WO2011004642A1 - Lens, light emitting element package, light emitting module, illumination device, display device, and television receiver device - Google Patents

Lens, light emitting element package, light emitting module, illumination device, display device, and television receiver device Download PDF

Info

Publication number
WO2011004642A1
WO2011004642A1 PCT/JP2010/055057 JP2010055057W WO2011004642A1 WO 2011004642 A1 WO2011004642 A1 WO 2011004642A1 JP 2010055057 W JP2010055057 W JP 2010055057W WO 2011004642 A1 WO2011004642 A1 WO 2011004642A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
light emitting
led
edge
Prior art date
Application number
PCT/JP2010/055057
Other languages
French (fr)
Japanese (ja)
Inventor
敬治 清水
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011004642A1 publication Critical patent/WO2011004642A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0075Arrays characterized by non-optical structures, e.g. having integrated holding or alignment means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a lens, a light emitting element package, a light emitting module, a lighting device, a display device, and a television receiver.
  • a backlight unit for supplying light is usually mounted on the liquid crystal display panel.
  • a backlight unit for supplying light
  • the light source mounted on the backlight unit 149 is an LED (Light Emitting Diode).
  • the lens 110 which diffuses the light from LED chip cp mounted in the mounting board
  • the lens 110 becomes a matrix arrangement.
  • FIG. 18 when the illuminance from the front surface of the mounting substrate 120 is photographed, an image as shown in FIG. 18 is usually obtained.
  • a matrix-like light amount unevenness reflecting the arrangement of the lenses 110 appears so as to be emphasized by a white dotted line (note that only a part of the light amount unevenness is emphasized and shown for convenience).
  • the transmitted light from the lens 110 is light that generates a radial luminance distribution centered on the lens 110 (light that generates a rotationally symmetric and line-symmetric luminance distribution; see broken line).
  • the transmitted light from the plurality of lenses 110 regularly intersect, resulting in matrix-like light amount unevenness (interference unevenness).
  • the light that does not generate a radial (circular) luminance distribution centered on is assumed to be light that proceeds non-radially ⁇ .
  • the present invention has been made to solve the above problems. And the objective is to provide the lens etc. which do not include the light quantity nonuniformity (for example, interference nonuniformity) in the light from illuminating devices like a backlight unit.
  • the light quantity nonuniformity for example, interference nonuniformity
  • the lens includes an emission surface that emits transmitted light and a light receiving surface that is at least part of the back surface of the emission surface and receives light that is a basis of the transmitted light.
  • This lens includes at least one of the following (1) emitting surface and (2) light receiving surface.
  • the edge on the exit surface is annular, and an arbitrary point inside the ring is used as a reference point.
  • the exit surface is an aspheric surface formed by a set of a plurality of points separated from the reference point by an arbitrary distance. (However, the edge on the exit surface is an annular shape including at least three inflection points).
  • the edge of the light-receiving surface is annular, and an arbitrary point inside the ring is used as a reference point.
  • the light-receiving surface is an aspheric surface formed by a set of a plurality of points separated from the reference point by arbitrary different distances. (However, the edge on the light-receiving surface is an annular shape including at least three inflection points).
  • the transmitted light from the lens travels in a non-radial manner due to the influence of the aspheric surface.
  • the illuminating device arranges a plurality of light emitting elements that supply light to the light receiving surface of such a lens and generates planar light, excessive light is collected at a specific portion in the surface. , The light does not collect excessively in a specific part of the surface. Therefore, the light amount unevenness is not included in the planar light from the illumination device.
  • the above lens can be said to be a suitable lens for preventing unevenness in the amount of light from being included in the planar light from the illumination device.
  • At least one of the edge of the emission surface and the edge of the light receiving surface of the lens is an annular shape that is at least one of non-rotation symmetric and non-linear symmetry.
  • the light from the lens is not light that produces a radial luminance distribution centered on the lens, but a luminance distribution that is at least one of non-rotationally symmetric and non-linearly symmetric about the lens. (That is, light having no regularity is emitted from the lens).
  • the light receiving surface may be the entire back surface of the exit surface of the lens or the inner surface of a depression formed on the back surface of the exit surface. In short, it is only necessary that the light-receiving surface of the lens can receive light.
  • the lens has a diffusibility for diffusing transmitted light. If it has become like this, for example, when a plurality of lenses are arranged in an illuminating device, the light from these lenses will mix with a high degree and become planar light. Then, due to the non-radial light from the lens, the effect of not including unevenness in the amount of light in the planar light of the lighting device appears significantly.
  • a light-emitting module including the lens as described above, a light-emitting element that supplies light to the light-receiving surface of the lens, and a mounting substrate on which the light-emitting element and the lens are attached can be said to be the present invention.
  • a light-emitting element package in which the above-described lens and a light-emitting element that supplies light to the light-receiving surface of the lens are in close contact can be said to be the present invention, and further includes a mounting substrate on which the light-emitting element package is attached.
  • the light emitting module can also be said to be the present invention.
  • a light emitting module in which a plurality of sets of lenses and light emitting elements are regularly arranged is desirable.
  • the present invention also includes a lighting device including one or a plurality of such light emitting modules.
  • a lighting device including one or a plurality of such light emitting modules.
  • a display device including such a lighting device and a display panel (for example, a liquid crystal display panel) that receives light from the lighting device can also be said to be the present invention.
  • TV receiver is an example).
  • the transmitted light from itself advances non-radially without regularity. Therefore, in the planar light of an illumination device equipped with a plurality of such lenses, even if the light from the lenses is mixed, interference unevenness is hardly caused.
  • FIG. 14 is a partial perspective view of the LED module (Example 1) shown in FIG. 13. These are the front views of the LED module of Example 1.
  • FIG. FIG. 3 is a cross-sectional view of the LED module of Example 1 (note that the cross-sectional direction of the cross-sectional view is the direction of arrows A1-A1 ′ in FIGS. 1 and 2A). These are the rear views of the LED module of Example 1.
  • FIG. These are the front views of the lens in the LED module of Example 1.
  • FIG. FIG. 3 is a cross-sectional view of a lens in the LED module of Example 1 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow B1-B1 ′ in FIG. 3A).
  • FIG. 4 is a cross-sectional view of the mounting substrate in the LED module of Example 1 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow C1-C1 ′ in FIG. 4A).
  • FIG. 5 is a cross-sectional view of the LED module of Example 2 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow A2-A2 ′ in FIG. 5A).
  • FIG. These are the rear views of the LED module of Example 2.
  • FIG. 5 are the front views of the lens in the LED module of Example 2.
  • FIG. FIG. 4 is a cross-sectional view of the mounting substrate in the LED module of Example 1 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow C1-C1 ′ in FIG. 4A).
  • FIG. 5 is a cross-sectional view of the LED module of Example 2 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow A2-A2
  • FIG. 6 is a cross-sectional view of a lens in the LED module of Example 2 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow B2-B2 ′ in FIG. 6A). These are the rear views of the lens in the LED module of Example 2.
  • FIG. These are the front views of the LED module of Example 3.
  • FIG. 6 is a cross-sectional view of the LED module of Example 3 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow A3-A3 ′ in FIG. 7A). These are the rear views of the LED module of Example 3.
  • FIG. These are the front views of the lens in the LED module of Example 3.
  • FIG. 8 is a cross-sectional view of a lens in the LED module of Example 3 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow B3-B3 ′ in FIG. 8A). These are the rear views of the lens in the LED module of Example 3.
  • FIG. 9 is a cross-sectional view of a lens in the LED module of Example 4 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow B4-B4 ′ in FIG. 9A).
  • FIG. 9 are the front views of the lens in the LED module of Example 5.
  • FIG. FIG. 9 is a cross-sectional view of a lens in the LED module of Example 3.
  • FIG. 10 is a cross-sectional view of a lens in the LED module of Example 5 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow B5-B5 ′ in FIG. 10A). These are the rear views of the lens in the LED module of Example 5.
  • FIG. These are sectional drawings of an LED module. These are sectional drawings of an LED module.
  • FIG. 3 is an exploded perspective view of a liquid crystal display device. These are the exploded perspective views of the liquid crystal television which mounts a liquid crystal display device.
  • FIG. 6 is an exploded perspective view of a conventional liquid crystal display device.
  • FIG. 3 is a perspective view of a conventional lens. These are sectional drawings of the conventional lens. These are images which show the illumination distribution of the planar light from the conventional backlight unit.
  • FIG. 14 shows a liquid crystal television 89 equipped with a liquid crystal display device (display device) 69.
  • a liquid crystal television 89 can be said to be a television receiver because it receives a television broadcast signal and projects an image.
  • FIG. 13 is an exploded perspective view showing the liquid crystal display device.
  • a liquid crystal display device 69 includes a liquid crystal display panel 59, a backlight unit (illumination device) 49 that supplies light to the liquid crystal display panel 59, and a housing HG (front housing HG1) that sandwiches them. -Back housing HG2).
  • an active matrix substrate 51 including a switching element such as a TFT (Thin Film Transistor) and a counter substrate 52 facing the active matrix substrate 51 are bonded together with a sealant (not shown). Then, liquid crystal (not shown) is injected into the gap between the substrates 51 and 52.
  • a switching element such as a TFT (Thin Film Transistor)
  • a counter substrate 52 facing the active matrix substrate 51 are bonded together with a sealant (not shown). Then, liquid crystal (not shown) is injected into the gap between the substrates 51 and 52.
  • a polarizing film 53 is attached to the light receiving surface side of the active matrix substrate 51 and the emission side of the counter substrate 52.
  • the liquid crystal display panel 59 as described above displays an image using the change in transmittance caused by the inclination of the liquid crystal molecules.
  • the backlight unit 49 includes an LED module (light emitting module) MJ, a backlight chassis 41, a large reflective sheet 42, a diffusion plate 43, a prism sheet 44, and a microlens sheet 45.
  • LED module light emitting module
  • the backlight unit 49 includes an LED module (light emitting module) MJ, a backlight chassis 41, a large reflective sheet 42, a diffusion plate 43, a prism sheet 44, and a microlens sheet 45.
  • the LED module MJ includes a mounting substrate 20, an LED (Light Emitting Diode) 30, and a lens 10 (note that the LED 30 and the lens 10 covering the LED 30 are Is also referred to as LED set ST).
  • the mounting substrate 20 is a plate-like and rectangular substrate, and a plurality of electrodes (not shown) are arranged on the mounting surface 20U.
  • a resist film (not shown) serving as a protective film is formed on the mounting surface 20U of the mounting substrate 20.
  • the resist film is not particularly limited, but is desirably white having reflectivity. This is because even if light is incident on the resist film, the light is reflected by the resist film and tends to go outside, thereby eliminating the cause of unevenness in the amount of light due to light absorption by the mounting substrate 20.
  • the LED 30 is a light emitting element (light source), and emits light by current through the electrodes of the mounting substrate 20. And there are many kinds of LED30, and the following LED30 is mentioned.
  • the LED 30 includes an LED chip that emits blue light (light emitting chip) and a phosphor that receives light from the LED chip and emits yellow light in a fluorescent manner (note that the number of LED chips is Not particularly limited).
  • Such an LED 30 generates white light from light from a blue light emitting LED chip and light emitted from a fluorescent light.
  • the phosphor incorporated in the LED 30 is not limited to a phosphor that emits yellow light.
  • the LED 30 includes a blue light emitting LED chip and a fluorescent material that receives light from the LED chip and emits green light and red light, and emits blue light and fluorescent light emitted from the LED chip ( White light may be generated with green light and red light.
  • the LED chip incorporated in the LED 30 is not limited to the one emitting blue light.
  • the LED 30 may include a red LED chip that emits red light, a blue LED chip that emits blue light, and a phosphor that emits green light by receiving light from the blue LED chip. This is because with such an LED 30, white light can be generated from red light from the red LED chip, blue light from the blue LED chip, and green light that emits fluorescence.
  • the LED 30 may not include any phosphor.
  • the LED 30 may include a red LED chip that emits red light, a green LED chip that emits green light, and a blue LED chip that emits blue light, and generates white light using light from all the LED chips.
  • a relatively short mounting board 20 in which five LEDs 30 are mounted in a row on one mounting board 20, and eight LEDs 30 on one mounting board 20.
  • a relatively long mounting board 20 mounted in a row is mounted.
  • the two types of mounting boards 20 are arranged so that a row of five LEDs 30 and a row of eight LEDs 30 are arranged as a row of 13 LEDs 30, and further, with respect to the direction in which the 13 LEDs 30 are arranged, Two types of mounting boards 20 are also arranged in a direction intersecting (orthogonal, etc.).
  • the LEDs 30 are arranged in a matrix, and as a result, the light from the plurality of LEDs 30 is mixed to form planar light (for convenience, the direction in which different types of mounting boards 20 are arranged is the X direction, and the same type of mounting boards 20 are arranged.
  • the direction is the Y direction, and the direction intersecting the X direction and the Y direction is the Z direction).
  • the thirteen LEDs 30 arranged in the X direction are electrically connected in series, and the thirteen LEDs 30 connected in series are connected to another thirteen LEDs 30 connected in series along the Y direction. Electrically connected in parallel.
  • the LEDs 30 arranged in a matrix are driven in parallel.
  • the lens 10 receives light from the LED 30 and transmits (emits) the light. More specifically, the lens 10 has an accommodation recess DH (see FIG. 3B described later) that can accommodate the LED 30 on the back surface 10B side of the lens surface (emission surface) 10S that emits transmitted light, and the accommodation recess DH and the LED 30.
  • the LED 30 is covered while adjusting the position. Then, the LED 30 is embedded in the lens 10, and the light from the LED 30 is reliably supplied into the lens 10. And most of the supplied light is emitted to the outside through the lens surface 10S.
  • the material used as the lens 10 is not specifically limited, For example, an acrylic resin is mentioned (The acrylic resin whose refractive index nd is 1.49 or more and 1.50 or less is mentioned). Further, since the lens surface 10S of the lens 10 has a curved surface that allows light to diffuse and transmit, the lens 10 can be said to be a diffusing lens.
  • the backlight chassis 41 is, for example, a box-shaped member, and houses the plurality of LED modules MJ by spreading the LED modules MJ on the bottom surface 41B.
  • the bottom surface 41B of the backlight chassis 41 and the mounting substrate 20 of the LED module MJ are connected, for example, via rivets (not shown).
  • Support pins for supporting the diffusion plate 43, the prism sheet 44, and the microlens sheet 45 may be attached to the bottom surface 41B of the backlight chassis 41. Then, the diffusion plate 43, the prism sheet 44, and the microlens sheet 45 may be stacked and supported in this order).
  • the large reflective sheet 42 is an optical sheet having a reflective surface 42U, and covers the plurality of LED modules MJ arranged in a matrix with the back surface of the reflective surface 42U facing.
  • the large-format reflection sheet 42 includes a through hole 42H that matches the position of the lens 10 of the LED module MJ, and exposes the lens 10 from the reflection surface 42U (note that the above-described rivets and support pins are not exposed). There should be holes).
  • the light is reflected by the reflective surface 42U of the large reflective sheet 42 and travels away from the bottom surface 41B. To do. Accordingly, the presence of the large reflective sheet 42 causes the light from the LED 30 to travel toward the diffusion plate 43 facing the reflective surface 42U without loss.
  • the diffusion plate 43 is an optical sheet that overlaps the large reflective sheet 42, and diffuses the light emitted from the LED module MJ and the reflected light from the large reflective sheet 42U. That is, the diffusing plate 43 diffuses the planar light formed by the plurality of LED modules MJ and spreads the light over the entire liquid crystal display panel 59.
  • the prism sheet 44 is an optical sheet that overlaps the diffusion plate 43.
  • the prism sheet 44 arranges, for example, triangular prisms extending in one direction (linear) in a direction intersecting with one direction in the sheet surface. Thereby, the prism sheet 44 deflects the radiation characteristic of the light from the diffusion plate 43.
  • the prisms extend along the Y direction where the number of LEDs 30 is small and are arranged along the X direction where the number of LEDs 30 is large.
  • the microlens sheet 45 is an optical sheet that overlaps the prism sheet 44.
  • the microlens sheet 45 disperses the fine particles that refract and scatter light inside. As a result, the microlens sheet 45 suppresses the light / dark difference (light intensity unevenness) without locally condensing the light from the prism sheet 44.
  • the backlight unit 49 as described above passes the planar light formed by the plurality of LED modules MJ through the plurality of optical sheets 43 to 45 and supplies the light to the liquid crystal display panel 59. Thereby, the non-light-emitting liquid crystal display panel 59 receives the light (backlight light) from the backlight unit 49 and improves the display function.
