合物を室温まで冷却後、氷水に注加し、生じた固体をろ過して集めた後に、エタノールで洗浄した。こうして得られた固体をエタノール/へキサン(混合溶媒)から再結晶し、50℃で6時間、減圧乾燥した。こうして、11.7gの1,4-ビス(2,2,2-トリフルオロエトキシ)フタロニトリル(化合物12)を得た(収率70%)。
Example 1
As shown in the reaction formula (1) in FIG. 4, 1,4-bis (2,2,2-trifluoroethoxy) phthalonitrile (Compound 12) was synthesized from dicyanohydroquinone (manufactured by Tokyo Chemical Industry Co., Ltd.). That is, a solution obtained by dissolving 2.3 g of metal sodium in 80 ml of methanol (solvent) at room temperature under a nitrogen stream was added to 8.0 g of dicyanohydroquinone, stirred at room temperature for 30 minutes, and unreacted methanol was removed under reduced pressure. Removed. To this, 40.0 g of 2,2,2-trifluoroethyl tosylate and N, N-dimethylformamide (DMF) as a solvent were added, and the mixture was heated to 120 ° C. and stirred for 48 hours. The reaction mixture was cooled to room temperature, poured into ice water, and the resulting solid was collected by filtration and washed with ethanol. The solid thus obtained was recrystallized from ethanol / hexane (mixed solvent) and dried under reduced pressure at 50 ° C. for 6 hours. Thus, 11.7 g of 1,4-bis (2,2,2-trifluoroethoxy) phthalonitrile (Compound 12) was obtained (yield 70%).
 1,4-ビス(2,2,2-トリフルオロエトキシ)フタロニトリル(化合物12)5.0gを、尿素40.0gおよび三塩化バナジウム1.6gと混合した。この反応混合物を撹拌しながら、160℃で約90分間、加熱した。そして室温になるまで放冷した反応液に1N塩酸を100ml加え、100℃に加熱した。放冷後、生じた緑色固体をろ過して回収し、純水で十分に洗浄した後、酢酸エチルで抽出した。抽出した有機層を濃縮し、カラムクロマトグラフィー(シリカゲル、アセトン:へキサン=1:1)で精製した。さらに、再結晶(エタノール/へキサン)を行い、2.0gの化合物を得た(収率40%、融点:290℃(分解))。得られた化合物のH NMR測定及びIR測定の結果を示す。
 
H NMR測定(重アセトン中)
8.99ppm(phH, 8H)、 5.78ppm(-OCHCF, 16H)
金属を導入していないフタロシアニンに見られる-1.0ppm付近の化学シフトは観測されなかった。
 
IR測定
 酸化バナジウム(VO)の振動ピークに帰属する1002cm-1が観測された。
 
これらの結果から、得られた化合物は、1、4、5、8、9、12、13、16-オクタキス(2,2,2-トリフルオロエトキシ)フタロシアニナトバナジウムオキサイド(フタロシアニン化合物101a)であることが確認された。このフタロシアニン化合物101aの評価結果を示す。
5.0 g of 1,4-bis (2,2,2-trifluoroethoxy) phthalonitrile (compound 12) was mixed with 40.0 g of urea and 1.6 g of vanadium trichloride. The reaction mixture was heated at 160 ° C. for about 90 minutes with stirring. Then, 100 ml of 1N hydrochloric acid was added to the reaction solution which had been allowed to cool to room temperature and heated to 100 ° C. After allowing to cool, the resulting green solid was collected by filtration, washed thoroughly with pure water, and extracted with ethyl acetate. The extracted organic layer was concentrated and purified by column chromatography (silica gel, acetone: hexane = 1: 1). Further, recrystallization (ethanol / hexane) was performed to obtain 2.0 g of a compound (yield 40%, melting point: 290 ° C. (decomposition)). The result of 1 H NMR measurement and IR measurement of the obtained compound is shown.

1 H NMR measurement (in heavy acetone)
8.99 ppm (phH, 8H), 5.78 ppm (—OCH 2 CF, 16H)
The chemical shift around −1.0 ppm observed in phthalocyanine into which no metal was introduced was not observed.

