WO2011004530A1 - Wireless communication apparatus and wireless communication method - Google Patents

Wireless communication apparatus and wireless communication method Download PDF

Info

Publication number
WO2011004530A1
WO2011004530A1 PCT/JP2010/003031 JP2010003031W WO2011004530A1 WO 2011004530 A1 WO2011004530 A1 WO 2011004530A1 JP 2010003031 W JP2010003031 W JP 2010003031W WO 2011004530 A1 WO2011004530 A1 WO 2011004530A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
response signal
wireless communication
feedback method
nack
Prior art date
Application number
PCT/JP2010/003031
Other languages
French (fr)
Japanese (ja)
Inventor
吉井勇
栗謙一
中尾正悟
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011004530A1 publication Critical patent/WO2011004530A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1692Physical properties of the supervisory signal, e.g. acknowledgement by energy bursts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end

Definitions

  • the present invention relates to a wireless communication apparatus and a wireless communication method, and more particularly to transmission of a response signal that feeds back whether transmission data can be decoded.
  • WiMAX wireless communication standard that enables high-speed communication
  • IEEE 802.16e was established by IEEE
  • 802.16m is being studied as the next generation standard.
  • 802.16m application of MIMO (Multiple Input Multiple Output) that transmits and receives a plurality of streams using a plurality of antennas is being studied.
  • MIMO Multiple Input Multiple Output
  • FIG. 18 is a diagram showing an ACK / NACK transmission procedure in 802.16m.
  • a base station (BS: Base Station) communication device is a transmitting-side wireless communication device
  • a mobile station (MS: Mobile Station) terminal is a receiving-side wireless communication device.
  • the base station BS transmits data allocation information addressed to the target terminal MS through a data allocation control channel (A-MAP: Advanced MAP).
  • Data allocation information includes an area of data to be transmitted (resource area defined by frequency and time), a modulation scheme, a coding rate, and an area of ACK / NACK resources for returning data ACK / NACK (HFA: HARQ Feedback Allocation).
  • HFA HARQ Feedback Allocation
  • Information including the timing of replying ACK / NACK.
  • the base station BS performs HARQ (Hybrid Automatic Repeat reQuest) control that combines retransmission control and error correction according to ACK / NACK returned from the terminal MS.
  • HARQ Hybrid Automatic Repeat reQuest
  • the terminal MS decodes the data addressed to itself based on the data allocation information and determines CRC (Cyclic Redundancy Check). Then, the terminal MS returns an ACK / NACK indicating the CRC determination result indicating whether or not decoding is possible in the area of the ACK / NACK resource allocated by the HFA.
  • CRC Cyclic Redundancy Check
  • FIG. 19 is an operation explanatory diagram showing the exchange of transmission data and ACK / NACK in 802.16m in the time direction.
  • a plurality of downlink (DL: Downlink, BS ⁇ MS) subframes are consecutively allocated in frame i, and then a plurality of uplink (UL: Uplink, MS ⁇ BS) subframes are continuously allocated.
  • the terminal MS recognizes an ACK / NACK resource that returns an ACK / NACK by the HFA in the downlink (DL) data allocation control channel (A-MAP), and feeds back a CRC determination result in the resource.
  • A-MAP data allocation control channel
  • FIG. 20 is an operation explanatory view showing two types of ACK / NACK feedback methods in 802.16m.
  • 802.16m defines two types of ACK / NACK feedback methods: 1-bitbFB (1-bit Feedback) and 2-bit FB (2-bit Feedback). 20, (A) shows 1-bit1-FB, and (B) shows 2-bit FB.
  • 1-bitbFB is a method of feeding back one CRC determination result for one data as usual.
  • 2-bit FB is a method of feeding back two CRC determination results simultaneously for two data. It is not explicitly notified whether 1-bit FB or 2-bit FB.
  • the base station BS implicitly indicates 2-bit FB by assigning even and odd consecutive HFA values as HFA to one terminal MS.
  • the base station BS transmits the data allocation control channel (A-MAP 0, A-MAP 1) to the terminal MS-A using A-MAP 0.
  • Terminal MS-A recognizes that ACK / NACK is fed back by 2-bit FB since even and odd consecutive HFAs are assigned to the terminal MS-A.
  • two data are transmitted from the base station BS to the terminal MS-A in the same subframe as the data allocation control channels A-MAPM0 and A-MAP 1, respectively. That is, the two data themselves are transmitted at different timings.
  • the transmission timing of ACK / NACK is instructed so that ACK / NACK is returned after 4 subframes in A-MAPM0 and after 3 subframes in A-MAP 1, and two data in the same subframe are indicated.
  • ACK / NACK is transmitted.
  • FIG. 21 is a diagram showing an example of ACK / NACK resource allocation in 802.16m.
  • ACK / NACK information is transmitted from the terminal MS to the base station BS through HFBCH (HARQ Feedback Channel).
  • the HFBCH is composed of 6 resource units (HFBCH-0 to 5). It is assumed that the HFA value of the data allocation control channel and the HFBCH resource number are defined correspondingly, and the even and odd numbers of the HFA and HFBCH resources match.
  • Non-Patent Document 1 A specific example of the ACK / NACK feedback method is proposed in Non-Patent Document 1, for example, and an example of assigning spreading code sequences in 1-bitbFB and 2-bit FB is disclosed.
  • FIG. 22 is a diagram showing an example of assignment of spreading code sequences to be assigned to response signals, and shows assignment of spreading code sequences in each case of 1-bitbFB and 2-bit FB.
  • 1-bit FB “whether the target resource of ACK / NACK is an even / odd resource” or “whether the CRC determination of data is ACK / NACK” is notified.
  • notification is performed using four spreading code sequences [C0, C1, C2, C3] assigned in each case.
  • ACK for even resources is [+ 1, + 1, + 1, + 1] (index 0)
  • NACK for even resources is [+ 1, -1, + 1, -1] (index 1)
  • ACK for odd resources is [+ 1, -1, + 1, -1] (index 1)
  • 2-bit FB “ACK / NACK information of even resource and odd resource” from the same terminal MS is notified.
  • notification is performed using four spreading code sequences [C0, C1, C2, C3] assigned to the ACK / NACK combination of two resources.
  • the ACK / ACK combination is [+1, +1, +1, +1]
  • the ACK / NACK combination is [+1, -1, +1, -1]
  • the NACK / ACK combination is [+1, +1].
  • -1, -1] and NACK / NACK combinations transmit [+1, -1, -1, +1], respectively.
  • CDM is not performed on one set of resources of HFBCH, and two resources are occupied.
  • a feedback method is implicitly instructed by transmitting a data allocation control channel (A-MAP) from the base station BS to the terminal MS, and the terminal MS responds with ACK / NACK is fed back.
  • A-MAP data allocation control channel
  • the corresponding terminal MS uses 2-bit FB. Two CRC determination results for two allocation data are fed back simultaneously. In other cases, the terminal MS feeds back one CRC determination result for one allocation data by 1-bit FB.
  • a method of explicitly notifying 2-bit FB from the base station BS to the terminal MS is conceivable. According to this solution, erroneous recognition of the feedback method can be prevented. If the data allocation control channel (A-MAP) is missed, NACK can be fed back with respect to data corresponding to the missed A-MAP, for example, by performing processing at the time of miss detection.
  • A-MAP data allocation control channel
  • the retransmission data is actually the first transmission data.
  • FIG. 23 is a diagram for explaining the contents of data at the time of initial transmission and at the time of retransmission, and shows the allocation status of systematic bits and parity bits of encoded data.
  • an image in which encoded data having systematic bits and parity bits generated by encoding a bit sequence of transmission data at a mother encoding rate of 1/3 is stored in a circular buffer (cyclic buffer). Show.
  • the SPID indicates the start position of the transmission data.
  • the case where the coding rate at the time of transmission is smaller than the mother coding rate is shown, and the coded data is partially transmitted.
  • the retransmission data is generally transmitted as data different from the initial transmission data.
  • the reception gain at the time of initial transmission and retransmission is combined to obtain a retransmission gain.
  • FIG. 24 is a graph showing an example of the packet error rate for only the first transmission data and the first retransmission data.
  • the vertical axis represents the block error rate BLER (Block Error Rate)
  • the horizontal axis represents the energy-to-noise power density ratio Eb / No (Energy-per-Bit-to-Noise Ratio) per bit.
  • the error rate increases only with retransmission data.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wireless communication apparatus and a wireless communication method capable of preventing deterioration of an error rate when retransmission is performed due to oversight of a control channel. It is to provide.
  • the present invention provides, as a first aspect, a control signal generation unit that generates a control signal including instruction information of a feedback method of a response signal to be fed back from the communication counterpart device to the own device, and a control signal and data to the communication counterpart device Including a transmission unit that transmits a signal including a reception unit that receives a response signal from the communication counterpart device, and a response signal determination unit that determines the received response signal.
  • a first feedback method that feeds back a response signal indicating whether or not decoding can be performed on one data
  • a second feedback method that feeds back a response signal that indicates whether or not decoding can be performed on two data can be used.
  • the control signal generation unit is an instruction information for instructing the first feedback method or the second feedback method.
  • the response signal determination unit detects two code sequences in the response signal when instructing the second feedback method, the control signal or the data is transmitted to the communication counterpart device.
  • a wireless communication apparatus that determines that there has been a missed reception.
  • the present invention provides, as a second aspect, the wireless communication apparatus described above, further including a retransmission processing unit that performs a retransmission process according to a determination result of the response signal, wherein the retransmission processing unit includes the reception miss In the case where there is a determination, the data for the first transmission is included.
  • the present invention provides, as a third aspect, the wireless communication apparatus described above, wherein the response signal indicates ACK or NACK corresponding to whether or not the data transmitted to the communication partner apparatus can be decoded.
  • the response signal indicates ACK or NACK corresponding to whether or not the data transmitted to the communication partner apparatus can be decoded.
  • the response signal determination unit receives the received signal corresponding to the feedback method used with the communication partner device.
  • ACK or NACK indicated by a code is determined, and when two code sequences are detected in the response signal, ACK, NACK, and reception miss for two target data are determined by a combination of the detected code sequences Including things.
  • the present invention provides, as a fourth aspect, the wireless communication apparatus described above, wherein the response signal uses a spread code sequence as a code sequence, and the response signal determination unit When two spread code sequences having high peaks are detected by despreading, the sequence includes one for determining that the reception is missed.
  • the present invention provides, as a fifth aspect, the above-described wireless communication apparatus, wherein the control signal generation unit uses a control signal including instruction information of an allocation resource of the response signal as instruction information of the feedback method. If the specific region for the second feedback method is provided in the instruction information of the allocation resource of the response signal and the second feedback method is used with the communication counterpart device, the allocation resource of the response signal
  • the instruction information includes information for generating a control signal using the instruction information of the specific area with respect to a response signal for at least one data.
  • the present invention provides a receiving unit for receiving a signal from a communication partner device, and a control signal including instruction information on a feedback method of a response signal to be fed back from the own device to the communication partner device in the received signal.
  • a control signal acquisition unit that acquires data, a data decoding unit that decodes data in the received signal, an oversight determination unit that determines whether the control signal or the data is overlooked, the presence or absence of the reception oversight, and the data
  • a response signal output unit that selects a code sequence to be used for the response signal according to whether decoding is possible, outputs a response signal using the selected code sequence, and a transmission unit that transmits the response signal.
  • a first feedback method for feeding back a response signal indicating whether or not decoding is possible with respect to one piece of data and 2
  • a second feedback method that feeds back a response signal indicating whether or not decoding is possible can be used, and the response signal output unit determines whether the reception is missed when the second feedback method is instructed.
  • two code sequences are output as the response signal, and the transmission unit provides a radio communication apparatus that transmits a response signal in which the two code sequences are multiplexed.
  • the present invention provides, as a seventh aspect, the above-described wireless communication device, wherein the response signal indicates ACK or NACK corresponding to whether or not the data received from the communication partner device can be decoded.
  • the response signal output unit includes codes set in the respective feedback methods of the first feedback method and the second feedback method, and the response signal output unit receives two pieces of target data when the reception miss is determined. Output a combination of two code sequences indicating ACK, NACK and missed reception.
  • the present invention provides, as an eighth aspect, the above-described wireless communication device, wherein the response signal output unit includes, as the two code sequences, each time unit of a response signal transmitted from the transmission unit.
  • the output includes a combination of two spreading code sequences in which the power of transmission symbols is the same or substantially the same.
  • the present invention provides, as a ninth aspect, the wireless communication apparatus described above, wherein the transmission unit includes two transmission antennas, and two code sequences output from the response signal output unit are separated from each other. This includes transmission from the transmission antenna of the system.
  • the tenth aspect of the present invention is the wireless communication apparatus according to the tenth aspect, wherein the response signal output unit outputs a combination of two code sequences whose phases are shifted by 90 degrees as the two code sequences. Including what to do.
  • a first feedback method for feeding back a response signal indicating whether or not one data can be decoded and a response signal indicating whether or not two data can be decoded are fed back with a communication partner apparatus
  • a wireless communication method in a wireless communication apparatus capable of using the second feedback method, wherein a control signal including instruction information indicating the first feedback method or the second feedback method is generated, and the communication Transmits a signal including a control signal and data to the partner device, receives a response signal from the communication partner device, and detects two code sequences in the received response signal when the second feedback method is instructed The communication partner device missed reception of the control signal or the data.
  • a first feedback method for feeding back a response signal indicating whether or not decoding can be performed on one piece of data and a response signal indicating whether or not decoding can be executed on two pieces of data can be fed back.
  • a wireless communication method in a wireless communication device capable of using the second feedback method wherein a signal from the communication partner device is received, and a response signal in the received signal is fed back from the own device to the communication partner device Obtaining a control signal including instruction information of the feedback method, decoding data in the received signal, determining whether the control signal or the data is overlooked, and when the second feedback method is instructed Outputs two code sequences as the response signal when there is a missed reception decision Provides a wireless communication method for transmitting a response signal obtained by multiplexing the two code sequences.
  • the transmitting apparatus transmits a control signal including instruction information on the feedback method, and instructs the receiving apparatus to use the second feedback method.
  • the receiving-side apparatus determines whether the control signal or data is missed, and outputs two code sequences as response signals when there is a missed reception when the second feedback method is instructed.
  • a response signal in which two code sequences are multiplexed is transmitted.
  • the transmission side apparatus detects the two code sequences in the response signal when the second feedback method is instructed, it determines that the communication partner apparatus has missed reception of the control signal or data. Then, if there is a reception miss determination, the transmission-side apparatus gives an instruction to retransmit the data at the first transmission.
  • an error rate is prevented from deteriorating when retransmission is performed due to an oversight of the control channel. It is possible to provide a wireless communication apparatus and a wireless communication method that can be used.
  • Operation explanatory diagram showing an example of feedback processing of ACK / NACK in the embodiment of the present invention
  • the figure which shows the example of allocation of the HFA and HFBCH resource in embodiment of this invention
  • the flowchart which shows the operation
  • the flowchart which shows the operation
  • FIG. 1 The figure which shows the table of the spreading code series which shows ACK / NACK at the normal time
  • FIG. 10 is a diagram showing a table of spreading code sequences indicating ACK / NACK at normal time and when A-MAP is missed in the second embodiment.
  • Spread code sequence table indicating ACK / NACK when A-MAP is missed in the fourth embodiment
  • the block diagram which shows the structural example of the receiving side apparatus (terminal device) of the radio
  • movement explanatory drawing which shows the feedback method of two types of ACK / NACK in 802.16m.
  • the figure which shows the example of allocation of the resource for ACK / NACK in 802.16m The figure which shows the example of allocation of the spreading code sequence allocated to a response signal Diagram explaining data contents at the time of first transmission and retransmission Graph showing an example of packet error rate for each data of the first transmission and the first retransmission
  • a control signal is transmitted between the base station BS and the terminal MS, with the transmitting-side radio communication device (transmitting device) as the base station BS and the receiving-side radio communication device (receiving device) as the terminal MS of the mobile station,
  • the transmitting-side radio communication device transmitting device
  • the receiving-side radio communication device receiving device
  • the downlink control signal from the base station BS to the terminal MS is transmitted on the data allocation control channel (A-MAP).
  • the ACK / NACK response signal for the downlink data instructed by the data allocation control channel is transmitted on the HFBCH which is an uplink feedback channel from the terminal MS to the base station BS.
  • 1-bit FB which is a first feedback method that feeds back a response signal indicating whether or not decoding is possible for one data, and second response signal that shows whether or not decoding is possible for two data are fed back. It is assumed that 2-bit FB, which is the feedback method of (1), can be used.
  • the 1-bit FB or 2-bit FB is explicitly notified from the base station BS to the terminal MS, and the oversight of A-MAP can be detected when the 2-bit FB is used in the terminal MS.
  • the terminal MS detects an A-MAP miss when the 2-bit FB is instructed, the terminal MS notifies the base station BS that the miss has occurred.
  • the base station BS can specify whether the terminal MS has missed A-MAP reception, and can transmit the first transmission data again for the corresponding data.
  • notification is made with a spreading code sequence indicating ACK / NACK so as not to change the configuration of the terminal MS on the receiving side as much as possible.
  • two spreading code sequences indicating ACK / NACK are CDMed and transmitted. Two multiplexed spreading code sequences can be separated and detected by despreading.
  • FIG. 1 is an operation explanatory view showing an example of ACK / NACK feedback processing in the embodiment of the present invention.
  • the terminal MS-A Shows a case where A-MAP 1 could not be received.
  • terminal MS-A determines that A-MAPM1 when 2-bit FB is applied, and notifies base station BS by ACK / NACK feedback.
  • the terminal MS-A CDMs and transmits two spreading code sequences indicating ACK / NACK. There are four spreading code sequences indicating normal ACK / NACK.
  • A-MAP is missed, two of them are selected according to the ACK / NACK / missed state of two data corresponding to 2-bit FB. Select one to send.
  • the base station BS can recognize the missed A-MAP by detecting two spreading code sequences in the feedback from the terminal MS-A.
  • the base station BS retransmits the data at the first transmission as a retransmission process when the A-MAP is missed.
  • A-MAP is missed
  • data containing many systematic bits can be retransmitted, so that the error rate characteristics of received data on the terminal side can be improved.
  • packet loss can be reduced.
  • FIG. 2 is a diagram showing an example of allocation of HFA and HFBCH resources in the embodiment of the present invention.
  • the HFA that notifies the HFBCH allocation resource is provided with 4 bits of information, and a total of 16 indexes can be used.
  • FIG. 21 since one unit of HFBCH is 6 resources, even when 2 units of HFBCH (12 resources) are used as shown in FIG. .
  • the ACK / NACK information is fed back, in the case of 1-bit FB, since two HFBCH resources are transmitted by CDM, intersymbol interference occurs.
  • 2-bit FB In the case of 2-bit FB, two HFBCH resources are occupied, so intersymbol interference does not occur and the characteristics are good. For this reason, it is preferable to use 2-bit FB as much as possible. However, the probability that all HFBCHs are transmitted in 2-bit FB is low.
  • the remaining four indexes when using 2 units of HFBCH are defined and used as the HFA for 2-bit FB.
  • the receiving terminal MS receives the 2-bit ⁇ FB HFA allocation notification from the transmitting base station BS, thereby recognizing the 2-bit FB instruction.
  • receiving an instruction of 2-bit FB only one A-MAP can be received, and if an instruction of consecutive even and odd HFBCH resources is not obtained, reception of A-MAP is missed. It can be detected.
  • HFA 12 to 15 provided for 2-bit FB is selected and HFA is notified, and HFBCH corresponding to this is selected.
  • the resource numbers of HFBCH_A-0 to 3 at the time of 2-bit FB are notified.
  • the use of 2-bit ⁇ FB is notified from the base station BS to the terminal MS-A by allocation of consecutive even and odd resources, but is notified by the HFA for 2-bit FB.
  • the terminal MS-A can determine the instruction of 2-bit FB even if one A-MAP is missed.
  • the terminal MS-A When the terminal MS-A recognizes that the A-MAP is missed, the terminal MS-A switches the table of the spread code sequence indicating the ACK / NACK to that when the A-MAP is missed. At this time, two spreading code sequences indicating ACK / NACK are CDMed and transmitted to the base station BS.
  • FIG. 3 is a flowchart showing an operation procedure of the reception side apparatus according to the embodiment of the present invention.
  • a case will be described in which 2-bit FB is instructed by notifying
  • the terminal MS receives the data allocation control channel (A-MAP) control signal and data from the base station BS (step S11). Then, the terminal MS determines whether or not the data allocation control channel has been correctly received (step S12). If it has been received, the terminal MS determines ACK / NACK of the received data (step S13). Next, terminal MS uses a “normal table” as a table of spreading code sequences, generates a 2-bit FB response signal according to the ACK / NACK determination result, and transmits the response signal to base station BS (step S14).
  • A-MAP
  • the terminal MS detects the miss of the data allocation control channel and determines ACK / NACK of the received data (step S15).
  • terminal MS uses a “missing time table” as a table of spreading code sequences, and determines two spreading code sequences according to the ACK / NACK determination result.
  • a 2-bit FB response signal obtained by CDMing the two spreading code sequences is generated and transmitted to the base station BS (step S16).
  • FIG. 4 is a flowchart showing an operation procedure of the transmission side apparatus (base station apparatus) in the embodiment of the present invention.
  • the base station BS on the transmission side transmits a data allocation control channel (A-MAP) control signal and data to the terminal MS on the reception side with the intention of 2-bit2-FB.
  • A-MAP data allocation control channel
  • the base station BS receives a response signal from the terminal MS (step S22) and recognizes ACK / NACK of the transmitted data.
  • the base station BS detects whether the data allocation control channel is missed depending on whether two spreading code sequences are detected in the response signal (step S23). If there is an oversight here, the base station BS transmits again the data at the first transmission of the corresponding data to the terminal MS (step S24). If the data allocation control channel is not missed, it is determined whether or not the response signal is NACK (step S25). If NACK, the data at the time of retransmission of the corresponding data is transmitted to the terminal MS (step S26). ). On the other hand, in the case of ACK, the next data is transmitted to the terminal MS (step S27).
  • FIG. 5 is a diagram showing a table of spreading code sequences indicating ACK / NACK at normal time
  • FIG. 6 is a diagram showing a table of spreading code sequences indicating ACK / NACK when A-MAP is missed
  • FIG. 7 is an A-MAP missed table. It is a figure explaining the detail of the combination of the spreading code series at the time.
  • the data allocation control channels A-MAP 0 and A-MAP 1 are transmitted, and the corresponding data are also combined.
  • the case of transmitting is illustrated. If the terminal MS can receive only one A-MAP in spite of receiving the HFA for 2-bit FB in either A-MAP 0 or A-MAP 1, the terminal MS can receive the other A-MAP Judge that you missed. In this case, the terminal MS transmits the ACK / NACK information by replacing the table with the spreading code sequence when A-MAP is missed instead of the spreading code sequence for 1-bitbFB in the normal time.
  • the terminal MS transmits the corresponding spreading code sequences in 1-bit FB and 2-bit FB, respectively.
  • 1-bit FB ACK or NACK related to one target data is transmitted.
  • A-MAP 0 is received and the data is ACK
  • [+1, +1, +1, +1] is transmitted
  • the data is NACK
  • [+1, ⁇ 1, +1, ⁇ 1] is transmitted.
  • A-MAP-1 is received and the data is ACK
  • [+1, +1, ⁇ 1, ⁇ 1] is transmitted
  • the data is NACK
  • [+1, ⁇ 1, ⁇ 1, +1] is transmitted.
  • ACK or NACK related to the two target data is transmitted together. [+1, +1, +1, +1] when the data of A-MAP 0 and A-MAP 1 is an ACK / ACK combination, [+1, -1, +1, -1] when the combination is ACK / NACK, [+1, +1, -1, -1] is transmitted for the NACK / ACK combination, and [+1, -1, -1, +1] is transmitted for the NACK / NACK combination.
  • the terminal MS When the A-MAP miss is detected, as shown in the “missing time table” in FIG. 6, the terminal MS is based on the ACK / NACK of the data that can be normally received and the number of the missed A-MAP. 2 spread code sequences are determined, CDMed, and transmitted. Regarding the combination of spreading code sequences, when A-MAP 0 is normally received and A-MAP 1 is missed, if the data of A-MAP 0 is ACK, [+ 1, + 1, + 1, + 1] [+ 1, ⁇ 1, +1, ⁇ 1] and A-MAP 0 data of [+1, ⁇ 1, ⁇ 1, +1] [+1, +1, ⁇ 1, ⁇ 1] are respectively transmitted when NACK is NACK.
  • A-MAP 1 is overlooked and A-MAP 1 is normally received and the data of A-MAP 1 is ACK, [+1, +1, -1, -1] [+1, +1, +1, +1] and when the data of A-MAP 1 is NACK, [+1, ⁇ 1, ⁇ 1, +1] [+1, ⁇ 1, +1, ⁇ 1] are transmitted.
  • the contents of the combination of spreading code sequences when A-MAP is overlooked are as shown in FIG.
  • the two spreading code sequences transmitted when A-MAP is overlooked are not randomly defined, but are associated with ACK / NACK in 2-bit FB in normal times. Specifically, in the normal 2-bit FB, those who can receive A-MAP correctly are ACK / ACK in the case of ACK and NACK / NACK in the case of NACK. Those who missed are defined to be a combination of ACK and NACK.
  • FIG. 8 is a diagram for explaining the A-MAP miss detection operation in the transmission side apparatus according to this embodiment.
  • the transmission-side base station BS despreads the received response signal and detects a spread code sequence indicating ACK / NACK.
  • the base station normally detects only one spreading code sequence, but the terminal detects two spreading code sequences having a high peak from the response signal when the A-MAP is missed.
  • the base station detects two spreading code sequences, the base station can detect an A-MAP number that was missed by a combination of spreading code sequences and an ACK / NACK for correctly received A-MAP data. In this way, if the base station can identify the missed A-MAP reception at the terminal, the first transmission data can be used as the initial transmission data and can be instructed to increase systematic bits, thereby improving communication characteristics. Is possible.
  • FIG. 9 is a block diagram showing a configuration example of a transmission side apparatus (base station apparatus) of the wireless communication apparatus according to the embodiment of the present invention.
  • the transmission side device includes a reception antenna 701, an FFT unit 702, a demodulation unit 703, an ACK / NACK decoding unit 704, an allocation unit 705, a data allocation control signal generation unit 706, a transmission data generation unit 707, modulation units 708 and 709, and a multiplexing unit. 710, an IFFT unit 711, and a transmission antenna 712.
  • the receiving antenna 701 receives the radio wave of the response signal fed back from the receiving side device (terminal device) that is the communication counterpart device, and obtains the received signal of the RF signal.
  • the FFT unit 702 performs time-frequency conversion on the received signal to extract a multicarrier signal, and the demodulator 703 demodulates the extracted multicarrier signal.
  • the ACK / NACK decoding unit 704 decodes ACK / NACK information from the demodulated received signal of the response signal, and acquires a spreading code sequence indicating ACK / NACK.
  • one spreading code sequence is detected in normal time, and two spreading code sequences are detected when A-MAP is missed.
  • the allocation unit 705 allocates resources such as transmission data and response signals, sets data allocation information in the data allocation control channel (A-MAP), and transmits the data allocation control signal generation unit 706 and the transmission data generation unit 707 to each other. Instruct. Also, the allocation unit 705 determines the ACK / NACK information output from the ACK / NACK decoding unit 704, and performs retransmission processing by HARQ according to the returned ACK / NACK.
  • the assigning unit 705 assigns an HFA for 2-bit FB in A-MAP and notifies the target terminal as described above. Specifies resource numbers of odd consecutive HFBCHs.
  • allocating section 705 recognizes that A-MAP is missed at the receiving side device, and performs retransmission processing when A-MAP is missed. An instruction is given to retransmit the data at the first transmission.
  • the data allocation control signal generation unit 706 generates a control signal to be transmitted on the data allocation control channel (A-MAP) based on the data allocation information from the allocation unit 705, and the modulation unit 708 performs data allocation according to a predetermined modulation scheme. Modulate the control signal.
  • the transmission data generation unit 707 generates and holds data for transmission based on the input transmission data sequence, and reads and outputs the data based on the coding rate and the number of transmissions.
  • the modulation unit 709 modulates data using a predetermined modulation method. QPSK, 16QAM, 64QAM, or the like is used as a modulation method of the modulation units 708 and 709.
  • the multiplexing unit 710 performs frequency domain and time domain allocation on the modulated data allocation control signal and data, and multiplexes the transmission signal.
  • the IFFT unit 711 performs frequency-time conversion of the transmission signal to generate a transmission signal of the RF signal, and the transmission antenna 712 transmits the RF signal transmission signal as a radio wave to the reception side device (terminal device) that is the communication counterpart device. Send.
  • FIG. 10 is a block diagram showing a configuration example of the receiving side device (terminal device) of the wireless communication device according to the embodiment of the present invention.
  • the reception side device includes a reception antenna 801, an FFT unit 802, a demodulation unit 803, a data decoding unit 804, a CRC determination unit 805, an allocation signal decoding unit 806, an allocation signal miss determination unit 807, a table selection unit 808, and an ACK / NACK sequence determination. 809, a modulation unit 810, an IFFT unit 811, and a transmission antenna 812.
  • the reception antenna 801 receives a radio wave of a transmission signal transmitted from a transmission side device (base station device) that is a communication partner device, and obtains an RF signal reception signal.
  • the FFT unit 802 performs time-frequency conversion of the received signal to extract a multicarrier signal, and the demodulator 803 demodulates the extracted multicarrier signal.
  • the data decoding unit 804 decodes data from the received signal of the demodulated transmission signal, and the CRC determination unit 805 performs CRC determination on the data decoding result and outputs the CRC determination result.
  • the allocation signal decoding unit 806 decodes the data allocation control signal transmitted in the data allocation control channel (A-MAP), and acquires data allocation information including HFA.
  • the allocation signal miss determination unit 807 determines whether the data allocation control signal is missed based on the contents of the HFA in the acquired data allocation information.
  • the table selection unit 808 selects a spread code sequence table indicating ACK / NACK in accordance with the missed determination result of the data allocation control signal.
  • the table selection unit 808 selects the “normal table” that defines the normal spreading code sequence shown in FIG. 5 when the A-MAP is not missed, and shows the diagram when the A-MAP is missed.
  • the “missing time table” defining the spread code sequence when the A-MAP is missed shown in FIG. 6 is selected. That is, when it is determined that the A-MAP is missed, the spread code sequence is switched.
  • the ACK / NACK sequence determination unit 809 determines the ACK / NACK spreading code sequence according to the CRC determination result in the CRC determination unit 805 using the table of the spreading code sequence selected by the table selection unit 808. If there is an A-MAP miss, two spreading code sequences are determined based on the ACK / NACK of the received data and the missed A-MAP number. Modulation section 810 modulates the determined ACK / NACK spreading code sequence using a predetermined modulation scheme. At this time, the modulation unit 810 allocates a spreading code sequence to the HFBCH resource corresponding to the HFA notified from the base station, and performs CDM on the two spreading code sequences if there is an A-MAP miss.
  • the IFFT unit 811 performs frequency-time conversion of the transmission signal to generate an RF signal transmission signal, and the transmission antenna 812 transmits the RF signal transmission signal to the transmission side apparatus (base station apparatus) that is the communication counterpart apparatus. Send as.
  • the radio communication apparatus that can use a plurality of feedback methods of 1-bit FB and 2-bit FB with respect to an ACK / NACK response signal according to an instruction of the control channel, It is possible to notify the transmitting side device that the control channel is overlooked without changing the configuration of the receiving side device as much as possible.
  • the transmission side device when the control channel is missed, the data of the first transmission can be retransmitted to retransmit the data containing many systematic bits, and the error rate characteristic of the received data can be improved.
  • the second embodiment is an example in which the spreading code sequence used for the response signal in the first embodiment described above is partially changed.
  • the description will focus on the differences from the first embodiment, and the description of the same points as in the first embodiment will be omitted as appropriate.
  • FIG. 11 is a diagram for explaining the transmission power of the spreading code sequence in the first embodiment.
  • the combined sequence at the time of CDM transmission is [+2, 0, +2, 0], [+2, 0, -2, 0. ], [+2, +2, 0, 0], [+2, -2, 0, 0].
  • this composite sequence is assigned to the HFBCH resource shown in FIG. 21, the first, third, second and fourth of the four symbols are assigned to the same time unit resource. Therefore, when [+2, 0, +2, 0] and [+2, 0, -2, 0] are transmitted in the composite sequence, the power of the symbol transmitted at the first time is transmitted at the next time. Since it is much larger than the power of the symbol and the transmission power difference in time units is large, there is a problem that the transmission power at the terminal of the receiving side apparatus cannot be effectively used.
  • a part of the spreading code sequence of the “normal table” used at the normal time is partially replaced, and the definition of the combination of the two spreading code sequences to be CDMed in the “missing time table” used when the A-MAP is missed. Is left as is. That is, a combination of spreading code sequences in the “missing time table” is determined and used based on a “normal table” in which the spreading code sequences are partially replaced.
  • FIG. 12 is a diagram showing a table of spreading code sequences indicating ACK / NACK at the normal time and A-MAP missed time in the second embodiment.
  • the codes of 2-bitACKFB ACK / NACK and NACK / NACK in the normal state are switched with respect to the first embodiment shown in FIGS.
  • A-MAP is missed, A-MAPM0 is normally received, and when A-MAP 1 is missed and the data of A-MAP 0 is ACK, [+ 1, + 1, + 1, + 1] [+ 1, -1, -1, + 1] and A-MAP-0 data is NACK, [+1, +1, -1, -1] [+1, -1, +1, -1] are transmitted, respectively.
  • the transmission power for each time is almost the same in the HFBCH, and the transmission power in the time unit after the CDM is balanced, so that the transmission power at the terminal of the receiving apparatus is effectively used. Can do.
  • the third embodiment is an example in which two systems of response signal transmission antennas are provided in the receiving side device, and two spread code sequences are transmitted from another system of transmission antennas.
  • the description will focus on the differences from the first embodiment, and the description of the same points as in the first embodiment will be omitted as appropriate.
  • FIG. 13 is a diagram showing a table of spreading code sequences indicating ACK / NACK at the normal time and when A-MAP is missed in the third embodiment.
  • the same spreading code sequence as that used in the first embodiment shown in FIG. 6 is used as the spreading code sequence used for the ACK / NACK response signal, and these two spreading code sequences are respectively transmitted by antennas of different systems. Send. That is, the sequence 1 spreading code sequence used during normal time and A-MAP miss is transmitted from the first transmission antenna (antenna 1), and the sequence 2 spreading code sequence used when A-MAP is missed is transmitted to the second transmission antenna ( Transmit from antenna 2). Note that the spreading code sequence of the second embodiment described above may be used.
  • FIG. 14 is a block diagram illustrating a configuration example of a receiving side device (terminal device) of the wireless communication device according to the third embodiment.
  • the reception-side apparatus includes a modulation unit 820, an IFFT unit in parallel with a modulation unit 810, an IFFT unit 811, and a transmission antenna 812, following the ACK / NACK sequence determination unit 809. 821 and a transmission antenna 822.
  • the modulation unit 810, the IFFT unit 811 and the transmission antenna 812 transmit the sequence 1 spreading code sequence
  • the modulation unit 820, the IFFT unit 821 and the transmission antenna 822 transmit the sequence 2 spreading code sequence.
  • the transmission power in the terminal of the receiving device can be effectively used.
  • the fourth embodiment is an example in which the phases of two spreading code sequences used for a response signal are transmitted by being shifted by 90 degrees.
  • the description will focus on the differences from the first embodiment, and the description of the same points as in the first embodiment will be omitted as appropriate.
  • FIG. 15 is a diagram showing a table of spreading code sequences indicating ACK / NACK when A-MAP is missed in the fourth embodiment.
  • the spreading code sequence used for the ACK / NACK response signal the phase of the sequence 2 is shifted by 90 degrees with respect to the sequence 1 based on that of the first embodiment shown in FIG. A spreading code sequence is used.
  • A-MAP 0 when A-MAP 0 is normally received when A-MAP is missed and A-MAP 1 is missed, if the data of A-MAP 0 is ACK, [+1, + 1, + 1, + 1] [ + J, -j, + j, -j], and when the data of A-MAPM0 is NACK, [+1, -1, -1, +1] [+ j, + j, -j, -j] are transmitted.
  • A-MAPM1 when A-MAPM1 is missed and A-MAP 1 is normally received and the data of A-MAP 1 is ACK, [+1, +1, -1, -1] [+ j, + j, + j, + J] and when data of A-MAP-1 is NACK, [+1, ⁇ 1, ⁇ 1, +1] [+ j, ⁇ j, + j, ⁇ j] are transmitted.
  • FIG. 16 is a diagram showing the symbol arrangement on the IQ plane of the spread code sequence in the fourth embodiment.
  • the sequence 1 spreading code sequence is a +1 or -1 symbol on the I axis in the IQ plane
  • the sequence 2 spreading code sequence is a + j or -j symbol on the Q axis in the IQ plane. It is.
  • the composite sequence at the time of CDM transmission is [1 + j, 1-j, 1 + j, 1-j], [1 + j, -1 + j, -1-j, 1-j], [1 + j, 1 + j, ⁇ 1 ⁇ j, 1 + j] and [1 + j, ⁇ 1 ⁇ j, ⁇ 1 + j, 1 ⁇ j].
  • FIG. 17 is a block diagram illustrating a configuration example of a receiving side device (terminal device) of the wireless communication device according to the fourth embodiment.
  • the receiving side device differs in the function of the modulation unit 830 as compared to the configuration of the first embodiment of FIG.
  • Modulating section 830 performs phase rotation processing according to the spreading code sequence determined by ACK / NACK sequence determining section 809, and CDMs two spreading code sequences whose phases are shifted from each other by 90 degrees.
  • An antenna port refers to a logical antenna composed of one or a plurality of physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas. For example, in LTE, it is not defined how many physical antennas an antenna port is composed of, but is defined as a minimum unit by which a base station can transmit different reference signals (Reference signals). The antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
  • Precoding vector precoding vector
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention has an effect that it is possible to prevent deterioration of an error rate when retransmission is performed due to oversight of a control channel.
  • wireless communication applicable to a wireless communication system such as IEEE 802.16m It is useful as an apparatus and a wireless communication method.

