WO2011004508A1 - Water storage facility, method of constructing water storage facility, method of increasing load capacity of water storage facility against horizontal load acting thereon, and method of preventing horizontal displacement of framework block - Google Patents

Water storage facility, method of constructing water storage facility, method of increasing load capacity of water storage facility against horizontal load acting thereon, and method of preventing horizontal displacement of framework block Download PDF

Info

Publication number
WO2011004508A1
WO2011004508A1 PCT/JP2009/066502 JP2009066502W WO2011004508A1 WO 2011004508 A1 WO2011004508 A1 WO 2011004508A1 JP 2009066502 W JP2009066502 W JP 2009066502W WO 2011004508 A1 WO2011004508 A1 WO 2011004508A1
Authority
WO
WIPO (PCT)
Prior art keywords
skeleton block
skeleton
substrate
block
fitting
Prior art date
Application number
PCT/JP2009/066502
Other languages
French (fr)
Japanese (ja)
Inventor
正人 池内
善則 松永
謙介 岡本
卓三 萩原
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2011004508A1 publication Critical patent/WO2011004508A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B11/00Arrangements or adaptations of tanks for water supply
    • E03B11/10Arrangements or adaptations of tanks for water supply for public or like main water supply
    • E03B11/14Arrangements or adaptations of tanks for water supply for public or like main water supply of underground tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/022Laminated structures
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F1/00Methods, systems, or installations for draining-off sewage or storm water
    • E03F1/002Methods, systems, or installations for draining-off sewage or storm water with disposal into the ground, e.g. via dry wells
    • E03F1/005Methods, systems, or installations for draining-off sewage or storm water with disposal into the ground, e.g. via dry wells via box-shaped elements

Definitions

  • the present invention relates to an underground water storage facility for storing rainwater and the like, a construction method for the storage facility, and the like.
  • the storage tank is formed of a plurality of skeleton blocks
  • a water-permeable or water-permeable sheet is lined on the inner surface of the water reservoir, and a resin skeleton block is assembled in the inner space.
  • a storage facility Patent Document 1, Patent Document 2.
  • a skeleton block provided in such a reservoir layer there is a unit member having a structure that locks the abutted state when the cylinder portions are abutted against the top of the cylinder portion (Patent Document 3). .
  • Patent Document 1 and Patent Document 2 are capable of storing rainwater and the like, and are also subjected to vertical force by the support of the resin skeleton block.
  • the resin skeleton block needs to be as light and compact as possible. This is because, if the resin skeleton block is given strength more than necessary, the cost and the weight of the resin skeleton block are increased, and the workability of the construction is remarkably deteriorated.
  • FIG. 11 is an exploded perspective view showing a skeleton block 60 (60a, 60b, 60c, 60d) used in such a conventional rainwater storage tank
  • FIG. 12 is a front view showing the assembled skeleton block 60. It is.
  • the skeleton block 60 includes a substrate 61, a support 63, and the like.
  • the substrate 61 is a rectangular plate-like member, and a plurality of holes 67 that are permeable to water are formed.
  • a column 63 is erected on one side of the center of the substrate 61.
  • the column 63 is cylindrical and has a hole 65 formed therein.
  • the skeleton blocks 60 are turned upside down in the vertical direction and stacked so that the columns 63 or the substrates 61 face each other.
  • the skeleton block 60d is arranged at the lower stage so that the support 63 faces upward, and the skeleton block 60c is arranged above the support 63 so that the support 63 faces downward. At this time, the tips of the struts 63 of the skeleton blocks 60d and 60c come into contact with each other.
  • a skeleton block 60b is further provided with the column 63 facing upward, and the skeleton block 60a is disposed thereon with the column 63 facing downward. The tips of the support columns 63 of the skeleton blocks 60a and 60b come into contact with each other.
  • the skeleton block 60 is assembled in the vertical direction by repeating the above.
  • FIG. 13A shows a water storage tank 65 using the skeleton block 60.
  • a plurality of skeleton blocks 60 are assembled in the water storage tank 65.
  • the skeleton block 60 has the column 63 as described above, and receives a vertical force by the column 63.
  • the force in the vertical direction depends on the depth of the water storage tank 65 because the skeleton block is usually made of synthetic resin and the skeleton block itself is lightweight. , Will not change significantly.
  • the installation range of the water storage facility is not wide, it is necessary to install the storage facility in a narrow range. In this case, it is necessary to increase the depth of the storage part of the water storage facility.
  • the resin skeleton block that can withstand horizontal earth pressure of 5 to 6 m, which is the depth of general water storage facilities, for example, a deeper water storage facility of 7 to 10 m depth, for example. If constructed, the resin skeleton block may be damaged by the earth pressure in the deepest part.
  • FIG. 13B is a conceptual diagram showing a skeleton block 60 installed in the deepest part, for example.
  • the skeleton block 60 is formed by the support 63 and the substrate 61.
  • horizontal earth pressure (in the direction of arrow P in the figure) is applied to the substrate 61 in the horizontal direction.
  • the substrate 61 is designed to withstand the earth pressure of a predetermined depth.
  • the board 61 may be damaged when the earth pressure is deeper than that.
  • the force in the horizontal direction increases substantially in proportion to the depth, it becomes a big problem for a skeleton block installed in a deep part.
  • the substrate 61 is strengthened more than necessary, the strength of the skeleton block used in a shallow position becomes excessive, which is not desirable. Further, if the skeleton blocks for the shallow part and the deep part are properly used, there are a plurality of product shapes, which is not desirable in consideration of product management, molds, etc. (manufacturing cost, etc.).
  • the resin skeleton block assembled in the vertical direction may be displaced by a horizontal force.
  • the skeletal blocks 60 stacked in the vertical direction are vertically aligned due to a displacement (a direction indicated by an arrow Q in the figure) generated as a result of accumulation of horizontal displacement force due to earthquake vibration.
  • a displacement a direction indicated by an arrow Q in the figure
  • the position of will shift.
  • the occurrence of such a shift not only becomes weaker than the force in the horizontal direction, but also the strength of the vertical block force is greatly reduced because the axis of the support of the skeleton block is shifted.
  • FIG. 14 is an exploded perspective view showing a skeleton block 80 (80a, 80b, 80c, 80d) which is an example of a skeleton block having a locking portion
  • FIG. 15 is a front sectional view showing the assembled skeleton block 80. is there.
  • the skeleton block 80 includes a substrate 81, four support columns 83, and the like.
  • the substrate 81 is a rectangular plate-like member, and is formed with a plurality of holes 87 that are permeable to water.
  • Supports 83 are erected in the vicinity of the four corners on one side of the substrate 81.
  • a recess 89 and a protrusion 91 are provided on the support 83 on the diagonal line.
  • the skeleton block 80 is assembled in the same manner as the skeleton block 60, but at the contact portion between the columns 83 of the skeleton block 80 a and the skeleton block 80 b (or the skeleton block 80 c and the skeleton block 80 d) facing each other.
  • the concave portion 89 and the convex portion 91 are fitted. Thereby, the shift
  • the contact between the support posts 83 increases the span between the substrates 81. Therefore, the locking effect of the contact portions between the support posts 83 is not sufficient to prevent the displacement when receiving a shear load in the horizontal direction. . Further, there is no effect on the breakage of the substrate 81 as described above. Moreover, since the fitting portion is provided at the tip of the column, water accumulates in the column, water does not flow downward in the column, and air accumulates, so that there is a problem that water storage efficiency is deteriorated.
  • the present invention has been made in view of such problems, and without using a plurality of types of resin skeleton blocks, water that does not cause breakage or displacement with respect to force in the direction of water storage flattening.
  • the purpose is to provide storage facilities and construction methods for water storage facilities.
  • the first invention is a water storage facility that is provided in the basement and stores water, a water storage part dug into the ground, and a plurality of skeleton blocks arranged in the water storage part,
  • a reinforcing member that is a plate-like member attached to the skeleton block; a side plate provided on a side surface of the water storage portion; and a covering layer that covers a top plate at the top of the water storage portion.
  • a plate-like substrate having a plurality of skeleton blocks in the horizontal direction in the water storage section. Further, the columns are stacked upside down in the vertical direction, and the columns and fitting holes of the upper skeleton block in which the columns are directed downward are directed upward.
  • the lower skeleton The fitting hole and the support column of the lock are respectively fitted, and the reinforcement member is disposed between at least a part of the substrates facing each other of the skeleton block assembled in the vertical direction, and the reinforcement member
  • the water storage facility has a fitting structure in which the substrate is fitted.
  • the assembled structure of at least a part of the skeleton block is provided with the lower skeleton block in which the support column is directed upward, and the upper skeleton block in which the support column is disposed downward is provided.
  • the upper skeleton block is arranged so as to be shifted by a half pitch vertically and horizontally with respect to the lower skeleton block, and the upper skeleton block is arranged so as to straddle four adjacent lower skeleton blocks. It is preferable that the support column and the fitting hole are assembled with the fitting hole and the support column of the lower skeleton block.
  • a first fitting protrusion and a first fitting hole are provided on a surface of the substrate opposite to the side on which the support column is erected, and the reinforcing member is provided on one surface of the reinforcing member.
  • a second fitting hole corresponding to the first fitting protrusion of the substrate contacting the one surface side of the reinforcing member is provided, and the other surface of the reinforcing member is provided on the other surface side of the reinforcing member.
  • a second fitting protrusion corresponding to the first fitting hole of the board to be contacted is provided, and the fitting structure is a fitting between the first fitting protrusion and the second fitting hole.
  • the fitting holes are fitted to each other, and the second fitting protrusions and the second fitting protrusions of the upper and lower reinforcing members stacked at the joint portion between the reinforcing members are connected to each other.
  • the fitting hole of may be fitted each other each other.
  • Each support of the skeleton block stacked in the vertical direction is arranged in the vertical direction directly or via the substrate and / or the reinforcing member, and penetrates the supporting column and the reinforcing member arranged in the vertical direction.
  • a rod-shaped member is further provided, and a rod-shaped member support portion is provided on the inner surface of the tip end portion of the column. The rod-shaped member is held by the rod-shaped member support portion, and the portion of the reinforcing member through which the rod-shaped member passes
  • a support portion for supporting the rod-shaped member may be formed, and the rod-shaped member may be supported by the reinforcing member at least at every installation interval in the vertical direction of the reinforcing member.
  • a precipitation tank into which water flows from an inflow port is provided in a part of the water storage unit, and the skeleton block partially cut out and the reinforcing plate cut out in part are provided in the precipitation tank.
  • a work hole communicating in the vertical direction is provided by the skeleton block that is assembled and partly cut out and the reinforcing plate that is partly cut out, a partition wall is provided so as to surround the precipitation tank, and the precipitation
  • the size of the skeleton block provided in the tank and the water reservoir may be the same.
  • an inner plate may be provided on at least a part of the side plate toward the inner side of the water storage portion substantially perpendicularly to the side plate.
  • the skeleton block is piled up while fitting the support of the skeleton block and the fitting hole provided in the substrate, so that there is no horizontal displacement of the support.
  • the space between the substrates of the skeleton blocks assembled in the vertical direction can be narrowed (about 1/2), so that the part responsible for earth pressure This is effective against horizontal force (earth pressure) applied to the entire side plate.
  • two struts provided on one diagonal line and two fitting holes provided on the other diagonal line that can be fitted to the tip of the strut are turned upside down to fit with the struts.
  • a total of four struts are turned upside down between the boards, and the tips are fitted with the fitting holes provided in the other board, so that assembly is possible. It is easy and an efficient structure can be obtained with one kind of skeleton block.
  • a side plate is provided on the inner side surface of the water storage section, and a reinforcing member is sandwiched between a part of the substrates of the skeleton block assembled vertically (for example, between the substrates at a position deeper than a predetermined depth). Therefore, the reinforcing member can receive the earth pressure applied to the side plate. For this reason, an excessive horizontal force is not applied to the substrate and the substrate is not damaged.
  • the reinforcing member is provided not in a part between the substrates of the skeleton blocks assembled in the vertical direction, but in all the depth directions in order to improve vibration resistance depending on the ground outside the water storage part. Also good.
  • the skeleton block is a normal one (for example, one having a horizontal load capacity capable of withstanding earth pressure in a range of about 5 to 6 m), and the entire inside of the storage tank (for example, 8 to 10 m deep). Etc.), and it is not necessary to use a plurality of types of skeleton blocks or skeleton blocks having excessive strength.
  • the substrate and the reinforcing member are fitted and fixed, and a shift or the like between them can be prevented.
  • the fitting protrusions and fitting holes provided on the substrates can also be used for fitting between the substrates, the displacement between the substrates can be prevented, and the fitting protrusions and fittings provided on the reinforcing member can be prevented.
  • the holes can also be used for fitting the reinforcing members. For this reason, the shift
  • the fitting protrusions and fitting holes provided on the substrate and reinforcing member of the skeleton block must withstand shear stresses such as earthquakes, so pay careful attention to this point when designing the clearance and strength of fitting parts.
  • shear stresses such as earthquakes
  • the rod-shaped member is a hollow pipe or a solid member, and the cross-sectional shape of the rod-shaped member is a shape aligned with a through-hole provided in a support column tip surface (tip opposite to the substrate surface). It is desirable.
  • the rod-shaped member can be more reliably held by the column.
  • the rod-shaped member is preferably a hollow pipe.
  • the rod-shaped member is preferably a hollow pipe.
  • rainwater can be stored in the pipe.
  • a water passage hole is provided in the pipe-like rod-shaped member, it is possible to facilitate the penetration of water from the water storage space into the rod-shaped member.
  • the water passage hole is a micro hole having a diameter of several mm.
  • the partition wall can be reliably held. Further, since the work hole is formed by a skeleton block with a part of the substrate cut out and a reinforcing member formed in the same shape as the skeleton block with a part of the substrate cut, The strength can be sufficiently secured.
  • the skeletal blocks used for the water storage section and the settling tank are approximately the same size (note that the approximately same size is the size of the portion that does not take into account notches regardless of the presence or absence of notches provided in part of the substrate. Therefore, there is no stress concentration in the water reservoir, and the skeleton block does not collapse. Furthermore, if an inner plate is provided on a part of the side wall inwardly substantially perpendicular to the side wall, a reinforcing effect is exerted against earth pressure from the outside of the side wall. Note that the inner plate is joined to the side plate, or is erected between the skeleton blocks in the water storage section.
  • 2nd invention is the construction method of the water storage facility which is provided in the basement and stores water, excavating the ground to form a water storage part, and a skeleton block and a reinforcing member in the water storage part And a step (c) of providing a side wall and an upper covering portion so as to cover the skeleton block and the reinforcing member, and the skeleton block has a flat plate shape having a water passage hole.
  • the horizontal skeleton block is shifted by a half pitch vertically and horizontally in the horizontal direction with respect to the lower skeleton block above the lower skeleton block.
  • Upper skeleton block It is arranged so as to straddle the four adjacent lower skeleton blocks, and the struts and the fitting holes of the upper skeleton block are respectively fitted with the fitting holes and the struts of the lower skeleton block,
  • 3rd invention is the construction method of the water storage facility which is provided in the basement and stores water, excavating the ground to form a water storage part, and a skeleton block and a reinforcing member in the water storage part And a step (c) of providing a side wall and an upper covering portion so as to cover the skeleton block and the reinforcing member, and the skeleton block has a flat plate shape having water passage holes.
  • the upper skeleton block with the support column facing downward is disposed above the lower skeleton block, and the support column and the fitting hole of the upper skeleton block are arranged on the lower skeleton block.
  • the skeleton blocks are stacked upside down, and at least some of the skeleton blocks are provided with reinforcing members between the substrates facing each other, and the reinforcing members and Since the side plate is provided on the inner surface of the reservoir so as to cover the skeleton block, the reinforcing member can be subjected to earth pressure applied to the side plate, so that the substrate is damaged without applying excessive horizontal force to the substrate. There is no. Therefore, it is not necessary to use a plurality of types of skeleton blocks or skeleton blocks having excessive strength.
  • the storage portion can be efficiently reinforced.
  • the predetermined depth refers to a depth at which a horizontal earth pressure that increases according to the depth increases with respect to the horizontal load resistance of the substrate of the skeleton block to be used.
  • the horizontal load resistance of the substrate of the skeleton block is a load resistance value in view of a general safety factor.
  • said design is a case of a basic design, A reinforcement member can also be used for all the depth directions of a water reservoir irrespective of the depth according to the conditions of an installation place.
  • the distance between the substrates of the skeleton blocks assembled in the vertical direction can be reduced to about 1 ⁇ 2 from about two support columns to one.
  • the skeleton blocks adjacent in the horizontal direction are also firmly connected to each other, and it is possible to prevent the skeleton block from being displaced or broken.
  • the upper skeletal block when assembling the skeletal blocks in order from the bottom, the upper skeletal block stably fits with the lower skeletal block, so that when the operator works on each skeletal block, the skeletal block collapses. It is safe without fear.
  • the 4th invention is a horizontal direction load-proof improvement method of water storage facilities, Comprising: The water storage part dug down to the ground, The skeleton block arrange
  • a plurality of the skeletal blocks are provided side by side in the horizontal direction vertically and horizontally, and are stacked with the vertical direction reversed in the vertical direction, and the support column is disposed upward.
  • the lower skeleton The upper skeletal block in which the rack is disposed with the struts facing downward is arranged with a half-pitch shifted vertically and horizontally in the horizontal direction with respect to the lower skeleton block, and the upper skeleton block
  • the blocks are arranged so as to straddle the adjacent four lower skeleton blocks, and the support pillars and the fitting holes of the upper skeleton block are respectively fitted with the fitting holes and the support pillars of the lower skeleton block.
  • the reinforcing member assembled as described above is disposed between at least a part of the substrates facing each other of the skeleton block assembled in the vertical direction, and has a fitting structure in which the reinforcing member and the substrate are fitted. It is the horizontal direction load-proof improvement method of the water storage facility characterized by having.
  • the skeleton blocks are stacked upside down, and at least some of the skeleton blocks are provided with reinforcing members between the substrates facing each other. Since the side plate is provided on the inner surface of the storage layer so as to cover, the reinforcing member can receive the earth pressure applied to the side plate. Therefore, the substrate is not damaged without applying excessive horizontal force to the substrate.
  • 5th invention is the horizontal direction prevention method of the skeleton block in a water storage facility, Comprising: The water storage part dug down to the ground, The skeleton block arrange
  • the upper skeletal block in which the skeleton block is disposed and the support column is directed downward is arranged with a half pitch shift in the horizontal and vertical directions with respect to the lower skeleton block.
  • the skeleton block is arranged so as to straddle the four lower skeleton blocks adjacent to each other, and the column and the fitting hole of the upper skeleton block are respectively connected to the fitting hole and the column of the lower skeleton block.
  • the reinforcement member assembled and assembled is disposed between at least a part of the substrates facing each other of the skeleton block assembled in the vertical direction, and the reinforcement member and the substrate are fitted to each other.
  • Each strut of the skeletal block that has a structure and is stacked in the vertical direction directly or directly supports the substrate and / or the reinforcing member.
  • a rod-shaped member is provided so as to penetrate the column and the reinforcing member arranged in the vertical direction. is there.
  • the skeleton blocks are stacked upside down, and at least some of the skeleton blocks are provided with reinforcing members between the substrates facing each other. Since a side plate is provided on the inner surface of the reservoir so as to cover and a rod-like member penetrating the support column and the like is provided, occurrence of horizontal displacement of the skeleton block due to vibration such as an earthquake can be prevented.
  • the present invention provides a water storage facility and a water storage facility construction method that do not cause damage or displacement with respect to the force in the water storage flattening direction without using multiple types of resin skeleton blocks. can do.
  • FIG. 2 is a view showing a state in which the skeleton blocks 1a, 1b, 1c, and 1d and the reinforcing plate 13 are assembled up and down by the fitting protrusions 19 and the fitting holes 21, and is a cross-sectional view taken along line AA in FIG.
  • FIG. 1 It is a figure which shows the state which assembled
  • skeleton blocks 1 'and 1' ' which have rod-shaped member support part 27a, 27b.
  • FIG. 41C is a diagram showing the pipe 41 penetrating the skeleton block through the rod-shaped member support portion 27b.
  • the top view which shows the rainwater storage layer.
  • FIG. 3 is an elevation view showing the loading device 70.
  • the disassembled perspective view which shows the state by which the skeleton blocks 60a, 60b, 60c, 60d were assembled up and down.
  • the front view which shows the state by which the frame
  • (A) is an elevation view showing a conventional rainwater storage tank 65
  • (b) is a diagram showing a state in which the substrate 61 of the skeleton block 60 is damaged by a horizontal force
  • (c) is a skeleton block by a horizontal force.
  • the disassembled perspective view which shows the state by which the skeleton blocks 80a, 80b, 80c, 80d were assembled up and down.
  • Front sectional drawing which shows the state by which the skeleton blocks 80a, 80b, 80c, 80d were assembled up and down.
  • FIG. 1 is an exploded perspective view showing a skeleton block 1 (1a, 1b, 1c, 1d), and FIG. 2 is a front view showing the assembled skeleton block 1.
  • FIG. The skeleton block 1 includes a substrate 3 and a support column 5.
  • the substrate 3 is a rectangular plate-like member, and a plurality of holes 11 that are permeable to water are formed.
  • a pair of support pillars 5 are arranged on one diagonal line of the substrate 3.
  • the support column 5 is erected toward one side of the substrate 3.
  • the fitting hole 7 of the column 5 corresponds to the tip shape of the column 5, and the tip of the column 5 and the fitting hole 7 of the column can be fitted. Further, the support 5 and the fitting hole 7 of the support are provided at corresponding positions by rotating the substrate 3 just 90 degrees with the center of the substrate 3 as a base point. A rib slightly protruding from the substrate surface serving as a fitting guide may be provided around the fitting hole 7 of the support column.
  • the support column 5 is cylindrical and has a hole 9 formed therein.
  • the support column 5 has a so-called taper shape with a diameter reduced in the tip direction.
  • the support column 5 of the lower skeleton block fits in the hole 5 of the upper skeleton block. There is no space for storage.
  • the reinforcing plate 13 as a reinforcing member is a rectangular plate member having holes 15 at least at four locations.
  • the hole 15 is provided at a position corresponding to the hole 9 and the fitting hole 7 of the support column when overlapping with the substrate 3 of the skeleton block 1.
  • a plurality of holes 17 that are permeable to water are provided at portions other than the holes 15 of the reinforcing plate 13.
  • the size of the reinforcing plate 13 is preferably a plate-like member having the same shape as the substrate 3 of the skeleton block 1 used at the same time (the same vertical and horizontal sizes excluding thickness).
  • a mating protrusion 19 of the substrate and mating holes 21 and 22 of the substrate On the back surface of the substrate 3 (on the side opposite to the side on which the support column 5 is erected), there are provided a mating protrusion 19 of the substrate and mating holes 21 and 22 of the substrate. Further, on both surfaces of the reinforcing plate 13, a board fitting protrusion 23 and board fitting holes 25 and 26 are provided at portions corresponding to the board fitting protrusion 19 and the board fitting hole 21, respectively. Details of the board fitting protrusions 19 and the board fitting holes 21 and 22 will be described later.
  • the skeleton block 1 is turned upside down in the vertical direction, and stacked so that the support pillars 5 and the fitting holes 7 of the support faces each other.
  • the tip of the column 5 is fitted into the fitting hole 7 of the column.
  • the skeleton block 1d is arranged at the lower stage so that the support column 5 faces upward, and the skeleton block 1c is arranged above the support block 5 so that the support column 5 faces downward.
  • the tip of the column 5 of the skeleton block 1d is fitted into the fitting hole 7 of the column of the skeleton block 1c, and the tip of the column 5 of the skeleton block 1c is fitted to the column fitting hole 7 of the skeleton block 1d.
  • a reinforcing plate 13 is provided on the substrate 3 of the skeleton block 1c.
  • the skeleton block 1b is arranged with the support column 3 facing upward.
  • the skeleton block 1a is arranged on the skeleton block 1b with the support column 5 facing downward.
  • the skeletal blocks 1a and 1b are arranged so as to fit each other's pillars 5 and the fitting holes 7 of the pillars.
  • the skeleton block 1 is assembled in the vertical direction by repeating the above.
  • the pair of skeleton blocks 1 are turned upside down and stacked by fitting each other's pillars 5 and the fitting holes 7 of the pillars, and the skeleton blocks 1 on or below the substrate 3 of the upper skeleton block 1.
  • the structure in which the reinforcing plate 13 is provided under the substrate 3 is referred to as a unit structure of the skeleton block.
  • the structure including the skeleton blocks 1c and 1d and the reinforcing plate 13 (or the skeleton blocks 1a and 1b and the reinforcing plate 13) is the unit structure of the skeleton block.
  • FIG. 3A is a view of the substrate 3 as seen from the back side, and the fitting protrusion 19 of the substrate which is the first fitting protrusion provided on the substrate 3 and the fitting of the substrate which is the first fitting hole.
  • FIG. 3B is a schematic diagram showing the joint holes 21 and 22, and FIG. 3B is a diagram illustrating a fitting fitting 23 of the board that is the second fitting protrusion provided on the reinforcing plate 13 and a fitting of the board that is the second fitting hole. It is a schematic diagram which shows the joint holes 25 and 26.
  • the board fitting protrusions 19 and the board fitting holes 21 and 22 are provided in the vicinity of corners of an area where the board 3 is divided into four diagonal lines.
  • the fitting holes 21 and 22 of the board are provided in the divided areas facing each other on one side.
  • the board fitting holes 21 and 22 are provided at each corner of the section area (the corner and the center of the board 3).
  • the mating projections 19 of the substrate are provided in the section areas facing each other on the other side.
  • the board fitting protrusions 19 are provided at the corners of the board 3, respectively.
  • the board fitting protrusions 23 and the board fitting holes 25, 26 of the reinforcing plate 13 are formed in the board fitting protrusions 19 and the board fitting holes 21, 22 of the board 3. Corresponding positions are similarly provided.
  • FIG. 3C is a cross-sectional view taken along the line AA of FIG. 1 when the skeleton block 1 and the like are assembled.
  • the skeleton block 1 can be fitted not only to the support 5 and the support hole 7 of the support but also to the opposing substrate 3 and the reinforcing plate 13. That is, when the reinforcing plate 13 is provided above the skeletal blocks 1c and 1d assembled in an inverted manner, the board fitting protrusions 19 provided on the upper surface (back side) of the skeleton block 1c, the board The fitting hole 21 is fitted into the board fitting hole 25 on the lower surface of the reinforcing plate 13 and the board fitting protrusion 23.
  • the board fitting protrusions 23 and the board fitting holes 25 on the upper surface of the reinforcing plate 13 are arranged on the board fitting holes 21 on the lower surface of the board 3 of the skeleton block 1b and the board fitting protrusions 19 respectively. Each fits.
  • the deviation between the skeleton block 1 and the reinforcing plate 13 is suppressed.
  • the board fitting holes 21 and the board fitting protrusions 19 provided in the opposing boards 3 are fitted into each other.
  • skeleton blocks 1 is suppressed, and the twist and rotation on the horizontal surface of frame
  • the board fitting holes 25 and the like provided in the reinforcing plate 13 serve as a guide indicating the installation position of the skeleton block 1 disposed thereon, the installation is easy and the installation position when the skeleton block is assembled. The operator will not make a mistake.
  • FIG. 4A and 4B are diagrams showing a case where the skeleton blocks 1 are stacked in a zigzag pattern.
  • FIG. 4A is a plan view
  • FIG. 4B is a cross-sectional view taken along the line BB in FIG.
  • the skeleton blocks 1 when the skeleton blocks 1 are stacked in the vertical direction, the skeleton blocks 1 can be stacked vertically and horizontally by a half pitch with respect to the skeleton blocks 1 adjacent in the horizontal direction.
  • the skeleton blocks 1e, 1f, 1g, and 1h are disposed adjacent to each other in the horizontal direction with the support column 5 facing upward, and the skeleton block 1i is disposed thereon with the support column 5 facing downward.
  • the upper skeleton block 1i is arranged so as to straddle the four skeleton blocks 1e, 1f, 1g, and 1h adjacent in the lower stage. That is, the column 5 of the skeleton block 1i is fitted into the fitting hole 7 of the column of the skeleton block 1e and the skeleton block 1g, and one column 5 of each of the skeleton block 1f and the skeleton block 1h is fitted to the column of the skeleton block 1i. Fit into the hole 7.
  • the reinforcing plate 13 may be provided between the substrates 3 facing each other as necessary.
  • the reinforcing plates 13 are also arranged in a staggered manner in the vertical direction and the horizontal direction, and are arranged so as to extend over the plurality of skeleton blocks 1.
  • the lower skeleton block for example, the skeleton block 1e
  • the skeleton block 1i assembled to face the skeleton block 1 and the substrate 3 of the skeleton block 1i are provided.
  • the configuration including the reinforcing plate 13 may be a unit structure of the skeleton block.
  • the board fitting protrusions 19 are fitted with the board fitting holes 22 (26) in the center of the board 3 (or the reinforcing plate 13).
  • the reinforcing plate 13 may be provided with only the board fitting holes 25 ′ without providing the board fitting protrusions 23.
  • FIG. 5 is a view showing a state in which the skeleton block 1 is assembled using the reinforcing plate 13 ′ having only the board fitting holes 25 ′, and corresponds to FIG. 3.
  • the reinforcing plate 13 ' is not provided with the board fitting protrusion 23, and the board fitting hole 25' is also provided in the portion where the board fitting protrusion 23 is provided.
  • the board fitting hole 25 ' penetrates the reinforcing plate 13'.
  • the board fitting hole 25' is provided at the position of the board fitting protrusion 19, so that the board 3 of the board 3 is fitted.
  • the protrusion 19 is fitted into the fitting hole 25 ′ of the substrate. If the reinforcing plate 13 is not provided with a projection, a gap with the bottom surface does not occur even when the reinforcing plate is installed at the bottom. Even if the reinforcing plate 13 'is used, the skeleton blocks 1 can be assembled in a staggered manner as shown in FIG.
  • FIG. 6 is a diagram showing the internal structure of the column 5, and is a diagram showing a case where a rod-shaped member support portion is provided.
  • a rod-shaped member support portion 27 a that protrudes toward the hole 9 side of the support column 5 is provided on the inner surface of the tip end portion of the support column 5.
  • the rod-shaped member support portion 27 a has a shape in which the tip of the support column 5 is bent toward the center of the support column 5 and further bent below the support column 5. That is, the rod-shaped member support portion 27a reduces the inner diameter of the tip end of the hole 9 with respect to other portions.
  • the rod-shaped member support portion 27a may be provided on the entire circumference of the hole 9 or may be formed with an interval at the edge of the hole 9.
  • FIG. 6B is a diagram showing the rod-shaped member support portion 27b.
  • the rod-shaped member support portion 27 b has a shape in which the tip of the column 5 is bent toward the center of the column 5. That is, the rod-shaped member support portion 27b reduces the inner diameter of the tip end of the hole 9 with respect to other portions.
  • the rod-shaped member support portion 27b may be provided on the entire circumference of the hole 9 or may be formed with an interval at the edge of the hole 9. Further, it is desirable that the rod-shaped member support portion 27b is thicker than other portions of the column 5.
  • the rod-shaped member support portions 27a and 27b improve the strength of the support column 5, and become portions that come into contact with the rod-shaped member when a rod-shaped member to be described later is inserted.
  • a polypropylene resin can be used as the skeleton block 1.
  • the reinforcing plate 12 can be made of resin or concrete.
  • FIG. 7A shows the water storage facility 30.
  • An example in which the skeleton block 1 is assembled as shown in FIG. 2 will be described.
  • the water storage facility 30 is mainly provided in the basement, and a plurality of skeleton blocks 1 are assembled in a vertical direction and a horizontal direction, and a storage part 31 that stores water and a side of the storage part 31 so as to cover the skeleton block 1. It is comprised from the side plate 33 provided in (side surface), the water-permeable sheet 39 etc. which cover the storage part 31 grade
  • the storage unit 31 is a space for storing rainwater or the like flowing in from above.
  • the bottom surface of the storage unit 31 is provided with a gravel layer (not shown).
  • a water-permeable sheet 39 is provided around the storage unit 31.
  • the water permeable sheet 39 permeates the water in the reservoir 31 into the surrounding ground.
  • a polyester long fiber nonwoven fabric or the like is used as the water permeable sheet 39.
  • a side plate 33 is provided on the side surface of the reservoir 31.
  • the side plate 33 receives the surrounding earth pressure and transmits force to the internal skeleton block 1, the reinforcing plate 13, and the like.
  • the side plate 33 only needs to have a strength that does not cause damage even when it is sandwiched between the ground and a skeleton block.
  • a resin or the like can be used.
  • the side plate may be provided with a plurality of holes through which water can permeate.
  • a working hole 35 communicating in the vertical direction is formed in a part of the storage unit 31.
  • the working hole 35 is used for checking the inside of the storage unit 31 and the like.
  • the upper portion of the working hole 35 is in communication with the ground and is closed by an upper lid 40 that can be opened and closed.
  • a top plate 36 that is permeable to water is provided on the upper portion of the storage portion 31, and is further covered with a coating layer 37.
  • a water-permeable sheet 39 is also provided on the outer surface of the coating layer 37.
  • the water storage facility 30 is constructed as follows. First, an excavation hole is provided in the ground. Gravel or the like is provided on the lower surface as necessary. In the excavation hole, the skeleton blocks 1 are sequentially stacked from below. At this time, a reinforcing plate 13 is installed between the skeleton blocks 1 as necessary. At this time, the working hole 35 is formed by stacking a skeleton block having a notch, which will be described later, in a part of the storage portion 31. After the skeleton block 1 is assembled to the upper part, the side wall 33 and the water permeable sheet 39 are provided around the skeleton block 1, and the top plate 36 and the covering layer 37 are provided above. The water storage facility 30 is constructed as described above.
  • the application formula of earth pressure to structures in the ground is different at a depth of 4m. Specifically, it is shown that the main earth pressure is used if the depth is less than 4 m, and the static earth pressure is used if the depth is 4 m or more.
  • FIG. 7B is a diagram showing the earth pressure applied to the side surface of the storage unit 31 in FIG.
  • the earth pressure increases substantially in proportion to the depth at a boundary of 4 m (step portion in the figure).
  • C is the horizontal load resistance from the side of the substrate 3 of the skeleton block 1. That is, if the horizontal force is smaller than C, the skeleton block 1 (substrate 3) is not damaged. Therefore, in the shallow range where the earth pressure is smaller than C, only the skeleton block 1 may be combined, and it is not necessary to use the reinforcing plate 13.
  • the skeleton block 1 when the earth pressure becomes larger than C, the skeleton block 1 (substrate 3) may be damaged by the earth pressure as shown in the example of FIG. Therefore, below the depth D where the earth pressure becomes larger than the horizontal load capacity C of the skeleton block 1, the skeleton block 1 alone cannot receive a horizontal force.
  • the side plate 33 receives the earth pressure, and the force from the side plate 33 can be reliably received by the reinforcing plate 13.
  • the storage part is a water storage facility whose depth is 10 m from the ground
  • a reinforcing plate is provided for a portion shallower than 4 m, the strength is excessive, and if a special skeleton block is used according to the depth of the reservoir, the efficiency is poor. Therefore, it is not necessary to provide a reinforcing plate in the range of 1 to 4 m, for example. For the 5 m to 6 m portion, a reinforcing plate may be provided as necessary.
  • the substrate 3 other than the reinforcing plate 13 is directly subjected to earth pressure, so that the substrate 3 may be damaged.
  • the reinforcing plate 13 receives the force from the side plate 33 by using the side plate 33, an excessive force is not applied to the substrate 3. Accordingly, the earth pressure is reliably transmitted to the reinforcing plate 13.
  • the reinforcing plate 13 is provided only at a position deeper than the depth D.
  • the reinforcing plate 13 may be provided above D and further in the entire storage portion.
  • the usage amount of the reinforcing plate 13 increases, it is desirable to use it only at a necessary portion (a position deeper than a predetermined depth).
  • FIG. 8A is a cross-sectional view of a portion E in FIG. As shown in FIG. 7, a pipe 41 that is a rod-shaped member is provided inside the skeleton block 1 assembled in the vertical direction as needed. The pipe 41 is for preventing the horizontal displacement of the skeleton block 1.
  • the holes 9 and 15 communicate with each other in the vertical direction.
  • the pipe 41 is inserted into the communicating holes (hole 9 and hole 15).
  • the pipe 41 desirably has a small play with the hole (that is, an outer diameter slightly smaller than the hole) as long as there is no problem in the insertion property into the hole.
  • the pipe 41 resin, metal, or the like can be used. If necessary, a plurality of pipes may be added to form a single pipe 41. However, a skeleton block incorporated as a structure inside the storage tank may be used. Since it is desirable to receive the load with the entire length of the pipe, it is desirable to use a single pipe having no connection point. Moreover, it is not necessary to insert the pipe 41 into all the holes 9 or the like, and it may be inserted into some of the holes 9 or the like.
  • FIGS. 8 (b) and 8 (c) are diagrams showing the relationship between the rod-shaped member support portions 27a and 27b and the rod-shaped member.
  • the inner diameter of the tip end portion of the hole 9 reduced in diameter by the rod-like member support portions 27a and 27b is substantially equal to or slightly larger than the outer diameter of the pipe 41. For this reason, the inner peripheral surfaces of the rod-shaped member support portions 27a and 27b come into contact with the outer peripheral surface of the pipe 41 to support the pipe 41. Therefore, the skeleton block 1 is not displaced with respect to the pipe 41, and sufficient strength can be imparted to the distal end portion of the column 5 with respect to the horizontal force received from the pipe 41.
  • the rod-shaped member support portions 27a and 27b have a shape that allows a large contact area with the pipe 41 so that the pipe 41 can be reliably supported.
  • the bar-shaped member support portion 27a has a shape bent in the vertical direction, and a contact range with the pipe 41 is secured by the vertical portion.
  • the rod-shaped member support portion 27b is thicker than other portions, and therefore, the length of the inner surface in the vertical direction is increased, and the contact range with the pipe 41 can be ensured.
  • the pipe 41 is supported by the rod-shaped member support portions 27a and 27b, and the size of the hole 15 of the reinforcing plate 13 is substantially the same as the diameter of the pipe 41, or the rod-shaped support portions 27a and 27b in the hole 15.
  • the pipe 41 can also be supported by the hole 15. That is, the pipe 41 can be held at two places above and below the unit structure of the skeleton block. For this reason, compared with the case where the pipe 41 is supported only by the rod-shaped member support portions 27a and 27b, the support pitch of the pipe 41 can be halved.
  • FIG. 9A is a plan view of the water storage facility 30.
  • the water storage facility 30 is provided with a plurality of skeleton blocks 1.
  • the side plate 33 provided around the storage unit 31 is provided with a plurality of inner plates 34 inward.
  • the inner plate 34 is erected or joined substantially perpendicularly to the side plate 33 and is installed between the skeleton blocks 1 inside the storage portion 31.
  • the inner plate 34 has a reinforcing effect against earth pressure or the like acting on the side plate 33 from the outside.
  • it is desirable that the inner plate is provided at a predetermined interval on the entire outer periphery of the storage tank.
  • the inner plate 34 has a length corresponding to one pitch of the skeleton block 1 from the side plate 33, but may be a half pitch, and the length is not limited.
  • a precipitation tank 45 is provided in a part of the storage unit 31.
  • the settling tank 45 is a portion into which water from the inflow port 43 flows, and is provided so as to surround the inflow port 43.
  • the sedimentation tank 45 is surrounded by a partition wall 47. Inside the sedimentation tank 45, a skeleton block 49 having a notch 51 in part is provided. That is, the skeleton block 1 and the skeleton block 49 are provided on both sides of the partition wall 47 so as to sandwich the partition wall 47.
  • the skeleton block 49 has substantially the same structure as the skeleton block 1, but has a shape in which, for example, one of four corners is cut out on an arc. In this case, a circular work hole is formed by combining the four skeleton blocks 49.
  • the reinforcement board 13 also has the notch 51 similarly. That is, a part of the skeleton block 49 and the reinforcing plate 13 in the sedimentation tank 45 is notched, and the work hole 35 penetrating in the vertical direction is formed by adjoining the plurality of skeleton blocks 49 or the reinforcing plates 13 in the horizontal direction. Is formed.
  • the sedimentation tank 45 causes the water from the inlet 43 to stay in the sedimentation tank 45 to precipitate foreign matters such as earth and sand contained in the water.
  • a water passage hole is provided above the predetermined height of the partition wall 47, and water flows from the settling tank 45 into the storage unit 31 when the water level in the settling tank 45 becomes higher than that. The earth and sand accumulated in the sedimentation tank 45 can be confirmed and removed by the work hole 35.
  • the shapes of the skeleton block 49 and the cutout 51 of the reinforcing plate 13 are not limited to the example illustrated in FIG.
  • FIG. 9 (b) shows the F portion of FIG. 9 (a).
  • the L-shaped skeleton block 49 ′ may be used with the notch 51 ′ as a square. Good.
  • the work hole 35 has a rectangular cross-sectional shape.
  • the skeleton block in the settling tank 45 may be integrally formed so that the work hole 35 is formed.
  • four skeleton blocks 49'4 may be integrally formed.
  • the skeleton blocks 1 and 49 provided in the settling tank 45 and the storage unit 31 are all the same size. Therefore, stress does not concentrate on a part of the inside of the water storage facility 30.
  • the aspect of the water storage facility 30 that is the subject of the present invention is not limited to the examples shown in FIGS. 7 and 9, and can be applied to various shapes, sizes, and configurations.
  • the structure is not limited as long as it is a water storage facility in which a storage part is provided in the basement where earth pressure is generated in the horizontal direction and a plurality of skeleton blocks are arranged inside, and the present invention is applicable to any water storage facility. Is applicable.
  • a water shielding sheet may be provided instead of the water permeable sheet 39.
  • the water shielding sheet for example, vulcanized rubber, vinyl chloride, thermoplastic resin or the like is used.
  • the whole storage part is covered with a water-impervious sheet, and the water-impervious sheets can be joined together in a water-tight manner by heat fusion or the like, so that it can be used as a water storage tank.
  • a pump or the like that pumps up internal water may be provided separately.
  • FIG. 10 is a view showing the loading device 70.
  • the loading device 70 mainly includes a loading frame 71, a parallel holding device 72, a jack 73, and the like.
  • Specimens 77 formed by assembling skeleton blocks and the like were arranged in 6 rows in the vertical direction and 2 rows x 4 rows in the horizontal direction.
  • a weight 74 was placed on the specimen 77, and the weight 74 was fixed with a weight fixing jig 75. In this state, horizontal loading was performed with a jack.
  • a load meter 76 is provided at the tip of the jack 73.
  • the gate-type loading frame 71 and the weight fixing jig 75 are connected by a parallel holding device 72, and the weight 74 is always kept horizontal.
  • the skeleton block 60 shown in FIG. 11, the skeleton block 80 shown in FIG. 14, and the skeleton block 1 shown in FIG. 1 were assembled.
  • the skeleton blocks 1, 60, 80 had a plate size of 720 mm ⁇ 720 mm and a column height of 390 mm.
  • the skeleton blocks were all made of polypropylene resin.
  • the weight 74 was 160 kN.
  • the horizontal force was applied to the weight 74 with the jack 73, and the displacement and load for each specimen 77 were investigated. Based on the maximum load, the strength (shear load) of each specimen and the displacement (shear strain) at the maximum load were investigated. Table 1 shows the test conditions and results of the specimen 77.
  • the form of the skeleton block is as shown in FIGS.
  • the column (FIG. 12, FIG. 15) that abuts the tips of the columns is called “post / column” and the column (FIG. 2) that abuts the column ends (FIG. 2) is “column / substrate”.
  • the stacking direction is defined as “vertical direction” when the upper skeleton block is stacked straight on the lower skeleton block in a one-to-one relationship (FIGS. 2, 12, and 15), and spans a plurality of lower skeleton blocks.
  • the one arranged in FIG. 4 (FIG. 4) was designated as “staggered”.
  • the reinforcing member and the rod-shaped member indicated the presence or absence of installation.
  • the load evaluation was performed using specimen No. The relative evaluation when the strength of 3 was 1 was used.
  • the reinforcing plate size was the same as the skeleton block size, and the porosity was about 66%.
  • the reinforcing plate was installed between all the substrates.
  • a reinforcing plate made of polypropylene resin was used.
  • the rod-shaped member was a 75 ⁇ PVC pipe.
  • a rod-shaped member was inserted into about 25% of the number of columns.
  • test specimen No. using the skeleton block 1 of the present invention was used.
  • 3 is a support / substrate joint, It turns out that it has high intensity
  • a deep storage facility can be obtained as compared with the conventional case without using a skeleton block having a special strength.
  • the skeleton blocks 1 are vertically reversed and stacked, and reinforcing members 13 are provided between the substrates 3 facing each other at least at a position deeper than a predetermined depth, horizontal earth pressure is reduced.
  • the reinforcing plate 13 can receive a force.
  • the reinforcing plate 13 can surely receive the earth pressure applied to the side plate 33, so that an excessive horizontal force is not applied to the substrate 3. Will not be damaged. Therefore, it is not necessary to use a plurality of types of skeleton blocks or skeleton blocks having excessive strength.
  • the support pillars 5 and the support holes 7 of the support pillars 1 that are stacked upside down can be fitted. For this reason, the horizontal shift of the skeleton block 1 is suppressed.
  • skeleton block 1 of the piled-up state can be narrowed compared with the case where the support
  • the skeleton blocks 1 are arranged in a staggered manner, the skeleton blocks 1 adjacent in the horizontal direction are also connected to each other, so that the skeleton blocks 1 are more resistant to displacement in the horizontal direction, are easy to assemble and are less likely to collapse. is there.
  • the substrates, the substrate and the reinforcing plate are securely bonded to each other by the substrate fitting protrusions 19, the substrate fitting holes 21, and the like, so that they are not displaced by a horizontal force.
  • the pipe 41 penetrating the skeleton block 1 by providing the pipe 41 penetrating the skeleton block 1, the skeleton blocks 1 are aligned in the vertical direction and do not shift in the horizontal direction. For this reason, the skeleton block 1 is not displaced in the horizontal direction even with respect to a horizontal force or the like, and there is no fear of a decrease in strength associated therewith. Furthermore, by providing the rod-shaped member support portions 27a and 27b on the inner surface of the column 5 of the skeleton block 1, the pipe 41 can be securely held, and the lateral displacement and rotation of the skeleton block 1 and the like can be prevented.
  • the reinforcing plate 13 since the reinforcing plate 13 only needs to be disposed at a depth equal to or greater than a predetermined depth, the reinforcing plate 13 is unnecessary in a shallow portion where the earth pressure is equal to or less than the horizontal load resistance of the skeleton block 1. For this reason, it is excellent in workability and it is not necessary to use an unnecessary member.
  • the specific gravity of the reinforcing plate 13 is larger than that of water, it can serve as a weight against the buoyancy of the skeleton block when water is stored inside.
  • the sedimentation tank 45 since the sedimentation tank 45 is provided, the inflow of earth and sand etc. into the storage part 31 can be prevented, and by providing the same size skeleton blocks 1 and 49 inside and outside the sedimentation tank 45, the partition wall can be surely provided. Can be held. For example, even when the water level difference between the settling tank 45 and the storage unit 31 becomes large, the partition wall is held by the skeleton block from both sides, so that it does not fall down. Moreover, the strength of the sedimentation tank 45 that can prevent the horizontal displacement of the skeleton blocks inside and outside the sedimentation tank 45 is improved by the partition wall. In addition, the reinforcing plate 13 is provided in a necessary portion in the sedimentation tank 45 as well as other portions. For this reason, the sedimentation tank 45 does not collapse due to earth pressure.
  • the work hole 35 can be formed while maintaining the strength of the settling tank 45. Since the work hole 35 is formed by combining the notches 51 of a plurality of skeleton blocks (and reinforcing plates) adjacent in the horizontal direction, the work hole 35 can be easily formed and can be collapsed by earth pressure or the like. Absent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Sewage (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)

Abstract

Provided are a method and structure for reinforcing a water storage facility for rainwater, and a framework block unit used therefor.  The method and structure can, without using a special resin framework block, reinforce the water storage facility against a horizontal load.  A framework block (1d) is provided at the lowest stage with supports (5) facing upward, and a framework block (1c) is provided above the framework block (1d) with supports (5) facing downward.  A reinforcing plate (13) is installed on a base plate (3) of the framework block (1c).  A framework block (1b) is provided on the reinforcing plate (13) with supports (5) facing upward.  A framework block (1a) is provided on the framework block (1b) with support (5) facing downward.

