WO2011004560A1 - Information recording and reproducing head and heat-assisted magnetic recording device - Google Patents

Information recording and reproducing head and heat-assisted magnetic recording device Download PDF

Info

Publication number
WO2011004560A1
WO2011004560A1 PCT/JP2010/004245 JP2010004245W WO2011004560A1 WO 2011004560 A1 WO2011004560 A1 WO 2011004560A1 JP 2010004245 W JP2010004245 W JP 2010004245W WO 2011004560 A1 WO2011004560 A1 WO 2011004560A1
Authority
WO
WIPO (PCT)
Prior art keywords
field light
generating element
light generating
waveguide
slider
Prior art date
Application number
PCT/JP2010/004245
Other languages
French (fr)
Japanese (ja)
Inventor
宮本治一
松本拓也
難波入三
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2011004560A1 publication Critical patent/WO2011004560A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Definitions

  • the present invention relates to an information recording / reproducing head having a mechanism for introducing electromagnetic energy such as light and a heat-assisted magnetic recording apparatus equipped with the information recording / reproducing head.
  • Non-Patent Document 1 a heat-assisted magnetic recording system has been proposed as a recording system that achieves a recording density of 1 Tb / in 2 or more.
  • the recording density is 1 Tb / in 2 or more
  • loss of recorded information due to thermal fluctuation becomes a problem.
  • it is necessary to increase the coercive force of the magnetic recording medium but since the magnitude of the magnetic field that can be generated from the recording head is limited, if the coercive force is increased too much, a recording bit is formed on the medium. It becomes impossible to do.
  • the coercive force is lowered by heating the medium with light at the moment of recording.
  • recording on a high coercive force medium is possible, and a recording density of 1 Tb / in 2 or more can be realized.
  • Non-Patent Document 2 a semiconductor laser may be placed on a suspension, light may be propagated from there to a slider by free propagation light, and the light may be coupled to a waveguide by a grating coupler (Non-Patent Document 3).
  • the semiconductor laser for light irradiation is disposed on the suspension, the arm located at the base thereof, or the flying slider.
  • the light emitted from the semiconductor laser is guided into the slider through a waveguide or free propagation.
  • the intensity of light transmitted through the waveguide changes due to disturbances such as vibration and temperature change applied to the waveguide connecting the semiconductor laser and the slider. As a result, the intensity of light reaching the slider changes.
  • the proportion of the propagation light coupled to the waveguide formed beside the magnetic pole depends on the incident angle of light incident on the grating. Therefore, when the slider or suspension vibrates, the direction of the light incident on the grating changes, so the coupling efficiency to the waveguide changes, and as a result, the intensity of the light transmitted through the waveguide formed beside the magnetic pole fluctuates. End up.
  • the coupling efficiency to the waveguide depends on the wavelength. When the temperature changes, the wavelength of the semiconductor laser light fluctuates, and the coupling efficiency fluctuates. As a result, the intensity of light traveling through the waveguide formed beside the magnetic pole varies.
  • the semiconductor laser When the semiconductor laser is placed on the flying slider, in order to couple the emitted light from the semiconductor laser to the waveguide formed beside the magnetic pole, the semiconductor laser is placed so that the emission end of the semiconductor laser is in contact with the incident end of the waveguide. Deploy.
  • the light emitted from the semiconductor laser may be collected by a microlens placed on a slider, and the light may be introduced into the waveguide by placing the incident end of the waveguide at the focal point. At this time, the amount of light transmitted through the waveguide may change due to the following factors.
  • the diameter of the light distribution in the waveguide is approximately the same as the spot diameter of the incident light.
  • the mode field diameter refers to the width of the light intensity distribution in the waveguide.
  • the light spot diameter at the emitting end of the semiconductor laser is several ⁇ m. Even if this is condensed with a lens, it can be limited to only about 1 to 2 ⁇ m due to the diffraction limit. Therefore, it is preferable to increase the mode field diameter to about 1 to 2 ⁇ m.
  • the diameter of the light spot is as small as the recording bit. If the diameter of the light spot is larger than the recording bit, the adjacent bit is heated and the recording bit is erased. In order to solve the adjacent bit erasing problem, a minute light spot is generated using a near-field light generating element.
  • a near-field light generating element such as a triangular metal scatterer is disposed at the exit end of the waveguide in the slider (see Non-Patent Document 4).
  • a near-field light generating element such as a triangular metal scatterer is disposed at the exit end of the waveguide in the slider (see Non-Patent Document 4).
  • a method is conceivable in which the width of the waveguide is increased at the entrance of the waveguide, and the width of the waveguide is gradually decreased as the near-field light generating element is approached.
  • the width is large at the waveguide entrance, in addition to the fundamental mode, higher-order propagation modes may be excited.
  • the higher-order mode is excited in this way, the higher-order mode and the fundamental mode cause interference in the waveguide.
  • the light intensity distribution in the waveguide changes due to a disturbance such as temperature. As a result, the intensity of light transmitted to the narrowed portion of the waveguide fluctuates.
  • the fluctuation of the light intensity due to the disturbance such as temperature change and vibration has been described.
  • the light intensity also changes due to the deterioration of the semiconductor laser over time. If the intensity of light incident on the surface of the medium fluctuates due to disturbances such as temperature changes and vibrations and deterioration of the semiconductor laser over time, the heating temperature of the medium changes. As a result, the recording condition changes every time, and stable recording cannot be performed (bit error rate increases).
  • a photodetector (photodiode) 55 is provided behind the semiconductor laser 31, and the detection output is obtained.
  • Patent Document 1 by providing a mechanism for detecting fluctuations in light intensity coupled in a waveguide, fluctuations in light intensity due to disturbances such as temperature changes and vibrations and deterioration with time of the light source are reduced, and stable recording can be performed. It is proposed to be realized.
  • a photodetector in or on the slider in order to control the intensity of light.
  • a semiconductor detector such as a PIN photodiode is used as the photodetector.
  • the manufacturing process of the semiconductor detector is significantly different from the manufacturing process of the magnetic head slider, it is difficult to integrally form at the wafer level. For this reason, a hybrid configuration in which the slider is assembled after being manufactured by a process separate from that of the slider is caused, resulting in an increase in manufacturing cost and a decrease in yield.
  • there is a problem that the detection accuracy is reduced due to variations during assembly.
  • the most accurate control in heat-assisted recording is the temperature of the recording medium, that is, the amount of energy given to the local area of the recording medium.
  • the control is close to the recording medium.
  • the amount of light applied to the near-field light generating device and the waveguide that guides light to the near-field light generating device is not necessarily reflected by the amount of heat absorbed by the near-field light generating element itself. This is because the relationship between the amount of heat absorbed by the near-field light generating element and the amount of irradiation varies depending on interference conditions and fluctuations in the wavelength of light. That is, the conventional example has a problem that the amount of heat given to the near-field light generating element itself cannot be detected accurately.
  • a first object of the present invention is to provide an information recording / reproducing head that can be integrally formed in a slider without increasing the manufacturing cost and can monitor the amount of energy absorbed by the near-field light generating element. There is to do.
  • a second object of the present invention is to provide a heat-assisted magnetic recording apparatus capable of controlling the amount of energy absorbed by the near-field light generating element.
  • An information recording / reproducing head having a waveguide includes a first temperature detecting element for detecting the temperature of the near-field light generating element, and a pair of electrodes electrically connected to the first temperature detecting element. This makes it possible to accurately detect the temperature of the near-field light generating element due to the irradiation of light energy, so that the amount of energy absorbed by the near-field light generating element can be monitored.
  • the first temperature detecting element is also used as the near-field light generating element.
  • the first temperature detection element may be a thermal resistance detection element provided adjacent to the near-field light generating element via an insulating film. Since the thermal resistance detection element has a simple structure, temperature detection is possible without an increase in manufacturing cost.
  • the thermal resistance of the thermal resistance detecting element is equal to or smaller than the thermal capacity of the near-field light generating element itself. As a result, sufficient detection sensitivity for the introduced energy can be secured, so that the energy introduced into the near-field light generating element can be detected more accurately and at high speed.
  • a second temperature detection element for ambient temperature calibration is disposed in a portion away from the waveguide and the near-field generating element. This makes it possible to detect the influence of temperature changes (such as ambient temperature changes) caused by factors other than the introduced light, so that the introduced light power control is performed by offsetting the effects of temperature changes caused by factors other than the introduced light. It becomes easy.
  • An information recording / reproducing head having a waveguide has a pair of electrodes that are electrically connected to the near-field light generating element. This makes it possible to detect the electrical characteristics (electric resistance, etc.) of the near-field light generating element itself, so the temperature of the near-field light generating element due to light energy irradiation is accurately detected by the thermal resistance effect, etc. This makes it possible to monitor the amount of energy absorbed by the near-field light generating element. Depending on the structure of the near-field light generating element, it is possible to monitor the influence of temperature by measuring capacitance and inductance in addition to resistance measurement. It is also possible to control the amount of energy introduced into the near-field light generating element. For example, energy control according to the flying height can be performed by a capacitance monitor.
  • a typical heat-assisted magnetic recording apparatus for achieving the second object includes a magnetic recording medium, and further includes a slider, a magnetic recording / reproducing element provided on the slider, and a flying surface side of the slider.
  • An information recording / reproducing head having a pair of electrodes electrically connected to one temperature detection element, and passing a current through the pair of electrodes to the first temperature detection element, A resistance value is detected, and the intensity of light energy introduced into the waveguide is controlled based on the detected resistance value.
  • the element for monitoring the amount of energy absorbed by the near-field light generating element can be integrally formed in the slider without increasing the manufacturing cost.
  • the amount of energy absorbed by the near-field light generating element can be controlled to an appropriate value.
  • FIG. 1 is a diagram illustrating a schematic structure of an information recording / reproducing head according to Example 1.
  • FIG. It is a figure which shows schematic structure of the conventional head for thermal assist recording.
  • 1 is a diagram illustrating an overall configuration of a heat-assisted magnetic recording apparatus according to Example 1.
  • FIG. It is a figure which shows the relationship between input power and near-field light intensity.
  • 6 is a diagram illustrating a schematic structure of an information recording / reproducing head according to Embodiment 2.
  • FIG. 1 is a perspective view of a near-field light generating element according to Example 1.
  • FIG. 2 It is the top view which looked at the near-field light generating element by Example 2 from the air bearing surface side.
  • FIG. 1 shows a schematic structure of an information recording / reproducing head according to the first embodiment.
  • a near-field light generating element 32 is disposed in the vicinity of the air floating surface (ABS) of the slider 30, and a magnetic recording / reproducing element 34 is provided in the vicinity of the near-field light generating element 32.
  • the magnetic recording / reproducing element 34 is configured by laminating a recording element composed of a single pole head and a reproducing element composed of a CPP / GMR type sensor element.
  • a semiconductor laser (laser diode unit) 31 that emits light having a wavelength of 780 nm is mounted as a light generating / introducing element (light source) on the surface opposite to the ABS of the slider 30, and the light emitted from the laser diode unit 31. Is irradiated to the near-field light generating element 32 through the waveguide 33.
  • the waveguide 33 has a refractive index of 1.6 around a core of Ta 2 O 5 having a refractive index of 2.1 having a long side of 500 nm and a short side of 300 nm so that the single mode is obtained with respect to light having a wavelength of 780 nm.
  • a clad made of Al 2 O 3 is covered.
  • the mode diameter of the guided light is approximately the same as the size of the waveguide core. That is, the energy of the guided light is substantially confined in the core.
  • the near-field light generating element 32 is connected to the electrode pads 40 and 41 through conducting wires 42 and 43. In the information recording / reproducing head of Example 1, the near-field light generating element 32 is also used as a temperature detecting element (thermal resistance detecting element).
  • the near-field light generating element 32 of this embodiment is made of gold (Au) in the shape of an isosceles triangular prism as shown in FIG. 9, and has a base W of 100 nm, a hypotenuse L of 130 nm, and a height H of 200 nm.
  • the apex portion of the isosceles triangular prism is processed into an arc shape with a radius of curvature of about 10 nm, and the spot diameter of the generated near-field light is about 25 nm.
  • the near-field light generating element 32 By irradiating the light coupled to the waveguide 33, the near-field light generating element 32 generates near-field light on the ABS and the surface of the recording medium according to a principle such as plasmon resonance, and the temperature of the medium surface rises.
  • the power of light applied to the near-field light generating element 32 in the example is about 10 mW, the local temperature of the medium surface magnetic film rises to about 200 degrees.
  • the temperature of the near-field light generating element 32 also increases by about 150 degrees, and the resistance of the near-field light generating element 32 increases due to the influence of heat scattering.
  • the near-field light generating element 32 is made of a noble metal such as gold or silver, that is, a good conductor, so that it is affected by scattering of conduction electrons due to thermal fluctuation of the lattice, and as a result, the electric resistance increases.
  • the rate of change in electrical resistance at that time is about 0.4% / degree, and in the case of a temperature change of 150 degrees, the resistance changes by about 60%, and this change can be easily detected.
  • the slider 30 supported by the suspension 12 flies over the magnetic recording medium 11 with a flying height of about 3 nm, and is driven by a voice coil motor (VCM) actuator 79 for track direction access and tracking servo.
  • VCM voice coil motor
  • an additional actuator composed of a piezo element or the like may be provided on the suspension or the like in order to realize a higher accuracy of track positioning.
  • a thermally driven actuator is mounted on the slider for precise control of the flying height.
  • the resistance value of a CPP / GMR sensor element (not shown) mounted on the slider is detected by a reproduction control circuit 51, and equalized by a signal detection circuit 22 built in the controller (SOC) 20 or the like. Is sent to the signal processing circuit 25.
  • the signal processing circuit 25 synchronizes based on position data and timing information in the position / address detection circuit 23, and sends the synchronized signal to the demodulation circuit 24.
  • the demodulating circuit 24 performs the demodulating process, and the data subjected to the final processing such as error correction by the decoding circuit 26 is sent to the microprocessor 27 and transferred to the host apparatus 99.
  • the servo circuit 54 controls the VCM actuator 79 based on the data detected by the position / address detection circuit 23.
  • the VCM actuator 79 is servo-controlled based on the position / address signal detected by the position / address detection circuit 23 in the same manner as at the time of reproduction, and the information recording / reproducing head is positioned in the sector designated by the host device 99.
  • the user data encoded by the recording control circuit 52 is supplied to the laser driver 53 to drive the laser unit 31 mounted on the slider 30, and the user data is supplied to the recording element to thermally assist. Make a record.
  • the resistance value of the near-field light generating element 32 is detected by the resistance detection circuit 50, thereby monitoring the temperature of the near-field light generating element 32 and driving current of the laser diode unit 31 based on the temperature information. Is precisely controlled.
  • FIG. 5 illustrates a resistance value detection method.
  • the resistance value of the near-field light generating element 32 is as small as about 0.2 ohms at room temperature, the conductor of the 100 nm region immediately adjacent to the near-field light generating element 32 is confined to 10 nm ⁇ 10 nm, The resistance value is increased to about 400 ⁇ to improve the detection sensitivity.
  • the temperature of the near-field light generating element 32 may rise due to Joule heat if an excessive current is passed.
  • the Joule heat is 0.15 mW, which is sufficiently smaller than the heat generated by laser irradiation, and the influence of Joule heat can be ignored.
  • it is effective to increase the applied current. In this case, it is preferable to detect the change in voltage synchronously by modulating and driving in pulses to reduce Joule heat.
  • FIG. 4A shows the intensity of laser light emitted from the laser diode unit 31, that is, the intensity of near-field light when the input power to the head is controlled to 50 mW and 100 mW. Since it is difficult to directly measure the intensity of near-field light, a CoPd-based multilayer film medium having a known recording sensitivity was prepared, and the intensity of near-field light was estimated from the change in recording state (track width). Here, seven elements were measured.
  • FIG. 4B shows the measured resistance value of the near-field light generating element 32 at that time. It can be seen that there is a linear correlation between the intensity of near-field light and the resistance value.
  • the recording control circuit 52 performs this control.
  • the feedback control band was set to 10 to 100 kHz so as to cope with temperature fluctuations of the laser and the like, mode hopping, and the like.
  • the temperature of the near-field light generating element 32 responds with a time constant of 1 ⁇ s or less, control in a band up to about 1 MHz is possible, but interference with recording data (crosstalk), etc.
  • the control band is set to 100 kHz or less.
  • FIG. 8 shows that the intensity of near-field light can be controlled to a target value (1 ⁇ 10 12 , 2 ⁇ 10 12 W / m 2 ) using this control method. It can be seen that the near-field light intensity error is suppressed to about 2 to 3%, which is not a problem in practice.
  • the effect of the present embodiment will be described with reference to FIG.
  • the amount of energy introduced varies due to variations in device manufacturing and assembly errors
  • the near-field light intensity is controlled to be constant. This is because the temperature of the near-field light generating element has a correlation with the amount of energy given to the near-field light generating element. This shows that the amount of energy to be controlled can always be controlled to an appropriate value. That is, since the recording conditions for high-density recording using energy assist can always be appropriately controlled, the quality of the recording signal is improved and the reliability is improved. In addition, there is no need for an assembling operation that causes a reduction in the productivity of device components such as a head, and thus there is no increase in manufacturing cost.
  • the resistance value of the near-field light generating element itself was measured, but a metal element (thermal resistance element) dedicated to temperature detection provided adjacent to the near-field light generating element 32 and electrically insulated was used. May be.
  • the temperature detecting metal element is preferably provided through an insulating film of about 1 to 2 nm so as to be thermally coupled to the near-field light generating element sufficiently.
  • a material having an appropriate resistance value suitable for resistance detection can be selected.
  • FIG. 6 shows a schematic structure of an information recording / reproducing head according to the second embodiment.
  • a near-field light generating element 32 ′ is disposed in the vicinity of the air floating surface (ABS) of the slider 30.
  • the magnetic recording / reproducing element is omitted.
  • a laser diode unit 31 that emits light having a wavelength of 780 nm is mounted as a light generating / introducing element (light source) on the surface opposite to the ABS of the slider, and the light emitted from the laser diode unit 31 passes close to the waveguide 33.
  • the field light generating element 32 ' is irradiated.
  • the waveguide 33 is made of SiO 2 having a refractive index of 1.5 around a core of Ta 2 O 5 having a refractive index of 2.1 having a long side of 450 nm and a short side of 300 nm so as to be in a single mode with respect to light having a wavelength of 780 nm.
  • This is a structure covered with a clad made of 2 .
  • the mode diameter of the guided light is approximately the same as the size of the waveguide core. That is, the energy of the guided light is substantially confined in the core.
  • the near-field light generating element 32 ′ is connected to the electrode pads 40 and 41 through the conductive wires 42 and 43.
  • a temperature detecting element 35 for ambient temperature calibration is provided in a place that is not affected by laser irradiation away from the near-field light generating element 32 ′ and the waveguide 33. Combined.
  • the electrode pad 41 which is one of the electrode pads, is shared with the near light generating field element 32 '.
  • the near-field light generating element 32 'of this embodiment is made of gold (Au) having the shape shown in FIG.
  • FIG. 10 is a plan view of the near-field light generating element 32 ′ viewed from the air floating surface (ABS) side.
  • W0 40 nm
  • W1 800 nm
  • D0 30 nm
  • D1 50 nm
  • D2 300 nm
  • the apex portion is processed into an arc shape with a radius of curvature of about 8 nm, and the spot diameter of the generated near-field light is about 20 nm.
  • the near-field light generating element 32 ′ By irradiation with light coupled to the waveguide 33, the near-field light generating element 32 ′ generates near-field light on the ABS and the surface of the recording medium according to a principle such as plasmon resonance, and the temperature of the surface of the recording medium rises.
  • the power of the light applied to the near-field light generating element 32 ′ of this embodiment is about 10 mW, the local temperature of the medium surface magnetic film rises to about 250 degrees.
  • the temperature of the near-field light generating element 32 ' also rises by about 80 degrees, and the resistance of the near-field light generating element 32' increases due to the influence of heat scattering.
  • the near-field light generating element 32 ' is made of a noble metal such as gold or silver, that is, a good conductor, so that it is affected by the scattering of conduction electrons due to thermal fluctuations of the lattice, resulting in an increase in electrical resistance.
  • the rate of change in electrical resistance at that time is about 0.4% / degree, and in the case of a temperature change of 80 degrees, the resistance changes by about 32%, and this change can be easily detected.
  • the configuration of the hard disk drive apparatus using the information recording / reproducing head of the present embodiment is the same as that of the first embodiment shown in FIG.
  • the resistance value of the near-field light generating element 32 ′ is detected by the resistance detection circuit 50, thereby monitoring the temperature of the near-field light generating element 32 ′. Based on the temperature information, the drive current of the laser diode unit 31 is precisely controlled.
  • the slider temperature detecting element 35 has a resistance value at room temperature of 400 ⁇ and a temperature coefficient of 0.4% / degree.
  • the resistance value of the slider temperature detecting element 35 is measured, and the temperature difference between the near-field light generating element 32' and the slider temperature detecting element 35 becomes constant.
  • Control as follows. This makes it possible to control the near-field light intensity at a constant level regardless of variations in the ambient temperature and slider temperature, in addition to variations in element variations and interference conditions, improving the near-field light intensity control accuracy. To do.
  • the feedback control band was set to 10 to 100 kHz so as to cope with temperature fluctuations of the laser and the like, mode hopping, and the like.
  • the target near-field light intensity in accordance with the temperature detected by the temperature detecting element 35 in addition to the above-described control with a constant temperature difference.
  • the slider temperature that is, the temperature in the drive is high
  • the temperature of the medium is originally high. Therefore, the temperature of the local area of the medium rises to an appropriate recording temperature even with a low near-field light power.
  • the material of the core it may be used SiO 2 doped with other materials such as Ge.
  • the present invention can be used for an information recording / reproducing head capable of monitoring the amount of energy absorbed by the near-field light generating element. Further, the present invention can be applied to a heat-assisted magnetic recording apparatus that can control the amount of energy absorbed by the near-field light generating element.
  • SYMBOLS 11 ... Recording medium, 12 ... Suspension, 20 ... Controller (SOC), 22 ... Signal detection circuit, 23 ... Position address detection circuit, 24 ... Demodulation circuit, 25 ... Signal processing circuit, 26 ... Decoding circuit, 27 ... Microprocessor, DESCRIPTION OF SYMBOLS 29 ... Memory, 30 ... Slider, 31 ... Laser diode unit, 32, 32 '... Near field light generation element, 33 ... Waveguide, 34 ... Magnetic recording / reproducing element, 35 ... Temperature detection element, 40, 41 ... Electrode pad, 42, 43 ... conductive wire, 44 ... electrode pad, 45 ... conductive wire, 50 ... resistance detection circuit, 51 ... reproduction control circuit, 52 ...
  • recording control circuit 53 ... laser driver, 54 ... servo circuit, 55 ... photodetector (PD) ), 76 ... Motor, 79 ... VCM actuator, 80 ... Constant current source, 81 ... Voltage measuring element, 99 ... Host device.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

In a heat-assisted magnetic recording head, as a result of such disturbances as temperature change or vibration or degradation of a semiconductor laser due to time, intensity of light transmitted through a waveguide fluctuates. If the intensity of the light that is incident to a surface of a medium fluctuates, a magnetic recording device becomes unable to perform recording in a stable manner. In order to resolve such issues, a near-field light-generating element (32) is placed in a vicinity of an air bearing surface (ABS) of a slider (30), and a magnetic recording and reproducing element (34) is provided adjacent to the near-field light-generating element (32). On an opposite surface of the ABS of the slider (30), a laser diode unit (31) is equipped, and light emitted from the laser diode unit (31) passes through the waveguide (33) and irradiates the near-field light-generating element (32). The near-field light-generating element (32) is connected to electrode pads (40, 41) through conductor lines (42, 43). The near-field light-generating element (32) also functions as a temperature-sensing element.

Description

情報記録再生ヘッド及び熱アシスト磁気記録装置Information recording / reproducing head and heat-assisted magnetic recording apparatus
 本発明は、光などの電磁波エネルギー導入機構を有する情報記録再生ヘッド及びこの情報記録再生ヘッドを搭載する熱アシスト磁気記録装置に関する。 The present invention relates to an information recording / reproducing head having a mechanism for introducing electromagnetic energy such as light and a heat-assisted magnetic recording apparatus equipped with the information recording / reproducing head.
 近年、1Tb/in以上の記録密度を実現する記録方式として、熱アシスト磁気記録方式が提案されている(非特許文献1)。従来の磁気記録装置では、記録密度が1Tb/in以上になると、熱揺らぎによる記録情報の消失が問題となる。これを防ぐためには、磁気記録媒体の保磁力を上げる必要があるが、記録ヘッドから発生させることができる磁界の大きさには限りがあるため、保磁力を上げすぎると媒体に記録ビットを形成することが不可能となる。これを解決するために、熱アシスト記録方式では、記録の瞬間、媒体を光で加熱し保磁力を低下させる。これにより、高保磁力媒体への記録が可能となり、1Tb/in以上の記録密度の実現が可能となる。 In recent years, a heat-assisted magnetic recording system has been proposed as a recording system that achieves a recording density of 1 Tb / in 2 or more (Non-Patent Document 1). In the conventional magnetic recording apparatus, when the recording density is 1 Tb / in 2 or more, loss of recorded information due to thermal fluctuation becomes a problem. In order to prevent this, it is necessary to increase the coercive force of the magnetic recording medium, but since the magnitude of the magnetic field that can be generated from the recording head is limited, if the coercive force is increased too much, a recording bit is formed on the medium. It becomes impossible to do. In order to solve this, in the heat-assisted recording method, the coercive force is lowered by heating the medium with light at the moment of recording. Thereby, recording on a high coercive force medium is possible, and a recording density of 1 Tb / in 2 or more can be realized.
 上記熱アシスト磁気記録方式では、磁界を印加するための磁極近傍を光で加熱する必要がある。そのためには、例えば導波路を磁極脇に形成し、光源である半導体レーザの光を、磁極の先端近傍にまで導く。このとき、半導体レーザは浮上スライダ上に搭載するか、サスペンションの根元において、そこから浮上スライダまで光ファイバなどの導波路を用いて光を導く(非特許文献2)。また、半導体レーザをサスペンション上に置き、そこからスライダまで、光を自由伝播光で伝播させ、その光をグレーティングカップラで導波路に結合させても良い(非特許文献3)。 In the heat-assisted magnetic recording system, it is necessary to heat the vicinity of the magnetic pole for applying a magnetic field with light. For this purpose, for example, a waveguide is formed on the side of the magnetic pole, and the light of the semiconductor laser as the light source is guided to the vicinity of the tip of the magnetic pole. At this time, the semiconductor laser is mounted on the flying slider or guides light from the suspension to the flying slider using a waveguide such as an optical fiber (Non-Patent Document 2). Alternatively, a semiconductor laser may be placed on a suspension, light may be propagated from there to a slider by free propagation light, and the light may be coupled to a waveguide by a grating coupler (Non-Patent Document 3).
 しかしながら、熱アシスト磁気記録装置において、光照射用の半導体レーザは、サスペンションまたはその根元に位置するアーム、または浮上スライダ上に配置する。サスペンションまたはアームに置く場合、半導体レーザから出射する光は、導波路または自由伝播でスライダ中へ導く。光を導波路で導く場合、半導体レーザとスライダ間を結ぶ導波路に加わる振動や温度変化などの外乱により、導波路中を伝わる光強度が変化してしまう。その結果スライダに到達する光の強度が変化してしまう。また、光をスライダまで自由伝播で導き、伝播してきた光を、グレーティングカップラにより磁極脇に形成された導波路に結合する場合、伝播光が磁極脇に形成された導波路に結合する割合(結合効率)は、グレーティングに入射する光の入射角度に依存する。したがって、スライダまたはサスペンションが振動すると、グレーティングに入射する光の方向が変化するので、導波路への結合効率が変化し、その結果、磁極脇に形成された導波路を伝わる光の強度が変動してしまう。また、グレーティングカップラを用いる場合、導波路への結合効率は、波長にも依存する。温度が変化すると、半導体レーザの光の波長が揺らぐので、結合効率が変動してしまう。その結果、磁極脇に形成された導波路を伝わる光の強度が変動してしまう。 However, in the heat-assisted magnetic recording apparatus, the semiconductor laser for light irradiation is disposed on the suspension, the arm located at the base thereof, or the flying slider. When placed on the suspension or arm, the light emitted from the semiconductor laser is guided into the slider through a waveguide or free propagation. When the light is guided by the waveguide, the intensity of light transmitted through the waveguide changes due to disturbances such as vibration and temperature change applied to the waveguide connecting the semiconductor laser and the slider. As a result, the intensity of light reaching the slider changes. Also, when the light is guided to the slider by free propagation and the propagated light is coupled to the waveguide formed beside the magnetic pole by the grating coupler, the proportion of the propagation light coupled to the waveguide formed beside the magnetic pole (coupling) (Efficiency) depends on the incident angle of light incident on the grating. Therefore, when the slider or suspension vibrates, the direction of the light incident on the grating changes, so the coupling efficiency to the waveguide changes, and as a result, the intensity of the light transmitted through the waveguide formed beside the magnetic pole fluctuates. End up. When a grating coupler is used, the coupling efficiency to the waveguide depends on the wavelength. When the temperature changes, the wavelength of the semiconductor laser light fluctuates, and the coupling efficiency fluctuates. As a result, the intensity of light traveling through the waveguide formed beside the magnetic pole varies.
 半導体レーザを浮上スライダ上に置く場合、半導体レーザからの出射光を磁極脇に形成された導波路へ結合させるためには、半導体レーザの出射端が導波路の入射端に接するように半導体レーザを配置する。または、半導体レーザからの出射光をスライダ上に置かれたマイクロレンズで集光し、その焦点に導波路の入射端を配置することにより、光を導波路へ導入しても良い。このとき、つぎの要因により導波路中を伝わる光の光量が変化してしまう可能性がある。  
(1)半導体レーザやマイクロレンズを固定している接着剤や半田の劣化により、長期間使用していると、半導体レーザやマイクロレンズの位置がずれ、導波路と入射光の結合効率が変化する。  
(2)半導体レーザから発生する熱もしくはドライブ内で発生する熱により、スライダや光学素子に熱変形が発生し、導波路と入射光の結合効率が変化する。  
(3)導波路と入射光の結合効率を大きくするためには、導波路中の光分布の径を、入射光のスポット径と同程度にするのが好ましい。ここでモードフィールド径とは、導波路中の光の強度分布の幅を言う。通常、半導体レーザの出射端における光スポット径は数μmである。これをレンズで集光しても回折限界のため、1~2μm程度までにしか絞れない。したがって、モードフィールド径を1~2μm程度にまで大きくするのが好ましい。一方、熱アシスト磁気記録において、光スポットの径は記録ビットと同程度まで小さくするのが好ましい。もし光スポットの径が記録ビットよりも大きくなると、隣接ビットが加熱され、その記録ビットが消去されてしまう。隣接ビット消去の問題を解決するためには、近接場光発生素子を利用して、微小な光スポットを発生させる。例えば、三角形の形状をした金属の散乱体などの近接場光発生素子をスライダ中の導波路の出射端に配置する(非特許文献4参照)。このとき、近接場光を発生させる効率を高くするためには、近接場光発生素子に入射する光のスポット径がなるべく小さくなるようにした方が良い。すなわち、導波路中のモードフィールド径がなるべく小さくなるようにした方が良い。上記の要求を満たす一つの方法として、導波路の入口で導波路の幅を大きくし、近接場光発生素子に近づくにつれて導波路の幅が徐々に小さくなるようにする方法が考えられる。この場合、導波路入口においては、幅が大きいために、基本モードの他に、高次の伝播モードも励起される可能性がある。このように高次モードが励起されると、高次のモードと基本モードは導波路中で干渉を起こす。そしてその導波路中の光強度分布は、温度などの外乱により変化する。その結果、導波路の細くなった部分に伝わる光の強度が揺らいでしまう。
When the semiconductor laser is placed on the flying slider, in order to couple the emitted light from the semiconductor laser to the waveguide formed beside the magnetic pole, the semiconductor laser is placed so that the emission end of the semiconductor laser is in contact with the incident end of the waveguide. Deploy. Alternatively, the light emitted from the semiconductor laser may be collected by a microlens placed on a slider, and the light may be introduced into the waveguide by placing the incident end of the waveguide at the focal point. At this time, the amount of light transmitted through the waveguide may change due to the following factors.
(1) Due to deterioration of the adhesive and solder that fixes the semiconductor laser and the microlens, the position of the semiconductor laser and the microlens shifts when used for a long time, and the coupling efficiency between the waveguide and the incident light changes. .
(2) The heat generated from the semiconductor laser or the heat generated in the drive causes thermal deformation of the slider and the optical element, and the coupling efficiency between the waveguide and the incident light changes.
(3) In order to increase the coupling efficiency between the waveguide and the incident light, it is preferable that the diameter of the light distribution in the waveguide is approximately the same as the spot diameter of the incident light. Here, the mode field diameter refers to the width of the light intensity distribution in the waveguide. Usually, the light spot diameter at the emitting end of the semiconductor laser is several μm. Even if this is condensed with a lens, it can be limited to only about 1 to 2 μm due to the diffraction limit. Therefore, it is preferable to increase the mode field diameter to about 1 to 2 μm. On the other hand, in the heat-assisted magnetic recording, it is preferable that the diameter of the light spot is as small as the recording bit. If the diameter of the light spot is larger than the recording bit, the adjacent bit is heated and the recording bit is erased. In order to solve the adjacent bit erasing problem, a minute light spot is generated using a near-field light generating element. For example, a near-field light generating element such as a triangular metal scatterer is disposed at the exit end of the waveguide in the slider (see Non-Patent Document 4). At this time, in order to increase the efficiency of generating near-field light, it is preferable to make the spot diameter of light incident on the near-field light generating element as small as possible. That is, it is better to make the mode field diameter in the waveguide as small as possible. As one method that satisfies the above requirements, a method is conceivable in which the width of the waveguide is increased at the entrance of the waveguide, and the width of the waveguide is gradually decreased as the near-field light generating element is approached. In this case, since the width is large at the waveguide entrance, in addition to the fundamental mode, higher-order propagation modes may be excited. When the higher-order mode is excited in this way, the higher-order mode and the fundamental mode cause interference in the waveguide. The light intensity distribution in the waveguide changes due to a disturbance such as temperature. As a result, the intensity of light transmitted to the narrowed portion of the waveguide fluctuates.
 以上、温度変化や振動などの外乱による光強度の変動について説明したが、半導体レーザの経時劣化によっても光強度は変化する。温度変化や振動などの外乱や半導体レーザの経時劣化により、媒体表面に入射する光の強度が揺らいでしまうと、媒体の加熱温度が変化してしまう。その結果、記録条件が毎回変化し、安定な記録ができなくなる(ビットエラーレートが上昇する)。 As described above, the fluctuation of the light intensity due to the disturbance such as temperature change and vibration has been described. However, the light intensity also changes due to the deterioration of the semiconductor laser over time. If the intensity of light incident on the surface of the medium fluctuates due to disturbances such as temperature changes and vibrations and deterioration of the semiconductor laser over time, the heating temperature of the medium changes. As a result, the recording condition changes every time, and stable recording cannot be performed (bit error rate increases).
 半導体レーザから出射される光の強度自身を安定化する方法の従来例としては、たとえば図2に示すように、半導体レーザ31の後方に光検出器(フォトダイオード)55を設け、その検出出力をフィードバックして半導体レーザ31の駆動電流を制御する方法がある。また特許文献1では導波路内に結合させた光強度の変動を検出する機構を設けることによって、温度変化や振動などの外乱や光源の経時劣化による光強度の変動を低減し、安定した記録を実現することを提案している。 As a conventional example of a method for stabilizing the intensity of light emitted from a semiconductor laser, for example, as shown in FIG. 2, a photodetector (photodiode) 55 is provided behind the semiconductor laser 31, and the detection output is obtained. There is a method of controlling the drive current of the semiconductor laser 31 by feedback. Further, in Patent Document 1, by providing a mechanism for detecting fluctuations in light intensity coupled in a waveguide, fluctuations in light intensity due to disturbances such as temperature changes and vibrations and deterioration with time of the light source are reduced, and stable recording can be performed. It is proposed to be realized.
特開2008-204586号公報JP 2008-204586 A
 しかしながら、上記従来例においては、光の強度を制御するために光検出器をスライダ内やスライダ上に設ける必要があった。一般に光検出器としては、PIN型フォトダイオードなどの半導体検出器が用いられるが、半導体検出器の製造プロセスは、磁気ヘッドスライダの製造プロセスと大幅に異なるため、ウェハレベルでの一体形成は難しい。このためスライダとは別個のプロセスで製造した後に組み立てるハイブリッド構成となり、製造コストの増大や歩留まりの低下を引き起こす問題があった。また、組み立て時のバラツキなどにより、検出精度が低下してしまう問題があった。 However, in the conventional example, it is necessary to provide a photodetector in or on the slider in order to control the intensity of light. Generally, a semiconductor detector such as a PIN photodiode is used as the photodetector. However, since the manufacturing process of the semiconductor detector is significantly different from the manufacturing process of the magnetic head slider, it is difficult to integrally form at the wafer level. For this reason, a hybrid configuration in which the slider is assembled after being manufactured by a process separate from that of the slider is caused, resulting in an increase in manufacturing cost and a decrease in yield. In addition, there is a problem that the detection accuracy is reduced due to variations during assembly.
 熱アシスト記録で最も精密に制御する必要があるのは、記録媒体の温度すなわち、記録媒体の局所領域に与えられるエネルギー量であるが、上記従来例において制御しているのは、記録媒体に近接して配置される近接場光発生装置や近接場光発生装置に光を導く導波路に照射される光の量であり、近接場光発生素子自体が吸収した熱量を必ずしも反映するものではない。なぜなら、干渉条件や光の波長変動などにより近接場光発生素子に吸収される熱量と照射量の関係は変化するからである。すなわち、従来例では、近接場光発生素子自身に与えられる熱量を正確に検出することが出来ない問題があった。 The most accurate control in heat-assisted recording is the temperature of the recording medium, that is, the amount of energy given to the local area of the recording medium. In the above conventional example, the control is close to the recording medium. The amount of light applied to the near-field light generating device and the waveguide that guides light to the near-field light generating device is not necessarily reflected by the amount of heat absorbed by the near-field light generating element itself. This is because the relationship between the amount of heat absorbed by the near-field light generating element and the amount of irradiation varies depending on interference conditions and fluctuations in the wavelength of light. That is, the conventional example has a problem that the amount of heat given to the near-field light generating element itself cannot be detected accurately.
 本発明の第1の目的は、製造コストを上昇させることなくスライダ内に一体形成することが可能で、近接場光発生素子に吸収されるエネルギー量をモニタすることができる情報記録再生ヘッドを提供することにある。
  本発明の第2の目的は、近接場光発生素子に吸収されるエネルギー量を制御することが可能な熱アシスト磁気記録装置を提供することにある。
A first object of the present invention is to provide an information recording / reproducing head that can be integrally formed in a slider without increasing the manufacturing cost and can monitor the amount of energy absorbed by the near-field light generating element. There is to do.
A second object of the present invention is to provide a heat-assisted magnetic recording apparatus capable of controlling the amount of energy absorbed by the near-field light generating element.
 本発明の第1の目的を達成するために以下の手段を用いた。
(1)スライダと、該スライダに設けられた磁気記録再生素子と、前記スライダの浮上面側に設けられた近接場光発生素子と、該近接場光発生素子に光エネルギーを供給するための導波路とを有する情報記録再生ヘッドにおいて、前記近接場光発生素子の温度を検出するための第1温度検出素子と、該第1温度検出素子と電気的に導通する一対の電極とを有する。
  これにより、光エネルギーの照射による近接場光発生素子の温度を正確に検出することが可能になるため、近接場光発生素子に吸収されるエネルギー量をモニタすることが可能となる。  
(2)前記第1温度検出素子は、前記近接場光発生素子が兼用されたものである。  
(3)前記第1温度検出素子は、絶縁膜を介して前記近接場光発生素子に隣接して設けられた熱抵抗検出素子でも良い。熱抵抗検出素子は、簡易な構造であるため製造コストの上昇なしに温度検出が可能となる。  
(4)前記熱抵抗検出素子の熱容量は、近接場光発生素子自身の熱容量と比べて同等あるいは小さくすることが望ましい。これにより、導入エネルギーに対する検出感度を十分に確保できるため、近接場光発生素子に導入されるエネルギーをより正確にかつ、高速に検出可能となる。  
(5)前記第1温度検出素子に加えて、周囲温度校正用の第2温度検出素子を、前記導波路および近接場発生素子から離れた部分に配置するのが望ましい。これにより、導入光以外の要因による温度変化の影響(周囲温度変化など)を検出することが可能となるため、導入光以外の要因による温度変化の影響を相殺して、導入光パワー制御を行うことが容易になる。  
(6)スライダと、該スライダに設けられた磁気記録再生素子と、前記スライダの浮上面側に設けられた近接場光発生素子と、該近接場光発生素子に光エネルギーを供給するための導波路とを有する情報記録再生ヘッドにおいて、前記近接場光発生素子と電気的に導通する1対の電極を有する。
  これにより、近接場光発生素子自身の電気的特性(電気抵抗など)を検出することが可能となるため、熱抵抗効果などにより、光エネルギーの照射による近接場光発生素子の温度を正確に検出することが可能になるため、近接場光発生素子に吸収されるエネルギー量をモニタすることが可能となる。近接場光発生素子の構造によっては抵抗測定の他、静電容量やインダクタンスを測定することによって、温度の影響をモニタすることも可能であり、複数の電気的特性を測定し、総合的な情報として近接場光発生素子に導入されているエネルギー量を制御することも可能である。たとえば、静電容量のモニタにより浮上量に応じた、エネルギー制御などを行うこともできる。
In order to achieve the first object of the present invention, the following means were used.
(1) A slider, a magnetic recording / reproducing element provided on the slider, a near-field light generating element provided on the air bearing surface side of the slider, and a guide for supplying light energy to the near-field light generating element An information recording / reproducing head having a waveguide includes a first temperature detecting element for detecting the temperature of the near-field light generating element, and a pair of electrodes electrically connected to the first temperature detecting element.
This makes it possible to accurately detect the temperature of the near-field light generating element due to the irradiation of light energy, so that the amount of energy absorbed by the near-field light generating element can be monitored.
(2) The first temperature detecting element is also used as the near-field light generating element.
(3) The first temperature detection element may be a thermal resistance detection element provided adjacent to the near-field light generating element via an insulating film. Since the thermal resistance detection element has a simple structure, temperature detection is possible without an increase in manufacturing cost.
(4) It is desirable that the thermal resistance of the thermal resistance detecting element is equal to or smaller than the thermal capacity of the near-field light generating element itself. As a result, sufficient detection sensitivity for the introduced energy can be secured, so that the energy introduced into the near-field light generating element can be detected more accurately and at high speed.
(5) In addition to the first temperature detection element, it is desirable that a second temperature detection element for ambient temperature calibration is disposed in a portion away from the waveguide and the near-field generating element. This makes it possible to detect the influence of temperature changes (such as ambient temperature changes) caused by factors other than the introduced light, so that the introduced light power control is performed by offsetting the effects of temperature changes caused by factors other than the introduced light. It becomes easy.
(6) a slider, a magnetic recording / reproducing element provided on the slider, a near-field light generating element provided on the air bearing surface side of the slider, and a guide for supplying light energy to the near-field light generating element. An information recording / reproducing head having a waveguide has a pair of electrodes that are electrically connected to the near-field light generating element.
This makes it possible to detect the electrical characteristics (electric resistance, etc.) of the near-field light generating element itself, so the temperature of the near-field light generating element due to light energy irradiation is accurately detected by the thermal resistance effect, etc. This makes it possible to monitor the amount of energy absorbed by the near-field light generating element. Depending on the structure of the near-field light generating element, it is possible to monitor the influence of temperature by measuring capacitance and inductance in addition to resistance measurement. It is also possible to control the amount of energy introduced into the near-field light generating element. For example, energy control according to the flying height can be performed by a capacitance monitor.
 上記第2の目的を達成するための代表的な熱アシスト磁気記録装置は、磁気記録媒体を有し、さらにスライダと、該スライダに設けられた磁気記録再生素子と、前記スライダの浮上面側に設けられた近接場光発生素子と、該近接場光発生素子に光エネルギーを供給するための導波路と、前記近接場光発生素子の温度を検出するための第1温度検出素子と、該第1温度検出素子と電気的に導通する一対の電極とを有する情報記録再生ヘッドを有し、前記一対の電極を介して前記第1温度検出素子に電流を流すことによって当該第1温度検出素子の抵抗値を検出し、該検出した抵抗値に基いて前記導波路に導入する光エネルギーの強度を制御することを特徴とする。
  これにより、光エネルギーの照射による近接場光発生素子の温度を正確にモニタして温度が一定すなわち、光の吸収量が一定となるように制御することが可能になるため、高密度なエネルギーアシスト記録の実現が容易になる。
A typical heat-assisted magnetic recording apparatus for achieving the second object includes a magnetic recording medium, and further includes a slider, a magnetic recording / reproducing element provided on the slider, and a flying surface side of the slider. A provided near-field light generating element; a waveguide for supplying optical energy to the near-field light generating element; a first temperature detecting element for detecting a temperature of the near-field light generating element; An information recording / reproducing head having a pair of electrodes electrically connected to one temperature detection element, and passing a current through the pair of electrodes to the first temperature detection element, A resistance value is detected, and the intensity of light energy introduced into the waveguide is controlled based on the detected resistance value.
This makes it possible to accurately monitor the temperature of the near-field light generating element due to light energy irradiation and control the temperature to be constant, that is, to control the amount of light absorption to be constant. Realization of recording becomes easy.
 本発明によれば、近接場光発生素子に吸収されるエネルギー量をモニタする素子を、製造コストを上昇させることなくスライダ内に一体形成することができる。また、熱アシスト磁気記録装置において、近接場光発生素子に吸収されるエネルギー量を適切な値に制御することができる。 According to the present invention, the element for monitoring the amount of energy absorbed by the near-field light generating element can be integrally formed in the slider without increasing the manufacturing cost. In the heat-assisted magnetic recording apparatus, the amount of energy absorbed by the near-field light generating element can be controlled to an appropriate value.
実施例1による情報記録再生ヘッドの概略構造を示す図である。1 is a diagram illustrating a schematic structure of an information recording / reproducing head according to Example 1. FIG. 従来の熱アシスト記録用ヘッドの概略構造を示す図である。It is a figure which shows schematic structure of the conventional head for thermal assist recording. 実施例1による熱アシスト磁気記録装置の全体構成を示す図である。1 is a diagram illustrating an overall configuration of a heat-assisted magnetic recording apparatus according to Example 1. FIG. 投入パワーと近接場光強度の関係を示す図である。It is a figure which shows the relationship between input power and near-field light intensity. 近接場光発生素子の抵抗値と近接場光強度の関係を示す図である。It is a figure which shows the relationship between the resistance value of a near-field light generating element, and near-field light intensity. 近接場光発生素子の温度を検出する方法を示す図である。It is a figure which shows the method of detecting the temperature of a near field light generation element. 実施例2による情報記録再生ヘッドの概略構造を示す図である。6 is a diagram illustrating a schematic structure of an information recording / reproducing head according to Embodiment 2. FIG. 光照射による近接場光発生素子の温度変化の一例を示す図である。It is a figure which shows an example of the temperature change of the near field light generation element by light irradiation. 本発明の効果を示す図で、投入パワーと近接場光強度の関係を示す図である。It is a figure which shows the effect of this invention, and is a figure which shows the relationship between input power and near-field light intensity. 実施例1による近接場光発生素子の斜視図である。1 is a perspective view of a near-field light generating element according to Example 1. FIG. 実施例2による近接場光発生素子を浮上面側から見た平面図である。It is the top view which looked at the near-field light generating element by Example 2 from the air bearing surface side.
 以下、図面を参照して本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1に、実施例1による情報記録再生ヘッドの概略構造を示す。スライダ30の空気浮上面(ABS)近傍に近接場光発生素子32を配置し、近接場光発生素子32の近傍に磁気記録再生素子34が設けられている。磁気記録再生素子34は、図示はされていないが、単磁極ヘッドからなる記録素子と、CPP/GMR型センサ素子からなる再生素子が積層されて構成されている。スライダ30のABSとは反対側の面には、光発生・導入素子(光源)として波長780nmの光を発する半導体レーザ(レーザダイオードユニット)31が搭載されており、レーザダイオードユニット31から出た光は導波路33を通して近接場光発生素子32に照射される。導波路33は、波長780nmの光に対してシングルモードになるように、長辺が500nm,短辺が300nmの屈折率2.1のTaのコアの周りを屈折率1.6のAlでできたクラッドが覆っている構造である。この導波路33では導波光のモード径ほぼ導波路コアのサイズと同じである。すなわち、導波される光のエネルギーは実質的にコア内に閉じ込められている。近接場光発生素子32は導線42,43を通じて電極パッド40,41と接続されている。実施例1の情報記録再生ヘッドにおいては、近接場光発生素子32を温度検出素子(熱抵抗検出素子)として兼用する構成である。 FIG. 1 shows a schematic structure of an information recording / reproducing head according to the first embodiment. A near-field light generating element 32 is disposed in the vicinity of the air floating surface (ABS) of the slider 30, and a magnetic recording / reproducing element 34 is provided in the vicinity of the near-field light generating element 32. Although not shown, the magnetic recording / reproducing element 34 is configured by laminating a recording element composed of a single pole head and a reproducing element composed of a CPP / GMR type sensor element. A semiconductor laser (laser diode unit) 31 that emits light having a wavelength of 780 nm is mounted as a light generating / introducing element (light source) on the surface opposite to the ABS of the slider 30, and the light emitted from the laser diode unit 31. Is irradiated to the near-field light generating element 32 through the waveguide 33. The waveguide 33 has a refractive index of 1.6 around a core of Ta 2 O 5 having a refractive index of 2.1 having a long side of 500 nm and a short side of 300 nm so that the single mode is obtained with respect to light having a wavelength of 780 nm. In this structure, a clad made of Al 2 O 3 is covered. In this waveguide 33, the mode diameter of the guided light is approximately the same as the size of the waveguide core. That is, the energy of the guided light is substantially confined in the core. The near-field light generating element 32 is connected to the electrode pads 40 and 41 through conducting wires 42 and 43. In the information recording / reproducing head of Example 1, the near-field light generating element 32 is also used as a temperature detecting element (thermal resistance detecting element).
 本実施例の近接場光発生素子32は図9に示す二等辺三角柱の形状をした金(Au)でできており、底辺Wは100nm、斜辺Lは130nm、高さHは200nmである。二等辺三角柱の頂点の部分は曲率半径約10nmの円弧状に加工されており、発生する近接場光のスポット直径は約25nm程度となる。図1に戻り、ここでは詳細は図示していないが、レーザダイオードユニット31からの光が導波路33に入射される際の結合効率を向上させるために、スポット径変換機構などをレーザダイオードユニット直下に形成しておくのが良い。導波路33に結合された光の照射によって、近接場光発生素子32はプラズモン共鳴などの原理により、ABS及び記録媒体表面に近接場光を発生させ、媒体表面の温度が上昇するが、本実施例の近接場光発生素子32に照射される光のパワーが約10mWのとき、媒体表面磁性膜の局所温度は約200度に上昇する。その際同時に、近接場光発生素子32の温度も150度程度上昇し、近接場光発生素子32の抵抗が熱散乱の影響で増大する。これは、近接場光発生素子32が金や銀などの貴金属、すなわち良導体でできているため、格子の熱揺らぎによる伝導電子の散乱の影響を受けて、その結果、電気抵抗が増大する。その際の電気抵抗の変化率は0.4%/度程度であり、150度の温度変化の場合、60%程度抵抗が変化することになり、この変化は容易に検出可能である。 The near-field light generating element 32 of this embodiment is made of gold (Au) in the shape of an isosceles triangular prism as shown in FIG. 9, and has a base W of 100 nm, a hypotenuse L of 130 nm, and a height H of 200 nm. The apex portion of the isosceles triangular prism is processed into an arc shape with a radius of curvature of about 10 nm, and the spot diameter of the generated near-field light is about 25 nm. Returning to FIG. 1, although not shown in detail here, in order to improve the coupling efficiency when the light from the laser diode unit 31 is incident on the waveguide 33, a spot diameter conversion mechanism or the like is provided directly below the laser diode unit. It is good to form in. By irradiating the light coupled to the waveguide 33, the near-field light generating element 32 generates near-field light on the ABS and the surface of the recording medium according to a principle such as plasmon resonance, and the temperature of the medium surface rises. When the power of light applied to the near-field light generating element 32 in the example is about 10 mW, the local temperature of the medium surface magnetic film rises to about 200 degrees. At the same time, the temperature of the near-field light generating element 32 also increases by about 150 degrees, and the resistance of the near-field light generating element 32 increases due to the influence of heat scattering. This is because the near-field light generating element 32 is made of a noble metal such as gold or silver, that is, a good conductor, so that it is affected by scattering of conduction electrons due to thermal fluctuation of the lattice, and as a result, the electric resistance increases. The rate of change in electrical resistance at that time is about 0.4% / degree, and in the case of a temperature change of 150 degrees, the resistance changes by about 60%, and this change can be easily detected.
 次に図3を用いて実施例1による情報記録再生ヘッドを搭載した熱アシスト磁気記録装置の構成について説明する。サスペンション12により支持されたスライダ30は、磁気記録媒体11上を約3nmの浮上量で空気浮上しており、トラック方向のアクセスおよびトラッキングサーボのためにボイスコイルモータ(VCM)アクチュエータ79で駆動される。本実施例では詳説しないが、より高精度なトラック位置決め精度実現のために、サスペンションなどにピエゾ素子などで構成された追加アクチュエータを設けるのが良い。また、浮上量の精密制御のためにスライダ上には熱駆動型のアクチュエータを搭載している。 Next, the configuration of the heat-assisted magnetic recording apparatus equipped with the information recording / reproducing head according to the first embodiment will be described with reference to FIG. The slider 30 supported by the suspension 12 flies over the magnetic recording medium 11 with a flying height of about 3 nm, and is driven by a voice coil motor (VCM) actuator 79 for track direction access and tracking servo. . Although not described in detail in the present embodiment, an additional actuator composed of a piezo element or the like may be provided on the suspension or the like in order to realize a higher accuracy of track positioning. In addition, a thermally driven actuator is mounted on the slider for precise control of the flying height.
 再生は、スライダ上に搭載されたCPP/GMR型センサ素子(図示せず)の抵抗値を再生制御回路51にて検出し、コントローラ(SOC)20に内蔵された信号検出回路22によって等化などの前処理をした上で、信号処理回路25に送られる。信号処理回路25は位置・アドレス検出回路23での位置データやタイミング情報に基づき同期をとり、同期を取った信号を復調回路24に送出する。復調回路24では復調処理を行ない、さらに復号回路26でエラー訂正などの最終処理をなされたデータはマイクロプロセッサ27に送られ、上位装置99に転送される。サーボ回路54は位置・アドレス検出回路23での検出データを元にVCMアクチュエータ79を制御する。 In reproduction, the resistance value of a CPP / GMR sensor element (not shown) mounted on the slider is detected by a reproduction control circuit 51, and equalized by a signal detection circuit 22 built in the controller (SOC) 20 or the like. Is sent to the signal processing circuit 25. The signal processing circuit 25 synchronizes based on position data and timing information in the position / address detection circuit 23, and sends the synchronized signal to the demodulation circuit 24. The demodulating circuit 24 performs the demodulating process, and the data subjected to the final processing such as error correction by the decoding circuit 26 is sent to the microprocessor 27 and transferred to the host apparatus 99. The servo circuit 54 controls the VCM actuator 79 based on the data detected by the position / address detection circuit 23.
 記録時には、再生時と同様に位置・アドレス検出回路23で検出された位置・アドレス信号を基に、VCMアクチュエータ79をサーボ制御して上位装置99から指定されたセクタに情報記録再生ヘッドを位置付け、その後、記録制御回路52によって符号化処理を施されたユーザデータをレーザドライバ53に供給してスライダ30上に搭載されたレーザユニット31を駆動し、またユーザデータを記録素子に供給して熱アシスト記録を行う。熱アシスト記録は記録時に磁気記録媒体上の局所領域を適正な温度まで加熱しておいてその部分に記録素子によって記録磁界を印加する必要があるが、適正な温度に加熱をするためには、レーザダイオードユニット31の駆動電流を精密に制御する必要がある。本実施例では、近接場光発生素子32の抵抗値を抵抗検出回路50によって検出することにより、近接場光発生素子32の温度をモニタし、その温度情報を元にレーザダイオードユニット31の駆動電流を精密に制御する。 At the time of recording, the VCM actuator 79 is servo-controlled based on the position / address signal detected by the position / address detection circuit 23 in the same manner as at the time of reproduction, and the information recording / reproducing head is positioned in the sector designated by the host device 99. After that, the user data encoded by the recording control circuit 52 is supplied to the laser driver 53 to drive the laser unit 31 mounted on the slider 30, and the user data is supplied to the recording element to thermally assist. Make a record. In heat-assisted recording, it is necessary to heat a local area on a magnetic recording medium to an appropriate temperature at the time of recording and apply a recording magnetic field to the portion by a recording element, but in order to heat to an appropriate temperature, It is necessary to precisely control the drive current of the laser diode unit 31. In the present embodiment, the resistance value of the near-field light generating element 32 is detected by the resistance detection circuit 50, thereby monitoring the temperature of the near-field light generating element 32 and driving current of the laser diode unit 31 based on the temperature information. Is precisely controlled.
 図5は、抵抗値の検出方法を説明したものである。抵抗検出回路50内の定電流源80は、電極パッド40,41を通じて近接場光発生素子32に通電し、その際その電極間の電圧を電圧検出回路81にて検出し、抵抗値=電圧値/電流値の演算により抵抗値を求める。本実施例では、近接場光発生素子32の抵抗値は室温で0.2オーム程度と小さいため、近接場光発生素子32の直近の100nmの領域の導線を10nm×10nmに狭窄して置き、抵抗値を400Ω程度に増加させ、検出感度を向上させている。抵抗値を測定する場合、電流を流しすぎるとジュール熱によって近接場光発生素子32の温度が上昇する恐れがあるため注意が必要である。本実施例では2mAの一定電流を流した場合、ジュール熱は0.15mWでありレーザの照射によって発生する熱に比べて十分に小さいためジュール熱の影響は無視できる。抵抗測定の精度を向上させるには、印加電流を大きくするのが効果的であるが、その際はジュール熱低減のためパルス状に変調駆動して、電圧変化を同期検出するのがよい。 FIG. 5 illustrates a resistance value detection method. The constant current source 80 in the resistance detection circuit 50 energizes the near-field light generating element 32 through the electrode pads 40 and 41, and at this time, the voltage between the electrodes is detected by the voltage detection circuit 81, and the resistance value = voltage value. / Calculate the resistance value by calculating the current value. In this embodiment, since the resistance value of the near-field light generating element 32 is as small as about 0.2 ohms at room temperature, the conductor of the 100 nm region immediately adjacent to the near-field light generating element 32 is confined to 10 nm × 10 nm, The resistance value is increased to about 400Ω to improve the detection sensitivity. When measuring the resistance value, care should be taken because the temperature of the near-field light generating element 32 may rise due to Joule heat if an excessive current is passed. In this embodiment, when a constant current of 2 mA is passed, the Joule heat is 0.15 mW, which is sufficiently smaller than the heat generated by laser irradiation, and the influence of Joule heat can be ignored. In order to improve the accuracy of resistance measurement, it is effective to increase the applied current. In this case, it is preferable to detect the change in voltage synchronously by modulating and driving in pulses to reduce Joule heat.
 次に図4A、図4Bを用いて、本実施例の近接場光発生素子32への投入エネルギーの制御方法について説明する。図4Aはレーザダイオードユニット31から出射されるレーザ光の強度、すなわち、ヘッドへの投入パワーを50mWおよび100mWに制御した際の近接場光の強度を求めたものである。近接場光の強度は直接測定するのは困難であるので、予め記録感度の分かっているCoPd系多層膜媒体を用意し、記録状態(トラック幅)の変化より近接場光の強度を推定した。ここでは、7個の素子を測定した。素子自身のバラツキやレーザダイオードユニット31と導波路33の位置ずれ、レーザの干渉状態の変化などにより、近接場光強度は大きくばらついている。図4Bはその際の近接場光発生素子32の抵抗値を測定したものである。近接場光の強度と抵抗値には直線的な相関があることが分かる。 Next, a method for controlling the input energy to the near-field light generating element 32 of this embodiment will be described with reference to FIGS. 4A and 4B. FIG. 4A shows the intensity of laser light emitted from the laser diode unit 31, that is, the intensity of near-field light when the input power to the head is controlled to 50 mW and 100 mW. Since it is difficult to directly measure the intensity of near-field light, a CoPd-based multilayer film medium having a known recording sensitivity was prepared, and the intensity of near-field light was estimated from the change in recording state (track width). Here, seven elements were measured. The near-field light intensity varies greatly due to variations in the elements themselves, positional displacement between the laser diode unit 31 and the waveguide 33, changes in the laser interference state, and the like. FIG. 4B shows the measured resistance value of the near-field light generating element 32 at that time. It can be seen that there is a linear correlation between the intensity of near-field light and the resistance value.
 近接場光の強度と抵抗値には直線的な相関があることより、近接場光発生素子32の抵抗値が一定(目標)になるようにフィードバック制御することによって、素子のバラツキや干渉条件などによらず近接場光の強度を精密に制御することが可能になる。実際には記録制御回路52がこの制御を行う。フィードバック制御の帯域はレーザ等の温度変動やモードホッピング等に対応できるよう10~100kHzとした。図7に示したように、近接場光発生素子32の温度は1μs以下の時定数で応答するため、1MHz程度までの帯域での制御が可能であるが記録データとの干渉(クロストーク)などの影響を考慮して、制御帯域は100kHz以下としている。図8は、この制御方法を用いて、近接場光の強度が目標値(1×1012,2x1012W/m)に制御できることを示したものである。近接場光強度の誤差が実用上問題のない2~3%程度に抑えられていることが分かる。 Since there is a linear correlation between the intensity of near-field light and the resistance value, feedback control is performed so that the resistance value of the near-field light generating element 32 is constant (target), thereby causing element variations, interference conditions, and the like. Regardless of this, the intensity of near-field light can be precisely controlled. Actually, the recording control circuit 52 performs this control. The feedback control band was set to 10 to 100 kHz so as to cope with temperature fluctuations of the laser and the like, mode hopping, and the like. As shown in FIG. 7, since the temperature of the near-field light generating element 32 responds with a time constant of 1 μs or less, control in a band up to about 1 MHz is possible, but interference with recording data (crosstalk), etc. In consideration of the above, the control band is set to 100 kHz or less. FIG. 8 shows that the intensity of near-field light can be controlled to a target value (1 × 10 12 , 2 × 10 12 W / m 2 ) using this control method. It can be seen that the near-field light intensity error is suppressed to about 2 to 3%, which is not a problem in practice.
 図8を用いて本実施例の効果を説明する。導入エネルギー量(投入パワー)は素子の製造バラツキや組み立て誤差などの影響でばらついているが、近接場光強度は一定に制御されている。これは近接場光発生素子の温度が近接場光発生素子に与えられるエネルギー量と相関があるため、近接場光発生素子の温度を検出して、フィードバック制御する本実施例を用いることにより、導入するエネルギーの量を常に適切な値に制御することが可能となることを示している。すなわち、エネルギーアシストを利用した高密度記録の記録条件を常に適切に制御できるため、記録信号の品質が向上し、信頼性が向上する。また、その際のヘッドなど装置構成部品の生産性の低下を引き起こす要因となる組み立て作業が不要になるため、製造コストの増加がない。 The effect of the present embodiment will be described with reference to FIG. Although the amount of energy introduced (input power) varies due to variations in device manufacturing and assembly errors, the near-field light intensity is controlled to be constant. This is because the temperature of the near-field light generating element has a correlation with the amount of energy given to the near-field light generating element. This shows that the amount of energy to be controlled can always be controlled to an appropriate value. That is, since the recording conditions for high-density recording using energy assist can always be appropriately controlled, the quality of the recording signal is improved and the reliability is improved. In addition, there is no need for an assembling operation that causes a reduction in the productivity of device components such as a head, and thus there is no increase in manufacturing cost.
 本実施例では、近接場光発生素子自身の抵抗値を測定したが、近接場光発生素子32と隣接して設けられ電気的に絶縁された温度検出専用の金属素子(熱抵抗素子)を用いてもよい。その場合、温度検出用の金属素子は近接場光発生素子と熱的に十分結合するように1~2nm程度の絶縁膜を介して設けるのがよい。この場合、温度検出素子の金属材料や形状は近接場光発生素子自身とは独立して選ぶことができるため抵抗検出に適した適度な抵抗値のものを選ぶことができる。 In this example, the resistance value of the near-field light generating element itself was measured, but a metal element (thermal resistance element) dedicated to temperature detection provided adjacent to the near-field light generating element 32 and electrically insulated was used. May be. In that case, the temperature detecting metal element is preferably provided through an insulating film of about 1 to 2 nm so as to be thermally coupled to the near-field light generating element sufficiently. In this case, since the metal material and shape of the temperature detecting element can be selected independently of the near-field light generating element itself, a material having an appropriate resistance value suitable for resistance detection can be selected.
 図6に実施例2による情報記録再生ヘッドの概略構造を示す。スライダ30の空気浮上面(ABS)近傍に近接場光発生素子32′が配置されている。なお、図6では磁気記録再生素子は省略されている。スライダのABSとは反対側の面には光発生・導入素子(光源)として波長780nmの光を発するレーザダイオードユニット31が搭載されており、レーザダイオードユニット31から出た光は導波路33を通して近接場光発生素子32′に照射される。導波路33は、波長780nmの光に対してシングルモードになるように長辺が450nm,短辺が300nmの屈折率2.1のTaのコアの周りを屈折率1.5のSiOでできたクラッドが覆っている構造である。この導波路33では導波光のモード径ほぼ導波路コアのサイズと同じである。すなわち、導波される光のエネルギーは実質的にコア内に閉じ込められている。近接場光発生素子32′は導線42,43を通じて電極パッド40,41と接続されている。本実施例では、近接場光発生素子32′及び導波路33とは離れたレーザ照射の影響を受けない場所に周囲温度校正用の温度検出素子35を設け、同様に電極パッド44と導線45で結合した。電極パッドの個数節約のため電極パッドの一つである電極パッド41は近接光発生場素子32′と共有した。本概略図では図示していないが記録磁界印加や浮上量制御、再生素子ともコモン電極として端子の共通化は可能である。 FIG. 6 shows a schematic structure of an information recording / reproducing head according to the second embodiment. A near-field light generating element 32 ′ is disposed in the vicinity of the air floating surface (ABS) of the slider 30. In FIG. 6, the magnetic recording / reproducing element is omitted. A laser diode unit 31 that emits light having a wavelength of 780 nm is mounted as a light generating / introducing element (light source) on the surface opposite to the ABS of the slider, and the light emitted from the laser diode unit 31 passes close to the waveguide 33. The field light generating element 32 'is irradiated. The waveguide 33 is made of SiO 2 having a refractive index of 1.5 around a core of Ta 2 O 5 having a refractive index of 2.1 having a long side of 450 nm and a short side of 300 nm so as to be in a single mode with respect to light having a wavelength of 780 nm. This is a structure covered with a clad made of 2 . In this waveguide 33, the mode diameter of the guided light is approximately the same as the size of the waveguide core. That is, the energy of the guided light is substantially confined in the core. The near-field light generating element 32 ′ is connected to the electrode pads 40 and 41 through the conductive wires 42 and 43. In the present embodiment, a temperature detecting element 35 for ambient temperature calibration is provided in a place that is not affected by laser irradiation away from the near-field light generating element 32 ′ and the waveguide 33. Combined. In order to save the number of electrode pads, the electrode pad 41, which is one of the electrode pads, is shared with the near light generating field element 32 '. Although not shown in this schematic diagram, it is possible to use a common terminal as a common electrode for recording magnetic field application, flying height control, and reproducing element.
 本実施例の近接場光発生素子32′は図10に示した形状の金(Au)でできている。図10は近接場光発生素子32′を空気浮上面(ABS)の側から見た平面図で、W0=40nm、W1=800nm、D0=30nm、D1=50nm、D2=300nmで厚さ(高さ)80nmである。頂点の部分は曲率半径約8nmの円弧状に加工されており、発生する近接場光のスポット直径は約20nm程度となる。 The near-field light generating element 32 'of this embodiment is made of gold (Au) having the shape shown in FIG. FIG. 10 is a plan view of the near-field light generating element 32 ′ viewed from the air floating surface (ABS) side. W0 = 40 nm, W1 = 800 nm, D0 = 30 nm, D1 = 50 nm, D2 = 300 nm and a thickness (high) A) 80 nm. The apex portion is processed into an arc shape with a radius of curvature of about 8 nm, and the spot diameter of the generated near-field light is about 20 nm.
 ここでは詳細は図示していないが、レーザダイオードユニット31からの光が導波路33に入射される際の結合効率を向上させるためにスポット径変換機構などをレーザダイオードユニット直下に形成しておくのが良い。導波路33に結合された光の照射によって、近接場光発生素子32′はプラズモン共鳴などの原理により、ABS及び記録媒体表面に近接場光を発生させ、記録媒体表面の温度が上昇するが、本実施例の近接場光発生素子32′に照射される光のパワーが約10mWのとき、媒体表面磁性膜の局所温度は約250度に上昇する。その際に、近接場光発生素子32′の温度も80度程度上昇し、近接場光発生素子32′の抵抗が熱散乱の影響で増大する。これは、近接場光発生素子32′が金や銀などの貴金属、すなわち良導体でできているため、格子の熱揺らぎによる伝導電子の散乱の影響を受けて、その結果、電気抵抗が増大する。その際の電気抵抗の変化率は0.4%/度程度であり、80度の温度変化の場合、32%程度抵抗が変化することになり、この変化は容易に検出可能である。本実施例の情報記録再生ヘッドを用いたハードディスクドライブ装置の構成は、実施例1と同様に図3に示したものを用いた。 Although details are not shown here, in order to improve the coupling efficiency when the light from the laser diode unit 31 enters the waveguide 33, a spot diameter conversion mechanism or the like is formed immediately below the laser diode unit. Is good. By irradiation with light coupled to the waveguide 33, the near-field light generating element 32 ′ generates near-field light on the ABS and the surface of the recording medium according to a principle such as plasmon resonance, and the temperature of the surface of the recording medium rises. When the power of the light applied to the near-field light generating element 32 ′ of this embodiment is about 10 mW, the local temperature of the medium surface magnetic film rises to about 250 degrees. At that time, the temperature of the near-field light generating element 32 'also rises by about 80 degrees, and the resistance of the near-field light generating element 32' increases due to the influence of heat scattering. This is because the near-field light generating element 32 'is made of a noble metal such as gold or silver, that is, a good conductor, so that it is affected by the scattering of conduction electrons due to thermal fluctuations of the lattice, resulting in an increase in electrical resistance. The rate of change in electrical resistance at that time is about 0.4% / degree, and in the case of a temperature change of 80 degrees, the resistance changes by about 32%, and this change can be easily detected. The configuration of the hard disk drive apparatus using the information recording / reproducing head of the present embodiment is the same as that of the first embodiment shown in FIG.
 すなわち、レーザダイオードユニット31の駆動電流を精密に制御するため、近接場光発生素子32′の抵抗値を抵抗検出回路50によって検出することにより、近接場光発生素子32′の温度をモニタし、その温度情報を元にレーザダイオードユニット31の駆動電流を精密に制御する。 That is, in order to precisely control the drive current of the laser diode unit 31, the resistance value of the near-field light generating element 32 ′ is detected by the resistance detection circuit 50, thereby monitoring the temperature of the near-field light generating element 32 ′. Based on the temperature information, the drive current of the laser diode unit 31 is precisely controlled.
 本実施例では、近接場光発生素子の抵抗値は室温で約32オームであるため、実施例1にあるような電流狭窄の必要はない。スライダ温度検出素子35は室温での抵抗値が400Ω、温度係数が0.4%/度のものを用いた。 In this embodiment, since the resistance value of the near-field light generating element is about 32 ohms at room temperature, there is no need for current confinement as in the first embodiment. The slider temperature detecting element 35 has a resistance value at room temperature of 400Ω and a temperature coefficient of 0.4% / degree.
 本実施例では近接場光発生素子32′の抵抗値の他にスライダ温度検出素子35の抵抗値を各々測定し、近接場光発生素子32′とスライダ温度検出素子35の温度差が一定になるように制御を行う。これにより、素子のバラツキや干渉条件などの変動に加えて、周囲温度やスライダ温度の変動によらず常に近接場光強度を一定に制御することが可能となり、近接場光強度の制御精度が向上する。フィードバック制御の帯域はレーザ等の温度変動やモードホッピング等に対応できるよう10~100kHzとした。 In this embodiment, in addition to the resistance value of the near-field light generating element 32 ', the resistance value of the slider temperature detecting element 35 is measured, and the temperature difference between the near-field light generating element 32' and the slider temperature detecting element 35 becomes constant. Control as follows. This makes it possible to control the near-field light intensity at a constant level regardless of variations in the ambient temperature and slider temperature, in addition to variations in element variations and interference conditions, improving the near-field light intensity control accuracy. To do. The feedback control band was set to 10 to 100 kHz so as to cope with temperature fluctuations of the laser and the like, mode hopping, and the like.
 熱アシスト記録条件の精密制御の観点からは上記の温度差一定の制御に加えて、温度検出素子35での検出温度に応じて、目標近接場光強度を補正するのがよい。スライダ温度すなわちドライブ内温度が高い場合は媒体の温度はもともと高いため、低い近接場光パワーでも媒体の局所領域の温度は適正記録温度に上昇することになる。実際には、周囲温度をいろいろ変化させながら、適正記録パワーを学習し、ドライブ内の不揮発メモリにパワーテーブルとして格納してこのテーブルを基に記録時のレーザパワーを補正するのが良い。 From the viewpoint of precise control of the heat assist recording conditions, it is preferable to correct the target near-field light intensity in accordance with the temperature detected by the temperature detecting element 35 in addition to the above-described control with a constant temperature difference. When the slider temperature, that is, the temperature in the drive is high, the temperature of the medium is originally high. Therefore, the temperature of the local area of the medium rises to an appropriate recording temperature even with a low near-field light power. In practice, it is preferable to learn the appropriate recording power while changing the ambient temperature in various ways, store it as a power table in the nonvolatile memory in the drive, and correct the laser power during recording based on this table.
 上記実施例では、導波路33のコアの材料としてTa(屈折率=2.18)、クラッドの材料としてSiO(屈折率=1.5)を利用したが、コアの屈折率がクラッドの屈折率よりも大きければコアおよびクラッドの材料は他の材料でも良く、例えばSiO(屈折率=1.5)のクラッドに対して、コアをAl(屈折率=1.6)、TiO(屈折率=2.4)などにしても良い。また、クラッドの材質を、屈折率がSiOよりも小さなMgF(屈折率n=1.4)にしても良い。また、コアの材質として、Geなど他の材料をドープしたSiOを用いても良い。 In the above embodiment, Ta 2 O 5 (refractive index = 2.18) is used as the core material of the waveguide 33 and SiO 2 (refractive index = 1.5) is used as the cladding material. greater if the core and cladding material than the refractive index of the cladding may be other materials, such as SiO 2 with respect to the cladding of (refractive index = 1.5), the core Al 2 O 3 (refractive index = 1.6 ), TiO 2 (refractive index = 2.4), or the like. The material of the cladding may be MgF 2 (refractive index n = 1.4) whose refractive index is smaller than that of SiO 2 . Further, as the material of the core, it may be used SiO 2 doped with other materials such as Ge.
 本発明は、近接場光発生素子に吸収されるエネルギー量をモニタすることができる情報記録再生ヘッドに利用可能である。また、近接場光発生素子に吸収されるエネルギー量を制御することが可能な熱アシスト磁気記録装置に利用可能である。 The present invention can be used for an information recording / reproducing head capable of monitoring the amount of energy absorbed by the near-field light generating element. Further, the present invention can be applied to a heat-assisted magnetic recording apparatus that can control the amount of energy absorbed by the near-field light generating element.
11…記録媒体、12…サスペンション、20…コントローラ(SOC)、22…信号検出回路、23…位置アドレス検出回路、24…復調回路、25…信号処理回路、26…復号回路、27…マイクロプロセッサ、29…メモリ、30…スライダ、31…レーザダイオードユニット、32,32′…近接場光発生素子、33…導波路、34…磁気記録再生素子、35…温度検出素子、40,41…電極パッド、42,43…導線、44…電極パッド、45…導線、50…抵抗検出回路、51…再生制御回路、52…記録制御回路、53…レーザドライバ、54…サーボ回路、55…光検出器(PD)、76…モータ、79…VCMアクチュエータ、80…定電流源、81…電圧測定素子、99…上位装置。 DESCRIPTION OF SYMBOLS 11 ... Recording medium, 12 ... Suspension, 20 ... Controller (SOC), 22 ... Signal detection circuit, 23 ... Position address detection circuit, 24 ... Demodulation circuit, 25 ... Signal processing circuit, 26 ... Decoding circuit, 27 ... Microprocessor, DESCRIPTION OF SYMBOLS 29 ... Memory, 30 ... Slider, 31 ... Laser diode unit, 32, 32 '... Near field light generation element, 33 ... Waveguide, 34 ... Magnetic recording / reproducing element, 35 ... Temperature detection element, 40, 41 ... Electrode pad, 42, 43 ... conductive wire, 44 ... electrode pad, 45 ... conductive wire, 50 ... resistance detection circuit, 51 ... reproduction control circuit, 52 ... recording control circuit, 53 ... laser driver, 54 ... servo circuit, 55 ... photodetector (PD) ), 76 ... Motor, 79 ... VCM actuator, 80 ... Constant current source, 81 ... Voltage measuring element, 99 ... Host device.

Claims (20)

  1.  スライダと、該スライダに設けられた磁気記録再生素子と、前記スライダの浮上面側に設けられた近接場光発生素子と、該近接場光発生素子に光エネルギーを供給するための導波路とを有する情報記録再生ヘッドにおいて、前記近接場光発生素子の温度を検出するための第1温度検出素子と、該第1温度検出素子と電気的に導通する一対の電極とを有することを特徴とする情報記録再生ヘッド。 A slider, a magnetic recording / reproducing element provided on the slider, a near-field light generating element provided on the air bearing surface side of the slider, and a waveguide for supplying light energy to the near-field light generating element The information recording / reproducing head includes a first temperature detecting element for detecting a temperature of the near-field light generating element, and a pair of electrodes electrically connected to the first temperature detecting element. Information recording / reproducing head.
  2.  前記第1温度検出素子は、前記近接場光発生素子が兼用されたものであることを特徴とする請求項1記載の情報記録再生ヘッド。 The information recording / reproducing head according to claim 1, wherein the first temperature detecting element is also used as the near-field light generating element.
  3.  前記スライダの背面であって、前記導波路の入射端に設けられた光源を有することを特徴とする請求項1記載の情報記録再生ヘッド。 2. The information recording / reproducing head according to claim 1, further comprising a light source provided on an incident end of the waveguide on a back surface of the slider.
  4.  前記光源は半導体レーザであることを特徴とする請求項3記載の情報記録再生ヘッド。 4. The information recording / reproducing head according to claim 3, wherein the light source is a semiconductor laser.
  5.  前記第1温度検出素子は、絶縁膜を介して前記近接場光発生素子に隣接して設けられた熱抵抗検出素子であることを特徴とする請求項1記載の情報記録再生ヘッド。 The information recording / reproducing head according to claim 1, wherein the first temperature detecting element is a thermal resistance detecting element provided adjacent to the near-field light generating element via an insulating film.
  6.  前記熱抵抗検出素子の熱容量は、前記近接場光発生素子の熱容量と比べて同等あるいは小さいことを特徴とする請求項5記載の情報記録再生ヘッド。 6. The information recording / reproducing head according to claim 5, wherein a heat capacity of the thermal resistance detecting element is equal to or smaller than a heat capacity of the near-field light generating element.
  7.  前記導波路および近接場光発生素子から離れた位置に、周囲温度校正用の第2温度検出素子と、該第2温度検出素子と電気的に導通する一対の電極を有することを特徴とする請求項1記載の情報記録再生ヘッド。 2. A second temperature detection element for ambient temperature calibration, and a pair of electrodes that are electrically connected to the second temperature detection element, at a position away from the waveguide and the near-field light generating element. Item 4. The information recording / reproducing head according to Item 1.
  8.  前記第2温度検出素子と導通する一対の電極のうちの1つは、前記第1温度検出素子と導通する一対の電極のうちの1つと共有されていることを特徴とする請求項7記載の情報記録再生ヘッド。 The one of the pair of electrodes that are electrically connected to the second temperature detecting element is shared with one of the pair of electrodes that are electrically connected to the first temperature detecting element. Information recording / reproducing head.
  9.  スライダと、該スライダに設けられた磁気記録再生素子と、前記スライダの浮上面側に設けられた近接場光発生素子と、該近接場光発生素子に光エネルギーを供給するための導波路とを有する情報記録再生ヘッドにおいて、前記近接場光発生素子と電気的に導通する1対の電極を有すること特徴とする情報記録再生ヘッド。 A slider, a magnetic recording / reproducing element provided on the slider, a near-field light generating element provided on the air bearing surface side of the slider, and a waveguide for supplying light energy to the near-field light generating element An information recording / reproducing head having a pair of electrodes that are electrically connected to the near-field light generating element.
  10.  前記スライダの背面であって、前記導波路の入射端に設けられた光源を有することを特徴とする請求項9記載の情報記録再生ヘッド。 10. The information recording / reproducing head according to claim 9, further comprising a light source provided at an incident end of the waveguide on a back surface of the slider.
  11.  前記導波路および近接場光発生素子から離れた位置に、周囲温度校正用の温度検出素子と、該温度検出素子と電気的に導通する一対の電極を有することを特徴とする請求項9記載の情報記録再生ヘッド。 10. The apparatus according to claim 9, further comprising: a temperature detection element for ambient temperature calibration, and a pair of electrodes that are electrically connected to the temperature detection element, at a position away from the waveguide and the near-field light generating element. Information recording / reproducing head.
  12.  前記温度検出素子と導通する一対の電極のうちの1つは、前記近接場光発生素子と導通する一対の電極のうちの1つと共有されていることを特徴とする請求項11記載の情報記録再生ヘッド。 12. The information recording according to claim 11, wherein one of the pair of electrodes that are electrically connected to the temperature detecting element is shared with one of the pair of electrodes that are electrically connected to the near-field light generating element. Play head.
  13.  磁気記録媒体と、
      スライダと、該スライダに設けられた磁気記録再生素子と、前記スライダの浮上面側に設けられた近接場光発生素子と、該近接場光発生素子に光エネルギーを供給するための導波路と、前記近接場光発生素子の温度を検出するための第1温度検出素子と、該第1温度検出素子と電気的に導通する一対の電極とを有する情報記録再生ヘッドと、を有し、
      前記一対の電極を介して前記第1温度検出素子に電流を流すことによって当該第1温度検出素子の抵抗値を検出し、該検出した抵抗値に基いて前記導波路に導入する光エネルギーの強度を制御することを特徴とする熱アシスト磁気記録装置。
    A magnetic recording medium;
    A slider, a magnetic recording / reproducing element provided on the slider, a near-field light generating element provided on the air bearing surface side of the slider, a waveguide for supplying light energy to the near-field light generating element, An information recording / reproducing head having a first temperature detecting element for detecting the temperature of the near-field light generating element and a pair of electrodes electrically connected to the first temperature detecting element;
    The intensity of light energy introduced into the waveguide based on the detected resistance value by detecting the resistance value of the first temperature detecting element by flowing a current through the pair of electrodes to the first temperature detecting element. Is a heat-assisted magnetic recording apparatus.
  14.  前記導波路に導入する光エネルギーの強度の制御は、前記第1温度検出素子の抵抗値が一定になるように制御するものであることを特徴とする請求項13記載の熱アシスト磁気記録装置。 14. The heat-assisted magnetic recording apparatus according to claim 13, wherein the intensity of light energy introduced into the waveguide is controlled so that the resistance value of the first temperature detection element is constant.
  15.  前記第1温度検出素子は、前記近接場光発生素子が兼用されたものであることを特徴とする請求項13記載の熱アシスト磁気記録装置。 14. The thermally assisted magnetic recording apparatus according to claim 13, wherein the first temperature detecting element is also used as the near-field light generating element.
  16.  前記スライダの背面であって、前記導波路の入射端に設けられた光源を有することを特徴とする請求項13記載の熱アシスト磁気記録装置。 14. The heat-assisted magnetic recording apparatus according to claim 13, further comprising a light source provided on the rear surface of the slider and at an incident end of the waveguide.
  17.  前記第1温度検出素子は、絶縁膜を介して前記近接場光発生素子に隣接して設けられた熱抵抗検出素子であることを特徴とする請求項13記載の熱アシスト磁気記録装置。 14. The heat-assisted magnetic recording apparatus according to claim 13, wherein the first temperature detecting element is a thermal resistance detecting element provided adjacent to the near-field light generating element via an insulating film.
  18.  前記熱抵抗検出素子の熱容量は、前記近接場光発生素子の熱容量と比べて同等あるいは小さいことを特徴とする請求項17記載の熱アシスト磁気記録装置。 18. The heat-assisted magnetic recording apparatus according to claim 17, wherein a heat capacity of the thermal resistance detecting element is equal to or smaller than a heat capacity of the near-field light generating element.
  19.  前記導波路および近接場光発生素子から離れた位置に、周囲温度校正用の第2温度検出素子と、該第2温度検出素子と電気的に導通する一対の電極を有することを特徴とする請求項13記載の熱アシスト磁気記録装置。 2. A second temperature detection element for ambient temperature calibration, and a pair of electrodes that are electrically connected to the second temperature detection element, at a position away from the waveguide and the near-field light generating element. Item 14. The heat-assisted magnetic recording apparatus according to item 13.
  20.  前記第2温度検出素子と導通する一対の電極のうちの1つは、前記第1温度検出素子と導通する一対の電極のうちの1つと共有されていることを特徴とする請求項19記載の熱アシスト磁気記録装置。 21. One of the pair of electrodes that are electrically connected to the second temperature detecting element is shared with one of the pair of electrodes that are electrically connected to the first temperature detecting element. Thermally assisted magnetic recording device.
PCT/JP2010/004245 2009-07-06 2010-06-25 Information recording and reproducing head and heat-assisted magnetic recording device WO2011004560A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-159606 2009-07-06
JP2009159606A JP4848447B2 (en) 2009-07-06 2009-07-06 Information recording / reproducing head and heat-assisted magnetic recording apparatus

Publications (1)

Publication Number Publication Date
WO2011004560A1 true WO2011004560A1 (en) 2011-01-13

Family

ID=43428992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004245 WO2011004560A1 (en) 2009-07-06 2010-06-25 Information recording and reproducing head and heat-assisted magnetic recording device

Country Status (2)

Country Link
JP (1) JP4848447B2 (en)
WO (1) WO2011004560A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159822A (en) * 2011-01-28 2012-08-23 Tdk Corp Optical waveguide and heat-assisted magnetic recording head including the same
JP2015079550A (en) * 2013-10-15 2015-04-23 株式会社日立ハイテクファインシステムズ Heat-assisted magnetic head inspection method and heat-assisted magnetic head inspection apparatus
GB2520176A (en) * 2013-10-22 2015-05-13 HGST Netherlands BV Heat-assisted magnetic recording disk drive (HAMR) with thermal sensor and laser power prediction

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5666994B2 (en) * 2011-06-13 2015-02-12 株式会社日立製作所 Thermally assisted magnetic recording head and magnetic disk apparatus
JP2013077367A (en) 2011-09-30 2013-04-25 Sharp Corp Information recorder, method for controlling information recorder, computer, and video recorder
JP5801159B2 (en) * 2011-10-25 2015-10-28 シャープ株式会社 Information recording head and information recording apparatus
US8451696B2 (en) * 2011-10-31 2013-05-28 HGST Netherlands B.V. Temperature sensor in a thermally assisted magnetic recording head
US8842383B1 (en) * 2013-05-31 2014-09-23 HGST Netherlands B.V. Laser power sensor with dual temperature sensor
US9047926B2 (en) * 2013-10-18 2015-06-02 HGST Netherlands B.V. Dual thermal sensor for HAMR waveguide power monitor and integration with the contact sensor
US8908481B1 (en) 2014-01-27 2014-12-09 HGST Netherlands B.V. Thermally-assisted magnetic recording head that suppresses effects of mode hopping

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295404A (en) * 1993-04-09 1994-10-21 Matsushita Electric Ind Co Ltd Magnetic recording and reproducing device
JP2002298301A (en) * 2001-03-29 2002-10-11 Toshiba Corp Thermally assisted magnetic recording/reproducing device, and control method for the same
JP2006031817A (en) * 2004-07-15 2006-02-02 Tdk Corp Slider, head gimbal assembly, and hard disk drive
WO2007111180A1 (en) * 2006-03-29 2007-10-04 Sharp Kabushiki Kaisha Heat generation amount control device, program and recording medium for the device, magnetic disk device, and heat generation amount control method
JP2008204586A (en) * 2007-02-22 2008-09-04 Hitachi Ltd Thermal assist magnetic recording head and magnetic recording device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295404A (en) * 1993-04-09 1994-10-21 Matsushita Electric Ind Co Ltd Magnetic recording and reproducing device
JP2002298301A (en) * 2001-03-29 2002-10-11 Toshiba Corp Thermally assisted magnetic recording/reproducing device, and control method for the same
JP2006031817A (en) * 2004-07-15 2006-02-02 Tdk Corp Slider, head gimbal assembly, and hard disk drive
WO2007111180A1 (en) * 2006-03-29 2007-10-04 Sharp Kabushiki Kaisha Heat generation amount control device, program and recording medium for the device, magnetic disk device, and heat generation amount control method
JP2008204586A (en) * 2007-02-22 2008-09-04 Hitachi Ltd Thermal assist magnetic recording head and magnetic recording device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159822A (en) * 2011-01-28 2012-08-23 Tdk Corp Optical waveguide and heat-assisted magnetic recording head including the same
JP2015079550A (en) * 2013-10-15 2015-04-23 株式会社日立ハイテクファインシステムズ Heat-assisted magnetic head inspection method and heat-assisted magnetic head inspection apparatus
GB2520176A (en) * 2013-10-22 2015-05-13 HGST Netherlands BV Heat-assisted magnetic recording disk drive (HAMR) with thermal sensor and laser power prediction
GB2520176B (en) * 2013-10-22 2018-03-07 HGST Netherlands BV Heat-assisted magnetic recording disk drive (HAMR) with thermal sensor and laser power prediction

Also Published As

Publication number Publication date
JP4848447B2 (en) 2011-12-28
JP2011014214A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP4848447B2 (en) Information recording / reproducing head and heat-assisted magnetic recording apparatus
KR101835876B1 (en) Bolometer for internal laser power monitoring in heat-assisted magnetic recording device
JP5848577B2 (en) Burn-in test method and burn-in test apparatus
US8705323B2 (en) TAR temperature sensor having faster response time
JP4359323B2 (en) Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
US8451696B2 (en) Temperature sensor in a thermally assisted magnetic recording head
US8391106B2 (en) Heat-assisted magnetic recording head with laser diode
US8355299B2 (en) Heat-assisted magnetic recording head with convergent lens
US8341825B2 (en) Method for manufacturing a thermally-assisted magnetic head
US20130135975A1 (en) Amorphous silicon sensor for slider
JP4049196B2 (en) Optically assisted magnetic head and optically assisted magnetic disk device
US8811127B1 (en) Magnetic head comprising recording part, reading part, heater for expansion of the recording part, and heater for expansion of the reading part
US20110235478A1 (en) Wave guide that attenuates evanescent light of higher order tm mode
US8248894B2 (en) Thermally-assisted magnetic recording head having heat radiation layer and interposed layer
JP5945017B2 (en) Thermally assisted magnetic recording head that suppresses the effects of mode hopping
JP2008165922A (en) Heat assisted magnetic head, head gimbal assembly, and hard disk drive
US8654617B2 (en) Thermally-assisted magnetic recording head with optically isolating waveguide, head gimbal assembly, head arm assembly, magnetic disk unit, and light transmission unit
US8325570B1 (en) Thermally-assisted magnetic recording head including a protruding member
US8687469B1 (en) Method for manufacturing an electronic device including a light absorption layer
US8437237B2 (en) Light source unit including a photodetector, and thermally-assisted magnetic recording head
JP4752756B2 (en) Thermally assisted magnetic head, head gimbal assembly, hard disk device, and method of manufacturing thermally assisted magnetic head
US8111591B2 (en) Heat-assisted magnetic recording head having laser diode overlaping two recording wiring layers
US8116173B2 (en) Heat-assisted magnetic recording head with laser diode
JP2009043368A (en) Heat assisted magnetic head, head gimbal assembly, and hard disk device
JP4794516B2 (en) Recording device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10796874

Country of ref document: EP

Kind code of ref document: A1