IR measurement 1002 cm −1 attributed to the vibration peak of vanadium oxide (VO) was observed.

From these results, the obtained compound was 1,4,5,8,9,12,13,16-octakis (2,2,2-trifluoroethoxy) phthalocyaninatovanadium oxide (phthalocyanine compound 101a). It was confirmed that there was. The evaluation result of this phthalocyanine compound 101a is shown.
 <溶解性試験>
 用いた全ての溶媒において未溶解物は見られず、良好な溶解性を示すことが確認された。
 <光吸収性>
 フタロシアニン化合物101aを10mg、クロロベンゼン0.75mlに溶解し、ガラス基板の表面に滴下した。そして基板を回転させることによりフタロシアニン化合物101aのスピンコート成膜を行い、60℃で10分間乾燥してフタロシアニン化合物101aを薄膜化した。乾燥後の膜厚は40nmであった。得られた薄膜を用いて、光吸収性の測定を行ったところ、極大吸収波長は740nmであった。薄膜を80℃、150℃、200℃で10分間加熱した後の極大吸収波長はいずれも836nmであり、良好な近赤外線吸収性を示した。
<Solubility test>
In all of the solvents used, no undissolved product was found, and it was confirmed that good solubility was exhibited.
<Light absorption>
The phthalocyanine compound 101a was dissolved in 10 mg and 0.75 ml of chlorobenzene, and dropped onto the surface of the glass substrate. Then, the spin coat film formation of the phthalocyanine compound 101a was performed by rotating the substrate, and the film was dried at 60 ° C. for 10 minutes to thin the phthalocyanine compound 101a. The film thickness after drying was 40 nm. When the light absorptivity was measured using the obtained thin film, the maximum absorption wavelength was 740 nm. The maximum absorption wavelength after heating the thin film for 10 minutes at 80 ° C., 150 ° C., and 200 ° C. was 836 nm, indicating good near infrared absorption.
 <結晶性の確認>
 溶解性試験と同様にして作成した薄膜を、80℃、150℃、200℃でそれぞれ加熱した後、偏光顕微鏡を用いて観察したところ、高い結晶性を示す複屈折性のドメインが観測され、フタロシアニン化合物101aが、結晶性に優れることが確認された。なお、60℃で乾燥したフタロシアニン化合物101aでは、結晶性を示す複屈折性のドメインが観測されなかった。
<Confirmation of crystallinity>
When the thin films prepared in the same manner as in the solubility test were heated at 80 ° C., 150 ° C., and 200 ° C., respectively, and observed using a polarizing microscope, birefringent domains exhibiting high crystallinity were observed, and phthalocyanine It was confirmed that the compound 101a was excellent in crystallinity. In the phthalocyanine compound 101a dried at 60 ° C., a birefringent domain exhibiting crystallinity was not observed.
 以上のことから、フタロシアニン化合物101aは、加熱によって結晶化され、結晶構造を有するときに近赤外領域に吸収帯を有するものと考えられる。 From the above, it is considered that the phthalocyanine compound 101a is crystallized by heating and has an absorption band in the near infrared region when it has a crystal structure.
 次に、得られたフタロシアニン化合物101aを用いて光電変換素子を作製し、評価した。まず、洗浄及びUV(紫外線)-オゾン処理を行って清浄化したITOガラス(ガラス基板に錫ドープ酸化インジウム(ITO)膜を形成した透明導電性ガラス、抵抗値14Ω/sq)のITO膜(陽極)上に、得られたフタロシアニン化合物101aを、圧力3.3×10-4Pa、堆積速度0.4Å/秒の条件下で、厚さ50nmになるように積層した。さらに、フタロシアニン化合物101a層上にn型有機半導体としてフラーレン(Nano-C社製)を圧力1.1×10-4Pa、堆積速度0.5Å/秒の条件下で、厚さ50nmになるように積層した。さらに、フラーレン層上にホールブロッキング剤としてのバソクプロイン(株式会社オージェック)を8.5×10-5Pa、堆積速度0.4Å/秒の条件下で、厚さ10nmに積層した。バソクプロイン層に陰極として銀(日本高純度化学株式会社製)を8.2×10-5Pa、堆積速度0.4Å/秒の条件下で50nm積層して光電変換素子を作製した。タングステンランプ(100W)を用いてITOガラス側から光電変換素子に光を照射して短絡時の電流値を測定したところ、27.4μAの電流値が得られ、良好な特性を示す光電変換素子が得られた。 Next, a photoelectric conversion element was produced and evaluated using the obtained phthalocyanine compound 101a. First, ITO glass cleaned by cleaning and UV (ultraviolet light) -ozone treatment (transparent conductive glass having a tin-doped indium oxide (ITO) film formed on a glass substrate, resistance value 14Ω / sq) ITO film (anode The obtained phthalocyanine compound 101a was laminated to a thickness of 50 nm under the conditions of a pressure of 3.3 × 10 −4 Pa and a deposition rate of 0.4 K / sec. Further, fullerene (manufactured by Nano-C) as an n-type organic semiconductor on the phthalocyanine compound 101a layer so as to have a thickness of 50 nm under the conditions of a pressure of 1.1 × 10 −4 Pa and a deposition rate of 0.5 kg / sec. Laminated. Furthermore, bathocuproin (Aujek Co., Ltd.) as a hole blocking agent was laminated on the fullerene layer to a thickness of 10 nm under the conditions of 8.5 × 10 −5 Pa and a deposition rate of 0.4 kg / sec. A silver (Nihon Kojun Kagaku Co., Ltd.) silver as a cathode was stacked on the bathocuproine layer at a thickness of 8.2 × 10 −5 Pa and a deposition rate of 0.4 Å / sec to produce a photoelectric conversion element. When a photoelectric conversion element was irradiated with light from the ITO glass side using a tungsten lamp (100 W) and the current value at the time of short circuit was measured, a current value of 27.4 μA was obtained, and a photoelectric conversion element showing good characteristics was obtained. Obtained.
 (比較例)
フタロシアニン化合物101aと同じ置換基Rを有するフタロシアニン化合物であって、中心金属が銅である比較例1、および中心金属化合物がジクロロ錫である比較例2においては、近赤外領域に吸収帯を有さないことが確認された。また、置換基R1~R8(図1等参照)がいずれも水素である酸化バナジウムフタロシアニンの比較例3では、上述の溶解性試験で用いられた各溶媒に対する溶解性が、フタロシアニン化合物101aよりも低かった。
(Comparative example)
In Comparative Example 1 in which the central metal is copper and Comparative Example 2 in which the central metal compound is dichlorotin, the phthalocyanine compound having the same substituent R as the phthalocyanine compound 101a has an absorption band in the near infrared region. It was confirmed not to. In Comparative Example 3 of vanadium oxide phthalocyanine in which all of substituents R1 to R8 (see FIG. 1 and the like) are hydrogen, the solubility in each solvent used in the above-described solubility test is lower than that of phthalocyanine compound 101a. It was.
 以上のように本発明によれば、フタロシアニン化合物10は、従来の蒸着法等よりも簡易なスピンコート等の塗布法により、成膜化することが可能である。また、本発明のフタロシアニン化合物10は、光吸収性能を有するため、有機薄膜太陽電池や光センサーなどの光起電力素子、光記録媒体などに好適に使用することができる。 As described above, according to the present invention, the phthalocyanine compound 10 can be formed into a film by a coating method such as spin coating which is simpler than the conventional vapor deposition method. Moreover, since the phthalocyanine compound 10 of the present invention has light absorption performance, it can be suitably used for photovoltaic elements such as organic thin-film solar cells and optical sensors, optical recording media, and the like.
 さらにフタロシアニン化合物10は、加熱処理によって容易に吸収帯を近赤外領域にシフトできる。このためフタロシアニン化合物10は、P型有機半導体材料の分野などで特に要求されている性能を満たしており、この点においても有用であるといえる。 Furthermore, the phthalocyanine compound 10 can easily shift the absorption band to the near infrared region by heat treatment. Therefore, the phthalocyanine compound 10 satisfies the performance particularly required in the field of P-type organic semiconductor materials, and can be said to be useful in this respect.

Claims (5)

  1.  下記一般式(I)で表されるフタロシアニン化合物:
    Figure JPOXMLDOC01-appb-C000001
     
     
     
     (式中Rは、炭素数が5以下の直鎖状のハロゲン化アルコキシ基、あるいは炭素数が5以下の分岐状のアルコキシ基のいずれかを表す)
    Phthalocyanine compounds represented by the following general formula (I):
    Figure JPOXMLDOC01-appb-C000001



    (In the formula, R represents either a linear halogenated alkoxy group having 5 or less carbon atoms or a branched alkoxy group having 5 or less carbon atoms)
  2.  前記一般式(I)中のRが下記化学式(II)で示される1aから1gの群から選択されることを特徴とする請求項1に記載のフタロシアニン化合物。
    [化学式(II)]
    1a:-OCHCF
    1b:-OCHCHCF
    1c:-OCHCCl
    1d:-OCHCHCCl
    1e:-OCH(CH
    1f:-OCHCH(CH
    1g:-OCHCHCH(CH
    The phthalocyanine compound according to claim 1, wherein R in the general formula (I) is selected from the group of 1a to 1g represented by the following chemical formula (II).
    [Chemical formula (II)]
    1a: —OCH 2 CF 3
    1b: —OCH 2 CH 2 CF 3
    1c: —OCH 2 CCl 3
    1d: —OCH 2 CH 2 CCl 3
    1e: —OCH (CH 3 ) 2
    1f: —OCH 2 CH (CH 3 ) 2
    1 g: —OCH 2 CH 2 CH (CH 3 ) 2
  3.  請求項1に記載のフタロシアニン化合物を含むことを特徴とする光吸収材料。 A light-absorbing material comprising the phthalocyanine compound according to claim 1.
  4.  前記光吸収材料を膜状にして、60℃を超え150℃以下の温度で加熱したことを特徴とする請求項3に記載の光吸収材料。 The light-absorbing material according to claim 3, wherein the light-absorbing material is formed into a film and heated at a temperature exceeding 60 ° C and not more than 150 ° C.
  5.  請求項3または請求項4のいずれかに記載の光吸収材料を含む光電変換層を備えたことを特徴とする光電変換素子。 A photoelectric conversion element comprising a photoelectric conversion layer containing the light-absorbing material according to claim 3.
PCT/JP2010/060334 2009-07-07 2010-06-18 Phthalocyanine compounds WO2011004688A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800269183A CN102471601B (en) 2009-07-07 2010-06-18 Phthalocyanine compounds
JP2011521871A JP4967074B2 (en) 2009-07-07 2010-06-18 Phthalocyanine compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009160965 2009-07-07
JP2009-160965 2009-07-07

Publications (1)

Publication Number Publication Date
WO2011004688A1 true WO2011004688A1 (en) 2011-01-13

Family

ID=43429112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060334 WO2011004688A1 (en) 2009-07-07 2010-06-18 Phthalocyanine compounds

Country Status (5)

Country Link
JP (1) JP4967074B2 (en)
KR (1) KR20120112345A (en)
CN (1) CN102471601B (en)
TW (1) TWI476250B (en)
WO (1) WO2011004688A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167145A (en) * 2011-02-10 2012-09-06 Fujifilm Corp Colored curable composition, and color filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059974A (en) * 1996-08-21 1998-03-03 Yamamoto Chem Inc Production of phthalocyanine compound
JP2000063693A (en) * 1998-08-24 2000-02-29 Nippon Shokubai Co Ltd Preparation of phthalocyanine compound
JP2004240043A (en) * 2003-02-04 2004-08-26 Fuji Photo Film Co Ltd Original plate for lithographic printing plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295283A (en) * 1991-06-19 1993-11-09 Mitsui Toatsu Chem Inc Colorant for filter and color filter containing the colorant
JPH11106386A (en) * 1997-10-02 1999-04-20 Ricoh Co Ltd Production of metallophthalocyanines
JP4079234B2 (en) * 1998-01-23 2008-04-23 株式会社リコー Method for producing metal phthalocyanines
JP2002114790A (en) * 2000-10-04 2002-04-16 Nippon Shokubai Co Ltd Method for purifying phthalocyanine compound and naphthalocyanine compound
JP4238822B2 (en) * 2004-12-03 2009-03-18 セイコーエプソン株式会社 Pattern-formed substrate, electro-optical device, pattern-formed substrate manufacturing method, and electro-optical device manufacturing method
CN101255163A (en) * 2008-03-14 2008-09-03 中国科学院长春应用化学研究所 Soluble tetraalkyl phthalocyanine compound and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059974A (en) * 1996-08-21 1998-03-03 Yamamoto Chem Inc Production of phthalocyanine compound
JP2000063693A (en) * 1998-08-24 2000-02-29 Nippon Shokubai Co Ltd Preparation of phthalocyanine compound
JP2004240043A (en) * 2003-02-04 2004-08-26 Fuji Photo Film Co Ltd Original plate for lithographic printing plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167145A (en) * 2011-02-10 2012-09-06 Fujifilm Corp Colored curable composition, and color filter

Also Published As

Publication number Publication date
JPWO2011004688A1 (en) 2012-12-20
TW201107427A (en) 2011-03-01
CN102471601B (en) 2013-12-04
TWI476250B (en) 2015-03-11
CN102471601A (en) 2012-05-23
JP4967074B2 (en) 2012-07-04
KR20120112345A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
Fateev et al. Solution processing of methylammonium lead iodide perovskite from γ-butyrolactone: crystallization mediated by solvation equilibrium
CN101842917B (en) Use of halogenated phthalocyanines
EP2470543B1 (en) Visible/nir photodetectors
EP2962992B1 (en) Fullerene derivative, organic solar cell using same, and manufacturing method thereof
EP2310315A2 (en) Film and device using layer based on ribtan material
Cho et al. Thermally durable nonfullerene acceptor with nonplanar conjugated backbone for high‐performance organic solar cells
Li et al. Effects of fused-ring regiochemistry on the properties and photovoltaic performance of n-type organic semiconductor acceptors
US9362509B2 (en) Aryloxy-phthalocyanines of group IV metals
KR20130133903A (en) Perylene tetracarboxylic acid bisimide derivative, n-type semiconductor, process for producing n-type semiconductor, and electronic device
Simón Marqués et al. Indeno [1, 2-b] thiophene End-capped Perylene Diimide: Should the 1, 6-Regioisomers be systematically considered as a byproduct?
JP4967074B2 (en) Phthalocyanine compounds
WO2023142330A1 (en) Fullerene derivative material and preparation method therefor and application thereof in perovskite solar cell
Lozano-González et al. Synthesis and Evaluation of the Semiconductor Behavior in Vanadium Indanone Derivatives Thin Films
Wang et al. Soluble hexamethyl-substituted subphthalocyanine as a dopant-free hole transport material for planar perovskite solar cells
Yong et al. Enhancement of Interfacial Properties by Indoloquinoxaline‐Based Small Molecules for Highly Efficient Wide‐Bandgap Perovskite Solar Cells
JP5993054B1 (en) Thin films exhibiting a wide absorption band, devices containing them, and their manufacturing methods
Monzón González et al. Design of Promising Uranyl (VI) Complexes Thin Films with Potential Applications in Molecular Electronics
KR102573398B1 (en) Composition for Solution Process for producing Hetero Metal Chalcogenide Thin film and Method for producing thin film using the same
EP4383990A1 (en) Materials for optoelectronic applications
JP2022149441A (en) Light adjusting material, light adjusting film, and light adjusting laminate body
KR101624094B1 (en) Aryloxy-phthalocyanines of group iii metals
McGrath Synthesis and characterization of novel asymmetrically substituted bisphenazines and their self assembling properties

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026918.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796999

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011521871

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127000334

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10796999

Country of ref document: EP

Kind code of ref document: A1