Description

水貯留施設、水貯留施設の施工方法、水貯留施設の水平方向耐荷重向上方法および骨格ブロックの水平方向ずれ防止方法Water storage facility, water storage facility construction method, water storage facility horizontal load resistance improvement method, and skeleton block horizontal displacement prevention method
 本発明は雨水等を貯留する地下式水貯留施設および貯留施設の施工方法等に関する。 The present invention relates to an underground water storage facility for storing rainwater and the like, a construction method for the storage facility, and the like.
 従来、雨水などによる水害を防ぎ一時に河川が増水しないようにするため、又は水害時に孤立した集落の飲料水確保のためや、あるいは大規模駐車場などの散水用などさまざまな用途に用いられる地下に水を貯留する水貯留施設が用いられる。水貯留施設は地下に設けられ、上方には人や車両が通行する可能性があるため、水貯留施設等の貯留槽内部には、複数の骨格ブロックが積み上げられて形成される。 Conventionally used for various purposes such as preventing flooding due to rainwater, etc. so that the river does not increase at once, securing drinking water for isolated villages during floods, or for watering large parking lots, etc. Water storage facilities that store water are used. Since the water storage facility is provided in the basement and people and vehicles may pass therethrough, a plurality of skeleton blocks are stacked inside the storage tank such as the water storage facility.
 このような、複数の骨格ブロックにより貯留槽が形成された例としては、例えば、貯水層内面に遮水性または透水性のシートを内張りし、その内部空間に樹脂製の骨格ブロックを組上げて設けられた貯留施設がある(特許文献1、特許文献2)。また、このような貯留層に設けられる骨格ブロックとしては、筒体部の頂部に互いの筒体部を突き合わせた際に当該突き合わせ状態を係止する構造を有するユニット部材がある(特許文献3)。 As an example in which the storage tank is formed of a plurality of skeleton blocks, for example, a water-permeable or water-permeable sheet is lined on the inner surface of the water reservoir, and a resin skeleton block is assembled in the inner space. There is a storage facility (Patent Document 1, Patent Document 2). Moreover, as a skeleton block provided in such a reservoir layer, there is a unit member having a structure that locks the abutted state when the cylinder portions are abutted against the top of the cylinder portion (Patent Document 3). .
特開2007-71019号公報JP 2007-71019 A 特開2007-231699号公報JP 2007-231699 A 特開2000-352080号公報JP 2000-352080 A
 特許文献1、特許文献2に記載された貯留施設は、雨水等を貯留可能であるとともに、樹脂製の骨格ブロックの支柱部によって鉛直方向の力を受けている。 The storage facilities described in Patent Document 1 and Patent Document 2 are capable of storing rainwater and the like, and are also subjected to vertical force by the support of the resin skeleton block.
 ところで、樹脂製骨格ブロックは、できるだけ軽量かつコンパクトである必要がある。樹脂製骨格ブロックに必要以上の強度を持たせると、樹脂製骨格ブロックのコストアップ、重量増をまねき、施工作業性を著しく悪くするためである。 By the way, the resin skeleton block needs to be as light and compact as possible. This is because, if the resin skeleton block is given strength more than necessary, the cost and the weight of the resin skeleton block are increased, and the workability of the construction is remarkably deteriorated.
 たとえば、図11はこのような従来の雨水貯留槽に用いられる骨格ブロック60(60a、60b、60c、60d)を示す分解斜視図であり、図12は組みあげられた骨格ブロック60を示す正面図である。骨格ブロック60は、基板61および支柱63等から構成される。 For example, FIG. 11 is an exploded perspective view showing a skeleton block 60 (60a, 60b, 60c, 60d) used in such a conventional rainwater storage tank, and FIG. 12 is a front view showing the assembled skeleton block 60. It is. The skeleton block 60 includes a substrate 61, a support 63, and the like.
 基板61は矩形板状の部材であり、透水可能な複数の孔67が形成される。基板61の中心の一方の側には支柱63が立設される。支柱63は筒状であり内部には孔65が形成される。 The substrate 61 is a rectangular plate-like member, and a plurality of holes 67 that are permeable to water are formed. A column 63 is erected on one side of the center of the substrate 61. The column 63 is cylindrical and has a hole 65 formed therein.
 図12に示すように、骨格ブロック60を組み上げるには、上下方向に骨格ブロック60を上下互いに反転させて、互いの支柱63同士または基板61同士が対向するように積み上げられる。 As shown in FIG. 12, in order to assemble the skeleton block 60, the skeleton blocks 60 are turned upside down in the vertical direction and stacked so that the columns 63 or the substrates 61 face each other.
 図12の例では、支柱63が上方に向くように骨格ブロック60dを下段に配置し、その上方に、支柱63が下方に向くように骨格ブロック60cを配置する。この際、骨格ブロック60d、60cの互いの支柱63の先端同士が当接する。骨格ブロック60cの基板61上には、さらに骨格ブロック60bが、支柱63を上方に向けて設けられ、その上には、支柱63を下方に向けて骨格ブロック60aが配置される。骨格ブロック60a、60bの互いの支柱63の先端が当接する。以上を繰り返して骨格ブロック60が上下方向に組上げられる。 In the example of FIG. 12, the skeleton block 60d is arranged at the lower stage so that the support 63 faces upward, and the skeleton block 60c is arranged above the support 63 so that the support 63 faces downward. At this time, the tips of the struts 63 of the skeleton blocks 60d and 60c come into contact with each other. On the substrate 61 of the skeleton block 60c, a skeleton block 60b is further provided with the column 63 facing upward, and the skeleton block 60a is disposed thereon with the column 63 facing downward. The tips of the support columns 63 of the skeleton blocks 60a and 60b come into contact with each other. The skeleton block 60 is assembled in the vertical direction by repeating the above.
 図13(a)は、骨格ブロック60を用いた水貯留槽65を示す図である。水貯留槽65内には、複数の骨格ブロック60が組みあげられている。骨格ブロック60は前述の通り支柱63を有しており、支柱63によって鉛直方向の力を受けている。鉛直方向の力は、骨格ブロックは通常合成樹脂製で骨格ブロック自体は軽量なため、水貯留槽65の上部に被覆される土砂の重さがほとんどであるため、水貯留槽65の深さによって、大幅に変わることはない。 FIG. 13A shows a water storage tank 65 using the skeleton block 60. A plurality of skeleton blocks 60 are assembled in the water storage tank 65. The skeleton block 60 has the column 63 as described above, and receives a vertical force by the column 63. The force in the vertical direction depends on the depth of the water storage tank 65 because the skeleton block is usually made of synthetic resin and the skeleton block itself is lightweight. , Will not change significantly.
 一方、水貯留施設の設置可能範囲が広くとれない場合、狭い範囲に貯留施設を設置する必要がある。この場合、水貯留施設の貯留部の深さを深くする必要がある。しかし、貯留部を深くすると、内部に設けられる樹脂製骨格ブロックに対して、周囲からの土圧が大きくなる。したがって、一般的な水貯留施設の深さである例えば5~6mまでの水平方向の土圧に耐えることが可能な樹脂製骨格ブロックを用い、さらに深い例えば7m~10m深さの水貯留施設を構築すると、最深部における土圧により、樹脂製骨格ブロックが破損する恐れがある。 On the other hand, if the installation range of the water storage facility is not wide, it is necessary to install the storage facility in a narrow range. In this case, it is necessary to increase the depth of the storage part of the water storage facility. However, when the reservoir is deepened, the earth pressure from the surroundings becomes larger with respect to the resin skeleton block provided inside. Therefore, using a resin skeleton block that can withstand horizontal earth pressure of 5 to 6 m, which is the depth of general water storage facilities, for example, a deeper water storage facility of 7 to 10 m depth, for example. If constructed, the resin skeleton block may be damaged by the earth pressure in the deepest part.
 図13(b)は、例えば最深部に設置された骨格ブロック60を示す概念図である。骨格ブロック60は、支柱63および基板61により形成されるが、図13(b)に示すように、水平方向の土圧(図中矢印P方向)は、基板61に水平方向に付与される。基板61は、所定深さの土圧には耐えうるように設計されているが、それ以上の深さの土圧に対しては、図に示すように、破損する恐れがある。特に水平方向の力は、深さに略比例して大きくなるため、深い部位に設置された骨格ブロックに対して大きな問題となる。 FIG. 13B is a conceptual diagram showing a skeleton block 60 installed in the deepest part, for example. The skeleton block 60 is formed by the support 63 and the substrate 61. As shown in FIG. 13B, horizontal earth pressure (in the direction of arrow P in the figure) is applied to the substrate 61 in the horizontal direction. The substrate 61 is designed to withstand the earth pressure of a predetermined depth. However, as shown in the figure, the board 61 may be damaged when the earth pressure is deeper than that. In particular, since the force in the horizontal direction increases substantially in proportion to the depth, it becomes a big problem for a skeleton block installed in a deep part.
 しかし、基板61を必要以上に強めたのでは、浅い位置に使用される骨格ブロックの強度が過剰となり、コストアップとなるため望ましくない。また、浅い部位用と深い部位用の骨格ブロックを使い分けたのでは、製品形状が複数となるため、製品管理や金型等(製造コスト等)を考慮して望ましくない。 However, if the substrate 61 is strengthened more than necessary, the strength of the skeleton block used in a shallow position becomes excessive, which is not desirable. Further, if the skeleton blocks for the shallow part and the deep part are properly used, there are a plurality of product shapes, which is not desirable in consideration of product management, molds, etc. (manufacturing cost, etc.).
 更に、水平方向の力の問題は他にもある。すなわち、地震等の揺れが発生した際に、鉛直方向に組みあげられた樹脂製骨格ブロックが水平方向の力によってずれてしまうおそれがある。たとえば、図13(c)に示すように、鉛直方向に積み上げられた骨格ブロック60同士が、地震の振動により、水平方向のずれ力が累積する結果生じるずれ(図中矢印Q方向)により鉛直方向の位置がずれる恐れがある。このようなずれの発生は、水平方向の力に対して更に弱くなるばかりでなく、骨格ブロックの支柱の軸心がずれるため、鉛直方向の力に対しても大きく強度が低下する。 Furthermore, there are other horizontal force problems. That is, when a shaking such as an earthquake occurs, the resin skeleton block assembled in the vertical direction may be displaced by a horizontal force. For example, as shown in FIG. 13 (c), the skeletal blocks 60 stacked in the vertical direction are vertically aligned due to a displacement (a direction indicated by an arrow Q in the figure) generated as a result of accumulation of horizontal displacement force due to earthquake vibration. There is a risk that the position of will shift. The occurrence of such a shift not only becomes weaker than the force in the horizontal direction, but also the strength of the vertical block force is greatly reduced because the axis of the support of the skeleton block is shifted.
 このような支柱同士の当接部のずれを抑制するため、特許文献3のような係止部を有する骨格ブロックがある。図14は係止部を有する骨格ブロックの一例である骨格ブロック80(80a、80b、80c、80d)を示す分解斜視図であり、図15は組みあげられた骨格ブロック80を示す正面断面図である。骨格ブロック80は、基板81および四本の支柱83等から構成される。 There is a skeleton block having a locking portion as in Patent Document 3 in order to suppress such a shift of the contact portion between the columns. 14 is an exploded perspective view showing a skeleton block 80 (80a, 80b, 80c, 80d) which is an example of a skeleton block having a locking portion, and FIG. 15 is a front sectional view showing the assembled skeleton block 80. is there. The skeleton block 80 includes a substrate 81, four support columns 83, and the like.
 基板81は矩形板状の部材であり、透水可能な複数の孔87が形成される。基板81の一方の側の4隅近傍には支柱83が立設される。支柱83の上面には、凹部89および凸部91が対角線上の支柱83にそれぞれ設けられる。 The substrate 81 is a rectangular plate-like member, and is formed with a plurality of holes 87 that are permeable to water. Supports 83 are erected in the vicinity of the four corners on one side of the substrate 81. On the upper surface of the support 83, a recess 89 and a protrusion 91 are provided on the support 83 on the diagonal line.
 図15に示すように、骨格ブロック80は骨格ブロック60と同様に組み上げられるが、互いに向かい合う骨格ブロック80aと骨格ブロック80b(または骨格ブロック80cと骨格ブロック80d)との支柱83同士の当接部において、凹部89と凸部91が嵌合する。これにより、支柱83先端のずれを抑制する。 As shown in FIG. 15, the skeleton block 80 is assembled in the same manner as the skeleton block 60, but at the contact portion between the columns 83 of the skeleton block 80 a and the skeleton block 80 b (or the skeleton block 80 c and the skeleton block 80 d) facing each other. The concave portion 89 and the convex portion 91 are fitted. Thereby, the shift | offset | difference of the support | pillar 83 front-end | tip is suppressed.
 しかしながら、支柱83同士の当接では基板81同士のスパンが大きくなり、このため支柱83同士の当接部の係止のみでは、水平方向のせん断荷重を受けた時のずれ防止効果が十分ではない。また、前述のような基板81の破損に対しては効果がない。また、支柱先端に嵌合部を設けることで、支柱内に水が溜まり、支柱内を水が下方に流れず、また空気がたまるため、貯水効率が悪くなるという問題がある。 However, the contact between the support posts 83 increases the span between the substrates 81. Therefore, the locking effect of the contact portions between the support posts 83 is not sufficient to prevent the displacement when receiving a shear load in the horizontal direction. . Further, there is no effect on the breakage of the substrate 81 as described above. Moreover, since the fitting portion is provided at the tip of the column, water accumulates in the column, water does not flow downward in the column, and air accumulates, so that there is a problem that water storage efficiency is deteriorated.
 本発明は、このような問題に鑑みてなされたもので、複数種類の樹脂製骨格ブロックを使用することなく、水貯留施平方向の力に対しての破損やずれ等の起こすことがない水貯留施設および水貯留施設の施工方法等を提供することを目的とする。 The present invention has been made in view of such problems, and without using a plurality of types of resin skeleton blocks, water that does not cause breakage or displacement with respect to force in the direction of water storage flattening. The purpose is to provide storage facilities and construction methods for water storage facilities.
 前述した目的を達するために第1の発明は、地下に設けられ、水を貯留する水貯留施設であって、地面に掘り下げられた貯水部と、前記貯水部内に複数配置された骨格ブロックと、前記骨格ブロックに取り付けられる板状部材である補強部材と、前記貯水部側面に設けられる側板と、前記貯水部上部の天板を覆う被覆層と、を具備し、前記骨格ブロックは、通水孔を有する平板状の基板と、前記基板の一方の面に立設された支柱と、前記基板に設けられた嵌合孔とを有し、前記貯水部内に、前記骨格ブロックが、水平方向に複数連続して併設され、さらに鉛直方向には上下方向を互いに反転させて積み上げられ、前記支柱が下方に向けられた上段の骨格ブロックの前記支柱および前記嵌合孔が、前記支柱が上方に向けられた下段の前記骨格ブロックの前記嵌合孔および前記支柱とそれぞれ嵌合し、前記補強部材は、鉛直方向に組み上げられた前記骨格ブロックの、少なくとも一部の互いに向かい合う前記基板同士の間に配置され、前記補強部材と前記基板とが嵌合する嵌合構造を有することを特徴とする水貯留施設である。 In order to achieve the above-described object, the first invention is a water storage facility that is provided in the basement and stores water, a water storage part dug into the ground, and a plurality of skeleton blocks arranged in the water storage part, A reinforcing member that is a plate-like member attached to the skeleton block; a side plate provided on a side surface of the water storage portion; and a covering layer that covers a top plate at the top of the water storage portion. A plate-like substrate having a plurality of skeleton blocks in the horizontal direction in the water storage section. Further, the columns are stacked upside down in the vertical direction, and the columns and fitting holes of the upper skeleton block in which the columns are directed downward are directed upward. The lower skeleton The fitting hole and the support column of the lock are respectively fitted, and the reinforcement member is disposed between at least a part of the substrates facing each other of the skeleton block assembled in the vertical direction, and the reinforcement member The water storage facility has a fitting structure in which the substrate is fitted.
 前記基板上には、前記基板の対角線上に設けられた2か所の前記支柱と、前記支柱が設けられない部位の対角線上に設けられた2か所の前記嵌合孔とが設けられ、少なくとも一部の骨格ブロックの組み上げ構造が、前記支柱が上方に向けられて配置される下段の前記骨格ブロックが併設されており、前記支柱が下方に向けられて配置される上段の前記骨格ブロックが、下段の前記骨格ブロックに対して、水平方向に縦横それぞれ半ピッチずつずれて配置され、上段の前記骨格ブロックは隣接する4個の下段の骨格ブロックにまたがるように配置され、上段の前記骨格ブロックの前記支柱および前記嵌合孔が、下段の前記骨格ブロックの前記嵌合孔および前記支柱とそれぞれ嵌合して組み上げられることが望ましい。 On the substrate, two pillars provided on the diagonal line of the substrate, and two fitting holes provided on a diagonal line of the part where the pillar is not provided, are provided. The assembled structure of at least a part of the skeleton block is provided with the lower skeleton block in which the support column is directed upward, and the upper skeleton block in which the support column is disposed downward is provided. The upper skeleton block is arranged so as to be shifted by a half pitch vertically and horizontally with respect to the lower skeleton block, and the upper skeleton block is arranged so as to straddle four adjacent lower skeleton blocks. It is preferable that the support column and the fitting hole are assembled with the fitting hole and the support column of the lower skeleton block.
 前記基板の前記支柱が立設される側とは反対側の面には、第1の嵌合突起および第1の嵌合穴が設けられ、前記補強部材の一方の面には、前記補強部材の一方の面側に接触する前記基板の前記第1の嵌合突起に対応する第2の嵌合穴が設けられ、前記補強部材の他方の面には、前記補強部材の他方の面側に接触する前記基板の前記第1の嵌合穴に対応する第2の嵌合突起が設けられ、前記嵌合構造は、前記第1の嵌合突起と前記第2の嵌合穴との嵌合および前記第1の嵌合穴と前記第2の嵌合突起との嵌合であり、前記基板同士の接合部では、重ねられた上下の前記基板それぞれの第1の嵌合突起および第1の嵌合穴が互いに嵌合し合い、前記補強部材同士の接合部では、重ねられた上下の前記補強部材それぞれの第2の嵌合突起および第2の嵌合穴が互いに嵌合し合ってもよい。 A first fitting protrusion and a first fitting hole are provided on a surface of the substrate opposite to the side on which the support column is erected, and the reinforcing member is provided on one surface of the reinforcing member. A second fitting hole corresponding to the first fitting protrusion of the substrate contacting the one surface side of the reinforcing member is provided, and the other surface of the reinforcing member is provided on the other surface side of the reinforcing member. A second fitting protrusion corresponding to the first fitting hole of the board to be contacted is provided, and the fitting structure is a fitting between the first fitting protrusion and the second fitting hole. And the first fitting hole and the second fitting protrusion, and at the joint portion between the boards, the first fitting protrusion and the first fitting of each of the upper and lower boards stacked. The fitting holes are fitted to each other, and the second fitting protrusions and the second fitting protrusions of the upper and lower reinforcing members stacked at the joint portion between the reinforcing members are connected to each other. The fitting hole of may be fitted each other each other.
 鉛直方向に積み上げられた前記骨格ブロックのそれぞれの支柱が、直接または、前記基板および/または前記補強部材を介して鉛直方向に配列され、鉛直方向に配列された前記支柱と補強部材とを貫通するように、棒状部材が更に設けられ、前記支柱の先端部内面には棒状部材支持部が設けられ、前記棒状部材は前記棒状部材支持部によって保持され、前記補強部材の前記棒状部材が貫通する部位には、前記棒状部材を支持する支持部が形成され、前記棒状部材は、少なくとも前記補強部材の鉛直方向の設置間隔ごとに前記補強部材によって支持されてもよい。 Each support of the skeleton block stacked in the vertical direction is arranged in the vertical direction directly or via the substrate and / or the reinforcing member, and penetrates the supporting column and the reinforcing member arranged in the vertical direction. As described above, a rod-shaped member is further provided, and a rod-shaped member support portion is provided on the inner surface of the tip end portion of the column. The rod-shaped member is held by the rod-shaped member support portion, and the portion of the reinforcing member through which the rod-shaped member passes A support portion for supporting the rod-shaped member may be formed, and the rod-shaped member may be supported by the reinforcing member at least at every installation interval in the vertical direction of the reinforcing member.
 なお、前記貯水部の一部には、流入口から水が流入する沈殿槽が設けられ、前記沈殿槽内部には一部が切欠かれた前記骨格ブロックおよび一部が切欠かれた前記補強板が組上げられ、一部が切欠かれた前記骨格ブロックおよび一部が切欠かれた前記補強板によって、鉛直方向に連通する作業孔が設けられ、前記沈殿槽を囲うように仕切り壁が設けられ、前記沈殿槽および前記貯水部内に設けられる前記骨格ブロックのサイズが同一であってもよい。さらに、前記側板の少なくとも一部には、前記側板に対して略垂直に前記貯水部の内方に向けて内板が設けられてもよい。 In addition, a precipitation tank into which water flows from an inflow port is provided in a part of the water storage unit, and the skeleton block partially cut out and the reinforcing plate cut out in part are provided in the precipitation tank. A work hole communicating in the vertical direction is provided by the skeleton block that is assembled and partly cut out and the reinforcing plate that is partly cut out, a partition wall is provided so as to surround the precipitation tank, and the precipitation The size of the skeleton block provided in the tank and the water reservoir may be the same. Furthermore, an inner plate may be provided on at least a part of the side plate toward the inner side of the water storage portion substantially perpendicularly to the side plate.
 第1の発明によれば、骨格ブロックを、骨格ブロックの支柱と基板に設けられた嵌合孔とを嵌合させつつ積みあげることで、支柱の水平方向のずれがない。また、支柱先端同士を当接させて積み上げる場合と比較して、上下方向に組みあげられた骨格ブロックの基板同士の間隔を狭く(約1/2)することができるため、土圧を受け持つ部位(基板部)が多くなり、側板全体にかかる水平方向の力(土圧)に対して有効である。 According to the first invention, the skeleton block is piled up while fitting the support of the skeleton block and the fitting hole provided in the substrate, so that there is no horizontal displacement of the support. In addition, compared with the case where the pillar ends are brought into contact with each other and stacked, the space between the substrates of the skeleton blocks assembled in the vertical direction can be narrowed (about 1/2), so that the part responsible for earth pressure This is effective against horizontal force (earth pressure) applied to the entire side plate.
 特に一の対角線上に設けられた2か所の支柱と、他の対角線上に設けられ、支柱の先端と嵌合可能な2か所の嵌合孔を互いに上下に反転させ、支柱と嵌合孔とを嵌合させつつ積みあげることで、基板同士の間を計4本の支柱が互いに上下に反転しつつ先端を相手側の基板に設けられた嵌合孔と嵌合するため、組み立てが容易で、1種類の骨格ブロックで効率のよい構造を得ることができる。 In particular, two struts provided on one diagonal line and two fitting holes provided on the other diagonal line that can be fitted to the tip of the strut are turned upside down to fit with the struts. By stacking the holes while fitting them together, a total of four struts are turned upside down between the boards, and the tips are fitted with the fitting holes provided in the other board, so that assembly is possible. It is easy and an efficient structure can be obtained with one kind of skeleton block.
 さらに、上下段の骨格ブロックを水平方向縦横にそれぞれ半ピッチずつずらして組み上げることで、鉛直方向に積み上げられる骨格ブロックのみではなく、水平方向に隣接する骨格ブロック同士も強固に連結され、骨格ブロックのずれやくずれなどの発生を防止することができる。なおこの場合、組み上げられた骨格ブロックの外周部には、半ピッチ分のスペースが形成されるため、外周部には必要に応じて半ピッチ分の半分の骨格ブロックやL字状の骨格ブロック等を組みつければよい。 Furthermore, by assembling the upper and lower skeleton blocks by shifting each half pitch horizontally and vertically, not only the skeleton blocks stacked in the vertical direction but also the skeleton blocks adjacent in the horizontal direction are firmly connected to each other. Generation | occurrence | production of a shift | offset | difference or a break can be prevented. In this case, since a space corresponding to a half pitch is formed on the outer peripheral portion of the assembled skeleton block, a half skeleton block corresponding to a half pitch, an L-shaped skeleton block, or the like is formed on the outer peripheral portion as necessary. Can be assembled.
 また、貯水部の内側面には側板が設けられ、鉛直方向に組みあげられた骨格ブロックの基板同士の間の一部(例えば、所定深さより深い位置における基板同士の間)に補強部材が挟み込まれるため、補強部材が側板にかかる土圧を受けることができる。このため、基板に過剰な水平方向の力が加わらず基板が破損することがない。また、前記補強部材は、貯水部外側の地盤によっては耐振性を高めるため、鉛直方向に組みあげられた骨格ブロックの基板同士の間の一部に設けるのではなく、深さ方向全てに設けても良い。 In addition, a side plate is provided on the inner side surface of the water storage section, and a reinforcing member is sandwiched between a part of the substrates of the skeleton block assembled vertically (for example, between the substrates at a position deeper than a predetermined depth). Therefore, the reinforcing member can receive the earth pressure applied to the side plate. For this reason, an excessive horizontal force is not applied to the substrate and the substrate is not damaged. In addition, the reinforcing member is provided not in a part between the substrates of the skeleton blocks assembled in the vertical direction, but in all the depth directions in order to improve vibration resistance depending on the ground outside the water storage part. Also good.
 この場合でも、骨格ブロックは通常のもの(例えば5~6m程度の深さまでの範囲の土圧に耐えることが可能な水平耐荷重を有するもの)を、貯留槽内全体(例えば8~10m深さなど)に用いることが可能であり、複数種類の骨格ブロックの使用や、過剰な強度の骨格ブロックを使用する必要がない。 Even in this case, the skeleton block is a normal one (for example, one having a horizontal load capacity capable of withstanding earth pressure in a range of about 5 to 6 m), and the entire inside of the storage tank (for example, 8 to 10 m deep). Etc.), and it is not necessary to use a plurality of types of skeleton blocks or skeleton blocks having excessive strength.
 また、基板の裏面(支柱とは逆側の面)に嵌合突起および嵌合孔を設けておき、これに対応するように補強部材に嵌合突起および嵌合孔を設けておくことで、基板と補強部材とが嵌合して固定され、この間のずれ等を防止することができる。さらに、基板に設けられた嵌合突起および嵌合孔は、基板同士の嵌合にも利用できるため、基板同士のずれを防止することもでき、補強部材に設けられた嵌合突起および嵌合孔は、補強部材同士の嵌合にも利用できる。このため、基板同士、補強部材同士のずれを防止することもできる。なお、骨格ブロックの基板や補強部材に設ける嵌合突起と嵌合穴は、地震等のずれ応力に耐えるものでなければならないので、嵌合部のクリアランスや強度設計には、この点に十分留意する必要がある。例えば、この点では、勘合部の勘合突起の周長をできるだけ大きくして、さらに基板外周部と平行な部分の長さを大きくして、土圧や基板外周が受ける側圧に対する強度を高めることができる。 In addition, by providing a fitting protrusion and a fitting hole on the back surface (surface opposite to the support column) of the substrate, and by providing a fitting protrusion and a fitting hole in the reinforcing member to correspond to this, The substrate and the reinforcing member are fitted and fixed, and a shift or the like between them can be prevented. Furthermore, since the fitting protrusions and fitting holes provided on the substrates can also be used for fitting between the substrates, the displacement between the substrates can be prevented, and the fitting protrusions and fittings provided on the reinforcing member can be prevented. The holes can also be used for fitting the reinforcing members. For this reason, the shift | offset | difference of board | substrates and reinforcement members can also be prevented. Note that the fitting protrusions and fitting holes provided on the substrate and reinforcing member of the skeleton block must withstand shear stresses such as earthquakes, so pay careful attention to this point when designing the clearance and strength of fitting parts. There is a need to. For example, in this respect, it is possible to increase the strength against the earth pressure and the side pressure received by the substrate outer periphery by increasing the peripheral length of the engaging protrusion of the engaging portion as much as possible and further increasing the length of the portion parallel to the outer peripheral portion of the substrate. it can.
 また、支柱部を貫通する棒状部材を設けておけば、支柱同士が鉛直方向に一直線状にそろった状態を維持することができ、ずれることがない。このため、水平方向の力(または振動)に対しても、骨格ブロックが鉛直方向に組みあがった状態が維持される。また、多少のずれが瞬間的に生じたとしても、骨格ブロックが棒状部材で拘束されているため、棒状部材の瞬間的な変位の回復ともに、棒状部材により拘束させている骨格ブロックももとの位置に戻ることができる。その結果、骨格ブロックが水平方向や斜めにずれることがない。すなわち、骨格ブロックの水平方向のずれによる骨格ブロックの水平方向の強度低下や支柱の軸心のずれや傾きによる等の恐れがない。ここで、棒状部材とは、中空のパイプや中実の部材であり、棒状部材の断面形状は、支柱先端面(基板面と反対側の先端)に設けられた貫通孔と整合した形状であることが望ましい。 Also, if a rod-shaped member that penetrates the support column is provided, it is possible to maintain a state in which the columns are aligned in the vertical direction without any deviation. For this reason, the state where the skeleton block is assembled in the vertical direction is maintained even with respect to the force (or vibration) in the horizontal direction. Even if a slight deviation occurs momentarily, since the skeleton block is restrained by the rod-like member, the recovery of the instantaneous displacement of the rod-like member is accompanied by the skeleton block restrained by the rod-like member. Can return to position. As a result, the skeleton block does not shift horizontally or diagonally. That is, there is no fear of a decrease in the strength of the skeleton block in the horizontal direction due to a horizontal shift of the skeleton block, or a shift or inclination of the axis of the support column. Here, the rod-shaped member is a hollow pipe or a solid member, and the cross-sectional shape of the rod-shaped member is a shape aligned with a through-hole provided in a support column tip surface (tip opposite to the substrate surface). It is desirable.
 また、支柱の先端部内面に棒状部材支持部を設けておくことで、棒状部材をより確実に支柱で保持することができる。また、貯水施設の貯水率を高めるためには、棒状部材は中空のパイプであることが望ましく。棒状部材を中空のパイプにすることにより、パイプ内部にも雨水を貯水することができる。また、パイプ状の棒状部材に通水孔を設けておけば、貯水空間から棒状部材内部への水の浸透を容易にすることができる。なお、通水孔は、直径数mmの微小孔である。 Also, by providing a rod-shaped member support portion on the inner surface of the tip end portion of the column, the rod-shaped member can be more reliably held by the column. In order to increase the water storage rate of the water storage facility, the rod-shaped member is preferably a hollow pipe. By making the rod-shaped member a hollow pipe, rainwater can be stored in the pipe. Moreover, if a water passage hole is provided in the pipe-like rod-shaped member, it is possible to facilitate the penetration of water from the water storage space into the rod-shaped member. The water passage hole is a micro hole having a diameter of several mm.
 また、貯水槽内に沈殿槽を設けることで、貯水部内への土砂等の侵入を防ぐことができる。また、沈殿槽には作業孔が設けられるため、沈殿槽内の監視や清掃が容易である。また、沈殿槽は仕切り壁で区画され、仕切り壁内外に骨格ブロックが設けられるため、仕切り壁を確実に保持することができる。また、作業孔は、基板の一部が切欠かれた骨格ブロックおよび前記基板の一部が切りかかれた骨格ブロックと同様の形状に形成された補強部材により形成されるため、沈殿槽の水平方向の強度も十分に確保することができる。特に、貯水部および沈殿槽に用いられる骨格ブロックが略同一サイズ(なお、略同一サイズとは、基板の一部に設けられる切欠きの有無によらず、切欠きを考慮しない部分のサイズが略同一であることを言う)であるため、貯水部内で応力集中がなく、骨格ブロックが崩れたりすることがない。さらに、側壁の一部に、側壁に対して略垂直に内方に向けて内板が設けられれば、側壁の外方からの土圧に対して補強の効果を奏する。なお、内板は側板と接合され、または、貯水部内の骨格ブロック間に挟まれて立設される。 Also, by providing a sedimentation tank in the water storage tank, it is possible to prevent intrusion of earth and sand into the water storage section. Moreover, since the work hole is provided in the settling tank, monitoring and cleaning in the settling tank are easy. Moreover, since a sedimentation tank is divided by a partition wall and a skeleton block is provided inside and outside the partition wall, the partition wall can be reliably held. Further, since the work hole is formed by a skeleton block with a part of the substrate cut out and a reinforcing member formed in the same shape as the skeleton block with a part of the substrate cut, The strength can be sufficiently secured. In particular, the skeletal blocks used for the water storage section and the settling tank are approximately the same size (note that the approximately same size is the size of the portion that does not take into account notches regardless of the presence or absence of notches provided in part of the substrate. Therefore, there is no stress concentration in the water reservoir, and the skeleton block does not collapse. Furthermore, if an inner plate is provided on a part of the side wall inwardly substantially perpendicular to the side wall, a reinforcing effect is exerted against earth pressure from the outside of the side wall. Note that the inner plate is joined to the side plate, or is erected between the skeleton blocks in the water storage section.
 第2の発明は、地下に設けられ、水を貯留する水貯留施設の施工方法であって、地面を掘削して貯水部を形成する工程(a)と、前記貯水部内に骨格ブロックおよび補強部材を配置する工程(b)と、前記骨格ブロックおよび前記補強部材を覆うように側壁および上部被覆部を設ける工程(c)と、を具備し、前記骨格ブロックは、通水孔を有する平板状の基板と、前記基板の一方の面に立設された支柱と、前記基板に設けられた嵌合孔とを有し、前記工程(b)は、下段の前記骨格ブロックを前記支柱を上方に向けて複数水平方向に併設し、下段の前記骨格ブロックの上方に、前記支柱を下方に向けた上段の前記骨格ブロックを下段の前記骨格ブロックに対して、水平方向に縦横それぞれ半ピッチずつずらして、上段の前記骨格ブロックが隣接する4個の下段の骨格ブロックにまたがるように配置し、上段の前記骨格ブロックの前記支柱および前記嵌合孔が、下段の前記骨格ブロックの前記嵌合孔および前記支柱とそれぞれ嵌合させ、上段の前記骨格ブロックの前記基板上面に前記補強部材を固定させる工程と、少なくとも一部の互いに向かい合う前記基板同士の間に前記補強部材を設置する工程とを含むことを特徴とする水貯留施設の施工方法である。 2nd invention is the construction method of the water storage facility which is provided in the basement and stores water, excavating the ground to form a water storage part, and a skeleton block and a reinforcing member in the water storage part And a step (c) of providing a side wall and an upper covering portion so as to cover the skeleton block and the reinforcing member, and the skeleton block has a flat plate shape having a water passage hole. A substrate, a support column erected on one surface of the substrate, and a fitting hole provided in the substrate; and in the step (b), the lower skeleton block faces the support column upward. The horizontal skeleton block is shifted by a half pitch vertically and horizontally in the horizontal direction with respect to the lower skeleton block above the lower skeleton block. Upper skeleton block It is arranged so as to straddle the four adjacent lower skeleton blocks, and the struts and the fitting holes of the upper skeleton block are respectively fitted with the fitting holes and the struts of the lower skeleton block, A step of fixing the reinforcing member to the upper surface of the substrate of the upper skeleton block, and a step of installing the reinforcing member between at least some of the substrates facing each other. It is a construction method.
 第3の発明は、地下に設けられ、水を貯留する水貯留施設の施工方法であって、地面を掘削して貯水部を形成する工程(a)と、前記貯水部内に骨格ブロックおよび補強部材を配置する工程(b)と、前記骨格ブロックおよび前記補強部材を覆うように側壁および上部被覆部を設ける工程(c)と、を具備し、前記骨格ブロックは、通水孔を有する平板状の基板と、前記基板の一方の面に立設された支柱と、前記基板に設けられた嵌合孔とを有し、前記工程(b)は、下段の前記骨格ブロックを前記支柱を上方に向けて複数水平方向に併設し、下段の前記骨格ブロックの上方に、前記支柱を下方に向けた上段の前記骨格ブロックを配置し、上段の前記骨格ブロックの前記支柱および前記嵌合孔が、下段の前記骨格ブロックの前記嵌合孔および前記支柱とそれぞれ嵌合させ、上段の前記骨格ブロックの前記基板上面に前記補強部材を固定させる工程と、少なくとも一部の互いに向かい合う前記基板同士の間に前記補強部材を設置する工程とを含むことを特徴とする水貯留施設の施工方法である。
 第2の、第3の発明において、前記工程(b)の後、前記骨格ブロックおよび前記補強部材を貫通する棒状部材を設ける工程を更に具備してもよい。
3rd invention is the construction method of the water storage facility which is provided in the basement and stores water, excavating the ground to form a water storage part, and a skeleton block and a reinforcing member in the water storage part And a step (c) of providing a side wall and an upper covering portion so as to cover the skeleton block and the reinforcing member, and the skeleton block has a flat plate shape having water passage holes. A substrate, a support column erected on one surface of the substrate, and a fitting hole provided in the substrate, wherein the step (b) has the lower skeleton block facing the support column upward The upper skeleton block with the support column facing downward is disposed above the lower skeleton block, and the support column and the fitting hole of the upper skeleton block are arranged on the lower skeleton block. The fitting hole of the skeleton block; And a step of fixing the reinforcing member to the upper surface of the substrate of the upper skeleton block, and a step of installing the reinforcing member between at least some of the substrates facing each other. This is a construction method of a water storage facility characterized by
In the second and third aspects of the present invention, after the step (b), a step of providing a rod-like member that penetrates the skeleton block and the reinforcing member may be further provided.
 第2、第3の発明によれば、骨格ブロックが上下方向に反転させて積み上げられ、少なくとも一部の骨格ブロックの互いに向かい合う基板同士の間には、補強部材が設けられ、かつ、補強部材および骨格ブロックを覆うように貯留層内側面に側板が設けられるため、補強部材が側板にかかる土圧を受けることができ、このため、基板に過剰な水平方向の力が加わらず基板が破損することがない。したがって、複数種類の骨格ブロックの使用や、過剰な強度の骨格ブロックを使用する必要がない。 According to the second and third inventions, the skeleton blocks are stacked upside down, and at least some of the skeleton blocks are provided with reinforcing members between the substrates facing each other, and the reinforcing members and Since the side plate is provided on the inner surface of the reservoir so as to cover the skeleton block, the reinforcing member can be subjected to earth pressure applied to the side plate, so that the substrate is damaged without applying excessive horizontal force to the substrate. There is no. Therefore, it is not necessary to use a plurality of types of skeleton blocks or skeleton blocks having excessive strength.
 なお、補強部材は所定深さ以上の深さに位置する互いに向かい合う基板同士の間に設ければ、効率良く貯留部を補強することができる。ここで、所定深さとは、使用される骨格ブロックの基板の水平方向耐荷重に対して、深さに応じて増大する水平方向の土圧が大きくなる深さをいう。なお、骨格ブロックの基板の水平方向耐荷重とは、一般的な安全率を見た耐荷重値である。尚、上記の設計は、基本的な設計の場合であり、設置場所の条件により、深さに関係なく、貯水層の深さ方向に全てに補強部材を使用することもできる。 Note that if the reinforcing member is provided between the substrates facing each other located at a depth of a predetermined depth or more, the storage portion can be efficiently reinforced. Here, the predetermined depth refers to a depth at which a horizontal earth pressure that increases according to the depth increases with respect to the horizontal load resistance of the substrate of the skeleton block to be used. The horizontal load resistance of the substrate of the skeleton block is a load resistance value in view of a general safety factor. In addition, said design is a case of a basic design, A reinforcement member can also be used for all the depth directions of a water reservoir irrespective of the depth according to the conditions of an installation place.
 また、骨格ブロックを、骨格ブロックの支柱と基板に設けられた孔とを嵌合させつつ積みあげることで、支柱の水平方向のずれがなく、支柱先端同士を当接させて積み上げる場合と比較して、上下方向に組みあげられた骨格ブロックの基板同士の間隔を、支柱約2本分から1本分にほぼ1/2と狭くすることができる。 Also, by stacking the skeletal block while fitting the struts of the skeleton block and the holes provided in the board, there is no horizontal displacement of the struts, compared with the case where the strut tips are brought into contact with each other and stacked. Thus, the distance between the substrates of the skeleton blocks assembled in the vertical direction can be reduced to about ½ from about two support columns to one.
 特に、上下段の骨格ブロックを水平方向縦横にそれぞれ半ピッチずつずらして組み上げれば、鉛直方向に積み上げられる骨格ブロックのみではなく、上方の骨格ブロックの支柱から下方の隣接する4つの骨格ブロックに前記骨格ブロックからの荷重が同時に付加されるため、水平方向に隣接する骨格ブロック同士も強固に連結され、骨格ブロックのずれやくずれなどの発生を防止することができる。 In particular, if the upper and lower skeleton blocks are assembled by shifting by half a pitch in the horizontal and vertical directions, not only the skeleton blocks stacked in the vertical direction, but also the four adjacent skeleton blocks below from the upper skeleton block pillars. Since the load from the skeleton block is simultaneously applied, the skeleton blocks adjacent in the horizontal direction are also firmly connected to each other, and it is possible to prevent the skeleton block from being displaced or broken.
 また、下段から順に骨格ブロックを組上げてゆく際に、上段の骨格ブロックが下段の骨格ブロックと安定して嵌合するため、作業者が各段の骨格ブロック上で作業する際に骨格ブロックの崩れ等の恐れがなく安全である。 In addition, when assembling the skeletal blocks in order from the bottom, the upper skeletal block stably fits with the lower skeletal block, so that when the operator works on each skeletal block, the skeletal block collapses. It is safe without fear.
 第4の発明は、水貯留施設の水平方向耐荷重向上方法であって、地面に掘り下げられた貯水部と、前記貯水部内に複数配置された骨格ブロックと、前記骨格ブロックに取り付けられる板状部材である補強部材と、前記貯水部側面に設けられる側板と、前記貯水部上面を覆う被覆部と、を具備し、前記骨格ブロックは、通水孔を有する平板状の基板と、前記基板の一方の面に立設され、前記基板の対角線上に設けられた2か所の支柱と、前記基板に設けられ、前記支柱が設けられない部位の対角線上に設けられた2か所の嵌合孔とを有し、前記貯水部内に、前記骨格ブロックが、水平方向縦横に複数連続して併設され、さらに鉛直方向には上下方向を互いに反転させて積み上げられ、前記支柱が上方に向けられて配置される下段の前記骨格ブロックが併設され、前記支柱が下方に向けられて配置される上段の前記骨格ブロックが、下段の前記骨格ブロックに対して、水平方向に縦横それぞれ半ピッチずつずれて配置され、上段の前記骨格ブロックは隣接する4個の下段の骨格ブロックにまたがるように配置され、上段の前記骨格ブロックの前記支柱および前記嵌合孔が、下段の前記骨格ブロックの前記嵌合孔および前記支柱とそれぞれ嵌合して組み上げられ前記補強部材は、鉛直方向に組み上げられた前記骨格ブロックの、少なくとも一部の互いに向かい合う前記基板同士の間に配置され、前記補強部材と前記基板とが嵌合する嵌合構造を有することを特徴とする水貯留施設の水平方向耐荷重向上方法である。 4th invention is a horizontal direction load-proof improvement method of water storage facilities, Comprising: The water storage part dug down to the ground, The skeleton block arrange | positioned in plurality in the said water storage part, The plate-shaped member attached to the said skeleton block A reinforcing plate, a side plate provided on a side surface of the water storage unit, and a covering unit that covers the upper surface of the water storage unit, and the skeleton block includes a flat substrate having a water passage hole, and one of the substrates And two support columns provided on the diagonal line of the substrate and two fitting holes provided on the diagonal line of the portion provided on the substrate and not provided with the support column In the water storage section, a plurality of the skeletal blocks are provided side by side in the horizontal direction vertically and horizontally, and are stacked with the vertical direction reversed in the vertical direction, and the support column is disposed upward. The lower skeleton The upper skeletal block in which the rack is disposed with the struts facing downward is arranged with a half-pitch shifted vertically and horizontally in the horizontal direction with respect to the lower skeleton block, and the upper skeleton block The blocks are arranged so as to straddle the adjacent four lower skeleton blocks, and the support pillars and the fitting holes of the upper skeleton block are respectively fitted with the fitting holes and the support pillars of the lower skeleton block. The reinforcing member assembled as described above is disposed between at least a part of the substrates facing each other of the skeleton block assembled in the vertical direction, and has a fitting structure in which the reinforcing member and the substrate are fitted. It is the horizontal direction load-proof improvement method of the water storage facility characterized by having.
 第4の発明によれば、骨格ブロックが上下方向に反転させて積み上げられ、少なくとも一部の骨格ブロックの互いに向かい合う基板同士の間には、補強部材が設けられ、かつ、補強部材および骨格ブロックを覆うように貯留層内側面に側板が設けられるため、補強部材が側板にかかる土圧を受けることができ、このため、基板に過剰な水平方向の力が加わらず基板が破損することがない。 According to the fourth aspect of the invention, the skeleton blocks are stacked upside down, and at least some of the skeleton blocks are provided with reinforcing members between the substrates facing each other. Since the side plate is provided on the inner surface of the storage layer so as to cover, the reinforcing member can receive the earth pressure applied to the side plate. Therefore, the substrate is not damaged without applying excessive horizontal force to the substrate.
 第5の発明は、水貯留施設内の骨格ブロックの水平方向ずれ防止方法であって、地面に掘り下げられた貯水部と、前記貯水部内に複数配置された骨格ブロックと、前記骨格ブロックに取り付けられる板状部材である補強部材と、前記貯水部側面に設けられる側板と、前記貯水部上面を覆う被覆部と、を具備し、前記骨格ブロックは、通水孔を有する平板状の基板と、前記基板の一方の面に立設され、前記基板の対角線上に設けられた2か所の支柱と、前記基板に設けられ、前記支柱が設けられない部位の対角線上に設けられた2か所の嵌合孔とを有し、前記貯水部内に、前記骨格ブロックが、水平方向縦横に複数連続して併設され、さらに鉛直方向には上下方向を互いに反転させて積み上げられ、前記支柱が上方に向けられて配置される下段の前記骨格ブロックが併設され、前記支柱が下方に向けられて配置される上段の前記骨格ブロックが、下段の前記骨格ブロックに対して、水平方向に縦横それぞれ半ピッチずつずれて配置され、上段の前記骨格ブロックは隣接する4個の下段の骨格ブロックにまたがるように配置され、上段の前記骨格ブロックの前記支柱および前記嵌合孔が、下段の前記骨格ブロックの前記嵌合孔および前記支柱とそれぞれ嵌合して組み上げられ前記補強部材は、鉛直方向に組み上げられた前記骨格ブロックの、少なくとも一部の互いに向かい合う前記基板同士の間に配置され、前記補強部材と前記基板とが嵌合する嵌合構造を有し、鉛直方向に積み上げられた前記骨格ブロックのそれぞれの支柱が、直接または、前記基板および/または前記補強部材を介して鉛直方向に配列され、鉛直方向に配列された前記支柱と補強部材とを貫通するように、棒状部材が設けられることを特徴とする水貯留施設内の骨格ブロックの水平方向ずれ防止方法である。 5th invention is the horizontal direction prevention method of the skeleton block in a water storage facility, Comprising: The water storage part dug down to the ground, The skeleton block arrange | positioned in multiple in the said water storage part, Attached to the said skeleton block A reinforcing member that is a plate-like member; a side plate provided on a side surface of the water storage portion; and a covering portion that covers an upper surface of the water storage portion; and the skeleton block includes a flat plate-like substrate having water passage holes; Two support columns provided on one side of the substrate and provided on a diagonal line of the substrate; and two support columns provided on the diagonal line of a portion provided on the substrate and not provided with the support column. A plurality of the skeletal blocks arranged in a row in the horizontal direction vertically and horizontally, and vertically stacked in the vertical direction so that the support columns face upward. Being placed under The upper skeletal block in which the skeleton block is disposed and the support column is directed downward is arranged with a half pitch shift in the horizontal and vertical directions with respect to the lower skeleton block. The skeleton block is arranged so as to straddle the four lower skeleton blocks adjacent to each other, and the column and the fitting hole of the upper skeleton block are respectively connected to the fitting hole and the column of the lower skeleton block. The reinforcement member assembled and assembled is disposed between at least a part of the substrates facing each other of the skeleton block assembled in the vertical direction, and the reinforcement member and the substrate are fitted to each other. Each strut of the skeletal block that has a structure and is stacked in the vertical direction directly or directly supports the substrate and / or the reinforcing member. In the method for preventing horizontal displacement of the skeleton block in the water storage facility, a rod-shaped member is provided so as to penetrate the column and the reinforcing member arranged in the vertical direction. is there.
 第5の発明によれば、骨格ブロックが上下方向に反転させて積み上げられ、少なくとも一部の骨格ブロックの互いに向かい合う基板同士の間には、補強部材が設けられ、かつ、補強部材および骨格ブロックを覆うように貯留層内側面に側板が設けられ、支柱等を貫通する棒状部材が設けられるため、地震等の振動などによる骨格ブロックの水平方向のずれの発生を防止することができる。 According to the fifth invention, the skeleton blocks are stacked upside down, and at least some of the skeleton blocks are provided with reinforcing members between the substrates facing each other. Since a side plate is provided on the inner surface of the reservoir so as to cover and a rod-like member penetrating the support column and the like is provided, occurrence of horizontal displacement of the skeleton block due to vibration such as an earthquake can be prevented.
 本発明により、複数種類の樹脂製骨格ブロックを使用することなく、水貯留施平方向の力に対しての破損やずれ等の起こすことがない水貯留施設および水貯留施設の施工方法等を提供することができる。 The present invention provides a water storage facility and a water storage facility construction method that do not cause damage or displacement with respect to the force in the water storage flattening direction without using multiple types of resin skeleton blocks. can do.
骨格ブロック1a、1b、1c、1dおよび補強板13が上下に組上げられた状態を示す分解斜視図。The disassembled perspective view which shows the state by which the frame | skeleton blocks 1a, 1b, 1c, 1d and the reinforcement board 13 were assembled up and down. 骨格ブロック1a、1b、1c、1dおよび補強板13が上下に組上げられた状態を示す正面図。The front view which shows the state with which the frame | skeleton blocks 1a, 1b, 1c, 1d and the reinforcement board 13 were assembled up and down. 骨格ブロック1a、1b、1c、1dおよび補強板13が嵌合突起19、嵌合孔21で上下に組上げられた状態を示す図であり、図1のA-A線断面図。FIG. 2 is a view showing a state in which the skeleton blocks 1a, 1b, 1c, and 1d and the reinforcing plate 13 are assembled up and down by the fitting protrusions 19 and the fitting holes 21, and is a cross-sectional view taken along line AA in FIG. 骨格ブロック1e~1iを千鳥状に組み上げた状態を示す図で、(a)は平面図、(b)は正面図。It is a figure which shows the state which assembled | assembled the frame | skeleton blocks 1e-1i in zigzag form, (a) is a top view, (b) is a front view. 骨格ブロック1a、1b、1c、1dおよび補強板13’が嵌合突起19、嵌合孔21で上下に組上げられた状態を示す図。The figure which shows the state by which frame | skeleton block 1a, 1b, 1c, 1d and the reinforcement board 13 'were assembled | assembled up and down by the fitting protrusion 19 and the fitting hole 21. As shown in FIG. 棒状部材支持部27a、27bを有する骨格ブロック1’、1’’を示す図。The figure which shows frame | skeleton blocks 1 'and 1' 'which have rod-shaped member support part 27a, 27b. 雨水貯留層30を示す立面図。The elevation which shows the rainwater storage layer 30. FIG. 支柱5を貫通するパイプ41が設けられた状態を示す図で、(a)は骨格ブロック1を貫通するパイプ41を示す図、(b)は棒状部材支持部27aを有する骨格ブロックを貫通するパイプ41を示す図、(c)は棒状部材支持部27bを骨格ブロックを貫通するパイプ41を示す図。It is a figure which shows the state in which the pipe 41 which penetrates the support | pillar 5 was provided, (a) is a figure which shows the pipe 41 which penetrates the skeleton block 1, (b) is a pipe which penetrates the skeleton block which has the rod-shaped member support part 27a. FIG. 41C is a diagram showing the pipe 41 penetrating the skeleton block through the rod-shaped member support portion 27b. 雨水貯留層30を示す平面図。The top view which shows the rainwater storage layer. 載荷装置70を示す立面図。FIG. 3 is an elevation view showing the loading device 70. 骨格ブロック60a、60b、60c、60dが上下に組上げられた状態を示す分解斜視図。The disassembled perspective view which shows the state by which the skeleton blocks 60a, 60b, 60c, 60d were assembled up and down. 骨格ブロック60a、60b、60c、60dが上下に組上げられた状態を示す正面図。The front view which shows the state by which the frame | skeleton blocks 60a, 60b, 60c, 60d were assembled up and down. (a)は従来の雨水貯留槽65を示す立面図、(b)は水平方向の力によって骨格ブロック60の基板61が破損した状態を示す図、(c)は水平方向の力によって骨格ブロック60がずれた状態を示す図。(A) is an elevation view showing a conventional rainwater storage tank 65, (b) is a diagram showing a state in which the substrate 61 of the skeleton block 60 is damaged by a horizontal force, and (c) is a skeleton block by a horizontal force. The figure which shows the state which 60 shifted | deviated. 骨格ブロック80a、80b、80c、80dが上下に組上げられた状態を示す分解斜視図。The disassembled perspective view which shows the state by which the skeleton blocks 80a, 80b, 80c, 80d were assembled up and down. 骨格ブロック80a、80b、80c、80dが上下に組上げられた状態を示す正面断面図。Front sectional drawing which shows the state by which the skeleton blocks 80a, 80b, 80c, 80d were assembled up and down.
 以下、図面を参照しながら、本発明の実施形態について説明する。まず、本発明に用いられる骨格ブロックについて説明する。図1は、骨格ブロック1(1a、1b、1c、1d)を示す分解斜視図であり、図2は組みあげられた骨格ブロック1を示す正面図である。骨格ブロック1は、基板3および支柱5等から構成される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the skeleton block used in the present invention will be described. FIG. 1 is an exploded perspective view showing a skeleton block 1 (1a, 1b, 1c, 1d), and FIG. 2 is a front view showing the assembled skeleton block 1. FIG. The skeleton block 1 includes a substrate 3 and a support column 5.
 基板3は矩形板状の部材であり、透水可能な複数の孔11が形成される。基板3の一方の対角線上には、一対の支柱5が配置される。支柱5は、基板3の一方の側に向かって立設する。基板3の他方の対角線上(支柱5が配置されていない部位)には、一対の支柱の嵌合孔7が設けられる。 The substrate 3 is a rectangular plate-like member, and a plurality of holes 11 that are permeable to water are formed. A pair of support pillars 5 are arranged on one diagonal line of the substrate 3. The support column 5 is erected toward one side of the substrate 3. On the other diagonal line of the substrate 3 (part where the support column 5 is not disposed), a fitting hole 7 for a pair of support columns is provided.
 支柱5の嵌合孔7は、支柱5の先端形状に対応しており、支柱5の先端と支柱の嵌合孔7とは嵌合可能である。また、支柱5および支柱の嵌合孔7は、基板3の中心を基点として、丁度90度、基板3を回転させて対応する位置に設けられる。支柱の嵌合孔7の周囲には、嵌合用の案内の役割を果す基板面からわずかに突き出したリブを設けても良い。 The fitting hole 7 of the column 5 corresponds to the tip shape of the column 5, and the tip of the column 5 and the fitting hole 7 of the column can be fitted. Further, the support 5 and the fitting hole 7 of the support are provided at corresponding positions by rotating the substrate 3 just 90 degrees with the center of the substrate 3 as a base point. A rib slightly protruding from the substrate surface serving as a fitting guide may be provided around the fitting hole 7 of the support column.
 支柱5は筒状であり内部には孔9が形成される。支柱5は、先端方向に縮径したいわゆるテーパ形状をしており、支柱5を同一方向に向けて重ねると、下方の骨格ブロックの支柱5が上方の骨格ブロックの孔5に収まるため、運搬・保管時には場所を取ることがない。 The support column 5 is cylindrical and has a hole 9 formed therein. The support column 5 has a so-called taper shape with a diameter reduced in the tip direction. When the support column 5 is stacked in the same direction, the support column 5 of the lower skeleton block fits in the hole 5 of the upper skeleton block. There is no space for storage.
 補強部材である補強板13は、少なくとも4か所に孔15を有する矩形板状部材である。孔15は、骨格ブロック1の基板3と重ねた際に、孔9および支柱の嵌合孔7に対応する位置に設けられる。補強板13の孔15以外の部位には、透水可能な複数の孔17が設けられる。また、補強板13の大きさは、同時に使用される骨格ブロック1の基板3と同一形状(厚みを除く同一の縦横サイズ)の板状部材であることが望ましい。 The reinforcing plate 13 as a reinforcing member is a rectangular plate member having holes 15 at least at four locations. The hole 15 is provided at a position corresponding to the hole 9 and the fitting hole 7 of the support column when overlapping with the substrate 3 of the skeleton block 1. A plurality of holes 17 that are permeable to water are provided at portions other than the holes 15 of the reinforcing plate 13. The size of the reinforcing plate 13 is preferably a plate-like member having the same shape as the substrate 3 of the skeleton block 1 used at the same time (the same vertical and horizontal sizes excluding thickness).
 基板3の裏面(支柱5が立設される側とは反対側)には、基板の嵌合突起19および基板の嵌合孔21、22が設けられる。また、補強板13の両面には、基板の嵌合突起19、基板の嵌合孔21に対応する部位に、基板の嵌合突起23、基板の嵌合孔25、26が設けられる。基板の嵌合突起19および基板の嵌合孔21、22等については詳細を後述する。 On the back surface of the substrate 3 (on the side opposite to the side on which the support column 5 is erected), there are provided a mating protrusion 19 of the substrate and mating holes 21 and 22 of the substrate. Further, on both surfaces of the reinforcing plate 13, a board fitting protrusion 23 and board fitting holes 25 and 26 are provided at portions corresponding to the board fitting protrusion 19 and the board fitting hole 21, respectively. Details of the board fitting protrusions 19 and the board fitting holes 21 and 22 will be described later.
 図2に示すように、骨格ブロック1を組み上げるには、骨格ブロック1を上下方向に上下互いに反転させて、かつ、互いの支柱5と支柱の嵌合孔7とが向かい合うように積み上げられる。骨格ブロック1が組上げられると、支柱5の先端は支柱の嵌合孔7に嵌合する。 As shown in FIG. 2, in order to assemble the skeleton block 1, the skeleton block 1 is turned upside down in the vertical direction, and stacked so that the support pillars 5 and the fitting holes 7 of the support faces each other. When the skeleton block 1 is assembled, the tip of the column 5 is fitted into the fitting hole 7 of the column.
 図2の例では、支柱5が上方に向くように骨格ブロック1dを下段に配置し、その上方に、支柱5が下方に向くように骨格ブロック1cを配置する。この際、骨格ブロック1dの支柱5の先端が、骨格ブロック1cの支柱の嵌合孔7に対して嵌合し、骨格ブロック1cの支柱5の先端が、骨格ブロック1dの支柱の嵌合孔7に対して嵌合する。 In the example of FIG. 2, the skeleton block 1d is arranged at the lower stage so that the support column 5 faces upward, and the skeleton block 1c is arranged above the support block 5 so that the support column 5 faces downward. At this time, the tip of the column 5 of the skeleton block 1d is fitted into the fitting hole 7 of the column of the skeleton block 1c, and the tip of the column 5 of the skeleton block 1c is fitted to the column fitting hole 7 of the skeleton block 1d. To fit.
 骨格ブロック1cの基板3上には、補強板13が設けられる。補強板13上には骨格ブロック1bが支柱3を上方に向けて配置される。さらに骨格ブロック1b上には、支柱5を下方に向けて骨格ブロック1aが配置される。骨格ブロック1a、1bは、互いの支柱5および支柱の嵌合孔7を嵌合するように配置される。以上を繰り返して骨格ブロック1が上下方向に組上げられる。なお、この際、骨格ブロック1の孔11と補強板13の孔17の位置および形状が同様(例えば略相似形状)であれば、組み上げられた際に、それぞれの孔を水が通過しやすく、これらを用いた貯水施設の貯留効率が高くなる。 A reinforcing plate 13 is provided on the substrate 3 of the skeleton block 1c. On the reinforcing plate 13, the skeleton block 1b is arranged with the support column 3 facing upward. Further, the skeleton block 1a is arranged on the skeleton block 1b with the support column 5 facing downward. The skeletal blocks 1a and 1b are arranged so as to fit each other's pillars 5 and the fitting holes 7 of the pillars. The skeleton block 1 is assembled in the vertical direction by repeating the above. At this time, if the positions and shapes of the holes 11 of the skeleton block 1 and the holes 17 of the reinforcing plate 13 are the same (for example, a substantially similar shape), when assembled, water easily passes through each hole, The storage efficiency of water storage facilities using these is increased.
 骨格ブロック1が上下方向に組み上げられた状態において、それぞれの支柱5(基板3)を貫通する孔9と、補強板13の孔15とが鉛直方向に連通する。なお、補強板13が不要である場合には、上下の骨格ブロック1b、1cのそれぞれの基板3同士が直接当接する。 In the state where the skeleton block 1 is assembled in the vertical direction, the holes 9 penetrating the respective pillars 5 (substrate 3) and the holes 15 of the reinforcing plate 13 communicate with each other in the vertical direction. In addition, when the reinforcement board 13 is unnecessary, each board | substrate 3 of the upper and lower skeleton blocks 1b and 1c contact | abuts directly.
 ここで、一対の骨格ブロック1が上下に反転され、互いの支柱5および支柱の嵌合孔7同士を嵌合することで積み上げられ、上方の骨格ブロック1の基板3上または下方の骨格ブロック1の基板3下に補強板13が設けられた構成を、骨格ブロックの単位構造と称する。図2の例では、骨格ブロック1c、1dおよび補強板13(または骨格ブロック1a、1bおよび補強板13)を含む構成が骨格ブロックの単位構造となる。 Here, the pair of skeleton blocks 1 are turned upside down and stacked by fitting each other's pillars 5 and the fitting holes 7 of the pillars, and the skeleton blocks 1 on or below the substrate 3 of the upper skeleton block 1. The structure in which the reinforcing plate 13 is provided under the substrate 3 is referred to as a unit structure of the skeleton block. In the example of FIG. 2, the structure including the skeleton blocks 1c and 1d and the reinforcing plate 13 (or the skeleton blocks 1a and 1b and the reinforcing plate 13) is the unit structure of the skeleton block.
 図3(a)は、基板3を裏面から見た図であり、基板3に設けられた第1の嵌合突起である基板の嵌合突起19および第1の嵌合穴である基板の嵌合孔21、22を示す模式図で、図3(b)は補強板13に設けられた第2の嵌合突起である基板の嵌合突起23および第2の嵌合穴である基板の嵌合孔25、26を示す模式図である。 FIG. 3A is a view of the substrate 3 as seen from the back side, and the fitting protrusion 19 of the substrate which is the first fitting protrusion provided on the substrate 3 and the fitting of the substrate which is the first fitting hole. FIG. 3B is a schematic diagram showing the joint holes 21 and 22, and FIG. 3B is a diagram illustrating a fitting fitting 23 of the board that is the second fitting protrusion provided on the reinforcing plate 13 and a fitting of the board that is the second fitting hole. It is a schematic diagram which shows the joint holes 25 and 26. FIG.
 図3(a)に示すように、例えば、基板の嵌合突起19および基板の嵌合孔21、22は、基板3を対角線で4つに区分したエリアの隅部近傍に設けられる。一方の側の互いに対向する区分エリアには、基板の嵌合孔21、22が設けられる。基板の嵌合孔21、22は区分エリアの各角部(基板3の隅部および中央部)にそれぞれ設けられる。また、他方の側の互いに対向する区分エリアには、基板の嵌合突起19が設けられる。基板の嵌合突起19は基板3の隅部にそれぞれ設けられる。 As shown in FIG. 3A, for example, the board fitting protrusions 19 and the board fitting holes 21 and 22 are provided in the vicinity of corners of an area where the board 3 is divided into four diagonal lines. The fitting holes 21 and 22 of the board are provided in the divided areas facing each other on one side. The board fitting holes 21 and 22 are provided at each corner of the section area (the corner and the center of the board 3). In addition, the mating projections 19 of the substrate are provided in the section areas facing each other on the other side. The board fitting protrusions 19 are provided at the corners of the board 3, respectively.
 図3(b)に示すように、補強板13の基板の嵌合突起23および基板の嵌合孔25、26は、基板3の基板の嵌合突起19および基板の嵌合孔21、22に対応する位置に同様に設けられる。 As shown in FIG. 3 (b), the board fitting protrusions 23 and the board fitting holes 25, 26 of the reinforcing plate 13 are formed in the board fitting protrusions 19 and the board fitting holes 21, 22 of the board 3. Corresponding positions are similarly provided.
 図3(c)は、骨格ブロック1等を組み上げた際の、図1のA-A線断面図である。図3(c)に示すように、骨格ブロック1は、支柱5および支柱の嵌合孔7による嵌合のみでなく、対向する基板3および補強板13同士も嵌合可能である。すなわち、互いに反転して組み上げられた骨格ブロック1c、1dの上方に補強板13が設けられる際には、骨格ブロック1cの基板31上面(裏面側)に設けられた基板の嵌合突起19、基板の嵌合孔21が、補強板13下面の基板の嵌合孔25、基板の嵌合突起23と互いに嵌合する。更に、補強板13上面の基板の嵌合突起23、基板の嵌合孔25が、その上に配置される骨格ブロック1bの基板3下面の基板の嵌合孔21、基板の嵌合突起19とそれぞれ嵌合する。 FIG. 3C is a cross-sectional view taken along the line AA of FIG. 1 when the skeleton block 1 and the like are assembled. As shown in FIG. 3C, the skeleton block 1 can be fitted not only to the support 5 and the support hole 7 of the support but also to the opposing substrate 3 and the reinforcing plate 13. That is, when the reinforcing plate 13 is provided above the skeletal blocks 1c and 1d assembled in an inverted manner, the board fitting protrusions 19 provided on the upper surface (back side) of the skeleton block 1c, the board The fitting hole 21 is fitted into the board fitting hole 25 on the lower surface of the reinforcing plate 13 and the board fitting protrusion 23. Further, the board fitting protrusions 23 and the board fitting holes 25 on the upper surface of the reinforcing plate 13 are arranged on the board fitting holes 21 on the lower surface of the board 3 of the skeleton block 1b and the board fitting protrusions 19 respectively. Each fits.
 これにより、骨格ブロック1と補強板13とのずれが抑えられる。なお、補強板13を設ける必要がない場合には、対向する基板3同士に設けられた基板の嵌合孔21、基板の嵌合突起19がそれぞれ互いに嵌合する。これにより骨格ブロック1同士の基板3でのずれが抑えられ、骨格ブロック同士の水平面上でのねじれや回転が生じることがない。また、補強板13に設けられた基板の嵌合孔25等がその上に配置される骨格ブロック1の設置位置を示す目安となるため、設置が容易であり、骨格ブロックの組み上げ時の設置位置を作業者が間違えることがない。なお、補強板13を複数枚重ねて使用する場合にも、互いに対向する面のそれぞれの基板の嵌合突起23および基板の嵌合孔25同士が互いに嵌合し合うため、ずれが生じることがない。 Thereby, the deviation between the skeleton block 1 and the reinforcing plate 13 is suppressed. When there is no need to provide the reinforcing plate 13, the board fitting holes 21 and the board fitting protrusions 19 provided in the opposing boards 3 are fitted into each other. Thereby, the shift | offset | difference with the board | substrate 3 of frame | skeleton blocks 1 is suppressed, and the twist and rotation on the horizontal surface of frame | skeleton blocks do not arise. In addition, since the board fitting holes 25 and the like provided in the reinforcing plate 13 serve as a guide indicating the installation position of the skeleton block 1 disposed thereon, the installation is easy and the installation position when the skeleton block is assembled. The operator will not make a mistake. Even when a plurality of reinforcing plates 13 are used in an overlapping manner, the mating protrusions 23 of the respective substrates and the mating hole 25 of the substrates on the surfaces facing each other are fitted to each other, so that deviation may occur. Absent.
 図4は、骨格ブロック1を千鳥状に積み上げる場合を示す図であり、図4(a)は平面図、図4(b)は図4(a)のB-B線断面図である。図4(a)に示すように、骨格ブロック1は、上下方向に積み上げられる際に、水平方向に隣接する骨格ブロック1に対して半ピッチ分縦横にずらして積み上げることもできる。 4A and 4B are diagrams showing a case where the skeleton blocks 1 are stacked in a zigzag pattern. FIG. 4A is a plan view, and FIG. 4B is a cross-sectional view taken along the line BB in FIG. As shown in FIG. 4A, when the skeleton blocks 1 are stacked in the vertical direction, the skeleton blocks 1 can be stacked vertically and horizontally by a half pitch with respect to the skeleton blocks 1 adjacent in the horizontal direction.
 図4に示す例では、下段に支柱5を上方に向けて骨格ブロック1e、1f、1g、1hを水平方向に隣接させて配置し、その上に、支柱5を下方に向けて骨格ブロック1iを配置させる。この際、上方の骨格ブロック1iを、下段で隣接する4つの骨格ブロック1e、1f、1g、1hをまたぐように配置する。すなわち、骨格ブロック1iの支柱5を骨格ブロック1eおよび骨格ブロック1gの支柱の嵌合孔7と嵌合させ、骨格ブロック1fおよび骨格ブロック1hのそれぞれ1の支柱5を骨格ブロック1iの支柱の嵌合孔7に嵌合させる。 In the example shown in FIG. 4, the skeleton blocks 1e, 1f, 1g, and 1h are disposed adjacent to each other in the horizontal direction with the support column 5 facing upward, and the skeleton block 1i is disposed thereon with the support column 5 facing downward. Arrange. At this time, the upper skeleton block 1i is arranged so as to straddle the four skeleton blocks 1e, 1f, 1g, and 1h adjacent in the lower stage. That is, the column 5 of the skeleton block 1i is fitted into the fitting hole 7 of the column of the skeleton block 1e and the skeleton block 1g, and one column 5 of each of the skeleton block 1f and the skeleton block 1h is fitted to the column of the skeleton block 1i. Fit into the hole 7.
 この場合でも、必要に応じて、上下に対向する基板3同士の間に補強板13を設ければよい。なお、この場合、補強板13も鉛直方向および水平方向に千鳥配置となり、複数の骨格ブロック1にまたがるように配置される。また、千鳥状に骨格ブロック1を配置した場合でも、下段の1の骨格ブロック(例えば骨格ブロック1e)とこれと対向して組み上げられた骨格ブロック1iおよび骨格ブロック1iの基板3上に設けられた補強板13を含む構成を骨格ブロックの単位構造とすればよい。 Even in this case, the reinforcing plate 13 may be provided between the substrates 3 facing each other as necessary. In this case, the reinforcing plates 13 are also arranged in a staggered manner in the vertical direction and the horizontal direction, and are arranged so as to extend over the plurality of skeleton blocks 1. Even when the skeleton blocks 1 are arranged in a zigzag pattern, the lower skeleton block (for example, the skeleton block 1e) and the skeleton block 1i assembled to face the skeleton block 1 and the substrate 3 of the skeleton block 1i are provided. The configuration including the reinforcing plate 13 may be a unit structure of the skeleton block.
 また、骨格ブロック1を図4に示すような千鳥配置とする場合には、基板の嵌合突起19を、基板3(または補強板13)の中央の基板の嵌合孔22(26)と嵌合させればよい When the skeleton block 1 is arranged in a staggered arrangement as shown in FIG. 4, the board fitting protrusions 19 are fitted with the board fitting holes 22 (26) in the center of the board 3 (or the reinforcing plate 13). Just add
 なお、補強板13には基板の嵌合突起23を設けず、基板の嵌合孔25’のみとすることもできる。図5は基板の嵌合孔25’のみを有する補強板13’を用いて骨格ブロック1を組み立てた状態を示す図で、図3に対応する図である。 The reinforcing plate 13 may be provided with only the board fitting holes 25 ′ without providing the board fitting protrusions 23. FIG. 5 is a view showing a state in which the skeleton block 1 is assembled using the reinforcing plate 13 ′ having only the board fitting holes 25 ′, and corresponds to FIG. 3.
 補強板13’は補強板13と比較して、基板の嵌合突起23が設けられず、基板の嵌合突起23が設けられていた部位にも基板の嵌合孔25’が設けられる。基板の嵌合孔25’は補強板13’を貫通する。 Compared with the reinforcing plate 13, the reinforcing plate 13 'is not provided with the board fitting protrusion 23, and the board fitting hole 25' is also provided in the portion where the board fitting protrusion 23 is provided. The board fitting hole 25 'penetrates the reinforcing plate 13'.
 図5(c)に示すように、補強板13’を用いた場合には、基板の嵌合孔25’は、基板の嵌合突起19の位置に設けられるため、基板3の基板の嵌合突起19が基板の嵌合孔25’と嵌合する。補強板13に突起が設けられなければ、最底部に補強板を設置した際にも、底面との隙間が生じることがない。なお、補強板13’を用いても図4に示すように千鳥状に骨格ブロック1を組み上げることができる。 As shown in FIG. 5 (c), when the reinforcing plate 13 'is used, the board fitting hole 25' is provided at the position of the board fitting protrusion 19, so that the board 3 of the board 3 is fitted. The protrusion 19 is fitted into the fitting hole 25 ′ of the substrate. If the reinforcing plate 13 is not provided with a projection, a gap with the bottom surface does not occur even when the reinforcing plate is installed at the bottom. Even if the reinforcing plate 13 'is used, the skeleton blocks 1 can be assembled in a staggered manner as shown in FIG.
 図6は、支柱5内部の構造を示す図であり、棒状部材支持部が設けられる場合を示す図である。図6(a)に示すように、支柱5の先端部内面には、支柱5の孔9側に突出する棒状部材支持部27aが設けられることが望ましい。棒状部材支持部27aは、支柱5の先端が支柱5の中心方向に折曲げられ、さらに支柱5の下方に折曲げられた形状である。すなわち、棒状部材支持部27aによって、孔9の支柱先端の内径が他の部位に対して小さくなる。なお、棒状部材支持部27aは孔9の全周に設けられても良く、または孔9の縁部に間隔をあけて形成されても良い。 FIG. 6 is a diagram showing the internal structure of the column 5, and is a diagram showing a case where a rod-shaped member support portion is provided. As shown in FIG. 6A, it is desirable that a rod-shaped member support portion 27 a that protrudes toward the hole 9 side of the support column 5 is provided on the inner surface of the tip end portion of the support column 5. The rod-shaped member support portion 27 a has a shape in which the tip of the support column 5 is bent toward the center of the support column 5 and further bent below the support column 5. That is, the rod-shaped member support portion 27a reduces the inner diameter of the tip end of the hole 9 with respect to other portions. In addition, the rod-shaped member support portion 27a may be provided on the entire circumference of the hole 9 or may be formed with an interval at the edge of the hole 9.
 同様に、図6(b)は、棒状部材支持部27bを示す図である。棒状部材支持部27bは、支柱5の先端が支柱5の中心方向に折曲げられた形状である。すなわち、棒状部材支持部27bによって、孔9の支柱先端の内径が他の部位に対して小さくなる。なお、棒状部材支持部27bは孔9の全周に設けられても良く、または孔9の縁部に間隔をあけて形成されても良い。また、棒状部材支持部27bは支柱5の他の部位よりも厚肉であることが望ましい。棒状部材支持部27a、27bは、支柱5の強度を向上させるとともに、後述する棒状部材の挿入時に、棒状部材との接触する部位となる。 Similarly, FIG. 6B is a diagram showing the rod-shaped member support portion 27b. The rod-shaped member support portion 27 b has a shape in which the tip of the column 5 is bent toward the center of the column 5. That is, the rod-shaped member support portion 27b reduces the inner diameter of the tip end of the hole 9 with respect to other portions. In addition, the rod-shaped member support portion 27b may be provided on the entire circumference of the hole 9 or may be formed with an interval at the edge of the hole 9. Further, it is desirable that the rod-shaped member support portion 27b is thicker than other portions of the column 5. The rod-shaped member support portions 27a and 27b improve the strength of the support column 5, and become portions that come into contact with the rod-shaped member when a rod-shaped member to be described later is inserted.
 なお、骨格ブロック1としては、例えばポリプロピレン樹脂等を用いることができる。また、補強板12は、樹脂製やコンクリート製のものが使用できる。 For example, a polypropylene resin can be used as the skeleton block 1. The reinforcing plate 12 can be made of resin or concrete.
 次に、前述の骨格ブロック1(骨格ブロックの単位構造)を用いて形成された水貯留施設30について説明する。図7(a)は水貯留施設30を示す図である。なお、以下の説明においては。骨格ブロック1を図2に示すように組み上げた例を説明する。 Next, the water storage facility 30 formed using the skeleton block 1 (unit structure of the skeleton block) will be described. FIG. 7A shows the water storage facility 30. In the following explanation. An example in which the skeleton block 1 is assembled as shown in FIG. 2 will be described.
 水貯留施設30は、主に地下に設けられ、複数の骨格ブロック1が鉛直方向および水平方向に組み上げられ、貯水を行う貯留部31と、骨格ブロック1を覆うように、貯留部31の側方(側面)に設けられた側板33と、貯留部31を覆う透水シート39等から構成される。 The water storage facility 30 is mainly provided in the basement, and a plurality of skeleton blocks 1 are assembled in a vertical direction and a horizontal direction, and a storage part 31 that stores water and a side of the storage part 31 so as to cover the skeleton block 1. It is comprised from the side plate 33 provided in (side surface), the water-permeable sheet 39 etc. which cover the storage part 31 grade | etc.,.
 貯留部31は、上方等から流入する雨水等を貯留する空間である。貯留部31下面は図示を省略した砂利層等が設けられる。貯留部31の周囲には透水シート39が設けられる。透水シート39は貯留部31内部の水を周囲の地盤に浸透させる。透水シート39としては、例えばポリエステル長繊維不織布等が用いられる。 The storage unit 31 is a space for storing rainwater or the like flowing in from above. The bottom surface of the storage unit 31 is provided with a gravel layer (not shown). A water-permeable sheet 39 is provided around the storage unit 31. The water permeable sheet 39 permeates the water in the reservoir 31 into the surrounding ground. As the water permeable sheet 39, for example, a polyester long fiber nonwoven fabric or the like is used.
 貯留部31の側面には側板33が設けられる。側板33は、周囲の土圧を受けて、内部の骨格ブロック1や補強板13等に力を伝達するためのものである。側板33としては地盤と骨格ブロック等で挟まれて設置されても破損することがない程度の強度を有すれば良く、例えば樹脂等が使用できる。なお、側板には水が透過可能な複数の孔が設けられても良い。 A side plate 33 is provided on the side surface of the reservoir 31. The side plate 33 receives the surrounding earth pressure and transmits force to the internal skeleton block 1, the reinforcing plate 13, and the like. The side plate 33 only needs to have a strength that does not cause damage even when it is sandwiched between the ground and a skeleton block. For example, a resin or the like can be used. The side plate may be provided with a plurality of holes through which water can permeate.
 貯留部31の内部には、骨格ブロック1が複数組上げられる。貯留部31の一部には、上下方向に連通する作業孔35が形成される。作業孔35は、貯留部31内部の点検等に用いられる。作業孔35の上方は地面に通じており開閉可能な上蓋40により閉じられる。貯留部31の上部は透水可能な天板36が設けられ、さらに被覆層37により被覆される。なお、被覆層37外面にも透水シート39が設けられる。 In the storage unit 31, a plurality of skeleton blocks 1 are assembled. A working hole 35 communicating in the vertical direction is formed in a part of the storage unit 31. The working hole 35 is used for checking the inside of the storage unit 31 and the like. The upper portion of the working hole 35 is in communication with the ground and is closed by an upper lid 40 that can be opened and closed. A top plate 36 that is permeable to water is provided on the upper portion of the storage portion 31, and is further covered with a coating layer 37. A water-permeable sheet 39 is also provided on the outer surface of the coating layer 37.
 水貯留施設30は、以下のように施工される。まず、地面に掘削孔を設ける。下面には必要に応じて砂利等が設けられる。掘削孔内には下方より骨格ブロック1を順に積み上げていく。この際、必要に応じて骨格ブロック1間に補強板13を設置する。なお、この際、貯留部31の一部に後述する切欠きを有する骨格ブロックを積み上げることで作業孔35が形成される。骨格ブロック1が上部まで組み上がった後、骨格ブロック1の周囲には側壁33および透水シート39を設け、上方には天板36および被覆層37を設ける。以上により、水貯留施設30が構築される。 The water storage facility 30 is constructed as follows. First, an excavation hole is provided in the ground. Gravel or the like is provided on the lower surface as necessary. In the excavation hole, the skeleton blocks 1 are sequentially stacked from below. At this time, a reinforcing plate 13 is installed between the skeleton blocks 1 as necessary. At this time, the working hole 35 is formed by stacking a skeleton block having a notch, which will be described later, in a part of the storage portion 31. After the skeleton block 1 is assembled to the upper part, the side wall 33 and the water permeable sheet 39 are provided around the skeleton block 1, and the top plate 36 and the covering layer 37 are provided above. The water storage facility 30 is constructed as described above.
 ここで、「道路土工 カルバート工指針 日本道路協会」の指針によると、深さ4mを境にして、地中での構造物への土圧の適用式が異なる。具体的には、深さ4m未満であれば主働土圧を用い、深さ4m以上であれば静止土圧を用いることが示されている。 Here, according to the guidelines of “Road Earthwork, Calvert Work Guidelines, Japan Road Association”, the application formula of earth pressure to structures in the ground is different at a depth of 4m. Specifically, it is shown that the main earth pressure is used if the depth is less than 4 m, and the static earth pressure is used if the depth is 4 m or more.
 図7(b)はこのようにして求めた土圧について、図7(a)の貯留部31側面にかかる土圧を示す図である。土圧は、4m(図中段差部)を境にしてそれぞれ深さに略比例して大きくなる。ここで、骨格ブロック1の基板3の側方からの水平方向耐荷重をCとする。すなわち、Cよりも小さな水平方向の力であれば、骨格ブロック1(基板3)が破損することがない。したがって、Cよりも土圧が小さな浅い範囲は、骨格ブロック1のみを組み合わせても良く、補強板13を用いる必要がない。 FIG. 7B is a diagram showing the earth pressure applied to the side surface of the storage unit 31 in FIG. The earth pressure increases substantially in proportion to the depth at a boundary of 4 m (step portion in the figure). Here, C is the horizontal load resistance from the side of the substrate 3 of the skeleton block 1. That is, if the horizontal force is smaller than C, the skeleton block 1 (substrate 3) is not damaged. Therefore, in the shallow range where the earth pressure is smaller than C, only the skeleton block 1 may be combined, and it is not necessary to use the reinforcing plate 13.
 これに対し、土圧がCよりも大きくなると、土圧によって骨格ブロック1(基板3)が図13(b)の例に示すように破損する恐れがある。したがって、土圧が骨格ブロック1の水平方向耐荷重Cよりも大きくなる深さDよりも下方においては、骨格ブロック1のみで水平方向の力を受けることができない。 On the other hand, when the earth pressure becomes larger than C, the skeleton block 1 (substrate 3) may be damaged by the earth pressure as shown in the example of FIG. Therefore, below the depth D where the earth pressure becomes larger than the horizontal load capacity C of the skeleton block 1, the skeleton block 1 alone cannot receive a horizontal force.
 このため、少なくともDよりも深い部位においては、前述の補強板13が設けられる。これにより、土圧を側板33が受け、側板33からの力を確実に補強板13が受けることができる。 For this reason, at least a portion deeper than D is provided with the aforementioned reinforcing plate 13. Accordingly, the side plate 33 receives the earth pressure, and the force from the side plate 33 can be reliably received by the reinforcing plate 13.
 たとえば、貯留部の深さが地面から10mの水貯留施設である場合には、6~10mの深さ範囲に補強板を設けることが望ましい。4mより浅い部位に対して補強板を設けたのでは過剰な強度であり、貯留部の深さに応じて特殊な骨格ブロックを用いるのでは効率も悪い。したがって、例えば1~4mの範囲には補強板を設ける必要がない。5m~6mの部分に関しては、必要に応じて補強板を設けても良い。 For example, if the storage part is a water storage facility whose depth is 10 m from the ground, it is desirable to provide a reinforcing plate in a depth range of 6 to 10 m. If a reinforcing plate is provided for a portion shallower than 4 m, the strength is excessive, and if a special skeleton block is used according to the depth of the reservoir, the efficiency is poor. Therefore, it is not necessary to provide a reinforcing plate in the range of 1 to 4 m, for example. For the 5 m to 6 m portion, a reinforcing plate may be provided as necessary.
 これに対し、例えば6mよりも深い範囲の骨格ブロックの基板間には補強板を設けることで、補強板により水平荷重を受けることができる。このため、貯留槽の深さによらず、同一の骨格ブロックを用いることが可能となる。また、必要な部位にのみ補強板を設ければよいため、過剰な強度向上がない。なお、補強板は、同一のものを用いても良いが、例えば深さ方向によって数種類の補強板を使い分けても良い。また、補強板の設置枚数を深さ方向に変えることもできる。また、補強板は貯留部の底部にも設けることが望ましい。 In contrast, for example, by providing a reinforcing plate between the substrates of the skeleton block in a range deeper than 6 m, a horizontal load can be received by the reinforcing plate. For this reason, it becomes possible to use the same skeleton block regardless of the depth of the storage tank. Moreover, since it is only necessary to provide a reinforcing plate only in a necessary part, there is no excessive improvement in strength. Although the same reinforcing plate may be used, for example, several types of reinforcing plates may be properly used depending on the depth direction. Further, the number of reinforcing plates installed can be changed in the depth direction. Moreover, it is desirable to provide the reinforcing plate also at the bottom of the storage part.
 なお、側板33を用いないと、補強板13以外の基板3にも直接土圧がかかるため、基板3が破損する恐れがある。しかし、側板33を用いることで、補強板13が側板33からの力を受けとめるため、基板3に過剰な力が加わることがない。したがって、土圧が確実に補強板13に伝えられる。 If the side plate 33 is not used, the substrate 3 other than the reinforcing plate 13 is directly subjected to earth pressure, so that the substrate 3 may be damaged. However, since the reinforcing plate 13 receives the force from the side plate 33 by using the side plate 33, an excessive force is not applied to the substrate 3. Accordingly, the earth pressure is reliably transmitted to the reinforcing plate 13.
 また、図7の例では、深さDよりも深い位置にのみ補強板13を設けたが、Dよりも上方、さらには貯留部全体に補強板13を設けても良い。しかし、補強板13の使用量が増えるため、必要な部位(所定深さよりも深い位置)にのみ用いることが望ましい。 In the example of FIG. 7, the reinforcing plate 13 is provided only at a position deeper than the depth D. However, the reinforcing plate 13 may be provided above D and further in the entire storage portion. However, since the usage amount of the reinforcing plate 13 increases, it is desirable to use it only at a necessary portion (a position deeper than a predetermined depth).
 図8(a)は、図7のE部の断面図である。図7に示すように、上下方向に組み上げられた骨格ブロック1の内部には、必要に応じて棒状部材であるパイプ41が設けられる。パイプ41は、骨格ブロック1の水平方向のずれを防止するためのものである。 FIG. 8A is a cross-sectional view of a portion E in FIG. As shown in FIG. 7, a pipe 41 that is a rod-shaped member is provided inside the skeleton block 1 assembled in the vertical direction as needed. The pipe 41 is for preventing the horizontal displacement of the skeleton block 1.
 前述の通り、骨格ブロック1を上下方向に組み上げると、孔9および孔15が上下方向に連通する。この連通した孔(孔9および孔15)にパイプ41を挿入する。パイプ41は、孔への挿入性に問題がない限り孔との遊びが小さい(すなわち孔よりもわずかに小さい外径)であることが望ましい。 As described above, when the skeleton block 1 is assembled in the vertical direction, the holes 9 and 15 communicate with each other in the vertical direction. The pipe 41 is inserted into the communicating holes (hole 9 and hole 15). The pipe 41 desirably has a small play with the hole (that is, an outer diameter slightly smaller than the hole) as long as there is no problem in the insertion property into the hole.
 パイプ41としては、樹脂製、金属製等が使用でき、必要に応じて複数のパイプを継ぎ足して一本のパイプ41を形成しても良いが、貯留槽内部に構造体として組み込んだ骨格ブロックの荷重をパイプ全長で受けるのが望ましいことから、パイプは接続個所がない1本のパイプを用いることが望ましい。また、パイプ41を全ての孔9等に挿入する必要はなく、一部の孔9等に挿入しても良い。 As the pipe 41, resin, metal, or the like can be used. If necessary, a plurality of pipes may be added to form a single pipe 41. However, a skeleton block incorporated as a structure inside the storage tank may be used. Since it is desirable to receive the load with the entire length of the pipe, it is desirable to use a single pipe having no connection point. Moreover, it is not necessary to insert the pipe 41 into all the holes 9 or the like, and it may be inserted into some of the holes 9 or the like.
 図8(b)、図8(c)は、棒状部材支持部27a、27bと棒状部材との関係を示す図である。棒状部材支持部27a、27bにより縮径される孔9の先端部の内径は、パイプ41の外径とほぼ等しいかもしくはわずかに大きい。このため、棒状部材支持部27a、27bの内周面がパイプ41外周面と接触してパイプ41を支持する。したがって、パイプ41に対して骨格ブロック1がずれることがなく、また、パイプ41から受ける水平方向の力に対して、支柱5先端部に十分な強度を付与することができる。 8 (b) and 8 (c) are diagrams showing the relationship between the rod-shaped member support portions 27a and 27b and the rod-shaped member. The inner diameter of the tip end portion of the hole 9 reduced in diameter by the rod-like member support portions 27a and 27b is substantially equal to or slightly larger than the outer diameter of the pipe 41. For this reason, the inner peripheral surfaces of the rod-shaped member support portions 27a and 27b come into contact with the outer peripheral surface of the pipe 41 to support the pipe 41. Therefore, the skeleton block 1 is not displaced with respect to the pipe 41, and sufficient strength can be imparted to the distal end portion of the column 5 with respect to the horizontal force received from the pipe 41.
 棒状部材支持部27a、27bは、パイプ41を確実に支持できるように、パイプ41との接触面積を大きくとれるような形状である。たとえば棒状部材支持部27aは鉛直方向に折曲げられた形状であり、この鉛直部分によりパイプ41との接触範囲を確保する。また、棒状部材支持部27bは肉厚が他の部位と比較して厚く、このため鉛直方向の内面長が大きくなり、パイプ41との接触範囲を確保することができる。このように、パイプ41は棒状部材支持部27a、27bで支持され、また、補強板13の孔15の大きさがパイプ41の径と略同じであるか、孔15に棒状支持部27a、27bと同様の構成を設ければ、孔15によってもパイプ41を支持することができる。すなわち、骨格ブロックの単位構造の上下二か所でパイプ41を保持することができる。このため、棒状部材支持部27a、27bのみでパイプ41を支持する場合と比較して、パイプ41の支持ピッチを1/2とすることができる。 The rod-shaped member support portions 27a and 27b have a shape that allows a large contact area with the pipe 41 so that the pipe 41 can be reliably supported. For example, the bar-shaped member support portion 27a has a shape bent in the vertical direction, and a contact range with the pipe 41 is secured by the vertical portion. Further, the rod-shaped member support portion 27b is thicker than other portions, and therefore, the length of the inner surface in the vertical direction is increased, and the contact range with the pipe 41 can be ensured. Thus, the pipe 41 is supported by the rod-shaped member support portions 27a and 27b, and the size of the hole 15 of the reinforcing plate 13 is substantially the same as the diameter of the pipe 41, or the rod-shaped support portions 27a and 27b in the hole 15. If the same configuration is provided, the pipe 41 can also be supported by the hole 15. That is, the pipe 41 can be held at two places above and below the unit structure of the skeleton block. For this reason, compared with the case where the pipe 41 is supported only by the rod-shaped member support portions 27a and 27b, the support pitch of the pipe 41 can be halved.
 図9(a)は、水貯留施設30の平面図である。水貯留施設30には複数の骨格ブロック1が設けられる。貯留部31の周囲に設けられた側板33には、内方に向けて複数の内板34が設けられる。内板34は、側板33と略垂直に立設又は接合され、貯留部31内部の骨格ブロック1間に設置される。内板34は、側板33に外方より作用する土圧等に対して補強の効果を奏する。また、内板は、貯留槽の外周全体に所定間隔で設けるのが望ましいが、貯留槽の一部のみに設ける場合は、貯留槽のコーナ部から離れた直線部分に設けると効果的である。なお、内板34は、側板33から骨格ブロック1の1ピッチ分の長さとしたが、半ピッチ分としてもよく、長さは問わない。貯留部31の一部には、沈殿槽45が設けられる。沈殿槽45は流入口43からの水が流入する部位であり、流入口43を囲むように設けられる。沈殿槽45は周囲を仕切り壁47で囲まれる。沈殿槽45内部には、一部に切欠き51を有する骨格ブロック49が設けられる。すなわち、仕切り壁47の両側には仕切り壁47を挟むように、骨格ブロック1および骨格ブロック49が設けられる。 FIG. 9A is a plan view of the water storage facility 30. The water storage facility 30 is provided with a plurality of skeleton blocks 1. The side plate 33 provided around the storage unit 31 is provided with a plurality of inner plates 34 inward. The inner plate 34 is erected or joined substantially perpendicularly to the side plate 33 and is installed between the skeleton blocks 1 inside the storage portion 31. The inner plate 34 has a reinforcing effect against earth pressure or the like acting on the side plate 33 from the outside. In addition, it is desirable that the inner plate is provided at a predetermined interval on the entire outer periphery of the storage tank. However, when the inner plate is provided only in a part of the storage tank, it is effective to provide the inner plate in a straight portion away from the corner portion of the storage tank. The inner plate 34 has a length corresponding to one pitch of the skeleton block 1 from the side plate 33, but may be a half pitch, and the length is not limited. A precipitation tank 45 is provided in a part of the storage unit 31. The settling tank 45 is a portion into which water from the inflow port 43 flows, and is provided so as to surround the inflow port 43. The sedimentation tank 45 is surrounded by a partition wall 47. Inside the sedimentation tank 45, a skeleton block 49 having a notch 51 in part is provided. That is, the skeleton block 1 and the skeleton block 49 are provided on both sides of the partition wall 47 so as to sandwich the partition wall 47.
 骨格ブロック49は、骨格ブロック1と略同様の構造であるが、例えば4隅の一か所が円弧上に切欠かれた形状である。この場合、4つの骨格ブロック49を組み合わせることで、円状の作業孔が形成される。なお、図示を省略するが、補強板13も同様に切欠き51を有する。すなわち、沈殿槽45内の骨格ブロック49および補強板13は一部が切欠かれており、複数の骨格ブロック49または補強板13同士を水平方向に隣接させることで、鉛直方向に貫通する作業孔35が形成される。 The skeleton block 49 has substantially the same structure as the skeleton block 1, but has a shape in which, for example, one of four corners is cut out on an arc. In this case, a circular work hole is formed by combining the four skeleton blocks 49. In addition, although illustration is abbreviate | omitted, the reinforcement board 13 also has the notch 51 similarly. That is, a part of the skeleton block 49 and the reinforcing plate 13 in the sedimentation tank 45 is notched, and the work hole 35 penetrating in the vertical direction is formed by adjoining the plurality of skeleton blocks 49 or the reinforcing plates 13 in the horizontal direction. Is formed.
 沈殿槽45は、流入口43からの水を沈殿槽45内で滞留させて、水に含まれる土砂等の異物を沈殿させる。仕切り壁47の所定高さ以上には、通水孔が設けられており、沈殿槽45内の水位がそれ以上になった時に、沈殿槽45から貯留部31に水が流入する。沈殿槽45内に堆積する土砂等は、作業孔35によって確認・排除することができる。なお、骨格ブロック49、補強板13の切欠き51の形状は、図9(a)に示した例に限られない。水平方向に複数の骨格ブロック等を隣接させた際に、隣接する骨格ブロックの切欠き51同士を合わせることで、所定の形状の穴が形成されればいずれの形状でも良い。たとえば、図9(b)は、図9(a)のF部を示すが、図9(b)に示すように、切欠き51’を角形として、L型の骨格ブロック49’を用いてもよい。この場合、作業孔35は矩形断面形状となる。また、作業孔35が形成されるように、沈殿槽45内の骨格ブロックを一体で形成してもよい。たとえば、図9(b)において、骨格ブロック49’4個を一体で形成してもよい。 The sedimentation tank 45 causes the water from the inlet 43 to stay in the sedimentation tank 45 to precipitate foreign matters such as earth and sand contained in the water. A water passage hole is provided above the predetermined height of the partition wall 47, and water flows from the settling tank 45 into the storage unit 31 when the water level in the settling tank 45 becomes higher than that. The earth and sand accumulated in the sedimentation tank 45 can be confirmed and removed by the work hole 35. Note that the shapes of the skeleton block 49 and the cutout 51 of the reinforcing plate 13 are not limited to the example illustrated in FIG. When a plurality of skeleton blocks are adjacent to each other in the horizontal direction, any shape may be used as long as the holes 51 of a predetermined shape are formed by aligning the notches 51 of the adjacent skeleton blocks. For example, FIG. 9 (b) shows the F portion of FIG. 9 (a). However, as shown in FIG. 9 (b), the L-shaped skeleton block 49 ′ may be used with the notch 51 ′ as a square. Good. In this case, the work hole 35 has a rectangular cross-sectional shape. Further, the skeleton block in the settling tank 45 may be integrally formed so that the work hole 35 is formed. For example, in FIG. 9B, four skeleton blocks 49'4 may be integrally formed.
 また、沈殿槽45および貯留部31に設けられる骨格ブロック1、49は、全て同一のサイズである。したがって、水貯留施設30内部の一部に応力が集中することがない。 The skeleton blocks 1 and 49 provided in the settling tank 45 and the storage unit 31 are all the same size. Therefore, stress does not concentrate on a part of the inside of the water storage facility 30.
 また、本発明の対象となる水貯留施設30の態様は、図7、図9に示した例に限られず、形状や大きさや構成が種々のものに対して適用することができる。水平方向に土圧が生じる地下に貯留部が設けられ、内部に骨格ブロックが複数配置される水貯留施設であれば、その構成は限定されず、いずれの水貯留施設に対しても、本発明は適用可能である。 Moreover, the aspect of the water storage facility 30 that is the subject of the present invention is not limited to the examples shown in FIGS. 7 and 9, and can be applied to various shapes, sizes, and configurations. The structure is not limited as long as it is a water storage facility in which a storage part is provided in the basement where earth pressure is generated in the horizontal direction and a plurality of skeleton blocks are arranged inside, and the present invention is applicable to any water storage facility. Is applicable.
 例えば、透水シート39に代えて、遮水シートを設けることもできる。遮水シートは、例えば加硫ゴム系や塩化ビニル系、熱可塑性樹脂等が用いられる。遮水シートで貯留部全体を覆い、遮水シート同士を水密に熱融着等で接合することで、貯水型の貯留槽として使用することもできる。この場合、例えば、内部の水をくみ上げるポンプ等を別途設ければよい。 For example, instead of the water permeable sheet 39, a water shielding sheet may be provided. As the water shielding sheet, for example, vulcanized rubber, vinyl chloride, thermoplastic resin or the like is used. The whole storage part is covered with a water-impervious sheet, and the water-impervious sheets can be joined together in a water-tight manner by heat fusion or the like, so that it can be used as a water storage tank. In this case, for example, a pump or the like that pumps up internal water may be provided separately.
 各骨格ブロック等の形状や組み上げ方法による水平方向への載荷試験を行った。図10は載荷装置70を示す図である。載荷装置70は、主に、載荷フレーム71、平行保持装置72、ジャッキ73等から構成される。 A horizontal loading test was performed using the shape of each skeletal block and the assembly method. FIG. 10 is a view showing the loading device 70. The loading device 70 mainly includes a loading frame 71, a parallel holding device 72, a jack 73, and the like.
 骨格ブロック等を組上げて形成される供試体77は鉛直方向に6段、水平方向に2列x4列に配置した。供試体77上にはおもり74を載せ、おもり74はおもり固定治具75で固定した。この状態でジャッキにて水平方向の載荷を行った。ジャッキ73先端には荷重計76を設けた。門型の載荷フレーム71とおもり固定治具75とは平行保持装置72で接続されており、おもり74は常に水平になるように保った。 Specimens 77 formed by assembling skeleton blocks and the like were arranged in 6 rows in the vertical direction and 2 rows x 4 rows in the horizontal direction. A weight 74 was placed on the specimen 77, and the weight 74 was fixed with a weight fixing jig 75. In this state, horizontal loading was performed with a jack. A load meter 76 is provided at the tip of the jack 73. The gate-type loading frame 71 and the weight fixing jig 75 are connected by a parallel holding device 72, and the weight 74 is always kept horizontal.
 試験に供した供試体77は、図11に示した骨格ブロック60、図14に示した骨格ブロック80および図1に示した骨格ブロック1をそれぞれ組み上げたものを用いた。骨格ブロック1、60、80は、板サイズを720mmx720mm、支柱高さを390mmとした。また、骨格ブロックはすべてポリプロピレン樹脂製のものを用いた。おもり74は160kNとした。 As the specimen 77 used for the test, the skeleton block 60 shown in FIG. 11, the skeleton block 80 shown in FIG. 14, and the skeleton block 1 shown in FIG. 1 were assembled. The skeleton blocks 1, 60, 80 had a plate size of 720 mm × 720 mm and a column height of 390 mm. The skeleton blocks were all made of polypropylene resin. The weight 74 was 160 kN.
 ジャッキ73によりおもり74に水平方向の力を加え、供試体77毎の変位と荷重を調査した。最大荷重を基準として、各供試体の強度(せん断荷重)および最大荷重時の変位(せん断ひずみ)を調査した。供試体77の試験条件および結果を表1に示す。 The horizontal force was applied to the weight 74 with the jack 73, and the displacement and load for each specimen 77 were investigated. Based on the maximum load, the strength (shear load) of each specimen and the displacement (shear strain) at the maximum load were investigated. Table 1 shows the test conditions and results of the specimen 77.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 骨格ブロックの形態は、図1、図11、図14の通りである。組み上げ方は、支柱の先端同士を当接させるもの(図12、図15)を「支柱/支柱」とし、支柱先端を基板と当接させるもの(図2)を「支柱/基板」とした。積み上げ方向は、下段の骨格ブロックの上に上段の骨格ブロックを1対1でまっすぐに積み上げる場合(図2、図12、図15)を「鉛直方向」とし、複数の下段の骨格ブロックにまたがるように配置したもの(図4)を「千鳥状」とした。補強部材および棒状部材は設置の有無を示した。荷重評価は、供試体No.3の強度を1とした場合の相対的な評価とした。 The form of the skeleton block is as shown in FIGS. As for the assembly method, the column (FIG. 12, FIG. 15) that abuts the tips of the columns is called “post / column” and the column (FIG. 2) that abuts the column ends (FIG. 2) is “column / substrate”. The stacking direction is defined as “vertical direction” when the upper skeleton block is stacked straight on the lower skeleton block in a one-to-one relationship (FIGS. 2, 12, and 15), and spans a plurality of lower skeleton blocks. The one arranged in FIG. 4 (FIG. 4) was designated as “staggered”. The reinforcing member and the rod-shaped member indicated the presence or absence of installation. The load evaluation was performed using specimen No. The relative evaluation when the strength of 3 was 1 was used.
 なお、補強板サイズは骨格ブロックサイズと同様のものを用い、空隙率66%程度のものを用いた。補強板は、全ての基板間に設置した。補強板としてはポリプロピレン樹脂製のものを用いた。棒状部材は75φの塩ビ管を用いた。支柱の数の25%程度に棒状部材を挿入した。 The reinforcing plate size was the same as the skeleton block size, and the porosity was about 66%. The reinforcing plate was installed between all the substrates. A reinforcing plate made of polypropylene resin was used. The rod-shaped member was a 75φ PVC pipe. A rod-shaped member was inserted into about 25% of the number of columns.
 結果より明らかなように、本発明の骨格ブロック1を用いた供試体No.3は、支柱/基板接合であるため、供試体No.1、2のような支柱同士を当接させる方法と比べて高い強度を有することが分かる。 As is clear from the results, the test specimen No. using the skeleton block 1 of the present invention was used. 3 is a support / substrate joint, It turns out that it has high intensity | strength compared with the method of making the support | pillars like 1 and 2 contact | abut.
 また、供試体No.4から明らかなように、千鳥状に配置することで、この強度はさらに高くなる。また、供試体No.5、6から明らかなように、補強部材および棒状部材を設けることで、強度はさらに強くなり、水平方向の力に対してより高いせん断荷重を有し、埋め戻し時や地震時における貯留施設の破損等を防止できることが分かる。 Specimen No. As is clear from FIG. 4, this strength is further increased by arranging them in a zigzag pattern. Specimen No. As is clear from Figs. 5 and 6, by providing reinforcing members and rod-shaped members, the strength is further increased, the shear force is higher than the horizontal force, It can be seen that damage and the like can be prevented.
 以上説明したように、本実施形態の水貯留施設によれば、特別な強度を有する骨格ブロックを用いなくても、従来と比較して深い貯留施設を得ることができる。特に、骨格ブロック1が上下方向に反転させて積み上げられ、少なくとも所定深さより深い位置の骨格ブロック1の互いに向かい合う基板3同士の間には、補強部材13が設けられるため、水平方向の土圧に対して補強板13が力を受けることができる。 As described above, according to the water storage facility of the present embodiment, a deep storage facility can be obtained as compared with the conventional case without using a skeleton block having a special strength. In particular, since the skeleton blocks 1 are vertically reversed and stacked, and reinforcing members 13 are provided between the substrates 3 facing each other at least at a position deeper than a predetermined depth, horizontal earth pressure is reduced. On the other hand, the reinforcing plate 13 can receive a force.
 また、貯留部31側面には側板33が設けられるため、確実に補強板13が側板33にかかる土圧を受けることができ、このため、基板3に過剰な水平方向の力が加わらず基板3が破損することがない。したがって、複数種類の骨格ブロックの使用や、過剰な強度の骨格ブロックを使用する必要がない。 Further, since the side plate 33 is provided on the side surface of the storage portion 31, the reinforcing plate 13 can surely receive the earth pressure applied to the side plate 33, so that an excessive horizontal force is not applied to the substrate 3. Will not be damaged. Therefore, it is not necessary to use a plurality of types of skeleton blocks or skeleton blocks having excessive strength.
 また、上下に反転させて積み上げた骨格ブロック1それぞれの支柱5と支柱の嵌合孔7とを嵌合させることができる。このため、骨格ブロック1の水平方向のずれが抑えられる。また、支柱先端同士を当接させて積み上げる場合と比較して、積み上げられた状態の骨格ブロック1の基板3同士の鉛直方向の間隔を狭くすることができる。このため、鉛直方向所定範囲の土圧を受ける部位(基板部)のピッチが小さくなるため、水平方向の力に対してより有効である。 Also, the support pillars 5 and the support holes 7 of the support pillars 1 that are stacked upside down can be fitted. For this reason, the horizontal shift of the skeleton block 1 is suppressed. Moreover, the vertical space | interval of the board | substrates 3 of the frame | skeleton block 1 of the piled-up state can be narrowed compared with the case where the support | pillar front-end | tips are contacted and piled up. For this reason, since the pitch of the site | part (board | substrate part) which receives the earth pressure of the vertical direction predetermined range becomes small, it is more effective with respect to the force of a horizontal direction.
 また、骨格ブロック1を千鳥状に配置すれば、水平方向に隣接する骨格ブロック1同士も連結されるため、より水平方向のずれに強く、また、組み立て作業が容易かつ崩れなどが生じにくく安全である。 Further, if the skeleton blocks 1 are arranged in a staggered manner, the skeleton blocks 1 adjacent in the horizontal direction are also connected to each other, so that the skeleton blocks 1 are more resistant to displacement in the horizontal direction, are easy to assemble and are less likely to collapse. is there.
 また、基板の嵌合突起19、基板の嵌合孔21等によって基板同士、基板と補強板とが確実に接合され、水平方向の力でずれることがない。 Also, the substrates, the substrate and the reinforcing plate are securely bonded to each other by the substrate fitting protrusions 19, the substrate fitting holes 21, and the like, so that they are not displaced by a horizontal force.
 また、骨格ブロック1を貫通するパイプ41を設けることで、骨格ブロック1同士が鉛直方向にそろい、水平方向にずれることがない。このため、水平方向の力等に対しても、骨格ブロック1が水平方向にずれることがなく、これに伴う強度低下等の恐れがない。さらに、骨格ブロック1の支柱5内面に棒状部材支持部27a、27bを設けることで、パイプ41を確実に保持し、骨格ブロック1等の横ずれや回転を防止することができる。 Further, by providing the pipe 41 penetrating the skeleton block 1, the skeleton blocks 1 are aligned in the vertical direction and do not shift in the horizontal direction. For this reason, the skeleton block 1 is not displaced in the horizontal direction even with respect to a horizontal force or the like, and there is no fear of a decrease in strength associated therewith. Furthermore, by providing the rod-shaped member support portions 27a and 27b on the inner surface of the column 5 of the skeleton block 1, the pipe 41 can be securely held, and the lateral displacement and rotation of the skeleton block 1 and the like can be prevented.
 また、補強板13は所定深さ以上の深さのみ配置すればよいため、土圧が骨格ブロック1の水平方向耐荷重以下の浅い部分では、補強板13は不要である。このため、施工性にすぐれ、不要な部材を使用する必要がない。 Further, since the reinforcing plate 13 only needs to be disposed at a depth equal to or greater than a predetermined depth, the reinforcing plate 13 is unnecessary in a shallow portion where the earth pressure is equal to or less than the horizontal load resistance of the skeleton block 1. For this reason, it is excellent in workability and it is not necessary to use an unnecessary member.
 また、補強板13の比重が水よりも大きければ、内部に水が貯留された際の骨格ブロックの浮力に対しての錘としての役割を果たすことができる。 Further, if the specific gravity of the reinforcing plate 13 is larger than that of water, it can serve as a weight against the buoyancy of the skeleton block when water is stored inside.
 また、沈殿槽45が設けられるため、貯留部31内への土砂等の流入を防ぐことができ、沈殿槽45の内外に同一サイズの骨格ブロック1、49を設けることで、確実に仕切り壁を保持することができる。たとえば、沈殿槽45内と貯留部31内との水位差が大きくなった場合にも、仕切り壁は骨格ブロックで両側から保持されているため、倒れることがない。また、仕切り壁によって、沈殿槽45内外の骨格ブロックの水平方向のずれを防止することができる、沈殿槽45の強度が向上する。また、沈殿槽45内にも他の部位と同様に、必要部位に補強板13が設けられる。このため、沈殿槽45が土圧によって崩壊することがない。 Moreover, since the sedimentation tank 45 is provided, the inflow of earth and sand etc. into the storage part 31 can be prevented, and by providing the same size skeleton blocks 1 and 49 inside and outside the sedimentation tank 45, the partition wall can be surely provided. Can be held. For example, even when the water level difference between the settling tank 45 and the storage unit 31 becomes large, the partition wall is held by the skeleton block from both sides, so that it does not fall down. Moreover, the strength of the sedimentation tank 45 that can prevent the horizontal displacement of the skeleton blocks inside and outside the sedimentation tank 45 is improved by the partition wall. In addition, the reinforcing plate 13 is provided in a necessary portion in the sedimentation tank 45 as well as other portions. For this reason, the sedimentation tank 45 does not collapse due to earth pressure.
 また、骨格ブロック49および補強板13には同一の形状の切欠き51が設けられるため、沈殿槽45の強度を保ちつつ、作業孔35を形成することができる。作業孔35が複数の水平方向に隣接する骨格ブロック(および補強板)の切欠き51を合わせることで形成するため、作業孔35の形成が容易であり、また、土圧等で崩壊することもない。 Moreover, since the cutout 51 having the same shape is provided in the skeleton block 49 and the reinforcing plate 13, the work hole 35 can be formed while maintaining the strength of the settling tank 45. Since the work hole 35 is formed by combining the notches 51 of a plurality of skeleton blocks (and reinforcing plates) adjacent in the horizontal direction, the work hole 35 can be easily formed and can be collapsed by earth pressure or the like. Absent.
 以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The embodiment of the present invention has been described above with reference to the accompanying drawings, but the technical scope of the present invention is not affected by the above-described embodiment. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.
1、49………骨格ブロック
3………基板
5………支柱
7………支柱の嵌合孔
9、65………孔
11、67………孔
13………補強板
15………孔
19、23………基板の嵌合突起
21、22、25、26………基板の嵌合孔
27a、27b………棒状部材支持部
30………水貯留施設
31………貯留部
33………側板
34………内板
35………作業孔
36………天板
37………被覆層
39………透水シート
40………上蓋
41………パイプ
43………流入口
45………沈殿層
47………仕切り壁
51………切欠き
65………雨水貯留槽
60、80………骨格ブロック
61、81………基板
63、83………支柱
85………孔
87………孔
89………凹部
91………凸部
1, 49... Skeletal block 3... Substrate 5... Column 7... Column fitting holes 9 and 65... Holes 11 and 67. ... Holes 19 and 23... Board fitting protrusions 21, 22, 25 and 26... Board fitting holes 27 a and 27 b... Portion 33 ......... Side plate 34 ......... Inner plate 35 ......... Work hole 36 ......... Top plate 37 ......... Coating layer 39 ......... Water-permeable sheet 40 ......... Top cover 41 ......... Pipe 43 ......... Inlet 45... Precipitation layer 47. ......... Hole 87 ...... Hole 89 ......... Recess 91 ......... Protrusion

Claims (9)

  1.  地下に設けられ、水を貯留する水貯留施設であって、
     地面に掘り下げられた貯水部と、
     前記貯水部内に複数配置された骨格ブロックと、
     前記骨格ブロックに取り付けられる板状部材である補強部材と、
     前記貯水部側面に設けられる側板と、
     前記貯水部上部の天板を覆う被覆層と、
     を具備し、
     前記骨格ブロックは、通水孔を有する平板状の基板と、前記基板の一方の面に立設された支柱と、前記基板に設けられた嵌合孔とを有し、
     前記貯水部内に、前記骨格ブロックが、水平方向に複数連続して併設され、さらに鉛直方向には上下方向を互いに反転させて積み上げられ、前記支柱が下方に向けられた上段の骨格ブロックの前記支柱および前記嵌合孔が、前記支柱が上方に向けられた下段の前記骨格ブロックの前記嵌合孔および前記支柱とそれぞれ嵌合し、
     前記補強部材は、鉛直方向に組み上げられた前記骨格ブロックの、少なくとも一部の互いに向かい合う前記基板同士の間に配置され、前記補強部材と前記基板とが嵌合する嵌合構造を有することを特徴とする水貯留施設。
    A water storage facility that is installed underground and stores water,
    A water reservoir dug into the ground,
    A plurality of skeleton blocks arranged in the water reservoir,
    A reinforcing member that is a plate-like member attached to the skeleton block;
    A side plate provided on a side surface of the water reservoir,
    A coating layer covering the top plate of the upper part of the water reservoir,
    Comprising
    The skeleton block has a flat plate-like substrate having a water passage hole, a support column erected on one surface of the substrate, and a fitting hole provided in the substrate,
    In the water storage section, a plurality of the skeletal blocks are provided side by side in the horizontal direction, and the vertical vertices are stacked upside down in the vertical direction. And the fitting hole is respectively fitted to the fitting hole and the column of the lower skeleton block in which the column is directed upward,
    The reinforcing member is disposed between at least a part of the substrates facing each other of the skeleton block assembled in the vertical direction, and has a fitting structure in which the reinforcing member and the substrate are fitted. Water storage facility.
  2.  前記基板上には、前記基板の対角線上に設けられた2か所の前記支柱と、前記支柱が設けられない部位の対角線上に設けられた2か所の前記嵌合孔とが設けられ、
     少なくとも一部の骨格ブロックの組み上げ構造が、前記支柱が上方に向けられて配置される下段の前記骨格ブロックが併設されており、前記支柱が下方に向けられて配置される上段の前記骨格ブロックが、下段の前記骨格ブロックに対して、水平方向に縦横それぞれ半ピッチずつずれて配置され、上段の前記骨格ブロックは隣接する4個の下段の骨格ブロックにまたがるように配置され、上段の前記骨格ブロックの前記支柱および前記嵌合孔が、下段の前記骨格ブロックの前記嵌合孔および前記支柱とそれぞれ嵌合して組み上げられることを特徴とする請求項1記載の水貯留施設。
    On the substrate, two pillars provided on the diagonal line of the substrate, and two fitting holes provided on a diagonal line of the part where the pillar is not provided, are provided.
    The assembled structure of at least a part of the skeleton block is provided with the lower skeleton block in which the support column is directed upward, and the upper skeleton block in which the support column is disposed downward is provided. The upper skeleton block is arranged so as to be shifted by a half pitch vertically and horizontally with respect to the lower skeleton block, and the upper skeleton block is arranged so as to straddle four adjacent lower skeleton blocks. The water storage facility according to claim 1, wherein the support column and the fitting hole are assembled by being fitted to the fitting hole and the support column of the lower skeleton block, respectively.
  3.  前記基板の前記支柱が立設される側とは反対側の面には、第1の嵌合突起および第1の嵌合穴が設けられ、
     前記補強部材の一方の面には、前記補強部材の一方の面側に接触する前記基板の前記第1の嵌合突起に対応する第2の嵌合穴が設けられ、
     前記補強部材の他方の面には、前記補強部材の他方の面側に接触する前記基板の前記第1の嵌合穴に対応する第2の嵌合突起が設けられ、
     前記嵌合構造は、前記第1の嵌合突起と前記第2の嵌合穴との嵌合および前記第1の嵌合穴と前記第2の嵌合突起との嵌合であり、
     前記基板同士の接合部では、重ねられた上下の前記基板それぞれの第1の嵌合突起および第1の嵌合穴が互いに嵌合し合い、前記補強部材同士の接合部では、重ねられた上下の前記補強部材それぞれの第2の嵌合突起および第2の嵌合穴が互いに嵌合し合うことを特徴とする請求項1または請求項2に記載の水貯留施設。
    A first fitting protrusion and a first fitting hole are provided on the surface of the substrate opposite to the side where the column is erected,
    On one surface of the reinforcing member, a second fitting hole corresponding to the first fitting protrusion of the substrate contacting the one surface side of the reinforcing member is provided,
    A second fitting protrusion corresponding to the first fitting hole of the substrate contacting the other surface of the reinforcing member is provided on the other surface of the reinforcing member,
    The fitting structure is a fitting between the first fitting protrusion and the second fitting hole, and a fitting between the first fitting hole and the second fitting protrusion,
    In the joint portion between the substrates, the first fitting protrusion and the first fitting hole of each of the upper and lower stacked substrates are fitted to each other, and in the joint portion between the reinforcing members, the upper and lower portions are stacked. The water storage facility according to claim 1, wherein the second fitting protrusion and the second fitting hole of each of the reinforcing members are fitted to each other.
  4.  鉛直方向に積み上げられた前記骨格ブロックのそれぞれの支柱が、直接または、前記基板および/または前記補強部材を介して鉛直方向に配列され、鉛直方向に配列された前記支柱と補強部材とを貫通するように、棒状部材が更に設けられ、前記支柱の先端部内面には棒状部材支持部が設けられ、前記棒状部材は前記棒状部材支持部によって保持され、
     前記補強部材の前記棒状部材が貫通する部位には、前記棒状部材を支持する支持部が形成され、前記棒状部材は、少なくとも前記補強部材の鉛直方向の設置間隔ごとに前記補強部材によって支持されることを特徴とする請求項1または請求項2記載の水貯留施設。
    Each support of the skeleton block stacked in the vertical direction is arranged in the vertical direction directly or via the substrate and / or the reinforcing member, and penetrates the supporting column and the reinforcing member arranged in the vertical direction. As described above, a rod-shaped member is further provided, and a rod-shaped member support portion is provided on the inner surface of the tip portion of the column, and the rod-shaped member is held by the rod-shaped member support portion,
    A support portion for supporting the rod-shaped member is formed at a portion of the reinforcing member through which the rod-shaped member passes, and the rod-shaped member is supported by the reinforcing member at least at every installation interval in the vertical direction of the reinforcing member. The water storage facility according to claim 1 or claim 2, characterized by that.
  5.  地下に設けられ、水を貯留する水貯留施設の施工方法であって、
     地面を掘削して貯水部を形成する工程(a)と、
     前記貯水部内に骨格ブロックおよび補強部材を配置する工程(b)と、
     前記骨格ブロックおよび前記補強部材を覆うように側壁および上部被覆部を設ける工程(c)と、
     を具備し、
     前記骨格ブロックは、通水孔を有する平板状の基板と、前記基板の一方の面に立設された支柱と、前記基板に設けられた嵌合孔とを有し、
     前記工程(b)は、下段の前記骨格ブロックを前記支柱を上方に向けて複数水平方向に併設し、下段の前記骨格ブロックの上方に、前記支柱を下方に向けた上段の前記骨格ブロックを下段の前記骨格ブロックに対して、水平方向に縦横それぞれ半ピッチずつずらして、上段の前記骨格ブロックが隣接する4個の下段の骨格ブロックにまたがるように配置し、上段の前記骨格ブロックの前記支柱および前記嵌合孔が、下段の前記骨格ブロックの前記嵌合孔および前記支柱とそれぞれ嵌合させ、上段の前記骨格ブロックの前記基板上面に前記補強部材を固定させる工程と、少なくとも一部の互いに向かい合う前記基板同士の間に前記補強部材を設置する工程とを含むことを特徴とする水貯留施設の施工方法。
    A construction method for a water storage facility that is installed underground and stores water,
    A step (a) of excavating the ground to form a water reservoir;
    A step (b) of disposing a skeleton block and a reinforcing member in the water reservoir;
    Providing a side wall and an upper covering portion so as to cover the skeleton block and the reinforcing member;
    Comprising
    The skeleton block has a flat plate-like substrate having a water passage hole, a support column erected on one surface of the substrate, and a fitting hole provided in the substrate,
    In the step (b), the lower skeleton block is provided in a plurality of horizontal directions with the support facing upward, and the upper skeleton block with the support facing downward is positioned above the lower skeleton block. The upper skeleton block is arranged so as to straddle the four lower skeleton blocks adjacent to each other by shifting by half a pitch in the horizontal direction with respect to each of the skeleton blocks. The step of fitting the fitting hole with the fitting hole and the column of the lower skeleton block, respectively, and fixing the reinforcing member to the upper surface of the substrate of the upper skeleton block, and at least a part of each other. And a step of installing the reinforcing member between the substrates.
  6.  地下に設けられ、水を貯留する水貯留施設の施工方法であって、
     地面を掘削して貯水部を形成する工程(a)と、
     前記貯水部内に骨格ブロックおよび補強部材を配置する工程(b)と、
     前記骨格ブロックおよび前記補強部材を覆うように側壁および上部被覆部を設ける工程(c)と、
     を具備し、
     前記骨格ブロックは、通水孔を有する平板状の基板と、前記基板の一方の面に立設された支柱と、前記基板に設けられた嵌合孔とを有し、
     前記工程(b)は、下段の前記骨格ブロックを前記支柱を上方に向けて複数水平方向に併設し、下段の前記骨格ブロックの上方に、前記支柱を下方に向けた上段の前記骨格ブロックを配置し、上段の前記骨格ブロックの前記支柱および前記嵌合孔が、下段の前記骨格ブロックの前記嵌合孔および前記支柱とそれぞれ嵌合させ、上段の前記骨格ブロックの前記基板上面に前記補強部材を固定させる工程と、少なくとも一部の互いに向かい合う前記基板同士の間に前記補強部材を設置する工程とを含むことを特徴とする水貯留施設の施工方法。
    A construction method for a water storage facility that is installed underground and stores water,
    A step (a) of excavating the ground to form a water reservoir;
    A step (b) of disposing a skeleton block and a reinforcing member in the water reservoir;
    Providing a side wall and an upper covering portion so as to cover the skeleton block and the reinforcing member;
    Comprising
    The skeleton block has a flat plate-like substrate having a water passage hole, a support column erected on one surface of the substrate, and a fitting hole provided in the substrate,
    In the step (b), the lower skeleton block is provided in a plurality of horizontal directions with the support facing upward, and the upper skeleton block with the support facing downward is disposed above the lower skeleton block. The struts and the fitting holes of the upper skeleton block are respectively fitted with the fitting holes and the struts of the lower skeleton block, and the reinforcing member is placed on the upper surface of the substrate of the upper skeleton block. A method for constructing a water storage facility, comprising a step of fixing and a step of installing the reinforcing member between at least some of the substrates facing each other.
  7.  前記工程(b)の後、前記骨格ブロックおよび前記補強部材を貫通する棒状部材を設ける工程を更に具備することを特徴とする請求項5または請求項6記載の水貯留施設の施工方法。 The method for constructing a water storage facility according to claim 5 or 6, further comprising a step of providing a rod-shaped member penetrating the skeleton block and the reinforcing member after the step (b).
  8.  水貯留施設の水平方向耐荷重向上方法であって、
     地面に掘り下げられた貯水部と、
     前記貯水部内に複数配置された骨格ブロックと、
     前記骨格ブロックに取り付けられる板状部材である補強部材と、
     前記貯水部側面に設けられる側板と、
     前記貯水部上面を覆う被覆部と、
     を具備し、
     前記骨格ブロックは、通水孔を有する平板状の基板と、前記基板の一方の面に立設され、前記基板の対角線上に設けられた2か所の支柱と、前記基板に設けられ、前記支柱が設けられない部位の対角線上に設けられた2か所の嵌合孔とを有し、
     前記貯水部内に、前記骨格ブロックが、水平方向縦横に複数連続して併設され、さらに鉛直方向には上下方向を互いに反転させて積み上げられ、
     前記支柱が上方に向けられて配置される下段の前記骨格ブロックが併設され、前記支柱が下方に向けられて配置される上段の前記骨格ブロックが、下段の前記骨格ブロックに対して、水平方向に縦横それぞれ半ピッチずつずれて配置され、上段の前記骨格ブロックは隣接する4個の下段の骨格ブロックにまたがるように配置され、上段の前記骨格ブロックの前記支柱および前記嵌合孔が、下段の前記骨格ブロックの前記嵌合孔および前記支柱とそれぞれ嵌合して組み上げられ
     前記補強部材は、鉛直方向に組み上げられた前記骨格ブロックの、少なくとも一部の互いに向かい合う前記基板同士の間に配置され、前記補強部材と前記基板とが嵌合する嵌合構造を有することを特徴とする水貯留施設の水平方向耐荷重向上方法。
    A method for improving the horizontal load capacity of a water storage facility,
    A water reservoir dug into the ground,
    A plurality of skeleton blocks arranged in the water reservoir,
    A reinforcing member that is a plate-like member attached to the skeleton block;
    A side plate provided on a side surface of the water reservoir,
    A covering portion covering the upper surface of the water storage portion;
    Comprising
    The skeleton block is provided on the substrate, a flat substrate having water passage holes, two pillars provided on one side of the substrate and provided on a diagonal line of the substrate, With two fitting holes provided on the diagonal of the part where the support is not provided,
    In the water storage section, a plurality of the skeletal blocks are provided side by side in the horizontal direction vertically and horizontally, and in the vertical direction, the vertical direction is reversed and stacked.
    The lower skeletal block in which the support column is directed upward is provided side by side, and the upper skeleton block in which the support column is disposed in the downward direction is in a horizontal direction with respect to the lower skeleton block. The upper and lower skeleton blocks are arranged so as to straddle the adjacent four lower skeleton blocks, and the struts and the fitting holes of the upper skeleton blocks are arranged in the lower berth. The reinforcing member is assembled by fitting with the fitting hole and the support column of the skeleton block, and the reinforcing member is disposed between at least some of the substrates facing each other of the skeleton block assembled in the vertical direction, A method for improving the horizontal load resistance of a water storage facility, comprising a fitting structure in which a reinforcing member and the substrate are fitted.
  9.  水貯留施設内の骨格ブロックの水平方向ずれ防止方法であって、
     地面に掘り下げられた貯水部と、
     前記貯水部内に複数配置された骨格ブロックと、
     前記骨格ブロックに取り付けられる板状部材である補強部材と、
     前記貯水部側面に設けられる側板と、
     前記貯水部上面を覆う被覆部と、
     を具備し、
     前記骨格ブロックは、通水孔を有する平板状の基板と、前記基板の一方の面に立設され、前記基板の対角線上に設けられた2か所の支柱と、前記基板に設けられ、前記支柱が設けられない部位の対角線上に設けられた2か所の嵌合孔とを有し、
     前記貯水部内に、前記骨格ブロックが、水平方向縦横に複数連続して併設され、さらに鉛直方向には上下方向を互いに反転させて積み上げられ、
     前記支柱が上方に向けられて配置される下段の前記骨格ブロックが併設され、前記支柱が下方に向けられて配置される上段の前記骨格ブロックが、下段の前記骨格ブロックに対して、水平方向に縦横それぞれ半ピッチずつずれて配置され、上段の前記骨格ブロックは隣接する4個の下段の骨格ブロックにまたがるように配置され、上段の前記骨格ブロックの前記支柱および前記嵌合孔が、下段の前記骨格ブロックの前記嵌合孔および前記支柱とそれぞれ嵌合して組み上げられ
     前記補強部材は、鉛直方向に組み上げられた前記骨格ブロックの、少なくとも一部の互いに向かい合う前記基板同士の間に配置され、前記補強部材と前記基板とが嵌合する嵌合構造を有し、
     鉛直方向に積み上げられた前記骨格ブロックのそれぞれの支柱が、直接または、前記基板および/または前記補強部材を介して鉛直方向に配列され、鉛直方向に配列された前記支柱と補強部材とを貫通するように、棒状部材が設けられることを特徴とする水貯留施設内の骨格ブロックの水平方向ずれ防止方法。
    A method for preventing horizontal displacement of a skeleton block in a water storage facility,
    A water reservoir dug into the ground,
    A plurality of skeleton blocks arranged in the water reservoir,
    A reinforcing member that is a plate-like member attached to the skeleton block;
    A side plate provided on a side surface of the water reservoir,
    A covering for covering the upper surface of the water reservoir;
    Comprising
    The skeletal block is provided on the substrate, a flat substrate having water passage holes, two pillars provided on one side of the substrate and provided on a diagonal line of the substrate, With two fitting holes provided on the diagonal of the part where the support is not provided,
    In the water storage section, a plurality of the skeleton blocks are provided side by side in the horizontal direction vertically and horizontally, and in the vertical direction, the vertical direction is reversed and stacked.
    The lower skeletal block in which the support column is directed upward is provided side by side, and the upper skeleton block in which the support column is disposed in the downward direction is in a horizontal direction with respect to the lower skeleton block. The upper and lower skeleton blocks are arranged so as to straddle the adjacent four lower skeleton blocks, and the struts and the fitting holes of the upper skeleton blocks are arranged in the lower berth. The reinforcing member is assembled by fitting with the fitting hole and the support column of the skeleton block, and the reinforcing member is disposed between at least some of the substrates facing each other of the skeleton block assembled in the vertical direction, Having a fitting structure in which the reinforcing member and the substrate are fitted;
    Each support of the skeleton block stacked in the vertical direction is arranged in the vertical direction directly or via the substrate and / or the reinforcing member, and penetrates the supporting column and the reinforcing member arranged in the vertical direction. As described above, the method for preventing horizontal displacement of the skeleton block in the water storage facility is provided with a bar-like member.
PCT/JP2009/066502 2009-07-08 2009-09-24 Water storage facility, method of constructing water storage facility, method of increasing load capacity of water storage facility against horizontal load acting thereon, and method of preventing horizontal displacement of framework block WO2011004508A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-161286 2009-07-08
JP2009161286A JP4444366B1 (en) 2009-07-08 2009-07-08 Water storage facility, water storage facility construction method, water storage facility horizontal load resistance improvement method, and skeleton block horizontal displacement prevention method

Publications (1)

Publication Number Publication Date
WO2011004508A1 true WO2011004508A1 (en) 2011-01-13

Family

ID=42211584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066502 WO2011004508A1 (en) 2009-07-08 2009-09-24 Water storage facility, method of constructing water storage facility, method of increasing load capacity of water storage facility against horizontal load acting thereon, and method of preventing horizontal displacement of framework block

Country Status (3)

Country Link
JP (1) JP4444366B1 (en)
KR (1) KR101121886B1 (en)
WO (1) WO2011004508A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010016295U1 (en) * 2010-12-07 2012-03-12 Rehau Ag + Co Structural body for a rigging system and rigging system
WO2013068541A1 (en) * 2011-11-09 2013-05-16 Fränkische Rohrwerke Gebr. Kirchner Gmbh & Co. Kg Drain unit and transport unit formed from such drain units
CN104294881A (en) * 2013-07-19 2015-01-21 北京泰宁科创雨水利用技术股份有限公司 Module components for building pool and pool built by applying module components
JP6017076B1 (en) * 2016-02-25 2016-10-26 リプロントーワ株式会社 Assembly method of skeleton block structure
KR101770268B1 (en) * 2016-10-21 2017-08-22 (주)더이앤씨 Detention unit block and reservoir water tank structure for infiltration and detention of rainwater, and construction method for the same
KR101859056B1 (en) * 2017-07-14 2018-05-17 더이앤씨 Detention unit block and reservoir water tank structure for infiltration and detention of rainwater, and construction method for the same
WO2018162530A3 (en) * 2017-03-09 2018-11-29 ACO Severin Ahlmann GmbH & Co Kommanditgesellschaft Trenching unit, trenching body and insert
NL2024531B1 (en) * 2019-12-20 2021-09-08 Wavin Bv A plastic infiltration unit
JP6974887B1 (en) * 2021-01-14 2021-12-01 城東リプロン株式会社 Method for manufacturing skeletal block structure, insertion block body, and method for manufacturing skeletal block structure
WO2023059710A1 (en) * 2021-10-07 2023-04-13 Advanced Drainage Systems, Inc. Stormwater management crate assembly with tapered columns

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129019A1 (en) * 2010-04-16 2011-10-20 株式会社 トーテツ Storage unit, storage tank using same, and storage osmotic tank
JP5946678B2 (en) * 2012-03-30 2016-07-06 株式会社Ihiインフラシステム Water storage space forming block
CN104417834B (en) * 2013-08-26 2017-02-15 苏州础润生态科技有限公司 Reservoir component device
KR101935100B1 (en) * 2016-09-01 2019-03-18 오복순 A reservoir water system and thereof installation method for groundwater inflowing into the reservoir
KR101866751B1 (en) * 2017-01-18 2018-06-18 주식회사 이도 Hybrid earth and sand control storage apparatus
US20200248442A1 (en) * 2019-02-06 2020-08-06 Tensho Electric Industries Co.,Ltd. Rainwater storage and infiltration facility
WO2021012016A1 (en) * 2019-07-25 2021-01-28 Southern Geosynthetics Supplies Pty Ltd Module for drainage and method of assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352080A (en) * 1999-06-11 2000-12-19 Shinichiro Hayashi Unit member
JP2007107267A (en) * 2005-10-13 2007-04-26 Furukawa Electric Co Ltd:The Skeleton block for water storage institution of rainwater etc. and water storage institution of rainwater etc. making use thereof
JP2007262822A (en) * 2006-03-29 2007-10-11 Furukawa Electric Co Ltd:The Skeleton block

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352080A (en) * 1999-06-11 2000-12-19 Shinichiro Hayashi Unit member
JP2007107267A (en) * 2005-10-13 2007-04-26 Furukawa Electric Co Ltd:The Skeleton block for water storage institution of rainwater etc. and water storage institution of rainwater etc. making use thereof
JP2007262822A (en) * 2006-03-29 2007-10-11 Furukawa Electric Co Ltd:The Skeleton block

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010016295U1 (en) * 2010-12-07 2012-03-12 Rehau Ag + Co Structural body for a rigging system and rigging system
WO2013068541A1 (en) * 2011-11-09 2013-05-16 Fränkische Rohrwerke Gebr. Kirchner Gmbh & Co. Kg Drain unit and transport unit formed from such drain units
US9506235B2 (en) 2011-11-09 2016-11-29 Fränkische Rohrwerke Gebr. Kirchner Gmbh & Co. Kg Drainage trench unit and transport unit formed from such drainage trench units
CN104294881A (en) * 2013-07-19 2015-01-21 北京泰宁科创雨水利用技术股份有限公司 Module components for building pool and pool built by applying module components
JP6017076B1 (en) * 2016-02-25 2016-10-26 リプロントーワ株式会社 Assembly method of skeleton block structure
KR101770268B1 (en) * 2016-10-21 2017-08-22 (주)더이앤씨 Detention unit block and reservoir water tank structure for infiltration and detention of rainwater, and construction method for the same
AU2018229753B2 (en) * 2017-03-09 2021-02-18 Aco Ahlmann Se & Co. Kg Trenching unit, trenching body and insert
WO2018162530A3 (en) * 2017-03-09 2018-11-29 ACO Severin Ahlmann GmbH & Co Kommanditgesellschaft Trenching unit, trenching body and insert
US10808391B2 (en) 2017-03-09 2020-10-20 ACO Severin Ahlmann GmbH & Co. Kommanditgesellschaft Trenching unit, trenching body and insert
KR101859056B1 (en) * 2017-07-14 2018-05-17 더이앤씨 Detention unit block and reservoir water tank structure for infiltration and detention of rainwater, and construction method for the same
NL2024531B1 (en) * 2019-12-20 2021-09-08 Wavin Bv A plastic infiltration unit
JP6974887B1 (en) * 2021-01-14 2021-12-01 城東リプロン株式会社 Method for manufacturing skeletal block structure, insertion block body, and method for manufacturing skeletal block structure
JP2022109013A (en) * 2021-01-14 2022-07-27 城東リプロン株式会社 Skeleton block structure, method of manufacturing insert block body, and method of manufacturing skeleton block structure
WO2023059710A1 (en) * 2021-10-07 2023-04-13 Advanced Drainage Systems, Inc. Stormwater management crate assembly with tapered columns

Also Published As

Publication number Publication date
JP2011017149A (en) 2011-01-27
KR101121886B1 (en) 2012-03-20
KR20110106226A (en) 2011-09-28
JP4444366B1 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP4444366B1 (en) Water storage facility, water storage facility construction method, water storage facility horizontal load resistance improvement method, and skeleton block horizontal displacement prevention method
KR101121820B1 (en) Skeleton block, assembling structure of skeleton blocks, method for improving skeleton block's creep resistance, and method for improving shear load resistance or inclined directional load resistance of assembling structure of skeleton blocks
KR100485742B1 (en) Water-storage tank
JP3208379B2 (en) Filling material for rainwater storage and infiltration facilities
JP2008231900A (en) Building
JP5065361B2 (en) Reinforcing member for rainwater storage facility and fitting structure of reinforcing member and skeleton block
KR100969552B1 (en) System for drain regulation underground water
JP4712640B2 (en) Resin skeleton block for rainwater storage facilities and rainwater storage facilities
KR100869764B1 (en) Earth of building land-side protection wall structure
KR101935100B1 (en) A reservoir water system and thereof installation method for groundwater inflowing into the reservoir
JP5832658B2 (en) Breakwater structure with rubble removed
JP3793434B2 (en) Rainwater storage facilities and infiltration facilities
JP2012158962A (en) Structure of inspection port in rainwater storage facility
JP3867960B2 (en) Sediment invasion prevention plate to be attached to storage for rainwater, etc. and filler for infiltration facilities
JP2007051536A (en) Storage facility for rainwater or the like
KR101388870B1 (en) Rainwater storaging facility and method for building the facility
JP5801599B2 (en) Building
JP5331062B2 (en) Skeleton block fitting structure
JP4800855B2 (en) Component for rainwater storage and penetration tank and rainwater storage and penetration tank
CN215211060U (en) Side slope foundation pit supporting structure
JP5067762B2 (en) Rainwater storage facilities and infiltration facilities
JP4041354B2 (en) Rainwater storage and infiltration tank filler
JP4118612B2 (en) Rainwater storage and infiltration tank filler
KR102571761B1 (en) Rainwater storage facility with improved structure
KR20090084568A (en) A wall engineering works construction concrete block structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20107005933

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847107

Country of ref document: EP

Kind code of ref document: A1