WO2011001792A1 - Method and equipment for dissociation of methane hydrate - Google Patents

Method and equipment for dissociation of methane hydrate Download PDF

Info

Publication number
WO2011001792A1
WO2011001792A1 PCT/JP2010/059597 JP2010059597W WO2011001792A1 WO 2011001792 A1 WO2011001792 A1 WO 2011001792A1 JP 2010059597 W JP2010059597 W JP 2010059597W WO 2011001792 A1 WO2011001792 A1 WO 2011001792A1
Authority
WO
WIPO (PCT)
Prior art keywords
methane
methane hydrate
hydrate
well
pressure
Prior art date
Application number
PCT/JP2010/059597
Other languages
French (fr)
Japanese (ja)
Inventor
秀紀 皆川
英夫 成田
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2011001792A1 publication Critical patent/WO2011001792A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/04Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0099Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity

Definitions

  • the present invention relates to a method for separating and producing methane gas from methane hydrate deposits and an apparatus therefor.
  • Methane hydrate (hereinafter referred to as MH) in the waters near Japan has a three-dimensional network structure of water molecules under low temperature and high pressure conditions, and methane molecules enter the internal gaps and become ice-like crystals. Therefore, the amount of resources equivalent to about 100 years of Japan's annual natural gas consumption has been estimated, and development as domestic energy in the future is expected.
  • the methods for recovering methane gas from MH reservoirs currently under investigation include thermal stimulation, decompression, and inhibitor injection, etc., all of which separate and decompose MH into gas and water in situ. Is a way to produce.
  • MH is solid and has no fluidity. Therefore, MH is treated as a substance that hinders the flow of gas and water, and the permeability value indicating the ease of fluid flow in the reservoir in the presence of MH is an important factor in evaluating gas productivity. It becomes.
  • the depressurization method in which the pressure of the MH layer is reduced and maintained in the decomposition region causes ice or MH to be regenerated due to the hydrate decomposition and the endothermic reaction that accompanies the rapid depressurization process, and the permeability is significantly reduced. .
  • Patent Document 3 proposes conducting electricity between two wells and electrically heating the reservoir.
  • current heating at AC 200 V is not performed unless salt water with a seawater concentration is passed through the MH core deposit in advance as an electrolyte solution before the current is passed. Little was done.
  • the object of the present invention is to enable effective MH heating even at low voltage and low power, thereby enabling more efficient MH decomposition over a long period of time compared to the conventional MH decomposition method described above. And providing a safe MH decomposition method and apparatus therefor.
  • the inventors of the present invention reduced the MH deposit layer to the decomposition region by the reduced pressure method, and then maintained the electrolyte solution and moisture separated from the MH between the electrodes for current heating, and the flow of fluid in the MH deposit.
  • By increasing the permeability value representing the ease it is possible to promote the temperature rise and decomposition of the MH deposit over a long period of time, even with a low voltage, and to produce highly efficient methane gas from the MH deposit. Based on the knowledge that it is possible, the following methane hydrate decomposition method was developed.
  • a step of reducing the pressure around the methane hydrate deposit layer to a predetermined pressure, a step of injecting an electrolyte solution into the methane hydrate deposit layer, and energization between a plurality of electrodes inserted in the methane hydrate deposit layer Preferentially treating the methane decomposed in the step of performing the treatment, raising the temperature of the methane hydrate deposit by the energization treatment, decomposing the methane hydrate into methane and moisture, and decomposing the methane hydrate.
  • the methane hydrate comprising the step of continuing the energization treatment while maintaining the permeability value of the water generated in the step of discharging and decomposing the electrolyte solution and methane hydrate in the layer of the methane hydrate deposit Disassembly method.
  • methane hydrate decomposition equipment was developed. That is, via a plurality of wells reaching the methane hydrate deposit layer, a pressure reducing device for reducing the pressure around the methane hydrate deposit layer to a predetermined pressure, and via the plurality of wells, the methane hydrate An electrolyte solution injection device for injecting an electrolyte solution into the deposit layer, and a methane discharge passage that communicates with the plurality of wells and discharges decomposed methane from the upper or middle height of the methane hydrate deposit layer.
  • An apparatus for decomposing methane hydrate comprising a power supply device to be applied, and a control device for controlling power application by the pump, the electrolyte solution injection device, a discharge valve, and the power supply device
  • a plurality of electrodes are arranged at one well electrode and the apex of an equilateral triangle centering on this, so that the above methane hydrate decomposition can be performed with lower power.
  • the predetermined voltage is applied alternately between the well electrode located at the center and each well electrode arranged at the apex of the equilateral triangle.
  • the MH deposit layer is depressurized to a predetermined pressure, and a low voltage is applied between a plurality of electrodes inserted in the MH deposit layer in the presence of an electrolyte solution.
  • the initial energization heating is smoothly started to increase the temperature of the MH deposit, and MH is decomposed into methane and moisture, and the separated methane is discharged preferentially from the MH deposit layer.
  • the electrolyte solution and the water generated in the step of decomposing MH can be maintained, and an efficient energization process can be continued for a long time while maintaining the permeability value.
  • the above methane hydrate decomposition method can be carried out efficiently.
  • FIG. 1 shows the overall configuration of a methane hydrate collection plant
  • FIG. 2 shows steps (a) to (g) from the construction of such a plant to gas production.
  • a plurality of wells 1 reaching the MH deposit are excavated, and the well openings are sealed by the wellhead device 2, thereby preventing the inflow of seawater.
  • An underwater pipe 3 extends to the sea at the top of the anti-outlet device 2, and a pipe introduction port 4 and a methane gas recovery valve 5 are installed at the tip.
  • the wall of the excavation hole is cemented with a casing 6 so that the entire wall is electrically insulated, and the formation water from the sedimentary layer is transferred to the well at the excavation stage.
  • the well is filled with water up to a height corresponding to the formation pressure (initial head pressure: about 9.0 MPa).
  • seawater which is an electrolyte solution
  • a water pump 9 as an electrolyte solution injection device
  • the seawater is injected into the sedimentary layer by filling the seawater to the initial head pressure. After that, the water pump 9 is disconnected.
  • the sea bottom in the well is pumped up again by the anti-bottom pump 8 and the head pressure is reduced (head pressure during decompression: about 4.0 MPa). 8 is extracted from the well and the well electrode 10 is inserted so as to correspond to 7 parts of perforation.
  • the power from the power supply device 11 is supplied to the well electrode 10 inserted into each of the plurality of wells 1 in the process of FIG. 2 (g) via the pipe introduction port 4, and decomposition and collection of MH are started. To do.
  • the diameter of the well electrode 10 is 5.04 centimeters, the length is about 1.0 m, and the distance between the two electrodes is 3 m, when 50 Hz AC 10 A to 40 A (100 V to 500 V) is energized The internal temperature rises and hydrate decomposition proceeds around the well electrode 10. At that time, the endothermic effect accompanying the progress of decomposition is compensated by energizing the well electrode 10.
  • methane gas can be collected by opening the methane gas recovery valve 5 provided in the methane discharge passage at the top of the subsea pipe 3 in accordance with the start of MH decomposition.
  • methane gas recovery valve 5 provided in the methane discharge passage at the top of the subsea pipe 3 in accordance with the start of MH decomposition.
  • the methane gas is collected from the upper end of the well 1 through the methane gas recovery valve 5, but a methane extraction pipe may be separately provided in the middle portion of the MH deposit layer.
  • the permeability should be maintained to such an extent that the electrolyte solution and the separated water can sufficiently flow.
  • the pressure is reduced to the MH equilibrium decomposition pressure and energized to raise the temperature of the deposited layer, decompose MH, and then infiltrate the deposit. Prevents the rate from decreasing and even increases the penetration rate. That is, in the present invention, the water generated by decomposing MH by energization stays below and generates a new energized region, thereby increasing the energized region of the MH deposited layer, that is, increasing the energized / heated region.
  • the decomposition of MH can be promoted, and the methane gas production amount accompanying MH decomposition can be increased.
  • the present invention is also applicable to a horizontal well in which MH deposits are energized and heated in the horizontal direction at a predetermined depth.
  • the methane gas recovery valve 5, the anti-bottom pump 8, the power supply device 11 and the like are used to detect pressure and temperature sensors installed at appropriate locations in the well 1 as well as the permeability of the electrolyte solution and separated water. While monitoring the detection value of the solution electrical resistance sensor, the operator may adjust the value to an optimum value by using an adjuster provided on the control panel. Based on these detection values, a microcomputer (not shown) or the like may be used. It may be controlled sequentially by the control device.
  • xenon gas hydrate a xenon gas hydrate
  • FIG. 4 (a) showing the MH decomposition equilibrium temperature and pressure phase diagram (a)
  • the reduced pressure from 9 MPa to 4 MPa is the equilibrium temperature from 12.1 ° C. to 4. This corresponds to a temperature change up to 2 ° C.
  • FIG. 4 (a) showing the MH decomposition equilibrium temperature and pressure phase diagram (a)
  • the reduced pressure from 9 MPa to 4 MPa is the equilibrium temperature from 12.1 ° C. to 4. This corresponds to a temperature change up to 2 ° C.
  • FIG. 4 (a) showing the MH decomposition equilibrium temperature and pressure phase diagram (a)
  • the reduced pressure from 9 MPa to 4 MPa is the equilibrium temperature from 12.1 ° C. to 4. This corresponds to a temperature change up to 2 ° C.
  • an XH deposit is produced in the hydrostatic core holder 12, the core permeability is measured by passing water through the core, and the core pressure is reduced by controlling the back pressure control valve 13.
  • a deposit obtained by shaping Toyoura standard sand with a controlled moisture content into a diameter of 5.08 cm ⁇ ⁇ 12 cm in length is placed in the rubber sleeve 14 inside the core holder 12.
  • the restraint pressure control device 15 the restraint pressure is monitored by the restraint pressure pressure gauge 18 through the rubber sleeve 14 and the end caps 16 and 17, and a restraint pressure of 5 MPa is applied to the deposit 19.
  • Xenon gas is flowed from the xenon gas cylinder 20 to the deposit 18 through the gas flow rate controller 21, the back pressure control valve 13 is controlled, the core internal pressure is monitored by the core pressure gauge 22, and the pressure is increased to 0.9 MPa. Thereafter, the output of the core thermocouple 23 is monitored, the core temperature is cooled to 1 ° C. by the jacket-type core temperature controller 24, xenon gas hydrate is allowed to develop in the pores of the deposit, and the xenon gas hydrate deposit Get 19. Thereafter, the core temperature is raised to 9 ° C. by the jacket type core temperature controller 24.
  • distilled water was injected from the end cap 16 at one end of the core located at the lower part of the core by the liquid injection device 25 in the core, and the core inlet pressure and the outlet pressure were adjusted by the differential pressure gauge 26. The pressure difference is measured and the permeability Kw is measured.
  • an electrolyte solution simulating seawater with NaCl 3.5% is injected by the core liquid injection device 25 instead of distilled water, and the permeability Ke is measured. Thereafter, the pressure is reduced to 0.4 MPa, and the temperature / pressure equilibrium state in the xenon gas hydrate formation decomposition is maintained.
  • the internal temperature of the core increases by 1 ° C. to 40 ° C.
  • the decomposition of the rate proceeds smoothly, and the xenon gas is partially discharged from the piping together with the decomposed water through the back pressure control valve 13 on the side opposite to the solution press-fitting side of the core holder 12.
  • the discharged gas and water are measured for discharge by a gas integrated flow meter 28 and a water integrated recorder 29, respectively.
  • the remaining moisture is retained inside and penetrates into the MH decomposition region, so that the electric resistance gradually decreases and the permeability increases gradually.
  • FIG. 5 shows the core temperature (a), the core electrical resistivity (b), and the amount of released gas (c) with respect to each hydrate saturation rate when AC energization (300 mA) is performed under the XH decomposition equilibrium pressure condition.
  • the experiment result of the time change (horizontal axis elapsed time) of discharged water (d) is shown.
  • the XH saturation rate is 10% or more
  • the core temperature increases, the amount of gas released increases, the core electrical resistance decreases, and the input electrical resistance decreases as XH decomposes. From this, it can be confirmed that the water generated along with the decomposition of XH stays in the core and increases the energization region.
  • Example 2 In energization heating between two wells, the length of the energization / heating area is limited by the length between the wells and the well electrode, and the range is limited by the distance between wells ⁇ the length of the well electrode. Equivalent to. It may also be assumed that a wide range of MH deposition layers need to be effectively energized and heated with low power. Therefore, in Example 2, as shown in FIG. 6, the energization region of the electrode is limited to 1 m (about 3 feet) in length, and an equilateral triangle having one side of 10.0 m centered on one well electrode 30.
  • the center well electrode 28 similar to that of the first embodiment and the three well electrodes 31a to 31c arranged at the apexes of the equilateral triangle are arranged. If the heating is performed between the well electrodes 31a, 31b, and 31c after each of them is energized and heated by the power supply device 32, a diameter of 8.67m centered on the well electrode 7 is obtained. It is possible to decompose the MH deposition layer uniformly in the depth direction. The steps shown in FIGS. 2A to 2G are the same in this embodiment.
  • the current heating between the well electrode 30 and each of the well electrodes 31a to 31c is about AC25A (800V), and the current heating between the well electrodes 31a, 31b, 31c.
  • AC25A 800V
  • MH it is possible to maintain the decomposition of MH at about AC 15 to 25 A (700 to 1000 V).
  • the operator may adjust the value to an optimum value using an adjuster provided on the control panel, or based on these detected values, a control device such as a microcomputer may be used. It may be controlled sequentially.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

In order to collect methane from methane hydrate (MH) present in a methane hydrate bed with low electric-power consumption safely and efficiently, provided is a method which comprises: reducing the ambient pressure of a methane hydrate sediment bed to a prescribed level; injecting an electrolyte solution into the resulting methane hydrate sediment bed; passing an electric current between multiple electrodes inserted into the methane hydrate sediment bed to raise the temperature of the methane hydrate sediment and thus dissociate the methane hydrate into methane and water; and continuing the passing of an electric current therebetween, while preferentially discharging the methane thus separated and thereby keeping the rate of penetration of water into the methane hydrate sediment bed.

Description

メタンハイドレート分解方法及び装置Methane hydrate decomposition method and apparatus
 本発明はメタンハイドレート堆積物からメタンガスを分離生産する方法及びそのための装置に関する。 The present invention relates to a method for separating and producing methane gas from methane hydrate deposits and an apparatus therefor.
 日本近海に存在するメタンハイドレート(以下、MH)は、低温かつ高圧の条件下で、水分子が立体の網状構造を作り、内部の隙間にメタン分子が入り込み氷状の結晶の状態となっているもので、わが国の年間天然ガス消費量の約100年分にも相当する資源量が試算されており、将来の国産エネルギーとしての開発が期待されている。
 現在検討されているMH貯留層からのメタンガスの回収法には、熱刺激法、減圧法、インヒビター圧入法等が挙げられるが、いずれも原位置でMHをガスと水とに分離分解させてガスを生産する方法である。
 在来型エネルギー資源である石油・天然ガスとは異なり、MHは固体であり流動性を持たないことが特徴である。そのため、MHはガスや水の流動を妨げる物質として取り扱われ、その存在下での貯留層における流体の流れ易さを表す浸透率値の大小が、ガスの生産性を評価する上で重要な因子となる。
Methane hydrate (hereinafter referred to as MH) in the waters near Japan has a three-dimensional network structure of water molecules under low temperature and high pressure conditions, and methane molecules enter the internal gaps and become ice-like crystals. Therefore, the amount of resources equivalent to about 100 years of Japan's annual natural gas consumption has been estimated, and development as domestic energy in the future is expected.
The methods for recovering methane gas from MH reservoirs currently under investigation include thermal stimulation, decompression, and inhibitor injection, etc., all of which separate and decompose MH into gas and water in situ. Is a way to produce.
Unlike oil and natural gas, which are conventional energy resources, MH is solid and has no fluidity. Therefore, MH is treated as a substance that hinders the flow of gas and water, and the permeability value indicating the ease of fluid flow in the reservoir in the presence of MH is an important factor in evaluating gas productivity. It becomes.
 熱刺激法の1つである熱水圧入法は、特許文献1、特許文献2にみられるように、熱水を圧入して貯留層の温度を上昇させることにより、MHの分解を促進させる方法であり、他の回収法と比較して高いガスの生産性が期待されている。
 しかし、堆積層内部での熱水の温度低下、分解により生成したメタンガスと水が、MHが未分解かつ低温の下流区域に流入することに起因するMHの成長・再生成が促進され、結果として著しく浸透性が低下し、熱水圧入の継続が不可能となることが懸念される。
As shown in Patent Document 1 and Patent Document 2, the hot water injection method, which is one of the thermal stimulation methods, is a method of promoting the decomposition of MH by injecting hot water to raise the temperature of the reservoir. Therefore, high gas productivity is expected compared to other recovery methods.
However, the growth and regeneration of MH due to the methane gas and water generated by the temperature drop and decomposition of the hot water inside the sedimentary layer are promoted as a result of MH flowing into the undecomposed and low temperature downstream area, and as a result There is a concern that the permeability will be significantly reduced and it will become impossible to continue the hot water injection.
 またMH層の圧力を減圧し、分解領域に維持する減圧法は、急激な減圧処理によるハイドレートの分解とそれに伴う吸熱反応により、氷、もしくはMHの再生成を生じ、著しく浸透率が低下する。 In addition, the depressurization method in which the pressure of the MH layer is reduced and maintained in the decomposition region causes ice or MH to be regenerated due to the hydrate decomposition and the endothermic reaction that accompanies the rapid depressurization process, and the permeability is significantly reduced. .
 一方、熱刺激法とは異なる熱攻法(加熱法)として、特許文献3には、2本の坑井の間で通電を行い、貯留層を通電加熱することが提案されているが、発明者による実験の結果では、たとえ、坑井間5cmを模擬した実験においても、通電前に予めMHコア堆積物に海水濃度の食塩水を電解質溶液として通水しなければ、AC200Vでの通電加熱はほとんど行われなかった。 On the other hand, as a thermal attack method (heating method) different from the thermal stimulation method, Patent Document 3 proposes conducting electricity between two wells and electrically heating the reservoir. As a result of experiments by a person, even in an experiment simulating 5 cm between wells, current heating at AC 200 V is not performed unless salt water with a seawater concentration is passed through the MH core deposit in advance as an electrolyte solution before the current is passed. Little was done.
 この原因としては、次の二つが考えられる。
 まず、第一にメタンハイドレート胚胎状態直後は、堆積物の孔隙内には残留水とガス、およびメタンハイドレートが存在するが、通電に必要な水の量が非常に少ないため、電気抵抗が大きく通電不能である。
 次にメタンハイドレート堆積物を脱イオン水・蒸留水にて飽和操作した場合、孔隙は脱イオン水・蒸留水などで満たされるが、脱イオン水・蒸留水の電気抵抗が非常に大きい(1.67x10オームm)ため、印加電圧AC200Vでの通電電流は50μA未満となり、通電加熱が効果的に行われなかったことが考えられる。
 たしかに、1000V以上の高電圧を印加すれば、通電加熱が行われる可能性はあるが、このような高電圧では坑井に進入させた電極間で放電が発生する可能性があり、爆発等の危険性が高まってしまう。
There are two possible causes for this.
First of all, immediately after the methane hydrate embryo state, residual water and gas and methane hydrate are present in the pores of the sediment, but the electrical resistance is low because the amount of water required for energization is very small. Large energization is impossible.
Next, when the methane hydrate deposit is saturated with deionized / distilled water, the pores are filled with deionized / distilled water, etc., but the electrical resistance of deionized / distilled water is very high (1 .67X10 5 ohms m) for the energization current at the applied voltage AC200V becomes less than 50 .mu.A, it is conceivable that electrical heating is not performed effectively.
Certainly, if a high voltage of 1000 V or higher is applied, there is a possibility that electric heating will be performed, but at such a high voltage, there is a possibility that a discharge will occur between the electrodes that have entered the well, such as an explosion. Risk increases.
特開2009-30378号公報JP 2009-30378 A 特開2005-213824号公報JP 2005-213824 A 米国特許第3916993号明細書U.S. Pat. No. 3,916,993
 本発明の目的は、低電圧、低電力でも、MHの効果的な通電加熱を可能にすることにより、上述した従来のMH分解方法と比較して、長時間にわたって高効率なMH分解を可能にするとともに、安全なMH分解方法及びそのための装置を提供することにある。 The object of the present invention is to enable effective MH heating even at low voltage and low power, thereby enabling more efficient MH decomposition over a long period of time compared to the conventional MH decomposition method described above. And providing a safe MH decomposition method and apparatus therefor.
 本発明者らは、減圧法によりMH堆積物の層を分解領域に減圧した上で、電解質溶液及びMHから分離した水分を、通電加熱用の電極間で維持し、MH堆積物における流体の流れやすさを表す浸透率値の増加を図るようにすれば、低電圧の通電でも、長期にわたってMH堆積物の昇温、分解を促進し、MH堆積物からの高効率なメタンガス生産を行うことができるとの知見に基づき、次のようなメタンハイドレート分解方法を開発した。 The inventors of the present invention reduced the MH deposit layer to the decomposition region by the reduced pressure method, and then maintained the electrolyte solution and moisture separated from the MH between the electrodes for current heating, and the flow of fluid in the MH deposit. By increasing the permeability value representing the ease, it is possible to promote the temperature rise and decomposition of the MH deposit over a long period of time, even with a low voltage, and to produce highly efficient methane gas from the MH deposit. Based on the knowledge that it is possible, the following methane hydrate decomposition method was developed.
 メタンハイドレート堆積物層の周辺圧力を所定圧力に減圧する工程と、前記メタンハイドレート堆積物層に電解質溶液を注入する工程と、前記メタンハイドレート堆積物層に挿入した複数の電極間に通電処理を行う工程と、前記通電処理によりメタンハイドレート堆積物の温度を上昇させ、メタンハイドレートをメタンと水分に分解する工程と、前記メタンハイドレートを分解する工程で分解したメタンを優先的に排出し、前記メタンハイドレート堆積物の層における前記電解質溶液及びメタンハイドレートを分解する工程で発生した水分の浸透率値を維持した上で前記通電処理を継続する工程とからなるメタンハイドレートの分解方法。 A step of reducing the pressure around the methane hydrate deposit layer to a predetermined pressure, a step of injecting an electrolyte solution into the methane hydrate deposit layer, and energization between a plurality of electrodes inserted in the methane hydrate deposit layer Preferentially treating the methane decomposed in the step of performing the treatment, raising the temperature of the methane hydrate deposit by the energization treatment, decomposing the methane hydrate into methane and moisture, and decomposing the methane hydrate. The methane hydrate comprising the step of continuing the energization treatment while maintaining the permeability value of the water generated in the step of discharging and decomposing the electrolyte solution and methane hydrate in the layer of the methane hydrate deposit Disassembly method.
 さらに、このメタンハイドレートの分解方法を、自動的かつ効率的に実現するため、次のようなメタンハイドレートの分解装置を開発した。
 すなわち、メタンハイドレート堆積物層に達している複数の坑井を介し、メタンハイドレート堆積物層の周辺圧力を所定圧力に減圧する減圧装置と、前記複数の坑井を介し、前記メタンハイドレート堆積物層に電解質溶液を注入する電解質溶液注入装置と、前記複数の坑井に連通するとともに、メタンハイドレート堆積物層の上部あるいは中間高さから、分解したメタンを排出するメタン排出通路に設けた排出弁と、前記複数の坑井のそれぞれを介して、前記メタンハイドレート堆積物の層に挿入した複数の坑井電極と、前記複数の坑井電極間に所定電圧及び所定電流の電力を印加する電源装置と、前記ポンプ、前記電解質溶液注入装置、排出弁及び前記電源装置による電力印加を制御する制御装置とからなるメタンハイドレートの分解装置。
Furthermore, in order to realize this methane hydrate decomposition method automatically and efficiently, the following methane hydrate decomposition equipment was developed.
That is, via a plurality of wells reaching the methane hydrate deposit layer, a pressure reducing device for reducing the pressure around the methane hydrate deposit layer to a predetermined pressure, and via the plurality of wells, the methane hydrate An electrolyte solution injection device for injecting an electrolyte solution into the deposit layer, and a methane discharge passage that communicates with the plurality of wells and discharges decomposed methane from the upper or middle height of the methane hydrate deposit layer. And a plurality of well electrodes inserted into the methane hydrate deposit layer through each of the plurality of wells, and a predetermined voltage and a predetermined current between the plurality of well electrodes. An apparatus for decomposing methane hydrate comprising a power supply device to be applied, and a control device for controlling power application by the pump, the electrolyte solution injection device, a discharge valve, and the power supply device
 上記のメタンハイドレートの分解をより低電力で行えるよう、上記のメタンハイドレート分解装置において、複数の電極を、ひとつの坑井電極と、これを中心とした正三角形の頂点のそれぞれに配置した坑井電極とから構成し、前記中心に位置する坑井電極と、正三角形の頂点に配置した各坑井電極との間で、交互に前記所定電圧を印加するようにした。 In the above methane hydrate decomposition apparatus, a plurality of electrodes are arranged at one well electrode and the apex of an equilateral triangle centering on this, so that the above methane hydrate decomposition can be performed with lower power. The predetermined voltage is applied alternately between the well electrode located at the center and each well electrode arranged at the apex of the equilateral triangle.
 本発明のメタンハイドレート分解方法によれば、MH堆積物層を所定圧力に減圧し、電解質溶液の存在下で、このMH堆積物層に挿入した複数の電極間に低電圧を印加することにより、初期の通電加熱をスムースに開始させることによりMH堆積物の温度を上昇させ、MHをメタンと水分に分解するとともに、分離したメタンをMH堆積層から優先的に排出し、MH堆積物の層における電解質溶液と、MHを分解する工程で発生した水分を維持し、浸透率値を維持した上で効率的な通電処理を長時間にわたり継続することができる。 According to the methane hydrate decomposition method of the present invention, the MH deposit layer is depressurized to a predetermined pressure, and a low voltage is applied between a plurality of electrodes inserted in the MH deposit layer in the presence of an electrolyte solution. The initial energization heating is smoothly started to increase the temperature of the MH deposit, and MH is decomposed into methane and moisture, and the separated methane is discharged preferentially from the MH deposit layer. The electrolyte solution and the water generated in the step of decomposing MH can be maintained, and an efficient energization process can be continued for a long time while maintaining the permeability value.
 本発明のメタンハイドレート分解装置によれば、上記のメタンハイドレート分解方法を効率よく実施することができる。 According to the methane hydrate decomposition apparatus of the present invention, the above methane hydrate decomposition method can be carried out efficiently.
本発明によるメタンハイドレート分解装置の全体構成を示した図である。It is the figure which showed the whole structure of the methane hydrate decomposition | disassembly apparatus by this invention. 本発明によるメタンハイドレートからのガス生産を行うまでの坑井の作業工程を示した図である。It is the figure which showed the work process of the well until it performs the gas production from the methane hydrate by this invention. 本発明によるメタンハイドレートの分解性能を検証するための実験装置の全体構成を示した図である。It is the figure which showed the whole structure of the experimental apparatus for verifying the decomposition | disassembly performance of the methane hydrate by this invention. メタンハイドレートの分解平衡温度圧力相図(a)と、キセノンハイドレートの分解平衡温度圧力相図(b)を対比した図である。It is the figure which contrasted the decomposition equilibrium temperature pressure phase diagram (a) of methane hydrate, and the decomposition equilibrium temperature pressure phase diagram (b) of xenon hydrate. 実験で使用したキセノンハイドレートの分解平衡圧力条件において、交流通電(300mA)を行った際の、各ハイドレート飽和率に対するコア温度(a)、コア電気比抵抗(b)、放出ガス量(c)、排出水(d)の時間変化(横軸経過時間)の実験結果を示した図である。The core temperature (a), the core electrical resistivity (b), and the amount of released gas (c) for each hydrate saturation rate when AC energization (300 mA) was performed under the decomposition equilibrium pressure condition of xenon hydrate used in the experiment. ) Is a diagram showing experimental results of time variation (horizontal axis elapsed time) of discharged water (d). 本発明による別の実施例の全体構成を示した図である。It is the figure which showed the whole structure of another Example by this invention. 別の実施例を水平坑井に適用した場合の概略図である。It is the schematic at the time of applying another Example to a horizontal well.
 (実施例1)
 図1に、メタンハイドレート採取プラントの全体構成が示されており、図2にこのようなプラントを構築し、ガス生産を行うまでの工程(a)~(g)が示されている。
2図(a)の工程では、まず、MH堆積層に到る坑井1を複数掘削し、坑井開口部を抗口装置2により封じることで、海水の流入を防ぐ。抗口装置2上部には海中管3が海上まで伸びており、その先には配管導入口4及びメタンガス回収弁5が設置されている。
Example 1
FIG. 1 shows the overall configuration of a methane hydrate collection plant, and FIG. 2 shows steps (a) to (g) from the construction of such a plant to gas production.
In the process of FIG. 2 (a), first, a plurality of wells 1 reaching the MH deposit are excavated, and the well openings are sealed by the wellhead device 2, thereby preventing the inflow of seawater. An underwater pipe 3 extends to the sea at the top of the anti-outlet device 2, and a pipe introduction port 4 and a methane gas recovery valve 5 are installed at the tip.
 2図(b)の工程で、掘削孔の壁をセメントによるケーシング6を行うことで、壁全体を電気的に絶縁体とした上で、掘削段階で堆積層中からの地層水が坑井に流れ込み、地層圧に相当する高さ(初期水頭圧:約9.0MPa)まで坑井内が水で満たされる。 In the process of Fig. 2 (b), the wall of the excavation hole is cemented with a casing 6 so that the entire wall is electrically insulated, and the formation water from the sedimentary layer is transferred to the well at the excavation stage. The well is filled with water up to a height corresponding to the formation pressure (initial head pressure: about 9.0 MPa).
 2図(c)、(d)の工程で、パーフォレーション7により壁と堆積物の一部に孔と亀裂を形成させた後、減圧装置としての抗底ポンプ8により坑井内の水を汲み上げ、水頭圧を下げる(減圧時水頭圧:約4.0MPa)ことで減圧を行う。 
 この減圧操作により、堆積層中のMHが一部分解し、パーフォレーション7部を通じてガスが放出されることがあるが、それに伴う吸熱作用によるコア温度の低下は、後述する工程(g)の通電加熱により補償され、分解速度を維持することができる。
2 In the steps shown in FIGS. 2 (c) and 2 (d), holes and cracks are formed in the wall and part of the deposit by perforation 7, and then water in the well is pumped up by an anti-bottom pump 8 as a decompression device. The pressure is reduced by lowering the pressure (water head pressure during decompression: about 4.0 MPa).
By this decompression operation, MH in the deposited layer is partly decomposed and gas may be released through 7 parts of perforation, but the core temperature decrease due to the endothermic effect is caused by the energization heating in the step (g) described later. Compensated and the degradation rate can be maintained.
 2図(e)の工程で、電解質溶液注入装置としての送水ポンプ9により、電解質溶液である海水を坑井内に注入し、初期水頭圧まで海水を充填することで、堆積層中に海水を圧入した後、送水ポンプ9を切り離す。 In the process of Fig. 2 (e), seawater, which is an electrolyte solution, is injected into the well by a water pump 9 as an electrolyte solution injection device, and the seawater is injected into the sedimentary layer by filling the seawater to the initial head pressure. After that, the water pump 9 is disconnected.
 次に2図(f)の工程で、再度抗底ポンプ8により坑井内の海水を汲み上げ水頭圧を下げる(減圧時水頭圧:約4.0MPa)ことで減圧を行った上で、抗底ポンプ8を坑井から引き抜き、坑井電極10をパーフォレーション7部に対応するよう挿入する。 Next, in the step of FIG. 2 (f), the sea bottom in the well is pumped up again by the anti-bottom pump 8 and the head pressure is reduced (head pressure during decompression: about 4.0 MPa). 8 is extracted from the well and the well electrode 10 is inserted so as to correspond to 7 parts of perforation.
 2図(g)の工程で複数の坑井1のそれぞれに挿入した坑井電極10に、配管導入口4を介して、電力供給装置11からの電力を供給し、MHの分解及び採取を開始する。 The power from the power supply device 11 is supplied to the well electrode 10 inserted into each of the plurality of wells 1 in the process of FIG. 2 (g) via the pipe introduction port 4, and decomposition and collection of MH are started. To do.
 例えば、坑井電極10の直径を5.04センチメートル、長さを1.0m程度とし、これら2つの電極間の距離を3mとした場合、50Hz交流10A~40A(100V~500V)を通電すると、内部温度が上昇し、坑井電極10周辺でハイドレートの分解が進行する。
 なお、その際、分解の進行に伴う吸熱作用は、坑井電極10への通電により補償される。
For example, if the diameter of the well electrode 10 is 5.04 centimeters, the length is about 1.0 m, and the distance between the two electrodes is 3 m, when 50 Hz AC 10 A to 40 A (100 V to 500 V) is energized The internal temperature rises and hydrate decomposition proceeds around the well electrode 10.
At that time, the endothermic effect accompanying the progress of decomposition is compensated by energizing the well electrode 10.
 MHの分解に伴い、MHは、メタンガスと水分に分離され、比重の小さいメタンガスは、坑井1内を上昇する。そこで、MHの分解開始に合わせて、海中管3上部のメタン排出通路に設けたメタンガス回収弁5を開くことにより、メタンガスを採取することができる。
 このように、メタンガスを坑井1の上端から優先的に採取することにより、MHの分解で生じた水分が堆積層内の孔隙を補填し、坑井1の周辺の電気抵抗が減少するとともに浸透率が維持もしくは増加し、さらには、通電当初からMH層に気相が残存する場合は、これをも排除して浸透率を増加させることができる。
As MH is decomposed, MH is separated into methane gas and moisture, and methane gas having a small specific gravity rises in the well 1. Therefore, methane gas can be collected by opening the methane gas recovery valve 5 provided in the methane discharge passage at the top of the subsea pipe 3 in accordance with the start of MH decomposition.
Thus, by collecting methane gas preferentially from the upper end of the well 1, moisture generated by the decomposition of MH fills the pores in the sedimentary layer, and the electric resistance around the well 1 is reduced and penetrated. The rate can be maintained or increased. Furthermore, if a gas phase remains in the MH layer from the beginning of energization, this can also be eliminated to increase the penetration rate.
 この実施例では、坑井1上端から、メタンガス回収弁5を介して、メタンガスを採取するようにしたが、MH堆積物層の中間部分に、メタン抽出用の配管を別途設けてもよく、要は、MH堆積物層において、電解質溶液及び分離した水分が十分に流動する程度に浸透率を維持すればよい。 In this embodiment, the methane gas is collected from the upper end of the well 1 through the methane gas recovery valve 5, but a methane extraction pipe may be separately provided in the middle portion of the MH deposit layer. In the MH deposit layer, the permeability should be maintained to such an extent that the electrolyte solution and the separated water can sufficiently flow.
 以上のとおり、本発明においては、電解質溶液を通水した後、MH平衡分解圧力まで圧力を減圧し通電することで堆積層の温度を昇温し、MHを分解させた後、堆積物の浸透率の減少を防止し、さらには浸透率を増加させる。
 すなわち、本発明においては、通電によりMHが分解して生成した水が、下方に滞留し新たな通電領域を生成することで、MH堆積層の通電領域の増加すなわち通電・昇温領域の増加とMHの分解を促進し、MH分解に伴うメタンガス生産量を増加させることができる。
 本発明は、MH堆積物の通電加熱は、所定深度で水平方向に坑井を延ばした水平抗井にも適用可能である。
As described above, in the present invention, after passing the electrolyte solution, the pressure is reduced to the MH equilibrium decomposition pressure and energized to raise the temperature of the deposited layer, decompose MH, and then infiltrate the deposit. Prevents the rate from decreasing and even increases the penetration rate.
That is, in the present invention, the water generated by decomposing MH by energization stays below and generates a new energized region, thereby increasing the energized region of the MH deposited layer, that is, increasing the energized / heated region. The decomposition of MH can be promoted, and the methane gas production amount accompanying MH decomposition can be increased.
The present invention is also applicable to a horizontal well in which MH deposits are energized and heated in the horizontal direction at a predetermined depth.
 なお、メタンガス回収弁5、抗底ポンプ8、電力供給装置11等は、坑井1の適当な箇所に設置した圧力センサーや温度センサー、さらには電解質溶液及び分離した水分の浸透率を検出するための溶液電気抵抗センサーの検出値を監視しながら、オペレータが、制御盤に設けた調整器により最適な値に調整するようにしてもよいし、これらの検出値に基づいて、図示しないマイクロコンピュータ等の制御装置によりシーケンシャルに制御してもよい。 Note that the methane gas recovery valve 5, the anti-bottom pump 8, the power supply device 11 and the like are used to detect pressure and temperature sensors installed at appropriate locations in the well 1 as well as the permeability of the electrolyte solution and separated water. While monitoring the detection value of the solution electrical resistance sensor, the operator may adjust the value to an optimum value by using an adjuster provided on the control panel. Based on these detection values, a microcomputer (not shown) or the like may be used. It may be controlled sequentially by the control device.
ところで、本発明者らは、ごく一般的なMH堆積層である、深度1000m以上の海底地下におけるMH堆積層からのメタンガス生産をシミュレーションするため、図3にみられるようにキセノンガスハイドレート(以下、XHという。)及び静水圧型コアホルダー12を用いた実験装置を用いて実験を行った。
 なお、MHの分解平衡温度圧力相図(a)を示す図4(a)を参照すれば、MH堆積物の場合は、圧力9MPaから4MPaまでの減圧は、平衡温度12.1℃から4.2℃までの温度変化に相当する。
 一方、XHの分解平衡温度圧力相図を示す図4(b)を参照すれば、XH堆積物の場合は、圧力0.9MPaから0.4MPaまでの圧力変化は、平衡温度17.7℃から9.7℃までの温度変化に相当する。
 したがって、XH堆積物を用いることで、MH堆積物と比較して約10分の1の圧力変化で、同程度の平衡温度変化の効果を調べることができる。
By the way, in order to simulate methane gas production from an MH deposit layer in a submarine underground having a depth of 1000 m or more, which is a very general MH deposit layer, the present inventors have developed a xenon gas hydrate (hereinafter referred to as “xenon gas hydrate”) as shown in FIG. And XH) and an experimental apparatus using an isostatic core holder 12 was used.
Referring to FIG. 4 (a) showing the MH decomposition equilibrium temperature and pressure phase diagram (a), in the case of MH deposits, the reduced pressure from 9 MPa to 4 MPa is the equilibrium temperature from 12.1 ° C. to 4. This corresponds to a temperature change up to 2 ° C.
On the other hand, referring to FIG. 4 (b) showing the decomposition equilibrium temperature pressure phase diagram of XH, in the case of XH deposits, the pressure change from 0.9 MPa to 0.4 MPa is from the equilibrium temperature of 17.7 ° C. This corresponds to a temperature change up to 9.7 ° C.
Therefore, by using the XH deposit, it is possible to investigate the effect of the same degree of equilibrium temperature change with a pressure change of about 1/10 compared with the MH deposit.
 さて、この実験装置では静水圧型コアホルダー12内にXH堆積物を作製し、コアに通水することでコアの浸透率を測定し、背圧制御弁13を制御することでコア圧を減圧する。XH堆積物を作製する際は、最初に、コアホルダー12内部のラバースリーブ14中に含水比を制御した豊浦標準砂を直径5.08cmφ×長さ12cmに整形した堆積物を装填する。拘束圧制御装置15を用いて、ラバースリーブ14とエンドキャップ16,17を介し、拘束圧を拘束圧圧力計18にてモニタし、堆積物19に拘束圧5MPaを印加する。キセノンガスボンベ20からガス流量制御器21を通じて堆積物18にキセノンガスを流し、背圧制御弁13を制御してコア内圧をコア圧力計22によってモニタし0.9MPaまで昇圧する。その後、コア熱電対23の出力をモニタし、ジャケット型コア温度制御器24により、コア温度を1℃まで冷却し、堆積物の孔隙内にキセノンガスハイドレートを胚胎させ、キセノンガスハイドレート堆積物19を得る。その後、ジャケット型コア温度制御器24により、コア温度を9℃まで昇温する。 In this experimental apparatus, an XH deposit is produced in the hydrostatic core holder 12, the core permeability is measured by passing water through the core, and the core pressure is reduced by controlling the back pressure control valve 13. To do. When producing the XH deposit, first, a deposit obtained by shaping Toyoura standard sand with a controlled moisture content into a diameter of 5.08 cmφ × 12 cm in length is placed in the rubber sleeve 14 inside the core holder 12. Using the restraint pressure control device 15, the restraint pressure is monitored by the restraint pressure pressure gauge 18 through the rubber sleeve 14 and the end caps 16 and 17, and a restraint pressure of 5 MPa is applied to the deposit 19. Xenon gas is flowed from the xenon gas cylinder 20 to the deposit 18 through the gas flow rate controller 21, the back pressure control valve 13 is controlled, the core internal pressure is monitored by the core pressure gauge 22, and the pressure is increased to 0.9 MPa. Thereafter, the output of the core thermocouple 23 is monitored, the core temperature is cooled to 1 ° C. by the jacket-type core temperature controller 24, xenon gas hydrate is allowed to develop in the pores of the deposit, and the xenon gas hydrate deposit Get 19. Thereafter, the core temperature is raised to 9 ° C. by the jacket type core temperature controller 24.
 温度9℃、圧力0.9MPaを維持した状態で、コア下部に位置するコア片端のエンドキャップ16からコア内液体圧入装置25により蒸留水を圧入し、差圧計26によりコア入口圧と出口圧の圧力差を測定し浸透率Kwを計測する。次にNaCl3.5%で海水を模した電解質溶液を蒸留水の代わりにコア内液体圧入装置25により圧入し、浸透率Keを計測する。その後、圧力を0.4MPaまで減圧し、キセノンガスハイドレート生成分解における温度・圧力平衡状態を維持する。
 コア両端のエンドキャップ16,17を電極として、交流電力供給装置27により50Hz交流100mA~500mA(交流電圧20V~600V)を通電することで、コアの内部温度が1℃~40℃増加し、ハイドレートの分解が順調に進行し、キセノンガスは、コアホルダー12の溶液圧入側と反対側の背圧制御弁13を通して配管から一部分解水とともに排出される。排出されたガスおよび水はガス積算流量計28および水積算記録計29にてそれぞれ排出量が測定される。残留した水分は内部に保持され、MH分解領域へと浸透するので、電気抵抗は徐々に減少し、浸透率は徐々に増加する。
While maintaining a temperature of 9 ° C. and a pressure of 0.9 MPa, distilled water was injected from the end cap 16 at one end of the core located at the lower part of the core by the liquid injection device 25 in the core, and the core inlet pressure and the outlet pressure were adjusted by the differential pressure gauge 26. The pressure difference is measured and the permeability Kw is measured. Next, an electrolyte solution simulating seawater with NaCl 3.5% is injected by the core liquid injection device 25 instead of distilled water, and the permeability Ke is measured. Thereafter, the pressure is reduced to 0.4 MPa, and the temperature / pressure equilibrium state in the xenon gas hydrate formation decomposition is maintained.
By supplying 50 Hz AC 100 mA to 500 mA (AC voltage 20 V to 600 V) with the AC power supply device 27 using the end caps 16 and 17 at both ends of the core as electrodes, the internal temperature of the core increases by 1 ° C. to 40 ° C. The decomposition of the rate proceeds smoothly, and the xenon gas is partially discharged from the piping together with the decomposed water through the back pressure control valve 13 on the side opposite to the solution press-fitting side of the core holder 12. The discharged gas and water are measured for discharge by a gas integrated flow meter 28 and a water integrated recorder 29, respectively. The remaining moisture is retained inside and penetrates into the MH decomposition region, so that the electric resistance gradually decreases and the permeability increases gradually.
 ハイドレート飽和率の異なるXH堆積物を分解平衡温度・圧力条件下において交流(50Hz)による定電流通電(AC300mA)を行った場合、入力電力・コア電気抵抗はハイドレート飽和率が高いほど大きい。
 しかし、電解質溶液が浸透した状態で、上述のように通電を行い、コア温度上昇にともないハイドレートが分解すると、入力電力・コア電気抵抗は時間と共に減少し、一定値に漸近する。これは、ハイドレートの分解によって生成した水がコアの中に滞留し、通電領域を増加させるためである。すなわち、通電によるハイドレートの分解によって生成した水が、通電効率と加熱効率を増加させていることがわかる。
When XH deposits having different hydrate saturation rates are subjected to constant current (AC 300 mA) by alternating current (50 Hz) under the decomposition equilibrium temperature and pressure conditions, the input power and the core electrical resistance increase as the hydrate saturation rate increases.
However, when energization is performed as described above in a state where the electrolyte solution has permeated and the hydrate is decomposed as the core temperature rises, the input power / core electric resistance decreases with time and gradually approaches a constant value. This is because the water produced by the decomposition of the hydrate stays in the core and increases the current-carrying area. That is, it turns out that the water produced | generated by decomposition | disassembly of the hydrate by electricity supply has increased electricity supply efficiency and heating efficiency.
 なお、図5は、XH分解平衡圧力条件において、交流通電(300mA)を行った際の、各ハイドレート飽和率に対するコア温度(a)、コア電気比抵抗(b)、放出ガス量(c)、排出水(d)の時間変化(横軸経過時間)の実験結果を示している。
 特に、XH飽和率が10%以上の場合、XHの分解にともない、コア温度が上昇し、ガス放出量が増加し、コア電気抵抗は減少し、入力電気抵抗も減少しているが、このことから、XHの分解にともない生成した水がコア内部に滞留し、通電領域を増加させたことが確認できる。
FIG. 5 shows the core temperature (a), the core electrical resistivity (b), and the amount of released gas (c) with respect to each hydrate saturation rate when AC energization (300 mA) is performed under the XH decomposition equilibrium pressure condition. The experiment result of the time change (horizontal axis elapsed time) of discharged water (d) is shown.
In particular, when the XH saturation rate is 10% or more, the core temperature increases, the amount of gas released increases, the core electrical resistance decreases, and the input electrical resistance decreases as XH decomposes. From this, it can be confirmed that the water generated along with the decomposition of XH stays in the core and increases the energization region.
 ハイドレート分解にともない放出されるガスと水の産出挙動に関しては、コア排出口を上部・下部・水平方向に変えることで、重力の効果を評価した。
 すなわち、排出口が下部の場合、コア内部の残留水が最初に排出されてしまうため、コア内部の電気抵抗が増加し、加熱効率が下がり、ガスの生産量も減少する。
 しかしながら、排出口が、実験例のように上部、あるいは水平位置に設けられた場合は、顕著な電気抵抗の増加、ガス・水生産比の変化は観察されない。
 排出口が上部・水平の場合、ハイドレート分解に伴い生成した水が、下方に滞留することで、堆積物の電気抵抗が減少し、通電効率・加熱効率が上昇することを意味しており、この実験結果は、ハイドレート飽和率の異なる堆積物の通電実験結果と符合する。
Regarding the production behavior of gas and water released during hydrate decomposition, the effect of gravity was evaluated by changing the core outlet in the upper, lower, and horizontal directions.
That is, when the discharge port is at the bottom, the residual water inside the core is discharged first, so that the electrical resistance inside the core increases, the heating efficiency decreases, and the gas production also decreases.
However, when the discharge port is provided at the top or in the horizontal position as in the experimental example, no significant increase in electrical resistance and no change in the gas / water production ratio are observed.
When the discharge port is upper and horizontal, it means that the water generated by the hydrate decomposition stays in the lower part, reducing the electrical resistance of the deposit and increasing the energization efficiency and heating efficiency. This experimental result agrees with the energization experimental result of the deposits having different hydrate saturation rates.
 以上の実験結果を踏まえ、例えば、直径5.08cm(2インチ)、長さ1.0m(約3.0フィート)で間隔が3mの2本の電極により、実際のハイドレート坑井の通電加熱を行う場合を想定すると、AC25A(300V)の通電でMHの分解を維持するのに必要な電力を十分に低減することが可能になる。 Based on the above experimental results, for example, current heating of an actual hydrate well by two electrodes with a diameter of 5.08 cm (2 inches), a length of 1.0 m (about 3.0 feet), and a distance of 3 m. Assuming the case of performing the above, it is possible to sufficiently reduce the electric power necessary to maintain the decomposition of MH by energization of AC25A (300V).
(実施例2)
 二本の坑井間の通電加熱では、坑井間と坑井電極の長さによって通電・加熱領域が制約され、その範囲は坑井間距離×坑井電極の長さで限定される面に相当する。広範囲のMH堆積層を低電力で効果的に通電加熱する必要も想定し得る。
 そこで、実施例2では図6に見られるように電極の通電領域を長さ1m(約3フィート)に限定し、ひとつの坑井電極30を中心とした、1辺10.0mの正三角形の頂点に坑井を3つの坑井電極31a~31cを配置した上で、実施例1と同様の中心の坑井電極28と、正三角形の頂点に配置された3つの坑井電極31a~31cのそれぞれとの間で電力供給装置32により通電加熱を行った後、坑井電極31a、31b、31cの間でそれぞれ通電加熱を行うようにすれば、坑井電極7を中心とした直径8.67mの領域を深さ方向に均一にMH堆積層を分解することが可能である。
 なお、前述した第2図(a)~(g)の工程は、この実施例でも同様である。
 この実施例では、坑井電極30と坑井電極31a~31cのそれぞれとの間の通電加熱に関しては、AC25A(800V)程度で、また、坑井電極31a、31b、31c間でのそれぞれ通電加熱に関しては、AC15~25A(700~1000V)程度で、MHの分解を維持することが可能である。
(Example 2)
In energization heating between two wells, the length of the energization / heating area is limited by the length between the wells and the well electrode, and the range is limited by the distance between wells × the length of the well electrode. Equivalent to. It may also be assumed that a wide range of MH deposition layers need to be effectively energized and heated with low power.
Therefore, in Example 2, as shown in FIG. 6, the energization region of the electrode is limited to 1 m (about 3 feet) in length, and an equilateral triangle having one side of 10.0 m centered on one well electrode 30. After the three well electrodes 31a to 31c are arranged at the apex, the center well electrode 28 similar to that of the first embodiment and the three well electrodes 31a to 31c arranged at the apexes of the equilateral triangle are arranged. If the heating is performed between the well electrodes 31a, 31b, and 31c after each of them is energized and heated by the power supply device 32, a diameter of 8.67m centered on the well electrode 7 is obtained. It is possible to decompose the MH deposition layer uniformly in the depth direction.
The steps shown in FIGS. 2A to 2G are the same in this embodiment.
In this embodiment, the current heating between the well electrode 30 and each of the well electrodes 31a to 31c is about AC25A (800V), and the current heating between the well electrodes 31a, 31b, 31c. With regard to MH, it is possible to maintain the decomposition of MH at about AC 15 to 25 A (700 to 1000 V).
 さらにこれら各坑井を、図7に示すように水平坑井により上下方向の複数箇所で相互に連結し、各水平坑井の位置毎に、通電加熱を行えば、採掘するMH層の厚さが大きく、MH層が層方向に広範囲に分布していたとしても、順次、ハイドレートの分解を促進することが可能である。
 この場合も、実施例1と同様に、オペレータが、制御盤に設けた調整器により最適な値に調整するようにしてもよいし、これらの検出値に基づいて、マイクロコンピュータ等の制御装置によりシーケンシャルに制御してもよい。
Furthermore, if these wells are connected to each other at a plurality of locations in the vertical direction by horizontal wells as shown in FIG. 7, and the current is heated at each horizontal well position, the thickness of the MH layer to be mined Even if the MH layer is distributed over a wide range in the layer direction, it is possible to sequentially promote the decomposition of the hydrate.
In this case as well, as in the first embodiment, the operator may adjust the value to an optimum value using an adjuster provided on the control panel, or based on these detected values, a control device such as a microcomputer may be used. It may be controlled sequentially.
 以上のように、本発明によれば、低電力で安全に、しかも効率よくMHからメタンを採取することが可能となり、天然ガス消費量の約100年分にも相当する資源量を有するとされるMHの利用促進に資することができる。 As described above, according to the present invention, it is possible to extract methane from MH safely, efficiently and with low power, and have a resource amount corresponding to about 100 years of natural gas consumption. Can contribute to promoting the use of MH.
1   坑井
2   坑口装置
3   海中管
4   配管導入口
5   メタンガス回収弁
6   ケーシング
7   パーフォレーション
8   坑底ポンプ
9   送水ポンプ
10  坑井電極
11  電力供給装置
12  静水圧型コアホルダー
13  背圧制御弁
14  ラバースリーブ
15  拘束圧制御装置
16  エンドキャップ(下部)
17  エンドキャップ(上部)
18  拘束圧圧力計
19  堆積物
20  キセノンガスボンベ
21  ガス流量制御器
22  コア圧力計
23  コア熱電対
24  ジャケット型コア温度制御器
25  コア内液体圧入装置
26  差圧計
27  交流電力供給装置
28  ガス積算流量計
29  水積算記録計
30, 31a~31c  坑井電極
32  坑井通電加熱用電源
DESCRIPTION OF SYMBOLS 1 Well 2 Wellhead device 3 Underwater pipe 4 Piping inlet 5 Methane gas recovery valve 6 Casing 7 Perforation 8 Bottom pump 9 Water pump 10 Well electrode 11 Power supply device 12 Hydrostatic core holder 13 Back pressure control valve 14 Rubber sleeve 15 Restraint pressure control device 16 End cap (lower part)
17 End cap (top)
18 Constrained Pressure Pressure Gauge 19 Deposit 20 Xenon Gas Cylinder 21 Gas Flow Controller 22 Core Pressure Gauge 23 Core Thermocouple 24 Jacket Type Core Temperature Controller 25 In-core Liquid Press-In Device 26 Differential Pressure Gauge 27 AC Power Supply Device 28 Gas Integrated Flow Meter 29 Water Accumulation Recorder 30, 31a-31c Well Electrode 32 Power Supply for Well Heating

Claims (3)

  1.  メタンハイドレート堆積物層の周辺圧力を所定圧力に減圧する工程と、
     前記メタンハイドレート堆積物層に電解質溶液を注入する工程と、
     前記メタンハイドレート堆積物層に挿入した複数の電極間に通電処理を行う工程と、
     前記通電処理によりメタンハイドレート堆積物の温度を上昇させ、メタンハイドレートをメタンと水分に分解する工程と、
     前記メタンハイドレートを分解する工程で分解したメタンを優先的に排出し、前記メタンハイドレート堆積物の層における前記電解質溶液及びメタンハイドレートを分解する工程で発生した水分の浸透率値を維持した上で前記通電処理を継続する工程とからなるメタンハイドレートの分解方法。
    Reducing the pressure around the methane hydrate sediment layer to a predetermined pressure;
    Injecting an electrolyte solution into the methane hydrate deposit layer;
    Conducting a current treatment between a plurality of electrodes inserted into the methane hydrate deposit layer;
    Increasing the temperature of the methane hydrate deposit by the energization treatment, and decomposing the methane hydrate into methane and moisture;
    The methane decomposed in the step of decomposing the methane hydrate is preferentially discharged, and the permeability value of the water generated in the step of decomposing the electrolyte solution and methane hydrate in the layer of the methane hydrate deposit is maintained. A method for decomposing methane hydrate comprising the step of continuing the energization process above.
  2.  メタンハイドレート堆積物層に達している複数の坑井を介し、メタンハイドレート堆積物層の周辺圧力を所定圧力に減圧する減圧装置と、
     前記複数の坑井を介し、前記メタンハイドレート堆積物層に電解質溶液を注入する電解質溶液注入装置と、
     前記複数の坑井に連通するとともに、メタンハイドレート堆積物層の上部あるいは中間高さから、分解したメタンを排出するメタン排出通路に設けたメタンガス回収弁と、
     前記複数の坑井のそれぞれを介して、前記メタンハイドレート堆積物の層に挿入した複数の坑井電極と、
     前記複数の坑井電極間に所定電圧及び所定電流の電力を印加する電源装置と、
     前記ポンプ、前記電解質溶液注入装置、メタンガス回収弁及び前記電源装置による電力印加を制御する制御装置とからなるメタンハイドレートの分解装置。
    A pressure reducing device for reducing the pressure around the methane hydrate sediment layer to a predetermined pressure through a plurality of wells reaching the methane hydrate sediment layer;
    An electrolyte solution injection device for injecting an electrolyte solution into the methane hydrate deposit layer through the plurality of wells;
    A methane gas recovery valve provided in a methane discharge passage for discharging decomposed methane from the upper or middle height of the methane hydrate sediment layer, and communicating with the plurality of wells;
    A plurality of well electrodes inserted into the methane hydrate deposit layer through each of the plurality of wells;
    A power supply device that applies power of a predetermined voltage and a predetermined current between the plurality of well electrodes;
    An apparatus for decomposing methane hydrate comprising the pump, the electrolyte solution injection device, a methane gas recovery valve, and a control device for controlling power application by the power supply device.
  3.  上記複数の電極を、ひとつの坑井電極と、これを中心とした正三角形の頂点のそれぞれに配置した坑井電極とから構成し、前記中心に位置する坑井電極と、正三角形の頂点に配置した各坑井電極との間で、交互に前記所定電圧を印加するようにしたことを特徴とする請求項2に記載のメタンハイドレートの分解装置。 The plurality of electrodes are composed of one well electrode and a well electrode arranged at each vertex of the equilateral triangle centered on the well electrode, and the well electrode located at the center and the vertex of the equilateral triangle The apparatus for decomposing methane hydrate according to claim 2, wherein the predetermined voltage is alternately applied to each well electrode arranged.
PCT/JP2010/059597 2009-07-02 2010-06-07 Method and equipment for dissociation of methane hydrate WO2011001792A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-157437 2009-07-02
JP2009157437A JP5067814B2 (en) 2009-07-02 2009-07-02 Methane hydrate decomposition method and apparatus

Publications (1)

Publication Number Publication Date
WO2011001792A1 true WO2011001792A1 (en) 2011-01-06

Family

ID=43410872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059597 WO2011001792A1 (en) 2009-07-02 2010-06-07 Method and equipment for dissociation of methane hydrate

Country Status (2)

Country Link
JP (1) JP5067814B2 (en)
WO (1) WO2011001792A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109540762A (en) * 2018-11-12 2019-03-29 中国科学院广州能源研究所 A kind of hydrate sediment permeability test device
CN114109360A (en) * 2021-11-16 2022-03-01 广州海洋地质调查局 Active excitation type precise evaluation method for vertical content distribution of submarine hydrate reservoir
WO2024107842A1 (en) * 2022-11-18 2024-05-23 Saudi Arabian Oil Company Electrical treatment to revive dead gas wells due to water blockage

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400360B1 (en) 2012-06-01 2014-05-27 한국과학기술원 Method for recovering methane gas from natural gas hydrate using divalent electrolyte salt
JP5278863B1 (en) * 2013-01-11 2013-09-04 満晴 奥野 Methane gas production equipment from methane hydrate
JP6276093B2 (en) * 2014-04-01 2018-02-07 鹿島建設株式会社 Tunneling method
JP6788770B2 (en) * 2018-03-12 2020-11-25 国立研究開発法人産業技術総合研究所 Gas production system and gas production method
JP6735979B2 (en) * 2018-03-12 2020-08-05 国立研究開発法人産業技術総合研究所 Gas production system and gas production method
JP7170725B2 (en) 2018-06-25 2022-11-14 E&P国際商事株式会社 A method for producing methane hydrate using stratum improvement.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916993A (en) * 1974-06-24 1975-11-04 Atlantic Richfield Co Method of producing natural gas from a subterranean formation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916993A (en) * 1974-06-24 1975-11-04 Atlantic Richfield Co Method of producing natural gas from a subterranean formation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROYUKI OYAMA ET AL.: "Dissociation Behavior Analysis of Methane Hydrate-bearing Sediments by Using Depressurization or Depressurization with Well-wall Heating Method", THE JAPAN INSTITUTE OF ENERGY TAIKAI KOEN YOSHISHU, vol. 16, 2 August 2007 (2007-08-02), pages 54 - 55 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109540762A (en) * 2018-11-12 2019-03-29 中国科学院广州能源研究所 A kind of hydrate sediment permeability test device
CN114109360A (en) * 2021-11-16 2022-03-01 广州海洋地质调查局 Active excitation type precise evaluation method for vertical content distribution of submarine hydrate reservoir
CN114109360B (en) * 2021-11-16 2022-07-15 广州海洋地质调查局 Active excitation type precise evaluation method for vertical content distribution of submarine hydrate reservoir
WO2024107842A1 (en) * 2022-11-18 2024-05-23 Saudi Arabian Oil Company Electrical treatment to revive dead gas wells due to water blockage

Also Published As

Publication number Publication date
JP5067814B2 (en) 2012-11-07
JP2011012451A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5067814B2 (en) Methane hydrate decomposition method and apparatus
Li et al. The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media
US4037655A (en) Method for secondary recovery of oil
CN103498648B (en) The method and apparatus of a kind of associating step-down and hydraulic fracturing technology production of water compound
US10648307B2 (en) Systems and methods for enhanced recovery of hydrocarbonaceous fluids
CN108104776B (en) A kind of water erosion method exploiting ocean natural gas hydrates device of combination decompression
US8925632B2 (en) In situ process to recover methane gas from hydrates
US10060240B2 (en) System and method for facilitating subterranean hydrocarbon extraction with electrochemical processes
CN107514245A (en) A kind of method of gas hydrates row formula horizontal wells
US20110277992A1 (en) Systems and methods for enhanced recovery of hydrocarbonaceous fluids
CN108487882A (en) A kind of production tree device and method for exploitation of gas hydrate
Zyrin et al. Electrothermal complex with downhole electrical heating generators for enhanced heavy oil recovery
US20230085175A1 (en) Electro-hydrofracturing using electrically conductive proppants and related methods
WO2014182628A2 (en) Systems and methods for enhanced recovery of hydrocarbonaceous fluids
US4345979A (en) Method and apparatus for recovering geopressured methane gas from ocean depths
RU132127U1 (en) IN-PLAST HEAT EXCHANGE DEVICE
RU2516303C2 (en) Device for thermal processing of hydrated gas accumulation
US8596352B2 (en) Methods of increasing or enhancing oil and gas recovery
CN110685655B (en) Natural gas hydrate exploitation method for heating stratum by electric pulse
SU1694872A1 (en) Method of oil field development
US11905808B2 (en) Method and apparatus for thermal fluid generation for use in enhanced oil recovery
CN107542439A (en) A kind of method of row's formula horizontal wells gas hydrates
US20240209253A1 (en) Electro-Hydrofracturing Using Electrically Conductive Proppants and Related Methods
RU2432453C1 (en) Procedure for electro-chemical treatment of pressure wells
RU2267007C2 (en) Method and device for hydrocarbon recovery stimulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793962

Country of ref document: EP

Kind code of ref document: A1