Abstract

The present invention is directed to prevention of the error rate from becoming worse in a case where a retransmission has been performed after occurrence of the overlook of a control channel. In a data allocation control channel A-MAP for downlink control signals, an HFA is transmitted which designates an uplink HFBCH resource to be used for causing an ACK/NACK to be fed back. Consecutively even-numbered and odd-numbered resources are notified as the HFA, thereby designating 2-bit FB to send back the ACK/NACK related to two pieces of data. On the receiving side, when the reception overlook of an A-MAP has been determined, two spread code sequences are subjected to a CDM process and then transmitted. On the transmitting side, when the two spread code sequences are detected as a response signal, the ACK/NACK and reception overlook are determined from the combination of the spread code sequences, and the initially transmitted data are retransmitted as the data for which the reception overlook has occurred.

Description

無線通信装置及び無線通信方法Wireless communication apparatus and wireless communication method
 本発明は、無線通信装置及び無線通信方法に関し、詳しくは、伝送データの復号可否をフィードバックする応答信号の伝送に関する。 The present invention relates to a wireless communication apparatus and a wireless communication method, and more particularly to transmission of a response signal that feeds back whether transmission data can be decoded.
 最近では、無線通信において、データ通信や映像通信などのマルチメディア通信が非常に盛んになってきている。高速通信を可能とする無線通信規格の一つとして、WiMAXと呼ばれるものがあり、IEEEにおいて802.16eが策定され、その次世代の規格として802.16mが検討されている。802.16mでは、複数アンテナを用いて複数ストリームの送受信を行うMIMO(Multiple Input Multiple Output)の適用が検討されている。 Recently, multimedia communication such as data communication and video communication has become very popular in wireless communication. One wireless communication standard that enables high-speed communication is called WiMAX, IEEE 802.16e was established by IEEE, and 802.16m is being studied as the next generation standard. In 802.16m, application of MIMO (Multiple Input Multiple Output) that transmits and receives a plurality of streams using a plurality of antennas is being studied.
 無線通信装置では、伝送データの復号可否をフィードバックする応答信号として、受信側の装置から送信側の装置に対してACK(Acknowledgment)またはNACK(Negative Acknowledgment)を送信する。以下、これらの応答信号をACK/NACKと記載する。図18は802.16mにおけるACK/NACKの送信の手順を示す図である。ここでは、802.16mに対応する無線通信システムにおいて、基地局(BS:Base Station)の通信装置を送信側の無線通信装置、移動局(MS:Mobile Station)の端末を受信側の無線通信装置とした場合を想定する。 In the wireless communication device, an ACK (Acknowledgment) or NACK (Negative Acknowledgment) is transmitted from the receiving device to the transmitting device as a response signal that feeds back whether the transmission data can be decoded. Hereinafter, these response signals are referred to as ACK / NACK. FIG. 18 is a diagram showing an ACK / NACK transmission procedure in 802.16m. Here, in a wireless communication system compatible with 802.16m, a base station (BS: Base Station) communication device is a transmitting-side wireless communication device, and a mobile station (MS: Mobile Station) terminal is a receiving-side wireless communication device. Assuming that
 まず、基地局BSは、データ割当制御チャネル(A-MAP:Advanced MAP)において、対象となる端末MS宛のデータ割当情報を送信する。データ割当情報は、伝送するデータの領域(周波数、時間で定義されたリソース領域)や変調方式、符号化率、データのACK/NACKを返すACK/NACK用リソースの領域(HFA:HARQ Feedback Allocation)、ACK/NACKを返答するタイミングなどを含む情報である。ここで、基地局BSは、端末MSから返答されたACK/NACKに応じて再送制御と誤り訂正を組み合わせたHARQ(Hybrid Automatic Repeat reQuest)の制御を行う。端末MSは、データ割当情報に基づいて自局宛のデータを復号し、CRC(Cyclic Redundancy Check)を判定する。そして、端末MSは、復号可否としてのCRC判定結果を示すACK/NACKを、HFAにより割り当てられたACK/NACK用リソースの領域において返答する。 First, the base station BS transmits data allocation information addressed to the target terminal MS through a data allocation control channel (A-MAP: Advanced MAP). Data allocation information includes an area of data to be transmitted (resource area defined by frequency and time), a modulation scheme, a coding rate, and an area of ACK / NACK resources for returning data ACK / NACK (HFA: HARQ Feedback Allocation). , Information including the timing of replying ACK / NACK. Here, the base station BS performs HARQ (Hybrid Automatic Repeat reQuest) control that combines retransmission control and error correction according to ACK / NACK returned from the terminal MS. The terminal MS decodes the data addressed to itself based on the data allocation information and determines CRC (Cyclic Redundancy Check). Then, the terminal MS returns an ACK / NACK indicating the CRC determination result indicating whether or not decoding is possible in the area of the ACK / NACK resource allocated by the HFA.
 図19は802.16mにおける伝送データ及びACK/NACKのやり取りを時間方向に示した動作説明図である。時間方向では、フレームiにおいて下り(DL:Downlink、BS→MS)のサブフレームが複数連続した後に上り(UL:Uplink、MS→BS)のサブフレームが複数連続して割り当てられるものとする。端末MSは、下り(DL)のデータ割当制御チャネル(A-MAP)にあるHFAによってACK/NACKを返答するACK/NACK用リソースを認識し、当該リソースにおいてCRC判定結果をフィードバックする。図19の例では、基地局BSは、データ割当制御チャネルのA-MAP_0において端末MS-Aに対してHFA=0を含むデータ割当情報を送信するとともに、端末MS-Aにデータを送信する。端末MS-Aは、HFA=0に対応するACK/NACK用のリソースを用いて、データ割当制御チャネルで指示されたタイミングでACK/NACKを送信する。 FIG. 19 is an operation explanatory diagram showing the exchange of transmission data and ACK / NACK in 802.16m in the time direction. In the time direction, a plurality of downlink (DL: Downlink, BS → MS) subframes are consecutively allocated in frame i, and then a plurality of uplink (UL: Uplink, MS → BS) subframes are continuously allocated. The terminal MS recognizes an ACK / NACK resource that returns an ACK / NACK by the HFA in the downlink (DL) data allocation control channel (A-MAP), and feeds back a CRC determination result in the resource. In the example of FIG. 19, the base station BS transmits data allocation information including HFA = 0 to the terminal MS-A in the data allocation control channel A-MAP_0 and transmits data to the terminal MS-A. The terminal MS-A transmits ACK / NACK at the timing indicated by the data allocation control channel using the ACK / NACK resource corresponding to HFA = 0.
 図20は802.16mにおける2種類のACK/NACKのフィードバック方法を示す動作説明図である。802.16mでは、ACK/NACKのフィードバック方法として、1-bit FB(1-bit Feedback)と2-bit FB(2-bit Feedback)の2種類が規定されている。図20において、(A)は1-bit FBを、(B)は2-bit FBをそれぞれ示している。1-bit FBは、通常通り1つのデータに対して、1つのCRC判定結果をフィードバックする方法である。2-bit FBは、2つのデータに対して、2つのCRC判定結果を同時にフィードバックする方法である。なお、1-bit FBか2-bit FBかは明示的には通知されない。802.16mの場合、基地局BSが1つの端末MSに対してHFAとして偶数と奇数の連続するHFA値を割り当てることによって、暗示的に2-bit FBを指示したこととなる。 FIG. 20 is an operation explanatory view showing two types of ACK / NACK feedback methods in 802.16m. 802.16m defines two types of ACK / NACK feedback methods: 1-bitbFB (1-bit Feedback) and 2-bit FB (2-bit Feedback). 20, (A) shows 1-bit1-FB, and (B) shows 2-bit FB. 1-bitbFB is a method of feeding back one CRC determination result for one data as usual. 2-bit FB is a method of feeding back two CRC determination results simultaneously for two data. It is not explicitly notified whether 1-bit FB or 2-bit FB. In the case of 802.16m, the base station BS implicitly indicates 2-bit FB by assigning even and odd consecutive HFA values as HFA to one terminal MS.
 図20(A)の1-bit FBの割当例では、基地局BSは、2つのデータ割当制御チャネル(A-MAP 0、A-MAP 1)のうち、A-MAP 0で端末MS-Aに対してHFA=0を指示し、同じサブフレームで端末MS-Aにデータを送信する。また、基地局BSは、データ割当制御チャネルのA-MAP 1で端末MS-Bに対してHFA=1を指示し、同じサブフレームで端末MS-Bにデータを送信する。端末MS-Aは、HFA=0に対応するACK/NACK用のリソースを用いて、データ割当制御チャネルで指示されたタイミングでデータに対するACK/NACKをフィードバックする。端末MS-Bは、HFA=1に対応するACK/NACK用のリソースを用いて、データ割当制御チャネルで指示されたタイミング(端末MS-Aと同じサブフレーム)でデータに対するACK/NACKをフィードバックする。 In the allocation example of 1-bit FB in FIG. 20A, the base station BS transmits the data allocation control channel (A-MAP 0, A-MAP 1) to the terminal MS-A using A-MAP 0. On the other hand, HFA = 0 is instructed, and data is transmitted to terminal MS-A in the same subframe. In addition, the base station BS instructs the terminal MS-B to HFA = 1 with the data allocation control channel A-MAPM1, and transmits data to the terminal MS-B in the same subframe. Terminal MS-A uses the ACK / NACK resource corresponding to HFA = 0 to feed back ACK / NACK for data at the timing indicated by the data allocation control channel. Terminal MS-B uses the ACK / NACK resource corresponding to HFA = 1 to feed back ACK / NACK for data at the timing indicated by the data allocation control channel (the same subframe as terminal MS-A). .
 図20(B)の2-bit FBの割当例では、基地局BSは、2つのデータ割当制御チャネル(A-MAP 0及びA-MAP 1)において、端末MS-Aに対してHFA=0及びHFA=1を指示する。端末MS-Aは、偶数と奇数の連続するHFAが自局に割当られたことから、2-bit FBによってACK/NACKをフィードバックすることを認識する。このとき、基地局BSから端末MS-Aに対して、データ割当制御チャネルA-MAP 0、A-MAP 1とそれぞれ同じサブフレームで2つのデータを送信する。すなわち、2つのデータ自身はそれぞれ異なるタイミングで送信される。端末MS-Aは、HFA=0及びHFA=1に対応するACK/NACK用のリソースを用いて、データ割当制御チャネルで指示されたタイミングで2つのデータに対するACK/NACKをフィードバックする。この場合、A-MAP 0では4サブフレーム後、A-MAP 1では3サブフレーム後にACK/NACKを返答するようにACK/NACKの送信タイミングを指示しており、同じサブフレームにおいて2つのデータに対するACK/NACKが送信される。 In the allocation example of 2-bitbFB in FIG. 20B, the base station BS uses HFA = 0 and MSFA for terminal MS-A in two data allocation control channels (A-MAP 0 and A-MAP 1). Instruct HFA = 1. Terminal MS-A recognizes that ACK / NACK is fed back by 2-bit FB since even and odd consecutive HFAs are assigned to the terminal MS-A. At this time, two data are transmitted from the base station BS to the terminal MS-A in the same subframe as the data allocation control channels A-MAPM0 and A-MAP 1, respectively. That is, the two data themselves are transmitted at different timings. Terminal MS-A uses the ACK / NACK resources corresponding to HFA = 0 and HFA = 1 to feed back ACK / NACK for two data at the timing indicated by the data allocation control channel. In this case, the transmission timing of ACK / NACK is instructed so that ACK / NACK is returned after 4 subframes in A-MAPM0 and after 3 subframes in A-MAP 1, and two data in the same subframe are indicated. ACK / NACK is transmitted.
 図21は802.16mにおけるACK/NACK用のリソースの割当例を示す図である。802.16mでは、ACK/NACKの情報は、端末MSから基地局BSに対してHFBCH(HARQ Feedback Channel)を通じて送信する。HFBCHは、6リソース単位(HFBCH-0~5)で構成される。上記のデータ割当制御チャネルのHFAの値とHFBCHのリソース番号とが対応して定義され、HFAとHFBCHのリソースの偶数、奇数が一致しているものとする。このHFBCHは、1セットが時間及び周波数の方向に設定された2x2=4シンボルで形成され、1セットに2つのリソースが割り当てられ、1単位に3セットが設けられて6つのリソースが割り当てられる。各セットの2つのリソースは、符号分割多重(CDM:Code Division Multiplexing)によって多重化されて送信される。ここで、各セットの2x2の4シンボルに長さ4の拡散符号系列が割り当てられている。1つのセットには、最大2つの拡散符号系列を割り当てることができる。長さ4の拡散符号系列は4種類あるので、それぞれの拡散符号系列にACK/NACKの情報を関連付けて送信する。ACK/NACKのフィードバック方法の具体例は、例えば非特許文献1に提案されており、1-bit FBと2-bit FBのそれぞれにおける拡散符号系列の割当例が開示されている。 FIG. 21 is a diagram showing an example of ACK / NACK resource allocation in 802.16m. In 802.16m, ACK / NACK information is transmitted from the terminal MS to the base station BS through HFBCH (HARQ Feedback Channel). The HFBCH is composed of 6 resource units (HFBCH-0 to 5). It is assumed that the HFA value of the data allocation control channel and the HFBCH resource number are defined correspondingly, and the even and odd numbers of the HFA and HFBCH resources match. This HFBCH is formed of 2 × 2 = 4 symbols in which one set is set in the direction of time and frequency, two resources are allocated to one set, three sets are provided to one unit, and six resources are allocated. Two resources of each set are multiplexed and transmitted by code division multiplexing (CDM). Here, a spreading code sequence of length 4 is allocated to 2 × 2 4 symbols of each set. Up to two spreading code sequences can be assigned to one set. Since there are four types of spreading code sequences of length 4, ACK / NACK information is transmitted in association with each spreading code sequence. A specific example of the ACK / NACK feedback method is proposed in Non-Patent Document 1, for example, and an example of assigning spreading code sequences in 1-bitbFB and 2-bit FB is disclosed.
 図22は応答信号に割り当てる拡散符号系列の割当例を示す図であり、1-bit FBと2-bit FBのそれぞれの場合における拡散符号系列の割り当てを示している。1-bit FBの場合、「ACK/NACKの対象リソースが偶数/奇数リソースのどちらであるか」と「データのCRCの判定がACK/NACKのどちらであるか」を通知する。ここで、事象としては4種類の可能性があるため、それぞれの場合に割り当てた4つの拡散符号系列[C0,C1,C2,C3]で通知を行う。図22の例では、偶数リソースのACKは[+1,+1,+1,+1](インデックス0)、偶数リソースのNACKは[+1,-1,+1,-1](インデックス1)、奇数リソースのACKは[+1,+1,-1,-1](インデックス2)、奇数リソースのNACKは[+1,-1,-1,+1](インデックス3)をそれぞれ送信する。受信側の基地局BSでは、拡散符号系列が分かると、「偶数/奇数のリソース」と「ACK/NACK」を判別できる。そして、偶数/奇数のリソースが分かると、データ割当制御チャネルA-MAPで指示した情報から、どの端末MSからのACK/NACKであるかを判別できる。 FIG. 22 is a diagram showing an example of assignment of spreading code sequences to be assigned to response signals, and shows assignment of spreading code sequences in each case of 1-bitbFB and 2-bit FB. In the case of 1-bit FB, “whether the target resource of ACK / NACK is an even / odd resource” or “whether the CRC determination of data is ACK / NACK” is notified. Here, since there are four types of events, notification is performed using four spreading code sequences [C0, C1, C2, C3] assigned in each case. In the example of FIG. 22, ACK for even resources is [+ 1, + 1, + 1, + 1] (index 0), NACK for even resources is [+ 1, -1, + 1, -1] (index 1), and ACK for odd resources. Transmits [+1, +1, -1, -1] (index 2), and NACK for odd resources transmits [+1, -1, -1, +1] (index 3). If the base station BS on the receiving side knows the spreading code sequence, it can discriminate between “even / odd resources” and “ACK / NACK”. If the even / odd resources are known, it is possible to determine from which terminal MS the ACK / NACK is based on the information indicated by the data allocation control channel A-MAP.
 2-bit FBの場合、同じ端末MSからの「偶数リソースと奇数リソースのACK/NACK情報」を通知する。この場合、2つのリソースのACK/NACKの組合せに対して割り当てた4つの拡散符号系列[C0,C1,C2,C3]で通知を行う。図22の例では、ACK/ACKの組合せは[+1,+1,+1,+1]、ACK/NACKの組合せは[+1,-1,+1,-1]、NACK/ACKの組合せは[+1,+1,-1,-1]、NACK/NACKの組合せは[+1,-1,-1,+1]をそれぞれ送信する。2-bit FBの場合は、2つのデータに対するACK/NACKを1つの拡散符号系列で表すため、HFBCHの1セットのリソースにおいてCDMを行わず、2つのリソースを占有する。 In the case of 2-bit FB, “ACK / NACK information of even resource and odd resource” from the same terminal MS is notified. In this case, notification is performed using four spreading code sequences [C0, C1, C2, C3] assigned to the ACK / NACK combination of two resources. In the example of FIG. 22, the ACK / ACK combination is [+1, +1, +1, +1], the ACK / NACK combination is [+1, -1, +1, -1], and the NACK / ACK combination is [+1, +1]. , -1, -1] and NACK / NACK combinations transmit [+1, -1, -1, +1], respectively. In the case of 2-bit FB, since ACK / NACK for two data is represented by one spreading code sequence, CDM is not performed on one set of resources of HFBCH, and two resources are occupied.
 上記のように、802.16mでは、基地局BSから端末MSへデータ割当制御チャネル(A-MAP)を送信することで暗示的にフィードバック方法を指示し、端末MSが対応するフィードバック方法によってACK/NACKをフィードバックする。ここで、基地局BSが1つの端末MSに対して偶数と奇数の連続するHFAを割り当てて、複数のサブフレームのデータ割当制御チャネルにおいてそれぞれ通知した場合、該当する端末MSは2-bit FBによって2つの割当データに対する2つのCRC判定結果を同時にフィードバックする。これ以外の場合は、端末MSは1-bit FBによって1つの割当データに対する1つのCRC判定結果をフィードバックする。したがって、このようなフィードバック処理を行う場合、端末MSがデータ割当制御チャネル(A-MAP)の受信を見逃すと、端末MSから基地局BSへ送信すべきフィードバックの種類を誤るという課題が生じる。基地局BSが2つのA-MAPによって2-bit FBを指示したときに、端末MSが一方のA-MAPを見逃した場合、1-bit FBと誤認識してフィードバックを行ってしまうことがある。 As described above, in 802.16m, a feedback method is implicitly instructed by transmitting a data allocation control channel (A-MAP) from the base station BS to the terminal MS, and the terminal MS responds with ACK / NACK is fed back. Here, when the base station BS allocates even and odd consecutive HFAs to one terminal MS and notifies them in the data allocation control channels of a plurality of subframes, the corresponding terminal MS uses 2-bit FB. Two CRC determination results for two allocation data are fed back simultaneously. In other cases, the terminal MS feeds back one CRC determination result for one allocation data by 1-bit FB. Therefore, when performing such feedback processing, if the terminal MS misses reception of the data allocation control channel (A-MAP), there arises a problem that the type of feedback to be transmitted from the terminal MS to the base station BS is wrong. When the base station BS instructs 2-bit FB with two A-MAPs, if the terminal MS misses one of the A-MAPs, it may erroneously recognize it as 1-bit FB and give feedback. .
 この課題を解決するため、例えば、基地局BSから端末MSに対して2-bit FBを明示的に通知するような方法が考えられる。この解決方法によれば、フィードバック方法の誤認識を防止できる。データ割当制御チャネル(A-MAP)を見逃した場合は、見逃し検出時の処理を行うことで、例えば見逃したA-MAPに対応するデータに関してNACKをフィードバックすることができる。 In order to solve this problem, for example, a method of explicitly notifying 2-bit FB from the base station BS to the terminal MS is conceivable. According to this solution, erroneous recognition of the feedback method can be prevented. If the data allocation control channel (A-MAP) is missed, NACK can be fed back with respect to data corresponding to the missed A-MAP, for example, by performing processing at the time of miss detection.
 上記の解決方法では、受信できなかったデータ割当制御チャネルに対応するデータに関してNACKとしてフィードバックするため、NACKに対するデータの再送が行われる。この場合、再送のデータが実は初回送信のデータとなる。 In the above solution, since data corresponding to the data allocation control channel that could not be received is fed back as NACK, the data for NACK is retransmitted. In this case, the retransmission data is actually the first transmission data.
 図23は初回送信時と再送時のデータの内容を説明する図であり、符号化データのシステマチックビットとパリティビットの割当状況を示したものである。図23の例では、マザー符号化率1/3で送信データのビット系列を符号化して生成したシステマチックビットとパリティビットを有する符号化データを、サーキュラーバッファ(巡回型バッファ)に格納したイメージを示している。SPIDは送信データの開始位置を示すもので、SPID=0~3のうちのいずれかから開始し、送信時の符号化率に応じたデータ量の分だけデータを読み出して送信を行う。ここでは、送信時の符号化率がマザー符号化率より小さい場合を示しており、符号化データが部分的に送信される。再送処理において、再送データは初回送信のデータとは異なるデータを送信するのが一般的である。初回送信時はSPID=0とし、システマチックビットを一番多く含むデータを送信する。再送時は、SPID=1、2、3などとして初回送信、再送1回目、再送2回目でバッファ内の異なる場所からデータを読み出し、異なるデータを送信する。受信側では、初回送信時と再送時の受信データを合成処理して再送利得を得るようにする。初回送信のビットと再送のビットが異なる組合せになることで、合成後の誤り率特性が改善できる。 FIG. 23 is a diagram for explaining the contents of data at the time of initial transmission and at the time of retransmission, and shows the allocation status of systematic bits and parity bits of encoded data. In the example of FIG. 23, an image in which encoded data having systematic bits and parity bits generated by encoding a bit sequence of transmission data at a mother encoding rate of 1/3 is stored in a circular buffer (cyclic buffer). Show. The SPID indicates the start position of the transmission data. The SPID starts from any one of SPID = 0 to 3, and data is read and transmitted by the amount of data corresponding to the coding rate at the time of transmission. Here, the case where the coding rate at the time of transmission is smaller than the mother coding rate is shown, and the coded data is partially transmitted. In the retransmission processing, the retransmission data is generally transmitted as data different from the initial transmission data. At the first transmission, SPID = 0 is set, and data including the most systematic bits is transmitted. At the time of retransmission, SPID = 1, 2, 3, etc., data is read from different locations in the buffer at the first transmission, the first retransmission, and the second retransmission, and different data is transmitted. On the receiving side, the reception gain at the time of initial transmission and retransmission is combined to obtain a retransmission gain. By combining the first transmission bit and the retransmission bit differently, the combined error rate characteristics can be improved.
 上記のような再生処理を行い、A-MAP見逃し時のNACKに対して再送したデータが初回送信のデータとなった場合、再送データ内にはシステマチックビットが少ないので、誤り率が悪くなるという課題がある。図24は初回送信と再送1回目のそれぞれのデータのみにおけるパケット誤り率の例を示すグラフである。図24において、縦軸はブロック誤り率BLER(Block Error Rate)を、横軸はビット当たりのエネルギー対雑音電力密度比Eb/No(Energy-per-Bit-to-Noise Ratio)を表している。図中の左側の2つが初回送信(SPID=0)の場合を示し、右側の2つが再送1回目(SPID=1)の場合を示している。図24からわかるように、再送データのみでは誤り率が高くなってしまう。 When the above-described reproduction processing is performed and the data retransmitted in response to NACK when A-MAP is missed becomes the data of the first transmission, the error rate deteriorates because there are few systematic bits in the retransmitted data. There are challenges. FIG. 24 is a graph showing an example of the packet error rate for only the first transmission data and the first retransmission data. In FIG. 24, the vertical axis represents the block error rate BLER (Block Error Rate), and the horizontal axis represents the energy-to-noise power density ratio Eb / No (Energy-per-Bit-to-Noise Ratio) per bit. The two on the left side in the figure show the case of the first transmission (SPID = 0), and the two on the right side show the case of the first retransmission (SPID = 1). As can be seen from FIG. 24, the error rate increases only with retransmission data.
 本発明は、上記事情に鑑みてなされたもので、その目的は、制御チャネルの見逃しが生じて再送を行った場合の誤り率の悪化を防止することが可能な無線通信装置及び無線通信方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wireless communication apparatus and a wireless communication method capable of preventing deterioration of an error rate when retransmission is performed due to oversight of a control channel. It is to provide.
 本発明は、第1の態様として、通信相手装置から自装置へフィードバックさせる応答信号のフィードバック方法の指示情報を含む制御信号を生成する制御信号生成部と、前記通信相手装置への制御信号及びデータを含む信号を送信する送信部と、前記通信相手装置からの応答信号を受信する受信部と、前記受信した応答信号を判定する応答信号判定部と、を備え、自装置は、前記通信相手装置との間において、1つのデータに関する復号可否を示す応答信号をフィードバックする第1のフィードバック方法と、2つのデータに関する復号可否を示す応答信号をフィードバックする第2のフィードバック方法とを使用可能であり、前記制御信号生成部は、前記第1のフィードバック方法または前記第2のフィードバック方法を指示する指示情報を含む制御信号を生成し、前記応答信号判定部は、前記第2のフィードバック方法を指示した際に前記応答信号において2つの符号系列を検出した場合、前記通信相手装置において前記制御信号または前記データの受信見逃しがあったことを判定する無線通信装置を提供する。 The present invention provides, as a first aspect, a control signal generation unit that generates a control signal including instruction information of a feedback method of a response signal to be fed back from the communication counterpart device to the own device, and a control signal and data to the communication counterpart device Including a transmission unit that transmits a signal including a reception unit that receives a response signal from the communication counterpart device, and a response signal determination unit that determines the received response signal. A first feedback method that feeds back a response signal indicating whether or not decoding can be performed on one data, and a second feedback method that feeds back a response signal that indicates whether or not decoding can be performed on two data can be used. The control signal generation unit is an instruction information for instructing the first feedback method or the second feedback method. When the response signal determination unit detects two code sequences in the response signal when instructing the second feedback method, the control signal or the data is transmitted to the communication counterpart device. There is provided a wireless communication apparatus that determines that there has been a missed reception.
 また、本発明は、第2の態様として、上記の無線通信装置であって、前記応答信号の判定結果に応じて再送処理を行う再送処理部をさらに備え、前記再送処理部は、前記受信見逃しの判定があった場合に、初回送信時のデータを再度送信するものを含む。 Further, the present invention provides, as a second aspect, the wireless communication apparatus described above, further including a retransmission processing unit that performs a retransmission process according to a determination result of the response signal, wherein the retransmission processing unit includes the reception miss In the case where there is a determination, the data for the first transmission is included.
 また、本発明は、第3の態様として、上記の無線通信装置であって、前記応答信号は、前記通信相手装置に送信した前記データの復号可否に対応するACKまたはNACKを示すための、前記第1のフィードバック方法と前記第2のフィードバック方法のそれぞれのフィードバック方法において設定した符号を含み、前記応答信号判定部は、通信相手装置との間で使用するフィードバック方法に対応して、前記受信した符号により示されるACKまたはNACKを判断するものであり、前記応答信号において2つの符号系列を検出した場合、前記検出した符号系列の組合せによって対象の2つのデータに関するACK、NACK、受信見逃しを判定するものを含む。 Further, the present invention provides, as a third aspect, the wireless communication apparatus described above, wherein the response signal indicates ACK or NACK corresponding to whether or not the data transmitted to the communication partner apparatus can be decoded. Including the code set in each feedback method of the first feedback method and the second feedback method, wherein the response signal determination unit receives the received signal corresponding to the feedback method used with the communication partner device. ACK or NACK indicated by a code is determined, and when two code sequences are detected in the response signal, ACK, NACK, and reception miss for two target data are determined by a combination of the detected code sequences Including things.
 また、本発明は、第4の態様として、上記の無線通信装置であって、前記応答信号は、符号系列として拡散符号系列が用いられるものであり、前記応答信号判定部は、前記応答信号を逆拡散してピークの高い2つの拡散符号系列を検出した場合、前記受信見逃しがあったことを判定するものを含む。 Further, the present invention provides, as a fourth aspect, the wireless communication apparatus described above, wherein the response signal uses a spread code sequence as a code sequence, and the response signal determination unit When two spread code sequences having high peaks are detected by despreading, the sequence includes one for determining that the reception is missed.
 また、本発明は、第5の態様として、上記の無線通信装置であって、前記制御信号生成部は、前記フィードバック方法の指示情報として、前記応答信号の割当リソースの指示情報を含む制御信号を生成し、前記応答信号の割当リソースの指示情報において前記第2のフィードバック方法用の特定領域を設け、前記通信相手装置との間で第2のフィードバック方法を使用する場合、前記応答信号の割当リソースの指示情報として、少なくとも1つのデータに対する応答信号に関して前記特定領域の指示情報を用いた制御信号を生成するものを含む。 In addition, the present invention provides, as a fifth aspect, the above-described wireless communication apparatus, wherein the control signal generation unit uses a control signal including instruction information of an allocation resource of the response signal as instruction information of the feedback method. If the specific region for the second feedback method is provided in the instruction information of the allocation resource of the response signal and the second feedback method is used with the communication counterpart device, the allocation resource of the response signal The instruction information includes information for generating a control signal using the instruction information of the specific area with respect to a response signal for at least one data.
 本発明は、第6の態様として、通信相手装置からの信号を受信する受信部と、前記受信した信号における、自装置から通信相手装置へフィードバックする応答信号のフィードバック方法の指示情報を含む制御信号を取得する制御信号取得部と、前記受信した信号におけるデータを復号するデータ復号部と、前記制御信号または前記データの受信見逃しを判定する見逃し判定部と、前記受信見逃しの有無と、前記データの復号可否とに応じて、前記応答信号に用いる符号系列を選択し、選択した符号系列を用いて応答信号を出力する応答信号出力部と、前記応答信号を送信する送信部と、を備え、自装置は、通信相手装置との間において、1つのデータに関する復号可否を示す応答信号をフィードバックする第1のフィードバック方法と、2つのデータに関する復号可否を示す応答信号をフィードバックする第2のフィードバック方法とを使用可能であり、前記応答信号出力部は、前記第2のフィードバック方法が指示された際に前記受信見逃しの判定があった場合に、前記応答信号として2つの符号系列を出力し、前記送信部は、前記2つの符号系列を多重した応答信号を送信する無線通信装置を提供する。 As a sixth aspect, the present invention provides a receiving unit for receiving a signal from a communication partner device, and a control signal including instruction information on a feedback method of a response signal to be fed back from the own device to the communication partner device in the received signal. A control signal acquisition unit that acquires data, a data decoding unit that decodes data in the received signal, an oversight determination unit that determines whether the control signal or the data is overlooked, the presence or absence of the reception oversight, and the data A response signal output unit that selects a code sequence to be used for the response signal according to whether decoding is possible, outputs a response signal using the selected code sequence, and a transmission unit that transmits the response signal. A first feedback method for feeding back a response signal indicating whether or not decoding is possible with respect to one piece of data, and 2 A second feedback method that feeds back a response signal indicating whether or not decoding is possible can be used, and the response signal output unit determines whether the reception is missed when the second feedback method is instructed. In this case, two code sequences are output as the response signal, and the transmission unit provides a radio communication apparatus that transmits a response signal in which the two code sequences are multiplexed.
 また、本発明は、第7の態様として、上記の無線通信装置であって、前記応答信号は、前記通信相手装置から受信した前記データの復号可否に対応するACKまたはNACKを示すための、前記第1のフィードバック方法と前記第2のフィードバック方法のそれぞれのフィードバック方法において設定した符号を含むものであり、前記応答信号出力部は、前記受信見逃しの判定があった場合に、対象の2つのデータに関するACK、NACK、受信見逃しを示す2つの符号系列の組合せを出力するものを含む。 Further, the present invention provides, as a seventh aspect, the above-described wireless communication device, wherein the response signal indicates ACK or NACK corresponding to whether or not the data received from the communication partner device can be decoded. The response signal output unit includes codes set in the respective feedback methods of the first feedback method and the second feedback method, and the response signal output unit receives two pieces of target data when the reception miss is determined. Output a combination of two code sequences indicating ACK, NACK and missed reception.
 また、本発明は、第8の態様として、上記の無線通信装置であって、前記応答信号出力部は、前記2つの符号系列として、前記送信部から送信される応答信号の時間単位ごとの各送信シンボルのパワーが同じまたはほぼ同じとなるような2つの拡散符号系列の組合せを出力するものを含む。 Moreover, the present invention provides, as an eighth aspect, the above-described wireless communication device, wherein the response signal output unit includes, as the two code sequences, each time unit of a response signal transmitted from the transmission unit. The output includes a combination of two spreading code sequences in which the power of transmission symbols is the same or substantially the same.
 また、本発明は、第9の態様として、上記の無線通信装置であって、前記送信部は、2系統の送信アンテナを有し、前記応答信号出力部から出力される2つの符号系列を別々の系統の送信アンテナから送信するものを含む。 Moreover, the present invention provides, as a ninth aspect, the wireless communication apparatus described above, wherein the transmission unit includes two transmission antennas, and two code sequences output from the response signal output unit are separated from each other. This includes transmission from the transmission antenna of the system.
 また、本発明は、第10の態様として、上記の無線通信装置であって、前記応答信号出力部は、前記2つの符号系列として、位相が互いに90度ずれた2つの符号系列の組合せを出力するものを含む。 The tenth aspect of the present invention is the wireless communication apparatus according to the tenth aspect, wherein the response signal output unit outputs a combination of two code sequences whose phases are shifted by 90 degrees as the two code sequences. Including what to do.
 本発明は、第11の態様として、通信相手装置との間において、1つのデータに関する復号可否を示す応答信号をフィードバックする第1のフィードバック方法と、2つのデータに関する復号可否を示す応答信号をフィードバックする第2のフィードバック方法とを使用可能な無線通信装置における無線通信方法であって、前記第1のフィードバック方法または前記第2のフィードバック方法を指示する指示情報を含む制御信号を生成し、前記通信相手装置への制御信号及びデータを含む信号を送信し、前記通信相手装置からの応答信号を受信し、前記第2のフィードバック方法を指示した際に前記受信した応答信号において2つの符号系列を検出した場合、前記通信相手装置において前記制御信号または前記データの受信見逃しがあったことを判定する無線通信方法を提供する。 As an eleventh aspect of the present invention, as an eleventh aspect, a first feedback method for feeding back a response signal indicating whether or not one data can be decoded and a response signal indicating whether or not two data can be decoded are fed back with a communication partner apparatus A wireless communication method in a wireless communication apparatus capable of using the second feedback method, wherein a control signal including instruction information indicating the first feedback method or the second feedback method is generated, and the communication Transmits a signal including a control signal and data to the partner device, receives a response signal from the communication partner device, and detects two code sequences in the received response signal when the second feedback method is instructed The communication partner device missed reception of the control signal or the data. Providing determining wireless communication method and.
 本発明は、第12の態様として、通信相手装置との間において、1つのデータに関する復号可否を示す応答信号をフィードバックする第1のフィードバック方法と、2つのデータに関する復号可否を示す応答信号をフィードバックする第2のフィードバック方法とを使用可能な無線通信装置における無線通信方法であって、前記通信相手装置からの信号を受信し、前記受信した信号における、自装置から通信相手装置へフィードバックする応答信号のフィードバック方法の指示情報を含む制御信号を取得し、前記受信した信号におけるデータを復号し、前記制御信号または前記データの受信見逃しを判定し、前記第2のフィードバック方法が指示された際に前記受信見逃しの判定があった場合に、前記応答信号として2つの符号系列を出力し、前記2つの符号系列を多重した応答信号を送信する無線通信方法を提供する。 As a twelfth aspect of the present invention, as a twelfth aspect, a first feedback method for feeding back a response signal indicating whether or not decoding can be performed on one piece of data and a response signal indicating whether or not decoding can be executed on two pieces of data can be fed back. A wireless communication method in a wireless communication device capable of using the second feedback method, wherein a signal from the communication partner device is received, and a response signal in the received signal is fed back from the own device to the communication partner device Obtaining a control signal including instruction information of the feedback method, decoding data in the received signal, determining whether the control signal or the data is overlooked, and when the second feedback method is instructed Outputs two code sequences as the response signal when there is a missed reception decision Provides a wireless communication method for transmitting a response signal obtained by multiplexing the two code sequences.
 上記構成により、送信側の装置では、第2のフィードバック方法を使用する場合、フィードバック方法の指示情報を含む制御信号を送信し、受信側の装置に第2のフィードバック方法を指示する。受信側の装置では、制御信号またはデータの受信見逃しを判定し、第2のフィードバック方法が指示された際に受信見逃しの判定があった場合に、応答信号として2つの符号系列を出力し、これら2つの符号系列を多重した応答信号を送信する。送信側の装置では、第2のフィードバック方法を指示した際に応答信号において2つの符号系列を検出した場合、通信相手装置において制御信号またはデータの受信見逃しがあったことを判定する。そして、送信側の装置は、受信見逃しの判定があった場合に、初回送信時のデータを再度送信する指示を行う。これにより、制御チャネルの制御信号の指示によってACK/NACKの応答信号に関して複数のフィードバック方法を使用可能である装置において、制御チャネルの見逃しが生じて再送を行った場合の誤り率の悪化を防止することが可能となる。 With the above configuration, in the case of using the second feedback method, the transmitting apparatus transmits a control signal including instruction information on the feedback method, and instructs the receiving apparatus to use the second feedback method. The receiving-side apparatus determines whether the control signal or data is missed, and outputs two code sequences as response signals when there is a missed reception when the second feedback method is instructed. A response signal in which two code sequences are multiplexed is transmitted. When the transmission side apparatus detects the two code sequences in the response signal when the second feedback method is instructed, it determines that the communication partner apparatus has missed reception of the control signal or data. Then, if there is a reception miss determination, the transmission-side apparatus gives an instruction to retransmit the data at the first transmission. As a result, in an apparatus that can use a plurality of feedback methods for an ACK / NACK response signal in accordance with an instruction of a control signal of the control channel, it prevents an error rate from deteriorating when retransmission is performed due to oversight of the control channel. It becomes possible.
 本発明によれば、制御チャネルの指示によってACK/NACKの応答信号に関して複数のフィードバック方法を使用可能である装置において、制御チャネルの見逃しが生じて再送を行った場合の誤り率の悪化を防止することが可能な無線通信装置及び無線通信方法を提供できる。 According to the present invention, in an apparatus that can use a plurality of feedback methods for an ACK / NACK response signal according to an instruction of a control channel, an error rate is prevented from deteriorating when retransmission is performed due to an oversight of the control channel. It is possible to provide a wireless communication apparatus and a wireless communication method that can be used.
本発明の実施形態におけるACK/NACKのフィードバック処理例を示す動作説明図Operation explanatory diagram showing an example of feedback processing of ACK / NACK in the embodiment of the present invention 本発明の実施形態におけるHFA及びHFBCHリソースの割り当て例を示す図The figure which shows the example of allocation of the HFA and HFBCH resource in embodiment of this invention 本発明の実施形態における受信側装置(端末装置)の動作手順を示すフローチャートThe flowchart which shows the operation | movement procedure of the receiving side apparatus (terminal device) in embodiment of this invention. 本発明の実施形態における送信側装置(基地局装置)の動作手順を示すフローチャートThe flowchart which shows the operation | movement procedure of the transmission side apparatus (base station apparatus) in embodiment of this invention. 通常時のACK/NACKを示す拡散符号系列のテーブルを示す図The figure which shows the table of the spreading code series which shows ACK / NACK at the normal time A-MAP見逃し時のACK/NACKを示す拡散符号系列のテーブルを示す図The figure which shows the table of the spreading code sequence which shows ACK / NACK at the time of A-MAP miss A-MAP見逃し時の拡散符号系列の組合せの詳細を説明する図The figure explaining the detail of the combination of the spreading code series at the time of A-MAP overlooking 本実施形態の送信側装置におけるA-MAP見逃し検出動作を説明する図The figure explaining the A-MAP miss detection operation in the transmission side apparatus of this embodiment 本発明の実施形態に係る無線通信装置の送信側装置(基地局装置)の構成例を示すブロック図The block diagram which shows the structural example of the transmission side apparatus (base station apparatus) of the radio | wireless communication apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る無線通信装置の受信側装置(端末装置)の構成例を示すブロック図The block diagram which shows the structural example of the receiving side apparatus (terminal device) of the radio | wireless communication apparatus which concerns on embodiment of this invention. 第1の実施形態における拡散符号系列の送信パワーについて説明する図The figure explaining the transmission power of the spreading code series in a 1st embodiment 第2の実施形態における通常時及びA-MAP見逃し時のACK/NACKを示す拡散符号系列のテーブルを示す図FIG. 10 is a diagram showing a table of spreading code sequences indicating ACK / NACK at normal time and when A-MAP is missed in the second embodiment. 第3の実施形態における通常時及びA-MAP見逃し時のACK/NACKを示す拡散符号系列のテーブルを示す図The figure which shows the table | surface of the spreading code series which shows ACK / NACK at the time of normal time and A-MAP miss in 3rd Embodiment 第3の実施形態に係る無線通信装置の受信側装置(端末装置)の構成例を示すブロック図The block diagram which shows the structural example of the receiving side apparatus (terminal device) of the radio | wireless communication apparatus which concerns on 3rd Embodiment. 第4の実施形態におけるA-MAP見逃し時のACK/NACKを示す拡散符号系列のテーブルSpread code sequence table indicating ACK / NACK when A-MAP is missed in the fourth embodiment 第4の実施形態における拡散符号系列のIQ平面上のシンボル配置を示す図The figure which shows the symbol arrangement | positioning on the IQ plane of the spreading code series in 4th Embodiment 第4の実施形態に係る無線通信装置の受信側装置(端末装置)の構成例を示すブロック図The block diagram which shows the structural example of the receiving side apparatus (terminal device) of the radio | wireless communication apparatus which concerns on 4th Embodiment. 802.16mにおけるACK/NACKの送信の手順を示す図The figure which shows the procedure of the transmission of ACK / NACK in 802.16m 802.16mにおける伝送データ及びACK/NACKのやり取りを時間方向に示した動作説明図Operation explanatory diagram showing transmission data and ACK / NACK exchange in the time direction in 802.16m (A)、(B)は802.16mにおける2種類のACK/NACKのフィードバック方法を示す動作説明図(A), (B) is operation | movement explanatory drawing which shows the feedback method of two types of ACK / NACK in 802.16m. 802.16mにおけるACK/NACK用のリソースの割当例を示す図The figure which shows the example of allocation of the resource for ACK / NACK in 802.16m 応答信号に割り当てる拡散符号系列の割当例を示す図The figure which shows the example of allocation of the spreading code sequence allocated to a response signal 初回送信時と再送時のデータの内容を説明する図Diagram explaining data contents at the time of first transmission and retransmission 初回送信と再送1回目のそれぞれのデータのみにおけるパケット誤り率の例を示すグラフGraph showing an example of packet error rate for each data of the first transmission and the first retransmission
 本実施形態では、本発明に係る無線通信装置及び無線通信方法をIEEE 802.16mに対応する無線通信システムに適用した例を示す。ここでは、送信側の無線通信装置(送信装置)を基地局BSとし、受信側の無線通信装置(受信装置)を移動局の端末MSとして、基地局BSと端末MSとの間で制御信号、データ、応答信号等を送受信する場合の構成及び動作を例示する。 In the present embodiment, an example in which the wireless communication apparatus and the wireless communication method according to the present invention are applied to a wireless communication system compatible with IEEE 802.16m is shown. Here, a control signal is transmitted between the base station BS and the terminal MS, with the transmitting-side radio communication device (transmitting device) as the base station BS and the receiving-side radio communication device (receiving device) as the terminal MS of the mobile station, The configuration and operation in the case of transmitting and receiving data, response signals, etc. will be exemplified.
 基地局BSからの端末MSへの下りの制御信号は、データ割当制御チャネル(A-MAP)において送信する。データ割当制御チャネルによって割当指示された下りのデータに対するACK/NACKの応答信号は、端末MSから基地局BSへの上りのフィードバックチャネルであるHFBCHにおいて送信する。ACK/NACKのフィードバック方法としては、1つのデータに関する復号可否を示す応答信号をフィードバックする第1のフィードバック方法である1-bit FBと、2つのデータに関する復号可否を示す応答信号をフィードバックする第2のフィードバック方法である2-bit FBとが使用可能であるとする。 The downlink control signal from the base station BS to the terminal MS is transmitted on the data allocation control channel (A-MAP). The ACK / NACK response signal for the downlink data instructed by the data allocation control channel is transmitted on the HFBCH which is an uplink feedback channel from the terminal MS to the base station BS. As an ACK / NACK feedback method, 1-bit FB, which is a first feedback method that feeds back a response signal indicating whether or not decoding is possible for one data, and second response signal that shows whether or not decoding is possible for two data are fed back. It is assumed that 2-bit FB, which is the feedback method of (1), can be used.
 (第1の実施形態)
 本実施形態では、基地局BSから端末MSに対して、明示的に1-bit FBまたは2-bit FBを通知し、端末MSにおいて2-bit FBを用いる場合のA-MAPの見逃しを検出可能とする。端末MSは、2-bit FBが指示されたときにA-MAP見逃しを検出した場合は、基地局BSに見逃しがあったことを通知する。これにより、基地局BSは端末MSでのA-MAP受信見逃しを特定でき、該当するデータについて初回送信のデータを再度送信することができる。見逃し検出を通知する際には、受信側の端末MSの構成を極力変更しないように、ACK/NACKを示す拡散符号系列によって通知する。具体的には、A-MAPの見逃し時にはACK/NACKを示す2つの拡散符号系列をCDMして送信する。多重した2つの拡散符号系列は、逆拡散によって分離検出可能である。
(First embodiment)
In the present embodiment, the 1-bit FB or 2-bit FB is explicitly notified from the base station BS to the terminal MS, and the oversight of A-MAP can be detected when the 2-bit FB is used in the terminal MS. And If the terminal MS detects an A-MAP miss when the 2-bit FB is instructed, the terminal MS notifies the base station BS that the miss has occurred. As a result, the base station BS can specify whether the terminal MS has missed A-MAP reception, and can transmit the first transmission data again for the corresponding data. When notifying of missed detection, notification is made with a spreading code sequence indicating ACK / NACK so as not to change the configuration of the terminal MS on the receiving side as much as possible. Specifically, when A-MAP is missed, two spreading code sequences indicating ACK / NACK are CDMed and transmitted. Two multiplexed spreading code sequences can be separated and detected by despreading.
 図1は本発明の実施形態におけるACK/NACKのフィードバック処理例を示す動作説明図である。図1の例は、基地局BSから端末MS-Aに対して2-bit FBを指示するためにデータ割当制御チャネルのA-MAP 0とA-MAP 1が送信されたものの、端末MS-AではA-MAP 1を受信できなかった場合を示している。この場合、端末MS-Aは2-bit FB適用時のA-MAP 1を見逃したと判断し、ACK/NACKのフィードバックによって基地局BSに通知する。基地局BSへの通知に際して、端末MS-AはACK/NACKを示す2つの拡散符号系列をCDMして送信する。通常時のACK/NACKを示す拡散符号系列は4つあり、A-MAP見逃し時は、2-bit FBに対応した2つのデータのACK/NACK/見逃しの各状態に応じて、その中から2つを選択して送信する。 FIG. 1 is an operation explanatory view showing an example of ACK / NACK feedback processing in the embodiment of the present invention. In the example of FIG. 1, although the data allocation control channels A-MAP 0 and A-MAP 1 are transmitted to instruct 2-bitMSFB from the base station BS to the terminal MS-A, the terminal MS-A Shows a case where A-MAP 1 could not be received. In this case, terminal MS-A determines that A-MAPM1 when 2-bit FB is applied, and notifies base station BS by ACK / NACK feedback. At the time of notification to the base station BS, the terminal MS-A CDMs and transmits two spreading code sequences indicating ACK / NACK. There are four spreading code sequences indicating normal ACK / NACK. When A-MAP is missed, two of them are selected according to the ACK / NACK / missed state of two data corresponding to 2-bit FB. Select one to send.
 基地局BSでは、端末MS-Aからのフィードバックにおいて2つの拡散符号系列を検出することにより、A-MAPの見逃しを認識できる。基地局BSは、A-MAP見逃し時の再送処理として、初回送信時のデータを再度送信する。これにより、A-MAPを見逃した場合にシステマチックビットが多く含まれるデータを再送信できるので、端末側での受信データの誤り率特性を改善できる。また、基地局と端末の双方で1-bit FBと2-bit FBの誤認識を無くし、ACK/NACKの誤認識を防止できるので、パケットロスを低減できる。 The base station BS can recognize the missed A-MAP by detecting two spreading code sequences in the feedback from the terminal MS-A. The base station BS retransmits the data at the first transmission as a retransmission process when the A-MAP is missed. As a result, when A-MAP is missed, data containing many systematic bits can be retransmitted, so that the error rate characteristics of received data on the terminal side can be improved. In addition, since erroneous recognition of 1-bit 端末 FB and 2-bit FB is eliminated in both the base station and the terminal and erroneous recognition of ACK / NACK can be prevented, packet loss can be reduced.
 ここで、1-bit FBと2-bit FBを明示的に通知する方法の一例を示す。図2は本発明の実施形態におけるHFA及びHFBCHリソースの割り当て例を示す図である。A-MAPにおいて、HFBCHの割当リソースを通知するHFAは、情報量として4ビット分が用意されており、全部で16個のインデックスを使用可能である。図21に示したように、HFBCHの1単位は6リソースであるので、図2のように2単位のHFBCH(12リソース)を用いた場合であっても、4個分のインデックスの余りがある。ここで、ACK/NACK情報をフィードバックする際に、1-bit FBの場合は2つのHFBCHリソースがCDMされて送信されるため、符号間干渉が起こる。2-bit FBの場合は2つのHFBCHリソースを占有するため、符号間干渉が起こらず、特性が良好である。このため、できるだけ2-bit FBを使用した方が好ましい。ただし、全てのHFBCHが2-bit FBで送信される確率は低い。 Here, an example of a method for explicitly notifying 1-bit FB and 2-bit FB is shown. FIG. 2 is a diagram showing an example of allocation of HFA and HFBCH resources in the embodiment of the present invention. In the A-MAP, the HFA that notifies the HFBCH allocation resource is provided with 4 bits of information, and a total of 16 indexes can be used. As shown in FIG. 21, since one unit of HFBCH is 6 resources, even when 2 units of HFBCH (12 resources) are used as shown in FIG. . Here, when the ACK / NACK information is fed back, in the case of 1-bit FB, since two HFBCH resources are transmitted by CDM, intersymbol interference occurs. In the case of 2-bit FB, two HFBCH resources are occupied, so intersymbol interference does not occur and the characteristics are good. For this reason, it is preferable to use 2-bit FB as much as possible. However, the probability that all HFBCHs are transmitted in 2-bit FB is low.
 そこで本実施形態では、4ビットのHFAにおいて、2単位のHFBCHを使用する際に余りとなる4個のインデックスを2-bit FB用のHFAとして定義して用いる。受信側の端末MSでは、送信側の基地局BSから2-bit FB用のHFAの割当通知を受信することによって、2-bit FBの指示を認識する。ここで、2-bit FBの指示を受けたときに、1つのA-MAPのみが受信でき、偶数と奇数の連続するHFBCHリソースの指示が得られなかった場合に、A-MAPの受信見逃しを検出可能である。 Therefore, in the present embodiment, in the 4-bit HFA, the remaining four indexes when using 2 units of HFBCH are defined and used as the HFA for 2-bit FB. The receiving terminal MS receives the 2-bit 指示 FB HFA allocation notification from the transmitting base station BS, thereby recognizing the 2-bit FB instruction. Here, when receiving an instruction of 2-bit FB, only one A-MAP can be received, and if an instruction of consecutive even and odd HFBCH resources is not obtained, reception of A-MAP is missed. It can be detected.
 図2の例では、HFA=0~15の16インデックスのうち、HFA=0~5のインデックスを第1単位のHFBCHリソースであるHFBCH_A-0~5の6リソースに対して割り当て、HFA=6~11のインデックスを第2単位のHFBCHリソースであるHFBCH_B-0~5の6リソースに対して割り当てている。そして、2つの単位のHFBCHリソースに対し余りのHFA=12~15を2-bit FB用のHFAとして用い、これに2-bit FBの際に用いるHFBCH_A-0~3のリソース番号を割り当てる。このようなHFAとHFBCHリソースの割り当てにおいて、2-bit FBを指示する場合、2-bit FB用に設けたHFA=12~15の中から選択してHFAを通知し、これに対応するHFBCHのリソース割り当てを行うことで、2-bitFB時のHFBCH_A-0~3のリソース番号を通知する。 In the example of FIG. 2, among the 16 indexes of HFA = 0 to 15, the indexes of HFA = 0 to 5 are allocated to 6 resources of HFBCH_A-0 to 5 which are HFBCH resources of the first unit, and HFA = 6 to 11 indexes are allocated to 6 resources HFBCH_B-0 to 5 which are HFBCH resources of the second unit. The surplus HFA = 12 to 15 is used as the HFA for 2-bit FB for the two units of HFBCH resources, and resource numbers of HFBCH_A-0 to 3 used for 2-bit FB are allocated to this. In such allocation of HFA and HFBCH resources, when 2-bit FB is instructed, HFA = 12 to 15 provided for 2-bit FB is selected and HFA is notified, and HFBCH corresponding to this is selected. By performing resource allocation, the resource numbers of HFBCH_A-0 to 3 at the time of 2-bit FB are notified.
 図1においては、基地局BSは端末MS-Aに対して、A-MAP 0でHFA=12を通知し、A-MAP 1でHFA=13を通知している。すなわち、HFBCHリソースとして、HFA=12、13に対応するHFBCH_A-0、1を割り当て、偶数と奇数の連続するリソースの割り当てを通知する。このとき、基地局BSから端末MS-Aに対しては、偶数と奇数の連続するリソースの割り当てによって2-bit FBの使用が通知されるが、2-bit FB用のHFAにより通知されるため、端末MS-Aでは一方のA-MAPを見逃しても2-bit FBの指示を判断可能である。つまり、端末MS-Aは、A-MAP 1を見逃してA-MAP 0のみを受信した場合に、A-MAP 0でHFA=12の通知を受けているのに次に連続するHFA=13の通知がなかったことによる矛盾から、1-bit FBの場合の1つのA-MAPの受信ではなく、A-MAP 1の見逃しを認識する。 In FIG. 1, the base station BS notifies the terminal MS-A of HFA = 12 using A-MAP 0 and HFA = 13 using A-MAP 1. That is, HFBCH_A-0 and 1 corresponding to HFA = 12, 13 are allocated as HFBCH resources, and allocation of even and odd consecutive resources is notified. At this time, the use of 2-bit 端末 FB is notified from the base station BS to the terminal MS-A by allocation of consecutive even and odd resources, but is notified by the HFA for 2-bit FB. The terminal MS-A can determine the instruction of 2-bit FB even if one A-MAP is missed. That is, when the terminal MS-A misses A-MAP 1 and receives only A-MAP 0, the terminal MS-A receives the notification of HFA = 12 in A-MAP 0, but the next consecutive HFA = 13 Because of the contradiction due to the absence of notification, it recognizes that A-MAP 1 is missed instead of receiving one A-MAP in the case of 1-bit FB.
 端末MS-Aは、A-MAPの見逃しを認識した場合は、ACK/NACKを示す拡散符号系列のテーブルをA-MAP見逃し時のものに切り替える。この際、ACK/NACKを示す2つの拡散符号系列をCDMして基地局BSに送信する。 When the terminal MS-A recognizes that the A-MAP is missed, the terminal MS-A switches the table of the spread code sequence indicating the ACK / NACK to that when the A-MAP is missed. At this time, two spreading code sequences indicating ACK / NACK are CDMed and transmitted to the base station BS.
 図3は本発明の実施形態における受信側装置の動作手順を示すフローチャートである。ここでは、送信側の基地局BSがA-MAPのデータ割当情報のHFAにおいて2-bit FB用のHFA=12~15のいずかを用い、対応するHFBCHのリソース番号を受信側の端末MSに通知することによって、2-bit FBを指示する場合を説明する。端末MSは、基地局BSからのデータ割当制御チャネル(A-MAP)の制御信号とデータとを受信する(ステップS11)。そして、端末MSは、データ割当制御チャネルを正しく受信できたかを判定し(ステップS12)、受信できた場合は、受信したデータのACK/NACKを判定する(ステップS13)。次に、端末MSは、拡散符号系列のテーブルとして「通常テーブル」を用い、ACK/NACKの判定結果に応じて2-bitFBの応答信号を生成し、基地局BSへ送信する(ステップS14)。 FIG. 3 is a flowchart showing an operation procedure of the reception side apparatus according to the embodiment of the present invention. Here, the base station BS on the transmission side uses any one of HFA = 12 to 15 for 2-bitBFB in the HFA of the data allocation information of A-MAP, and the resource number of the corresponding HFBCH is set to the terminal MS on the reception side. A case will be described in which 2-bit FB is instructed by notifying The terminal MS receives the data allocation control channel (A-MAP) control signal and data from the base station BS (step S11). Then, the terminal MS determines whether or not the data allocation control channel has been correctly received (step S12). If it has been received, the terminal MS determines ACK / NACK of the received data (step S13). Next, terminal MS uses a “normal table” as a table of spreading code sequences, generates a 2-bit FB response signal according to the ACK / NACK determination result, and transmits the response signal to base station BS (step S14).
 また、ステップS12においてデータ割当制御チャネルを正しく受信できなかった場合は、端末MSはデータ割当制御チャネルの見逃しを検出し、受信できたデータのACK/NACKを判定する(ステップS15)。次に、端末MSは、拡散符号系列のテーブルとして「見逃し時テーブル」を用い、ACK/NACKの判定結果に応じて2つの拡散符号系列を決定する。そして、2つの拡散符号系列をCDMした2-bit FBの応答信号を生成し、基地局BSへ送信する(ステップS16)。 If the data allocation control channel is not correctly received in step S12, the terminal MS detects the miss of the data allocation control channel and determines ACK / NACK of the received data (step S15). Next, terminal MS uses a “missing time table” as a table of spreading code sequences, and determines two spreading code sequences according to the ACK / NACK determination result. Then, a 2-bit FB response signal obtained by CDMing the two spreading code sequences is generated and transmitted to the base station BS (step S16).
 図4は本発明の実施形態における送信側装置(基地局装置)の動作手順を示すフローチャートである。送信側の基地局BSは、2-bit FBを意図して受信側の端末MSへデータ割当制御チャネル(A-MAP)の制御信号とデータとを送信する。ここで、基地局BSは、A-MAPのデータ割当情報のHFAにおいて2-bit FB用のHFA=12~15のいずかを用い、対応するHFBCHのリソース番号を端末MSに通知することによって、2-bit FBを指示する。その後、基地局BSは端末MSからの応答信号を受信し(ステップS22)、送信したデータのACK/NACKを認識する。また、基地局BSは、応答信号において2つの拡散符号系列を検出したかどうかによって、データ割当制御チャネルの見逃しを検出する(ステップS23)。ここで見逃しがあった場合、基地局BSは、該当するデータについて初回送信時のデータを端末MSに再度送信する(ステップS24)。また、データ割当制御チャネルの見逃しが無かった場合は、応答信号がNACKであったかどうかを判定し(ステップS25)、NACKの場合は該当するデータについて再送時のデータを端末MSに送信する(ステップS26)。一方、ACKの場合は次のデータを端末MSに送信する(ステップS27)。 FIG. 4 is a flowchart showing an operation procedure of the transmission side apparatus (base station apparatus) in the embodiment of the present invention. The base station BS on the transmission side transmits a data allocation control channel (A-MAP) control signal and data to the terminal MS on the reception side with the intention of 2-bit2-FB. Here, the base station BS uses any one of HFA = 12 to 15 for 2-bit FB in the HFA of the data allocation information of A-MAP, and notifies the resource number of the corresponding HFBCH to the terminal MS. , 2-bit FB is instructed. Thereafter, the base station BS receives a response signal from the terminal MS (step S22) and recognizes ACK / NACK of the transmitted data. Further, the base station BS detects whether the data allocation control channel is missed depending on whether two spreading code sequences are detected in the response signal (step S23). If there is an oversight here, the base station BS transmits again the data at the first transmission of the corresponding data to the terminal MS (step S24). If the data allocation control channel is not missed, it is determined whether or not the response signal is NACK (step S25). If NACK, the data at the time of retransmission of the corresponding data is transmitted to the terminal MS (step S26). ). On the other hand, in the case of ACK, the next data is transmitted to the terminal MS (step S27).
 次に、A-MAP見逃し時のACK/NACKを示す拡散符号系列のテーブル読み替え動作の具体例について説明する。図5は通常時のACK/NACKを示す拡散符号系列のテーブルを示す図、図6はA-MAP見逃し時のACK/NACKを示す拡散符号系列のテーブルを示す図、図7はA-MAP見逃し時の拡散符号系列の組合せの詳細を説明する図である。 Next, a specific example of the table reading operation of the spread code sequence indicating ACK / NACK when A-MAP is missed will be described. FIG. 5 is a diagram showing a table of spreading code sequences indicating ACK / NACK at normal time, FIG. 6 is a diagram showing a table of spreading code sequences indicating ACK / NACK when A-MAP is missed, and FIG. 7 is an A-MAP missed table. It is a figure explaining the detail of the combination of the spreading code series at the time.
 ここでは、図1のように基地局BSから端末MSに対して2-bit FBを指示するためにデータ割当制御チャネルのA-MAP 0とA-MAP 1を送信し、対応するデータを併せて送信する場合を例示する。端末MSは、A-MAP 0、A-MAP 1のいずれかにおいて2-bit FB用のHFAを受信したにもかかわらず、一方のA-MAPのみしか受信できなかった場合、他方のA-MAPを見逃したと判断する。この場合、端末MSは、通常時の1-bit FB用の拡散符号系列ではなく、A-MAP見逃し時の拡散符号系列にテーブルを読み替えてACK/NACK情報を送信する。 Here, as shown in FIG. 1, in order to instruct 2-bit 制 御 FB from the base station BS to the terminal MS, the data allocation control channels A-MAP 0 and A-MAP 1 are transmitted, and the corresponding data are also combined. The case of transmitting is illustrated. If the terminal MS can receive only one A-MAP in spite of receiving the HFA for 2-bit FB in either A-MAP 0 or A-MAP 1, the terminal MS can receive the other A-MAP Judge that you missed. In this case, the terminal MS transmits the ACK / NACK information by replacing the table with the spreading code sequence when A-MAP is missed instead of the spreading code sequence for 1-bitbFB in the normal time.
 2つのA-MAP 0、A-MAP 1に関して、ACK/NACK/見逃しの組み合わせとして9種類をとり得る。ここで、両方とも“見逃し”の場合には、ACK/NACKを送信できないので、通常時とA-MAP見逃し時とを併せて計8種類の応答信号を定義して送信する。A-MAP見逃しを含む場合は、2つの拡散符号系列をCDMして送信する。 に 関 し て For two A-MAP 0 and A-MAP 1, there are nine possible combinations of ACK / NACK / missing. Here, when both are “missing”, since ACK / NACK cannot be transmitted, a total of eight types of response signals are defined and transmitted for the normal time and the A-MAP missed time. When A-MAP is missed, two spreading code sequences are CDMed and transmitted.
 通常時は、図5の「通常テーブル」に示すように、端末MSは1-bit FBと2-bit FBでそれぞれ対応する拡散符号系列を送信する。1-bit FBの場合、対象の1つのデータに関するACKまたはNACKを送信する。A-MAP 0を受信してそのデータがACKのときは[+1,+1,+1,+1]、データがNACKのときは[+1,-1,+1,-1]をそれぞれ送信する。また、A-MAP 1を受信してそのデータがACKのときは[+1,+1,-1,-1]、データがNACKのときは[+1,-1,-1,+1]をそれぞれ送信する。2-bit FBの場合、対象の2つのデータに関するACKまたはNACKを併せて送信する。A-MAP 0、A-MAP 1のデータがACK/ACKの組合せのときは[+1,+1,+1,+1]、ACK/NACKの組合せのときは[+1,-1,+1,-1]、NACK/ACKの組合せのときは[+1,+1,-1,-1]、NACK/NACKの組合せのときは[+1,-1,-1,+1]をそれぞれ送信する。 In the normal time, as shown in the “normal table” in FIG. 5, the terminal MS transmits the corresponding spreading code sequences in 1-bit FB and 2-bit FB, respectively. In the case of 1-bit FB, ACK or NACK related to one target data is transmitted. When A-MAP 0 is received and the data is ACK, [+1, +1, +1, +1] is transmitted, and when the data is NACK, [+1, −1, +1, −1] is transmitted. When A-MAP-1 is received and the data is ACK, [+1, +1, −1, −1] is transmitted, and when the data is NACK, [+1, −1, −1, +1] is transmitted. . In the case of 2-bit FB, ACK or NACK related to the two target data is transmitted together. [+1, +1, +1, +1] when the data of A-MAP 0 and A-MAP 1 is an ACK / ACK combination, [+1, -1, +1, -1] when the combination is ACK / NACK, [+1, +1, -1, -1] is transmitted for the NACK / ACK combination, and [+1, -1, -1, +1] is transmitted for the NACK / NACK combination.
 A-MAP見逃し検出時は、図6の「見逃し時テーブル」に示すように、端末MSは正常に受信できたデータのACK/NACKと見逃したA-MAPの番号とに基づき、系列1と系列2の2つの拡散符号系列を決定し、CDMして送信する。拡散符号系列の組合せに関して、A-MAP 0を正常に受信し、A-MAP 1を見逃した場合に、A-MAP 0のデータがACKのときは[+1,+1,+1,+1][+1,-1,+1,-1]、A-MAP 0のデータがNACKのときは[+1,-1,-1,+1][+1,+1,-1,-1]をそれぞれ送信する。また、A-MAP 0を見逃し、A-MAP 1を正常に受信した場合に、A-MAP 1のデータがACKのときは[+1,+1,-1,-1][+1,+1,+1,+1]、A-MAP 1のデータがNACKのときは[+1,-1,-1,+1][+1,-1,+1,-1]をそれぞれ送信する。 When the A-MAP miss is detected, as shown in the “missing time table” in FIG. 6, the terminal MS is based on the ACK / NACK of the data that can be normally received and the number of the missed A-MAP. 2 spread code sequences are determined, CDMed, and transmitted. Regarding the combination of spreading code sequences, when A-MAP 0 is normally received and A-MAP 1 is missed, if the data of A-MAP 0 is ACK, [+ 1, + 1, + 1, + 1] [+ 1, −1, +1, −1] and A-MAP 0 data of [+1, −1, −1, +1] [+1, +1, −1, −1] are respectively transmitted when NACK is NACK. If A-MAP 1 is overlooked and A-MAP 1 is normally received and the data of A-MAP 1 is ACK, [+1, +1, -1, -1] [+1, +1, +1, +1] and when the data of A-MAP 1 is NACK, [+1, −1, −1, +1] [+1, −1, +1, −1] are transmitted.
 A-MAP見逃し時の拡散符号系列の組合せの内容は、図7に示すようになっている。A-MAP見逃し時に送信する2つの拡散符号系列は、ランダムに定義されたものではなく、通常時の2-bit FBにおけるACK/NACKと対応付けられている。具体的には、通常時の2-bit FBにおいて、正しくA-MAPを受信できた方はACKの場合はACK/ACK、NACKの場合はNACK/NACKとなるようにACKまたはNACKが同じ組合せとし、見逃した方はACKとNACKの組合せとなるように定義されている。 The contents of the combination of spreading code sequences when A-MAP is overlooked are as shown in FIG. The two spreading code sequences transmitted when A-MAP is overlooked are not randomly defined, but are associated with ACK / NACK in 2-bit FB in normal times. Specifically, in the normal 2-bit FB, those who can receive A-MAP correctly are ACK / ACK in the case of ACK and NACK / NACK in the case of NACK. Those who missed are defined to be a combination of ACK and NACK.
 図8は本実施形態の送信側装置におけるA-MAP見逃し検出動作を説明する図である。送信側の基地局BSでは、応答信号の受信信号を逆拡散し、ACK/NACKを示す拡散符号系列を検出する。2-bit FBの場合、基地局は通常時は1つの拡散符号系列のみ検出するが、端末にてA-MAP見逃し時には応答信号からピークの高い2つの拡散符号系列を検出する。基地局は、2つの拡散符号系列を検出した場合、拡散符号系列の組合せによって見逃しのあったA-MAP番号と正しく受信されたA-MAPのデータに対するACK/NACKとを検出することができる。このように、基地局は、端末におけるA-MAP受信見逃しを特定できると、再送1回目のデータを初回送信のデータとし、システマチックビットが多くなるように指示できるので、通信特性を改善することが可能である。 FIG. 8 is a diagram for explaining the A-MAP miss detection operation in the transmission side apparatus according to this embodiment. The transmission-side base station BS despreads the received response signal and detects a spread code sequence indicating ACK / NACK. In the case of 2-bit FB, the base station normally detects only one spreading code sequence, but the terminal detects two spreading code sequences having a high peak from the response signal when the A-MAP is missed. When the base station detects two spreading code sequences, the base station can detect an A-MAP number that was missed by a combination of spreading code sequences and an ACK / NACK for correctly received A-MAP data. In this way, if the base station can identify the missed A-MAP reception at the terminal, the first transmission data can be used as the initial transmission data and can be instructed to increase systematic bits, thereby improving communication characteristics. Is possible.
 次に、本実施形態に係る送信側装置(基地局装置)及び受信側装置(端末装置)の構成について説明する。 Next, configurations of a transmission side device (base station device) and a reception side device (terminal device) according to the present embodiment will be described.
 図9は本発明の実施形態に係る無線通信装置の送信側装置(基地局装置)の構成例を示すブロック図である。送信側装置は、受信アンテナ701、FFT部702、復調部703、ACK/NACK復号部704、割当部705、データ割当制御信号生成部706、送信データ生成部707、変調部708、709、多重部710、IFFT部711、送信アンテナ712を有して構成される。 FIG. 9 is a block diagram showing a configuration example of a transmission side apparatus (base station apparatus) of the wireless communication apparatus according to the embodiment of the present invention. The transmission side device includes a reception antenna 701, an FFT unit 702, a demodulation unit 703, an ACK / NACK decoding unit 704, an allocation unit 705, a data allocation control signal generation unit 706, a transmission data generation unit 707, modulation units 708 and 709, and a multiplexing unit. 710, an IFFT unit 711, and a transmission antenna 712.
 受信アンテナ701は、通信相手装置である受信側装置(端末装置)からフィードバックされた応答信号の電波を受信し、RF信号の受信信号を得る。FFT部702は、受信信号の時間-周波数変換を行ってマルチキャリア信号を抽出し、復調部703は、抽出したマルチキャリア信号の復調を行う。ACK/NACK復号部704は、復調した応答信号の受信信号から、ACK/NACK情報を復号し、ACK/NACKを示す拡散符号系列を取得する。ここで、通常時は1つの拡散符号系列を検出し、A-MAP見逃し時には2つの拡散符号系列を検出する。 The receiving antenna 701 receives the radio wave of the response signal fed back from the receiving side device (terminal device) that is the communication counterpart device, and obtains the received signal of the RF signal. The FFT unit 702 performs time-frequency conversion on the received signal to extract a multicarrier signal, and the demodulator 703 demodulates the extracted multicarrier signal. The ACK / NACK decoding unit 704 decodes ACK / NACK information from the demodulated received signal of the response signal, and acquires a spreading code sequence indicating ACK / NACK. Here, one spreading code sequence is detected in normal time, and two spreading code sequences are detected when A-MAP is missed.
 割当部705は、送信データ、応答信号等のリソース割り当てを行うとともに、データ割当制御チャネル(A-MAP)におけるデータ割当情報の設定を行い、データ割当制御信号生成部706、送信データ生成部707に指示する。また、割当部705は、ACK/NACK復号部704から出力されるACK/NACK情報を判断し、返答されたACK/NACKに応じたHARQによる再送処理を行う。ここで、割当部705は、2-bit FBを指示する場合、上述したように、A-MAPにおいて2-bit FB用のHFAを割り当てて対象の端末に通知し、このHFAに対応する偶数と奇数の連続するHFBCHのリソース番号を指定する。また、割当部705は、2-bit FBの応答信号において2つの拡散符号系列を検出した場合、受信側装置でA-MAP見逃しがあったことを認識し、A-MAP見逃し時の再送処理として初回送信時のデータを再度送信する指示を行う。 The allocation unit 705 allocates resources such as transmission data and response signals, sets data allocation information in the data allocation control channel (A-MAP), and transmits the data allocation control signal generation unit 706 and the transmission data generation unit 707 to each other. Instruct. Also, the allocation unit 705 determines the ACK / NACK information output from the ACK / NACK decoding unit 704, and performs retransmission processing by HARQ according to the returned ACK / NACK. Here, when instructing 2-bit FB, the assigning unit 705 assigns an HFA for 2-bit FB in A-MAP and notifies the target terminal as described above. Specifies resource numbers of odd consecutive HFBCHs. Further, when two spreading code sequences are detected in the 2-bitbFB response signal, allocating section 705 recognizes that A-MAP is missed at the receiving side device, and performs retransmission processing when A-MAP is missed. An instruction is given to retransmit the data at the first transmission.
 データ割当制御信号生成部706は、割当部705からのデータ割当情報に基づき、データ割当制御チャネル(A-MAP)において送信する制御信号を生成し、変調部708は、所定の変調方式によってデータ割当制御信号を変調する。送信データ生成部707は、入力される送信データ系列を基に送信用のデータを生成、保持し、符号化率及び送信回数に基づいてデータを読み出して出力する。変調部709は、所定の変調方式によってデータを変調する。変調部708、709の変調方式としては、QPSK、16QAM、64QAM等が用いられる。 The data allocation control signal generation unit 706 generates a control signal to be transmitted on the data allocation control channel (A-MAP) based on the data allocation information from the allocation unit 705, and the modulation unit 708 performs data allocation according to a predetermined modulation scheme. Modulate the control signal. The transmission data generation unit 707 generates and holds data for transmission based on the input transmission data sequence, and reads and outputs the data based on the coding rate and the number of transmissions. The modulation unit 709 modulates data using a predetermined modulation method. QPSK, 16QAM, 64QAM, or the like is used as a modulation method of the modulation units 708 and 709.
 多重部710は、変調後のデータ割当制御信号及びデータについて、周波数領域及び時間領域の割り当てを行い、送信信号を多重する。IFFT部711は、送信信号の周波数-時間変換を行ってRF信号の送信信号を生成し、送信アンテナ712は、通信相手装置である受信側装置(端末装置)へRF信号の送信信号を電波として送信する。 The multiplexing unit 710 performs frequency domain and time domain allocation on the modulated data allocation control signal and data, and multiplexes the transmission signal. The IFFT unit 711 performs frequency-time conversion of the transmission signal to generate a transmission signal of the RF signal, and the transmission antenna 712 transmits the RF signal transmission signal as a radio wave to the reception side device (terminal device) that is the communication counterpart device. Send.
 図10は本発明の実施形態に係る無線通信装置の受信側装置(端末装置)の構成例を示すブロック図である。受信側装置は、受信アンテナ801、FFT部802、復調部803、データ復号部804、CRC判定部805、割当信号復号部806、割当信号見逃し判定部807、テーブル選択部808、ACK/NACK系列決定部809、変調部810、IFFT部811、送信アンテナ812を有して構成される。 FIG. 10 is a block diagram showing a configuration example of the receiving side device (terminal device) of the wireless communication device according to the embodiment of the present invention. The reception side device includes a reception antenna 801, an FFT unit 802, a demodulation unit 803, a data decoding unit 804, a CRC determination unit 805, an allocation signal decoding unit 806, an allocation signal miss determination unit 807, a table selection unit 808, and an ACK / NACK sequence determination. 809, a modulation unit 810, an IFFT unit 811, and a transmission antenna 812.
 受信アンテナ801は、通信相手装置である送信側装置(基地局装置)から送信された伝送信号の電波を受信し、RF信号の受信信号を得る。FFT部802は、受信信号の時間-周波数変換を行ってマルチキャリア信号を抽出し、復調部803は、抽出したマルチキャリア信号の復調を行う。データ復号部804は、復調した伝送信号の受信信号からデータを復号し、CRC判定部805は、データ復号結果のCRC判定を行い、CRC判定結果を出力する。 The reception antenna 801 receives a radio wave of a transmission signal transmitted from a transmission side device (base station device) that is a communication partner device, and obtains an RF signal reception signal. The FFT unit 802 performs time-frequency conversion of the received signal to extract a multicarrier signal, and the demodulator 803 demodulates the extracted multicarrier signal. The data decoding unit 804 decodes data from the received signal of the demodulated transmission signal, and the CRC determination unit 805 performs CRC determination on the data decoding result and outputs the CRC determination result.
 割当信号復号部806は、データ割当制御チャネル(A-MAP)において送信されたデータ割当制御信号を復号し、HFAを含むデータ割当情報を取得する。割当信号見逃し判定部807は、取得したデータ割当情報におけるHFAの内容に基づき、データ割当制御信号の見逃しがあったかどうかを判定する。テーブル選択部808は、データ割当制御信号の見逃し判定結果に応じて、ACK/NACKを示す拡散符号系列のテーブルを選択する。ここで、テーブル選択部808は、A-MAP見逃しが無かった場合は図5に示した通常時の拡散符号系列を定義した「通常テーブル」を選択し、A-MAP見逃しがあった場合は図6に示したA-MAP見逃し時の拡散符号系列を定義した「見逃し時テーブル」を選択する。すなわち、A-MAP見逃しと判断された場合に拡散符号系列の切り替えを行う。 The allocation signal decoding unit 806 decodes the data allocation control signal transmitted in the data allocation control channel (A-MAP), and acquires data allocation information including HFA. The allocation signal miss determination unit 807 determines whether the data allocation control signal is missed based on the contents of the HFA in the acquired data allocation information. The table selection unit 808 selects a spread code sequence table indicating ACK / NACK in accordance with the missed determination result of the data allocation control signal. Here, the table selection unit 808 selects the “normal table” that defines the normal spreading code sequence shown in FIG. 5 when the A-MAP is not missed, and shows the diagram when the A-MAP is missed. The “missing time table” defining the spread code sequence when the A-MAP is missed shown in FIG. 6 is selected. That is, when it is determined that the A-MAP is missed, the spread code sequence is switched.
 ACK/NACK系列決定部809は、テーブル選択部808で選択された拡散符号系列のテーブルを用いて、CRC判定部805でのCRC判定結果に応じてACK/NACKの拡散符号系列を決定する。A-MAP見逃しがあった場合は、受信できたデータのACK/NACKと見逃したA-MAPの番号とに基づき、2つの拡散符号系列を決定する。変調部810は、決定されたACK/NACKの拡散符号系列を所定の変調方式によって変調する。この際、変調部810は、基地局から通知されたHFAに対応するHFBCHリソースに拡散符号系列を割り当てるようにし、A-MAP見逃しがあった場合は、2つの拡散符号系列をCDMする。なお、基地局から1-bit FBが指示された場合は、1セットのペアとなる2つのHFBCHリソース(2つの端末に割り当てられたフィードバック用リソース)がCDMされる形となる。IFFT部811は、送信信号の周波数-時間変換を行ってRF信号の送信信号を生成し、送信アンテナ812は、通信相手装置である送信側装置(基地局装置)へRF信号の送信信号を電波として送信する。 The ACK / NACK sequence determination unit 809 determines the ACK / NACK spreading code sequence according to the CRC determination result in the CRC determination unit 805 using the table of the spreading code sequence selected by the table selection unit 808. If there is an A-MAP miss, two spreading code sequences are determined based on the ACK / NACK of the received data and the missed A-MAP number. Modulation section 810 modulates the determined ACK / NACK spreading code sequence using a predetermined modulation scheme. At this time, the modulation unit 810 allocates a spreading code sequence to the HFBCH resource corresponding to the HFA notified from the base station, and performs CDM on the two spreading code sequences if there is an A-MAP miss. When 1-bit FB is instructed from the base station, two HFBCH resources (feedback resources allocated to two terminals) that form a pair are CDMed. The IFFT unit 811 performs frequency-time conversion of the transmission signal to generate an RF signal transmission signal, and the transmission antenna 812 transmits the RF signal transmission signal to the transmission side apparatus (base station apparatus) that is the communication counterpart apparatus. Send as.
 上述したように、本実施形態によれば、制御チャネルの指示によってACK/NACKの応答信号に関して1-bit FBと2-bit FBの複数のフィードバック方法を使用可能である無線通信装置において、応答信号を返答する受信側装置の構成を極力変更せずに、制御チャネルの見逃しを送信側装置に通知することができる。送信側装置では、制御チャネルの見逃しがあった場合に初回送信のデータを再度送信することによって、システマチックビットが多く含まれるデータを再送信でき、受信データの誤り率特性を改善することができる。 As described above, according to the present embodiment, in the radio communication apparatus that can use a plurality of feedback methods of 1-bit FB and 2-bit FB with respect to an ACK / NACK response signal according to an instruction of the control channel, It is possible to notify the transmitting side device that the control channel is overlooked without changing the configuration of the receiving side device as much as possible. In the transmission side device, when the control channel is missed, the data of the first transmission can be retransmitted to retransmit the data containing many systematic bits, and the error rate characteristic of the received data can be improved. .
 (第2の実施形態)
 第2の実施形態は、上述した第1の実施形態における応答信号に用いる拡散符号系列を一部変更した例である。ここでは、第1の実施形態と異なる点を中心に説明し、第1の実施形態と同様な点については適宜説明を省略する。
(Second Embodiment)
The second embodiment is an example in which the spreading code sequence used for the response signal in the first embodiment described above is partially changed. Here, the description will focus on the differences from the first embodiment, and the description of the same points as in the first embodiment will be omitted as appropriate.
 図11は第1の実施形態における拡散符号系列の送信パワーについて説明する図である。第1の実施形態では、ACK/NACKを示す2つの拡散符号系列をCDMにより合成した場合、CDM送信時の合成系列は[+2,0,+2,0]、[+2,0,-2,0]、[+2,+2,0,0]、[+2,-2,0,0]のいずれかとなる。この合成系列を図21に示したHFBCHのリソースに割り当てた場合、4シンボルのうちの1番目と3番目、2番目と4番目がそれぞれ同一時間単位のリソースに割り当てられる。よって、合成系列のうち[+2,0,+2,0]、[+2,0,-2,0]を送信する場合は、最初の時間に送信されるシンボルのパワーが次の時間に送信されるシンボルのパワーよりも非常に大きくなり、時間単位での送信パワー差が大きいため、受信側装置の端末における送信電力を有効利用できないという課題がある。 FIG. 11 is a diagram for explaining the transmission power of the spreading code sequence in the first embodiment. In the first embodiment, when two spreading code sequences indicating ACK / NACK are combined by CDM, the combined sequence at the time of CDM transmission is [+2, 0, +2, 0], [+2, 0, -2, 0. ], [+2, +2, 0, 0], [+2, -2, 0, 0]. When this composite sequence is assigned to the HFBCH resource shown in FIG. 21, the first, third, second and fourth of the four symbols are assigned to the same time unit resource. Therefore, when [+2, 0, +2, 0] and [+2, 0, -2, 0] are transmitted in the composite sequence, the power of the symbol transmitted at the first time is transmitted at the next time. Since it is much larger than the power of the symbol and the transmission power difference in time units is large, there is a problem that the transmission power at the terminal of the receiving side apparatus cannot be effectively used.
 そこで、第2の実施形態では、通常時に用いる「通常テーブル」の拡散符号系列を一部入れ替えて、A-MAP見逃し時に用いる「見逃し時テーブル」において、CDMする2つの拡散符号系列の組合せの定義はそのままとする。すなわち、拡散符号系列を一部入れ替えた「通常テーブル」に基づき、「見逃し時テーブル」の拡散符号系列の組合せを決定して使用する。 Therefore, in the second embodiment, a part of the spreading code sequence of the “normal table” used at the normal time is partially replaced, and the definition of the combination of the two spreading code sequences to be CDMed in the “missing time table” used when the A-MAP is missed. Is left as is. That is, a combination of spreading code sequences in the “missing time table” is determined and used based on a “normal table” in which the spreading code sequences are partially replaced.
 図12は第2の実施形態における通常時及びA-MAP見逃し時のACK/NACKを示す拡散符号系列のテーブルを示す図である。図12の例では、図5及び図6に示した第1の実施形態に対して、通常時の2-bit FBのACK/NACKとNACK/NACKの符号を入れ替えている。A-MAP見逃し時は、A-MAP 0を正常に受信し、A-MAP 1を見逃した場合に、A-MAP 0のデータがACKのときは[+1,+1,+1,+1][+1,-1,-1,+1]、A-MAP 0のデータがNACKのときは[+1,+1,-1,-1][+1,-1,+1,-1]をそれぞれ送信する。また、A-MAP 0を見逃し、A-MAP 1を正常に受信した場合に、A-MAP 1のデータがACKのときは[+1,+1,+1,+1][+1,+1,-1,-1]、A-MAP 1のデータがNACKのときは[+1,-1,-1,+1][+1,-1,+1,-1]をそれぞれ送信する。上記のように拡散符号系列の組合せを変更することにより、CDM送信時の合成系列は[+2,0,0,+2]、[+2,0,0,-2]、[+2,+2,0,0]、[+2,-2,0,0]のいずれかとなる。この場合、送信される応答信号の時間単位ごとの各送信シンボルのパワーが同じまたはほぼ同じとなる。 FIG. 12 is a diagram showing a table of spreading code sequences indicating ACK / NACK at the normal time and A-MAP missed time in the second embodiment. In the example of FIG. 12, the codes of 2-bitACKFB ACK / NACK and NACK / NACK in the normal state are switched with respect to the first embodiment shown in FIGS. When A-MAP is missed, A-MAPM0 is normally received, and when A-MAP 1 is missed and the data of A-MAP 0 is ACK, [+ 1, + 1, + 1, + 1] [+ 1, -1, -1, + 1] and A-MAP-0 data is NACK, [+1, +1, -1, -1] [+1, -1, +1, -1] are transmitted, respectively. In addition, when A-MAP 1 is missed and A-MAP 受 信 1 is normally received and the data of A-MAP 1 is ACK, [+ 1, + 1, + 1, + 1] [+ 1, + 1, −1, − 1] and [+1, −1, −1, +1] [+1, −1, +1, −1] are transmitted when the data of A-MAPM1 is NACK, respectively. By changing the combination of spreading code sequences as described above, the combined sequence at the time of CDM transmission is [+2, 0, 0, +2], [+2, 0, 0, -2], [+2, +2, 0, 0], [+2, -2, 0, 0]. In this case, the power of each transmission symbol for each time unit of the response signal to be transmitted is the same or substantially the same.
 第2の実施形態では、HFBCHにおいて各時間毎の送信パワーがほぼ同じとなり、CDM後の時間単位での送信パワーのバランスがとれているため、受信側装置の端末における送信電力を有効活用することができる。 In the second embodiment, the transmission power for each time is almost the same in the HFBCH, and the transmission power in the time unit after the CDM is balanced, so that the transmission power at the terminal of the receiving apparatus is effectively used. Can do.
 (第3の実施形態)
 第3の実施形態は、受信側装置において2系統の応答信号の送信アンテナを設け、2つの拡散符号系列を別系統の送信アンテナより送信する例である。ここでは、第1の実施形態と異なる点を中心に説明し、第1の実施形態と同様な点については適宜説明を省略する。
(Third embodiment)
The third embodiment is an example in which two systems of response signal transmission antennas are provided in the receiving side device, and two spread code sequences are transmitted from another system of transmission antennas. Here, the description will focus on the differences from the first embodiment, and the description of the same points as in the first embodiment will be omitted as appropriate.
 図13は第3の実施形態における通常時及びA-MAP見逃し時のACK/NACKを示す拡散符号系列のテーブルを示す図である。第3の実施形態では、ACK/NACKの応答信号に用いる拡散符号系列として、図6に示した第1の実施形態と同じものを用い、これら2つの拡散符号系列をそれぞれ別々の系統のアンテナによって送信する。すなわち、通常時及びA-MAP見逃し時に用いる系列1の拡散符号系列を第1の送信アンテナ(アンテナ1)から送信し、A-MAP見逃し時に用いる系列2の拡散符号系列を第2の送信アンテナ(アンテナ2)から送信する。なお、上述した第2の実施形態の拡散符号系列を用いるようにしてもよい。 FIG. 13 is a diagram showing a table of spreading code sequences indicating ACK / NACK at the normal time and when A-MAP is missed in the third embodiment. In the third embodiment, the same spreading code sequence as that used in the first embodiment shown in FIG. 6 is used as the spreading code sequence used for the ACK / NACK response signal, and these two spreading code sequences are respectively transmitted by antennas of different systems. Send. That is, the sequence 1 spreading code sequence used during normal time and A-MAP miss is transmitted from the first transmission antenna (antenna 1), and the sequence 2 spreading code sequence used when A-MAP is missed is transmitted to the second transmission antenna ( Transmit from antenna 2). Note that the spreading code sequence of the second embodiment described above may be used.
 図14は第3の実施形態に係る無線通信装置の受信側装置(端末装置)の構成例を示すブロック図である。受信側装置は、図10の第1の実施形態の構成に加えて、ACK/NACK系列決定部809の後段に、変調部810、IFFT部811、送信アンテナ812と並列に変調部820、IFFT部821、送信アンテナ822を備えている。A-MAP見逃し時には、変調部810、IFFT部811、送信アンテナ812によって系列1の拡散符号系列を送信し、変調部820、IFFT部821、送信アンテナ822によって系列2の拡散符号系列を送信する。 FIG. 14 is a block diagram illustrating a configuration example of a receiving side device (terminal device) of the wireless communication device according to the third embodiment. In addition to the configuration of the first embodiment in FIG. 10, the reception-side apparatus includes a modulation unit 820, an IFFT unit in parallel with a modulation unit 810, an IFFT unit 811, and a transmission antenna 812, following the ACK / NACK sequence determination unit 809. 821 and a transmission antenna 822. When the A-MAP is missed, the modulation unit 810, the IFFT unit 811 and the transmission antenna 812 transmit the sequence 1 spreading code sequence, and the modulation unit 820, the IFFT unit 821 and the transmission antenna 822 transmit the sequence 2 spreading code sequence.
 第3の実施形態では、受信側装置の端末の送信部において、変調部等の内部での拡散符号系列の合成処理がなくなる。これにより、受信側装置の端末における送信電力を有効活用することができる。 In the third embodiment, there is no spread code sequence synthesizing process inside the modulation unit or the like in the transmission unit of the terminal of the reception side device. Thereby, the transmission power in the terminal of the receiving device can be effectively used.
 (第4の実施形態)
 第4の実施形態は、応答信号に用いる2つの拡散符号系列の位相を90度ずらして送信する例である。ここでは、第1の実施形態と異なる点を中心に説明し、第1の実施形態と同様な点については適宜説明を省略する。
(Fourth embodiment)
The fourth embodiment is an example in which the phases of two spreading code sequences used for a response signal are transmitted by being shifted by 90 degrees. Here, the description will focus on the differences from the first embodiment, and the description of the same points as in the first embodiment will be omitted as appropriate.
 図15は第4の実施形態におけるA-MAP見逃し時のACK/NACKを示す拡散符号系列のテーブルを示す図である。第4の実施形態では、ACK/NACKの応答信号に用いる拡散符号系列として、図6に示した第1の実施形態のものを基にして、系列1に対し系列2の位相を90度ずらした拡散符号系列を用いる。すなわち、A-MAP見逃し時において、A-MAP 0を正常に受信し、A-MAP 1を見逃した場合に、A-MAP 0のデータがACKのときは[+1,+1,+1,+1][+j,-j,+j,-j]、A-MAP 0のデータがNACKのときは[+1,-1,-1,+1][+j,+j,-j,-j]をそれぞれ送信する。また、A-MAP 0を見逃し、A-MAP 1を正常に受信した場合に、A-MAP 1のデータがACKのときは[+1,+1,-1,-1][+j,+j,+j,+j]、A-MAP 1のデータがNACKのときは[+1,-1,-1,+1][+j,-j,+j,-j]をそれぞれ送信する。 FIG. 15 is a diagram showing a table of spreading code sequences indicating ACK / NACK when A-MAP is missed in the fourth embodiment. In the fourth embodiment, as the spreading code sequence used for the ACK / NACK response signal, the phase of the sequence 2 is shifted by 90 degrees with respect to the sequence 1 based on that of the first embodiment shown in FIG. A spreading code sequence is used. In other words, when A-MAP 0 is normally received when A-MAP is missed and A-MAP 1 is missed, if the data of A-MAP 0 is ACK, [+1, + 1, + 1, + 1] [ + J, -j, + j, -j], and when the data of A-MAPM0 is NACK, [+1, -1, -1, +1] [+ j, + j, -j, -j] are transmitted. Further, when A-MAPM1 is missed and A-MAP 1 is normally received and the data of A-MAP 1 is ACK, [+1, +1, -1, -1] [+ j, + j, + j, + J] and when data of A-MAP-1 is NACK, [+1, −1, −1, +1] [+ j, −j, + j, −j] are transmitted.
 図16は第4の実施形態における拡散符号系列のIQ平面上のシンボル配置を示す図である。図16に示すように、系列1の拡散符号系列はIQ平面のI軸上の+1または-1のシンボルであり、系列2の拡散符号系列はIQ平面のQ軸上の+jまたは-jのシンボルである。上記の拡散符号系列を用いた場合、CDM送信時の合成系列は[1+j,1-j,1+j,1-j]、[1+j,-1+j,-1-j,1-j]、[1+j,1+j,-1-j,1+j]、[1+j,-1-j,-1+j,1-j]のいずれかとなる。 FIG. 16 is a diagram showing the symbol arrangement on the IQ plane of the spread code sequence in the fourth embodiment. As shown in FIG. 16, the sequence 1 spreading code sequence is a +1 or -1 symbol on the I axis in the IQ plane, and the sequence 2 spreading code sequence is a + j or -j symbol on the Q axis in the IQ plane. It is. When the above spreading code sequence is used, the composite sequence at the time of CDM transmission is [1 + j, 1-j, 1 + j, 1-j], [1 + j, -1 + j, -1-j, 1-j], [1 + j, 1 + j, −1−j, 1 + j] and [1 + j, −1−j, −1 + j, 1−j].
 図17は第4の実施形態に係る無線通信装置の受信側装置(端末装置)の構成例を示すブロック図である。受信側装置は、図10の第1の実施形態の構成と比較して、変調部830の機能が異なっている。変調部830は、ACK/NACK系列決定部809で決定された拡散符号系列に従って、位相回転処理を行い、位相が互いに90度ずれた状態の2つの拡散符号系列をCDMする。 FIG. 17 is a block diagram illustrating a configuration example of a receiving side device (terminal device) of the wireless communication device according to the fourth embodiment. The receiving side device differs in the function of the modulation unit 830 as compared to the configuration of the first embodiment of FIG. Modulating section 830 performs phase rotation processing according to the spreading code sequence determined by ACK / NACK sequence determining section 809, and CDMs two spreading code sequences whose phases are shifted from each other by 90 degrees.
 第4の実施形態では、CDM後の全てのシンボルにおいて同じ送信パワーを送信できるため、受信側装置の端末における送信電力を有効活用することができる。 In the fourth embodiment, since the same transmission power can be transmitted in all symbols after the CDM, it is possible to effectively use the transmission power in the terminal of the reception side device.
 なお、本発明は、本発明の趣旨ならびに範囲を逸脱することなく、明細書の記載、並びに周知の技術に基づいて、当業者が様々な変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。また、発明の趣旨を逸脱しない範囲で、上記実施形態における各構成要素を任意に組み合わせてもよい。 The present invention is intended to be variously modified and applied by those skilled in the art based on the description in the specification and well-known techniques without departing from the spirit and scope of the present invention. Included in the scope for protection. Moreover, you may combine each component in the said embodiment arbitrarily in the range which does not deviate from the meaning of invention.
 なお、上記実施形態ではアンテナとして説明したが、アンテナポートでも同様に適用できる。アンテナポート(antenna port)とは、1本または複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。例えばLTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。 In addition, although demonstrated as an antenna in the said embodiment, it is applicable similarly also with an antenna port. An antenna port refers to a logical antenna composed of one or a plurality of physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas. For example, in LTE, it is not defined how many physical antennas an antenna port is composed of, but is defined as a minimum unit by which a base station can transmit different reference signals (Reference signals). The antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
 上記各実施形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。 In each of the above embodiments, the case where the present invention is configured by hardware has been described as an example, but the present invention can also be realized by software.
 また、上記各実施形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Further, each functional block used in the description of each of the above embodiments is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of progress in semiconductor technology or other derived technology, it is naturally possible to integrate functional blocks using this technology. Biotechnology can be applied.
 本出願は、2009年7月6日出願の日本特許出願(特願2009-160005)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2009-160005) filed on Jul. 6, 2009, the contents of which are incorporated herein by reference.
 本発明は、制御チャネルの見逃しが生じて再送を行った場合の誤り率の悪化を防止することが可能となる効果を有し、例えばIEEE 802.16m等の無線通信システムに適用可能な無線通信装置及び無線通信方法等として有用である。 The present invention has an effect that it is possible to prevent deterioration of an error rate when retransmission is performed due to oversight of a control channel. For example, wireless communication applicable to a wireless communication system such as IEEE 802.16m It is useful as an apparatus and a wireless communication method.
 701 受信アンテナ
 702 FFT部
 703 復調部
 704 ACK/NACK復号部
 705 割当部
 706 データ割当制御信号生成部
 707 送信データ生成部
 708、709 変調部
 710 多重部
 711 IFFT部
 712 送信アンテナ
 801 受信アンテナ
 802 FFT部
 803 復調部
 804 データ復号部
 805 CRC判定部
 806 割当信号復号部
 807 割当信号見逃し判定部
 808 テーブル選択部
 809 ACK/NACK系列決定部
 810、820、830 変調部
 811、821 IFFT部
 812、822 送信アンテナ
 
701 Reception antenna 702 FFT unit 703 Demodulation unit 704 ACK / NACK decoding unit 705 Assignment unit 706 Data allocation control signal generation unit 707 Transmission data generation unit 708, 709 Modulation unit 710 Multiplexing unit 711 IFFT unit 712 Transmission antenna 801 Reception antenna 802 FFT unit 803 Demodulation unit 804 Data decoding unit 805 CRC determination unit 806 Allocation signal decoding unit 807 Allocation signal miss determination unit 808 Table selection unit 809 ACK / NACK sequence determination unit 810, 820, 830 Modulation unit 811, 821 IFFT unit 812, 822 Transmit antenna

Claims (12)

  1.  通信相手装置から自装置へフィードバックさせる応答信号のフィードバック方法の指示情報を含む制御信号を生成する制御信号生成部と、
     前記通信相手装置への制御信号及びデータを含む信号を送信する送信部と、
     前記通信相手装置からの応答信号を受信する受信部と、
     前記受信した応答信号を判定する応答信号判定部と、を備え、
     自装置は、前記通信相手装置との間において、1つのデータに関する復号可否を示す応答信号をフィードバックする第1のフィードバック方法と、2つのデータに関する復号可否を示す応答信号をフィードバックする第2のフィードバック方法とを使用可能であり、
     前記制御信号生成部は、前記第1のフィードバック方法または前記第2のフィードバック方法を指示する指示情報を含む制御信号を生成し、
     前記応答信号判定部は、前記第2のフィードバック方法を指示した際に前記応答信号において2つの符号系列を検出した場合、前記通信相手装置において前記制御信号または前記データの受信見逃しがあったことを判定する無線通信装置。
    A control signal generating unit that generates a control signal including instruction information of a feedback method of a response signal to be fed back from the communication partner device to the own device;
    A transmission unit for transmitting a signal including a control signal and data to the communication partner device;
    A receiver for receiving a response signal from the communication partner device;
    A response signal determination unit for determining the received response signal,
    The own apparatus feeds back a response signal indicating whether or not decoding can be performed on one piece of data with the communication partner apparatus, and second feedback that feeds back a response signal indicating whether or not decoding is possible on two pieces of data. And can be used
    The control signal generation unit generates a control signal including instruction information for instructing the first feedback method or the second feedback method;
    When the response signal determination unit detects two code sequences in the response signal when instructing the second feedback method, the communication partner device has missed reception of the control signal or the data. A wireless communication device for determining.
  2.  請求項1に記載の無線通信装置であって、
     前記応答信号の判定結果に応じて再送処理を行う再送処理部をさらに備え、
     前記再送処理部は、前記受信見逃しの判定があった場合に、初回送信時のデータを再度送信する、無線通信装置。
    The wireless communication device according to claim 1,
    A retransmission processing unit that performs a retransmission process according to a determination result of the response signal;
    The retransmission processing unit is a wireless communication device that retransmits data at the time of initial transmission when the reception miss is determined.
  3.  請求項1に記載の無線通信装置であって、
     前記応答信号は、前記通信相手装置に送信した前記データの復号可否に対応するACK(Acknowledgment)またはNACK(Negative Acknowledgment)を示すための、前記第1のフィードバック方法と前記第2のフィードバック方法のそれぞれのフィードバック方法において設定した符号を含み、
     前記応答信号判定部は、通信相手装置との間で使用するフィードバック方法に対応して、前記受信した符号により示されるACKまたはNACKを判断するものであり、前記応答信号において2つの符号系列を検出した場合、前記検出した符号系列の組合せによって対象の2つのデータに関するACK、NACK、受信見逃しを判定する無線通信装置。
    The wireless communication device according to claim 1,
    The response signal indicates each of the first feedback method and the second feedback method for indicating ACK (Acknowledgment) or NACK (Negative Acknowledgment) corresponding to whether or not the data transmitted to the communication partner apparatus can be decoded. Including the code set in the feedback method of
    The response signal determination unit determines an ACK or NACK indicated by the received code corresponding to a feedback method used with a communication partner apparatus, and detects two code sequences in the response signal. In this case, the wireless communication apparatus determines ACK, NACK, and reception miss with respect to two pieces of target data based on the combination of the detected code sequences.
  4.  請求項1に記載の無線通信装置であって、
     前記応答信号は、符号系列として拡散符号系列が用いられるものであり、
     前記応答信号判定部は、前記応答信号を逆拡散してピークの高い2つの拡散符号系列を検出した場合、前記受信見逃しがあったことを判定する無線通信装置。
    The wireless communication device according to claim 1,
    The response signal uses a spreading code sequence as a code sequence,
    The said response signal determination part is a radio | wireless communication apparatus which determines that the said reception miss was missed, when despreading the said response signal and detecting two spreading code sequences with a high peak.
  5.  請求項1に記載の無線通信装置であって、
     前記制御信号生成部は、前記フィードバック方法の指示情報として、前記応答信号の割当リソースの指示情報を含む制御信号を生成し、前記応答信号の割当リソースの指示情報において前記第2のフィードバック方法用の特定領域を設け、前記通信相手装置との間で第2のフィードバック方法を使用する場合、前記応答信号の割当リソースの指示情報として、少なくとも1つのデータに対する応答信号に関して前記特定領域の指示情報を用いた制御信号を生成する無線通信装置。
    The wireless communication device according to claim 1,
    The control signal generation unit generates a control signal including instruction information of the allocation resource of the response signal as instruction information of the feedback method, and for the second feedback method in the instruction information of the allocation resource of the response signal When a specific area is provided and the second feedback method is used with the communication counterpart device, the instruction information of the specific area is used for the response signal for at least one data as the instruction information of the response signal allocation resource. A wireless communication device that generates a control signal.
  6.  通信相手装置からの信号を受信する受信部と、
     前記受信した信号における、自装置から通信相手装置へフィードバックする応答信号のフィードバック方法の指示情報を含む制御信号を取得する制御信号取得部と、
     前記受信した信号におけるデータを復号するデータ復号部と、
     前記制御信号または前記データの受信見逃しを判定する見逃し判定部と、
     前記受信見逃しの有無と、前記データの復号可否とに応じて、前記応答信号に用いる符号系列を選択し、選択した符号系列を用いて応答信号を出力する応答信号出力部と、
     前記応答信号を送信する送信部と、を備え、
     自装置は、通信相手装置との間において、1つのデータに関する復号可否を示す応答信号をフィードバックする第1のフィードバック方法と、2つのデータに関する復号可否を示す応答信号をフィードバックする第2のフィードバック方法とを使用可能であり、
     前記応答信号出力部は、前記第2のフィードバック方法が指示された際に前記受信見逃しの判定があった場合に、前記応答信号として2つの符号系列を出力し、
     前記送信部は、前記2つの符号系列を多重した応答信号を送信する無線通信装置。
    A receiving unit for receiving a signal from a communication partner device;
    A control signal acquisition unit for acquiring a control signal including instruction information of a feedback method of a response signal to be fed back from the own device to the communication partner device in the received signal;
    A data decoding unit for decoding data in the received signal;
    An oversight determination unit for determining whether the control signal or the data is overlooked;
    A response signal output unit that selects a code sequence to be used for the response signal according to whether or not the reception is missed and whether or not the data can be decoded, and outputs a response signal using the selected code sequence;
    A transmission unit for transmitting the response signal,
    The first apparatus feeds back a response signal indicating whether or not decoding is possible for one data, and the second feedback method is to feed back a response signal indicating whether or not decoding is possible for two data. And can be used
    The response signal output unit outputs two code sequences as the response signal when the reception miss is determined when the second feedback method is instructed,
    The transmission unit is a wireless communication device that transmits a response signal in which the two code sequences are multiplexed.
  7.  請求項6に記載の無線通信装置であって、
     前記応答信号は、前記通信相手装置から受信した前記データの復号可否に対応するACK(Acknowledgment)またはNACK(Negative Acknowledgment)を示すための、前記第1のフィードバック方法と前記第2のフィードバック方法のそれぞれのフィードバック方法において設定した符号を含むものであり、
     前記応答信号出力部は、前記受信見逃しの判定があった場合に、対象の2つのデータに関するACK、NACK、受信見逃しを示す2つの符号系列の組合せを出力する無線通信装置。
    The wireless communication device according to claim 6,
    The response signal indicates each of the first feedback method and the second feedback method for indicating ACK (Acknowledgment) or NACK (Negative Acknowledgment) corresponding to whether or not the data received from the communication partner apparatus can be decoded. Including the code set in the feedback method of
    The said response signal output part is a radio | wireless communication apparatus which outputs the combination of two code series which shows ACK, NACK regarding 2 data of object, and reception miss, when the reception miss is judged.
  8.  請求項6に記載の無線通信装置であって、
     前記応答信号出力部は、前記2つの符号系列として、前記送信部から送信される応答信号の時間単位ごとの各送信シンボルのパワーが同じまたはほぼ同じとなるような2つの拡散符号系列の組合せを出力する無線通信装置。
    The wireless communication device according to claim 6,
    The response signal output unit includes a combination of two spreading code sequences such that the power of each transmission symbol for each time unit of the response signal transmitted from the transmission unit is the same or substantially the same as the two code sequences. A wireless communication device to output.
  9.  請求項6に記載の無線通信装置であって、
     前記送信部は、2系統の送信アンテナを有し、前記応答信号出力部から出力される2つの符号系列を別々の系統の送信アンテナから送信する無線通信装置。
    The wireless communication device according to claim 6,
    The transmission unit includes two transmission antennas, and transmits two code sequences output from the response signal output unit from separate transmission antennas.
  10.  請求項6に記載の無線通信装置であって、
     前記応答信号出力部は、前記2つの符号系列として、位相が互いに90度ずれた2つの符号系列の組合せを出力する無線通信装置。
    The wireless communication device according to claim 6,
    The response signal output unit outputs a combination of two code sequences whose phases are shifted by 90 degrees from each other as the two code sequences.
  11.  通信相手装置との間において、1つのデータに関する復号可否を示す応答信号をフィードバックする第1のフィードバック方法と、2つのデータに関する復号可否を示す応答信号をフィードバックする第2のフィードバック方法とを使用可能な無線通信装置における無線通信方法であって、
     前記第1のフィードバック方法または前記第2のフィードバック方法を指示する指示情報を含む制御信号を生成し、
     前記通信相手装置への制御信号及びデータを含む信号を送信し、
     前記通信相手装置からの応答信号を受信し、
     前記第2のフィードバック方法を指示した際に前記受信した応答信号において2つの符号系列を検出した場合、前記通信相手装置において前記制御信号または前記データの受信見逃しがあったことを判定する、無線通信方法。
    It is possible to use a first feedback method for feeding back a response signal indicating whether or not decoding can be performed on one data and a second feedback method for feeding back a response signal indicating whether or not decoding can be performed on two pieces of data with a communication partner device. A wireless communication method in a wireless communication device,
    Generating a control signal including instruction information indicating the first feedback method or the second feedback method;
    Transmitting a signal including a control signal and data to the communication partner device;
    Receiving a response signal from the communication partner device;
    Wireless communication for determining that reception of the control signal or the data is missed in the communication counterpart device when two code sequences are detected in the received response signal when the second feedback method is instructed; Method.
  12.  通信相手装置との間において、1つのデータに関する復号可否を示す応答信号をフィードバックする第1のフィードバック方法と、2つのデータに関する復号可否を示す応答信号をフィードバックする第2のフィードバック方法とを使用可能な無線通信装置における無線通信方法であって、
     前記通信相手装置からの信号を受信し、
     前記受信した信号における、自装置から通信相手装置へフィードバックする応答信号のフィードバック方法の指示情報を含む制御信号を取得し、
     前記受信した信号におけるデータを復号し、
     前記制御信号または前記データの受信見逃しを判定し、
     前記第2のフィードバック方法が指示された際に前記受信見逃しの判定があった場合に、前記応答信号として2つの符号系列を出力し、
     前記2つの符号系列を多重した応答信号を送信する、無線通信方法。
    It is possible to use a first feedback method for feeding back a response signal indicating whether or not decoding can be performed on one data and a second feedback method for feeding back a response signal indicating whether or not decoding can be performed on two pieces of data with a communication partner device. A wireless communication method in a wireless communication device,
    Receiving a signal from the communication partner device;
    Obtaining a control signal including instruction information of a feedback method of a response signal to be fed back from the own device to the communication partner device in the received signal;
    Decoding data in the received signal;
    Determine whether to miss the control signal or the data;
    When there is a determination of missed reception when the second feedback method is instructed, two code sequences are output as the response signal,
    A wireless communication method for transmitting a response signal in which the two code sequences are multiplexed.
PCT/JP2010/003031 2009-07-06 2010-04-27 Wireless communication apparatus and wireless communication method WO2011004530A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009160005 2009-07-06
JP2009-160005 2009-07-06

Publications (1)

Publication Number Publication Date
WO2011004530A1 true WO2011004530A1 (en) 2011-01-13

Family

ID=43428963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003031 WO2011004530A1 (en) 2009-07-06 2010-04-27 Wireless communication apparatus and wireless communication method

Country Status (1)

Country Link
WO (1) WO2011004530A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUJIAN ZHANG ET AL.: "2-bit HARQ Feedback", IEEE C802.16M-09/1139, 2 May 2009 (2009-05-02) *
ZHAOHUA LU ET AL: "Usage of 16m PA MAP NACK Channel", IEEE C80216M-09/0769, 21 April 2009 (2009-04-21) *

Similar Documents

Publication Publication Date Title
RU2451405C1 (en) Method and apparatus for managing resources in wireless communication system
JP5456151B2 (en) Retransmission mode notification signaling in a wireless communication system
JP5785591B2 (en) Method and apparatus in communication system
KR101548067B1 (en) Method and device for executing harq in tdd-based wireless communication system
KR101168118B1 (en) Improved ack/nack dtx detection and signalling of not receiving a downlink allocation grant message
EP2556614B1 (en) Harq ack/nack transmission for multi-carrier operation
RU2471295C1 (en) Coding and multiplexing of control information in wireless communication system
US8423044B2 (en) Method for allocating physical hybrid automatic repeat request indicator channel
US20190158254A1 (en) Terminal device, base station device, retransmission method, and resource allocation method
US10972228B2 (en) Base station device, user equipment, wireless communication system, and communication method
CN101527623B (en) Method for transmitting message in physical mixing automatic repeat request indicator channel and system
EP3110026B1 (en) Frequency hopping method and apparatus in a wireless communication system
AU2009244253A1 (en) Bundling of ACK information in a wireless communication system
JP2011517542A (en) Reporting ACK and CQI information in a wireless communication system
KR20180102974A (en) Control and data information resource mapping method and apparatus in wirelss cellular communication system
EP3685605B1 (en) Method and apparatus for controlling data retransmission in multiuser mimo system
US20110176637A1 (en) Telecommunication Method and Apparatus
JP5871917B2 (en) Terminal device and response signal transmission method
WO2011004530A1 (en) Wireless communication apparatus and wireless communication method
WO2011004531A1 (en) Wireless communication apparatus and wireless communication method
KR20110097235A (en) Method and apparatus for transmitting and receiving a signal in wireless communication system
JP7091387B2 (en) Communication method, terminal device and network device
EP2110979A1 (en) Communication network element and method transmitting data
RU2461132C2 (en) Reporting of ack and cqi information in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10796844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP