WO2011001647A1 - Automatic analysis device and measurement method - Google Patents

Automatic analysis device and measurement method Download PDF

Info

Publication number
WO2011001647A1
WO2011001647A1 PCT/JP2010/004219 JP2010004219W WO2011001647A1 WO 2011001647 A1 WO2011001647 A1 WO 2011001647A1 JP 2010004219 W JP2010004219 W JP 2010004219W WO 2011001647 A1 WO2011001647 A1 WO 2011001647A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic particles
measurement
reagent
reaction
Prior art date
Application number
PCT/JP2010/004219
Other languages
French (fr)
Japanese (ja)
Inventor
水谷貴行
渡部恭子
Original Assignee
ベックマン コールター, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベックマン コールター, インコーポレイテッド filed Critical ベックマン コールター, インコーポレイテッド
Publication of WO2011001647A1 publication Critical patent/WO2011001647A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/286Magnetic plugs and dipsticks disposed at the inner circumference of a recipient, e.g. magnetic drain bolt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/015Pretreatment specially adapted for magnetic separation by chemical treatment imparting magnetic properties to the material to be separated, e.g. roasting, reduction, oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/284Magnetic plugs and dipsticks with associated cleaning means, e.g. retractable non-magnetic sleeve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation

Definitions

  • the present invention relates to an automatic analyzer and a measuring method for performing analysis processing of a specimen by measuring optical characteristics of a reaction product of a specimen and a reagent containing magnetic particles.
  • an automatic analyzer that includes a detector such as a turbidity meter and a turbidimetric meter in one analysis unit and can perform a plurality of items of analysis processing in one system is disclosed (for example, Patent Documents). 1).
  • Patent Document 1 the automatic analyzer shown in Patent Document 1 needs to use a reaction container corresponding to each item for each measurement item. Therefore, a plurality of types of reaction vessels have to be arranged, and the apparatus configuration is complicated.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an automatic analyzer and a measurement method capable of performing analysis processing of a plurality of items with a simple configuration.
  • the automatic analyzer of the present invention (1) collects and holds the magnetic particles from inside a reaction vessel containing a fluid containing magnetic particles to be measured.
  • a magnetic particle take-out part that has a magnetic collecting member on which a magnetic material is arranged and takes out the magnetic particles out of the reaction container; and (2) is coupled to the magnetic particles taken out of the reaction container by the magnetic particle take-out part.
  • a magnetic particle measuring unit for optically measuring the labeled substance.
  • the magnetic body is a permanent magnet.
  • the magnetic body is an electromagnet.
  • the magnetic flux collecting member is a covering member that covers the magnetic body.
  • the magnetic body is movable in the covering member.
  • the covering member can be attached to and detached from the magnetic body.
  • the automatic analyzer for optically measuring the reaction between the sample and the reagent and performing the analysis process of the sample, the sample and the reagent for the first analysis process, or the first
  • a reaction table holding a plurality of the same reaction vessels capable of accommodating the sample for analysis of 2 and the reagent containing magnetic particles, and the sample and reagent for the first analysis, or A dispensing part that dispenses the specimen and the reagent containing the magnetic particles for the second analysis process; and a magnetic collecting member in which a magnetic material that collects and holds the magnetic particles in the reaction container is disposed.
  • a magnetic particle extraction unit that extracts the magnetic particles out of the reaction vessel, and a magnetic particle measurement unit that performs optical measurement for the second analysis process using the magnetic particles extracted by the magnetic particle extraction unit; Said And a measurement unit for performing optical measurement on the analysis process.
  • the automatic analyzer according to the present invention further includes a magnetic flux collecting member cleaning unit for cleaning the magnetic flux collecting member.
  • the magnetic flux collecting member is a covering member that covers the magnetic body and is detachable from the magnetic body, and a covering member discarding unit that discards the covering member;
  • a covering member supply unit that supplies a covering member.
  • the reaction table includes a plurality of the same reaction containers arranged at predetermined intervals, and is driven according to processing to sequentially move each reaction container to each processing position. .
  • the interval at which the dispensing unit dispenses the reaction container for the second analysis process on the reaction table is equal to the time required for the measurement unit to perform the optical measurement with respect to the time required for the magnetic particle measurement unit to perform the optical measurement. It is an integer value greater than or equal to the ratio.
  • the automated analyzer of the present invention includes any one or more of the features described above.
  • the measuring method of the present invention includes a magnetic flux collecting step for collecting and holding magnetic particles in a fluid accommodated in a reaction vessel, and the collected magnetic particles at a predetermined measurement position outside the reaction vessel. And a measuring step for optically measuring the labeling substance bound to the magnetic particles transferred to the measurement position.
  • the present invention is also a computer-readable recording medium recording a program for executing a measurement method for performing an optical measurement of a labeling substance bound to magnetic particles, the measurement method comprising: A magnetic flux collecting step for collecting and holding magnetic particles in the fluid contained in the reaction vessel; A transfer step of transferring the magnetically collected magnetic particles to a predetermined measurement position outside the reaction vessel; A measurement step for performing an optical measurement of the labeling substance bound to the magnetic particles transferred to the measurement position; A recording medium is provided.
  • the present invention is also a program for executing a measurement method for optically measuring a labeling substance bound to magnetic particles, the measurement method comprising: A magnetic flux collecting step for collecting and holding magnetic particles in the fluid contained in the reaction vessel; A transfer step of transferring the magnetically collected magnetic particles to a predetermined measurement position outside the reaction vessel; A measurement step for performing an optical measurement of the labeling substance bound to the magnetic particles transferred to the measurement position;
  • a program including
  • the automatic analyzer and measurement method according to the present invention collects and holds the magnetic particles accommodated in the reaction vessel, takes out of the reaction vessel, and optically measures them. There is an effect that the analysis process can be performed efficiently.
  • FIG. 1 is a schematic diagram showing a configuration of an automatic analyzer according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross section of the magnetic flux collecting member shown in FIG.
  • FIG. 3 is a schematic diagram showing a conventional immunoassay process.
  • FIG. 4 is a schematic diagram showing an immunoassay process according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a first modification of the magnetic flux collecting member shown in FIG.
  • FIG. 6 is a cross-sectional view showing a second modification of the magnetic flux collecting member shown in FIG.
  • FIG. 7 is a schematic diagram showing the configuration of the automatic analyzer according to the embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the configuration of the magnetic particle cleaning unit shown in FIG.
  • FIG. 9 is a schematic view showing a modification of the magnetic particle cleaning unit shown in FIG.
  • FIG. 10 is a schematic diagram showing an analysis cycle example 1 for the reaction vessel of the reaction table shown in FIG.
  • FIG. 11 is a schematic diagram showing an analysis cycle example 2 for the reaction vessel of the reaction table shown in FIG.
  • FIG. 12 is a flowchart showing analysis processing performed by the automatic analyzer shown in FIG.
  • FIG. 13 is a schematic diagram showing a modification of the automatic analyzer shown in FIG.
  • FIG. 1 is a schematic diagram showing a configuration of an automatic analyzer according to an embodiment of the present invention.
  • the automatic analyzer 1 shown in FIG. 1 performs photometry of a magnetic particle extraction unit 2 that extracts magnetic particles accommodated in a reaction vessel 12 and a labeling substance that is bonded to the magnetic particles extracted by the magnetic particle extraction unit 2. And a magnetic particle measuring unit 10 to be performed.
  • the magnetic particle extraction unit 2 includes a support column 21 that can be moved up and down and rotated by a drive unit 22, and an arm 23 that is supported by the support column 21 and has a magnetic collecting member 24 that collects and holds magnetic particles on the other side.
  • the drive unit 22 moves the magnetic flux collecting member 24 by moving the column 21 up and down or rotationally.
  • the magnetic particles B accommodated in the reaction vessel 12 are collected at the tip of the magnetic collecting member 24 and transferred to the magnetic particle measuring unit 10.
  • the magnetic material is covered with a chemically resistant resin such as Teflon (registered trademark).
  • the magnetic particle measuring unit 10 has a measurement mechanism capable of measuring the intensity of each wavelength light by a light receiving element such as a PDA, and the magnetic collecting member 24 collecting the magnetic particles B is inserted into the measurement hole 10a. Then, the measurement process is directly performed on the magnetic particles B.
  • the magnetic flux collecting member 24 is provided with a flange portion 24a.
  • the flange portion 24a is a circle having a slightly smaller diameter than the measurement hole 10a, and the magnetic flux collection member 24 is inserted into the measurement hole 10a. In this case, the measurement hole 10a is closed. As a result, it is possible to prevent light from entering the measurement hole 10a from the outside.
  • the measured light amount information is output to the control unit 11, and the control unit 11 calculates an analysis value based on the obtained light amount information.
  • the magnetic collecting member 24 of the magnetic particle extraction unit 2 collects and holds the magnetic particles B accommodated in the reaction vessel 12, and the driving unit 22.
  • the magnetic particles B collected by driving the columns 21 are transferred to the magnetic particle measuring unit 10 and the magnetic particle measuring unit 10 performs a measurement process. Thereby, it becomes possible to take out only the magnetic particle which is a measuring object, and a highly accurate analysis process can be performed.
  • the analysis process using magnetic particles can be performed individually on the reaction vessels that are sequentially transported. Analysis is possible even if the reaction vessels are the same, without the need to carry out in the reaction vessel.
  • FIG. 2 is a cross-sectional view showing a cross section of the magnetic flux collecting member 24 shown in FIG.
  • the magnetism collecting member 24 is formed using a chemical resistant resin such as Teflon (registered trademark), and a magnetic body 241 is inserted therein.
  • a permanent magnet is used, and as shown in FIG. 2, the bottom end is formed in a conical shape, and magnetic particles to be magnetized gather together.
  • a magnetic material such as a metal processed into a cone shape may be used at the tip of the columnar permanent magnet, or an electromagnet may be used as the magnetic body.
  • the collar part 24a may be formed using Teflon (trademark), may use other chemical-resistant resin, and may be formed separately. When formed as a separate body, the flange portion 24a can be moved up and down, so that the height of the flange portion 24a can be adjusted according to the height of the measurement hole 10a.
  • a conventional immune analysis process will be described with reference to FIG.
  • a first reagent dispensing process is performed in which a first reagent containing antibody solid phase magnetic particles 41 is dispensed in a reaction container 30.
  • a sample dispensing process is performed in which a sample containing the antigen 42 to be analyzed is dispensed in the reaction container 30.
  • an antibody against the antigen 42 in the specimen is solid phased on a magnetic particle carrier.
  • FIG. 3 (3) after the reaction vessel 30 is agitated, a reaction product 44 in which the antigen 42 in the specimen and the antibody solid phase magnetic particles 41 are combined is generated after a predetermined reaction time. Is done.
  • the first BF cleaning process for the first time in the BF cleaning mechanism is performed.
  • the reactant 44 and the antibody solid phase magnetic particles 41 are collected in the vicinity of the magnetic collecting mechanism 31 for collecting the magnetic material by the BF cleaning nozzle 32.
  • the unreacted substance 43 in the reaction vessel 30 is removed.
  • the unreacted substance 43 is separated and removed in the reaction vessel 30, and the antibody solid phase magnetic particles 41 and the reactant 44 remain.
  • a second reagent dispensing process for dispensing a reagent containing the labeling substance 45 as the second reagent in the reaction container 30 after the first BF cleaning process is performed. Done. As a predetermined reaction time elapses, an immune complex 46 in which the reaction product 44 and the labeling substance 45 are combined is generated as shown in FIG.
  • the second BF cleaning process for the second time in the BF cleaning mechanism is performed.
  • the cleaning liquid is injected and sucked by the BF cleaning nozzle 32 in a state where the magnetic material is collected in the vicinity of the magnetic flux collecting mechanism 31.
  • the reaction is performed by injecting and sucking the cleaning liquid by the BF cleaning nozzle 32 in a state where the immune complex 46 and the antibody solid phase magnetic particles 41 are collected in the vicinity of the magnetic collecting mechanism 31. Unbound labeling substance 45 in container 30 is removed. As a result, the antibody solid phase magnetic particles 41 and the immune complex 46 remain in the reaction vessel 30.
  • the irradiation treatment of the excitation light Le corresponding to the labeling substance 45 to be excited is performed on the reaction vessel 30.
  • light L1 is emitted in proportion to the amount of the labeling substance 45 bound as the immune complex 46.
  • a measurement process for measuring the light amount of the light L1 emitted from the immune complex 46 is performed, and an arithmetic process for obtaining the concentration of the antigen 42 based on the light emission amount of the labeling substance 45 measured in the measurement process is performed. (FIG. 3 (6)).
  • the unreacted substance 43 in the sample and the labeling substance 45 unbound with the reactant 44 are removed by performing the BF washing treatment twice, and the immune complex to be measured Only 46 is obtained and measurement processing is performed.
  • FIG. 4 is a schematic diagram showing an immunoassay process according to the embodiment of the present invention.
  • the first reagent containing the antibody solid phase magnetic particles 41, the specimen containing the antigen 42 to be analyzed, and the second reagent containing the labeling substance 45 are respectively dispensed into the reaction container 30 (FIG. 4A).
  • stirring and reaction processing are performed to bind the antibody solid phase magnetic particles 41, the antigen 42 to be analyzed, and the labeling substance 45 (FIG. 4B).
  • the reacted immune complex 46, the unreacted antibody solid phase magnetic particles 41, the unreacted substance 43 contained in the specimen, and the unreacted labeling substance 45 are present in the reaction container 30.
  • the magnetism collecting member 24 is inserted into the reaction vessel 30 (FIG. 4C). After descending the magnetic collecting member 24 to a predetermined position, the magnetic collecting member 24 is stopped in the reaction vessel 30 for a predetermined time, and the immune complex 46 and the antibody solid phase magnetic particles 41 are collected (FIG. 4D). . After collecting the magnetism for a predetermined time, the magnetism collecting member 24 is extracted from the reaction container 30 (FIG. 4E). When the magnetism collecting member 24 is extracted, the immune complex 46 and the antibody solid phase magnetic particles 41 are taken out of the reaction container 30, and unreacted substances 43 and labeling substances 45 that are not measurement targets remain in the reaction container 30. .
  • the immune complex 46 and the antibody solid phase magnetic particles 41 taken out of the reaction container 30 in FIG. 4 (e) are transferred to the measurement unit (FIG. 4 (f)), and are transferred to the immune complex 46 in the measurement unit.
  • the labeling substance 45 to be bound is irradiated with the excitation light Le, and the amount of light L2 emitted from the excited labeling substance 45 is measured (FIG. 4G).
  • the immune complex 46 By performing the series of immunological analysis processes described above, it is possible to collect the immune complex 46 to be measured without performing the BF washing process, and to remove the unreacted labeling substance 45 and perform the measurement process. It is possible to perform high-analysis processing. Further, since the magnetic flux can be collected in the fluid as compared with the magnetic flux collection from the side surface of the reaction vessel 30, the magnetic flux collection efficiency is improved and the time required for the analysis process can be shortened.
  • FIG. 5 is a cross-sectional view showing Modification 1 of the magnetic flux collecting member 24 shown in FIG.
  • the bottom of the magnetic flux collecting member 25 is formed in a substantially conical shape.
  • the magnetic collecting member 24 is washed with a cleaning agent to remove the magnetic particles collected.
  • the magnetic body inside the magnetic flux collecting member may be moved inside, and a distance may be provided between the magnetic body and the magnetic particles.
  • 6 is a cross-sectional view showing a second modification of the magnetic flux collecting member 24 shown in FIG.
  • the magnetic flux collecting member 26 shown in FIG. 6 is configured such that the magnetic body 241 can move inside the magnetic flux collecting member 26.
  • the magnetic body 241 is moved, for example, by providing a plurality of rollers for gripping the magnetic body 241 inside the magnetic flux collecting member 26 or at the tip of the arm 23, and electrically rotating the rollers to move the magnetic flux collecting member 26 inside. Can be moved up and down. In addition, you may make it replace a coating
  • the magnetic body insertion hole 26a is preferably formed to have a slight space with the magnetic body 241 in order to smoothly insert and remove the magnetic body 241.
  • FIG. 7 is a schematic diagram showing a configuration of the automatic analyzer 5 according to the embodiment of the present invention.
  • the automatic analyzer 5 shown in FIG. 7 includes a measurement mechanism 6 that dispenses a specimen and a reagent to be analyzed into the reaction container 51 and optically measures a reaction that occurs in the reaction container 51, and a measurement mechanism 6.
  • a control mechanism 7 that controls the entire automatic analyzer 5 and analyzes the measurement result in the measurement mechanism 6 is provided.
  • the automatic analyzer 5 automatically and sequentially performs biochemical analysis for detecting the concentration of the detection target in the sample by cooperation of these two mechanisms.
  • the measurement mechanism 6 is roughly divided into a reaction table 60, a first reagent storage 61, a first reagent dispensing mechanism 62, a sample transfer unit 63, a sample dispensing mechanism 64, a second reagent storage 65, a second reagent dispensing mechanism 66, A stirring unit 67, a measuring unit 68, and a cleaning unit 69 are provided.
  • the reaction table 60 transfers the reaction container 51 to a predetermined position in order to dispense a sample or reagent into the reaction container 51, to stir, wash or measure the reaction container 51.
  • This reaction table 60 is rotatable about a vertical line passing through the center of the reaction table 60 as a rotation axis by driving a drive mechanism (not shown) under the control of the control unit 71.
  • An openable / closable lid and a thermostat are provided above and below the reaction table 60, respectively.
  • the first reagent container 61 can store a plurality of first reagent containers 61a in which the first reagent to be dispensed first among the two types of reagents dispensed in the reaction container 51 is accommodated.
  • a plurality of storage chambers are arranged at equal intervals, and a first reagent container 61a is detachably stored in each storage chamber.
  • the first reagent storage 61 rotates clockwise or counterclockwise about a vertical line passing through the center of the first reagent storage 61 as a driving mechanism (not shown) is driven under the control of the control unit 71.
  • the desired first reagent container 61a is transferred to the reagent aspirating position by the first reagent dispensing mechanism 62.
  • An openable / closable lid (not shown) is provided above the first reagent storage 61. Further, the first reagent storage 61 is kept cold. For this reason, when the first reagent container 61a is stored in the first reagent container 61 and the lid is closed, the reagent stored in the first reagent container 61a is kept in a cold state and the first reagent container 61a Evaporation and denaturation of the reagent contained in the container can be suppressed.
  • a recording medium on which reagent information related to the reagent stored in the first reagent container 61a is recorded is attached to the side surface of the first reagent container 61a.
  • the recording medium records analysis items in which the reagent stored in the first reagent container 61a is used, reagent names, lot information, bottle information, and the like.
  • the recording medium displays various encoded information and is optically read.
  • a first reagent reading unit 61b that optically reads the recording medium is provided on the outer periphery of the first reagent storage 61.
  • the first reagent reading unit 61b reads the information on the recording medium by emitting infrared light or visible light to the recording medium and processing the reflected light from the recording medium.
  • the first reagent reading unit 61b may capture the recording medium, decode the image information obtained by the imaging process, and acquire the recording medium information.
  • the first reagent reading unit 61b outputs the read information of the recording medium to the control unit 71 in association with the position in the first reagent storage 61 of the first reagent container 61a to which the recording medium is attached.
  • the first reagent dispensing mechanism 62 includes an arm 62a to which a probe for aspirating and discharging the first reagent is attached to the tip.
  • the arm 62a freely moves up and down in the vertical direction and rotates around a vertical line passing through its base end as a central axis.
  • the first reagent dispensing mechanism 62 includes a suction / discharge mechanism using a suction / discharge syringe or a piezoelectric element (not shown).
  • the first reagent dispensing mechanism 62 sucks into the probe the reagent in the first reagent container 61a corresponding to the analysis item designated by the sample to be analyzed that has been moved to a predetermined position on the first reagent container 61.
  • the arm 62a is rotated clockwise in the figure and dispensed into the reaction container 51 conveyed to a predetermined position on the reaction table 60.
  • the first reagent dispensing mechanism 62 is provided with a sensor that can detect the liquid surface height by utilizing a change in capacitance at the tip of the probe, and the reagent contained in each detected first reagent container 61a. Is output to the control unit 71.
  • the sample transfer unit 63 includes a plurality of sample racks 63b that hold a plurality of sample containers 63a that store liquid samples such as blood and urine, and sequentially transfer them in the direction of the arrows in the figure.
  • the sample in the sample container 63a transferred to a predetermined position on the sample transfer unit 63 is dispensed by the sample dispensing mechanism 64 into the reaction container 51 that is arranged and transported on the reaction table 60.
  • a recording medium on which sample information related to the sample stored in the sample container 63a is recorded is attached to the side surface portion of the sample container 63a.
  • the sample information includes information on the provider who provided the sample, an analysis item instructed to analyze the sample stored in the sample container 63a, and the collection date of the sample.
  • a sample reading unit 63c that optically reads the recording medium attached to the sample container 63a is provided outside the sample transfer unit 63. Similar to the first reagent reading unit 61b, the sample reading unit 63c emits infrared light or visible light to the recording medium, and reads the information on the recording medium by processing the reflected light from the recording medium. Further, the sample reading unit 63c may acquire the information on the recording medium by performing an imaging process on the recording medium and decoding the image information obtained by the imaging process. The sample reading unit 63c outputs the read sample information to the control unit 71.
  • the sample dispensing mechanism 64 includes an arm 64a in which a probe for aspirating and discharging the sample is attached to the tip, and an intake / exhaust mechanism using an unillustrated intake / exhaust syringe or piezoelectric element.
  • the sample dispensing mechanism 64 sucks the sample into the probe from the sample container 63a transferred to the predetermined position on the sample transfer unit 63 described above, and rotates the arm 64a counterclockwise in the drawing to dispense the sample. To do.
  • the second reagent container 65 can store a plurality of second reagent containers 65a in which the second reagent to be dispensed after the sample is dispensed among the two types of reagents dispensed in the reaction container 51 is accommodated. Similar to the first reagent storage 61, the second reagent storage 65 is provided with a plurality of storage chambers in which the second reagent containers 65a are detachably stored. Similar to the first reagent storage 61, the second reagent storage 65 can be rotated clockwise or counterclockwise, and the desired second reagent container 65a is transferred to the reagent suction position by the second reagent dispensing mechanism 66. To do.
  • an openable / closable lid (not shown) is provided above the second reagent storage 65, and the second reagent storage 65 is kept cold.
  • a recording medium on which reagent information related to the second reagent stored in the second reagent container 65a is recorded is attached to the side surface of the second reagent container 65a.
  • a second reagent reading unit 65b that has the same function as the first reagent reading unit 61b and optically reads a recording medium attached to the second reagent container 65a is provided on the outer periphery of the second reagent storage 65. It has been.
  • the second reagent dispensing mechanism 66 uses an arm 66a to which a probe for aspirating and discharging the second reagent is attached to the tip, and an unillustrated suction / discharge syringe or piezoelectric element.
  • Dispense into the reaction container 51 conveyed to the predetermined position on 60.
  • the second reagent dispensing mechanism 66 is provided with a sensor that can detect the liquid surface height by utilizing a change in capacitance at the tip of the probe, and the reagent contained in each detected second reagent container 65a. Is output to the control unit 71.
  • the stirring unit 67 stirs the first reagent, the sample, and the second reagent dispensed in the reaction container 51 to promote the reaction.
  • the measuring unit 68 emits light of a predetermined wavelength to the reaction vessel 51, receives the light that has passed through the reaction solution of the reagent in the reaction vessel 51 and the sample, performs spectral intensity measurement, and measures absorbance and the like.
  • the measurement result by the measurement unit 68 is output to the control unit 71 and analyzed by the analysis unit 73.
  • the measurement unit 68 may be configured to irradiate the reaction vessel 51 with white light and to detect the output of a predetermined wavelength by transmitting the reaction solution and then performing spectroscopy.
  • the cleaning unit 69 sucks and discharges the mixed liquid in the reaction vessel 51 that has been measured by the photometric unit 68 by a nozzle (not shown), and performs cleaning by injecting and sucking cleaning liquid such as detergent and cleaning water. .
  • the washed reaction vessel 51 is reused. Depending on the contents of the inspection, the reaction vessel 51 may be discarded after completion of one measurement, and a new reaction vessel 51 may be automatically supplied although not shown.
  • the control mechanism 7 includes a control unit 71, an input unit 72, an analysis unit 73, a storage unit 74, a transmission / reception unit 75, and an output unit 76. These units included in the measurement mechanism 6 and the control mechanism 7 are electrically connected to the control unit 71.
  • the control unit 71 is configured using a CPU or the like, and controls processing and operation of each unit of the automatic analyzer 5.
  • the control unit 71 performs predetermined input / output control on information input / output to / from each of these components, and performs predetermined information processing on this information.
  • the control unit 71 also sets the liquid level height of the reagent stored in each first reagent container 61a and each second reagent container 65a detected by the first reagent dispensing mechanism 62 and the second reagent dispensing mechanism 66. Originally, the amount of reagent in each first reagent container 61a and each second reagent container 65a installed in the automatic analyzer 5 is detected.
  • the input unit 72 is configured by using a keyboard, a mouse, and the like, and acquires various information necessary for analyzing the specimen, instruction information for analysis operation, and the like from the outside.
  • the analysis unit 73 obtains the concentration of the detection target in the sample based on the absorbance measured by the measurement unit 68 and performs component analysis of the sample.
  • the storage unit 74 is configured by using a hard disk that magnetically stores information and a memory that loads various programs related to the processing from the hard disk and electrically stores them when the automatic analyzer 5 executes the processing. Various information including the analysis result of the specimen is stored.
  • the storage unit 74 may include an auxiliary storage device that can read information stored in a storage medium such as a CD-ROM, a DVD-ROM, or a PC card.
  • the transmission / reception unit 75 has a function as an interface for performing transmission / reception of information according to a predetermined format via a communication network (not shown).
  • the output unit 76 is configured using a printer, a speaker, and the like, and outputs various information including the analysis result of the sample.
  • the output unit 76 is configured using a display, and includes a display unit that displays and outputs the analysis result of the sample and various selection menus.
  • the automatic analyzer 5 operates under the control of the control unit 71, and the sample dispensing mechanism 64 supplies the plurality of reaction containers 51 conveyed along the circumferential direction by the rotating reaction table 60. Samples are sequentially dispensed from a plurality of sample containers 63a held in the sample rack 63b.
  • Reagent dispensing mechanisms 62 and 66 sequentially dispense reagents from the reagent containers 61a and 65a into the reaction container 51 into which the specimens are sequentially dispensed.
  • the reaction container 51 into which the reagent and the sample are dispensed is sequentially stirred by the stirring unit 67 every time the reaction table 60 stops, and the reagent and the sample react with each other.
  • the measurement unit 68 is rotated. Pass through. At this time, the reaction liquid in which the reagent in the reaction container 51 has reacted with the sample is photometrically measured by the measuring unit 68 and the component concentration and the like are analyzed by the analyzing unit 73. Then, after the photometry of the reaction liquid is completed, the reaction container 51 is transferred to the cleaning unit 69 and cleaned, and then used again for analyzing the specimen.
  • the measurement mechanism 6 is provided with a magnetic particle extraction unit 52 and a magnetic particle measurement unit 53, which are driven when performing analysis processing using magnetic particles such as immunological analysis processing.
  • the magnetic particle extraction unit 52 reacts when the arm 52a having a magnetic collecting member at the tip is driven up and down or rotated under the control of the control unit 71.
  • the magnetic particles in the container 51 are taken out of the reaction container 51.
  • the magnetic particle measurement unit 53 measures the labeling substance bound to the magnetic particles transferred by the magnetic particle extraction unit 52, similarly to the magnetic particle measurement unit 10 shown in FIG.
  • the magnetic flux collecting member is inserted into the magnetic particle measuring unit 53 through the measurement hole 53a, and measurement is performed.
  • the measurement result is output to the control unit 71 and analyzed by the analysis unit 73.
  • the biochemical analysis process and the immune analysis process can be performed using the same reaction table and the same reaction container. Since analysis processing is possible using the same reaction vessel, analysis processing of a plurality of analysis items can be performed with a simple apparatus configuration.
  • the first reagent store 61 and the second reagent store 65 contain biochemical and immunization reagents.
  • a disposable tip is attached to each probe of the first reagent dispensing mechanism 62 and the second reagent dispensing mechanism 66 when dispensing each reagent, thereby preventing contamination.
  • FIG. 8 is a schematic diagram showing the configuration of the magnetic particle cleaning unit 54 shown in FIG.
  • the magnetic particle cleaning unit 54 shown in FIG. 8 accommodates the magnetism collecting member 52b, and can receive a cleaning liquid or the like therein, a liquid inlet 541 provided on the side of the liquid receiving container 540, and a liquid A liquid discharge port 542 provided at the bottom of the receiving container 540.
  • the liquid inlet 541 is connected to the liquid supply pipe 541a, and the other end of the liquid supply pipe 541a is connected to the three-way valve 543.
  • the three-way valve 543 connects the cleaning liquid feeding pipe 541d and the water feeding pipe 541e, respectively, and the control unit 71 switches the opening and closing of each pipe to drive the pumps 544 and 545 to drive the cleaning liquid tank 541b and the water tank 541c. These liquids are fed into the liquid receiving container 540.
  • the liquid discharge port 542 connects the discharge pipe 542a, and sends the liquid in the liquid receiving container 540 to the waste liquid tank 542b.
  • the discharge pipe 542a is provided with an electromagnetic valve 542c, and the valve is opened / closed under the control of the control unit 71 to adjust the liquid stored in the liquid receiving container 540.
  • the collar part 52c is formed corresponding to the measurement hole 53a of the magnetic particle measurement part 53 in FIG. 7, and shields the light from the outside in the measurement.
  • FIG. 9 is a schematic view showing a modification of the magnetic particle cleaning unit 54 shown in FIG.
  • the magnetic body 52d fixed to the arm 52a moves upward as the arm 52a moves upward, thereby moving away from the bottom of the magnetism collecting member 52b.
  • a gripping mechanism for gripping the magnetism collecting member 52b is provided at the tip of the arm 52a, and when the cleaning is performed, the magnetism collecting member 52b is released so that only the magnetic body 52d is extracted from the liquid receiving container 540, and the magnetism The adhesion of the particles to the magnetism collecting member 52b is reduced to facilitate cleaning.
  • the bottom part of the magnetic flux collecting member 52b is not in contact with the inner wall of the bottom part of the liquid receiving container 540 by the flange part 52c being supported by the end part of the liquid receiving container 540.
  • FIGS. 10 is a schematic diagram showing an analysis cycle example 1 for the reaction container of the reaction table shown in FIG. 7, and FIG. 11 is a schematic diagram showing an analysis cycle example 2 for the reaction container of the reaction table shown in FIG.
  • Both analysis cycle examples 1 and 2 are based on the assumption that the biochemical analysis process A1 and the immune analysis process A2 are performed by the automatic analyzer 5.
  • An analysis cycle example 1 shown in FIG. 10 is a cycle example showing a case where the optical measurement time in the immunological analysis process A2 is three times as long as the optical measurement time in the biochemical analysis process A1, and the samples and reagents corresponding to the analysis items are It is the example of arrangement
  • the measurement unit 68 sequentially performs measurements on the biochemical analysis process A1.
  • the reaction container for performing the immunological analysis process A2 is set between the reaction containers for performing the biochemical analysis process A1, the reaction container for performing the next immunochemical analysis process A2 is performed twice with the biochemical analysis process A1. Set to do.
  • the reaction table 60 shown in FIG. And the analysis process can be continuously performed without stopping the rotation of the reaction table 60.
  • the time required for the magnetic flux collection process is preferably the same as the time required for the dispensing process.
  • the analysis cycle example 2 shown in FIG. 11 is a cycle example showing a case where the optical measurement time in the immunological analysis process A2 is four times as long as the optical measurement time in the biochemical analysis process A1, depending on the analysis item.
  • This is an example of a reaction container arrangement in which samples and reagents are dispensed.
  • the biochemical analysis process A1 is set to be performed three times while the immune analysis process A2 is performed.
  • the measurement time ratio between the immunological analysis process A2 and the biochemical analysis process A1 is n times
  • the biochemical analysis process A1 is performed n-1 times during the immunological analysis process A2. Even for a plurality of analysis items, continuous analysis processing can be performed. It is also possible to set an analysis period in consideration of the cleaning time and the like.
  • FIG. 12 is a flowchart showing an analysis process performed by the automatic analyzer 5 shown in FIG.
  • the control unit 71 confirms whether or not the item to be analyzed is an analysis including an immune analysis (step S102).
  • the control unit 71 dispenses the sample and reagent corresponding to the analysis item to the reaction container 51 in association with the analysis cycle described above. Each dispensing mechanism is instructed to do so (step S106).
  • the reaction containers 51 are stirred and reacted (step S108).
  • the control unit 71 proceeds to step S104 and performs biochemical analysis processing.
  • step S110 it is determined whether or not the measurement target for each reaction container 51 that is sequentially conveyed is an immunoassay.
  • the control unit 71 instructs the magnetic particle extraction unit 52 and the magnetic particle measurement unit 53 to collect light and perform photometric processing.
  • step S112 when the measurement target reaction vessel 51 is biochemical analysis (step S110: No), the control unit 71 instructs the measurement unit 68 to perform photometric processing of the target reaction vessel 51 (step S110).
  • step S116 the control unit 71 confirms whether or not there is a reaction vessel 51 to be measured next (step S116).
  • the control part 71 transfers to step S110, and judges the analysis item of the target reaction container 51.
  • step S118 the controller 71 checks whether or not there is a next analysis processing instruction (step S118), and if there is an analysis instruction (step S118). (S118: Yes), the process proceeds to step S102 and the above-described processing is repeated. If there is no analysis instruction (step S118: No), the analysis processing is terminated.
  • reaction vessel 51 can use the same type of reaction vessel, and can be dealt with by simply assigning the sample and reagent according to the item to each reaction vessel 51 as appropriate, so that the analysis process can be efficiently performed with a simple apparatus configuration. It can be performed.
  • the magnetic flux collecting member when the magnetic flux collecting member is disposable and replaced every time it is used, it can be dealt with by providing a magnetic flux collecting member discarding portion 55 and a magnetic flux collecting member supply portion 56 as shown in FIG. Furthermore, the magnetic flux collecting member cleaning unit 54 shown in FIG. 7 may be provided, the number of uses may be set, cleaning may be performed within the number of uses, and the magnetic flux collecting member may be replaced when the number of uses has passed.
  • the labeling substance bound to the magnetic particles and the specimen can be reliably captured, the unreacted labeling substance can be excluded, and the measurement process can be performed. Since it is not necessary to use this, it can be easily incorporated into another automatic analyzer and each analysis process can be performed efficiently.
  • various analysis processes can be supported, and the analysis items include chemiluminescence, fluorescence, Raman spectroscopy, infrared spectroscopy, ultraviolet spectroscopy, etc. It can respond by adding.
  • the above-described method of the present invention described in FIG. 12 and the like can be executed entirely or partly by a computer having a CPU.
  • the CPU collects and holds the magnetic particles in the fluid stored in the reaction vessel and transfers the collected magnetic particles to a predetermined measurement position outside the reaction vessel.
  • a program for causing a computer to execute a measurement method including a transfer step and a measurement step of optically measuring the labeling substance bound to the magnetic particles transferred to the measurement position is executed.
  • the program is stored in the memory.
  • the program may be installed in the memory before the computer is shipped, or may be installed in the memory after the computer is shipped.
  • the program may be installed in the memory by reading the program recorded on the recording medium, or the program downloaded via a network such as the Internet may be installed in the memory.
  • a magnetic flux collecting step for collecting and holding the magnetic particles in the fluid accommodated in the reaction vessel, and a transfer step for transferring the magnetically collected magnetic particles to a predetermined measurement position outside the reaction vessel.
  • a computer installed with a program for executing a measurement method including an optical measurement of a labeling substance bound to the magnetic particles transferred to the measurement position is a fluid stored in a reaction vessel.
  • a magnetic flux collecting step for collecting and holding the magnetic particles therein, a transferring step for transferring the magnetically collected magnetic particles to a predetermined measurement position outside the reaction vessel, and the magnetic particles transferred to the measurement position It functions as a measuring means or a measuring device including a measuring step for optically measuring the labeling substance bound to.
  • any computer including a CPU that executes various programs and a memory that stores various data can be used.
  • FIG. 12 All or some of the functions in FIG. 12 described in detail above are not limited to being implemented by software (for example, a program.
  • the functions of each step shown in FIG. 12 are implemented by hardware (for example, a circuit, a board, a semiconductor, etc.). Chip), or a combination of software and hardware.
  • the automatic analyzer and the measurement method according to the present invention are useful for performing analysis processing using magnetic particles, and in particular, integrated analysis for performing analysis processing on the same table as biochemical analysis or the like. Suitable for equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

An automatic analysis device and a measurement method which are capable of performing multiple items of analysis processing using a simple configuration. An automatic analysis device (1) for performing analysis processing of a specimen by optically measuring the reaction between the specimen and a reagent. The automatic analysis device (1) comprises: a magnetic particle extraction unit (2) which is provided with a magnetic flux concentration member (24) having disposed therein a magnetic body for concentrating the magnetic flux of magnetic particles (B) from the inside of a reaction container (12) and retaining the magnetic particles (B), the magnetic particles (B) being contained in fluid which is held in the reaction container (12) and having bonded thereto a marker substance to be measured, the magnetic particle extraction unit (2) being adapted to extract the magnetic particles (B) to the outside of the reaction container (12); and a magnetic particle measuring unit (10) which optically measures the marker substance bonded to the magnetic particles (B) extracted to the outside of the reaction container (12) by the magnetic particle extraction unit (2).

Description

自動分析装置および測定方法Automatic analyzer and measuring method
 本発明は、検体と磁性粒子を含む試薬との反応物の光学的特性を測定して検体の分析処理を行う自動分析装置および測定方法に関するものである。 The present invention relates to an automatic analyzer and a measuring method for performing analysis processing of a specimen by measuring optical characteristics of a reaction product of a specimen and a reagent containing magnetic particles.
 近年、検査室の省力化の流れに伴い、生化学的分析装置に各種の免疫学的分析項目に対応するモジュールを搭載した生化学分析および免疫学的分析の統合装置や、自動分析装置に生化学的分析用モジュールおよび免疫学的分析用モジュールを組み込んだ複合装置が開発されている。 In recent years, with the trend of labor saving in laboratories, biochemical analysis and immunological analysis integrated devices equipped with modules corresponding to various immunological analysis items in biochemical analysis devices and automatic analysis devices Complex devices incorporating chemical analysis modules and immunological analysis modules have been developed.
 さらに、濁度メータ、比濁メータ等の検出器を一つの分析ユニット内に備え、複数項目の分析処理を1つのシステムで行うことが可能な自動分析装置が開示されている(たとえば、特許文献1参照)。 Furthermore, an automatic analyzer that includes a detector such as a turbidity meter and a turbidimetric meter in one analysis unit and can perform a plurality of items of analysis processing in one system is disclosed (for example, Patent Documents). 1).
特表2007-536500号公報Special table 2007-536500 gazette
 しかしながら、特許文献1に示す自動分析装置は、各測定項目に対してそれぞれの項目に対応する反応容器を用いる必要があった。そのため、複数の種類の反応容器を配置しなければならず、装置構成が複雑化していた。 However, the automatic analyzer shown in Patent Document 1 needs to use a reaction container corresponding to each item for each measurement item. Therefore, a plurality of types of reaction vessels have to be arranged, and the apparatus configuration is complicated.
 本発明は、上記に鑑みてなされたものであって、簡易な構成で複数項目の分析処理を行うことが可能な自動分析装置および測定方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide an automatic analyzer and a measurement method capable of performing analysis processing of a plurality of items with a simple configuration.
 上述した課題を解決し、目的を達成するために、本発明の自動分析装置は、(1)測定対象の磁性粒子を含む流体を収容した反応容器内から前記磁性粒子を集磁して保持する磁性体を配置した集磁部材を有し、前記磁性粒子を前記反応容器外に取り出す磁性粒子取出部と、(2)前記磁性粒子取出部によって前記反応容器外に取り出された前記磁性粒子に結合した標識物質の光学測定を行なう磁性粒子測定部と、を備える。 In order to solve the above-described problems and achieve the object, the automatic analyzer of the present invention (1) collects and holds the magnetic particles from inside a reaction vessel containing a fluid containing magnetic particles to be measured. A magnetic particle take-out part that has a magnetic collecting member on which a magnetic material is arranged and takes out the magnetic particles out of the reaction container; and (2) is coupled to the magnetic particles taken out of the reaction container by the magnetic particle take-out part. And a magnetic particle measuring unit for optically measuring the labeled substance.
 また、上記の本発明の自動分析装置において、前記磁性体は、永久磁石である。 In the above-described automatic analyzer of the present invention, the magnetic body is a permanent magnet.
 また、上記の本発明の自動分析装置において、前記磁性体は、電磁石である。 In the above-described automatic analyzer of the present invention, the magnetic body is an electromagnet.
 また、上記の本発明の自動分析装置において、前記集磁部材は、前記磁性体を覆う被覆部材である。 In the automatic analyzer of the present invention, the magnetic flux collecting member is a covering member that covers the magnetic body.
 また、上記の本発明の自動分析装置において、前記磁性体は、前記被覆部材内を移動可能である。 Moreover, in the above-described automatic analyzer of the present invention, the magnetic body is movable in the covering member.
 また、上記の本発明の自動分析装置において、前記被覆部材は、前記磁性体に対して脱着可能である。 In the above-described automatic analyzer of the present invention, the covering member can be attached to and detached from the magnetic body.
 また、上記の本発明にかかる、検体と試薬との反応を光学的に測定して前記検体の分析処理を行う自動分析装置は、第1の分析処理のための前記検体および前記試薬、または第2の分析処理のための前記検体および磁性粒子を含む前記試薬を収容可能な複数の同一の反応容器を保持する反応テーブルと、前記第1の分析処理のための前記検体および前記試薬、または前記第2の分析処理のための前記検体および磁性粒子を含む前記試薬を分注する分注部と、前記反応容器内の磁性粒子を集磁して保持する磁性体を配置した集磁部材を有し、前記磁性粒子を前記反応容器外に取り出す磁性粒子取出部と、前記磁性粒子取出部によって取り出された前記磁性粒子を用いて前記第2の分析処理に対する光学測定を行なう磁性粒子測定部と、前記第1の分析処理に対する光学測定を行なう測定部と、を備える。 Further, the automatic analyzer according to the present invention for optically measuring the reaction between the sample and the reagent and performing the analysis process of the sample, the sample and the reagent for the first analysis process, or the first A reaction table holding a plurality of the same reaction vessels capable of accommodating the sample for analysis of 2 and the reagent containing magnetic particles, and the sample and reagent for the first analysis, or A dispensing part that dispenses the specimen and the reagent containing the magnetic particles for the second analysis process; and a magnetic collecting member in which a magnetic material that collects and holds the magnetic particles in the reaction container is disposed. A magnetic particle extraction unit that extracts the magnetic particles out of the reaction vessel, and a magnetic particle measurement unit that performs optical measurement for the second analysis process using the magnetic particles extracted by the magnetic particle extraction unit; Said And a measurement unit for performing optical measurement on the analysis process.
 また、上記の本発明の自動分析装置は、前記集磁部材を洗浄する集磁部材洗浄部をさらに備える。 In addition, the automatic analyzer according to the present invention further includes a magnetic flux collecting member cleaning unit for cleaning the magnetic flux collecting member.
 また、上記の本発明の自動分析装置において、前記集磁部材は、前記磁性体を覆い、該磁性体と脱着可能な被覆部材であって、前記被覆部材を廃棄する被覆部材廃棄部と、新たな被覆部材を供給する被覆部材供給部と、を備える。 In the above-described automatic analyzer of the present invention, the magnetic flux collecting member is a covering member that covers the magnetic body and is detachable from the magnetic body, and a covering member discarding unit that discards the covering member; A covering member supply unit that supplies a covering member.
 また、上記の本発明の自動分析装置において、前記反応テーブルは、前記複数の同一の反応容器を所定間隔で配列し、処理に応じて駆動することで各反応容器を順次各処理位置に移動させる。そして、前記分注部が反応テーブル上の前記第2の分析処理用の反応容器に分注する間隔は、前記磁性粒子測定部が光学測定に要する時間に対する前記測定部が光学測定に要する時間の比以上となる整数値である。
 種々の実施形態において、本発明の自動分析装置は、上記のいずれか一つまたは複数の特徴を含む。
Further, in the above-described automatic analyzer of the present invention, the reaction table includes a plurality of the same reaction containers arranged at predetermined intervals, and is driven according to processing to sequentially move each reaction container to each processing position. . The interval at which the dispensing unit dispenses the reaction container for the second analysis process on the reaction table is equal to the time required for the measurement unit to perform the optical measurement with respect to the time required for the magnetic particle measurement unit to perform the optical measurement. It is an integer value greater than or equal to the ratio.
In various embodiments, the automated analyzer of the present invention includes any one or more of the features described above.
 また、本発明の測定方法は、反応容器内に収容された流体中の磁性粒子を集磁して保持する集磁ステップと、集磁された前記磁性粒子を前記反応容器外の所定の測定位置に移送する移送ステップと、前記測定位置に移送された前記磁性粒子に結合した標識物質の光学測定を行なう測定ステップと、を含む。
 本発明はまた、磁性粒子に結合した標識物質の光学測定を行なう測定方法を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、該測定方法は、
反応容器内に収容された流体中の磁性粒子を集磁して保持する集磁ステップと、
集磁された前記磁性粒子を前記反応容器外の所定の測定位置に移送する移送ステップと、
前記測定位置に移送された前記磁性粒子に結合した標識物質の光学測定を行なう測定ステップと、
を含む、記録媒体を提供する。
 本発明はまた、磁性粒子に結合した標識物質の光学測定を行なう測定方法を実行させるためのプログラムであって、該測定方法は、
反応容器内に収容された流体中の磁性粒子を集磁して保持する集磁ステップと、
集磁された前記磁性粒子を前記反応容器外の所定の測定位置に移送する移送ステップと、
前記測定位置に移送された前記磁性粒子に結合した標識物質の光学測定を行なう測定ステップと、
を含む、プログラムを提供する。
Further, the measuring method of the present invention includes a magnetic flux collecting step for collecting and holding magnetic particles in a fluid accommodated in a reaction vessel, and the collected magnetic particles at a predetermined measurement position outside the reaction vessel. And a measuring step for optically measuring the labeling substance bound to the magnetic particles transferred to the measurement position.
The present invention is also a computer-readable recording medium recording a program for executing a measurement method for performing an optical measurement of a labeling substance bound to magnetic particles, the measurement method comprising:
A magnetic flux collecting step for collecting and holding magnetic particles in the fluid contained in the reaction vessel;
A transfer step of transferring the magnetically collected magnetic particles to a predetermined measurement position outside the reaction vessel;
A measurement step for performing an optical measurement of the labeling substance bound to the magnetic particles transferred to the measurement position;
A recording medium is provided.
The present invention is also a program for executing a measurement method for optically measuring a labeling substance bound to magnetic particles, the measurement method comprising:
A magnetic flux collecting step for collecting and holding magnetic particles in the fluid contained in the reaction vessel;
A transfer step of transferring the magnetically collected magnetic particles to a predetermined measurement position outside the reaction vessel;
A measurement step for performing an optical measurement of the labeling substance bound to the magnetic particles transferred to the measurement position;
A program including
 本発明にかかる自動分析装置および測定方法は、反応容器内に収容された磁性粒子を集磁して保持し、反応容器外に取り出して光学測定するようにしたので、簡易な構成で複数項目の分析処理を効率的に行うことができるという効果を奏する。 The automatic analyzer and measurement method according to the present invention collects and holds the magnetic particles accommodated in the reaction vessel, takes out of the reaction vessel, and optically measures them. There is an effect that the analysis process can be performed efficiently.
図1は、本発明の実施の形態にかかる自動分析装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of an automatic analyzer according to an embodiment of the present invention. 図2は、図1に示す集磁部材の断面を示す断面図である。FIG. 2 is a cross-sectional view showing a cross section of the magnetic flux collecting member shown in FIG. 図3は、従来の免疫分析処理を示す模式図である。FIG. 3 is a schematic diagram showing a conventional immunoassay process. 図4は、本発明の実施の形態にかかる免疫分析処理を示す模式図である。FIG. 4 is a schematic diagram showing an immunoassay process according to the embodiment of the present invention. 図5は、図2に示す集磁部材の変形例1を示す断面図である。FIG. 5 is a cross-sectional view showing a first modification of the magnetic flux collecting member shown in FIG. 図6は、図2に示す集磁部材の変形例2を示す断面図である。FIG. 6 is a cross-sectional view showing a second modification of the magnetic flux collecting member shown in FIG. 図7は、本発明の実施の形態にかかる自動分析装置の構成を示す模式図である。FIG. 7 is a schematic diagram showing the configuration of the automatic analyzer according to the embodiment of the present invention. 図8は、図7に示す磁性粒子洗浄部の構成を示す模式図である。FIG. 8 is a schematic diagram showing the configuration of the magnetic particle cleaning unit shown in FIG. 図9は、図8に示す磁性粒子洗浄部の変形例を示す模式図である。FIG. 9 is a schematic view showing a modification of the magnetic particle cleaning unit shown in FIG. 図10は、図7に示す反応テーブルの反応容器に対する分析周期例1を示す模式図である。FIG. 10 is a schematic diagram showing an analysis cycle example 1 for the reaction vessel of the reaction table shown in FIG. 図11は、図7に示す反応テーブルの反応容器に対する分析周期例2を示す模式図である。FIG. 11 is a schematic diagram showing an analysis cycle example 2 for the reaction vessel of the reaction table shown in FIG. 図12は、図7に示す自動分析装置が行なう分析処理を示すフローチャートである。FIG. 12 is a flowchart showing analysis processing performed by the automatic analyzer shown in FIG. 図13は、図7に示す自動分析装置の変形例を示す模式図である。FIG. 13 is a schematic diagram showing a modification of the automatic analyzer shown in FIG.
 以下、図面を参照して本発明の自動分析装置および磁性粒子測定方法を実施するための形態について説明する。本発明は、以下に例示する実施の形態や変形例に限らず、本発明の趣旨を逸脱しない範囲であれば、種々の変形が可能である。また、図面の記載において、同一部分には同一符号を付している。 Hereinafter, an embodiment for carrying out the automatic analyzer and the magnetic particle measuring method of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments and modifications illustrated below, and various modifications can be made without departing from the spirit of the present invention. In the description of the drawings, the same parts are denoted by the same reference numerals.
 図1は、本発明の実施の形態にかかる自動分析装置の構成を示す模式図である。図1に示す自動分析装置1は、反応容器12内に収容された磁性粒子を取り出す磁性粒子取出部2と、磁性粒子取出部2によって取り出された磁性粒子と結合している標識物質の測光を行なう磁性粒子測定部10とで構成される。 FIG. 1 is a schematic diagram showing a configuration of an automatic analyzer according to an embodiment of the present invention. The automatic analyzer 1 shown in FIG. 1 performs photometry of a magnetic particle extraction unit 2 that extracts magnetic particles accommodated in a reaction vessel 12 and a labeling substance that is bonded to the magnetic particles extracted by the magnetic particle extraction unit 2. And a magnetic particle measuring unit 10 to be performed.
 磁性粒子取出部2は、駆動部22によって昇降および回動可能な支柱21と、一方が支柱21に支持され、他方に磁性粒子を集磁して保持する集磁部材24を有するアーム23とを備え、制御部11の制御のもと、駆動部22が支柱21を昇降または回動駆動させることで集磁部材24を移動させる。反応容器12内に収容された磁性粒子Bは、集磁部材24の先端に集磁され、磁性粒子測定部10に移送される。なお、集磁部材24は、磁性体をテフロン(登録商標)等の、耐薬性のある樹脂によって被覆されている。 The magnetic particle extraction unit 2 includes a support column 21 that can be moved up and down and rotated by a drive unit 22, and an arm 23 that is supported by the support column 21 and has a magnetic collecting member 24 that collects and holds magnetic particles on the other side. In addition, under the control of the control unit 11, the drive unit 22 moves the magnetic flux collecting member 24 by moving the column 21 up and down or rotationally. The magnetic particles B accommodated in the reaction vessel 12 are collected at the tip of the magnetic collecting member 24 and transferred to the magnetic particle measuring unit 10. In the magnetic flux collecting member 24, the magnetic material is covered with a chemically resistant resin such as Teflon (registered trademark).
 磁性粒子測定部10は、PDAなどの受光素子による各波長光の強度測定が可能な測定機構を内部に有し、磁性粒子Bを集磁した集磁部材24は、測定孔10aから内部に挿入され、磁性粒子Bに対して直接測定処理が行われる。ここで、集磁部材24には、鍔部24aが設けられ、鍔部24aは、測定孔10aと比して若干小さい径の円形であって、集磁部材24が測定孔10aに挿入された場合に、測定孔10aを塞ぐ。これにより、測定孔10a内への外部からの光の侵入を防ぐことが可能となる。測定された光量情報は、制御部11に出力され、制御部11が得られた光量情報をもとに分析値の算出を行なう。 The magnetic particle measuring unit 10 has a measurement mechanism capable of measuring the intensity of each wavelength light by a light receiving element such as a PDA, and the magnetic collecting member 24 collecting the magnetic particles B is inserted into the measurement hole 10a. Then, the measurement process is directly performed on the magnetic particles B. Here, the magnetic flux collecting member 24 is provided with a flange portion 24a. The flange portion 24a is a circle having a slightly smaller diameter than the measurement hole 10a, and the magnetic flux collection member 24 is inserted into the measurement hole 10a. In this case, the measurement hole 10a is closed. As a result, it is possible to prevent light from entering the measurement hole 10a from the outside. The measured light amount information is output to the control unit 11, and the control unit 11 calculates an analysis value based on the obtained light amount information.
 上述した自動分析装置1は、制御部11の制御のもと、磁性粒子取出部2の集磁部材24が反応容器12内に収容された磁性粒子Bを集磁して保持し、駆動部22による支柱21の駆動によって集磁された磁性粒子Bが磁性粒子測定部10に移送され、磁性粒子測定部10が測定処理を行う。これにより、測定対象である磁性粒子のみを取り出すことが可能となり、高い精度の分析処理を行うことができる。この自動分析装置1の構成を他の分析装置に組み込むことによって、順次搬送される反応容器に対し、磁性粒子を用いた分析処理を個別に行なうことができるため、磁性粒子を用いる独自の処理を反応容器内で行う必要なく、反応容器が同一であっても分析可能となる。 In the automatic analyzer 1 described above, under the control of the control unit 11, the magnetic collecting member 24 of the magnetic particle extraction unit 2 collects and holds the magnetic particles B accommodated in the reaction vessel 12, and the driving unit 22. The magnetic particles B collected by driving the columns 21 are transferred to the magnetic particle measuring unit 10 and the magnetic particle measuring unit 10 performs a measurement process. Thereby, it becomes possible to take out only the magnetic particle which is a measuring object, and a highly accurate analysis process can be performed. By incorporating the configuration of the automatic analyzer 1 into another analyzer, the analysis process using magnetic particles can be performed individually on the reaction vessels that are sequentially transported. Analysis is possible even if the reaction vessels are the same, without the need to carry out in the reaction vessel.
 ここで、集磁部材24について、図2を参照して説明する。図2は、図1に示す集磁部材24の断面を示す断面図である。集磁部材24は、テフロン(登録商標)等の耐薬性の樹脂を用いて形成され、内部に磁性体241が挿入されている。磁性体241には、永久磁石が用いられ、図2に示すように、底部先端を錐状に形成し、集磁する磁性粒子が一塊に集合するようになっている。なお、柱状の永久磁石の先端に、錐状に加工された金属等の磁性材料を用いてもよく、磁性体に電磁石を用いてもよい。また、鍔部24aは、テフロン(登録商標)を用いて形成してもよく、他の耐薬性樹脂を用いてもよく、別体として形成してもよい。別体として形成された場合、鍔部24aは上下に移動可能となるため、測定孔10aの高さに対応して、鍔部24aの高さを調節することが可能となる。 Here, the magnetic flux collecting member 24 will be described with reference to FIG. FIG. 2 is a cross-sectional view showing a cross section of the magnetic flux collecting member 24 shown in FIG. The magnetism collecting member 24 is formed using a chemical resistant resin such as Teflon (registered trademark), and a magnetic body 241 is inserted therein. As the magnetic body 241, a permanent magnet is used, and as shown in FIG. 2, the bottom end is formed in a conical shape, and magnetic particles to be magnetized gather together. Note that a magnetic material such as a metal processed into a cone shape may be used at the tip of the columnar permanent magnet, or an electromagnet may be used as the magnetic body. Moreover, the collar part 24a may be formed using Teflon (trademark), may use other chemical-resistant resin, and may be formed separately. When formed as a separate body, the flange portion 24a can be moved up and down, so that the height of the flange portion 24a can be adjusted according to the height of the measurement hole 10a.
 つぎに、従来の免疫分析処理および本発明の実施の形態にかかる免疫分析処理について説明する。まず、従来の免疫分析処理について、図3を参照して説明する。従来の免疫分析処理は、図3(1)に示すように、反応容器30内に抗体固相磁性粒子41を含む第1試薬が分注される第1試薬分注処理が行なわれる。その後、図3(2)に示すように、反応容器30内に分析対象である抗原42を含む検体が分注される検体分注処理が行なわれる。なお、抗体固相磁性粒子41は磁性粒子担体に検体中の抗原42に対する抗体が固相されている。そして、図3(3)に示すように、反応容器30は、攪拌された後、所定の反応時間経過によって、検体中の抗原42と抗体固相磁性粒子41とが結合した反応物44が生成される。 Next, a conventional immune analysis process and an immune analysis process according to an embodiment of the present invention will be described. First, a conventional immune analysis process will be described with reference to FIG. In the conventional immunoassay process, as shown in FIG. 3 (1), a first reagent dispensing process is performed in which a first reagent containing antibody solid phase magnetic particles 41 is dispensed in a reaction container 30. Thereafter, as shown in FIG. 3 (2), a sample dispensing process is performed in which a sample containing the antigen 42 to be analyzed is dispensed in the reaction container 30. In the antibody solid phase magnetic particles 41, an antibody against the antigen 42 in the specimen is solid phased on a magnetic particle carrier. Then, as shown in FIG. 3 (3), after the reaction vessel 30 is agitated, a reaction product 44 in which the antigen 42 in the specimen and the antibody solid phase magnetic particles 41 are combined is generated after a predetermined reaction time. Is done.
 つぎに、従来の分析においては、BF洗浄機構における1回目の第1BF洗浄処理が行なわれる。第1BF洗浄処理においては、図3(3)に示すように、磁性体を集磁する集磁機構31近傍に反応物44および抗体固相磁性粒子41を集磁した状態でBF洗浄ノズル32による洗浄液の注入および吸引を行なうことによって、反応容器30内の未反応物質43が除去される。この結果、図3(4)に示すように、反応容器30内には、未反応物質43が分離除去され、抗体固相磁性粒子41と反応物44が残る。 Next, in the conventional analysis, the first BF cleaning process for the first time in the BF cleaning mechanism is performed. In the first BF cleaning process, as shown in FIG. 3 (3), the reactant 44 and the antibody solid phase magnetic particles 41 are collected in the vicinity of the magnetic collecting mechanism 31 for collecting the magnetic material by the BF cleaning nozzle 32. By injecting and suctioning the cleaning liquid, the unreacted substance 43 in the reaction vessel 30 is removed. As a result, as shown in FIG. 3 (4), the unreacted substance 43 is separated and removed in the reaction vessel 30, and the antibody solid phase magnetic particles 41 and the reactant 44 remain.
 そして、従来の分析においては、図3(4)に示すように、第1BF洗浄処理後の反応容器30内に標識物質45を含む試薬を第2試薬として分注する第2試薬分注処理が行なわれる。所定の反応時間経過によって、図3(5)に示すように、反応物44と標識物質45とが結合した免疫複合体46が生成される。 In the conventional analysis, as shown in FIG. 3 (4), a second reagent dispensing process for dispensing a reagent containing the labeling substance 45 as the second reagent in the reaction container 30 after the first BF cleaning process is performed. Done. As a predetermined reaction time elapses, an immune complex 46 in which the reaction product 44 and the labeling substance 45 are combined is generated as shown in FIG.
 そして、従来の分析においては、図3(5)に示すように、BF洗浄機構における2回目の第2BF洗浄処理が行なわれる。第2BF洗浄処理においては、第1BF洗浄処理と同様に、集磁機構31近傍に磁性体を集磁した状態で、BF洗浄ノズル32による洗浄液の注入および吸引が行なわれる。言い換えると、第2BF洗浄処理においては、集磁機構31近傍に免疫複合体46と抗体固相磁性粒子41を集磁した状態で、BF洗浄ノズル32による洗浄液の注入および吸引を行なうことによって、反応容器30内の未結合の標識物質45が除去される。この結果、反応容器30内には、抗体固相磁性粒子41と免疫複合体46が残る。 In the conventional analysis, as shown in FIG. 3 (5), the second BF cleaning process for the second time in the BF cleaning mechanism is performed. In the second BF cleaning process, as in the first BF cleaning process, the cleaning liquid is injected and sucked by the BF cleaning nozzle 32 in a state where the magnetic material is collected in the vicinity of the magnetic flux collecting mechanism 31. In other words, in the second BF cleaning process, the reaction is performed by injecting and sucking the cleaning liquid by the BF cleaning nozzle 32 in a state where the immune complex 46 and the antibody solid phase magnetic particles 41 are collected in the vicinity of the magnetic collecting mechanism 31. Unbound labeling substance 45 in container 30 is removed. As a result, the antibody solid phase magnetic particles 41 and the immune complex 46 remain in the reaction vessel 30.
 そして、反応容器30に、励起させる標識物質45に対応した励起光Leの照射処理が行なわれる。反応容器30においては、免疫複合体46として結合している標識物質45の量に比例して光L1を発する。つぎに、免疫複合体46から発せられる光L1の光量を測定する測定処理が行なわれ、測定処理において測定された標識物質45の発光量をもとに抗原42の濃度を求める演算処理が行なわれる(図3(6))。 Then, the irradiation treatment of the excitation light Le corresponding to the labeling substance 45 to be excited is performed on the reaction vessel 30. In the reaction container 30, light L1 is emitted in proportion to the amount of the labeling substance 45 bound as the immune complex 46. Next, a measurement process for measuring the light amount of the light L1 emitted from the immune complex 46 is performed, and an arithmetic process for obtaining the concentration of the antigen 42 based on the light emission amount of the labeling substance 45 measured in the measurement process is performed. (FIG. 3 (6)).
 このように、従来の分析においては、BF洗浄処理を2度行なうことによって、検体内の未反応物質43および反応物44と未結合である標識物質45を除去し、測定対象である免疫複合体46のみを取得して測定処理を行なっている。 Thus, in the conventional analysis, the unreacted substance 43 in the sample and the labeling substance 45 unbound with the reactant 44 are removed by performing the BF washing treatment twice, and the immune complex to be measured Only 46 is obtained and measurement processing is performed.
 続いて、本発明の実施の形態にかかる自動分析装置を用いた免疫分析処理について、図4を参照して説明する。図4は、本発明の実施の形態にかかる免疫分析処理を示す模式図である。まず、抗体固相磁性粒子41を含む第1試薬、分析対象である抗原42を含む検体および標識物質45を含む第2試薬を反応容器30にそれぞれ分注する(図4(a))。検体、第1試薬および第2試薬を分注後、攪拌および反応処理を行い、抗体固相磁性粒子41、分析対象の抗原42および標識物質45を結合させる(図4(b))。この反応処理によって、反応容器30内には、反応した免疫複合体46、未反応の抗体固相磁性粒子41、検体に含まれる未反応物質43および未反応の標識物質45が存在する。 Subsequently, an immune analysis process using the automatic analyzer according to the embodiment of the present invention will be described with reference to FIG. FIG. 4 is a schematic diagram showing an immunoassay process according to the embodiment of the present invention. First, the first reagent containing the antibody solid phase magnetic particles 41, the specimen containing the antigen 42 to be analyzed, and the second reagent containing the labeling substance 45 are respectively dispensed into the reaction container 30 (FIG. 4A). After dispensing the specimen, the first reagent, and the second reagent, stirring and reaction processing are performed to bind the antibody solid phase magnetic particles 41, the antigen 42 to be analyzed, and the labeling substance 45 (FIG. 4B). By this reaction process, the reacted immune complex 46, the unreacted antibody solid phase magnetic particles 41, the unreacted substance 43 contained in the specimen, and the unreacted labeling substance 45 are present in the reaction container 30.
 図4(b)における反応処理終了後、反応容器30内に集磁部材24を挿入する(図4(c))。所定位置まで集磁部材24を下降後、所定時間、反応容器30内で集磁部材24を停止させて、免疫複合体46および抗体固相磁性粒子41を集磁する(図4(d))。所定時間集磁した後、集磁部材24を反応容器30内から抜出する(図4(e))。集磁部材24を抜出すると、免疫複合体46と抗体固相磁性粒子41とが反応容器30外に取り出され、測定対象外である未反応物43および標識物質45が反応容器30内に残る。 After completion of the reaction process in FIG. 4B, the magnetism collecting member 24 is inserted into the reaction vessel 30 (FIG. 4C). After descending the magnetic collecting member 24 to a predetermined position, the magnetic collecting member 24 is stopped in the reaction vessel 30 for a predetermined time, and the immune complex 46 and the antibody solid phase magnetic particles 41 are collected (FIG. 4D). . After collecting the magnetism for a predetermined time, the magnetism collecting member 24 is extracted from the reaction container 30 (FIG. 4E). When the magnetism collecting member 24 is extracted, the immune complex 46 and the antibody solid phase magnetic particles 41 are taken out of the reaction container 30, and unreacted substances 43 and labeling substances 45 that are not measurement targets remain in the reaction container 30. .
 図4(e)で反応容器30の外部に取り出された免疫複合体46と抗体固相磁性粒子41とは、測定部に移送され(図4(f))、測定部において免疫複合体46に結合する標識物質45に励起光Leが照射されて励起された標識物質45が発する光L2の光量を測定する(図4(g))。 The immune complex 46 and the antibody solid phase magnetic particles 41 taken out of the reaction container 30 in FIG. 4 (e) are transferred to the measurement unit (FIG. 4 (f)), and are transferred to the immune complex 46 in the measurement unit. The labeling substance 45 to be bound is irradiated with the excitation light Le, and the amount of light L2 emitted from the excited labeling substance 45 is measured (FIG. 4G).
 上述した一連の免疫分析処理を行うことで、BF洗浄処理を行うことなく測定対象の免疫複合体46を回収し、未反応の標識物質45を除去して測定処理を行うことができるため、精度の高い分析処理を行うことが可能となる。また、反応容器30の側面からの集磁と比して流体内で集磁できるため、集磁効率が向上し、分析処理に要する時間を短縮することができる。 By performing the series of immunological analysis processes described above, it is possible to collect the immune complex 46 to be measured without performing the BF washing process, and to remove the unreacted labeling substance 45 and perform the measurement process. It is possible to perform high-analysis processing. Further, since the magnetic flux can be collected in the fluid as compared with the magnetic flux collection from the side surface of the reaction vessel 30, the magnetic flux collection efficiency is improved and the time required for the analysis process can be shortened.
 ここで、図2に示す集磁部材24の変形例について、図5,6を参照して説明する。図5は、図2に示す集磁部材24の変形例1を示す断面図である。図5に示す変形例1は、集磁部材25の底部が略錐状に形成されている。底部が略錐状に形成されることによって、反応容器内の流体中に浸入した場合に流体の乱流を抑制し、結合力の弱い反応に対しても解離することなく分析処理を行うことができる。 Here, a modified example of the magnetic flux collecting member 24 shown in FIG. 2 will be described with reference to FIGS. FIG. 5 is a cross-sectional view showing Modification 1 of the magnetic flux collecting member 24 shown in FIG. In Modification 1 shown in FIG. 5, the bottom of the magnetic flux collecting member 25 is formed in a substantially conical shape. By forming the bottom in a substantially conical shape, it is possible to suppress turbulence of the fluid when entering the fluid in the reaction vessel, and to perform analysis processing without dissociating even for reactions with weak binding force it can.
 また、測定処理が終了すると、集磁部材24を洗浄剤により洗浄して集磁した磁性粒子を取り除く。なお、磁性粒子の洗浄を一層容易にするため、集磁部材内部の磁性体を内部で移動可能にし、磁性体と磁性粒子との間に距離を持たせてもよい。図6は、図2に示す集磁部材24の変形例2を示す断面図である。図6に示す集磁部材26は、磁性体241が集磁部材26内部を移動可能な構成となっている。磁性体241が集磁部材26の内部を上方に移動することにより、底部に集磁されている磁性粒子の集磁部材26に対する付着力が低下し、磁性粒子の洗浄が容易となる。磁性体241の移動は、たとえば、集磁部材26内部またはアーム23先端に、磁性体241を把持する複数のローラーを設け、ローラーを電気的に回転させることによって集磁部材26内部を磁性体241が昇降移動可能となる。なお、集磁部材を磁性体と着脱可能な被覆部材として、使用毎に被覆部材を取り替えるようにしてもよい。さらに、磁性体または集磁部材の液侵入部分のみに被覆部材を装着するようにしてもよい。ここで、磁性体挿入穴26aは、磁性体241の挿脱を円滑に行なうため、磁性体241と若干の空間をもつように形成されることが好ましい。 When the measurement process is completed, the magnetic collecting member 24 is washed with a cleaning agent to remove the magnetic particles collected. In order to further facilitate cleaning of the magnetic particles, the magnetic body inside the magnetic flux collecting member may be moved inside, and a distance may be provided between the magnetic body and the magnetic particles. 6 is a cross-sectional view showing a second modification of the magnetic flux collecting member 24 shown in FIG. The magnetic flux collecting member 26 shown in FIG. 6 is configured such that the magnetic body 241 can move inside the magnetic flux collecting member 26. When the magnetic body 241 moves upward in the magnetic flux collecting member 26, the adhesion force of the magnetic particles collected at the bottom to the magnetic flux collecting member 26 is reduced, and the magnetic particles can be easily cleaned. The magnetic body 241 is moved, for example, by providing a plurality of rollers for gripping the magnetic body 241 inside the magnetic flux collecting member 26 or at the tip of the arm 23, and electrically rotating the rollers to move the magnetic flux collecting member 26 inside. Can be moved up and down. In addition, you may make it replace a coating | coated member for every use as a magnetic collecting member as a coating | coated member which can be attached or detached with a magnetic body. Furthermore, the covering member may be attached only to the liquid intrusion portion of the magnetic body or the magnetic flux collecting member. Here, the magnetic body insertion hole 26a is preferably formed to have a slight space with the magnetic body 241 in order to smoothly insert and remove the magnetic body 241.
 さらに、上述した磁性粒子取出部と測定部とを、生化学分析を行う自動分析装置に組み込んで分析処理を行なう場合は、図7に示す構成で適用することができる。図7は、本発明の実施の形態にかかる自動分析装置5の構成を示す模式図である。図7に示す自動分析装置5は、分析対象である検体および試薬を反応容器51にそれぞれ分注し、反応容器51内で生じる反応を光学的に測定する測定機構6と、測定機構6を含む自動分析装置5全体の制御を行なうとともに測定機構6における測定結果の分析を行なう制御機構7とを備える。自動分析装置5は、これらの二つの機構が連携することによって検体内における検出対象物の濃度を検出する生化学分析を順次自動的に行なう。 Furthermore, when the above-described magnetic particle extraction unit and measurement unit are incorporated in an automatic analyzer that performs biochemical analysis and analysis processing is performed, the configuration shown in FIG. 7 can be applied. FIG. 7 is a schematic diagram showing a configuration of the automatic analyzer 5 according to the embodiment of the present invention. The automatic analyzer 5 shown in FIG. 7 includes a measurement mechanism 6 that dispenses a specimen and a reagent to be analyzed into the reaction container 51 and optically measures a reaction that occurs in the reaction container 51, and a measurement mechanism 6. A control mechanism 7 that controls the entire automatic analyzer 5 and analyzes the measurement result in the measurement mechanism 6 is provided. The automatic analyzer 5 automatically and sequentially performs biochemical analysis for detecting the concentration of the detection target in the sample by cooperation of these two mechanisms.
 まず、測定機構6について説明する。測定機構6は、大別して反応テーブル60、第1試薬庫61、第1試薬分注機構62、検体移送部63、検体分注機構64、第2試薬庫65、第2試薬分注機構66、攪拌部67、測定部68および洗浄部69を備える。 First, the measurement mechanism 6 will be described. The measurement mechanism 6 is roughly divided into a reaction table 60, a first reagent storage 61, a first reagent dispensing mechanism 62, a sample transfer unit 63, a sample dispensing mechanism 64, a second reagent storage 65, a second reagent dispensing mechanism 66, A stirring unit 67, a measuring unit 68, and a cleaning unit 69 are provided.
 反応テーブル60は、反応容器51への検体や試薬の分注、反応容器51の攪拌、洗浄または測光を行なうために反応容器51を所定の位置まで移送する。この反応テーブル60は、制御部71の制御のもと、図示しない駆動機構が駆動することによって、反応テーブル60の中心を通る鉛直線を回転軸として回動自在である。反応テーブル60の上方と下方には、図示しない開閉自在な蓋と恒温槽がそれぞれ設けられている。 The reaction table 60 transfers the reaction container 51 to a predetermined position in order to dispense a sample or reagent into the reaction container 51, to stir, wash or measure the reaction container 51. This reaction table 60 is rotatable about a vertical line passing through the center of the reaction table 60 as a rotation axis by driving a drive mechanism (not shown) under the control of the control unit 71. An openable / closable lid and a thermostat (not shown) are provided above and below the reaction table 60, respectively.
 第1試薬庫61は、反応容器51内に分注される2種類の試薬のうち、最初に分注される第1試薬が収容された第1試薬容器61aを複数収納できる。第1試薬庫61には、複数の収納室が等間隔で配置されており、各収納室には第1試薬容器61aが着脱自在に収納される。第1試薬庫61は、制御部71の制御のもと、図示しない駆動機構が駆動することによって、第1試薬庫61の中心を通る鉛直線を回転軸として時計回りまたは反時計回りに回動自在であり、所望の第1試薬容器61aを第1試薬分注機構62による試薬吸引位置まで移送する。第1試薬庫61の上方には、開閉自在な蓋(図示せず)が設けられている。また、第1試薬庫61は保冷されている。このため、第1試薬庫61内に第1試薬容器61aが収納され、蓋が閉じられたときに、第1試薬容器61a内に収容された試薬を保冷状態に保ち、第1試薬容器61a内に収容された試薬の蒸発や変性を抑制することができる。 The first reagent container 61 can store a plurality of first reagent containers 61a in which the first reagent to be dispensed first among the two types of reagents dispensed in the reaction container 51 is accommodated. In the first reagent storage 61, a plurality of storage chambers are arranged at equal intervals, and a first reagent container 61a is detachably stored in each storage chamber. The first reagent storage 61 rotates clockwise or counterclockwise about a vertical line passing through the center of the first reagent storage 61 as a driving mechanism (not shown) is driven under the control of the control unit 71. The desired first reagent container 61a is transferred to the reagent aspirating position by the first reagent dispensing mechanism 62. An openable / closable lid (not shown) is provided above the first reagent storage 61. Further, the first reagent storage 61 is kept cold. For this reason, when the first reagent container 61a is stored in the first reagent container 61 and the lid is closed, the reagent stored in the first reagent container 61a is kept in a cold state and the first reagent container 61a Evaporation and denaturation of the reagent contained in the container can be suppressed.
 第1試薬容器61aの側面部には、第1試薬容器61aに収容された試薬に関する試薬情報が記録された記録媒体が付されている。たとえば、記録媒体は、第1試薬容器61aに収容された試薬が使用される分析項目、試薬の名称、Lot情報、ボトル情報などを記録する。記録媒体は、符号化された各種の情報を表示しており、光学的に読み取られる。 A recording medium on which reagent information related to the reagent stored in the first reagent container 61a is recorded is attached to the side surface of the first reagent container 61a. For example, the recording medium records analysis items in which the reagent stored in the first reagent container 61a is used, reagent names, lot information, bottle information, and the like. The recording medium displays various encoded information and is optically read.
 第1試薬庫61の外周部には、この記録媒体を光学的に読み取る第1試薬読取部61bが設けられている。第1試薬読取部61bは、記録媒体に対して赤外光または可視光を発し、記録媒体からの反射光を処理することによって、記録媒体の情報を読み取る。また、第1試薬読取部61bは、記録媒体を撮像処理し、撮像処理によって得られた画像情報を解読して、記録媒体の情報を取得してもよい。第1試薬読取部61bは、読み取った記録媒体の情報を、この記録媒体が付された第1試薬容器61aの第1試薬庫61内のポジションに対応づけて制御部71に出力する。 A first reagent reading unit 61b that optically reads the recording medium is provided on the outer periphery of the first reagent storage 61. The first reagent reading unit 61b reads the information on the recording medium by emitting infrared light or visible light to the recording medium and processing the reflected light from the recording medium. In addition, the first reagent reading unit 61b may capture the recording medium, decode the image information obtained by the imaging process, and acquire the recording medium information. The first reagent reading unit 61b outputs the read information of the recording medium to the control unit 71 in association with the position in the first reagent storage 61 of the first reagent container 61a to which the recording medium is attached.
 第1試薬分注機構62は、第1試薬の吸引および吐出を行なうプローブが先端部に取り付けられたアーム62aを備える。アーム62aは、鉛直方向への昇降および自身の基端部を通過する鉛直線を中心軸とする回転を自在に行なう。第1試薬分注機構62は、図示しない吸排シリンジまたは圧電素子を用いた吸排機構を備える。第1試薬分注機構62は、第1試薬庫61上の所定位置に移動された分析対象である検体に指示された分析項目に対応する第1試薬容器61a内の試薬をプローブ内に吸引し、アーム62aを図中時計回りに旋回させ、反応テーブル60上の所定位置に搬送された反応容器51に分注する。また、第1試薬分注機構62は、プローブ先端に静電容量変化などを利用して液面高さを検出できるセンサーが設けられており、検出した各第1試薬容器61aに収容された試薬の液面高さを制御部71に出力する。 The first reagent dispensing mechanism 62 includes an arm 62a to which a probe for aspirating and discharging the first reagent is attached to the tip. The arm 62a freely moves up and down in the vertical direction and rotates around a vertical line passing through its base end as a central axis. The first reagent dispensing mechanism 62 includes a suction / discharge mechanism using a suction / discharge syringe or a piezoelectric element (not shown). The first reagent dispensing mechanism 62 sucks into the probe the reagent in the first reagent container 61a corresponding to the analysis item designated by the sample to be analyzed that has been moved to a predetermined position on the first reagent container 61. Then, the arm 62a is rotated clockwise in the figure and dispensed into the reaction container 51 conveyed to a predetermined position on the reaction table 60. In addition, the first reagent dispensing mechanism 62 is provided with a sensor that can detect the liquid surface height by utilizing a change in capacitance at the tip of the probe, and the reagent contained in each detected first reagent container 61a. Is output to the control unit 71.
 検体移送部63は、血液や尿等、液体である検体を収容した複数の検体容器63aを保持し、図中の矢印方向に順次移送する複数の検体ラック63bを備える。検体移送部63上の所定位置に移送された検体容器63a内の検体は、検体分注機構64によって、反応テーブル60上に配列して搬送される反応容器51に分注される。検体容器63aの側面部には、検体容器63aに収容された検体に関する検体情報が記録された記録媒体が付されている。検体情報として、検体を提供した提供者に関する情報、検体容器63aに収容された検体に対して分析を指示された分析項目、該検体の採取日などがある。 The sample transfer unit 63 includes a plurality of sample racks 63b that hold a plurality of sample containers 63a that store liquid samples such as blood and urine, and sequentially transfer them in the direction of the arrows in the figure. The sample in the sample container 63a transferred to a predetermined position on the sample transfer unit 63 is dispensed by the sample dispensing mechanism 64 into the reaction container 51 that is arranged and transported on the reaction table 60. A recording medium on which sample information related to the sample stored in the sample container 63a is recorded is attached to the side surface portion of the sample container 63a. The sample information includes information on the provider who provided the sample, an analysis item instructed to analyze the sample stored in the sample container 63a, and the collection date of the sample.
 検体移送部63外には、この検体容器63aに付された記録媒体を光学的に読み取る検体読取部63cが設けられている。この検体読取部63cは、第1試薬読取部61bと同様に、記録媒体に対して赤外光または可視光を発し、記録媒体からの反射光を処理することによって、記録媒体の情報を読み取る。また、検体読取部63cは、記録媒体を撮像処理し、撮像処理によって得られた画像情報を解読して、記録媒体の情報を取得してもよい。検体読取部63cは、読み取った検体情報を制御部71に出力する。 A sample reading unit 63c that optically reads the recording medium attached to the sample container 63a is provided outside the sample transfer unit 63. Similar to the first reagent reading unit 61b, the sample reading unit 63c emits infrared light or visible light to the recording medium, and reads the information on the recording medium by processing the reflected light from the recording medium. Further, the sample reading unit 63c may acquire the information on the recording medium by performing an imaging process on the recording medium and decoding the image information obtained by the imaging process. The sample reading unit 63c outputs the read sample information to the control unit 71.
 検体分注機構64は、第1試薬分注機構62と同様に、検体の吸引および吐出を行なうプローブが先端部に取り付けられたアーム64aと、図示しない吸排シリンジまたは圧電素子を用いた吸排機構を備える。検体分注機構64は、上述した検体移送部63上の所定位置に移送された検体容器63aの中からプローブ内に検体を吸引し、アーム64aを図中反時計回りに旋回させ検体を分注する。 Similar to the first reagent dispensing mechanism 62, the sample dispensing mechanism 64 includes an arm 64a in which a probe for aspirating and discharging the sample is attached to the tip, and an intake / exhaust mechanism using an unillustrated intake / exhaust syringe or piezoelectric element. Prepare. The sample dispensing mechanism 64 sucks the sample into the probe from the sample container 63a transferred to the predetermined position on the sample transfer unit 63 described above, and rotates the arm 64a counterclockwise in the drawing to dispense the sample. To do.
 第2試薬庫65は、反応容器51内に分注される2種類の試薬のうち検体が分注された後に分注される第2試薬が収容された第2試薬容器65aを複数収納できる。第2試薬庫65には、第1試薬庫61と同様に、第2試薬容器65aが着脱自在に収納される複数の収納室が設けられている。第2試薬庫65は、第1試薬庫61と同様に、時計回りまたは反時計回りに回動自在であり、所望の第2試薬容器65aを第2試薬分注機構66による試薬吸引位置まで移送する。第1試薬庫61と同様に、第2試薬庫65の上方には、開閉自在な蓋(図示せず)が設けられ、第2試薬庫65は保冷されている。第2試薬容器65aの側面部には、第1試薬容器61aと同様に、第2試薬容器65aに収容された第2試薬に関する試薬情報が記録された記録媒体が付されている。また、第2試薬庫65の外周部には、第1試薬読取部61bと同様の機能を有し第2試薬容器65aに付された記録媒体を光学的に読み取る第2試薬読取部65bが設けられている。 The second reagent container 65 can store a plurality of second reagent containers 65a in which the second reagent to be dispensed after the sample is dispensed among the two types of reagents dispensed in the reaction container 51 is accommodated. Similar to the first reagent storage 61, the second reagent storage 65 is provided with a plurality of storage chambers in which the second reagent containers 65a are detachably stored. Similar to the first reagent storage 61, the second reagent storage 65 can be rotated clockwise or counterclockwise, and the desired second reagent container 65a is transferred to the reagent suction position by the second reagent dispensing mechanism 66. To do. Similar to the first reagent storage 61, an openable / closable lid (not shown) is provided above the second reagent storage 65, and the second reagent storage 65 is kept cold. Similar to the first reagent container 61a, a recording medium on which reagent information related to the second reagent stored in the second reagent container 65a is recorded is attached to the side surface of the second reagent container 65a. In addition, a second reagent reading unit 65b that has the same function as the first reagent reading unit 61b and optically reads a recording medium attached to the second reagent container 65a is provided on the outer periphery of the second reagent storage 65. It has been.
 第2試薬分注機構66は、第1試薬分注機構62と同様に、第2試薬の吸引および吐出を行なうプローブが先端部に取り付けられたアーム66aと、図示しない吸排シリンジまたは圧電素子を用いた吸排機構を備え、第2試薬庫65上の所定位置に移動された分析対象である検体に指示された分析項目に対応する第2試薬容器65a内の試薬をプローブ内に吸引後、反応テーブル60上の所定位置に搬送された反応容器51に分注する。また、第2試薬分注機構66は、プローブ先端に静電容量変化などを利用して液面高さを検出できるセンサーが設けられており、検出した各第2試薬容器65aに収容された試薬の液面高さを制御部71に出力する。攪拌部67は、反応容器51に分注された第1試薬、検体および第2試薬の攪拌を行ない、反応を促進させる。 Similar to the first reagent dispensing mechanism 62, the second reagent dispensing mechanism 66 uses an arm 66a to which a probe for aspirating and discharging the second reagent is attached to the tip, and an unillustrated suction / discharge syringe or piezoelectric element. A reaction table after aspirating the reagent in the second reagent container 65a corresponding to the analysis item designated by the sample to be analyzed that has been moved to a predetermined position on the second reagent storage 65 into the probe. Dispense into the reaction container 51 conveyed to the predetermined position on 60. In addition, the second reagent dispensing mechanism 66 is provided with a sensor that can detect the liquid surface height by utilizing a change in capacitance at the tip of the probe, and the reagent contained in each detected second reagent container 65a. Is output to the control unit 71. The stirring unit 67 stirs the first reagent, the sample, and the second reagent dispensed in the reaction container 51 to promote the reaction.
 測定部68は、所定波長の光を反応容器51に発し、この反応容器51内の試薬と検体との反応液を通過した光を受光して分光強度測定を行なって、吸光度等を測定する。測定部68による測定結果は、制御部71に出力され、分析部73において分析される。測定部68は、反応容器51に白色光を照射し、反応液を透過後に分光して所定波長の出力を検出するようにしたものでもよい。 The measuring unit 68 emits light of a predetermined wavelength to the reaction vessel 51, receives the light that has passed through the reaction solution of the reagent in the reaction vessel 51 and the sample, performs spectral intensity measurement, and measures absorbance and the like. The measurement result by the measurement unit 68 is output to the control unit 71 and analyzed by the analysis unit 73. The measurement unit 68 may be configured to irradiate the reaction vessel 51 with white light and to detect the output of a predetermined wavelength by transmitting the reaction solution and then performing spectroscopy.
 洗浄部69は、図示しないノズルによって、測光部68による測定が終了した反応容器51内の混合液を吸引して排出するとともに、洗剤や洗浄水等の洗浄液を注入および吸引することで洗浄を行なう。この洗浄した反応容器51は再利用される。検査内容によっては1回の測定終了後に反応容器51を廃棄し、図示しないが、新たな反応容器51を自動供給するようにしてもよい。 The cleaning unit 69 sucks and discharges the mixed liquid in the reaction vessel 51 that has been measured by the photometric unit 68 by a nozzle (not shown), and performs cleaning by injecting and sucking cleaning liquid such as detergent and cleaning water. . The washed reaction vessel 51 is reused. Depending on the contents of the inspection, the reaction vessel 51 may be discarded after completion of one measurement, and a new reaction vessel 51 may be automatically supplied although not shown.
 つぎに、制御機構7について説明する。制御機構7は、制御部71、入力部72、分析部73、記憶部74、送受信部75および出力部76を備える。測定機構6および制御機構7が備えるこれらの各部は、制御部71に電気的に接続されている。 Next, the control mechanism 7 will be described. The control mechanism 7 includes a control unit 71, an input unit 72, an analysis unit 73, a storage unit 74, a transmission / reception unit 75, and an output unit 76. These units included in the measurement mechanism 6 and the control mechanism 7 are electrically connected to the control unit 71.
 制御部71は、CPU等を用いて構成され、自動分析装置5の各部の処理および動作を制御する。制御部71は、これらの各構成部位に入出力される情報について所定の入出力制御を行ない、かつ、この情報に対して所定の情報処理を行なう。制御部71は、また、第1試薬分注機構62および第2試薬分注機構66によって検出された各第1試薬容器61aおよび各第2試薬容器65aに収容された試薬の液面高さをもとに、自動分析装置5内に設置された各第1試薬容器61a内および各第2試薬容器65a内の試薬量を検出する。 The control unit 71 is configured using a CPU or the like, and controls processing and operation of each unit of the automatic analyzer 5. The control unit 71 performs predetermined input / output control on information input / output to / from each of these components, and performs predetermined information processing on this information. The control unit 71 also sets the liquid level height of the reagent stored in each first reagent container 61a and each second reagent container 65a detected by the first reagent dispensing mechanism 62 and the second reagent dispensing mechanism 66. Originally, the amount of reagent in each first reagent container 61a and each second reagent container 65a installed in the automatic analyzer 5 is detected.
 入力部72は、キーボード、マウス等を用いて構成され、検体の分析に必要な諸情報や分析動作の指示情報等を外部から取得する。分析部73は、測定部68によって測光された吸光度などをもとに、検体内における検出対象物の濃度を求め、検体の成分分析等を行なう。記憶部74は、情報を磁気的に記憶するハードディスクと、自動分析装置5が処理を実行する際にその処理にかかわる各種プログラムをハードディスクからロードして電気的に記憶するメモリとを用いて構成され、検体の分析結果等を含む諸情報を記憶する。記憶部74は、CD-ROM、DVD-ROM、PCカード等の記憶媒体に記憶された情報を読み取ることができる補助記憶装置を備えてもよい。 The input unit 72 is configured by using a keyboard, a mouse, and the like, and acquires various information necessary for analyzing the specimen, instruction information for analysis operation, and the like from the outside. The analysis unit 73 obtains the concentration of the detection target in the sample based on the absorbance measured by the measurement unit 68 and performs component analysis of the sample. The storage unit 74 is configured by using a hard disk that magnetically stores information and a memory that loads various programs related to the processing from the hard disk and electrically stores them when the automatic analyzer 5 executes the processing. Various information including the analysis result of the specimen is stored. The storage unit 74 may include an auxiliary storage device that can read information stored in a storage medium such as a CD-ROM, a DVD-ROM, or a PC card.
 送受信部75は、図示しない通信ネットワークを介して所定の形式にしたがった情報の送受信を行なうインターフェースとしての機能を有する。出力部76は、プリンタ、スピーカー等を用いて構成され、検体の分析結果を含む諸情報を出力する。出力部76は、ディスプレイを用いて構成され、検体の分析結果や各種選択メニューを表示出力する表示部を備える。 The transmission / reception unit 75 has a function as an interface for performing transmission / reception of information according to a predetermined format via a communication network (not shown). The output unit 76 is configured using a printer, a speaker, and the like, and outputs various information including the analysis result of the sample. The output unit 76 is configured using a display, and includes a display unit that displays and outputs the analysis result of the sample and various selection menus.
 上述したように、自動分析装置5は、制御部71の制御の下に作動し、回転する反応テーブル60によって周方向に沿って搬送されてくる複数の反応容器51に、検体分注機構64によって検体ラック63bに保持された複数の検体容器63aから検体が順次分注される。検体が順次分注された反応容器51には、試薬分注機構62,66が試薬容器61a,65aから順次試薬が分注される。試薬と検体とが分注された反応容器51は、反応テーブル60が停止する都度、攪拌部67によって順次攪拌されて試薬と検体とが反応し、反応テーブル60が再び回転したときに測定部68を通過する。このとき、反応容器51内の試薬と検体とが反応した反応液は、測定部68で測光され、分析部73によって成分濃度等が分析される。そして、反応液の測光が終了した反応容器51は、洗浄部69に移送されて洗浄された後、再度検体の分析に使用される。 As described above, the automatic analyzer 5 operates under the control of the control unit 71, and the sample dispensing mechanism 64 supplies the plurality of reaction containers 51 conveyed along the circumferential direction by the rotating reaction table 60. Samples are sequentially dispensed from a plurality of sample containers 63a held in the sample rack 63b. Reagent dispensing mechanisms 62 and 66 sequentially dispense reagents from the reagent containers 61a and 65a into the reaction container 51 into which the specimens are sequentially dispensed. The reaction container 51 into which the reagent and the sample are dispensed is sequentially stirred by the stirring unit 67 every time the reaction table 60 stops, and the reagent and the sample react with each other. When the reaction table 60 rotates again, the measurement unit 68 is rotated. Pass through. At this time, the reaction liquid in which the reagent in the reaction container 51 has reacted with the sample is photometrically measured by the measuring unit 68 and the component concentration and the like are analyzed by the analyzing unit 73. Then, after the photometry of the reaction liquid is completed, the reaction container 51 is transferred to the cleaning unit 69 and cleaned, and then used again for analyzing the specimen.
 以上の構成によって、生化学分析処理が進められる。さらにここで、測定機構6には、磁性粒子取出部52および磁性粒子測定部53が設けられ、免疫分析処理等、磁性粒子を用いる分析処理を行う場合に駆動する。 The biochemical analysis process proceeds with the above configuration. Further, here, the measurement mechanism 6 is provided with a magnetic particle extraction unit 52 and a magnetic particle measurement unit 53, which are driven when performing analysis processing using magnetic particles such as immunological analysis processing.
 磁性粒子取出部52は、図1に示す磁性粒子取出部2と同様に、制御部71の制御のもと、先端に集磁部材を備えたアーム52aが昇降駆動または回動することによって、反応容器51内の磁性粒子を反応容器51の外部に取り出す。 As in the case of the magnetic particle extraction unit 2 shown in FIG. 1, the magnetic particle extraction unit 52 reacts when the arm 52a having a magnetic collecting member at the tip is driven up and down or rotated under the control of the control unit 71. The magnetic particles in the container 51 are taken out of the reaction container 51.
 磁性粒子測定部53は、図1に示す磁性粒子測定部10と同様に、磁性粒子取出部52によって移送される磁性粒子に結合した標識物質の測定を行なう。集磁部材は測定孔53aを介して磁性粒子測定部53内に挿入され、測定が行なわれ、測定結果は、制御部71に出力され、分析部73において分析される。 The magnetic particle measurement unit 53 measures the labeling substance bound to the magnetic particles transferred by the magnetic particle extraction unit 52, similarly to the magnetic particle measurement unit 10 shown in FIG. The magnetic flux collecting member is inserted into the magnetic particle measuring unit 53 through the measurement hole 53a, and measurement is performed. The measurement result is output to the control unit 71 and analyzed by the analysis unit 73.
 上述した構成により生化学分析処理と免疫分析処理とを同一反応テーブルおよび同一反応容器を用いて行なうことができる。同一の反応容器を用いて分析処理が可能なため、簡易な装置構成で複数の分析項目の分析処理を行うことが可能となる。なお、第1試薬庫61および第2試薬庫65には、生化学用および免疫用の試薬が収容される。また、第1試薬分注機構62、第2試薬分注機構66の各プローブには、各試薬の分注時にディスポーザブルのチップが装着され、コンタミネーションを防止する。 With the above-described configuration, the biochemical analysis process and the immune analysis process can be performed using the same reaction table and the same reaction container. Since analysis processing is possible using the same reaction vessel, analysis processing of a plurality of analysis items can be performed with a simple apparatus configuration. The first reagent store 61 and the second reagent store 65 contain biochemical and immunization reagents. In addition, a disposable tip is attached to each probe of the first reagent dispensing mechanism 62 and the second reagent dispensing mechanism 66 when dispensing each reagent, thereby preventing contamination.
 ここで、磁性粒子測定部53において測定処理の終了した磁性粒子は、磁性粒子洗浄部54で洗浄される。図8は、図7に示す磁性粒子洗浄部54の構成を示す模式図である。図8に示す磁性粒子洗浄部54は、集磁部材52bを収容し、内部に洗浄液等を収容可能な液受け容器540と、液受け容器540側部に設けられた液流入口541と、液受け容器540の底部に設けられた液排出口542とを有する。また、液流入口541は、送液管541aと連結し、送液管541aの他方端部は三方弁543に連結している。三方弁543は、洗浄液送液管541dおよび水送液管541eをそれぞれ連結し、制御部71が、各管の開閉を切り替えて、ポンプ544,545を駆動して洗浄液タンク541b、水タンク541c内の各液体を液受け容器540に送り込む。 Here, the magnetic particles that have been subjected to the measurement process in the magnetic particle measuring unit 53 are cleaned by the magnetic particle cleaning unit 54. FIG. 8 is a schematic diagram showing the configuration of the magnetic particle cleaning unit 54 shown in FIG. The magnetic particle cleaning unit 54 shown in FIG. 8 accommodates the magnetism collecting member 52b, and can receive a cleaning liquid or the like therein, a liquid inlet 541 provided on the side of the liquid receiving container 540, and a liquid A liquid discharge port 542 provided at the bottom of the receiving container 540. The liquid inlet 541 is connected to the liquid supply pipe 541a, and the other end of the liquid supply pipe 541a is connected to the three-way valve 543. The three-way valve 543 connects the cleaning liquid feeding pipe 541d and the water feeding pipe 541e, respectively, and the control unit 71 switches the opening and closing of each pipe to drive the pumps 544 and 545 to drive the cleaning liquid tank 541b and the water tank 541c. These liquids are fed into the liquid receiving container 540.
 また、液排出口542は、排出管542aを連結し、液受け容器540内の液体を廃液タンク542bに送り込む。ここで、排出管542aには電磁弁542cが設けられ、制御部71の制御によって弁の開閉が行われ、液受け容器540に収容される液体の調節を行なう。なお、鍔部52cは、図7における磁性粒子測定部53の測定孔53aに対応して形成され、測定における外部からの光を遮蔽する。 Also, the liquid discharge port 542 connects the discharge pipe 542a, and sends the liquid in the liquid receiving container 540 to the waste liquid tank 542b. Here, the discharge pipe 542a is provided with an electromagnetic valve 542c, and the valve is opened / closed under the control of the control unit 71 to adjust the liquid stored in the liquid receiving container 540. In addition, the collar part 52c is formed corresponding to the measurement hole 53a of the magnetic particle measurement part 53 in FIG. 7, and shields the light from the outside in the measurement.
 さらに、洗浄効率を向上させるため、集磁部材52b内部にある磁性体52dを移動させて洗浄してもよい。図9は、図8に示す磁性粒子洗浄部54の変形例を示す模式図である。図9に示す変形例は、アーム52aに固定された磁性体52dが、アーム52aの上昇に従って上方に移動することによって、集磁部材52bの底部から離れる。このとき、アーム52a先端に集磁部材52bを把持する把持機構を設け、洗浄を行なう場合に集磁部材52bの把持を解除することで、磁性体52dのみを液受け容器540内から抜出し、磁性粒子の集磁部材52bに対する付着力を低下させて洗浄を一層容易にする。ここで、集磁部材52b底部は、鍔部52cが液受け容器540端部に支持されることで、液受け容器540底部内壁と接触しないようになっている。 Furthermore, in order to improve the cleaning efficiency, the magnetic body 52d inside the magnetic flux collecting member 52b may be moved for cleaning. FIG. 9 is a schematic view showing a modification of the magnetic particle cleaning unit 54 shown in FIG. In the modification shown in FIG. 9, the magnetic body 52d fixed to the arm 52a moves upward as the arm 52a moves upward, thereby moving away from the bottom of the magnetism collecting member 52b. At this time, a gripping mechanism for gripping the magnetism collecting member 52b is provided at the tip of the arm 52a, and when the cleaning is performed, the magnetism collecting member 52b is released so that only the magnetic body 52d is extracted from the liquid receiving container 540, and the magnetism The adhesion of the particles to the magnetism collecting member 52b is reduced to facilitate cleaning. Here, the bottom part of the magnetic flux collecting member 52b is not in contact with the inner wall of the bottom part of the liquid receiving container 540 by the flange part 52c being supported by the end part of the liquid receiving container 540.
 次に、反応テーブル60に配置される反応容器51に対する各分析項目の分析周期について、図10,11を参照して説明する。図10は、図7に示す反応テーブルの反応容器に対する分析周期例1を示す模式図であり、図11は、図7に示す反応テーブルの反応容器に対する分析周期例2を示す模式図である。分析周期例1,2は、ともに生化学分析処理A1と、免疫分析処理A2とを自動分析装置5で行うことを前提とする。 Next, the analysis cycle of each analysis item for the reaction vessel 51 arranged in the reaction table 60 will be described with reference to FIGS. 10 is a schematic diagram showing an analysis cycle example 1 for the reaction container of the reaction table shown in FIG. 7, and FIG. 11 is a schematic diagram showing an analysis cycle example 2 for the reaction container of the reaction table shown in FIG. Both analysis cycle examples 1 and 2 are based on the assumption that the biochemical analysis process A1 and the immune analysis process A2 are performed by the automatic analyzer 5.
 図10に示す分析周期例1は、免疫分析処理A2における光学測定時間が生化学分析処理A1の光学測定時間の3倍要する場合を示す周期例であって、分析項目に応じた検体および試薬が分注される反応容器配置例である。反応テーブル60が回転することで、測定部68によって生化学分析処理A1に対する測定が順次行われる。ここで、生化学分析処理A1を行う反応容器の間に、免疫分析処理A2を行なう反応容器が設定されると、次に免疫分析処理A2を行う反応容器を、生化学分析処理A1を2回行うよう設定する。免疫分析処理A2の間に2つの生化学分析処理A1を行なうことで、順次搬送される反応容器に対して、図7の反応テーブル60の回転と、磁性粒子取出部52の取出し間隔(分析間隔)が揃い、反応テーブル60の回転を停止させずに、連続的に分析処理を行うことができる。なお、集磁処理に要する時間は、分注処理に要する時間と同一であることが好ましい。 An analysis cycle example 1 shown in FIG. 10 is a cycle example showing a case where the optical measurement time in the immunological analysis process A2 is three times as long as the optical measurement time in the biochemical analysis process A1, and the samples and reagents corresponding to the analysis items are It is the example of arrangement | positioning of the reaction container dispensed. As the reaction table 60 rotates, the measurement unit 68 sequentially performs measurements on the biochemical analysis process A1. Here, when the reaction container for performing the immunological analysis process A2 is set between the reaction containers for performing the biochemical analysis process A1, the reaction container for performing the next immunochemical analysis process A2 is performed twice with the biochemical analysis process A1. Set to do. By performing the two biochemical analysis processes A1 during the immunological analysis process A2, the reaction table 60 shown in FIG. ) And the analysis process can be continuously performed without stopping the rotation of the reaction table 60. Note that the time required for the magnetic flux collection process is preferably the same as the time required for the dispensing process.
 また、図11に示す分析周期例2は、免疫分析処理A2における光学測定時間が生化学分析処理A1の光学測定時間と比して4倍要する場合を示す周期例であって、分析項目に応じた検体および試薬が分注される反応容器配置例である。図11も同様に、免疫分析処理A2を行う間に、生化学分析処理A1を3回行うよう設定される。上述したように、免疫分析処理A2と生化学分析処理A1との測定時間比がn倍である場合は、免疫分析処理A2を行う間にn-1回の生化学分析処理A1を行うことで、複数の分析項目であっても連続的な分析処理を行うことができる。なお、洗浄時間等を考慮した分析周期を設定することも可能である。 Further, the analysis cycle example 2 shown in FIG. 11 is a cycle example showing a case where the optical measurement time in the immunological analysis process A2 is four times as long as the optical measurement time in the biochemical analysis process A1, depending on the analysis item. This is an example of a reaction container arrangement in which samples and reagents are dispensed. Similarly, in FIG. 11, the biochemical analysis process A1 is set to be performed three times while the immune analysis process A2 is performed. As described above, when the measurement time ratio between the immunological analysis process A2 and the biochemical analysis process A1 is n times, the biochemical analysis process A1 is performed n-1 times during the immunological analysis process A2. Even for a plurality of analysis items, continuous analysis processing can be performed. It is also possible to set an analysis period in consideration of the cleaning time and the like.
 つづいて、自動分析装置5が行なう分析処理について、図12を参照して説明する。図12は、図7に示す自動分析装置5が行なう分析処理を示すフローチャートである。まず、制御部71は、分析処理を行う項目に、免疫分析を含む分析であるか否かを確認する(ステップS102)。入力部72から免疫分析を行う旨の情報がある場合(ステップS102:Yes)、制御部71は、上述した分析周期に対応させて、分析項目に対応した検体および試薬を反応容器51に分注するよう、各分注機構に指示する(ステップS106)。検体および試薬の分注が終了すると、各反応容器51の攪拌および反応処理を行う(ステップS108)。なお、入力部72から免疫分析を含まない分析である旨の情報があった場合(ステップS102:No)、制御部71は、ステップS104に移行して生化学分析処理を行う。 Next, analysis processing performed by the automatic analyzer 5 will be described with reference to FIG. FIG. 12 is a flowchart showing an analysis process performed by the automatic analyzer 5 shown in FIG. First, the control unit 71 confirms whether or not the item to be analyzed is an analysis including an immune analysis (step S102). When there is information indicating that immunoassay is to be performed from the input unit 72 (step S102: Yes), the control unit 71 dispenses the sample and reagent corresponding to the analysis item to the reaction container 51 in association with the analysis cycle described above. Each dispensing mechanism is instructed to do so (step S106). When dispensing of the specimen and the reagent is completed, the reaction containers 51 are stirred and reacted (step S108). When there is information indicating that the analysis does not include immunological analysis from the input unit 72 (step S102: No), the control unit 71 proceeds to step S104 and performs biochemical analysis processing.
 ステップS108の反応処理が終了すると、順次搬送される各反応容器51に対する測定対象が免疫分析か否かを判断する(ステップS110)。ここで、測定対象の反応容器51が免疫分析である場合(ステップS110:Yes)、制御部71は、磁性粒子取出部52および磁性粒子測定部53に、集磁して測光処理を行なうよう指示する(ステップS112)。また、ステップS110において、測定対象の反応容器51が生化学分析である場合(ステップS110:No)、制御部71は、測定部68に対象の反応容器51の測光処理を行うよう指示する(ステップS114)。 When the reaction process in step S108 is completed, it is determined whether or not the measurement target for each reaction container 51 that is sequentially conveyed is an immunoassay (step S110). Here, when the reaction container 51 to be measured is an immunoassay (step S110: Yes), the control unit 71 instructs the magnetic particle extraction unit 52 and the magnetic particle measurement unit 53 to collect light and perform photometric processing. (Step S112). In step S110, when the measurement target reaction vessel 51 is biochemical analysis (step S110: No), the control unit 71 instructs the measurement unit 68 to perform photometric processing of the target reaction vessel 51 (step S110). S114).
 ステップS112,S114における測光処理が終了すると、制御部71は、次に測定を行なう反応容器51があるか否かを確認する(ステップS116)。ここで、次に測定を行なう反応容器51がある場合(ステップS116:Yes)、制御部71は、ステップS110に移行して、対象の反応容器51の分析項目を判断する。また、次に測定を行なう反応容器51がない場合(ステップS116:No)、制御部71は、次の分析処理指示があるか否かを確認し(ステップS118)、分析指示があれば(ステップS118:Yes)、ステップS102に移行して上述した処理を繰り返し、分析指示がない場合(ステップS118:No)、分析処理を終了する。 When the photometric processing in steps S112 and S114 is completed, the control unit 71 confirms whether or not there is a reaction vessel 51 to be measured next (step S116). Here, when there exists the reaction container 51 which measures next (step S116: Yes), the control part 71 transfers to step S110, and judges the analysis item of the target reaction container 51. FIG. If there is no reaction vessel 51 to be measured next (step S116: No), the controller 71 checks whether or not there is a next analysis processing instruction (step S118), and if there is an analysis instruction (step S118). (S118: Yes), the process proceeds to step S102 and the above-described processing is repeated. If there is no analysis instruction (step S118: No), the analysis processing is terminated.
 上述した一連の分析処理を行うことによって、複数項目の分析処理を連続的に行うことができる。また、反応容器51は、同種の反応容器を用いることが可能であり、適宜項目に応じた検体および試薬を各反応容器51に割付するのみで対応できるため、簡易な装置構成で効率良く分析処理を行うことができる。 複数 By performing the above-described series of analysis processes, a plurality of items of analysis processes can be continuously performed. In addition, the reaction vessel 51 can use the same type of reaction vessel, and can be dealt with by simply assigning the sample and reagent according to the item to each reaction vessel 51 as appropriate, so that the analysis process can be efficiently performed with a simple apparatus configuration. It can be performed.
 また、集磁部材がディスポーザブルであって、使用毎に取り替える場合は、図13に示すように、集磁部材廃棄部55と、集磁部材供給部56とを設けることで対応可能である。さらに、図7に示す集磁部材洗浄部54を設け、使用回数を設定し、使用回数以内であれば洗浄を行ない、使用回数を過ぎた場合に集磁部材を取り替えるようにしてもよい。 Further, when the magnetic flux collecting member is disposable and replaced every time it is used, it can be dealt with by providing a magnetic flux collecting member discarding portion 55 and a magnetic flux collecting member supply portion 56 as shown in FIG. Furthermore, the magnetic flux collecting member cleaning unit 54 shown in FIG. 7 may be provided, the number of uses may be set, cleaning may be performed within the number of uses, and the magnetic flux collecting member may be replaced when the number of uses has passed.
 上述した自動分析装置および測定方法を用いることによって、磁性粒子および検体と結合した標識物質を確実に捕捉し、未反応の標識物質を排除して測定処理を行うことができるうえ、専用の反応容器を用いる必要がないため、容易に他の自動分析装置に組み込み、各分析処理を効率よく行なうことができる。なお、種々の分析処理に対応可能であり、分析項目としては、化学発光、蛍光発光、ラマン分光、赤外分光、紫外分光等が挙げられ、分析項目に対応して、取出部および測定部を追加することで対応できる。 By using the automatic analyzer and the measurement method described above, the labeling substance bound to the magnetic particles and the specimen can be reliably captured, the unreacted labeling substance can be excluded, and the measurement process can be performed. Since it is not necessary to use this, it can be easily incorporated into another automatic analyzer and each analysis process can be performed efficiently. In addition, various analysis processes can be supported, and the analysis items include chemiluminescence, fluorescence, Raman spectroscopy, infrared spectroscopy, ultraviolet spectroscopy, etc. It can respond by adding.
 図12等において説明される本発明の上記方法は、その全部または一部をCPUを備えるコンピュータに実行させることができる。この場合、CPUは、反応容器内に収容された流体中の磁性粒子を集磁して保持する集磁ステップと、集磁された前記磁性粒子を前記反応容器外の所定の測定位置に移送する移送ステップと、前記測定位置に移送された前記磁性粒子に結合した標識物質の光学測定を行なう測定ステップとを含む測定方法をコンピュータに実行させるためのプログラムを実行する。そのプログラムは、メモリに格納されている。プログラムは、コンピュータの出荷前にメモリにインストールされてもよいし、コンピュータの出荷後にメモリにインストールされてもよい。記録媒体に記録されたプログラムを読み出すことによってプログラムをメモリにインストールしてもよいし、インターネット等のネットワーク経由でダウンロードされたプログラムをメモリにインストールしてもよい。このように、反応容器内に収容された流体中の磁性粒子を集磁して保持する集磁ステップと、集磁された前記磁性粒子を前記反応容器外の所定の測定位置に移送する移送ステップと、前記測定位置に移送された前記磁性粒子に結合した標識物質の光学測定を行なう測定ステップとを含む測定方法を実行させるためのプログラムがインストールされたコンピュータは、反応容器内に収容された流体中の磁性粒子を集磁して保持する集磁ステップと、集磁された前記磁性粒子を前記反応容器外の所定の測定位置に移送する移送ステップと、前記測定位置に移送された前記磁性粒子に結合した標識物質の光学測定を行なう測定ステップとを含む測定手段または測定装置として機能する。 The above-described method of the present invention described in FIG. 12 and the like can be executed entirely or partly by a computer having a CPU. In this case, the CPU collects and holds the magnetic particles in the fluid stored in the reaction vessel and transfers the collected magnetic particles to a predetermined measurement position outside the reaction vessel. A program for causing a computer to execute a measurement method including a transfer step and a measurement step of optically measuring the labeling substance bound to the magnetic particles transferred to the measurement position is executed. The program is stored in the memory. The program may be installed in the memory before the computer is shipped, or may be installed in the memory after the computer is shipped. The program may be installed in the memory by reading the program recorded on the recording medium, or the program downloaded via a network such as the Internet may be installed in the memory. In this way, a magnetic flux collecting step for collecting and holding the magnetic particles in the fluid accommodated in the reaction vessel, and a transfer step for transferring the magnetically collected magnetic particles to a predetermined measurement position outside the reaction vessel. And a computer installed with a program for executing a measurement method including an optical measurement of a labeling substance bound to the magnetic particles transferred to the measurement position is a fluid stored in a reaction vessel. A magnetic flux collecting step for collecting and holding the magnetic particles therein, a transferring step for transferring the magnetically collected magnetic particles to a predetermined measurement position outside the reaction vessel, and the magnetic particles transferred to the measurement position It functions as a measuring means or a measuring device including a measuring step for optically measuring the labeling substance bound to.
 本発明において使用されうるコンピュータとしては、各種プログラムを実行するCPUと各種データを格納するメモリとを含む任意のコンピュータを使用することができる。 As a computer that can be used in the present invention, any computer including a CPU that executes various programs and a memory that stores various data can be used.
 上記に詳述した図12の全部または一部の機能は、ソフトウェア(例えば、プログラムによって実現されることに限定されない。図12に示される各ステップの機能をハードウェア(例えば、回路、ボード、半導体チップ)によって実現してもよいし、ソフトウェアとハードウェアとの組み合わせによって実現してもよい。 All or some of the functions in FIG. 12 described in detail above are not limited to being implemented by software (for example, a program. The functions of each step shown in FIG. 12 are implemented by hardware (for example, a circuit, a board, a semiconductor, etc.). Chip), or a combination of software and hardware.
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。 As described above, the present invention has been exemplified using the preferred embodiment of the present invention, but the present invention should not be construed as being limited to this embodiment. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge from the description of specific preferred embodiments of the present invention. Patents, patent applications, and references cited herein should be incorporated by reference in their entirety as if the contents themselves were specifically described herein. Understood.
 本出願は、日本国出願特願2009-156233に対して優先権を主張するものであり、その全体の内容は、具体的に本明細書に記載されているのと同様に本明細書の一部を構成するものとして援用されるべきであることが理解される。 This application claims priority to Japanese Patent Application No. 2009-156233, the entire contents of which are the same as those described in this specification. It should be understood that it should be incorporated as a component.
 以上のように、本発明にかかる自動分析装置および測定方法は、磁性粒子を用いた分析処理を行うのに有用であり、特に、生化学分析等と同一テーブル上で分析処理を行う統合型分析装置に適している。 As described above, the automatic analyzer and the measurement method according to the present invention are useful for performing analysis processing using magnetic particles, and in particular, integrated analysis for performing analysis processing on the same table as biochemical analysis or the like. Suitable for equipment.
 1,5 自動分析装置
 2,52 磁性粒子取出部
 6 測定機構
 7 制御機構
 10,53 磁性粒子測定部
 10a,53a 測定孔
 11,71 制御部
 12,30,51 反応容器
 21 支柱
 22 駆動部
 24,25,26,52b 集磁部材
 24a,52c 鍔部
 241,52d 磁性体
 23,52a,62a,64a,66a アーム
 31 集磁機構
 32 BF洗浄ノズル
 54 磁性粒子洗浄部
 55 集磁部材廃棄部
 56 集磁部材供給部
 60 反応テーブル
 61 第1試薬庫
 62 第1試薬分注機構
 63 検体移送部
 64 検体分注機構
 65 第2試薬庫
 66 第2試薬分注機構
 67 攪拌部
 68 測光部
 69 洗浄部
 72 入力部
 73 分析部
 74 記憶部
 75 送受信部
 76 出力部
 B 磁性粒子
DESCRIPTION OF SYMBOLS 1,5 Automatic analyzer 2,52 Magnetic particle extraction part 6 Measurement mechanism 7 Control mechanism 10,53 Magnetic particle measurement part 10a, 53a Measurement hole 11,71 Control part 12,30,51 Reaction vessel 21 Support column 22 Drive part 24, 25, 26, 52b Magnetic flux collecting members 24a, 52c Gutter part 241, 52d Magnetic body 23, 52a, 62a, 64a, 66a Arm 31 Magnetic flux collecting mechanism 32 BF cleaning nozzle 54 Magnetic particle cleaning part 55 Magnetic flux collecting member discarding part 56 Magnetic flux collecting part Member supply section 60 Reaction table 61 First reagent storage 62 First reagent dispensing mechanism 63 Sample transfer section 64 Sample dispensing mechanism 65 Second reagent storage 66 Second reagent dispensing mechanism 67 Stirring section 68 Photometric section 69 Washing section 72 Input Unit 73 Analysis unit 74 Storage unit 75 Transmission / reception unit 76 Output unit B Magnetic particles

Claims (13)

  1.  測定対象の磁性粒子を含む流体を収容した反応容器内から前記磁性粒子を集磁して保持する磁性体を配置した集磁部材を有し、前記磁性粒子を前記反応容器外に取り出す磁性粒子取出部と、
     前記磁性粒子取出部によって前記反応容器外に取り出された前記磁性粒子に結合した標識物質の光学測定を行なう磁性粒子測定部と、
     を備える自動分析装置。
    A magnetic particle take-out having a magnetic collecting member in which a magnetic material for collecting and holding the magnetic particles from a reaction vessel containing a fluid containing magnetic particles to be measured is disposed, and taking out the magnetic particles out of the reaction vessel And
    A magnetic particle measuring unit for optically measuring the labeling substance bound to the magnetic particles taken out from the reaction container by the magnetic particle taking-out unit;
    An automatic analyzer comprising:
  2.  前記磁性体は永久磁石である、請求項1に記載の自動分析装置。 The automatic analyzer according to claim 1, wherein the magnetic body is a permanent magnet.
  3.  前記磁性体は電磁石である、請求項1に記載の自動分析装置。 The automatic analyzer according to claim 1, wherein the magnetic body is an electromagnet.
  4.  前記集磁部材は前記磁性体を覆う被覆部材である、請求項1に記載の自動分析装置。 The automatic analyzer according to claim 1, wherein the magnetic flux collecting member is a covering member that covers the magnetic body.
  5.  前記磁性体は前記被覆部材内を移動可能である、請求項4に記載の自動分析装置。 The automatic analyzer according to claim 4, wherein the magnetic body is movable in the covering member.
  6.  前記被覆部材は前記磁性体に対して脱着可能である、請求項4に記載の自動分析装置。 The automatic analyzer according to claim 4, wherein the covering member is detachable from the magnetic body.
  7.  検体と試薬との反応を光学的に測定して前記検体の分析処理を行う自動分析装置であって、以下:
     第1の分析処理のための前記検体および前記試薬、または第2の分析処理のための前記検体および磁性粒子を含む前記試薬を収容可能な複数の同一の反応容器を保持する反応テーブル;
     前記第1の分析処理のための前記検体および前記試薬、または前記第2の分析処理のための前記検体および磁性粒子を含む前記試薬を分注する分注部;
     前記反応容器内の磁性粒子を集磁して保持する磁性体を配置した集磁部材を有し、前記磁性粒子を前記反応容器外に取り出す磁性粒子取出部;
     前記磁性粒子取出部によって取り出された前記磁性粒子を用いて前記第2の分析処理に対する光学測定を行なう磁性粒子測定部;ならびに、
     前記第1の分析処理に対する光学測定を行なう測定部、
     を備える自動分析装置。
    An automatic analyzer that optically measures a reaction between a sample and a reagent and performs analysis of the sample, and includes the following:
    A reaction table holding a plurality of identical reaction vessels capable of accommodating the sample and the reagent for the first analysis process, or the reagent including the sample and the magnetic particles for the second analysis process;
    A dispensing unit for dispensing the sample and the reagent for the first analysis process, or the reagent containing the sample and the magnetic particles for the second analysis process;
    A magnetic particle take-out part that has a magnetic collecting member in which a magnetic body that collects and holds the magnetic particles in the reaction vessel is disposed, and takes out the magnetic particles out of the reaction vessel;
    A magnetic particle measurement unit that performs optical measurement on the second analysis process using the magnetic particles extracted by the magnetic particle extraction unit; and
    A measurement unit for performing optical measurement on the first analysis process;
    An automatic analyzer comprising:
  8.  前記集磁部材を洗浄する集磁部材洗浄部をさらに備える、請求項7に記載の自動分析装置。 The automatic analyzer according to claim 7, further comprising a magnetic flux collecting member cleaning unit for cleaning the magnetic flux collecting member.
  9.  請求項7に記載の自動分析装置であって、
     ここで、前記集磁部材は、前記磁性体を覆い、該磁性体と脱着可能な被覆部材であり、
     そして、ここで、前記自動分析装置は、
     前記被覆部材を廃棄する被覆部材廃棄部と、
     新たな被覆部材を供給する被覆部材供給部と、
     を備える、自動分析装置。
    The automatic analyzer according to claim 7,
    Here, the magnetic flux collecting member is a covering member that covers the magnetic body and is detachable from the magnetic body.
    And here, the automatic analyzer is
    A covering member discarding unit for discarding the covering member;
    A covering member supply section for supplying a new covering member;
    An automatic analyzer.
  10.  請求項7に記載の自動分析装置であって、ここで、
     前記反応テーブルは、前記複数の同一の反応容器を所定間隔で配列し、処理に応じて駆動することで各反応容器を順次各処理位置に移動させ、
     前記分注部は、前記第2の分析処理用の反応容器に対する分注間隔を、前記磁性粒子測定部が光学測定に要する時間に対する前記測定部が光学測定に要する時間の比以上の整数値とする、
     自動分析装置。
    The automatic analyzer according to claim 7, wherein:
    The reaction table arranges the plurality of the same reaction containers at a predetermined interval, and sequentially moves each reaction container to each processing position by driving according to the process,
    The dispensing unit is an integer value equal to or greater than a ratio of a dispensing interval with respect to the second analytical processing reaction vessel, a ratio of the time required for the optical measurement by the measuring unit to the time required for the optical measurement by the magnetic particle measuring unit. To
    Automatic analyzer.
  11.  反応容器内に収容された流体中の磁性粒子を集磁して保持する集磁ステップと、
     集磁された前記磁性粒子を前記反応容器外の所定の測定位置に移送する移送ステップと、
     前記測定位置に移送された前記磁性粒子に結合した標識物質の光学測定を行なう測定ステップと、
     を含む、測定方法。
    A magnetic flux collecting step for collecting and holding magnetic particles in the fluid contained in the reaction vessel;
    A transfer step of transferring the magnetically collected magnetic particles to a predetermined measurement position outside the reaction vessel;
    A measurement step for performing an optical measurement of the labeling substance bound to the magnetic particles transferred to the measurement position;
    Including a measuring method.
  12.  磁性粒子に結合した標識物質の光学測定を行なう測定方法を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、該測定方法は、
     反応容器内に収容された流体中の磁性粒子を集磁して保持する集磁ステップと、
     集磁された前記磁性粒子を前記反応容器外の所定の測定位置に移送する移送ステップと、
     前記測定位置に移送された前記磁性粒子に結合した標識物質の光学測定を行なう測定ステップと、
     を含む、記録媒体。
    A computer-readable recording medium recording a program for executing a measurement method for optically measuring a labeling substance bound to magnetic particles, the measurement method comprising:
    A magnetic flux collecting step for collecting and holding magnetic particles in the fluid contained in the reaction vessel;
    A transfer step of transferring the magnetically collected magnetic particles to a predetermined measurement position outside the reaction vessel;
    A measurement step for performing an optical measurement of the labeling substance bound to the magnetic particles transferred to the measurement position;
    Including a recording medium.
  13.  磁性粒子に結合した標識物質の光学測定を行なう測定方法を実行させるためのプログラムであって、該測定方法は、
     反応容器内に収容された流体中の磁性粒子を集磁して保持する集磁ステップと、
     集磁された前記磁性粒子を前記反応容器外の所定の測定位置に移送する移送ステップと、
     前記測定位置に移送された前記磁性粒子に結合した標識物質の光学測定を行なう測定ステップと、
     を含む、プログラム。
    A program for executing a measurement method for optically measuring a labeling substance bound to magnetic particles, the measurement method comprising:
    A magnetic flux collecting step for collecting and holding magnetic particles in the fluid contained in the reaction vessel;
    A transfer step of transferring the magnetically collected magnetic particles to a predetermined measurement position outside the reaction vessel;
    A measurement step for performing an optical measurement of the labeling substance bound to the magnetic particles transferred to the measurement position;
    Including the program.
PCT/JP2010/004219 2009-06-30 2010-06-24 Automatic analysis device and measurement method WO2011001647A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009156233A JP2011013042A (en) 2009-06-30 2009-06-30 Automatic analysis device and measurement method
JP2009-156233 2009-06-30

Publications (1)

Publication Number Publication Date
WO2011001647A1 true WO2011001647A1 (en) 2011-01-06

Family

ID=43410735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004219 WO2011001647A1 (en) 2009-06-30 2010-06-24 Automatic analysis device and measurement method

Country Status (2)

Country Link
JP (1) JP2011013042A (en)
WO (1) WO2011001647A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051890A (en) * 2017-11-02 2020-04-21 株式会社日立高新技术 Automatic analyzer
CN111279197A (en) * 2017-12-07 2020-06-12 株式会社日立高新技术 Magnetic separation method and automatic analyzer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012122627A1 (en) * 2011-03-11 2012-09-20 Guisheng Yang Magnetic particle scavenging device and method
EP2835178B1 (en) 2013-08-06 2017-04-12 Yantai AusBio Laboratories Co., Ltd. Centrifuge and method for centrifuging a reaction vessel unit
KR102079118B1 (en) * 2019-08-07 2020-04-07 성정동 Separating device and method for non-ferrous metal using electromagnet
KR102351654B1 (en) * 2019-12-18 2022-01-14 바디텍메드(주) Immune response analysis method using magnetic beads

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502708A (en) * 1985-04-29 1987-10-15 ライフ サイエンシーズ インターナシヨナル オイ Immunoassay test implementation method and equipment
JPH08506661A (en) * 1993-02-01 1996-07-16 ラブシステムズ オユ Method and means for assay by specific binding of magnetic particles
WO2006107016A1 (en) * 2005-04-01 2006-10-12 Mitsubishi Kagaku Iatron, Inc. Biosample multiple autoanalyzer, method of autoanalysis and reaction cuvette

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502708A (en) * 1985-04-29 1987-10-15 ライフ サイエンシーズ インターナシヨナル オイ Immunoassay test implementation method and equipment
JPH08506661A (en) * 1993-02-01 1996-07-16 ラブシステムズ オユ Method and means for assay by specific binding of magnetic particles
WO2006107016A1 (en) * 2005-04-01 2006-10-12 Mitsubishi Kagaku Iatron, Inc. Biosample multiple autoanalyzer, method of autoanalysis and reaction cuvette

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051890A (en) * 2017-11-02 2020-04-21 株式会社日立高新技术 Automatic analyzer
CN111051890B (en) * 2017-11-02 2024-01-12 株式会社日立高新技术 Automatic analysis device
CN111279197A (en) * 2017-12-07 2020-06-12 株式会社日立高新技术 Magnetic separation method and automatic analyzer

Also Published As

Publication number Publication date
JP2011013042A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
US20210302456A1 (en) Sample analysis device
JP5300447B2 (en) Automatic analyzer and sample dispensing method in automatic analyzer
DK2031406T3 (en) Automatic analyzer for several purposes for in-vitro diagnostic
JP5322996B2 (en) Centrifugal microfluidic system and method for automated sample analysis
EP3751286A1 (en) Fully automatic photoexcited chemiluminescence detector
US9594089B2 (en) Analyzing apparatus, solid-liquid separation device and solid-liquid separation method
JP3682302B2 (en) Method and apparatus for controlling magnetic particles by dispenser
JP3582240B2 (en) Automatic sample pretreatment device and automatic sample pretreatment method
US7341691B2 (en) Automatic analyzing apparatus
WO2011001647A1 (en) Automatic analysis device and measurement method
WO2011001646A1 (en) Magnetic particle transfer device and magnetic particle transfer method
JP5452507B2 (en) Automatic analyzer
JP6120763B2 (en) Apparatus and process for transporting reaction vessel
JP7423722B2 (en) Sample measuring device and sample measuring method
WO2019167514A1 (en) Bf separating device, sample analyzing device, and bf separating method
JP2018080980A (en) Measuring mechanism equipped with reaction unit and optical detection unit
JP2000275258A (en) Analysing device
EP3711856A1 (en) Specimen measurement device, specimen measurement method, and nozzle
US20190201904A1 (en) Sample measuring apparatus and sample measuring method
JPH06167503A (en) Automatic immunity analyzer
JP7186272B2 (en) Specimen measuring device and specimen measuring method
JP2014228318A (en) Automatic analyzer and automatic analysis method
WO2023233914A1 (en) Inspection device
EP1293782B1 (en) Automatic analyzing apparatus
JP2011158333A (en) Analyzing method, analyzer and analyzing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793821

Country of ref document: EP

Kind code of ref document: A1