  • FIG. 1 is a partial perspective view of the LED module MJ
  • FIGS. 2A to 2C are a front view, a cross-sectional view, and a rear view of the LED module MJ
  • the cross-sectional direction of the cross-sectional view is the same as that of FIGS. 1 and 2A
  • (A1-A1 ′ direction of arrow) 3A to 3C are a front view, a cross-sectional view, and a rear view of the lens 10 (note that the cross-sectional direction of the cross-sectional view is the direction of the arrow B1-B1 ′ in FIG. 3A), FIG.
  • FIG. 4 is a front view and a cross-sectional view of the mounting substrate (note that the cross-sectional direction of the cross-sectional view is the direction of arrow C1-C1 ′ in FIG. 4A).
  • LED module MJ shown by FIG. 1 etc. be Example 1 (EX1).
  • the lens 10 also includes pins 11 (11A and 11B) protruding from the back surface 10B. These pins 11 ⁇ / b> A and 11 ⁇ / b> B are engaged with openings 21 (21 ⁇ / b> A and 21 ⁇ / b> B) formed in the mounting board 20 as shown in FIGS. 4A and 4B, whereby the lens 10 is attached to the mounting board 20.
  • the pins 11A and 11B are formed on the back surface 10B of the lens 10 so as to sandwich the accommodation recess DH.
  • the pin 11A is located on one end side in the elliptical long axis direction
  • the pin 11B is located on the other end side in the elliptical long axis direction (note that the pin 11A and the pin 11B are dots).
  • These pins 11A and 11B are a rectangular columnar shaft portion 12 (12A and 12B) extending so as to be separated from the back surface 10B of the lens 10, and a flexible portion formed near the tip of the shaft portion 12.
  • the locking piece 13 is a flexible piece protruding from the side wall of the shaft portion 12 in the vicinity of the tip of the shaft portion 12).
  • the mounting board 20 has openings having a slightly similar shape to the shape of the shafts 12A and 12B around the shafts 12A and 11B (around the square shaft). 21A and 21B are formed so as to sandwich the LED 30. And pin 11A * 11B is inserted in these opening 21A * 21B.
  • the shaft portions 12A and 12B of the pins 11A and 11B are slightly longer than the thickness of the mounting substrate 20, and the openings 21A and 21B penetrate the mounting substrate 20. Therefore, when the pins 11A and 11B are inserted into the openings 21A and 21B, the tips of the shaft portions 12A and 12B protrude from the back surface 20B of the mounting surface 20U.
  • the locking pieces 13A and 13B are pressed against the inner walls of the openings 21A and 21B. Deforms to fit in 21A and 21B.
  • the tip ends of the shaft portions 12A and 12B protrude from the back surface 20B of the mounting surface 20U, the locking pieces 13A and 13B are not pressed against the inner walls of the openings 21A and 21B, and thus are restored to their original shapes.
  • the locking pieces 13 ⁇ / b> A and 13 ⁇ / b> B are caught by the edges of the openings 21 ⁇ / b> A and 21 ⁇ / b> B, and the lens 10 is attached to the mounting substrate 20.
  • the lens 10 has a curved lens surface (outgoing surface) 10S that transmits the light of the LED 30, and further in front view (specifically, when the XY plane direction defined by the X direction and the Y direction is viewed from the front),
  • the lens surface 10S is elliptical.
  • the back surface 10B of the lens surface 10S is an ellipse when viewed from the front, but is flat and faces the mounting surface 20U of the mounting substrate 20.
  • the outer edge 10E of the lens 10 is a rotationally symmetric and line-symmetric ellipse
  • the lens surface 10S is a curved surface
  • the back surface 10B of the lens 10 is a plane.
  • the lens surface 10S is an aspherical surface formed by a set of a plurality of points separated from the reference point by an arbitrary point at the center point of the ellipse inside the outer edge 10E of the lens 10. Including.
  • the plurality of points forming the lens surface 10S have rotational symmetry with respect to the center point of the ellipse (also referred to as the central axis).
  • the lens surface 10S has at least one of rotational symmetry and line symmetry. (In short, the lens surface 10S is not a free-form surface).
  • this lens 10 contains the accommodation hollow DH which accommodates LED30 in the back surface 10B.
  • the edge DHe of the housing dent DH serving as the entrance of the housing dent DH is located on the back surface 10B and has an irregular shape having a plurality of inflection points although it is annular.
  • the regular shape for example, at least one of non-rotational symmetry and non-axisymmetric shape is given as an example).
  • the inner surface DHn of the housing recess DH that receives the light of the LED 30 is designed as follows. First, an arbitrary point is set as a reference point inside the edge DHe of the annular housing recess DH. Then, an aspheric surface formed by a set of a plurality of points separated from the reference point by an arbitrary different distance is included in the inner surface DHn of the housing recess DH. In particular, at least some of the plurality of points forming the inner surface DHn do not have rotational symmetry based on a reference point (also referred to as a reference axis), and as a result, the inner surface DHn has non-rotational symmetry and non-linearity. It becomes at least one shape of symmetry.
  • the light incident from the inner surface DHn of the housing recess DH is affected by the aspherical surface (for example, a free-form surface) of the inner surface DHn, travels non-regularly, and then proceeds non-radially.
  • the light emitted from the lens surface 10S (note that light that does not generate a radial (perfect circular) luminance distribution centered on the lens 10 is assumed to be non-radial light). Therefore, the transmitted light from such a lens 10 has no regularity (for example, light that generates a luminance distribution having a non-rotationally symmetric or axisymmetric shape around the lens 10 has no regularity. Light).
  • the light is excessively collected at a specific portion in the surface by the planar light (backlight light).
  • the light does not collect excessively in a specific part of the surface. Therefore, the light quantity unevenness is not included in the planar light (backlight light) from the backlight unit 49.
  • the lens 10 can be said to be a lens suitable for preventing the surface light from the backlight unit 49 from including light amount unevenness (interference unevenness or the like).
  • the light emitted from the lens 10 has traveled irregularly because the inner surface DHn of the housing recess DH of the lens 10 includes an aspherical surface.
  • the inner surface DHn of the housing recess DH containing an aspherical surface is not always essential.
  • the LED module MJ of Example 2 (EX2) as shown in FIGS. 5A to 6C may be used.
  • 5A to 5C are a front view, a cross-sectional view, and a rear view of the LED module MJ (note that the cross-sectional direction of the cross-sectional view is the direction of arrow A2-A2 'in FIG. 5A).
  • 6A to 6C are a front view, a cross-sectional view, and a rear view of the lens 10 (note that the cross-sectional direction of the cross-sectional view is the direction of the arrow B2-B2 'in FIG. 6A).
  • the difference between the lens 10 of the LED module MJ of the second embodiment and the lens 10 of the LED module MJ of the first embodiment is the housing recess DH and the lens surface 10S.
  • the accommodation recess DH will be described.
  • the inner surface DHn of the housing recess DH is a hemispherical surface.
  • the edge DHe of the housing recess DH is located on the back surface 10B, and has a regular shape, for example, a perfect circle shape, having rotational symmetry and line symmetry.
  • the inner surface DHn of the housing recess DH is formed by a set of points that are equidistant from the center of the perfect circular edge DHe.
  • the inner surface DHn of the accommodation recess DH has a hemispherical shape having rotational symmetry and line symmetry.
  • the lens surface 10S is aspheric. Specifically, as shown in FIG. 6C, the outer edge 10E of the lens 10 has an irregular shape having a plurality of inflection points although it is annular. An arbitrary point is set as a reference point inside the outer edge 10 ⁇ / b> E of the annular lens 10.
  • the lens surface 10S includes an aspheric surface formed by a set of a plurality of points separated from the reference point by arbitrary different distances.
  • the lens surface 10S does not have rotational symmetry based on the reference point, and as a result, the lens surface 10S has at least one of non-rotational symmetry and non-linear symmetry. It becomes the shape.
  • the uneven light quantity due to the arrangement is not included in the planar light. (Of course, the light amount unevenness other than the interference unevenness is not easily included in the planar light).
  • Embodiment 3 A third embodiment will be described. Note that members having the same functions as those used in Embodiments 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
  • the backlight unit 49 has a surface from the backlight unit 49 by mounting the LED module MJ to which the lens 10 having the inner surface DHn of the housing recess DH made aspherical (for example, a free curved surface) is mounted. Do not include unevenness in the amount of light.
  • the backlight unit 49 has a planar shape from the backlight unit 49 by mounting the LED module MJ to which the lens 10 having the lens surface 10S aspherical (for example, a free-form surface) is mounted. Do not include unevenness in the amount of light.
  • the lens surface 10S of the lens 10 or the inner surface DHn of the housing recess DH has an irregular shape, so that the transmitted light from the lens 10 travels in a non-radial manner without regularity.
  • the lens 10 that causes the transmitted light to travel in a non-radial manner without regularity is not limited thereto.
  • the lens 10 included in the LED module MJ of Example 3 (EX3) as shown in FIGS. 7A to 8C may be used.
  • 7A to 7C are a front view, a cross-sectional view, and a rear view of the LED module MJ (note that the cross-sectional direction of the cross-sectional view is the direction of arrow A3-A3 ′ in FIG. 7A).
  • 8A to 8C are a front view, a cross-sectional view, and a rear view of the lens 10 (note that the cross-sectional direction of the cross-sectional view is the direction of the arrow B3-B3 'in FIG. 8A).
  • the lens 10 is as follows. That is, the inner surface DHn of the housing recess DH in the lens 10 is set at an arbitrary point different from the reference point at an arbitrary point inside the edge DHe of the annular housing recess DH, as in the first embodiment. It includes an aspherical surface formed by a set of a plurality of distant points (in addition, the inner surface DHn has a shape of at least one of non-rotational symmetry and non-linear symmetry).
  • the lens surface 10S of the lens 10 has an arbitrary point as a reference point inside the outer edge 10E of the annular lens 10, and a plurality of points separated from the reference point by different arbitrary distances. It includes an aspheric surface formed by a set of points (note that the lens surface 10S has at least one of non-rotationally symmetric and non-axisymmetric shapes).
  • At least one of the outer edge 10E of the lens surface 10S of the lens 10 and the edge DHe of the housing recess DH is an annular shape having at least one of non-rotation symmetric and non-linear symmetry.
  • a housing recess DH in the lens 10 such as a lens 10 shown in FIGS. 9A to 9C (an LED module MJ including the lens 10 is referred to as Example 4).
  • the edge DHe may be rotationally symmetric and line symmetric.
  • the edge DHe of the housing recess DH in the lens 10 is axisymmetric.
  • LA in FIGS. 10A and 10C means an axis of line symmetry).
  • the edge DHe of the housing depression DH is a ring including a plurality of inflection points, for example, at least three inflection points. This is because if the ring has such an inflection point, the inner surface DHn of the housing recess DH is easily formed on an aspherical surface.
  • light passing through the inner surface DHn of the lens 10 has a regularity, but travels in a non-radial manner compared to light passing through a spherical inner surface (the inner surface of the lens 10).
  • the number of directions in the traveling direction of light increases, for example, compared with the number of directions in the traveling direction of light in the light passing through the spherical inner surface.
  • the LED module MJ including such a lens 10 (for example, the LED module MJ of the fourth and fifth embodiments) is, for example, compared with an LED module including a lens having a lens surface and a lens whose inner surface of the housing recess is a spherical surface. Advancing light in a non-radial manner. Therefore, for example, even in the backlight unit 49 in which the LED module MJ according to the fourth and fifth embodiments is mounted, even if the LED set ST is arranged in a matrix, unevenness in the amount of light caused by the arrangement is not planar. It becomes hard to be included in light.
  • the outer edge 10E of the lens 10 may be annular including a plurality of inflection points (for example, at least three or more inflection points) in order to increase the number of directions in the light traveling direction. This is because the lens surface 10S is likely to be formed into an aspherical surface when it is an annular shape having such an inflection point.
  • the light passing through the lens surface 10 ⁇ / b> S travels in a non-radial manner (passes through the lens surface 10 ⁇ / b> S), for example, compared to light passing through a spherical lens surface, although there is regularity.
  • the number of directions in the traveling direction of light increases in comparison with the number of directions in the traveling direction of light, for example, in light passing through a spherical lens surface).
  • the LED module MJ including such a lens 10 has the same effect as the LED module MJ of the fourth and fifth embodiments. That is, even in the backlight unit 49 on which the LED module MJ is mounted, even if the LED sets ST are arranged in a matrix, the light amount unevenness due to the arrangement is not easily included in the planar light.
  • the edge DHe of the housing recess DH may be an annulus including a plurality of inflection points
  • the outer edge 10E of the lens 10 may be an annulus including a plurality of inflection points.
  • the LED 30 is housed in the housing recess DH of the lens 10, but is not limited thereto.
  • the entire back surface 10B of the lens 10 may be a flat surface, and the LED 30 may be disposed immediately below the flat surface (in short, the LED 30 is housed in the housing recess DH of the lens 10). Not required).
  • the light from the LED 30 is incident on the back surface 10B, and the light is emitted from the lens surface 10S (in short, the entire area of the back surface 10B of the lens 10 is the light receiving surface).
  • the lens surface 10S is an aspheric surface as in the second embodiment, the transmitted light from the lens 10 travels in various directions without regularity. That is, even if the lens 10 having an aspherical lens surface 10S without the housing dent DH covers the LED 30, the amount of light unevenness caused by the matrix arrangement of the LED set ST is added to the planar light from the backlight unit 49. Is not included.
  • a surface capable of receiving light in the lens 10 is a light receiving surface, and at least a part of the back surface 10B of the lens 10 is a light receiving surface.
  • the size of the lens 10 may be a lens 10 having a back surface 10B having a smaller area than the light emitting surface 30T of the LED 30 (of course, the small lens 10 as shown in FIG. 12).
  • LED 30 equipped with the LED set ST). 11 and 12, the LED 30 and the lens 10 that are in close contact may be referred to as an LED package (light emitting element package).
  • the lens 10 includes the following lens surfaces 10S and (2) (the light receiving surface is, for example, the inner surface DHn of the housing recess DH and the entire back surface 10B of the lens 10). At least one of them may be included.
  • the lens surface 10S is formed by a set of a plurality of points separated by an arbitrary distance from the reference point. It is aspherical (however, the outer edge 10E on the lens surface 10S is an annulus including at least three inflection points).
  • the edge of the light receiving surface of the lens 10 is annular and an arbitrary point inside the ring is a reference point, the light receiving surface is formed by a set of a plurality of points separated by an arbitrary distance from the reference point. It is aspherical (however, the edge of the light receiving surface of the lens 10 is a ring including at least three inflection points).
  • At least one of the annular outer edge 10E of the lens surface 10S of the lens 10 and the annular edge of the light receiving surface of the lens 10 is an annular shape including at least three or more inflection points (however, However, the present invention is not limited to this, and at least one inflection point may be included).
  • At least one of the outer edge 10E of the lens surface 10S and the edge of the light receiving surface is an annular shape in which at least one of non-rotational symmetry and non-linear symmetry is obtained.
  • the light from the lens 10 is not light that generates a radial luminance distribution centered on the lens 10, but is at least one of non-rotationally symmetric and non-linearly symmetric about the lens 10.
  • the light produces a shaped luminance distribution. That is, light with no regularity is reliably emitted from the lens 10.
  • the lens 10 has a diffusibility for diffusing transmitted light. If it becomes like this, the light of several LED30 will be mixed with a high degree and will become planar light. Therefore, due to the fact that the light from the lens 10 is not regular, the effect of not including unevenness in the amount of light in the planar light of the backlight unit 49 appears significantly.
  • the LED sets ST are arranged in a row on one mounting substrate 20, but the present invention is not limited to this, and for example, the LED sets ST may be arranged in a plurality of rows. LED sets ST may be arranged in a matrix on a single mounting board 10).
  • the LED sets ST are regularly arranged in a matrix, but the present invention is not limited to this, and may be irregularly arranged ⁇ particularly in FIGS. 9A to 9C and 10A to 10C.
  • the surface light from the backlight unit 49 surely collects excessive light at a specific part in the surface, or does not collect excessive light at a specific part in the surface. I do not. Therefore, the planar light from the backlight unit 49 does not further include unevenness in the amount of light.
  • the plurality of lenses 10 of the LED set ST mounted in the backlight unit 49 may include only the same type of lens surface 10S and light receiving surface. With such a configuration, the cost required for the lens 10 can be suppressed, and the cost of the LED module MJ, the backlight unit 49, and the liquid crystal display device 69 (mainly, various devices on which the lens 10 is mounted) can be reduced. However, it is not limited to this.
  • a plurality of types of lenses 10 (for example, the surface shape of the lens surface 10S) having different diffusion directions of transmitted light are used. Different types of lenses 10) may be mounted on the backlight unit 49.
  • the LED 30 that is a light-emitting element is used as the light source.
  • the present invention is not limited to this.
  • it may be a light emitting element formed of a self-luminous material such as organic EL (Electro-Luminescence) or inorganic EL.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

A lens includes an exit surface for allowing transmission light to be emitted and a light receiving surface being at least part of the back surface of the exit surface and receiving light becoming the source of the transmission light. The lens includes at least one of the exit surface satisfying the following condition (1) and the light receiving surface satisfying the following condition (2): (1) The edge of the exit surface is ring-like, and one arbitrary point inside the ring is chosen as a reference point. The exit surface includes a non-spherical surface formed by an aggregate of a plurality of points spaced apart from the reference point by different arbitrary distances (however, the ring-like edge of the exit surface includes at least three inflection points). (2) The edge of the light receiving surface is ring-like, and one arbitrary point inside the ring is chosen as a reference point. The light receiving surface includes a non-spherical surface formed by an aggregate of a plurality of points spaced apart from the reference point by different arbitrary distances (however, the ring-like edge of the light receiving surface includes at least three inflection points).

Description

レンズ、発光素子パッケージ、発光モジュール、照明装置、表示装置、およびテレビ受像装置Lens, light emitting element package, light emitting module, illumination device, display device, and television receiver
 本発明は、レンズ、発光素子パッケージ、発光モジュール、照明装置、表示装置、およびテレビ受像装置に関する。 The present invention relates to a lens, a light emitting element package, a light emitting module, a lighting device, a display device, and a television receiver.
 非発光型の液晶表示パネル(表示パネル)を搭載する液晶表示装置(表示装置)では、通常、その液晶表示パネルに対して、光を供給するバックライトユニット(照明装置)も搭載される。バックライトユニットにおける光源には、種々の種類が存在する。例えば、図15に示されるような特許文献1の液晶表示装置169の場合、バックライトユニット149に搭載される光源はLED(Light Emitting Diode)である。 In a liquid crystal display device (display device) equipped with a non-light emitting liquid crystal display panel (display panel), a backlight unit (illumination device) for supplying light is usually mounted on the liquid crystal display panel. There are various types of light sources in the backlight unit. For example, in the case of the liquid crystal display device 169 of Patent Document 1 as shown in FIG. 15, the light source mounted on the backlight unit 149 is an LED (Light Emitting Diode).
 そして、このバックライトユニット149では、実装基板120に実装されたLEDチップcpからの光を拡散させるレンズ110が取り付けられる(図16の斜視図および図17の断面図参照)。 And in this backlight unit 149, the lens 110 which diffuses the light from LED chip cp mounted in the mounting board | substrate 120 is attached (refer the perspective view of FIG. 16, and sectional drawing of FIG. 17).
特開2006-114863号公報JP 2006-114863 A
 ところで、図15に示されるように、レンズ110が実装基板120上に、列状に配置され、さらに、その実装基板120がレンズ10の列方向に対して交差して並列されていると、レンズ110はマトリックス配置になる。そして、このような場合、実装基板120の正面からの照度を撮影すると、通常、図18に示すような画像が得られる。この画像には、白色点線で強調するように、レンズ110の配置を反映したマトリックス状の光量ムラが現れる(なお、便宜上、一部分の光量ムラのみを強調して図示)。 By the way, as shown in FIG. 15, when the lenses 110 are arranged in a row on the mounting substrate 120, and the mounting substrates 120 are arranged parallel to each other in the row direction of the lens 10, the lens 110 becomes a matrix arrangement. In such a case, when the illuminance from the front surface of the mounting substrate 120 is photographed, an image as shown in FIG. 18 is usually obtained. In this image, a matrix-like light amount unevenness reflecting the arrangement of the lenses 110 appears so as to be emphasized by a white dotted line (note that only a part of the light amount unevenness is emphasized and shown for convenience).
 これは、図16および図17に示すように、レンズ110からの光が、発光チップCPを中心に規則性を有するためである。詳説すると、レンズ110からの透過光は、レンズ110を中心にした放射状の輝度分布を生じさせる光になっている(回転対称かつ線対称な輝度分布を生じさせる光;破線参照)。 This is because the light from the lens 110 has regularity centering on the light emitting chip CP as shown in FIGS. More specifically, the transmitted light from the lens 110 is light that generates a radial luminance distribution centered on the lens 110 (light that generates a rotationally symmetric and line-symmetric luminance distribution; see broken line).
 そのため、このようなレンズ110がマトリックス配置されていると、複数のレンズ110からの透過光が、規則的に交差し、それに起因してマトリックス状の光量ムラ(干渉ムラ)が生じる{なお、レンズを中心にした放射状(真円状)の輝度分布を生じさない光を、非放射状に進む光とする}。 Therefore, when such lenses 110 are arranged in a matrix, the transmitted light from the plurality of lenses 110 regularly intersect, resulting in matrix-like light amount unevenness (interference unevenness). The light that does not generate a radial (circular) luminance distribution centered on is assumed to be light that proceeds non-radially}.
 本発明は、上記の問題点を解決するためになされたものである。そして、その目的は、バックライトユニットのような照明装置からの光に、光量ムラ(例えば、干渉ムラ)を含ませないようにするレンズ等を提供することにある。 The present invention has been made to solve the above problems. And the objective is to provide the lens etc. which do not include the light quantity nonuniformity (for example, interference nonuniformity) in the light from illuminating devices like a backlight unit.
 レンズは、透過光を出射させる出射面と、出射面の背面の少なくとも一部であり、透過光の基となる光を受ける受光面と、を含む。そして、このレンズは、以下の(1)の出射面および(2)の受光面の少なくとも一方を含む。 The lens includes an emission surface that emits transmitted light and a light receiving surface that is at least part of the back surface of the emission surface and receives light that is a basis of the transmitted light. This lens includes at least one of the following (1) emitting surface and (2) light receiving surface.
 (1)出射面における縁が環状で、その環内部の任意の一点を基準点としており、出射面は、基準点から異なる任意の距離で離れた複数の点の集合で形成された非球面を含む(ただし、出射面における縁は、変曲点を少なくとも3つ含む環状である)。 (1) The edge on the exit surface is annular, and an arbitrary point inside the ring is used as a reference point. The exit surface is an aspheric surface formed by a set of a plurality of points separated from the reference point by an arbitrary distance. (However, the edge on the exit surface is an annular shape including at least three inflection points).
 (2)受光面における縁が環状で、その環内部の任意の一点を基準点としており、受光面は、基準点から異なる任意の距離で離れた複数の点の集合で形成された非球面を含む(ただし、受光面における縁は、変曲点を少なくとも3つ含む環状である)。 (2) The edge of the light-receiving surface is annular, and an arbitrary point inside the ring is used as a reference point. The light-receiving surface is an aspheric surface formed by a set of a plurality of points separated from the reference point by arbitrary different distances. (However, the edge on the light-receiving surface is an annular shape including at least three inflection points).
 このような非球面がレンズに含まれていると、そのレンズからの透過光は、非球面の影響で、非放射状に進行する。すると、例えば、照明装置が、このようなレンズの受光面に光を供給する発光素子を複数個配置し、面状光を生成するならば、その面内の特定部分に光が過度に集まったり、面内の特定部分に光が過度に集まらなかったりはしない。したがって、照明装置からの面状光に、光量ムラが含まれない。 When such an aspheric surface is included in the lens, the transmitted light from the lens travels in a non-radial manner due to the influence of the aspheric surface. Then, for example, if the illuminating device arranges a plurality of light emitting elements that supply light to the light receiving surface of such a lens and generates planar light, excessive light is collected at a specific portion in the surface. , The light does not collect excessively in a specific part of the surface. Therefore, the light amount unevenness is not included in the planar light from the illumination device.
 特に、レンズが規則的に配置されたとしても、全レンズからの非放射状の光で面状光が形成される場合、その面状光には、レンズの規則的配置に起因する光量ムラ(例えば、干渉ムラ)が含まれない。そのため、いいかえると、以上のレンズは、照明装置からの面状光に光量ムラを含ませないために適したレンズといえる。 In particular, even when the lenses are regularly arranged, when the planar light is formed by non-radial light from all the lenses, the planar light has a light amount unevenness (for example, due to the regular arrangement of the lenses) , Interference unevenness) is not included. Therefore, in other words, the above lens can be said to be a suitable lens for preventing unevenness in the amount of light from being included in the planar light from the illumination device.
 また、レンズにおける出射面の縁および受光面の縁の少なくとも一方が、非回転対称および非線対称の少なくとも一方になった環状であると望ましい。 In addition, it is desirable that at least one of the edge of the emission surface and the edge of the light receiving surface of the lens is an annular shape that is at least one of non-rotation symmetric and non-linear symmetry.
 このようになっていると、レンズからの光は、レンズを中心にした放射状の輝度分布を生じさせる光ではなく、レンズを中心に非回転対称および非線対称の少なくとも一方の形をした輝度分布を生じさせるような光になる(すなわち、規則性の無い光が、レンズから出射される)。 In this case, the light from the lens is not light that produces a radial luminance distribution centered on the lens, but a luminance distribution that is at least one of non-rotationally symmetric and non-linearly symmetric about the lens. (That is, light having no regularity is emitted from the lens).
 なお、受光面が、レンズの出射面の背面の全てであっても、出射面の背面に形成される窪みの内面であってもよい。要は、レンズにて、受光可能な面が受光面になっていればよい。 Note that the light receiving surface may be the entire back surface of the exit surface of the lens or the inner surface of a depression formed on the back surface of the exit surface. In short, it is only necessary that the light-receiving surface of the lens can receive light.
 また、レンズが、透過光を拡散させる拡散性を有していればよい。このようになっていると、例えば、照明装置に複数のレンズが配置されている場合、それらのレンズからの光が、高い度合いで混ざり合って面状光となる。すると、レンズからの非放射状の光に起因して、照明装置の面状光に光量ムラを含ませない効果が、顕著に現れる。 Further, it is sufficient that the lens has a diffusibility for diffusing transmitted light. If it has become like this, for example, when a plurality of lenses are arranged in an illuminating device, the light from these lenses will mix with a high degree and become planar light. Then, due to the non-radial light from the lens, the effect of not including unevenness in the amount of light in the planar light of the lighting device appears significantly.
 なお、以上のようなレンズと、そのレンズの受光面に光を供給する発光素子と、発光素子およびレンズを取り付けた実装基板と、を含む発光モジュールも本発明といえる。また、以上のようなレンズと、そのレンズの受光面に光を供給する発光素子と、を密着させた発光素子パッケージも本発明といえるし、さらに、その発光素子パッケージを取り付けた実装基板を含む発光モジュールも本発明といえる。なお、特に、レンズと発光素子とのセットが複数個で、規則的に配置されている発光モジュールが望ましい。 Note that a light-emitting module including the lens as described above, a light-emitting element that supplies light to the light-receiving surface of the lens, and a mounting substrate on which the light-emitting element and the lens are attached can be said to be the present invention. Further, a light-emitting element package in which the above-described lens and a light-emitting element that supplies light to the light-receiving surface of the lens are in close contact can be said to be the present invention, and further includes a mounting substrate on which the light-emitting element package is attached. The light emitting module can also be said to be the present invention. In particular, a light emitting module in which a plurality of sets of lenses and light emitting elements are regularly arranged is desirable.
 また、これらのような発光モジュールを単数または複数含む照明装置も本発明といえる。もちろん、このような照明装置と、その照明装置からの光を受ける表示パネル(例えば、液晶表示パネル)と、を含む表示装置も本発明といえる(なお、このような表示装置を搭載する装置としては、テレビ受像装置が一例として挙げられる)。 Moreover, it can be said that the present invention also includes a lighting device including one or a plurality of such light emitting modules. Of course, a display device including such a lighting device and a display panel (for example, a liquid crystal display panel) that receives light from the lighting device can also be said to be the present invention. TV receiver is an example).
 本発明のレンズによると、自身からの透過光を、規則性無く、非放射状に進行させる。そのため、このようなレンズを複数搭載した照明装置の面状光では、レンズからの光が混ざり合ったとしても、干渉ムラを引き起こしにくい。 ¡According to the lens of the present invention, the transmitted light from itself advances non-radially without regularity. Therefore, in the planar light of an illumination device equipped with a plurality of such lenses, even if the light from the lenses is mixed, interference unevenness is hardly caused.
は、図13に示されるLEDモジュール(実施例1)の部分斜視図である。FIG. 14 is a partial perspective view of the LED module (Example 1) shown in FIG. 13. は、実施例1のLEDモジュールの正面図である。These are the front views of the LED module of Example 1. FIG. は、実施例1のLEDモジュールの断面図である(なお、断面図の断面方向は、図1・図2AのA1-A1’線矢視方向である)。FIG. 3 is a cross-sectional view of the LED module of Example 1 (note that the cross-sectional direction of the cross-sectional view is the direction of arrows A1-A1 ′ in FIGS. 1 and 2A). は、実施例1のLEDモジュールの背面図である。These are the rear views of the LED module of Example 1. FIG. は、実施例1のLEDモジュールにおけるレンズの正面図である。These are the front views of the lens in the LED module of Example 1. FIG. は、実施例1のLEDモジュールにおけるレンズの断面図である(なお、断面図の断面方向は、図3AのB1-B1’線矢視方向である)。FIG. 3 is a cross-sectional view of a lens in the LED module of Example 1 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow B1-B1 ′ in FIG. 3A). は、実施例1のLEDモジュールにおけるレンズの背面図である。These are the rear views of the lens in the LED module of Example 1. FIG. は、実施例1のLEDモジュールにおける実装基板の正面図である。These are the front views of the mounting substrate in the LED module of Example 1. FIG. は、実施例1のLEDモジュールにおける実装基板の断面図である(なお、断面図の断面方向は、図4AのC1-C1’線矢視方向である)。FIG. 4 is a cross-sectional view of the mounting substrate in the LED module of Example 1 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow C1-C1 ′ in FIG. 4A). は、実施例2のLEDモジュールの正面図である。These are the front views of the LED module of Example 2. FIG. は、実施例2のLEDモジュールの断面図である(なお、断面図の断面方向は、図5AのA2-A2’線矢視方向である)。FIG. 5 is a cross-sectional view of the LED module of Example 2 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow A2-A2 ′ in FIG. 5A). は、実施例2のLEDモジュールの背面図である。These are the rear views of the LED module of Example 2. FIG. は、実施例2のLEDモジュールにおけるレンズの正面図である。These are the front views of the lens in the LED module of Example 2. FIG. は、実施例2のLEDモジュールにおけるレンズの断面図である(なお、断面図の断面方向は、図6AのB2-B2’線矢視方向である)。FIG. 6 is a cross-sectional view of a lens in the LED module of Example 2 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow B2-B2 ′ in FIG. 6A). は、実施例2のLEDモジュールにおけるレンズの背面図である。These are the rear views of the lens in the LED module of Example 2. FIG. は、実施例3のLEDモジュールの正面図である。These are the front views of the LED module of Example 3. FIG. は、実施例3のLEDモジュールの断面図である(なお、断面図の断面方向は、図7AのA3-A3’線矢視方向である)。FIG. 6 is a cross-sectional view of the LED module of Example 3 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow A3-A3 ′ in FIG. 7A). は、実施例3のLEDモジュールの背面図である。These are the rear views of the LED module of Example 3. FIG. は、実施例3のLEDモジュールにおけるレンズの正面図である。These are the front views of the lens in the LED module of Example 3. FIG. は、実施例3のLEDモジュールにおけるレンズの断面図(なお、断面図の断面方向は、図8AのB3-B3’線矢視方向である)である。FIG. 8 is a cross-sectional view of a lens in the LED module of Example 3 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow B3-B3 ′ in FIG. 8A). は、実施例3のLEDモジュールにおけるレンズの背面図である。These are the rear views of the lens in the LED module of Example 3. FIG. は、実施例4のLEDモジュールにおけるレンズの正面図である。These are the front views of the lens in the LED module of Example 4. FIG. は、実施例4のLEDモジュールにおけるレンズの断面図である(なお、断面図の断面方向は、図9AのB4-B4’線矢視方向である)。FIG. 9 is a cross-sectional view of a lens in the LED module of Example 4 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow B4-B4 ′ in FIG. 9A). は、実施例4のLEDモジュールにおけるレンズの背面図である。These are the rear views of the lens in the LED module of Example 4. FIG. は、実施例5のLEDモジュールにおけるレンズの正面図である。These are the front views of the lens in the LED module of Example 5. FIG. は、実施例5のLEDモジュールにおけるレンズの断面図である(なお、断面図の断面方向は、図10AのB5-B5’線矢視方向である)。FIG. 10 is a cross-sectional view of a lens in the LED module of Example 5 (note that the cross-sectional direction of the cross-sectional view is the direction of arrow B5-B5 ′ in FIG. 10A). は、実施例5のLEDモジュールにおけるレンズの背面図である。These are the rear views of the lens in the LED module of Example 5. FIG. は、LEDモジュールの断面図である。These are sectional drawings of an LED module. は、LEDモジュールの断面図である。These are sectional drawings of an LED module. は、液晶表示装置の分解斜視図である。FIG. 3 is an exploded perspective view of a liquid crystal display device. は、液晶表示装置を搭載する液晶テレビの分解斜視図である。These are the exploded perspective views of the liquid crystal television which mounts a liquid crystal display device. は、従来の液晶表示装置の分解斜視図である。FIG. 6 is an exploded perspective view of a conventional liquid crystal display device. は、従来のレンズの斜視図である。FIG. 3 is a perspective view of a conventional lens. は、従来のレンズの断面図である。These are sectional drawings of the conventional lens. は、従来のバックライトユニットからの面状光の照度分布を示す画像である。These are images which show the illumination distribution of the planar light from the conventional backlight unit.
 [実施の形態1]
 実施の一形態について、図面に基づいて説明すれば、以下の通りである。なお、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、断面図以外の図であっても、便宜上、ハッチングを付す場合もある。
[Embodiment 1]
The following describes one embodiment with reference to the drawings. For convenience, hatching, member codes, and the like may be omitted, but in such a case, other drawings are referred to. Moreover, even if it is a figure other than sectional drawing, hatching may be attached | subjected for convenience.
 図14は、液晶表示装置(表示装置)69を搭載する液晶テレビ89である。なお、このような液晶テレビ89は、テレビ放送信号を受信して画像を映すことから、テレビ受像装置といえる。図13は、液晶表示装置を示す分解斜視図である。この図に示すように、液晶表示装置69は、液晶表示パネル59と、この液晶表示パネル59に対して光を供給するバックライトユニット(照明装置)49と、これらを挟み込むハウジングHG(表ハウジングHG1・裏ハウジングHG2)と、を含む。 FIG. 14 shows a liquid crystal television 89 equipped with a liquid crystal display device (display device) 69. Note that such a liquid crystal television 89 can be said to be a television receiver because it receives a television broadcast signal and projects an image. FIG. 13 is an exploded perspective view showing the liquid crystal display device. As shown in this figure, a liquid crystal display device 69 includes a liquid crystal display panel 59, a backlight unit (illumination device) 49 that supplies light to the liquid crystal display panel 59, and a housing HG (front housing HG1) that sandwiches them. -Back housing HG2).
 液晶表示パネル59は、TFT(Thin Film Transistor)等のスイッチング素子を含むアクティブマトリックス基板51と、このアクティブマトリックス基板51に対向する対向基板52とをシール材(不図示)で貼り合わせる。そして、両基板51・52の隙間に液晶(不図示)が注入される。 In the liquid crystal display panel 59, an active matrix substrate 51 including a switching element such as a TFT (Thin Film Transistor) and a counter substrate 52 facing the active matrix substrate 51 are bonded together with a sealant (not shown). Then, liquid crystal (not shown) is injected into the gap between the substrates 51 and 52.
 なお、アクティブマトリックス基板51の受光面側、対向基板52の出射側には、偏光フィルム53が取り付けられる。そして、以上のような液晶表示パネル59は、液晶分子の傾きに起因する透過率の変化を利用して、画像を表示する。 A polarizing film 53 is attached to the light receiving surface side of the active matrix substrate 51 and the emission side of the counter substrate 52. The liquid crystal display panel 59 as described above displays an image using the change in transmittance caused by the inclination of the liquid crystal molecules.
 次に、液晶表示パネル59の直下に位置するバックライトユニット49について説明する。バックライトユニット49は、LEDモジュール(発光モジュール)MJ、バックライトシャーシ41、大判反射シート42、拡散板43、プリズムシート44、および、マイクロレンズシート45を含む。 Next, the backlight unit 49 positioned immediately below the liquid crystal display panel 59 will be described. The backlight unit 49 includes an LED module (light emitting module) MJ, a backlight chassis 41, a large reflective sheet 42, a diffusion plate 43, a prism sheet 44, and a microlens sheet 45.
 LEDモジュールMJは、図13の部分斜視図である図1に示すように、実装基板20、LED(Light Emitting Diode)30、およびレンズ10を含む(なお、LED30と、そのLED30を覆うレンズ10とをLEDセットSTとも称する)。 As shown in FIG. 1 which is a partial perspective view of FIG. 13, the LED module MJ includes a mounting substrate 20, an LED (Light Emitting Diode) 30, and a lens 10 (note that the LED 30 and the lens 10 covering the LED 30 are Is also referred to as LED set ST).
 実装基板20は、板状かつ矩形状の基板であり、実装面20U上に、複数の電極(不図示)を並べる。なお、実装基板20における実装面20Uには、保護膜となるレジスト膜(不図示)が成膜される。このレジスト膜は、特に限定されるものではないが、反射性を有する白色であると望ましい。なぜなら、レジスト膜に光が入射したとしても、その光はレジスト膜で反射して外部に向かおうとするので、実装基板20による光の吸収という光量ムラの原因が解消するためである。 The mounting substrate 20 is a plate-like and rectangular substrate, and a plurality of electrodes (not shown) are arranged on the mounting surface 20U. Note that a resist film (not shown) serving as a protective film is formed on the mounting surface 20U of the mounting substrate 20. The resist film is not particularly limited, but is desirably white having reflectivity. This is because even if light is incident on the resist film, the light is reflected by the resist film and tends to go outside, thereby eliminating the cause of unevenness in the amount of light due to light absorption by the mounting substrate 20.
 LED30は、発光素子(光源)であり、実装基板20の電極を介した電流によって発光する。そして、LED30の種類は多々あり、以下のようなLED30が挙げられる。例えば、LED30は、青色発光のLEDチップ(発光チップ)と、そのLEDチップからの光を受けて、黄色光を蛍光発光する蛍光体と、を含むものが挙げられる(なお、LEDチップの個数は特に限定されない)。このようなLED30は、青色発光のLEDチップからの光と蛍光発光する光とで白色光を生成する。 The LED 30 is a light emitting element (light source), and emits light by current through the electrodes of the mounting substrate 20. And there are many kinds of LED30, and the following LED30 is mentioned. For example, the LED 30 includes an LED chip that emits blue light (light emitting chip) and a phosphor that receives light from the LED chip and emits yellow light in a fluorescent manner (note that the number of LED chips is Not particularly limited). Such an LED 30 generates white light from light from a blue light emitting LED chip and light emitted from a fluorescent light.
 ただし、LED30に内蔵される蛍光体は、黄色光を蛍光発光する蛍光体に限らない。例えば、LED30は、青色発光のLEDチップと、そのLEDチップからの光を受けて、緑色光および赤色光を蛍光発光する蛍光体と、を含み、LEDチップからの青色光と蛍光発光する光(緑色光・赤色光)とで白色光を生成してもよい。 However, the phosphor incorporated in the LED 30 is not limited to a phosphor that emits yellow light. For example, the LED 30 includes a blue light emitting LED chip and a fluorescent material that receives light from the LED chip and emits green light and red light, and emits blue light and fluorescent light emitted from the LED chip ( White light may be generated with green light and red light.
 また、LED30に内蔵されるLEDチップは、青色発光のものに限られない。例えば、LED30は、赤色発光の赤色LEDチップと、青色発光の青色LEDチップと、青色LEDチップからの光を受けて、緑色光を蛍光発光する蛍光体と、を含んでいてもよい。なぜなら、このようなLED30であれば、赤色LEDチップからの赤色光と、青色LEDチップからの青色光と、蛍光発光する緑色光とで白色光を生成できるためである。 Further, the LED chip incorporated in the LED 30 is not limited to the one emitting blue light. For example, the LED 30 may include a red LED chip that emits red light, a blue LED chip that emits blue light, and a phosphor that emits green light by receiving light from the blue LED chip. This is because with such an LED 30, white light can be generated from red light from the red LED chip, blue light from the blue LED chip, and green light that emits fluorescence.
 また、全く蛍光体を含まないLED30であってもよい。例えば、赤色発光の赤色LEDチップと、緑色発光の緑色LEDチップと、青色発光の青色LEDチップと、を含み、全てのLEDチップからの光で白色光を生成するLED30であってもよい。 Alternatively, the LED 30 may not include any phosphor. For example, the LED 30 may include a red LED chip that emits red light, a green LED chip that emits green light, and a blue LED chip that emits blue light, and generates white light using light from all the LED chips.
 また、図13に示されるバックライトユニット49では、1枚の実装基板20に5個のLED30を列状に実装した比較的短い実装基板20と、1枚の実装基板20に8個のLED30を列状に実装した比較的長い実装基板20と、が搭載される。 In the backlight unit 49 shown in FIG. 13, a relatively short mounting board 20 in which five LEDs 30 are mounted in a row on one mounting board 20, and eight LEDs 30 on one mounting board 20. A relatively long mounting board 20 mounted in a row is mounted.
 特に、2種類の実装基板20は、5個のLED30の列と8個のLED30の列とを13個のLED30の列にするように並び、さらに、13個のLED30の並ぶ方向に対して、交差(直交等)する方向にも、2種類の実装基板20は並ぶ。これにより、LED30はマトリックス状に配置され、その結果、複数のLED30の光が混ざり合って面状光となる(便宜上、異種の実装基板20の並ぶ方向をX方向、同種の実装基板20の並ぶ方向をY方向とし、このX方向とY方向とに交差する方向をZ方向とする)。 In particular, the two types of mounting boards 20 are arranged so that a row of five LEDs 30 and a row of eight LEDs 30 are arranged as a row of 13 LEDs 30, and further, with respect to the direction in which the 13 LEDs 30 are arranged, Two types of mounting boards 20 are also arranged in a direction intersecting (orthogonal, etc.). As a result, the LEDs 30 are arranged in a matrix, and as a result, the light from the plurality of LEDs 30 is mixed to form planar light (for convenience, the direction in which different types of mounting boards 20 are arranged is the X direction, and the same type of mounting boards 20 are arranged. The direction is the Y direction, and the direction intersecting the X direction and the Y direction is the Z direction).
 なお、X方向に並ぶ13個のLED30は、電気的に直列接続され、さらに、この直列につながった13個のLED30は、Y方向に沿って隣り合う別の13個の直列接続されたLED30と電気的に並列に接続される。そして、これらマトリックス状に並ぶLED30は、並列駆動される。 The thirteen LEDs 30 arranged in the X direction are electrically connected in series, and the thirteen LEDs 30 connected in series are connected to another thirteen LEDs 30 connected in series along the Y direction. Electrically connected in parallel. The LEDs 30 arranged in a matrix are driven in parallel.
 レンズ10は、LED30からの光を受け、その光を透過(出射)させる。詳説すると、レンズ10は、透過光を出射させるレンズ面(出射面)10Sの背面10B側にLED30を収容可能な収容窪みDH(後述の図3B等参照)を有し、その収容窪みDHとLED30との位置を合わせつつ、LED30に覆い被さる。すると、レンズ10の内部に、LED30が埋め込まれ、LED30からの光が、確実に、レンズ10内部に供給される。そして、その供給された光の大部分が、レンズ面10Sを介して外部に出射する。 The lens 10 receives light from the LED 30 and transmits (emits) the light. More specifically, the lens 10 has an accommodation recess DH (see FIG. 3B described later) that can accommodate the LED 30 on the back surface 10B side of the lens surface (emission surface) 10S that emits transmitted light, and the accommodation recess DH and the LED 30. The LED 30 is covered while adjusting the position. Then, the LED 30 is embedded in the lens 10, and the light from the LED 30 is reliably supplied into the lens 10. And most of the supplied light is emitted to the outside through the lens surface 10S.
 なお、レンズ10となる材料は特に限定されるものではないが、例えば、アクリル樹脂が挙げられる(屈折率ndが1.49以上1.50以下のアクリル樹脂が挙げられる)。また、レンズ10のレンズ面10Sは、光を拡散させつつ透過させる曲面を有するので、そのレンズ10は拡散レンズといえる。 In addition, although the material used as the lens 10 is not specifically limited, For example, an acrylic resin is mentioned (The acrylic resin whose refractive index nd is 1.49 or more and 1.50 or less is mentioned). Further, since the lens surface 10S of the lens 10 has a curved surface that allows light to diffuse and transmit, the lens 10 can be said to be a diffusing lens.
 バックライトシャーシ41は、図13に示すように、例えば箱状の部材で、底面41BにLEDモジュールMJを敷き詰めることで、それら複数のLEDモジュールMJを収容する。なお、バックライトシャーシ41の底面41BとLEDモジュールMJの実装基板20とは、例えば、リベット(不図示)を介して接続される。 As shown in FIG. 13, the backlight chassis 41 is, for example, a box-shaped member, and houses the plurality of LED modules MJ by spreading the LED modules MJ on the bottom surface 41B. The bottom surface 41B of the backlight chassis 41 and the mounting substrate 20 of the LED module MJ are connected, for example, via rivets (not shown).
 また、バックライトシャーシ41の底面41Bには、拡散板43、プリズムシート44、マイクロレンズシート45を支える支持ピンが取り付けられてもよい(なお、バックライトシャーシ41は、支持ピンとともに、側壁の頂きで、拡散板43、プリズムシート44、マイクロレンズシート45をこの順で積み重ねて支えてもよい)。 Support pins for supporting the diffusion plate 43, the prism sheet 44, and the microlens sheet 45 may be attached to the bottom surface 41B of the backlight chassis 41. Then, the diffusion plate 43, the prism sheet 44, and the microlens sheet 45 may be stacked and supported in this order).
 大判反射シート42は、反射面42Uを有する光学シートで、マトリックス配置された複数のLEDモジュールMJに、反射面42Uの裏面を向けて覆い被さる。ただし、大判反射シート42は、LEDモジュールMJのレンズ10の位置に合わせた通過開孔42Hを含み、反射面42Uからレンズ10を露出させる(なお、上述のリベットおよび支持ピンを露出させるための開孔があるとよい)。 The large reflective sheet 42 is an optical sheet having a reflective surface 42U, and covers the plurality of LED modules MJ arranged in a matrix with the back surface of the reflective surface 42U facing. However, the large-format reflection sheet 42 includes a through hole 42H that matches the position of the lens 10 of the LED module MJ, and exposes the lens 10 from the reflection surface 42U (note that the above-described rivets and support pins are not exposed). There should be holes).
 すると、レンズ10から出射する光の一部が、バックライトシャーシ41の底面41B側に向かって進行したとしても、大判反射シート42の反射面42Uによって反射し、その底面41Bから乖離するように進行する。したがって、大判反射シート42が存在することで、LED30の光は損失することなく、反射面42Uに対向した拡散板43に向かう。 Then, even if a part of the light emitted from the lens 10 travels toward the bottom surface 41B side of the backlight chassis 41, the light is reflected by the reflective surface 42U of the large reflective sheet 42 and travels away from the bottom surface 41B. To do. Accordingly, the presence of the large reflective sheet 42 causes the light from the LED 30 to travel toward the diffusion plate 43 facing the reflective surface 42U without loss.
 拡散板43は、大判反射シート42に重なる光学シートであり、LEDモジュールMJから発せられる光および大判反射シート42Uからの反射光を拡散させる。すなわち、拡散板43は、複数のLEDモジュールMJによって形成される面状光を拡散させて、液晶表示パネル59全域に光をいきわたらせる。 The diffusion plate 43 is an optical sheet that overlaps the large reflective sheet 42, and diffuses the light emitted from the LED module MJ and the reflected light from the large reflective sheet 42U. That is, the diffusing plate 43 diffuses the planar light formed by the plurality of LED modules MJ and spreads the light over the entire liquid crystal display panel 59.
 プリズムシート44は、拡散板43に重なる光学シートである。そして、このプリズムシート44は、一方向(線状)に延びる例えば三角プリズムを、シート面内にて、一方向に交差する方向に並べる。これにより、プリズムシート44は、拡散板43からの光の放射特性を偏向させる。なお、プリズムは、LED30の配置個数の少ないY方向に沿って延び、LED30の配置個数の多いX方向に沿って並ぶとよい。 The prism sheet 44 is an optical sheet that overlaps the diffusion plate 43. The prism sheet 44 arranges, for example, triangular prisms extending in one direction (linear) in a direction intersecting with one direction in the sheet surface. Thereby, the prism sheet 44 deflects the radiation characteristic of the light from the diffusion plate 43. In addition, it is preferable that the prisms extend along the Y direction where the number of LEDs 30 is small and are arranged along the X direction where the number of LEDs 30 is large.
 マイクロレンズシート45は、プリズムシート44に重なる光学シートである。そして、このマイクロレンズシート45は、光を屈折散乱させる微粒子を内部に分散させる。これにより、マイクロレンズシート45は、プリズムシート44からの光を、局所的に集光させることなく、明暗差(光量ムラ)を抑える。 The microlens sheet 45 is an optical sheet that overlaps the prism sheet 44. The microlens sheet 45 disperses the fine particles that refract and scatter light inside. As a result, the microlens sheet 45 suppresses the light / dark difference (light intensity unevenness) without locally condensing the light from the prism sheet 44.
 そして、以上のようなバックライトユニット49は、複数のLEDモジュールMJによって形成される面状光を、複数枚の光学シート43~45に通過させ、液晶表示パネル59へ供給する。これにより、非発光型の液晶表示パネル59は、バックライトユニット49からの光(バックライト光)を受光して表示機能を向上させる。 The backlight unit 49 as described above passes the planar light formed by the plurality of LED modules MJ through the plurality of optical sheets 43 to 45 and supplies the light to the liquid crystal display panel 59. Thereby, the non-light-emitting liquid crystal display panel 59 receives the light (backlight light) from the backlight unit 49 and improves the display function.
 ここで、LEDモジュールMJにおけるレンズ10について、図1に加えて、図2A~図4Bを用いて詳説する。図1はLEDモジュールMJの部分斜視図であり、図2A~図2Cは、LEDモジュールMJの正面図、断面図、背面図である(なお、断面図の断面方向は、図1・図2AのA1-A1’線矢視方向である)。図3A~図3Cは、レンズ10の正面図、断面図、背面図であり(なお、断面図の断面方向は、図3AのB1-B1’線矢視方向である)、図4A・図4Bは実装基板の正面図、断面図である(なお、断面図の断面方向は、図4AのC1-C1’線矢視方向である)。なお、図1等に示されるLEDモジュールMJを実施例1(EX1)とする。 Here, the lens 10 in the LED module MJ will be described in detail with reference to FIGS. 2A to 4B in addition to FIG. 1 is a partial perspective view of the LED module MJ, and FIGS. 2A to 2C are a front view, a cross-sectional view, and a rear view of the LED module MJ (note that the cross-sectional direction of the cross-sectional view is the same as that of FIGS. 1 and 2A). (A1-A1 ′ direction of arrow) 3A to 3C are a front view, a cross-sectional view, and a rear view of the lens 10 (note that the cross-sectional direction of the cross-sectional view is the direction of the arrow B1-B1 ′ in FIG. 3A), FIG. 4A and FIG. FIG. 4 is a front view and a cross-sectional view of the mounting substrate (note that the cross-sectional direction of the cross-sectional view is the direction of arrow C1-C1 ′ in FIG. 4A). In addition, let LED module MJ shown by FIG. 1 etc. be Example 1 (EX1).
 まず、レンズ10の取り付け方(いいかえると、レンズ10と実装基板20との結合機構)について説明する。レンズ10は、背面10Bから突き出るピン11(11A・11B)も含む。これらのピン11A・11Bは、図4A・図4Bに示すような実装基板20に形成された開孔21(21A・21B)に係り合い、これによって、レンズ10は実装基板20に取り付けられる。 First, a method of attaching the lens 10 (in other words, a coupling mechanism between the lens 10 and the mounting substrate 20) will be described. The lens 10 also includes pins 11 (11A and 11B) protruding from the back surface 10B. These pins 11 </ b> A and 11 </ b> B are engaged with openings 21 (21 </ b> A and 21 </ b> B) formed in the mounting board 20 as shown in FIGS. 4A and 4B, whereby the lens 10 is attached to the mounting board 20.
 詳説すると、ピン11A・11Bは、レンズ10の背面10Bにて、収容窪みDHを挟むように形成される。具体的には、ピン11Aは、楕円形の長軸方向における一端側に位置し、ピン11Bは、楕円形の長軸方向における他端側に位置する(なお、ピン11Aとピン11Bとは点対称な関係である)。そして、これらピン11A・11Bは、レンズ10の背面10Bから乖離するように延び出た四角柱状の軸部12(12A・12B)と、その軸部12の先端付近に形成された可撓性の係止片13(13A・13B)と、を含む(なお、係止片13は、軸部12の先端付近で、軸部12の側壁から突き出た可撓性の片材である)。 More specifically, the pins 11A and 11B are formed on the back surface 10B of the lens 10 so as to sandwich the accommodation recess DH. Specifically, the pin 11A is located on one end side in the elliptical long axis direction, and the pin 11B is located on the other end side in the elliptical long axis direction (note that the pin 11A and the pin 11B are dots). A symmetric relationship). These pins 11A and 11B are a rectangular columnar shaft portion 12 (12A and 12B) extending so as to be separated from the back surface 10B of the lens 10, and a flexible portion formed near the tip of the shaft portion 12. (The locking piece 13 is a flexible piece protruding from the side wall of the shaft portion 12 in the vicinity of the tip of the shaft portion 12).
 一方、図4Aおよび図4Bに示すように、実装基板20には、ピン11A・11Bにおける軸部12A・12Bの軸周囲(四角形状の軸周囲)の形状に対して若干大きな相似形状の開孔21A・21Bが、LED30を挟むように形成される。そして、これら開孔21A・21Bに、ピン11A・11Bが差し込まれる。ピン11A・11Bの軸部12A・12Bは、実装基板20の厚みより若干長く、開孔21A・21Bは、実装基板20を貫通している。そのため、ピン11A・11Bが、開孔21A・21Bに差し込まれると、軸部12A・12Bの先端が、実装面20Uの裏面20Bから突き出す。 On the other hand, as shown in FIGS. 4A and 4B, the mounting board 20 has openings having a slightly similar shape to the shape of the shafts 12A and 12B around the shafts 12A and 11B (around the square shaft). 21A and 21B are formed so as to sandwich the LED 30. And pin 11A * 11B is inserted in these opening 21A * 21B. The shaft portions 12A and 12B of the pins 11A and 11B are slightly longer than the thickness of the mounting substrate 20, and the openings 21A and 21B penetrate the mounting substrate 20. Therefore, when the pins 11A and 11B are inserted into the openings 21A and 21B, the tips of the shaft portions 12A and 12B protrude from the back surface 20B of the mounting surface 20U.
 なお、ピン11A・11Bの軸部12A・12Bが、開孔21A・21Bに進入する過程にて、係止片13A・13Bは、開孔21A・21Bの内壁に押さえ付けられることで、開孔21A・21Bに収まるように変形する。ただし、軸部12A・12Bの先端が、実装面20Uの裏面20Bから突き出すと、係止片13A・13Bは、開孔21A・21Bの内壁に押さえ付けられないので、元の形状に復元する。これにより、図2Bに示すように、係止片13A・13Bが開孔21A・21Bの縁に引っかかり、レンズ10は実装基板20に取り付けられる。 In addition, in the process in which the shaft portions 12A and 12B of the pins 11A and 11B enter the openings 21A and 21B, the locking pieces 13A and 13B are pressed against the inner walls of the openings 21A and 21B. Deforms to fit in 21A and 21B. However, when the tip ends of the shaft portions 12A and 12B protrude from the back surface 20B of the mounting surface 20U, the locking pieces 13A and 13B are not pressed against the inner walls of the openings 21A and 21B, and thus are restored to their original shapes. Thereby, as shown in FIG. 2B, the locking pieces 13 </ b> A and 13 </ b> B are caught by the edges of the openings 21 </ b> A and 21 </ b> B, and the lens 10 is attached to the mounting substrate 20.
 次に、レンズ10の形状について説明する。レンズ10は、LED30の光を透過させるレンズ面(出射面)10Sを曲面にし、さらに正面視で(詳説すると、X方向およびY方向で規定されるXY面方向を正面から見た場合に)、レンズ面10Sを楕円形にしている。また、レンズ面10Sの背面10Bは、レンズ面10S同様に、正面視で楕円ではあるものの、平面になっており、実装基板20の実装面20Uに向かい合う。 Next, the shape of the lens 10 will be described. The lens 10 has a curved lens surface (outgoing surface) 10S that transmits the light of the LED 30, and further in front view (specifically, when the XY plane direction defined by the X direction and the Y direction is viewed from the front), The lens surface 10S is elliptical. Further, like the lens surface 10S, the back surface 10B of the lens surface 10S is an ellipse when viewed from the front, but is flat and faces the mounting surface 20U of the mounting substrate 20.
 要は、レンズ10の外縁10Eは回転対称かつ線対称な楕円形で、レンズ面10Sは曲面、レンズ10の背面10Bは平面である。なお、レンズ面10Sは、レンズ10の外縁10Eの内部にて、楕円の中心点を基準点とし、その基準点から、異なる任意の距離で離れた複数の点の集合で形成された非球面を含む。ただし、レンズ面10Sを形成する複数の点は、楕円の中心点(中心軸ともいえる)を基準に、回転対称性を有し、その結果、レンズ面10Sが、回転対称および線対称の少なくとも一方の形状になる(要は、レンズ面10Sは自由曲面ではない)。 In short, the outer edge 10E of the lens 10 is a rotationally symmetric and line-symmetric ellipse, the lens surface 10S is a curved surface, and the back surface 10B of the lens 10 is a plane. The lens surface 10S is an aspherical surface formed by a set of a plurality of points separated from the reference point by an arbitrary point at the center point of the ellipse inside the outer edge 10E of the lens 10. Including. However, the plurality of points forming the lens surface 10S have rotational symmetry with respect to the center point of the ellipse (also referred to as the central axis). As a result, the lens surface 10S has at least one of rotational symmetry and line symmetry. (In short, the lens surface 10S is not a free-form surface).
 そして、このレンズ10は、背面10Bに、LED30を収容する収容窪みDHを含む。この収容窪みDHの入口となる収容窪みDHの縁DHeは、図3Cに示すように、背面10B上に位置し、環状ではあるものの、複数の変曲点を有する不規則な形状である(不規則な形状は、例えば、非回転対称および非線対称の少なくとも一方の形状が一例として挙げられる)。 And this lens 10 contains the accommodation hollow DH which accommodates LED30 in the back surface 10B. As shown in FIG. 3C, the edge DHe of the housing dent DH serving as the entrance of the housing dent DH is located on the back surface 10B and has an irregular shape having a plurality of inflection points although it is annular. As the regular shape, for example, at least one of non-rotational symmetry and non-axisymmetric shape is given as an example).
 そして、LED30の光を受ける収容窪みDHの内面DHnは以下のように設計される。まず、環状の収容窪みDHの縁DHeの内部にて、任意の一点を基準点とする。そして、基準点から、異なる任意の距離で離れた複数の点の集合で形成された非球面が、収容窪みDHの内面DHnに含まれる。特に、内面DHnを形成する複数の点の少なくとも一部は、基準点(基準軸ともいえる)に基づく、回転対称性を有しておらず、その結果、内面DHnが、非回転対称および非線対称の少なくとも一方の形状になる。 And the inner surface DHn of the housing recess DH that receives the light of the LED 30 is designed as follows. First, an arbitrary point is set as a reference point inside the edge DHe of the annular housing recess DH. Then, an aspheric surface formed by a set of a plurality of points separated from the reference point by an arbitrary different distance is included in the inner surface DHn of the housing recess DH. In particular, at least some of the plurality of points forming the inner surface DHn do not have rotational symmetry based on a reference point (also referred to as a reference axis), and as a result, the inner surface DHn has non-rotational symmetry and non-linearity. It becomes at least one shape of symmetry.
 このようなレンズ10であると、収容窪みDHの内面DHnから入射する光は、その内面DHnの非球面(例えば、自由曲面)の影響を受けて、規則性無く、非放射状に進行し、その後、レンズ面10Sから出射する(なお、レンズ10を中心にした放射状(真円状)の輝度分布を生じさせない光を、非放射状に進む光とする)。そのため、このようなレンズ10からの透過光には、規則性が無い(例えば、レンズ10を中心に非回転対称または非線対称な形状の輝度分布を生じさせるような光を、規則性の無い光とする)。 With such a lens 10, the light incident from the inner surface DHn of the housing recess DH is affected by the aspherical surface (for example, a free-form surface) of the inner surface DHn, travels non-regularly, and then proceeds non-radially. The light emitted from the lens surface 10S (note that light that does not generate a radial (perfect circular) luminance distribution centered on the lens 10 is assumed to be non-radial light). Therefore, the transmitted light from such a lens 10 has no regularity (for example, light that generates a luminance distribution having a non-rotationally symmetric or axisymmetric shape around the lens 10 has no regularity. Light).
 すると、バックライトユニット49にて、このレンズ10を含むLEDセットSTが複数配置されている場合に、面状光(バックライト光)にて、その面内の特定部分に光が過度に集まったり、面内の特定部分に光が過度に集まらなかったりはしない。したがって、バックライトユニット49からの面状光(バックライト光)に、光量ムラが含まれない。 Then, when a plurality of LED sets ST including the lens 10 are arranged in the backlight unit 49, the light is excessively collected at a specific portion in the surface by the planar light (backlight light). , The light does not collect excessively in a specific part of the surface. Therefore, the light quantity unevenness is not included in the planar light (backlight light) from the backlight unit 49.
 また、特に、LEDセットSTの配置に規則性があったとしても、各レンズ10からの透過光(拡散光)が非放射状に進行するので、同じような拡散光を発するLEDセットがマトリックス配置のように規則的に配置した場合に生じる光の干渉ムラ(光量ムラの一例)が、面状光に含まれない。そのため、いいかえると、レンズ10は、バックライトユニット49からの面状光に光量ムラ(干渉ムラ等)を含ませないために適したレンズといえる。 In particular, even if there is regularity in the arrangement of the LED sets ST, the transmitted light (diffused light) from each lens 10 proceeds non-radially, so that LED sets that emit similar diffused light have a matrix arrangement. Thus, the light interference unevenness (an example of the light amount unevenness) that occurs when the light is regularly arranged is not included in the planar light. Therefore, in other words, the lens 10 can be said to be a lens suitable for preventing the surface light from the backlight unit 49 from including light amount unevenness (interference unevenness or the like).
 [実施の形態2]
 実施の形態2について説明する。なお、実施の形態1で用いた部材と同様の機能を有する部材については同一の符号を付記し、その説明を省略する。
[Embodiment 2]
A second embodiment will be described. In addition, about the member which has the same function as the member used in Embodiment 1, the same code | symbol is attached and the description is abbreviate | omitted.
 実施の形態1での実施例1のLEDモジュールMJでは、レンズ10の収容窪みDHの内面DHnが非球面を含むことに起因して、レンズ10から出射する光が不規則に進行していた。ただし、このようにレンズ10からの透過光を不規則に進行させるために、非球面を含有する収容窪みDHの内面DHnが必須とは限らない。例えば、図5A~図6Cに示すような実施例2(EX2)のLEDモジュールMJであってもよい。 In the LED module MJ of Example 1 in Embodiment 1, the light emitted from the lens 10 has traveled irregularly because the inner surface DHn of the housing recess DH of the lens 10 includes an aspherical surface. However, in order to cause the transmitted light from the lens 10 to travel irregularly in this way, the inner surface DHn of the housing recess DH containing an aspherical surface is not always essential. For example, the LED module MJ of Example 2 (EX2) as shown in FIGS. 5A to 6C may be used.
 図5A~図5Cは、LEDモジュールMJの正面図、断面図、背面図である(なお、断面図の断面方向は、図5AのA2-A2’線矢視方向である)。図6A~図6Cは、レンズ10の正面図、断面図、背面図である(なお、断面図の断面方向は、図6AのB2-B2’線矢視方向である)。 5A to 5C are a front view, a cross-sectional view, and a rear view of the LED module MJ (note that the cross-sectional direction of the cross-sectional view is the direction of arrow A2-A2 'in FIG. 5A). 6A to 6C are a front view, a cross-sectional view, and a rear view of the lens 10 (note that the cross-sectional direction of the cross-sectional view is the direction of the arrow B2-B2 'in FIG. 6A).
 実施例2のLEDモジュールMJのレンズ10と、実施例1のLEDモジュールMJのレンズ10との違いは、収容窪みDHとレンズ面10Sである。まず、収容窪みDHについて説明する。実施例2のLEDモジュールMJでは、収容窪みDHの内面DHnが半球面である。 The difference between the lens 10 of the LED module MJ of the second embodiment and the lens 10 of the LED module MJ of the first embodiment is the housing recess DH and the lens surface 10S. First, the accommodation recess DH will be described. In the LED module MJ of Example 2, the inner surface DHn of the housing recess DH is a hemispherical surface.
 詳説すると、収容窪みDHの縁DHeが、図6Cに示すように、背面10B上に位置し、回転対称性を有するとともに線対称性も有する規則的な形状、例えば、真円状である。そして、この真円状の縁DHeの中心を基準に等距離で離れた点の集合で、収容窪みDHの内面DHnが形成される。例えば、収容窪みDHの内面DHnは、回転対称性かつ線対称性を有する半球面状になる。 More specifically, as shown in FIG. 6C, the edge DHe of the housing recess DH is located on the back surface 10B, and has a regular shape, for example, a perfect circle shape, having rotational symmetry and line symmetry. The inner surface DHn of the housing recess DH is formed by a set of points that are equidistant from the center of the perfect circular edge DHe. For example, the inner surface DHn of the accommodation recess DH has a hemispherical shape having rotational symmetry and line symmetry.
 次に、レンズ面10Sについて説明する。実施例2のLEDモジュールMJでは、レンズ面10Sが非球面である。詳説すると、レンズ10の外縁10Eが、図6Cに示すように、環状ではあるものの、複数の変曲点を有する不規則な形状である。そして、環状のレンズ10の外縁10Eの内部にて、任意の一点を基準点とする。そして、基準点から、異なる任意の距離で離れた複数の点の集合で形成された非球面が、レンズ面10Sに含まれる。特に、レンズ面10Sを形成する複数の点の少なくとも一部は、基準点に基づく、回転対称性を有しておらず、その結果、レンズ面10Sが、非回転対称および非線対称の少なくとも一方の形状になる。 Next, the lens surface 10S will be described. In the LED module MJ of Example 2, the lens surface 10S is aspheric. Specifically, as shown in FIG. 6C, the outer edge 10E of the lens 10 has an irregular shape having a plurality of inflection points although it is annular. An arbitrary point is set as a reference point inside the outer edge 10 </ b> E of the annular lens 10. The lens surface 10S includes an aspheric surface formed by a set of a plurality of points separated from the reference point by arbitrary different distances. In particular, at least some of the plurality of points forming the lens surface 10S do not have rotational symmetry based on the reference point, and as a result, the lens surface 10S has at least one of non-rotational symmetry and non-linear symmetry. It becomes the shape.
 以上のような実施例2のLEDモジュールMJの場合、収容窪みDHの内面DHnから入射する光は、その内面DHnの半球面の形の影響を受けて、規則性を有しながらレンズ10内部を進行する。ただし、レンズ面10Sの面形状は規則性を有さない。そのため、このようなレンズ10からの透過光には、規則性がない。 In the case of the LED module MJ of Example 2 as described above, light incident from the inner surface DHn of the housing recess DH is affected by the shape of the hemispherical surface of the inner surface DHn, and the inside of the lens 10 has regularity. proceed. However, the surface shape of the lens surface 10S does not have regularity. Therefore, the transmitted light from such a lens 10 has no regularity.
 すると、実施の形態1同様に、実施の形態2のバックライトユニット49にて、LED30を覆うレンズ10がマトリックス配置されていても、その配置に起因した光量ムラが、面状光に含まれない(もちろん、干渉ムラ以外の光量ムラも、面状光に含まれにくい)。 Then, similarly to the first embodiment, even if the lenses 10 covering the LEDs 30 are arranged in a matrix in the backlight unit 49 of the second embodiment, the uneven light quantity due to the arrangement is not included in the planar light. (Of course, the light amount unevenness other than the interference unevenness is not easily included in the planar light).
 [実施の形態3]
 実施の形態3について説明する。なお、実施の形態1・2で用いた部材と同様の機能を有する部材については同一の符号を付記し、その説明を省略する。
[Embodiment 3]
A third embodiment will be described. Note that members having the same functions as those used in Embodiments 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
 実施の形態1では、バックライトユニット49は、収容窪みDHの内面DHnを非球面(例えば、自由曲面)にしたレンズ10を取り付けたLEDモジュールMJを搭載することで、バックライトユニット49からの面状光に、光量ムラを含ませない。一方、実施の形態2では、バックライトユニット49は、レンズ面10Sを非球面(例えば、自由曲面)にしたレンズ10を取り付けたLEDモジュールMJを搭載することで、バックライトユニット49からの面状光に、光量ムラを含ませない。 In the first embodiment, the backlight unit 49 has a surface from the backlight unit 49 by mounting the LED module MJ to which the lens 10 having the inner surface DHn of the housing recess DH made aspherical (for example, a free curved surface) is mounted. Do not include unevenness in the amount of light. On the other hand, in the second embodiment, the backlight unit 49 has a planar shape from the backlight unit 49 by mounting the LED module MJ to which the lens 10 having the lens surface 10S aspherical (for example, a free-form surface) is mounted. Do not include unevenness in the amount of light.
 つまり、実施の形態1・2では、レンズ10におけるレンズ面10Sまたは収容窪みDHの内面DHnが不規則な形状になることで、そのレンズ10からの透過光が、規則性無く、非放射状に進行していた。しかし、透過光を、規則性無く、非放射状に進行させるレンズ10は、これらだけに限らない。 That is, in the first and second embodiments, the lens surface 10S of the lens 10 or the inner surface DHn of the housing recess DH has an irregular shape, so that the transmitted light from the lens 10 travels in a non-radial manner without regularity. Was. However, the lens 10 that causes the transmitted light to travel in a non-radial manner without regularity is not limited thereto.
 例えば、図7A~図8Cに示すような実施例3(EX3)のLEDモジュールMJに含まれるレンズ10であってもよい。 For example, the lens 10 included in the LED module MJ of Example 3 (EX3) as shown in FIGS. 7A to 8C may be used.
 図7A~図7Cは、LEDモジュールMJの正面図、断面図、背面図である(なお、断面図の断面方向は、図7AのA3-A3’線矢視方向である)。図8A~図8Cは、レンズ10の正面図、断面図、背面図である(なお、断面図の断面方向は、図8AのB3-B3’線矢視方向である)。 7A to 7C are a front view, a cross-sectional view, and a rear view of the LED module MJ (note that the cross-sectional direction of the cross-sectional view is the direction of arrow A3-A3 ′ in FIG. 7A). 8A to 8C are a front view, a cross-sectional view, and a rear view of the lens 10 (note that the cross-sectional direction of the cross-sectional view is the direction of the arrow B3-B3 'in FIG. 8A).
 これらの図に示すように、実施例3のLEDモジュールMJでは、レンズ10が以下のようになっている。すなわち、レンズ10における収容窪みDHの内面DHnが、実施例1同様に、環状の収容窪みDHの縁DHeの内部にて、任意の一点を基準点とし、その基準点から、異なる任意の距離で離れた複数の点の集合で形成された非球面を含む(なお、内面DHnは、非回転対称および非線対称の少なくとも一方の形状になる)。 As shown in these drawings, in the LED module MJ of Example 3, the lens 10 is as follows. That is, the inner surface DHn of the housing recess DH in the lens 10 is set at an arbitrary point different from the reference point at an arbitrary point inside the edge DHe of the annular housing recess DH, as in the first embodiment. It includes an aspherical surface formed by a set of a plurality of distant points (in addition, the inner surface DHn has a shape of at least one of non-rotational symmetry and non-linear symmetry).
 また、レンズ10におけるレンズ面10Sが、実施例2同様に、環状のレンズ10の外縁10Eの内部にて、任意の一点を基準点とし、その基準点から、異なる任意の距離で離れた複数の点の集合で形成された非球面を含む(なお、レンズ面10Sが、非回転対称および非線対称の少なくとも一方の形状になる)。 Similarly to the second embodiment, the lens surface 10S of the lens 10 has an arbitrary point as a reference point inside the outer edge 10E of the annular lens 10, and a plurality of points separated from the reference point by different arbitrary distances. It includes an aspheric surface formed by a set of points (note that the lens surface 10S has at least one of non-rotationally symmetric and non-axisymmetric shapes).
 以上のような実施例3のLEDモジュールMJの場合、収容窪みDHの内面DHnから入射する光は、その内面DHnの非球面の形の影響を受けて、規則性無く、非放射状に進行し、さらに、レンズ面10Sの非球面の影響を受けて、一層、規則性無く、非放射状に進行する。そのため、このようなレンズ10からの透過光には、規則性が確実にない。すると、実施の形態1・2同様に、実施の形態3のバックライトユニット49にて、LEDセットSTがマトリックス配置されていても、その配置に起因した光量ムラが、面状光に含まれない。 In the case of the LED module MJ of Example 3 as described above, light incident from the inner surface DHn of the housing recess DH is influenced by the shape of the aspheric surface of the inner surface DHn and travels in a non-radial manner without regularity. In addition, under the influence of the aspherical surface of the lens surface 10S, it proceeds more non-radially without regularity. Therefore, the transmitted light from such a lens 10 does not have regularity. Then, similarly to the first and second embodiments, even if the LED set ST is arranged in a matrix in the backlight unit 49 of the third embodiment, the light amount unevenness due to the arrangement is not included in the planar light. .
 [実施の形態4]
 実施の形態4について説明する。なお、実施の形態1~3で用いた部材と同様の機能を有する部材については同一の符号を付記し、その説明を省略する。
[Embodiment 4]
A fourth embodiment will be described. Note that members having the same functions as those used in the first to third embodiments are denoted by the same reference numerals and description thereof is omitted.
 実施の形態1~3(実施例1~3)では、レンズ10のレンズ面10Sの外縁10Eおよび収容窪みDHの縁DHeの少なくとも一方が、非回転対称および非線対称の少なくとも一方の形の環状であった。 In Embodiments 1 to 3 (Examples 1 to 3), at least one of the outer edge 10E of the lens surface 10S of the lens 10 and the edge DHe of the housing recess DH is an annular shape having at least one of non-rotation symmetric and non-linear symmetry. Met.
 しかし、これに限定されるものではなく、例えば、図9A~9Cに示されるようなレンズ10(このレンズ10を含むLEDモジュールMJを実施例4とする)のように、レンズ10における収容窪みDHの縁DHeが、回転対称かつ線対称であってもよい。また、図10A~図10Cに示されるようなレンズ10(このレンズ10を含むLEDモジュールMJを実施例5とする)のように、レンズ10における収容窪みDHの縁DHeが、線対称であってもよい(なお、図10A・図10Cの“LA”は線対称軸を意味する)。 However, the present invention is not limited to this. For example, a housing recess DH in the lens 10 such as a lens 10 shown in FIGS. 9A to 9C (an LED module MJ including the lens 10 is referred to as Example 4). The edge DHe may be rotationally symmetric and line symmetric. Further, as in the lens 10 shown in FIGS. 10A to 10C (the LED module MJ including the lens 10 is referred to as Example 5), the edge DHe of the housing recess DH in the lens 10 is axisymmetric. ("LA" in FIGS. 10A and 10C means an axis of line symmetry).
 ただし、収容窪みDHの縁DHeが、複数の変曲点、例えば少なくとも3つ以上の変曲点を含む環状である。なぜなら、このような変曲点を有する環状であると、収容窪みDHの内面DHnが非球面に形成されやすくなるからである。 However, the edge DHe of the housing depression DH is a ring including a plurality of inflection points, for example, at least three inflection points. This is because if the ring has such an inflection point, the inner surface DHn of the housing recess DH is easily formed on an aspherical surface.
 その上、このようなレンズ10では、レンズ10の内面DHnを通過する光は、規則性はあるものの、例えば球面状の内面を通過する光に比べて、非放射状に進行する(レンズ10の内面DHnを通過する光において、光の進行方向の向きの数が、例えば球面状の内面を通過する光において、光の進行方向の向きの数に比べて増える)。 In addition, in such a lens 10, light passing through the inner surface DHn of the lens 10 has a regularity, but travels in a non-radial manner compared to light passing through a spherical inner surface (the inner surface of the lens 10). In the light passing through DHn, the number of directions in the traveling direction of light increases, for example, compared with the number of directions in the traveling direction of light in the light passing through the spherical inner surface.
 すると、このようなレンズ10を含むLEDモジュールMJ(例えば、実施例4・実施例5のLEDモジュールMJ)は、例えば、レンズ面および収容窪みの内面を球面にしたレンズを含むLEDモジュールに比べて、非放射状に光を進行させる。したがって、例えば、実施例4・実施例5のLEDモジュールMJを搭載するバックライトユニット49であっても、LEDセットSTがマトリックス配置されていたとしても、その配置に起因した光量ムラが、面状光に含まれにくくなる。 Then, the LED module MJ including such a lens 10 (for example, the LED module MJ of the fourth and fifth embodiments) is, for example, compared with an LED module including a lens having a lens surface and a lens whose inner surface of the housing recess is a spherical surface. Advancing light in a non-radial manner. Therefore, for example, even in the backlight unit 49 in which the LED module MJ according to the fourth and fifth embodiments is mounted, even if the LED set ST is arranged in a matrix, unevenness in the amount of light caused by the arrangement is not planar. It becomes hard to be included in light.
 なお、光の進行方向の向きの数が増やすために、レンズ10の外縁10Eが、複数の変曲点(例えば少なくとも3つ以上の変曲点)を含む環状であってもよい。なぜなら、このような変曲点を有する環状であると、レンズ面10Sが非球面に形成されやすくなるからである。 Note that the outer edge 10E of the lens 10 may be annular including a plurality of inflection points (for example, at least three or more inflection points) in order to increase the number of directions in the light traveling direction. This is because the lens surface 10S is likely to be formed into an aspherical surface when it is an annular shape having such an inflection point.
 その上、このようなレンズ10では、レンズ面10Sを通過する光は、規則性はあるものの、例えば球面状のレンズ面を通過する光に比べて、非放射状に進行する(レンズ面10Sを通過する光において、光の進行方向の向きの数が、例えば球面状のレンズ面を通過する光において、光の進行方向の向きの数に比べて増える)。すると、このようなレンズ10を含むLEDモジュールMJは、実施例4・実施例5のLEDモジュールMJと同様の効果を奏ずる。つまり、このLEDモジュールMJを搭載するバックライトユニット49であっても、LEDセットSTがマトリックス配置されていたとしても、その配置に起因した光量ムラが、面状光に含まれにくくなる。 Moreover, in such a lens 10, the light passing through the lens surface 10 </ b> S travels in a non-radial manner (passes through the lens surface 10 </ b> S), for example, compared to light passing through a spherical lens surface, although there is regularity. The number of directions in the traveling direction of light increases in comparison with the number of directions in the traveling direction of light, for example, in light passing through a spherical lens surface). Then, the LED module MJ including such a lens 10 has the same effect as the LED module MJ of the fourth and fifth embodiments. That is, even in the backlight unit 49 on which the LED module MJ is mounted, even if the LED sets ST are arranged in a matrix, the light amount unevenness due to the arrangement is not easily included in the planar light.
 もちろん、LEDモジュールMJにて、収容窪みDHの縁DHeが複数の変曲点を含む環状で、レンズ10の外縁10Eが複数の変曲点を含む環状であってもよい。このようなLEDモジュールMJの場合、収容窪みDHの内面DHnから入射する光は、その内面DHnの非球面の形の影響を受けて、非放射状に進行し、さらに、レンズ面10Sの非球面の影響を受けて、非放射状に進行する。つまり、このようなLEDモジュールを搭載するバックライトシャーシ49でも、上述同様の効果が奏ずる。 Of course, in the LED module MJ, the edge DHe of the housing recess DH may be an annulus including a plurality of inflection points, and the outer edge 10E of the lens 10 may be an annulus including a plurality of inflection points. In the case of such an LED module MJ, light incident from the inner surface DHn of the housing recess DH travels non-radially due to the influence of the shape of the aspheric surface of the inner surface DHn, and further the aspheric surface of the lens surface 10S. Advancing in a non-radial manner. That is, the backlight chassis 49 in which such an LED module is mounted has the same effect as described above.
 [その他の実施の形態]
 なお、本発明は上記の実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。
[Other embodiments]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、以上のLEDモジュールMJでは、LED30は、レンズ10の収容窪みDHに収まっていたが、これに限定されるものではない。例えば、図11に示すように、レンズ10の背面10Bの全てが平面で、その平面の直下に、LED30が配置されていてもよい(要は、レンズ10の収容窪みDHに、LED30が収まっていなくてもよい)。 For example, in the LED module MJ described above, the LED 30 is housed in the housing recess DH of the lens 10, but is not limited thereto. For example, as shown in FIG. 11, the entire back surface 10B of the lens 10 may be a flat surface, and the LED 30 may be disposed immediately below the flat surface (in short, the LED 30 is housed in the housing recess DH of the lens 10). Not required).
 このようになっている場合、背面10Bに、LED30の光が入射することになり、その光は、レンズ面10Sから出射する(要は、レンズ10における背面10Bの全域が受光面になる)。すると、レンズ面10Sが、実施の形態2のように、非球面になっていれば、レンズ10からの透過光は、規則性無く、種々方向に進行する。つまり、収容窪みDHは無いもののレンズ面10Sを非球面にしたレンズ10が、LED30を覆っていたとしても、バックライトユニット49からの面状光に、LEDセットSTのマトリックス配置に起因した光量ムラは含まれない。 In this case, the light from the LED 30 is incident on the back surface 10B, and the light is emitted from the lens surface 10S (in short, the entire area of the back surface 10B of the lens 10 is the light receiving surface). Then, if the lens surface 10S is an aspheric surface as in the second embodiment, the transmitted light from the lens 10 travels in various directions without regularity. That is, even if the lens 10 having an aspherical lens surface 10S without the housing dent DH covers the LED 30, the amount of light unevenness caused by the matrix arrangement of the LED set ST is added to the planar light from the backlight unit 49. Is not included.
 すなわち、レンズ10にてLED30からの光が、背面10Bの一部である収容窪みDHで受光する場合と、収容窪みDHの無い平面の背面10Bで受光する場合とがある。要は、レンズ10にて、受光可能な面が受光面になり、レンズ10の背面10Bにおける少なくとも一部が受光面となる。 That is, there are a case where the light from the LED 30 is received by the lens 10 in the housing recess DH which is a part of the back surface 10B and a case where the light is received by the flat back surface 10B having no housing recess DH. In short, a surface capable of receiving light in the lens 10 is a light receiving surface, and at least a part of the back surface 10B of the lens 10 is a light receiving surface.
 なお、図11では、平面状の光射出面30Tを有するLED30と、レンズ10の背面10Bとは密着しているが、密着していない場合も有り得る。また、図12に示すように、レンズ10の大きさは、LED30の光射出面30Tよりも狭面積の背面10Bを有するレンズ10であってもよい(もちろん、図12のような小型のレンズ10を搭載したLED30であってもLEDセットSTといえる)。なお、図11および図12のように、LED30とレンズ10とが密着したものをLEDパッケージ(発光素子パッケージ)と称してもよい。 In addition, in FIG. 11, although LED30 which has the planar light emission surface 30T and the back surface 10B of the lens 10 are closely_contact | adhered, there may be a case where it does not contact | adhere. 12, the size of the lens 10 may be a lens 10 having a back surface 10B having a smaller area than the light emitting surface 30T of the LED 30 (of course, the small lens 10 as shown in FIG. 12). LED 30 equipped with the LED set ST). 11 and 12, the LED 30 and the lens 10 that are in close contact may be referred to as an LED package (light emitting element package).
 以上を踏まえると、レンズ10には、以下の(1)のレンズ面10Sおよび(2)の受光面(受光面は、例えば、収容窪みDHの内面DHnの場合とレンズ10の背面10B全体の場合がある)の少なくとも一方が含まれるとよい。 In consideration of the above, the lens 10 includes the following lens surfaces 10S and (2) (the light receiving surface is, for example, the inner surface DHn of the housing recess DH and the entire back surface 10B of the lens 10). At least one of them may be included.
 (1)レンズ面10Sにおける外縁10Eが環状で、その環内部の任意の一点を基準点とすると、レンズ面10Sは、基準点から異なる任意の距離で離れた複数の点の集合で形成された非球面である(ただし、レンズ面10Sにおける外縁10Eは、変曲点を少なくとも3つ含む環状である)。 (1) When the outer edge 10E on the lens surface 10S is annular and an arbitrary point inside the ring is a reference point, the lens surface 10S is formed by a set of a plurality of points separated by an arbitrary distance from the reference point. It is aspherical (however, the outer edge 10E on the lens surface 10S is an annulus including at least three inflection points).
 (2)レンズ10の受光面における縁が環状で、その環内部の任意の一点を基準点とすると、受光面は、基準点から異なる任意の距離で離れた複数の点の集合で形成された非球面である(ただし、レンズ10の受光面における縁は、変曲点を少なくとも3つ含む環状である)。 (2) If the edge of the light receiving surface of the lens 10 is annular and an arbitrary point inside the ring is a reference point, the light receiving surface is formed by a set of a plurality of points separated by an arbitrary distance from the reference point. It is aspherical (however, the edge of the light receiving surface of the lens 10 is a ring including at least three inflection points).
 要は、(1)のレンズ面10Sおよび(2)の受光面の少なくとも一方がレンズ10に含まれていれば、レンズ10からの光が非放射状に進む。そのため、このようなレンズ10を用いたLEDセットSTがマトリックス配置されていても、その配置に起因した光量ムラが、面状光に含まれない。 In short, if at least one of the lens surface 10S of (1) and the light receiving surface of (2) is included in the lens 10, light from the lens 10 proceeds non-radially. Therefore, even if the LED set ST using such a lens 10 is arranged in a matrix, the light amount unevenness caused by the arrangement is not included in the planar light.
 なお、レンズ10におけるレンズ面10Sの環状の外縁10Eにて、ある1箇所の一部が、突き出るまたは窪むと、変曲点が生じ、その変曲点の個数は3個になる。同様に、レンズ10の受光面の環状の縁(レンズ10の背面10Bの外縁10E、または、収容窪みDHの縁DHe)にて、ある1箇所の一部が、突き出るまたは窪むと、変曲点が生じ、その変曲点の個数は3個になる。 In addition, when a part of one place protrudes or becomes depressed at the annular outer edge 10E of the lens surface 10S of the lens 10, an inflection point is generated, and the number of the inflection points is three. Similarly, when a part of a certain portion protrudes or is depressed at the annular edge of the light receiving surface of the lens 10 (the outer edge 10E of the back surface 10B of the lens 10 or the edge DHe of the housing recess DH), an inflection point is obtained. And the number of inflection points is three.
 したがって、レンズ10におけるレンズ面10Sの環状の外縁10E、および、レンズ10の受光面の環状の縁の少なくとも一方の形が、少なくとも3つ以上の変曲点を含む環状であると、望ましい(ただし、これに限定されず、変曲点が少なくとも1つでも含まれていればよいこともある)。 Therefore, it is desirable that at least one of the annular outer edge 10E of the lens surface 10S of the lens 10 and the annular edge of the light receiving surface of the lens 10 is an annular shape including at least three or more inflection points (however, However, the present invention is not limited to this, and at least one inflection point may be included).
 また、レンズ10にて、レンズ面10Sの外縁10Eおよび受光面の縁の少なくとも一方が、非回転対称および非線対称の少なくとも一方になった環状であると望ましい。 Further, in the lens 10, it is desirable that at least one of the outer edge 10E of the lens surface 10S and the edge of the light receiving surface is an annular shape in which at least one of non-rotational symmetry and non-linear symmetry is obtained.
 なぜなら、このようになっていると、レンズ10からの光は、レンズ10を中心にした放射状の輝度分布を生じさせる光ではなく、レンズ10を中心に非回転対称および非線対称の少なくとも一方の形をした輝度分布を生じさせるような光になる。すなわち、規則性の無い光が、レンズ10から確実に出射されるためである。 This is because, in this case, the light from the lens 10 is not light that generates a radial luminance distribution centered on the lens 10, but is at least one of non-rotationally symmetric and non-linearly symmetric about the lens 10. The light produces a shaped luminance distribution. That is, light with no regularity is reliably emitted from the lens 10.
 また、レンズ10が、透過光を拡散させる拡散性を有していれば望ましい。このようになっていると、複数のLED30の光が、高い度合いで混ざり合って面状光となる。そのため、レンズ10からの光に規則性が無いことに起因して、バックライトユニット49の面状光に光量ムラを含ませない効果が、顕著に現れる。 Further, it is desirable that the lens 10 has a diffusibility for diffusing transmitted light. If it becomes like this, the light of several LED30 will be mixed with a high degree and will become planar light. Therefore, due to the fact that the light from the lens 10 is not regular, the effect of not including unevenness in the amount of light in the planar light of the backlight unit 49 appears significantly.
 なお、図13では、LEDセットSTは、1枚の実装基板20に一列に配置されているが、これに限定されることなく、例えば、複数列に配置されていてもよい(要は、1枚の実装基板10に、LEDセットSTがマトリックス配置されてもよい)。 In FIG. 13, the LED sets ST are arranged in a row on one mounting substrate 20, but the present invention is not limited to this, and for example, the LED sets ST may be arranged in a plurality of rows. LED sets ST may be arranged in a matrix on a single mounting board 10).
 また、LEDセットSTは、規則的にマトリックス配置されているが、これに限定されるものではなく、不規則な配置であってもよい{特に、図9A~図9Cおよび図10A~図10Cに示すようなレンズ10を含むLEDモジュールMJ(実施例4・実施例5)で有用である}。このようになっていると、バックライトユニット49からの面状光にて、確実に、その面内の特定部分に光が過度に集まったり、面内の特定部分に光が過度に集まらなかったりはしない。したがって、バックライトユニット49からの面状光に、一層、光量ムラが含まれない。 Further, the LED sets ST are regularly arranged in a matrix, but the present invention is not limited to this, and may be irregularly arranged {particularly in FIGS. 9A to 9C and 10A to 10C. Useful in LED module MJ (Example 4 and Example 5) including the lens 10 as shown}. In such a case, the surface light from the backlight unit 49 surely collects excessive light at a specific part in the surface, or does not collect excessive light at a specific part in the surface. I do not. Therefore, the planar light from the backlight unit 49 does not further include unevenness in the amount of light.
 また、バックライトユニット49にて、複数搭載されるLEDセットSTのレンズ10は、同種のレンズ面10Sおよび受光面を含むものばかりでもよい。このようになっていると、レンズ10に要するコストが抑えられ、ひいては、LEDモジュールMJ、バックライトユニット49、液晶表示装置69(要は、レンズ10を搭載する種々装置)のコストダウンが図れる。ただし、これに限定されるものではない。 Further, the plurality of lenses 10 of the LED set ST mounted in the backlight unit 49 may include only the same type of lens surface 10S and light receiving surface. With such a configuration, the cost required for the lens 10 can be suppressed, and the cost of the LED module MJ, the backlight unit 49, and the liquid crystal display device 69 (mainly, various devices on which the lens 10 is mounted) can be reduced. However, it is not limited to this.
 すなわち、バックライトユニット49からの面状光に、より一層、光量ムラが含まれないようにするために、透過光の拡散方向の異なる複数種類のレンズ10(例えば、レンズ面10Sの面形状を異にする複数種類のレンズ10)が、バックライトユニット49に搭載されてもかまわない。 That is, in order to further prevent unevenness in the amount of light in the planar light from the backlight unit 49, a plurality of types of lenses 10 (for example, the surface shape of the lens surface 10S) having different diffusion directions of transmitted light are used. Different types of lenses 10) may be mounted on the backlight unit 49.
 また、以上では、光源として、発光素子であるLED30が挙げられたが、これに限定されるものではない。例えば、有機EL(Electro-Luminescence)または無機ELのような自発光材料で形成される発光素子であってもかまわない。 In the above description, the LED 30 that is a light-emitting element is used as the light source. However, the present invention is not limited to this. For example, it may be a light emitting element formed of a self-luminous material such as organic EL (Electro-Luminescence) or inorganic EL.
   10    レンズ
   10S   レンズ面(出射面)
   10B   レンズの背面(受光面)
   10E   レンズの外縁(受光面の縁)
   DH    収容窪み
   DHn   収容窪みの内面(受光面)
   DHe   収容窪みの縁(受光面の縁)
   11    ピン
   12    ピンの軸部
   13    ピンの係止片
   20    実装基板
   20U   実装面
   20B   実装面の裏面
   21    開孔
   30    LED(発光素子)
   30T   LEDの光射出面
   ST    LEDセット(セット)
   MJ    LEDモジュール(発光モジュール)
   41    バックライトシャーシ
   41B   バックライトシャーシの底面
   42    反射シート
   43    拡散板
   44    プリズムシート
   45    マイクロレンズシート
   49    バックライトユニット(照明装置)
   59    液晶表示パネル(表示パネル)
   69    液晶表示装置(表示装置)
   89    液晶テレビ(テレビ受像装置)
10 lens 10S lens surface (outgoing surface)
10B Rear side of lens (light receiving surface)
10E Outer edge of lens (edge of light receiving surface)
DH Housing recess DHn Inner recess inner surface (light receiving surface)
Edge of DHe housing recess (edge of light receiving surface)
11 pin 12 pin shaft portion 13 pin locking piece 20 mounting substrate 20U mounting surface 20B back surface of mounting surface 21 hole 30 LED (light emitting element)
30T LED light exit surface ST LED set (set)
MJ LED module (light emitting module)
41 Backlight chassis 41B Bottom surface of backlight chassis 42 Reflective sheet 43 Diffuser plate 44 Prism sheet 45 Microlens sheet 49 Backlight unit (lighting device)
59 Liquid crystal display panel (display panel)
69 Liquid crystal display device (display device)
89 LCD TV (TV receiver)

Claims (12)

  1.  透過光を出射させる出射面と、
     上記出射面の背面の少なくとも一部であり、上記透過光の基となる光を受ける受光面と、
    を含むレンズにあって、
     以下の(1)の出射面および(2)の受光面の少なくとも一方が含まれるレンズ。
     (1) 上記出射面における縁が環状で、その環内部の任意の一点
        を基準点としており、上記出射面は、上記基準点から異なる
        任意の距離で離れた複数の点の集合で形成された非球面を含
        む(ただし、上記出射面における縁は、変曲点を少なくとも
        3つ含む環状である)。
     (2) 上記受光面における縁が環状で、その環内部の任意の一点
        を基準点としており、上記受光面は、上記基準点から異なる
        任意の距離で離れた複数の点の集合で形成された非球面を含
        む(ただし、上記受光面における縁は、変曲点を少なくとも
        3つ含む環状である)。
    An exit surface for emitting transmitted light;
    A light-receiving surface that is at least a part of the back surface of the emission surface and receives the light that is the basis of the transmitted light;
    In the lens including
    A lens including at least one of the following exit surface (1) and light-receiving surface (2).
    (1) The edge of the exit surface is annular, and an arbitrary point inside the ring is used as a reference point, and the exit surface is formed by a set of a plurality of points separated by an arbitrary distance from the reference point. It includes an aspherical surface (however, the edge on the exit surface is an annulus including at least three inflection points).
    (2) The edge of the light receiving surface is annular, and an arbitrary point inside the ring is used as a reference point, and the light receiving surface is formed by a set of a plurality of points separated by an arbitrary distance from the reference point. It includes an aspherical surface (however, the edge on the light receiving surface is a ring including at least three inflection points).
  2.  上記出射面の縁および上記受光面の縁の少なくとも一方が、非回転対称および非線対称の少なくとも一方になった環状である請求項1に記載のレンズ。 2. The lens according to claim 1, wherein at least one of an edge of the emission surface and an edge of the light receiving surface is an annular shape having at least one of non-rotational symmetry and non-linear symmetry.
  3.  上記受光面が、上記出射面の背面の全て、または、上記出射面の背面に形成される窪みの内面である請求項1または2に記載のレンズ。 3. The lens according to claim 1, wherein the light receiving surface is the entire back surface of the exit surface or the inner surface of a recess formed on the back surface of the exit surface.
  4.  上記レンズが、上記透過光を拡散させる拡散性を有する請求項1~3のいずれか1項に記載のレンズ。 The lens according to any one of claims 1 to 3, wherein the lens has diffusibility for diffusing the transmitted light.
  5.  請求項1~4のいずれか1項に記載のレンズと、
     上記レンズの受光面に光を供給する発光素子と、
     上記発光素子および上記レンズを取り付けた実装基板と、
    を含む発光モジュール。
    A lens according to any one of claims 1 to 4,
    A light emitting element for supplying light to the light receiving surface of the lens;
    A mounting substrate to which the light emitting element and the lens are attached;
    Including light emitting module.
  6.  請求項1~4のいずれか1項に記載のレンズと、
     上記レンズの受光面に光を供給する発光素子と、
    を密着させた発光素子パッケージ。
    A lens according to any one of claims 1 to 4,
    A light emitting element for supplying light to the light receiving surface of the lens;
    A light emitting device package that is closely attached.
  7.  請求項6に記載の発光素子パッケージを取り付けた実装基板を含む発光モジュール。 A light emitting module including a mounting substrate on which the light emitting element package according to claim 6 is attached.
  8.  上記レンズと上記発光素子とのセットが複数個で、規則的に配置されている請求項5または7に記載の発光モジュール。 The light emitting module according to claim 5 or 7, wherein a plurality of sets of the lens and the light emitting element are regularly arranged.
  9.  請求項5、7、および8のいずれか1項に記載の発光モジュールを単数または複数含む照明装置。 A lighting device including one or a plurality of light emitting modules according to any one of claims 5, 7, and 8.
  10.  請求項9に記載の照明装置と、
     上記照明装置からの光を受ける表示パネルと、
    を含む表示装置。
    The lighting device according to claim 9;
    A display panel that receives light from the lighting device;
    Display device.
  11.  上記表示パネルが液晶表示パネルである請求項10に記載の表示装置。 The display device according to claim 10, wherein the display panel is a liquid crystal display panel.
  12.  請求項10または11に記載の表示装置を搭載するテレビ受像装置。 A television receiver equipped with the display device according to claim 10 or 11.
PCT/JP2010/055057 2009-07-06 2010-03-24 Lens, light emitting element package, light emitting module, illumination device, display device, and television receiver device WO2011004642A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009159396 2009-07-06
JP2009-159396 2009-07-06

Publications (1)

Publication Number Publication Date
WO2011004642A1 true WO2011004642A1 (en) 2011-01-13

Family

ID=43429067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055057 WO2011004642A1 (en) 2009-07-06 2010-03-24 Lens, light emitting element package, light emitting module, illumination device, display device, and television receiver device

Country Status (1)

Country Link
WO (1) WO2011004642A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109214A1 (en) * 2013-01-09 2014-07-17 東洋ゴム工業株式会社 Polyurethane foam panel
JP2014174316A (en) * 2013-03-08 2014-09-22 Ledlink Optics Inc Optical lens
JP2015195377A (en) * 2014-03-28 2015-11-05 株式会社朝日ラバー light distribution lens
JP5849193B2 (en) * 2011-05-31 2016-01-27 パナソニックIpマネジメント株式会社 Light emitting device, surface light source, liquid crystal display device, and lens
JP5849192B2 (en) * 2011-05-31 2016-01-27 パナソニックIpマネジメント株式会社 Surface light source and liquid crystal display device
CN110488535A (en) * 2019-01-30 2019-11-22 友达光电股份有限公司 Light source assembly and the backlight module for using it
TWI764349B (en) * 2020-10-30 2022-05-11 達運精密工業股份有限公司 Backlight module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197423A (en) * 2004-01-07 2005-07-21 Matsushita Electric Ind Co Ltd Led light source
JP2007265994A (en) * 2006-03-28 2007-10-11 Visteon Global Technologies Inc Led projector headlight using single or multiple lens with facet
WO2008064143A2 (en) * 2006-11-21 2008-05-29 Honeywell International Inc. Lens for increased light distribution uniformity in an lcd backlight

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197423A (en) * 2004-01-07 2005-07-21 Matsushita Electric Ind Co Ltd Led light source
JP2007265994A (en) * 2006-03-28 2007-10-11 Visteon Global Technologies Inc Led projector headlight using single or multiple lens with facet
WO2008064143A2 (en) * 2006-11-21 2008-05-29 Honeywell International Inc. Lens for increased light distribution uniformity in an lcd backlight

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5849193B2 (en) * 2011-05-31 2016-01-27 パナソニックIpマネジメント株式会社 Light emitting device, surface light source, liquid crystal display device, and lens
JP5849192B2 (en) * 2011-05-31 2016-01-27 パナソニックIpマネジメント株式会社 Surface light source and liquid crystal display device
WO2014109214A1 (en) * 2013-01-09 2014-07-17 東洋ゴム工業株式会社 Polyurethane foam panel
JP2014174316A (en) * 2013-03-08 2014-09-22 Ledlink Optics Inc Optical lens
JP2015195377A (en) * 2014-03-28 2015-11-05 株式会社朝日ラバー light distribution lens
CN110488535A (en) * 2019-01-30 2019-11-22 友达光电股份有限公司 Light source assembly and the backlight module for using it
CN110488535B (en) * 2019-01-30 2022-02-11 友达光电股份有限公司 Light source assembly and backlight module using same
TWI764349B (en) * 2020-10-30 2022-05-11 達運精密工業股份有限公司 Backlight module

Similar Documents

Publication Publication Date Title
JP5228109B2 (en) Lens unit, light emitting module, illumination device, display device, and television receiver
KR100644935B1 (en) Planar light-emitting device
KR101126058B1 (en) Surface light source device, lighting unit and material for controlling a velocity of light
JP5228108B2 (en) Support pin, illumination device, display device, and television receiver
KR101636883B1 (en) Display device
JP3931070B2 (en) Planar light source device and liquid crystal display device including the same
US7862221B2 (en) Optical lens, optical package having the same, backlight assembly having the same and display device having the same
WO2010146905A1 (en) Light-emitting module, ligfhting device, displaying device, and television-receiver device
US8328395B2 (en) Light emitting apparatus, surface light source apparatus, display apparatus, and luminous flux control member
US20120013811A1 (en) Lighting device, display device and television receiver
WO2011004642A1 (en) Lens, light emitting element package, light emitting module, illumination device, display device, and television receiver device
WO2011016269A1 (en) Lens, light-emitting module, light-emitting element package, illumination device, display device, and television receiver
WO2010146904A1 (en) Light-emitting module, illumination device, display device, and television receiver
WO2010146903A1 (en) Light-emitting module, illumination device, display device, and television receiver
WO2010146902A1 (en) Light emitting module, illuminating device, display device, and television receiving device
TWM565322U (en) Direct-lit backlight module and display device
JP2020194740A (en) Lighting device and liquid crystal display device
US20060249742A1 (en) Light emitting device for achieving uniform light distribution and backlight unit employing the same
JP5386551B2 (en) Light emitting device, display device, and reflecting member design method
US20150146132A1 (en) Surface light source device, display device, and lighting device
WO2011067987A1 (en) Light source package, illumination device, display device, and television receiving device
JP5849192B2 (en) Surface light source and liquid crystal display device
US20070236929A1 (en) Backlight module having reflection layer and liquid crystal display using same
US7878682B2 (en) Mixed light apparatus
US20080259639A1 (en) Optical plate and backlight module using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10796953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP