WO2011002025A1 - Capacitance sensor and manufacturing method thereof - Google Patents

Capacitance sensor and manufacturing method thereof Download PDF

Info

Publication number
WO2011002025A1
WO2011002025A1 PCT/JP2010/061154 JP2010061154W WO2011002025A1 WO 2011002025 A1 WO2011002025 A1 WO 2011002025A1 JP 2010061154 W JP2010061154 W JP 2010061154W WO 2011002025 A1 WO2011002025 A1 WO 2011002025A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
capacitance sensor
insulator
dielectric
support layer
Prior art date
Application number
PCT/JP2010/061154
Other languages
French (fr)
Japanese (ja)
Inventor
章司 山崎
博登 小松
佑輔 小林
Original Assignee
信越ポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社 filed Critical 信越ポリマー株式会社
Publication of WO2011002025A1 publication Critical patent/WO2011002025A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960755Constructional details of capacitive touch and proximity switches

Definitions

  • the present invention relates to a capacitance sensor used for operation of a mobile phone, an information device, a communication device, an automobile device, and the like, and a manufacturing method thereof.
  • Various input devices are adopted for mobile phones, information devices, acoustic devices, navigation devices, etc., depending on the characteristics and usage conditions of each device.
  • As the input device methods mechanical key top methods and static devices are used.
  • a highly accurate touch sensor method using a capacitance is known.
  • the key top type input device includes a contact printed on the surface of the circuit board and a key top that can be moved up and down to face the contact with a space therebetween. Conductive rubber is attached to and away from the contact points of the substrate. In such a key top type input device, the key top is pressed by the user, and the conductive rubber of the key top comes into contact with the contact of the circuit board, thereby realizing a predetermined function (Patent Document 1, Patent Document 1). 2 and 3).
  • touch sensor type input devices are capable of intuitive operation and multi-operation, and are mounted on, for example, acoustic equipment and navigation equipment of luxury automobiles (Patent Documents 4, 5, 6, 7). reference).
  • the exterior panel that is touch-operated from the outside and the molded body in which the electrode body is built face each other, and a plurality of dielectrics are interposed between the exterior panel and the molded body. It is comprised by doing.
  • the exterior panel and the molded body are not technically easy to form integrally, they are generally configured separately.
  • the exterior panel includes a resin panel that covers the molded body, and a plurality of operation patterns that are touch-operated with a finger are formed on the surface of the panel.
  • the molded body is provided with a plurality of electrode bodies corresponding to the positions and numbers of the plurality of operation patterns.
  • the dielectric is sandwiched between the plurality of operation patterns and the electrode body.
  • JP-A-8-222070 JP 2003-123581 A Japanese Patent Application Laid-Open No. 11-232951 JP 2010-33376 A JP 2010-26833 A JP 2010-49618 A JP 2009-276279 A
  • a touch sensor type input device may be provided with a device that feeds back with vibration or a click feeling so that the input can be confirmed accurately.
  • a feedback device if vibration or a click feeling is generated in the entire exterior panel and the molded body, a problem arises in terms of energy. Therefore, a method of feeding back only the exterior panel with vibration or a click feeling is employed. Even in such a feedback device, it is desired that the exterior panel and the molded body are configured separately, but a simple configuration may cause chatter noise.
  • the present invention has been made in view of the above, and can eliminate the possibility of failure and damage associated with long-term use, can suppress the expansion of the installation area, and can be inexpensive to increase the stain resistance against dirt such as dust. It is an object of the present invention to provide a simple electrostatic capacitance sensor and a manufacturing method thereof. It is another object of the present invention to provide a capacitance sensor that can simplify the configuration and reduce the number of parts, and can expect highly accurate detection.
  • the present invention includes a conductive electrode body and an insulator containing at least a part of the electrode body, and occurs when the conductor approaches the electrode body via the insulator. Detecting the change in capacitance, A three-dimensional electrode body made of a metal material can be electrically connected to an electronic circuit, and the insulator has a three-dimensional shape.
  • the insulator can be formed into a three-dimensional shape by a molding material containing a resin and can be a dielectric operation body that covers the electrode body. Further, a plurality of electrode bodies can be used, and a shield for high frequency cutoff can be combined between the plurality of electrode bodies.
  • the electrode body includes an elongated connection piece that is electrically connected to the electronic circuit, and an electrode piece that is formed on the elongated connection piece and faces the conductor via the dielectric operation body.
  • the electrode and the electrode piece are buried in the dielectric operation body, and the distance between the extended connection piece and the surface of the dielectric operation body where the conductor contacts is longer than the distance between the electrode piece and the surface of the dielectric operation body. You can also.
  • a cavity can be formed in the dielectric operation body.
  • an insulating exterior panel that is operated to come into contact with the insulator from the outside is opposed to form an operation pattern on at least the surface of the panel, and an insulating support layer is provided between the insulator and the panel of the exterior panel.
  • a first elastic body is formed on the surface of the support layer so as to come into contact with the panel of the exterior panel and oppose the operation pattern, and an exposed portion of the electrode body exposed from the insulator is formed on the back surface of the support layer. It is possible to form a second elastic body in contact with the through hole, and to provide a through-hole for integrating the first and second elastic bodies in the support layer.
  • a positioning portion in the insulator and provide a positioning hole in the support layer that fits in the positioning portion of the insulator. It is also possible to impart conductivity to the first and second elastic bodies, respectively.
  • a plurality of operation patterns of the exterior panel may be provided, and a plurality of electrode bodies and a plurality of first and second elastic bodies of the support layer may be provided according to the position and number of the plurality of operation patterns.
  • the first and second elastic bodies of the support layer may each be a dielectric.
  • the electrode body is processed into a three-dimensional shape with a metal material so that it can be electrically connected to an electronic circuit, the electrode body is inserted into a mold, and the mold is filled with a molding material containing a resin for an insulator.
  • the electrode body is integrally buried in the insulator.
  • the electrode body in the claims may be a single electrode or a plurality of electrode bodies, and may have flexibility and elasticity as long as no particular problem occurs.
  • the electrode body may be electrically connected directly to an electronic circuit, or may be indirectly connected via various conductive materials or conductive lines.
  • the molding material for the insulator and dielectric operation body is not particularly limited to transparent, opaque, and translucent.
  • the insulator is molded by an insert molding method, an extrusion molding method, an injection molding method, or the like, and is formed with unevenness, bending, or bending as necessary.
  • This insulator includes at least a molded body, an exterior panel, and the like.
  • a decoration layer for decoration can be provided on the surface of the dielectric operation body as necessary.
  • the exterior panel is formed with unevenness, bending, bending, and three-dimensional as required.
  • the operation pattern of the exterior panel is not particularly limited to one or more.
  • a bendable insulating film or sheet can be used.
  • the first and second elastic bodies are made of, for example, elastic rubber or gel. In the case of a dielectric, the first and second elastic bodies may have a shape corresponding to the shape of the operation pattern, or may have a different shape.
  • the capacitance sensor according to the present invention can be used for at least a mobile phone, an information device, a communication device, a home appliance, an acoustic device, a computer device, a game device, an automobile device, and the like.
  • the electrode body, the conductor, and the insulator form a capacitor to detect a change in the capacitance.
  • a predetermined function can be realized by using the sensor as an input device.
  • a touch sensor type capacitive sensor is used instead of a mechanical key top as an input device, it is possible to eliminate the risk of failure or damage associated with long-term use.
  • the extension connecting piece of the electrode body can be positioned away from the surface of the dielectric operation body inward, the conductor contacts the non-opposing portion of the surface of the dielectric operation body not facing the electrode body. However, it is rare to detect a change in capacitance due to an error.
  • the support layer when assembling a high-accuracy electrostatic capacitance sensor, the support layer is supported by the insulator, and the second elastic body of the support layer is brought into intimate contact with the exposed portion of the electrode body exposed from the insulator. If the insulating panel of the exterior panel is attached to the body and is in close contact with the first elastic body of the support layer, the capacitance sensor can be easily assembled.
  • the possibility of failure and damage associated with long-term use can be wiped out, the expansion of the installation area can be suppressed, and the contamination resistance against the contamination of the capacitance sensor can be improved, and the manufacturing cost can be reduced. There is an effect that it can be reduced. Further, the configuration of the capacitance sensor can be simplified and the number of parts can be reduced, and there is an effect that highly accurate detection of the conductor can be realized.
  • the insulator and the dielectric operation body can be integrated and used together, there is no need to stack a separate insulator on the electrode body, and the number of parts can be reduced. Can be achieved.
  • the electromagnetic wave in the high frequency band can be effectively absorbed or blocked by the shield, it is possible to prevent the capacitance sensor from malfunctioning due to the influence of the electromagnetic wave. Can do.
  • the electrostatic capacity based on the conductor and the elongated connection piece of the electrode body is different from the electrostatic capacity based on the conductor and the electrode piece of the electrode body, Sensor malfunction prevention can be expected.
  • the dielectric constant of the air in the cavity is lower than the dielectric constant of the dielectric operating body, it is possible to detect the change in the electrostatic capacity with higher accuracy without error. Become.
  • the first and second elastic bodies are respectively formed on the support layer, there is no need to individually interpose a plurality of dielectric bodies between the insulator and the exterior panel. . Therefore, simplification of the configuration of the capacitance sensor and reduction of the number of parts can be expected.
  • the first and second elastic bodies have elasticity that absorbs irregularities and is in close contact with the electrode body and the exterior panel, so even if the insulator or exterior panel is irregularly formed or bent, There are few occurrences of voids due to unevenness between the electrode body, the exterior panel, and the support layer. Therefore, a weak change in capacitance can be detected with high accuracy.
  • the first and second elastic bodies are made of a dielectric.
  • the change in capacitance can be captured with high accuracy.
  • a capacitance sensor includes a pair of left and right electrode bodies 1 having conductivity as shown in FIG. And a three-dimensional shape having a dielectric operating body 21 which is an insulating molded body 20 that uniformly covers the pair of electrode bodies 1, and the electrode body 1 is insulated from a finger as a conductor.
  • a dielectric operating body 21 which is an insulating molded body 20 that uniformly covers the pair of electrode bodies 1, and the electrode body 1 is insulated from a finger as a conductor.
  • the pair of electrode bodies 1 are bent into a three-dimensional shape by a predetermined metal material made of, for example, iron, gold, silver, copper, platinum, brass, aluminum, or an alloy thereof, and are close to each other at intervals.
  • the inner shield 10 for cutting off high frequency is selectively sandwiched through a slight gap, and is electrically connected to an electronic circuit (not shown) including a CPU and IC.
  • the surface of the pair of electrode bodies 1 is appropriately subjected to a plating process such as nickel plating or gold plating from the viewpoint of ensuring conductivity or preventing oxidation.
  • Each electrode body 1 is freely formed in a predetermined shape and size as required.
  • the electrode body 1 is bent and electrically connected to an electronic circuit.
  • the electrode piece 3 is formed integrally with the upper end portion which is the tip of the connection piece 2 and is opposed to the finger through the dielectric operation body 21, and a part of the extended connection piece 2 and the electrode piece 3 are made of the dielectric operation body. It is buried in 21.
  • the elongated connecting piece 2 and the electrode piece 3 of the electrode body 1 are separated from the surface 22 as the insulator 30 of the dielectric operation body 21 as far as possible inward (downward in FIG. 1), The piece 3 comes close along the surface 22 of the dielectric operating body 21.
  • the distance from the elongated connection piece 2 of the electrode body 1 to the surface 22 of the dielectric operation body 21 is made longer than the distance from the electrode piece 3 to the surface 22 of the dielectric operation body 21. This adjustment of the distance effectively prevents a situation in which a finger is erroneously detected due to a change in capacitance when the finger is brought into contact with the proximity of the elongated connecting piece 2 and the surface 22 of the dielectric operation body 21.
  • the extension connecting piece 2 is composed of a plate or the like that bends and extends in the vertical direction.
  • the inner shield 10 is adjacent to the vicinity of the bent portion, and the lower end portion is exposed to the outside from the back surface of the dielectric operation body 21 and is electrically connected to the electronic circuit.
  • the electrode piece 3 is a plate having a substantially semicircular cross section, is adjacent to the electrode piece 3 of the other electrode body 1 with a gap, and is slightly spaced from the curved surface 22 of the dielectric operation body 21. Close and close.
  • the inner shield 10 is formed in a U-shaped cross section by an electromagnetic wave absorbing composite material in which various soft magnetic powders are dispersed in a thermoplastic resin or a conductive mesh, for example, and is grounded while being covered on the back side of the dielectric operation body 21. Therefore, when a capacitance sensor is used, it effectively absorbs and cuts off electromagnetic waves in a high frequency band and functions to prevent malfunction of the capacitance sensor.
  • the dielectric operation body 21 is formed into a three-dimensional substantially cylindrical shape whose surface 22 is curved in a hemispherical shape by a molding material containing a resin such as polyamide, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyphenylene sulfide, polyethersulfone, or ABS. A part of the pair of electrode bodies 1 is integrally buried therein.
  • the surface 22 of the dielectric operation body 21 is selectively screen-printed or laminated with a decorative layer for decoration as necessary, and is in contact with a finger.
  • the pair of electrode bodies 1 are each bent into a three-dimensional shape with a predetermined metal material so that they can be electrically connected to an electronic circuit.
  • An inner shield 10 is sandwiched between the bodies 1.
  • the pair of electrode bodies 1, the inner surface shield 10, and the dielectric operation body 21 are integrally injection-molded, and a part of the pair of electrode bodies 1 and the inner surface shield 10 are integrally embedded in the dielectric operation body 21. .
  • a capacitance sensor is manufactured without an air layer interposed between the electrode body 1, the inner shield 10, or the dielectric operation body 21.
  • the molded electrostatic capacity sensor can be obtained by cooling the mold and opening the mold.
  • the manufactured capacitance sensor is incorporated as an input device in a casing of a mobile phone or an automobile device, and when the finger contacts or slides on the surface 22 of the dielectric operation body 21, the electrode piece 3 and the dielectric
  • the operating body 21 and the finger form a capacitor to detect a change in capacitance, thereby realizing a predetermined function such as a mobile phone or an automobile device.
  • the touch sensor type capacitance sensor having no movable part is used instead of the mechanical input device to be pressed, it is possible to eliminate the possibility of failure or damage associated with long-term use. .
  • the number of parts is small, the resistance to dirt such as dust is remarkably improved, and the manufacturing cost is reduced. Reduction can be achieved.
  • the electrode body 1 is preliminarily three-dimensionally processed into a desired shape with a metal material, and then molded for the dielectric operation body 21 around the electrode body 1. Since the material is injected, the elongated connecting piece 2 that does not break may be easily stretched, bent, tilted, etc., depending on the position of the electronic circuit. Become.
  • the elongated connecting piece 2 of the electrode body 1 is not positioned along the surface 22 of the dielectric operation body 21, but the inner direction or the back surface direction of the dielectric operation body 21 rather than the surface 22 of the dielectric operation body 21 or the electrode piece 3. Since it is difficult to detect the change in the capacitance away from each other, even if the finger contacts the non-opposing portion of the surface 22 of the dielectric operation body 21 that does not face the electrode piece 3, the change in the capacitance Is not detected by mistake.
  • FIG. 2 shows a second embodiment of the present invention.
  • a cavity 23 having a substantially sectoral cross section for storing air is provided inside the insulating dielectric operation body 21 at intervals. A plurality of them are formed.
  • Each hollow portion 23 is appropriately formed into a circular shape, an oval shape, a rectangular shape, a polygonal shape, or the like as necessary in addition to the substantially sectoral cross section, and is adjacent to the elongated connection piece 2 of the electrode body 1.
  • the cavity 23 can be unified as necessary.
  • the other parts are the same as those in the above embodiment, and the description thereof is omitted.
  • the same effect as the above embodiment can be expected, and the dielectric constant of the air in the cavity 23 is lower than the dielectric constant of the dielectric operation body 21, so that the capacitance can be further changed without making a mistake. Obviously, it can be detected with high accuracy.
  • the reduction in the molding material can reduce the weight of the dielectric operation body 21 and reduce the manufacturing cost.
  • the electrode body 1 may be a pair of left and right electrodes, but may be increased as necessary.
  • the elongated connecting piece 2 having a substantially Z-shaped cross section is shown.
  • the present invention is not limited to this, and the elongated connecting piece 2 may be formed in a substantially I-shaped, substantially J-shaped, or substantially L-shaped cross section as necessary. You may form in a letter shape, a substantially T shape, etc.
  • the electrode piece 3 may be unified, formed on a flat plate, or formed in a substantially L-shaped section or a substantially V-shaped cross section.
  • the dielectric operation body 21 can be formed in a prismatic shape, a conical shape, a truncated cone shape, a truncated pyramid shape, or the like, if necessary.
  • the dielectric operating body 21 can be formed transparently, and the design of the dielectric operating body 21 can be improved by irradiating light from a light source such as an LED from below to above the dielectric operating body 21.
  • the dielectric operation body 21 can be formed of silicone rubber or the like to impart light guide property for guiding the light beam of a light source such as an LED.
  • the capacitance sensor in this embodiment includes a plurality of conductive electrode bodies 1 and An insulating molded body 20 into which a plurality of electrode bodies 1 are inserted, and an insulating body 30 facing the plurality of electrode bodies 1 and the molded body 20 are provided, and this insulator 30 is touched by a finger from outside.
  • a bendable insulating support layer 34 is interposed between the outer panel 31 and the plurality of electrode bodies 1, and the first and second elastic bodies 35 and 36 are provided on the support layer 34. Are arranged integrally.
  • Each electrode body 1 is bent and formed into a three-dimensional shape having an L-shaped cross section with a predetermined metal material made of, for example, iron, gold, silver, copper, platinum, brass, aluminum, or an alloy thereof, and the standing portion 4 is formed. It is exposed from the surface of the body 20 in the direction of the insulator 30 and functions to supply power to the capacitance sensor by being electrically connected to an electronic circuit (not shown) via a harness.
  • the surface of the electrode body 1 is appropriately subjected to a plating process such as nickel plating or gold plating from the viewpoint of ensuring conductivity and preventing oxidation.
  • the molded body 20 is molded into a three-dimensional shape such as a block shape using a molding material containing, for example, polyamide, polycarbonate, polybutylene terephthalate, polyphenylene ether, polyphenylene sulfide, and also functions as an insulator.
  • the molded body 20 is formed with irregularities or bent as necessary, and a plurality of positioning pins 24 for positioning the support layer 34 are formed on the surface so as to protrude at intervals.
  • the exterior panel 31 includes a resin panel 32 that is detachably positioned and opposed to the surface of the molded body 20 that is also an insulator.
  • a plurality of insulating operation patterns 33 that are touch-operated with a finger are formed, and from the viewpoint of confirming an accurate input, vibration and click feeling are given by a feedback device (not shown).
  • the panel 32 is molded using a molding material containing, for example, polyamide, polycarbonate, polybutylene terephthalate, polyphenylene ether, polyphenylene sulfide, etc., and is colored with a predetermined color or pattern. Forming, three-dimensional forming.
  • the plurality of operation patterns 33 are arranged at intervals by, for example, a screen printing method using insulating ink so as to correspond to the positions and numbers of the plurality of electrode bodies 1, and the operation patterns 33 and the periphery thereof are touched. Necessary characters, figures and symbols are formed together with other decorative patterns that do not contribute to the operation.
  • Each operation pattern 33 is formed in a predetermined shape indicating a required function, for example, a circle, a rectangle, a triangle, or the like.
  • the support layer 34 is made of, for example, a thin film of flexible polyethylene terephthalate, polyimide, or the like from the viewpoint of facilitating alignment, and a plurality of positioning layers are formed on the surface of the molded body 20.
  • the pin 24 By being set via the pin 24, it is interposed between the surface of the molded body 20 and the back surface of the panel 32 of the exterior panel 31, and functions as a damper when the exterior panel 31 is vibrated or clicked.
  • the support layer 34 is formed with a plurality of first elastic bodies 35 elastically contacting the back surface of the panel 32 and indirectly facing the operation pattern 33 on the front surface.
  • a plurality of second elastic bodies 36 that are elastically contacted are formed, and a plurality of positioning holes 37 that are penetrated by the positioning pins 24 of the molded body 20 are formed in the peripheral edge, for example, the four corners of the peripheral edge.
  • a plurality of through holes 38 for electrically integrating the first and second elastic bodies 35 and 36 are formed in the support layer 34 so as to correspond to the positions and numbers of the plurality of operation patterns 33.
  • the plurality of first elastic bodies 35 are formed using, for example, silicone rubber having excellent elasticity and conductivity, and are positioned on the surface of the support layer 34 so as to correspond to the positions and numbers of the plurality of operation patterns 33.
  • Each first elastic body 35 is formed in a shape substantially similar to the shape of the opposed operation pattern 33 by a printing method using a conductive silicone rubber composition containing carbon, graphite, or the like.
  • the plurality of second elastic bodies 36 are formed using, for example, silicone rubber having excellent elasticity and conductivity, and are positioned on the back surface of the support layer 34 so as to correspond to the positions and numbers of the plurality of operation patterns 33.
  • Each second elastic body 36 is integrated with the first elastic body 35 through a through hole 38 of the support layer 34 by a printing method using a conductive silicone rubber composition containing carbon, graphite, or the like. And is formed in a shape substantially the same as the opposing first elastic body 35.
  • the first and second elastic bodies 35 and 36 having such conductivity secure a conduction path between the electrode body 1 and the back surface of the panel 32, and from the finger contacting the operation pattern 33 to the electrode body 1. It functions to substantially reduce the distance of the sensor and greatly improve the detection accuracy.
  • a plurality of positioning holes 37 and through-holes 38 are respectively drilled at predetermined positions of the prepared support layer 34, and conductive on both the front and back surfaces of the support layer 34.
  • Each of the conductive silicone rubber compositions is printed with a pattern to fill the through-holes 38, and then the silicone rubber compositions on both sides are dried and cured to form a plurality of first and second elastic bodies 35 and 36. To do.
  • the support layer 34 is positioned and fixed on the surface of the molded body 20 to form the raised portions 4 of the plurality of electrode bodies 1. If the corresponding second elastic bodies 36 are elastically contacted without gaps, and then the panel 32 of the exterior panel 31 is mounted on the surface of the molded body 20, and the plurality of first elastic bodies 35 are elastically contacted with no gaps on the back surface. A capacitance sensor can be obtained.
  • the support layer 34 of the capacitance sensor has flexibility and the first and second elastic bodies 35 and 36 can be elastically deformed, the surface of the molded body 20 and the back surface of the panel 32 are uneven. However, the support layer 34 can be bent along the unevenness, or the unevenness can be absorbed by the first and second elastic bodies 35 and 36.
  • the manufactured capacitance sensor is incorporated as an input device in a mobile phone, an automobile device, or the like.
  • a finger contacts or slides while touching the operation pattern 33 of the exterior panel 31, the electrode body 1 and the exterior panel 31
  • the operation pattern 33, the first and second elastic bodies 35 and 36, and the finger form a capacitor to detect a change in capacitance, thereby realizing a predetermined function of a mobile phone, an automobile device, or the like.
  • the exterior panel 31 vibrates by driving the motor of the feedback device and the piezoelectric element, but the support layer 34 absorbs this vibration and the like, so that the electrode body 1 and the first and second elastic bodies 35 and 36 It is possible to prevent the vibration from propagating and failing or being damaged.
  • the manufacturing process of the capacitance sensor becomes really easy, and the configuration of the capacitance sensor can be simplified and the number of parts can be reduced.
  • first and second elastic bodies 35 and 36 have low hardness and absorb elasticity, and are in close contact with the electrode body 1 and the panel 32 without any gaps, for example, the molded body 20 and the exterior panel 31 are uneven. Even if it is formed or bent, unevenness is not generated between the electrode body 1, the panel 32, and the support layer 34, and no void is generated. Therefore, it is possible to reliably detect a weak change in capacitance, and to grasp the position and movement of the finger with high accuracy.
  • the plurality of electrode bodies 1 are insert-molded in the molded body 20, a connector structure that can be connected to a harness can be easily obtained. Furthermore, when the elastic first and second elastic bodies 35 and 36 have a vibration or a click feeling in the exterior panel 31, they also function as a damper that absorbs and attenuates vibrations, etc. Can be effectively suppressed and prevented.
  • FIG. 6 shows a second embodiment of the present invention.
  • a plurality of first and second elastic bodies 35 and 36 are respectively formed using insulating silicone rubber.
  • the plurality of first and second elastic bodies 35 and 36 are respectively dielectrics 39.
  • the plurality of first and second elastic bodies 35 and 36 may be similar in shape to the operation pattern 33, but are not necessarily limited thereto.
  • the insulating rubber composition having fluidity is screen-printed on both the front and back surfaces of the support layer 34 to laminate a uniform elastic sheet, and the pair of front and back elastic sheets are used as the first and second elastic bodies 35. -It is good also as 36.
  • the other parts are the same as those in the above embodiment, and the description thereof is omitted.
  • the same effect as the above embodiment can be expected, and the configuration of the capacitance sensor can be diversified. Furthermore, since the uniform elastic sheet can be used as the first and second elastic bodies 35 and 36, the structure can be greatly simplified, the number of parts can be greatly reduced, and the damper function can be improved.
  • the electrode body 1 was bent and formed in the cross-section L-shape, it is not limited to this at all.
  • the electrode body 1 may be bent to have a substantially I-shaped cross section, a substantially J-shape, a substantially S-shape, a substantially T-shape, a substantially U-shape, or the like.
  • the first and second elastic bodies 35 and 36 may be integrated with the support layer 34 by various molding methods.
  • Electrode body 1
  • Elongation connection piece 3
  • Standing part (exposed part) 10
  • Inner shield (shield) 20
  • Molded body (insulator) 21
  • dielectric operation body 22
  • surface 23
  • cavity 30
  • insulator 31
  • exterior panel 32
  • operation pattern 34 support layer
  • first elastic body 36
  • second elastic body 38 through hole 39 dielectric

Abstract

Provided is a capacitance sensor and a manufacturing method thereof, wherein fear of malfunctioning or damages accompanying long-term use is eradicated, expansion in the installation space can be minimized, and contamination resistance against dirtiness such as dust can be increased. The capacitance sensor is provided with a pair of electrode bodies (1) that has conductivity, and an insulative dielectric manipulation body (21) that covers this pair of electrode bodies (1); functions as an input device by detecting changes in the capacitance when a finger touches this dielectric manipulation body (21); and is made to be electrically connectable to an electronic circuit, by processing each of the electrodes (1) into a three-dimensional shape with metallic materials. Furthermore, the dielectric manipulation body (21) is molded into a three-dimensional shape with molding materials including resin, and portions of the pair of conductive electrode bodies (1) are buried in integration inside the dielectric manipulation body (21). Since a capacitance sensor that is not mechanical is used, fear of malfunctioning or damages accompanying long-term use is expected to be eradicated, and manufacturing cost is also expected to be reduced.

Description

静電容量センサ及びその製造方法Capacitance sensor and manufacturing method thereof
 本発明は、携帯電話、情報機器、通信機器、あるいは自動車機器等の操作に使用される静電容量センサ及びその製造方法に関するものである。 The present invention relates to a capacitance sensor used for operation of a mobile phone, an information device, a communication device, an automobile device, and the like, and a manufacturing method thereof.
 携帯電話、情報機器、音響機器、ナビゲーション機器等には、機器毎の特性や利用状況に応じ、様々な入力デバイスが採用されるが、この入力デバイスの方式として、機械的なキートップ方式や静電容量を用いる高精度のタッチセンサ方式が知られている。 Various input devices are adopted for mobile phones, information devices, acoustic devices, navigation devices, etc., depending on the characteristics and usage conditions of each device. As the input device methods, mechanical key top methods and static devices are used. A highly accurate touch sensor method using a capacitance is known.
 キートップ方式の入力デバイスは、図示しないが、回路基板の表面に印刷される接点と、この接点に間隔をおいて対向する上下動可能なキートップとを備え、このキートップの裏面に、回路基板の接点に接離する導電ゴムが貼着されている。このようなキートップ方式の入力デバイスは、キートップがユーザに押圧操作され、回路基板の接点にキートップの導電ゴムが接触することにより、所定の機能を実現することとなる(特許文献1、2、3参照)。 Although not shown, the key top type input device includes a contact printed on the surface of the circuit board and a key top that can be moved up and down to face the contact with a space therebetween. Conductive rubber is attached to and away from the contact points of the substrate. In such a key top type input device, the key top is pressed by the user, and the conductive rubber of the key top comes into contact with the contact of the circuit board, thereby realizing a predetermined function (Patent Document 1, Patent Document 1). 2 and 3).
 これに対し、タッチセンサ方式の入力デバイスは、直感的な操作やマルチ操作が可能なことから、例えば高級自動車の音響機器やナビゲーション機器等に搭載されている(特許文献4、5、6、7参照)。この方式の入力デバイスは、図示しないが、外部からタッチ操作される外装パネルと、電極体が内蔵された成形体とが対向し、これら外装パネルと成形体との間に複数の誘電体が介在することにより構成されている。 On the other hand, touch sensor type input devices are capable of intuitive operation and multi-operation, and are mounted on, for example, acoustic equipment and navigation equipment of luxury automobiles (Patent Documents 4, 5, 6, 7). reference). In this type of input device, although not shown, the exterior panel that is touch-operated from the outside and the molded body in which the electrode body is built face each other, and a plurality of dielectrics are interposed between the exterior panel and the molded body. It is comprised by doing.
 外装パネルと成形体とは、技術的に一体形成が容易ではないので、一般的には別々に構成されている。外装パネルは、成形体を覆う樹脂製のパネルを備え、このパネルの表面に、指でタッチ操作される複数の操作模様が形成されている。成形体には、複数の操作模様の位置と数に対応する複数の電極体が設けられている。また、誘電体は、複数の操作模様と電極体とにそれぞれ挟持されている。 Since the exterior panel and the molded body are not technically easy to form integrally, they are generally configured separately. The exterior panel includes a resin panel that covers the molded body, and a plurality of operation patterns that are touch-operated with a finger are formed on the surface of the panel. The molded body is provided with a plurality of electrode bodies corresponding to the positions and numbers of the plurality of operation patterns. The dielectric is sandwiched between the plurality of operation patterns and the electrode body.
特開平8‐222070号公報JP-A-8-222070 特開2003‐123581号公報JP 2003-123581 A 特開平11‐232951号公報Japanese Patent Application Laid-Open No. 11-232951 特開2010‐33376号公報JP 2010-33376 A 特開2010‐26833号公報JP 2010-26833 A 特開2010‐49618号公報JP 2010-49618 A 特開2009‐276279号公報JP 2009-276279 A
 従来における入力デバイスは、以上のようにキートップ方式とタッチセンサ方式とに分類されるが、いずれの方式にも問題がある。先ず、前者のキートップ方式の場合には、キートップが上下方向に動作する可動部品なので、長期の使用に伴い故障や損傷のおそれがある。また、設置面積が大きくなり、塵埃等の汚れにも弱く、しかも、部品点数が多いので製造コストの削減を図ることができないという問題がある。 Conventional input devices are classified into the key top method and the touch sensor method as described above, but both methods have problems. First, in the case of the former key-top method, since the key-top is a movable part that moves in the vertical direction, there is a risk of failure or damage with long-term use. In addition, there is a problem that the installation area is large, it is vulnerable to dirt such as dust, and the manufacturing cost cannot be reduced due to the large number of parts.
 次に、後者のタッチセンサ方式の場合、操作模様の数に応じて外装パネルと成形体との間に複数の誘電体が個々に介在するので、構成の簡素化や部品点数の削減を図ることができないという問題がある。また、外装パネルや成形体は、意匠性の向上や機能性確保の観点から、必要に応じて凹凸形成、屈曲形成、あるいは三次元形成されるが、このような形成に伴い、パネル、電極体、誘電体の間に凹凸が生じて空隙(空気層)が発生し、その結果、微弱な静電容量の変化を検出することができず、指の位置や動きを高精度に検出することができないおそれがある。 Next, in the case of the latter touch sensor system, since a plurality of dielectrics are individually interposed between the exterior panel and the molded body according to the number of operation patterns, the configuration is simplified and the number of parts is reduced. There is a problem that can not be. In addition, from the viewpoint of improving design and ensuring functionality, exterior panels and molded bodies are formed with unevenness, bending, or three-dimensional as necessary. As a result, unevenness is generated between the dielectrics to generate a void (air layer). As a result, it is impossible to detect a weak change in capacitance, and it is possible to detect the position and movement of a finger with high accuracy. It may not be possible.
 また、タッチセンサ方式の入力デバイスには、正確に入力されたことを確認できるよう、振動やクリック感でフィードバックする装置が設置されることがある。こうしたフィードバック装置においては、外装パネルと成形体の全体に振動やクリック感を生じさせると、エネルギー的に問題が生じるので、外装パネルのみを振動やクリック感でフィードバックする手法が採用されている。このようなフィードバック装置でも、外装パネルと成形体とが別々に構成されることが望まれるが、単なる別構成ではビビリ音発生の原因となる。 Also, a touch sensor type input device may be provided with a device that feeds back with vibration or a click feeling so that the input can be confirmed accurately. In such a feedback device, if vibration or a click feeling is generated in the entire exterior panel and the molded body, a problem arises in terms of energy. Therefore, a method of feeding back only the exterior panel with vibration or a click feeling is employed. Even in such a feedback device, it is desired that the exterior panel and the molded body are configured separately, but a simple configuration may cause chatter noise.
 本発明は上記に鑑みなされたもので、長期の使用に伴う故障や損傷のおそれを払拭し、設置面積の拡大を抑制することができ、塵埃等の汚れに対する耐汚染性を高めることのできる安価な静電容量センサ及びその製造方法を提供することを目的としている。また、構成の簡素化や部品点数の削減を図ることができ、しかも、高精度な検出が期待できる静電容量センサを提供することを他の目的とする。 The present invention has been made in view of the above, and can eliminate the possibility of failure and damage associated with long-term use, can suppress the expansion of the installation area, and can be inexpensive to increase the stain resistance against dirt such as dust. It is an object of the present invention to provide a simple electrostatic capacitance sensor and a manufacturing method thereof. It is another object of the present invention to provide a capacitance sensor that can simplify the configuration and reduce the number of parts, and can expect highly accurate detection.
 本発明においては上記課題を解決するため、導電性の電極体と、この電極体の少なくとも一部を内蔵する絶縁体とを含み、電極体に導電体が絶縁体を介して接近した場合に生じる静電容量の変化を検出するものであって、
 金属材料からなる三次元形状の電極体を電子回路に電気的に接続可能とし、絶縁体を三次元形状としたことを特徴としている。
In order to solve the above-described problems, the present invention includes a conductive electrode body and an insulator containing at least a part of the electrode body, and occurs when the conductor approaches the electrode body via the insulator. Detecting the change in capacitance,
A three-dimensional electrode body made of a metal material can be electrically connected to an electronic circuit, and the insulator has a three-dimensional shape.
 なお、絶縁体を、樹脂を含む成形材料により三次元形状に成形され、電極体を覆う誘電操作体とすることができる。
 また、電極体を複数とし、この複数の電極体の間に高周波遮断用のシールドを組み合わせることができる。
Note that the insulator can be formed into a three-dimensional shape by a molding material containing a resin and can be a dielectric operation body that covers the electrode body.
Further, a plurality of electrode bodies can be used, and a shield for high frequency cutoff can be combined between the plurality of electrode bodies.
 また、電極体は、電子回路に電気的に接続される伸長接続片と、この伸長接続片に形成されて導電体に誘電操作体を介して対向する電極片とを含み、伸長接続片の一部と電極片とを誘電操作体内に埋没し、伸長接続片と導電体が接触する誘電操作体表面との間の距離を、電極片と誘電操作体表面との間の距離よりも長くすることもできる。
 また、誘電操作体内に空洞部を形成することもできる。
The electrode body includes an elongated connection piece that is electrically connected to the electronic circuit, and an electrode piece that is formed on the elongated connection piece and faces the conductor via the dielectric operation body. The electrode and the electrode piece are buried in the dielectric operation body, and the distance between the extended connection piece and the surface of the dielectric operation body where the conductor contacts is longer than the distance between the electrode piece and the surface of the dielectric operation body. You can also.
In addition, a cavity can be formed in the dielectric operation body.
 また、絶縁体に外部から接触操作される絶縁性の外装パネルを対向させてそのパネルの少なくとも表面には操作模様を形成し、絶縁体と外装パネルのパネルとの間に絶縁性の支持層を介在させ、この支持層の表面に、外装パネルのパネルに接触して操作模様に対向する第一の弾性体を形成するとともに、支持層の裏面には、絶縁体から露出した電極体の露出部に接触する第二の弾性体を形成し、支持層に、第一、第二の弾性体を一体化する貫通孔を設けることが可能である。 In addition, an insulating exterior panel that is operated to come into contact with the insulator from the outside is opposed to form an operation pattern on at least the surface of the panel, and an insulating support layer is provided between the insulator and the panel of the exterior panel. A first elastic body is formed on the surface of the support layer so as to come into contact with the panel of the exterior panel and oppose the operation pattern, and an exposed portion of the electrode body exposed from the insulator is formed on the back surface of the support layer. It is possible to form a second elastic body in contact with the through hole, and to provide a through-hole for integrating the first and second elastic bodies in the support layer.
 また、絶縁体に位置決め部を形成し、支持層に、絶縁体の位置決め部に嵌まる位置決め孔を設けることが可能である。
 また、第一、第二の弾性体にそれぞれ導電性を付与することも可能である。
 また、外装パネルの操作模様を複数とし、この複数の操作模様の位置と数に応じ、電極体と支持層の第一、第二の弾性体とをそれぞれ複数としても良い。
 さらに、支持層の第一、第二の弾性体にそれぞれ導電性を付与しても良い。
 さらにまた、支持層の第一、第二の弾性体をそれぞれ誘電体としても良い。
Further, it is possible to form a positioning portion in the insulator and provide a positioning hole in the support layer that fits in the positioning portion of the insulator.
It is also possible to impart conductivity to the first and second elastic bodies, respectively.
Further, a plurality of operation patterns of the exterior panel may be provided, and a plurality of electrode bodies and a plurality of first and second elastic bodies of the support layer may be provided according to the position and number of the plurality of operation patterns.
Furthermore, you may provide electroconductivity to the 1st and 2nd elastic body of a support layer, respectively.
Furthermore, the first and second elastic bodies of the support layer may each be a dielectric.
 また、本発明においては上記課題を解決するため、請求項1ないし5いずれかに記載の静電容量センサの製造方法であって、
 電極体を金属材料により三次元形状に加工して電子回路に電気的に接続可能とし、この電極体を金型にインサートし、この金型に絶縁体用の樹脂を含む成形材料を充填することにより、電極体の少なくとも一部を絶縁体内に一体的に埋没させることを特徴としている。
Moreover, in order to solve the said subject in this invention, it is a manufacturing method of the electrostatic capacitance sensor in any one of Claim 1 thru | or 5,
The electrode body is processed into a three-dimensional shape with a metal material so that it can be electrically connected to an electronic circuit, the electrode body is inserted into a mold, and the mold is filled with a molding material containing a resin for an insulator. Thus, at least a part of the electrode body is integrally buried in the insulator.
 ここで、特許請求の範囲における電極体は、単数複数いずれでも良く、特に支障を生じなければ、可撓性や弾性を有していても良い。この電極体は、電子回路に電気的に直接接続されるものでも良いし、各種の導電材や導電ラインを介し間接的に接続されるものでも良い。 Here, the electrode body in the claims may be a single electrode or a plurality of electrode bodies, and may have flexibility and elasticity as long as no particular problem occurs. The electrode body may be electrically connected directly to an electronic circuit, or may be indirectly connected via various conductive materials or conductive lines.
 絶縁体や誘電操作体の成形材料は、透明、不透明、半透明を特に問うものではない。絶縁体は、インサート成形法、押出成形法、射出成形法等により成形され、必要に応じて凹凸形成、屈曲形成、湾曲形成される。この絶縁体には、少なくとも成形体や外装パネル等が含まれる。誘電操作体の表面には、必要に応じて装飾用の加飾層を設けることができる。 The molding material for the insulator and dielectric operation body is not particularly limited to transparent, opaque, and translucent. The insulator is molded by an insert molding method, an extrusion molding method, an injection molding method, or the like, and is formed with unevenness, bending, or bending as necessary. This insulator includes at least a molded body, an exterior panel, and the like. A decoration layer for decoration can be provided on the surface of the dielectric operation body as necessary.
 外装パネルは、必要に応じて凹凸形成、屈曲形成、湾曲形成、三次元形成される。この外装パネルの操作模様は、単数複数を特に問うものではない。また、支持層としては、屈曲可能な絶縁性のフィルムやシートを使用することができる。第一、第二の弾性体は、例えば弾性を有するゴムやゲル等からなる。この第一、第二の弾性体は、誘電体の場合には、操作模様の形状に対応する形でも良いし、異なる形でも良い。さらに、本発明に係る静電容量センサは、少なくとも携帯電話、情報機器、通信機器、家電製品、音響機器、コンピュータ機器、ゲーム機器、自動車機器等に用いることが可能である。 The exterior panel is formed with unevenness, bending, bending, and three-dimensional as required. The operation pattern of the exterior panel is not particularly limited to one or more. As the support layer, a bendable insulating film or sheet can be used. The first and second elastic bodies are made of, for example, elastic rubber or gel. In the case of a dielectric, the first and second elastic bodies may have a shape corresponding to the shape of the operation pattern, or may have a different shape. Furthermore, the capacitance sensor according to the present invention can be used for at least a mobile phone, an information device, a communication device, a home appliance, an acoustic device, a computer device, a game device, an automobile device, and the like.
 本発明によれば、導電性の電極体に導電体が絶縁体を介して接近すると、電極体、導電体、絶縁体がキャパシタを形成して静電容量の変化を検出するので、静電容量センサを入力デバイスとして利用して所定の機能を実現することができる。 According to the present invention, when the conductor approaches the conductive electrode body through the insulator, the electrode body, the conductor, and the insulator form a capacitor to detect a change in the capacitance. A predetermined function can be realized by using the sensor as an input device.
 本発明によれば、入力デバイスとして機械式のキートップを採用するのではなく、タッチセンサ式の静電容量センサを用いるので、長期の使用に伴う故障や損傷等のおそれを払拭することができる。また、電極体の伸長接続片を誘電操作体の表面から内部方向に離して位置させることができるので、例え誘電操作体表面の電極体に対向していない非対向部に導電体が接触しても、静電容量の変化を過誤により検出することが少ない。 According to the present invention, since a touch sensor type capacitive sensor is used instead of a mechanical key top as an input device, it is possible to eliminate the risk of failure or damage associated with long-term use. . In addition, since the extension connecting piece of the electrode body can be positioned away from the surface of the dielectric operation body inward, the conductor contacts the non-opposing portion of the surface of the dielectric operation body not facing the electrode body. However, it is rare to detect a change in capacitance due to an error.
 また、本発明において、高精度の静電容量センサを組み立てる場合、絶縁体に支持層を支持させ、絶縁体から露出した電極体の露出部に支持層の第二の弾性体を密接し、絶縁体に外装パネルの絶縁性のパネルを装着して支持層の第一の弾性体に密接すれば、静電容量センサを容易に組み立てることができる。 In the present invention, when assembling a high-accuracy electrostatic capacitance sensor, the support layer is supported by the insulator, and the second elastic body of the support layer is brought into intimate contact with the exposed portion of the electrode body exposed from the insulator. If the insulating panel of the exterior panel is attached to the body and is in close contact with the first elastic body of the support layer, the capacitance sensor can be easily assembled.
 本発明によれば、長期の使用に伴う故障や損傷のおそれを払拭したり、設置面積の拡大を抑制することができ、しかも、静電容量センサの汚れに対する耐汚染性を高め、製造コストを低減することができるという効果がある。また、静電容量センサの構成の簡素化や部品点数の削減を図ることができ、導電体の高精度な検出を実現することができるという効果がある。 According to the present invention, the possibility of failure and damage associated with long-term use can be wiped out, the expansion of the installation area can be suppressed, and the contamination resistance against the contamination of the capacitance sensor can be improved, and the manufacturing cost can be reduced. There is an effect that it can be reduced. Further, the configuration of the capacitance sensor can be simplified and the number of parts can be reduced, and there is an effect that highly accurate detection of the conductor can be realized.
 また、請求項2記載の発明によれば、絶縁体と誘電操作体とを一体化して兼用することができるので、電極体に別体の絶縁体を積層等する必要がなく、部品点数の削減を図ることができる。
 また、請求項3記載の発明によれば、シールドにより高周波帯の電磁波を効果的に吸収したり、遮断することができるので、電磁波の影響で静電容量センサが誤作動するのを防止することができる。
According to the second aspect of the present invention, since the insulator and the dielectric operation body can be integrated and used together, there is no need to stack a separate insulator on the electrode body, and the number of parts can be reduced. Can be achieved.
According to the third aspect of the invention, since the electromagnetic wave in the high frequency band can be effectively absorbed or blocked by the shield, it is possible to prevent the capacitance sensor from malfunctioning due to the influence of the electromagnetic wave. Can do.
 また、請求項4記載の発明によれば、導電体と電極体の伸長接続片とに基づく静電容量が導電体と電極体の電極片とに基づく静電容量と相違するので、静電容量センサの誤作動防止が期待できる。
 また、請求項5記載の発明によれば、空洞部の空気の誘電率が誘電操作体の誘電率よりも低いので、静電容量の変化を誤ることなくさらに高精度に検出することが可能になる。
According to the invention of claim 4, since the electrostatic capacity based on the conductor and the elongated connection piece of the electrode body is different from the electrostatic capacity based on the conductor and the electrode piece of the electrode body, Sensor malfunction prevention can be expected.
According to the fifth aspect of the present invention, since the dielectric constant of the air in the cavity is lower than the dielectric constant of the dielectric operating body, it is possible to detect the change in the electrostatic capacity with higher accuracy without error. Become.
 また、請求項6記載の発明によれば、支持層に第一、第二の弾性体をそれぞれ形成するので、絶縁体と外装パネルとの間に複数の誘電体を個別に介在させる必要がない。したがって、静電容量センサの構成の簡素化や部品点数の削減が期待できる。また、第一、第二の弾性体が凹凸を吸収する弾性を有し、電極体や外装パネルと密接するので、例え絶縁体や外装パネルが凹凸形成されていたり、屈曲形成されていても、電極体、外装パネル、支持層の間に凹凸が生じて空隙が発生することが少ない。したがって、微弱な静電容量の変化を高精度に検出することができる。 According to the invention described in claim 6, since the first and second elastic bodies are respectively formed on the support layer, there is no need to individually interpose a plurality of dielectric bodies between the insulator and the exterior panel. . Therefore, simplification of the configuration of the capacitance sensor and reduction of the number of parts can be expected. In addition, the first and second elastic bodies have elasticity that absorbs irregularities and is in close contact with the electrode body and the exterior panel, so even if the insulator or exterior panel is irregularly formed or bent, There are few occurrences of voids due to unevenness between the electrode body, the exterior panel, and the support layer. Therefore, a weak change in capacitance can be detected with high accuracy.
 さらに、請求項8記載の発明によれば、操作模様に接触する導電体から電極体までの距離を実質的に短縮することができるので、第一、第二の弾性体が誘電体の場合よりも、静電容量の変化を高精度に捉えることができる。 Furthermore, according to the invention described in claim 8, since the distance from the conductor contacting the operation pattern to the electrode body can be substantially shortened, the first and second elastic bodies are made of a dielectric. However, the change in capacitance can be captured with high accuracy.
本発明の第一の発明に係る静電容量センサ及びその製造方法の実施形態を模式的に示す断面説明図である。It is a section explanatory view showing typically an embodiment of a capacitance sensor and a manufacturing method for the same according to the first invention of the present invention. 本発明の第一の発明に係る静電容量センサ及びその製造方法の第2の実施形態を模式的に示す断面説明図である。It is a section explanatory view showing typically a 2nd embodiment of a capacitance sensor concerning the 1st invention of the present invention, and its manufacturing method. 本発明の第二の発明に係る静電容量センサの実施形態を模式的に示す断面説明図である。It is sectional explanatory drawing which shows typically embodiment of the electrostatic capacitance sensor which concerns on 2nd invention of this invention. 本発明の第二の発明に係る静電容量センサの実施形態における外装パネルを模式的に示す平面説明図である。It is plane explanatory drawing which shows typically the exterior panel in embodiment of the electrostatic capacitance sensor which concerns on 2nd invention of this invention. 本発明の第二の発明に係る静電容量センサの実施形態における支持層等を模式的に示す平面説明図である。It is a plane explanatory view showing typically a support layer etc. in an embodiment of a capacitance sensor concerning the 2nd invention of the present invention. 本発明の第二の発明に係る静電容量センサの第2の実施形態を模式的に示す断面説明図である。It is a section explanatory view showing typically a 2nd embodiment of a capacitance sensor concerning the 2nd invention of the present invention.
 以下、図面を参照して本発明の第一の発明の好ましい実施の形態を説明すると、本実施形態における静電容量センサは、図1に示すように、導電性を有する左右一対の電極体1と、この一対の電極体1を均一に被覆する絶縁性の成形体20である誘電操作体21とを備えた立体的な三次元形状に成形され、電極体1に導電体である指が絶縁体30を介して接触した場合に生じる静電容量の変化を検出することにより、携帯電話や自動車機器等の入力デバイスとして機能する。 Hereinafter, a preferred embodiment of the first invention of the present invention will be described with reference to the drawings. A capacitance sensor according to the present embodiment includes a pair of left and right electrode bodies 1 having conductivity as shown in FIG. And a three-dimensional shape having a dielectric operating body 21 which is an insulating molded body 20 that uniformly covers the pair of electrode bodies 1, and the electrode body 1 is insulated from a finger as a conductor. By detecting a change in capacitance that occurs when contact is made via the body 30, it functions as an input device such as a mobile phone or automobile equipment.
 一対の電極体1は、例えば鉄、金、銀、銅、白金、黄銅、アルミニウム、あるいはこれらの合金等からなる所定の金属材料によりそれぞれ三次元形状に屈曲加工され、間隔をおいて相互に近接配置されるとともに、高周波遮断用の内面シールド10を僅かな隙間を介し選択的に挟持しており、図示しないCPUやICを含む電子回路に電気的に接続される。この一対の電極体1の表面には、導電性を確保したり、酸化を防止する観点から、ニッケルメッキや金メッキ等のメッキ処理が適宜施される。 The pair of electrode bodies 1 are bent into a three-dimensional shape by a predetermined metal material made of, for example, iron, gold, silver, copper, platinum, brass, aluminum, or an alloy thereof, and are close to each other at intervals. In addition, the inner shield 10 for cutting off high frequency is selectively sandwiched through a slight gap, and is electrically connected to an electronic circuit (not shown) including a CPU and IC. The surface of the pair of electrode bodies 1 is appropriately subjected to a plating process such as nickel plating or gold plating from the viewpoint of ensuring conductivity or preventing oxidation.
 各電極体1は、必要に応じて所定の形や大きさに自由に形成されるが、例えば屈曲して電子回路に電気的に接続される断面略Z字形の伸長接続片2と、この伸長接続片2の先端である上端部に一体的に形成されて指に誘電操作体21を介して対向する電極片3とを備え、伸長接続片2の一部と電極片3とが誘電操作体21内に埋没する。 Each electrode body 1 is freely formed in a predetermined shape and size as required. For example, the electrode body 1 is bent and electrically connected to an electronic circuit. The electrode piece 3 is formed integrally with the upper end portion which is the tip of the connection piece 2 and is opposed to the finger through the dielectric operation body 21, and a part of the extended connection piece 2 and the electrode piece 3 are made of the dielectric operation body. It is buried in 21.
 電極体1の伸長接続片2と電極片3とは、伸長接続片2が誘電操作体21の絶縁体30である表面22から可能な限り内方向(図1の下方向)に離隔し、電極片3が誘電操作体21の表面22に沿って近接する。電極体1の伸長接続片2から誘電操作体21の表面22までの距離は、電極片3から誘電操作体21の表面22までの距離よりも長くされる。この距離の調整により、伸長接続片2と誘電操作体21の表面22との近接に伴い、指の接触時に静電容量が変化して指を誤検出する事態が有効に防止される。 The elongated connecting piece 2 and the electrode piece 3 of the electrode body 1 are separated from the surface 22 as the insulator 30 of the dielectric operation body 21 as far as possible inward (downward in FIG. 1), The piece 3 comes close along the surface 22 of the dielectric operating body 21. The distance from the elongated connection piece 2 of the electrode body 1 to the surface 22 of the dielectric operation body 21 is made longer than the distance from the electrode piece 3 to the surface 22 of the dielectric operation body 21. This adjustment of the distance effectively prevents a situation in which a finger is erroneously detected due to a change in capacitance when the finger is brought into contact with the proximity of the elongated connecting piece 2 and the surface 22 of the dielectric operation body 21.
 伸長接続片2は、屈曲して上下方向に伸びる板等からなり、屈曲部付近に内面シールド10が隣接しており、下端部が誘電操作体21の裏面から外部に露出して電子回路に電気的に接続される。また、電極片3は、断面略半円弧形の板からなり、他の電極体1の電極片3に隙間をおいて隣接しており、誘電操作体21の湾曲した表面22に僅かな間隔をおいて近接する。 The extension connecting piece 2 is composed of a plate or the like that bends and extends in the vertical direction. The inner shield 10 is adjacent to the vicinity of the bent portion, and the lower end portion is exposed to the outside from the back surface of the dielectric operation body 21 and is electrically connected to the electronic circuit. Connected. The electrode piece 3 is a plate having a substantially semicircular cross section, is adjacent to the electrode piece 3 of the other electrode body 1 with a gap, and is slightly spaced from the curved surface 22 of the dielectric operation body 21. Close and close.
 内面シールド10は、例えば熱可塑性樹脂に各種の軟磁性粉を分散させた電磁波吸収複合材料や導電メッシュ等により断面U字形に形成され、誘電操作体21の裏面側に被覆された状態でグラウンドされており、静電容量センサが使用される際に高周波帯の電磁波を効果的に吸収・遮断し、静電容量センサの誤作動を防止するよう機能する。 The inner shield 10 is formed in a U-shaped cross section by an electromagnetic wave absorbing composite material in which various soft magnetic powders are dispersed in a thermoplastic resin or a conductive mesh, for example, and is grounded while being covered on the back side of the dielectric operation body 21. Therefore, when a capacitance sensor is used, it effectively absorbs and cuts off electromagnetic waves in a high frequency band and functions to prevent malfunction of the capacitance sensor.
 誘電操作体21は、例えばポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリフェニレンスルフィド、ポリエーテルスルホン、ABS等の樹脂を含有する成形材料により表面22が半球形に湾曲した三次元の略円柱形に成形され、内部に一対の電極体1の一部が一体的に埋没する。この誘電操作体21の表面22は、必要に応じて装飾用の加飾層が選択的にスクリーン印刷されたり、積層され、指が接触する。 The dielectric operation body 21 is formed into a three-dimensional substantially cylindrical shape whose surface 22 is curved in a hemispherical shape by a molding material containing a resin such as polyamide, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyphenylene sulfide, polyethersulfone, or ABS. A part of the pair of electrode bodies 1 is integrally buried therein. The surface 22 of the dielectric operation body 21 is selectively screen-printed or laminated with a decorative layer for decoration as necessary, and is in contact with a finger.
 上記において、静電容量センサを製造する場合には、先ず、一対の電極体1を所定の金属材料によりそれぞれ三次元形状に屈曲加工して電子回路に電気的に接続可能とし、この一対の電極体1の間に内面シールド10を挟持させる。こうして一対の電極体1と内面シールド10とを組み合わせたら、これらを専用の金型にインサートして型締めし、この金型に誘電操作体21用の溶融した成形材料を成形機から射出する。 In the above, when manufacturing a capacitance sensor, first, the pair of electrode bodies 1 are each bent into a three-dimensional shape with a predetermined metal material so that they can be electrically connected to an electronic circuit. An inner shield 10 is sandwiched between the bodies 1. When the pair of electrode bodies 1 and the inner shield 10 are combined in this way, they are inserted into a dedicated mold and clamped, and a molten molding material for the dielectric operation body 21 is injected into the mold from a molding machine.
 すると、一対の電極体1、内面シールド10、及び誘電操作体21が一体的に射出成形され、一対の電極体1の一部と内面シールド10とが誘電操作体21内に一体的に埋没する。この射出成形により、電極体1、内面シールド10、又は誘電操作体21の間に空気層が介在することなく、静電容量センサが製造される。その後、金型を冷却して型開きすれば、成形した静電容量センサを得ることができる。 Then, the pair of electrode bodies 1, the inner surface shield 10, and the dielectric operation body 21 are integrally injection-molded, and a part of the pair of electrode bodies 1 and the inner surface shield 10 are integrally embedded in the dielectric operation body 21. . By this injection molding, a capacitance sensor is manufactured without an air layer interposed between the electrode body 1, the inner shield 10, or the dielectric operation body 21. Thereafter, the molded electrostatic capacity sensor can be obtained by cooling the mold and opening the mold.
 製造された静電容量センサは、携帯電話や自動車機器等の筐体に入力デバイスとして組み込まれ、誘電操作体21の表面22に指が接触したり、接触しつつスライドすると、電極片3、誘電操作体21、及び指がキャパシタを形成して静電容量の変化を検出し、携帯電話や自動車機器等の所定の機能を実現する。 The manufactured capacitance sensor is incorporated as an input device in a casing of a mobile phone or an automobile device, and when the finger contacts or slides on the surface 22 of the dielectric operation body 21, the electrode piece 3 and the dielectric The operating body 21 and the finger form a capacitor to detect a change in capacitance, thereby realizing a predetermined function such as a mobile phone or an automobile device.
 上記構成によれば、押圧操作される機械式の入力デバイスではなく、可動部のないタッチセンサ式の静電容量センサを用いるので、長期の使用に伴う故障や損傷のおそれを払拭することができる。また、多数のキートップ等を配列する必要がないので、設置面積の拡大を抑制防止することができ、しかも、部品点数が少ないので、塵埃等の汚れに対する耐性を著しく向上させたり、製造コストの削減を図ることができる。 According to the above configuration, since the touch sensor type capacitance sensor having no movable part is used instead of the mechanical input device to be pressed, it is possible to eliminate the possibility of failure or damage associated with long-term use. . In addition, since there is no need to arrange a large number of key tops, it is possible to prevent and prevent an increase in the installation area, and since the number of parts is small, the resistance to dirt such as dust is remarkably improved, and the manufacturing cost is reduced. Reduction can be achieved.
 また、導電パターンの印刷された樹脂フィルムを屈曲成形するのではなく、電極体1を金属材料により所望の形に予め三次元加工した後、電極体1の周囲等に誘電操作体21用の成形材料を射出するので、電子回路の位置に応じて断線のおそれのない伸長接続片2を簡単に伸ばしたり、曲げたり、傾斜等させることができ、これを通じて電子回路に対する引き回しや接続が実に容易となる。 Instead of bending the resin film on which the conductive pattern is printed, the electrode body 1 is preliminarily three-dimensionally processed into a desired shape with a metal material, and then molded for the dielectric operation body 21 around the electrode body 1. Since the material is injected, the elongated connecting piece 2 that does not break may be easily stretched, bent, tilted, etc., depending on the position of the electronic circuit. Become.
 さらに、電極体1の伸長接続片2が誘電操作体21の表面22に沿って位置するのではなく、誘電操作体21の表面22や電極片3よりも誘電操作体21の内方向や裏面方向に離れて静電容量の変化を検出しにくくなっているので、例え誘電操作体21の表面22の電極片3に対向していない非対向部に指が接触したとしても、静電容量の変化を誤って検出することがない。 Further, the elongated connecting piece 2 of the electrode body 1 is not positioned along the surface 22 of the dielectric operation body 21, but the inner direction or the back surface direction of the dielectric operation body 21 rather than the surface 22 of the dielectric operation body 21 or the electrode piece 3. Since it is difficult to detect the change in the capacitance away from each other, even if the finger contacts the non-opposing portion of the surface 22 of the dielectric operation body 21 that does not face the electrode piece 3, the change in the capacitance Is not detected by mistake.
 次に、図2は本発明の第2の実施形態を示すもので、この場合には、絶縁性の誘電操作体21の内部に、空気を貯留する断面略扇形の空洞部23を間隔をおいて複数形成するようにしている。
 各空洞部23は、断面略扇形の他、必要に応じて円形、楕円形、矩形、多角形等に適宜形成され、電極体1の伸長接続片2に隣接する。この空洞部23は、必要に応じて単一化することもできる。その他の部分については、上記実施形態と同様であるので説明を省略する。
Next, FIG. 2 shows a second embodiment of the present invention. In this case, a cavity 23 having a substantially sectoral cross section for storing air is provided inside the insulating dielectric operation body 21 at intervals. A plurality of them are formed.
Each hollow portion 23 is appropriately formed into a circular shape, an oval shape, a rectangular shape, a polygonal shape, or the like as necessary in addition to the substantially sectoral cross section, and is adjacent to the elongated connection piece 2 of the electrode body 1. The cavity 23 can be unified as necessary. The other parts are the same as those in the above embodiment, and the description thereof is omitted.
 本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、空洞部23の空気の誘電率が誘電操作体21の誘電率よりも低いので、静電容量の変化を誤ることなくさらに高精度に検出することができるのは明らかである。また、成形材料の減少により、誘電操作体21の軽量化や製造コストの削減をも図ることができる。 Also in the present embodiment, the same effect as the above embodiment can be expected, and the dielectric constant of the air in the cavity 23 is lower than the dielectric constant of the dielectric operation body 21, so that the capacitance can be further changed without making a mistake. Obviously, it can be detected with high accuracy. In addition, the reduction in the molding material can reduce the weight of the dielectric operation body 21 and reduce the manufacturing cost.
 なお、電極体1は、左右一対でも良いが、必要に応じ、増加しても良い。また、上記実施形態では断面略Z字形の伸長接続片2を示したが、何らこれに限定されるものではなく、必要に応じ、伸長接続片2を断面略I字形、略J字形、略L字形、略T字形等に形成しても良い。また、必要に応じ、電極片3を単一化したり、平坦な板に形成したり、断面略L字形や略V字形等に形成しても良い。 The electrode body 1 may be a pair of left and right electrodes, but may be increased as necessary. In the above embodiment, the elongated connecting piece 2 having a substantially Z-shaped cross section is shown. However, the present invention is not limited to this, and the elongated connecting piece 2 may be formed in a substantially I-shaped, substantially J-shaped, or substantially L-shaped cross section as necessary. You may form in a letter shape, a substantially T shape, etc. Further, if necessary, the electrode piece 3 may be unified, formed on a flat plate, or formed in a substantially L-shaped section or a substantially V-shaped cross section.
 また、誘電操作体21を必要に応じ、角柱形、円錐形、円錐台形、角錐台形等に形成することもできる。また、誘電操作体21を透明に成形し、この誘電操作体21の下方から上方に向けてLED等の光源の光線を照射し、誘電操作体21の意匠性を向上させることもできる。さらに、誘電操作体21をシリコーンゴム等により成形してLED等の光源の光線を導光する導光性を付与することもできる。 Also, the dielectric operation body 21 can be formed in a prismatic shape, a conical shape, a truncated cone shape, a truncated pyramid shape, or the like, if necessary. In addition, the dielectric operating body 21 can be formed transparently, and the design of the dielectric operating body 21 can be improved by irradiating light from a light source such as an LED from below to above the dielectric operating body 21. Further, the dielectric operation body 21 can be formed of silicone rubber or the like to impart light guide property for guiding the light beam of a light source such as an LED.
 次に、本発明の第二の発明の好ましい実施の形態を説明すると、本実施形態における静電容量センサは、図3ないし図5に示すように、導電性の複数の電極体1と、この複数の電極体1がインサートされる絶縁性の成形体20と、これら複数の電極体1と成形体20とに対向する絶縁体30とを備え、この絶縁体30を外部から指でタッチ操作される外装パネル31とし、この外装パネル31と複数の電極体1との間に屈曲可能な絶縁性の支持層34を介在させ、この支持層34に、第一、第二の弾性体35・36を一体的に配設するようにしている。 Next, a preferred embodiment of the second invention of the present invention will be described. As shown in FIGS. 3 to 5, the capacitance sensor in this embodiment includes a plurality of conductive electrode bodies 1 and An insulating molded body 20 into which a plurality of electrode bodies 1 are inserted, and an insulating body 30 facing the plurality of electrode bodies 1 and the molded body 20 are provided, and this insulator 30 is touched by a finger from outside. A bendable insulating support layer 34 is interposed between the outer panel 31 and the plurality of electrode bodies 1, and the first and second elastic bodies 35 and 36 are provided on the support layer 34. Are arranged integrally.
 各電極体1は、例えば鉄、金、銀、銅、白金、黄銅、アルミニウム、あるいはこれらの合金等からなる所定の金属材料により断面L字形の三次元形状に屈曲形成され、起立部4が成形体20の表面から絶縁体30方向に露出しており、図示しない電子回路にハーネスを介し電気的に接続されて静電容量センサに給電するよう機能する。この電極体1の表面には、導電性の確保や酸化防止の観点から、ニッケルメッキや金メッキ等のメッキ処理が適宜施される。 Each electrode body 1 is bent and formed into a three-dimensional shape having an L-shaped cross section with a predetermined metal material made of, for example, iron, gold, silver, copper, platinum, brass, aluminum, or an alloy thereof, and the standing portion 4 is formed. It is exposed from the surface of the body 20 in the direction of the insulator 30 and functions to supply power to the capacitance sensor by being electrically connected to an electronic circuit (not shown) via a harness. The surface of the electrode body 1 is appropriately subjected to a plating process such as nickel plating or gold plating from the viewpoint of ensuring conductivity and preventing oxidation.
 成形体20は、例えばポリアミド、ポリカーボネート、ポリブチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンスルフィド等を含有する成形材料を使用してブロック形等の三次元形状に成形され、絶縁体としても機能する。この成形体20は、必要に応じて凹凸形成されたり、屈曲形成され、表面には、支持層34を位置決めする複数の位置決めピン24が間隔をおいて突出形成される。 The molded body 20 is molded into a three-dimensional shape such as a block shape using a molding material containing, for example, polyamide, polycarbonate, polybutylene terephthalate, polyphenylene ether, polyphenylene sulfide, and also functions as an insulator. The molded body 20 is formed with irregularities or bent as necessary, and a plurality of positioning pins 24 for positioning the support layer 34 are formed on the surface so as to protrude at intervals.
 外装パネル31は、図3や図4に示すように、絶縁体でもある成形体20の表面に対向して着脱自在に位置決め覆着される樹脂製のパネル32を備え、このパネル32の表面に、指でタッチ操作される絶縁性の操作模様33が複数形成されており、正確な入力を確認する観点から、図示しないフィードバック装置により振動やクリック感が付与される。 As shown in FIG. 3 and FIG. 4, the exterior panel 31 includes a resin panel 32 that is detachably positioned and opposed to the surface of the molded body 20 that is also an insulator. A plurality of insulating operation patterns 33 that are touch-operated with a finger are formed, and from the viewpoint of confirming an accurate input, vibration and click feeling are given by a feedback device (not shown).
 パネル32は、例えばポリアミド、ポリカーボネート、ポリブチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンスルフィド等を含有する成形材料を使用して成形され、所定の色彩や模様で着色されており、必要に応じて凹凸形成、屈曲形成、三次元形成される。 The panel 32 is molded using a molding material containing, for example, polyamide, polycarbonate, polybutylene terephthalate, polyphenylene ether, polyphenylene sulfide, etc., and is colored with a predetermined color or pattern. Forming, three-dimensional forming.
 複数の操作模様33は、複数の電極体1の位置と数に対応するよう、例えば絶縁性のインクを用いたスクリーン印刷法等により間隔をおき配列され、各操作模様33やその周辺に、タッチ操作に寄与しない他の加飾模様と共に、必要な文字、図形、記号が併せて形成される。各操作模様33は、求められる機能を示す所定の形、例えば円形、矩形、三角形等に形成される。 The plurality of operation patterns 33 are arranged at intervals by, for example, a screen printing method using insulating ink so as to correspond to the positions and numbers of the plurality of electrode bodies 1, and the operation patterns 33 and the periphery thereof are touched. Necessary characters, figures and symbols are formed together with other decorative patterns that do not contribute to the operation. Each operation pattern 33 is formed in a predetermined shape indicating a required function, for example, a circle, a rectangle, a triangle, or the like.
 支持層34は、図3ないし図5に示すように、アライメントの容易化を図る観点から、例えば可撓性を有する薄いポリエチレンテレフタレートやポリイミド等のフィルムからなり、成形体20の表面に複数の位置決めピン24を介してセットされることにより、成形体20の表面と外装パネル31のパネル32裏面との間に介在し、外装パネル31に振動やクリック感が生じた場合にダンパーとして機能する。 As shown in FIGS. 3 to 5, the support layer 34 is made of, for example, a thin film of flexible polyethylene terephthalate, polyimide, or the like from the viewpoint of facilitating alignment, and a plurality of positioning layers are formed on the surface of the molded body 20. By being set via the pin 24, it is interposed between the surface of the molded body 20 and the back surface of the panel 32 of the exterior panel 31, and functions as a damper when the exterior panel 31 is vibrated or clicked.
 支持層34は、その表面に、パネル32の裏面に弾接して操作模様33に間接的に対向する複数の第一の弾性体35が形成され、裏面には、電極体1の起立部4に弾接する複数の第二の弾性体36が形成されており、周縁部、例えば周縁四隅部には、成形体20の位置決めピン24に貫通される複数の位置決め孔37がそれぞれ穿孔される。この支持層34には、第一、第二の弾性体35・36を電気的に一体化する貫通孔38が複数の操作模様33の位置と数に対応するよう複数穿孔される。 The support layer 34 is formed with a plurality of first elastic bodies 35 elastically contacting the back surface of the panel 32 and indirectly facing the operation pattern 33 on the front surface. A plurality of second elastic bodies 36 that are elastically contacted are formed, and a plurality of positioning holes 37 that are penetrated by the positioning pins 24 of the molded body 20 are formed in the peripheral edge, for example, the four corners of the peripheral edge. A plurality of through holes 38 for electrically integrating the first and second elastic bodies 35 and 36 are formed in the support layer 34 so as to correspond to the positions and numbers of the plurality of operation patterns 33.
 複数の第一の弾性体35は、例えば弾性と導電性に優れるシリコーンゴム等を使用して形成され、複数の操作模様33の位置と数に対応するよう支持層34の表面に位置する。各第一の弾性体35は、カーボンや黒鉛等を含有する導電性のシリコーンゴム組成物を用いた印刷法により、対向する操作模様33の形と略同様な形に形成される。 The plurality of first elastic bodies 35 are formed using, for example, silicone rubber having excellent elasticity and conductivity, and are positioned on the surface of the support layer 34 so as to correspond to the positions and numbers of the plurality of operation patterns 33. Each first elastic body 35 is formed in a shape substantially similar to the shape of the opposed operation pattern 33 by a printing method using a conductive silicone rubber composition containing carbon, graphite, or the like.
 複数の第二の弾性体36は、例えば弾性と導電性に優れるシリコーンゴム等を使用して形成され、複数の操作模様33の位置と数に対応するよう支持層34の裏面に位置する。各第二の弾性体36は、カーボンや黒鉛等を含有する導電性のシリコーンゴム組成物を用いた印刷法により、第一の弾性体35に支持層34の貫通孔38を介し対向して一体化され、対向する第一の弾性体35と略同様な形に形成される。 The plurality of second elastic bodies 36 are formed using, for example, silicone rubber having excellent elasticity and conductivity, and are positioned on the back surface of the support layer 34 so as to correspond to the positions and numbers of the plurality of operation patterns 33. Each second elastic body 36 is integrated with the first elastic body 35 through a through hole 38 of the support layer 34 by a printing method using a conductive silicone rubber composition containing carbon, graphite, or the like. And is formed in a shape substantially the same as the opposing first elastic body 35.
 このような導電性を有する第一、第二の弾性体35・36は、電極体1とパネル32の裏面との間に導通路を確保し、操作模様33に接触する指から電極体1までの距離を実質的に短縮して検出精度を大幅に向上させるよう機能する。 The first and second elastic bodies 35 and 36 having such conductivity secure a conduction path between the electrode body 1 and the back surface of the panel 32, and from the finger contacting the operation pattern 33 to the electrode body 1. It functions to substantially reduce the distance of the sensor and greatly improve the detection accuracy.
 上記構成において、静電容量センサを製造する場合には、先ず、用意した支持層34の所定の箇所に複数の位置決め孔37と貫通孔38とをそれぞれ穿孔し、支持層34の表裏両面に導電性のシリコーンゴム組成物をそれぞれパターン印刷してこれらで貫通孔38を埋め、その後、表裏両面のシリコーンゴム組成物をそれぞれ乾燥硬化させて複数の第一、第二の弾性体35・36を形成する。 In the above configuration, when manufacturing a capacitance sensor, first, a plurality of positioning holes 37 and through-holes 38 are respectively drilled at predetermined positions of the prepared support layer 34, and conductive on both the front and back surfaces of the support layer 34. Each of the conductive silicone rubber compositions is printed with a pattern to fill the through-holes 38, and then the silicone rubber compositions on both sides are dried and cured to form a plurality of first and second elastic bodies 35 and 36. To do.
 こうして支持層34の表裏両面に複数の第一、第二の弾性体35・36をそれぞれ形成したら、成形体20の表面に支持層34を位置決め固定して複数の電極体1の起立部4に対応する第二の弾性体36をそれぞれ隙間なく弾接し、その後、成形体20の表面に外装パネル31のパネル32を装着してその裏面に複数の第一の弾性体35を隙間なく弾接すれば、静電容量センサを得ることができる。 When the plurality of first and second elastic bodies 35 and 36 are formed on both the front and back surfaces of the support layer 34 in this way, the support layer 34 is positioned and fixed on the surface of the molded body 20 to form the raised portions 4 of the plurality of electrode bodies 1. If the corresponding second elastic bodies 36 are elastically contacted without gaps, and then the panel 32 of the exterior panel 31 is mounted on the surface of the molded body 20, and the plurality of first elastic bodies 35 are elastically contacted with no gaps on the back surface. A capacitance sensor can be obtained.
 この際、静電容量センサの支持層34が可撓性を有し、第一、第二の弾性体35・36がそれぞれ弾性変形可能なので、成形体20の表面やパネル32の裏面が例え凸凹でも、凸凹に沿って支持層34を曲げたり、第一、第二の弾性体35・36で凸凹を吸収することができる。 At this time, since the support layer 34 of the capacitance sensor has flexibility and the first and second elastic bodies 35 and 36 can be elastically deformed, the surface of the molded body 20 and the back surface of the panel 32 are uneven. However, the support layer 34 can be bent along the unevenness, or the unevenness can be absorbed by the first and second elastic bodies 35 and 36.
 製造された静電容量センサは、携帯電話や自動車機器等に入力デバイスとして組み込まれ、外装パネル31の操作模様33に指が接触したり、接触しつつスライドすると、電極体1、外装パネル31とその操作模様33、第一、第二の弾性体35・36、及び指がキャパシタを形成して静電容量の変化を検出し、携帯電話や自動車機器等の所定の機能を実現する。この際、フィードバック装置のモータや圧電素子の駆動により外装パネル31が振動等するが、この振動等を支持層34が吸収するので、電極体1や第一、第二の弾性体35・36に振動が伝播して故障したり、損傷するのを防止することができる。 The manufactured capacitance sensor is incorporated as an input device in a mobile phone, an automobile device, or the like. When a finger contacts or slides while touching the operation pattern 33 of the exterior panel 31, the electrode body 1 and the exterior panel 31 The operation pattern 33, the first and second elastic bodies 35 and 36, and the finger form a capacitor to detect a change in capacitance, thereby realizing a predetermined function of a mobile phone, an automobile device, or the like. At this time, the exterior panel 31 vibrates by driving the motor of the feedback device and the piezoelectric element, but the support layer 34 absorbs this vibration and the like, so that the electrode body 1 and the first and second elastic bodies 35 and 36 It is possible to prevent the vibration from propagating and failing or being damaged.
 上記構成によれば、支持層34に複数の第一、第二の弾性体35・36をそれぞれ一体化するので、成形体20と外装パネル31との間に複数の誘電体を個別に順次挿入して介在させる必要が全くない。したがって、静電容量センサの製造作業が実に容易となり、静電容量センサの構成の簡素化や部品点数の削減を図ることができる。 According to the above configuration, since the plurality of first and second elastic bodies 35 and 36 are respectively integrated with the support layer 34, a plurality of dielectrics are sequentially inserted between the molded body 20 and the exterior panel 31. There is no need to intervene. Therefore, the manufacturing process of the capacitance sensor becomes really easy, and the configuration of the capacitance sensor can be simplified and the number of parts can be reduced.
 また、第一、第二の弾性体35・36が低硬度で凹凸を吸収する弾性を有し、電極体1やパネル32と隙間なく密接するので、例え成形体20や外装パネル31が凹凸形成されていたり、屈曲形成されていても、電極体1、パネル32、支持層34の間に凹凸が生じて空隙が発生することがない。したがって、微弱な静電容量の変化を確実に検出することができ、指の位置や動きを高精度に把握することが可能になる。 Further, since the first and second elastic bodies 35 and 36 have low hardness and absorb elasticity, and are in close contact with the electrode body 1 and the panel 32 without any gaps, for example, the molded body 20 and the exterior panel 31 are uneven. Even if it is formed or bent, unevenness is not generated between the electrode body 1, the panel 32, and the support layer 34, and no void is generated. Therefore, it is possible to reliably detect a weak change in capacitance, and to grasp the position and movement of the finger with high accuracy.
 また、成形体20に複数の電極体1をインサート成形するので、ハーネスに接続可能なコネクタ構造を容易に得ることができる。さらに、弾性を有する第一、第二の弾性体35・36が外装パネル31に振動やクリック感が生じた場合に、振動等を吸収・減衰するダンパーとしても機能するので、ビビリ音等の発生を有効に抑制防止することが可能になる。 Further, since the plurality of electrode bodies 1 are insert-molded in the molded body 20, a connector structure that can be connected to a harness can be easily obtained. Furthermore, when the elastic first and second elastic bodies 35 and 36 have a vibration or a click feeling in the exterior panel 31, they also function as a damper that absorbs and attenuates vibrations, etc. Can be effectively suppressed and prevented.
 次に、図6は本発明の第2の実施形態を示すもので、この場合には、複数の第一、第二の弾性体35・36をそれぞれ絶縁性のシリコーンゴムを使用して形成し、複数の第一、第二の弾性体35・36をそれぞれ誘電体39とするようにしている。 Next, FIG. 6 shows a second embodiment of the present invention. In this case, a plurality of first and second elastic bodies 35 and 36 are respectively formed using insulating silicone rubber. The plurality of first and second elastic bodies 35 and 36 are respectively dielectrics 39.
 複数の第一、第二の弾性体35・36は、操作模様33に類似の形でも良いが、必ずしもこれに限定されるものではない。例えば、支持層34の表裏両面に流動性を有する絶縁性のゴム組成物をそれぞれスクリーン印刷して一様な弾性シートを積層し、この表裏一対の弾性シートを第一、第二の弾性体35・36としても良い。その他の部分については、上記実施形態と同様であるので説明を省略する。 The plurality of first and second elastic bodies 35 and 36 may be similar in shape to the operation pattern 33, but are not necessarily limited thereto. For example, the insulating rubber composition having fluidity is screen-printed on both the front and back surfaces of the support layer 34 to laminate a uniform elastic sheet, and the pair of front and back elastic sheets are used as the first and second elastic bodies 35. -It is good also as 36. The other parts are the same as those in the above embodiment, and the description thereof is omitted.
 本実施形態においても上記実施形態と同様の作用効果が期待でき、静電容量センサの構成の多様化を図ることができるのは明らかである。さらに、一様な弾性シートを第一、第二の弾性体35・36とすることもできるので、構成の著しい簡素化、部品点数の大幅な削減、ダンパー機能の向上を図ることもできる。 Also in this embodiment, it is obvious that the same effect as the above embodiment can be expected, and the configuration of the capacitance sensor can be diversified. Furthermore, since the uniform elastic sheet can be used as the first and second elastic bodies 35 and 36, the structure can be greatly simplified, the number of parts can be greatly reduced, and the damper function can be improved.
 なお、上記実施形態では電極体1を断面L字形に屈曲形成したが、何らこれに限定されるものではない。例えば、電極体1を断面略I字形、略J字形、略S字形、略T字形、略U字形等に屈曲形成しても良い。また、支持層34に第一、第二の弾性体35・36を各種の成形法により一体化しても良い。 In addition, in the said embodiment, although the electrode body 1 was bent and formed in the cross-section L-shape, it is not limited to this at all. For example, the electrode body 1 may be bent to have a substantially I-shaped cross section, a substantially J-shape, a substantially S-shape, a substantially T-shape, a substantially U-shape, or the like. Further, the first and second elastic bodies 35 and 36 may be integrated with the support layer 34 by various molding methods.
1   電極体
2   伸長接続片
3   電極片
4   起立部(露出部)
10  内面シールド(シールド)
20  成形体(絶縁体)
21  誘電操作体
22  表面
23  空洞部
30  絶縁体
31  外装パネル
32  パネル
33  操作模様
34  支持層
35  第一の弾性体
36  第二の弾性体
38  貫通孔
39  誘電体
DESCRIPTION OF SYMBOLS 1 Electrode body 2 Elongation connection piece 3 Electrode piece 4 Standing part (exposed part)
10 Inner shield (shield)
20 Molded body (insulator)
21 dielectric operation body 22 surface 23 cavity 30 insulator 31 exterior panel 32 panel 33 operation pattern 34 support layer 35 first elastic body 36 second elastic body 38 through hole 39 dielectric

Claims (10)

  1.  導電性の電極体と、この電極体の少なくとも一部を内蔵する絶縁体とを含み、電極体に導電体が絶縁体を介して接近した場合に生じる静電容量の変化を検出する静電容量センサであって、
     金属材料からなる三次元形状の電極体を電子回路に電気的に接続可能とし、絶縁体を三次元形状としたことを特徴とする静電容量センサ。
    An electrostatic capacitance that includes a conductive electrode body and an insulator containing at least a part of the electrode body, and detects a change in electrostatic capacitance that occurs when the conductor approaches the electrode body via the insulator. A sensor,
    A capacitance sensor characterized in that a three-dimensional electrode body made of a metal material can be electrically connected to an electronic circuit, and an insulator has a three-dimensional shape.
  2.  絶縁体を、樹脂を含む成形材料により三次元形状に成形され、電極体を覆う誘電操作体とした請求項1記載の静電容量センサ。 2. The capacitance sensor according to claim 1, wherein the insulator is formed into a three-dimensional shape by a molding material containing a resin and is a dielectric operation body covering the electrode body.
  3.  電極体を複数とし、この複数の電極体の間に高周波遮断用のシールドを組み合わせた請求項2記載の静電容量センサ。 3. The capacitance sensor according to claim 2, wherein a plurality of electrode bodies are combined, and a shield for high frequency cutoff is combined between the plurality of electrode bodies.
  4.  電極体は、電子回路に電気的に接続される伸長接続片と、この伸長接続片に形成されて導電体に誘電操作体を介して対向する電極片とを含み、伸長接続片の一部と電極片とを誘電操作体内に埋没し、伸長接続片と導電体が接触する誘電操作体表面との間の距離を、電極片と誘電操作体表面との間の距離よりも長くした請求項2又は3記載の静電容量センサ。 The electrode body includes an extension connection piece electrically connected to the electronic circuit, and an electrode piece formed on the extension connection piece and facing the conductor via the dielectric operation body, and a part of the extension connection piece; The electrode piece is buried in a dielectric manipulation body, and the distance between the elongated connection piece and the dielectric manipulation body surface in contact with the conductor is made longer than the distance between the electrode piece and the dielectric manipulation body surface. Or the electrostatic capacitance sensor of 3.
  5.  誘電操作体内に空洞部を形成した請求項2、3、又は4記載の静電容量センサ。 The capacitance sensor according to claim 2, 3 or 4, wherein a cavity is formed in the dielectric operation body.
  6.  絶縁体に外部から接触操作される絶縁性の外装パネルを対向させてそのパネルの少なくとも表面には操作模様を形成し、絶縁体と外装パネルのパネルとの間に絶縁性の支持層を介在させ、この支持層の表面に、外装パネルのパネルに接触して操作模様に対向する第一の弾性体を形成するとともに、支持層の裏面には、絶縁体から露出した電極体の露出部に接触する第二の弾性体を形成し、支持層に、第一、第二の弾性体を一体化する貫通孔を設けた請求項1記載の静電容量センサ。 An insulating exterior panel that is operated to come into contact with the insulator from the outside is made to face, an operation pattern is formed on at least the surface of the panel, and an insulating support layer is interposed between the insulator and the panel of the exterior panel. The first elastic body that is in contact with the panel of the exterior panel and faces the operation pattern is formed on the surface of the support layer, and the back surface of the support layer is in contact with the exposed portion of the electrode body exposed from the insulator. The electrostatic capacitance sensor according to claim 1, wherein a second elastic body is formed, and a through hole for integrating the first and second elastic bodies is provided in the support layer.
  7.  外装パネルの操作模様を複数とし、この複数の操作模様の位置と数に応じ、電極体と支持層の第一、第二の弾性体とをそれぞれ複数とした請求項6記載の静電容量センサ。 7. The capacitance sensor according to claim 6, wherein a plurality of operation patterns of the exterior panel are provided, and a plurality of electrode bodies and a plurality of first and second elastic bodies of the support layer are provided in accordance with the positions and numbers of the plurality of operation patterns. .
  8.  支持層の第一、第二の弾性体にそれぞれ導電性を付与した請求項6又は7記載の静電容量センサ。 The electrostatic capacity sensor according to claim 6 or 7, wherein conductivity is imparted to each of the first and second elastic bodies of the support layer.
  9.  支持層の第一、第二の弾性体をそれぞれ誘電体とした請求項6又は7記載の静電容量センサ。 The electrostatic capacity sensor according to claim 6 or 7, wherein the first elastic body and the second elastic body of the support layer are dielectrics.
  10.  請求項1ないし5いずれかに記載の静電容量センサの製造方法であって、電極体を金属材料により三次元形状に加工して電子回路に電気的に接続可能とし、この電極体を金型にインサートし、この金型に絶縁体用の樹脂を含む成形材料を充填することにより、電極体の少なくとも一部を絶縁体内に一体的に埋没させることを特徴とする静電容量センサの製造方法。
     
    6. The method of manufacturing a capacitance sensor according to claim 1, wherein the electrode body is processed into a three-dimensional shape with a metal material so that it can be electrically connected to an electronic circuit. A method of manufacturing a capacitance sensor, wherein at least a part of an electrode body is integrally buried in an insulator by being inserted into the mold and filled with a molding material containing a resin for an insulator in the mold .
PCT/JP2010/061154 2009-06-30 2010-06-30 Capacitance sensor and manufacturing method thereof WO2011002025A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009155167 2009-06-30
JP2009-155167 2009-06-30
JP2010-072060 2010-03-26
JP2010072060 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011002025A1 true WO2011002025A1 (en) 2011-01-06

Family

ID=43411095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061154 WO2011002025A1 (en) 2009-06-30 2010-06-30 Capacitance sensor and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2011002025A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2597774A1 (en) * 2011-11-21 2013-05-29 Atlantic Industrie Touch-sensitive panel of an electronic system in which the operating parameters are altered by the physical intervention of the user
WO2014208585A1 (en) * 2013-06-25 2014-12-31 株式会社 東芝 Refrigerator
JP2018173270A (en) * 2013-06-25 2018-11-08 東芝ライフスタイル株式会社 refrigerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146099A (en) * 2002-10-22 2004-05-20 Alps Electric Co Ltd Electronic apparatus having touch sensor
JP2008047026A (en) * 2006-08-21 2008-02-28 Fujitsu Component Ltd Touch panel with curved surface and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146099A (en) * 2002-10-22 2004-05-20 Alps Electric Co Ltd Electronic apparatus having touch sensor
JP2008047026A (en) * 2006-08-21 2008-02-28 Fujitsu Component Ltd Touch panel with curved surface and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2597774A1 (en) * 2011-11-21 2013-05-29 Atlantic Industrie Touch-sensitive panel of an electronic system in which the operating parameters are altered by the physical intervention of the user
WO2014208585A1 (en) * 2013-06-25 2014-12-31 株式会社 東芝 Refrigerator
JP2016014484A (en) * 2013-06-25 2016-01-28 株式会社東芝 refrigerator
CN107166855A (en) * 2013-06-25 2017-09-15 东芝生活电器株式会社 Refrigerator
JP2018173270A (en) * 2013-06-25 2018-11-08 東芝ライフスタイル株式会社 refrigerator
CN107166855B (en) * 2013-06-25 2019-11-05 东芝生活电器株式会社 Refrigerator
JP2020079705A (en) * 2013-06-25 2020-05-28 東芝ライフスタイル株式会社 refrigerator
JP7038748B2 (en) 2013-06-25 2022-03-18 東芝ライフスタイル株式会社 refrigerator

Similar Documents

Publication Publication Date Title
JP5748082B2 (en) Molding method
JP4554651B2 (en) Touch panel input device
JP5340318B2 (en) Capacitance type input switch
US6680731B2 (en) Flexible touchpad sensor grid for conforming to arcuate surfaces
CN103226418B (en) With the capacitive type touch pad of keyswitch
EP2337225B1 (en) Icon illumination for capacitive touch switch
CN107850961B (en) Operation feeling imparting input device
JP2013246626A (en) Touch panel and input device using the same
JP6341942B2 (en) Capacitive input device
JP2010244776A (en) Capacitance sensor and its manufacturing method
US9323399B2 (en) Capacitive touch pad with adjacent touch pad electric field suppression
WO2011002025A1 (en) Capacitance sensor and manufacturing method thereof
JP2018112854A (en) Capacitance type sensor device
JP6600584B2 (en) Capacitive input device
US20130161163A1 (en) Multi-directional input device
JP2008270022A (en) Switch equipped with touch sensor
JP6392504B2 (en) Control panel
CN1825764A (en) Activation device in a motor vehicle, connected to a system for operator detection
JP5318790B2 (en) Input sensor switch
WO2016006216A1 (en) Switch and input device using same
JP2014099340A (en) Input device
CN117178244A (en) Haptic feedback based on electroadhesion on three-dimensional surfaces of user controls
JP2014041779A (en) Input device
KR20080078144A (en) Capacitive input device
JP2014203541A (en) Electrostatic capacity type switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10794193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP