WO2011001585A1 - Infrared detection device and non-contact input device - Google Patents

Infrared detection device and non-contact input device Download PDF

Info

Publication number
WO2011001585A1
WO2011001585A1 PCT/JP2010/003228 JP2010003228W WO2011001585A1 WO 2011001585 A1 WO2011001585 A1 WO 2011001585A1 JP 2010003228 W JP2010003228 W JP 2010003228W WO 2011001585 A1 WO2011001585 A1 WO 2011001585A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
infrared
detection
detection signal
ratio
Prior art date
Application number
PCT/JP2010/003228
Other languages
French (fr)
Japanese (ja)
Inventor
石川寛人
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2011520747A priority Critical patent/JPWO2011001585A1/en
Publication of WO2011001585A1 publication Critical patent/WO2011001585A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • G01J5/0025Living bodies

Definitions

  • the present invention relates to an infrared detection device and a non-contact type input device using the infrared detection device.
  • Patent Document 1 describes a pyroelectric human body detection apparatus that uses a dual-type pyroelectric infrared sensor to accurately determine a human body and determine a human body movement direction. ing.
  • the output signal from the dual type pyroelectric infrared sensor is amplified and filtered, and then input to a comparison circuit, which is compared with a preset threshold value. When it is larger than the threshold value, a human body detection signal is output.
  • This pyroelectric human body detection device utilizes the feature that the phase of the output waveform of the dual-type pyroelectric infrared sensor is inverted depending on the moving direction of the human body, and either the positive or negative human body detection signal is first sent. The moving direction of the human body is determined depending on whether it has been output.
  • Patent Document 2 compares the magnitude relationship between the absolute value of the first peak value and the absolute value of the second peak value of the waveform signal output from the dual type pyroelectric infrared sensor.
  • An infrared human body detection apparatus is disclosed that outputs a human body detection signal when the absolute value of the second peak value is larger than the absolute value of the first peak value.
  • JP-A-10-160856 Japanese Patent No. 3333646
  • the output waveform of the dual-type pyroelectric infrared sensor shows the movement of the human body etc. (more specifically, the angle formed with the sensor), the movement form (whether it passed or stopped halfway during passage), etc. It depends on the direction. Even if the movement is the same, the output waveform of the sensor changes depending on conditions such as the temperature of the human body (more specifically, the temperature difference from the surroundings), the distance to the sensor, and the moving speed.
  • a human body detection signal is output only when the output signal from the sensor exceeds a threshold value, a predetermined movement of the human body or the like (for example, a human body or the like is dual).
  • the present invention has been made in order to solve the above-described problems, and is an infrared detector capable of selectively and reliably detecting only a predetermined movement to be detected among movements of an infrared radiator such as a human body.
  • An object is to provide a device and a non-contact input device.
  • An infrared detector has a dual type pyroelectric infrared sensor that has two pyroelectric elements connected in series so that the polarities are reversed, and outputs a detection signal corresponding to the amount of change in infrared, Peak detection means for detecting the peak of the detection signal output from the dual type pyroelectric infrared sensor in time series, and the time between the first peak and the second peak having different polarities detected by the peak detection means
  • a peak calculating means for determining the interval and the ratio of absolute values of both peaks, and a determining means for determining whether the detection signal is valid based on the time interval and the ratio of absolute values determined by the peak calculating means; It is characterized by providing.
  • the waveform of the detection signal output from the dual type pyroelectric infrared sensor includes the moving direction of the human body, how to move such as the moving state, the temperature of the human body, the distance from the sensor, the moving speed, etc. Varies depending on the conditions.
  • the waveform of the detection signal changes, the time interval between the peaks of the waveform (hereinafter also referred to as “peak interval”) and the ratio of the absolute values of both peaks (hereinafter also referred to as “peak ratio”) also change. That is, since the peak interval and the peak ratio change depending on the movement method and conditions described above, it is possible to estimate the movement method and conditions when the detection signal is output by obtaining the peak interval and peak ratio of the detection signal. it can.
  • the infrared detection device of the present invention it is determined whether or not the detection signal is valid based on the time interval between the first peak and the second peak and the ratio of the absolute values of both peaks. Is done. Therefore, it is possible to determine whether or not the detection result is valid, that is, whether or not it is a predetermined movement to be detected, in consideration of the movement method and conditions when the detection signal is output.
  • the validity of the detection result is determined from the peak interval and the peak ratio, so that no detection or false detection occurs even under conditions where the sensor output is small. Therefore, it is possible to reliably detect the movement of the human body or the like. As a result, it is possible to selectively and reliably detect only a predetermined movement to be detected among movements of an infrared radiator such as a human body.
  • the infrared detecting device includes a moving direction determining unit that determines a moving direction of the infrared radiator based on the polarity of the first peak when the determining unit determines that the detection signal is valid. It is preferable.
  • the dual type pyroelectric infrared sensor has a characteristic that the polarity of the detection signal is reversed when the moving direction of the infrared radiator is reversed. Therefore, according to the infrared detection device of the present invention, the moving direction of the infrared radiator can be determined from the polarity of the first peak output first. Therefore, when a predetermined movement of an infrared radiator such as a human body is detected, the moving direction of the infrared radiator can be determined together.
  • the infrared detection device has an effective region for determining whether or not the detection signal is valid for the time interval between the first peak and the second peak and the ratio of the absolute values of both peaks.
  • Storage means for storing the information to be defined, and the determination means determines whether the ratio between the time interval and the absolute value belongs to the effective area based on the information stored in the storage means, and When it is determined that the detection signal belongs to the area, it is preferable to determine that the detection signal is valid.
  • an effective area for validating the detection signal is set for the peak interval and the peak ratio, and information defining the effective area is stored in advance. Therefore, when the detection signal is output, the effectiveness of the detection signal is determined by determining whether the peak interval and the peak ratio of the detection signal belong to the effective region based on information that defines the effective region, That is, it is possible to accurately determine whether or not the movement is desired to be detected.
  • the effective region has a smaller time interval or a larger ratio of the absolute value of the second peak to the absolute value of the first peak than the invalid region where the detection signal is invalidated. Is preferred.
  • the ratio of the absolute value of the second peak to the absolute value of the first peak Tends to increase.
  • the detection signal decreases as the temperature of the infrared radiator decreases and the distance from the sensor increases, but the peak ratio hardly changes.
  • the peak ratio tends to be small. Furthermore, as the moving speed increases, the peak interval and the peak ratio tend to decrease under all conditions.
  • the detection result can be obtained regardless of conditions such as temperature, distance, and speed only when the human body moves in the parallel direction. It can be determined that (detection signal) is valid. That is, when the human body moves in the vertical direction or stops halfway, the detection result can be determined to be invalid.
  • a non-contact type input device is generated by any one of the above infrared detection devices, an operation signal generation unit that generates an operation signal of an electronic device based on an output from the infrared detection device, and an operation signal generation unit And an operation signal output means for outputting the operated operation signal to an electronic device.
  • an operation signal of the electronic device is generated and output based on the movement of the operator detected by the infrared detection device.
  • the infrared detection device by using any one of the infrared detection devices described above, it is possible to selectively detect only a predetermined movement to be detected. Therefore, by directly associating a predetermined movement with an operation signal, it can be directly performed by hand. Electronic devices can be operated without touching.
  • the present invention is configured to determine whether or not the detection signal is valid based on the time interval between the first peak and the second peak having different polarities and the ratio of the absolute values of both peaks. Therefore, it is possible to selectively and surely detect only a predetermined movement to be detected among movements of an infrared radiator such as a human body.
  • FIG. 1 is a block diagram illustrating a configuration of the infrared detection device 1.
  • the infrared detecting device 1 selectively detects only a predetermined movement to be detected (or an infrared radiator such as a human body that has performed the predetermined movement) among movements of an infrared radiator such as a human body, and a direction of the movement. (Moving direction) is detected.
  • the infrared detection device 1 is a dual type pyroelectric infrared sensor (hereinafter simply referred to as “a detection signal”) that outputs an electrical signal (detection signal) corresponding to the amount of change in infrared rays incident from a human body (including a part of the human body).
  • the information processing unit 20 includes an amplification unit 21, a bandpass filter 22, an A / D conversion unit 23, a peak detection unit 24, a peak calculation unit 25, an effectiveness determination unit 26, a storage unit 27, and a movement direction determination unit 28. Have. Hereinafter, each configuration will be described in detail.
  • the dual type pyroelectric infrared sensor 10 includes two pyroelectric elements 10a and 10b connected in series so that the polarities are reversed.
  • a differential signal of the amount of change in infrared rays incident on each of 10a and 10b is output as a detection signal. Therefore, the dual type pyroelectric infrared sensor 10 has a characteristic that the polarity of the detection signal is reversed when the moving direction of the human body or the like is reversed. More specifically, as shown in FIG. 2, when a human body or the like moves in the direction of arrow A1 along the direction parallel to the arrangement direction of the two pyroelectric elements 10a and 10b, the output waveform is first positive. Rise in the direction and then reverse in the negative direction.
  • the output waveform falls in the negative direction and then reverses in the positive direction.
  • the dual type pyroelectric infrared sensor 10 is connected to the information processing unit 20, and a detection signal is output to the information processing unit 20.
  • the information processing unit 20 processes the detection signal input from the dual type pyroelectric infrared sensor 10 to determine the presence / absence of a predetermined movement and the direction (movement direction) of the movement. .
  • the information processing unit 20 performs arithmetic processing on the detection signal input via the amplification unit 21, the band pass filter 22, the A / D conversion unit 23, and the A / D conversion unit 23 as an input interface. It is composed of a microprocessor, a ROM that stores programs and data for causing the microprocessor to execute each process, a RAM that temporarily stores various data such as calculation results, and a backup RAM in which data is backed up. Yes.
  • the functions of the peak detection unit 24, the peak calculation unit 25, the validity determination unit 26, and the movement direction determination unit 28 are realized by executing the program stored in the ROM by the microprocessor. Is done.
  • the microprocessor, the ROM, the RAM, and the like may be constituted by independent chips, or may be constituted by a microcomputer (microcomputer) housed in one chip.
  • the amplifying unit 21 is configured by an amplifier using an operational amplifier, for example, and amplifies the detection signal output from the dual type pyroelectric infrared sensor 10 (amplifies by 390 times in this embodiment).
  • the detection signal amplified by the amplifying unit 21 is output to a band pass filter (band filter) 22.
  • the band pass filter 22 removes unnecessary frequency components (noise components) from the detection signal output from the amplification unit 21.
  • a bandpass filter having a passband of 1 Hz to 30 Hz is used.
  • the detection signal output from the band pass filter 22 is output to the A / D conversion unit 23.
  • the A / D converter 23 is composed of an A / D converter, and converts the detection signal (analog signal) output from the bandpass filter 22 into digital data at a predetermined sampling period (480 Hz in the present embodiment).
  • the digitally converted detection signal is output to the peak detector 24.
  • the peak detector 24 detects the peaks of the captured detection signals in time series.
  • the peak detection unit 24 acquires the detected peak value and time. That is, the peak detection unit 24 functions as a peak detection unit described in the claims. More specifically, the peak detection unit 24 reads the A / D value that has been read and the maximum held in the RAM each time an A / D converted value is read from the initialized (reset) state. The value is compared and the larger value is held as a new maximum value (peak hold). Then, the maximum value is sequentially updated, the maximum value held when the A / D value starts to decrease is set as a peak, and the maximum value is set as the peak value.
  • the peak detection unit 24 performs the peak detection process on the detection signal waveform, thereby acquiring two peaks having different polarities, that is, a positive peak and a negative peak in time series.
  • the first detected peak is defined as a first peak P1
  • the next detected peak is defined as a second peak P2.
  • FIG. 3 is a diagram illustrating an example of the detection signal and the first peak P1 and the second peak P2 of the detection signal.
  • the peak detector 24 In addition to the peak value y1 of the first peak P1 and the peak value y2 of the second peak P2, the peak detector 24 temporarily acquires the time t1 of the first peak P1 and the time t2 of the second peak P2.
  • the number of A / D conversion samplings is used as the peak time. That is, since the A / D conversion is performed at a constant sampling period (480 Hz in the present embodiment), the number of times the A / D conversion is performed (sampling number) is counted, and the peak is detected.
  • the counter value of is acquired as time. Therefore, the unit of time (1LSB) is 1 / sampling period (1/480) second.
  • the peak value y1 and time t1 of the first peak P1 and the peak value y2 and time t2 of the second peak P2 detected by the peak detector 24 are output to the peak calculator 25.
  • the output waveform of the dual type pyroelectric infrared sensor 10 includes the moving direction of the human body (an angle formed with the sensor 10), the moving form (whether it has passed or stopped halfway while passing) It depends on how you move. Even if the way of movement is the same, the output waveform of the sensor 10 changes depending on conditions such as the temperature of the human body (temperature difference from the surroundings), the distance to the sensor 10, and the moving speed.
  • the relationship between the way of movement and conditions and the output waveform (detection signal) of the dual type pyroelectric infrared sensor 10 is shown in FIG. FIG.
  • FIG. 4A shows a case where a human hand is moved in a direction (parallel direction) parallel to the arrangement direction of the pyroelectric elements 10a and 10b at a short distance of the sensor 10 (hereinafter also referred to as “case (A)”).
  • the output waveform of is shown.
  • 4A to 4E show output waveforms when the hand is moved at a low speed, at a medium speed, and at a high speed in order from the left side of the drawing.
  • FIG. 4B shows an output waveform when the hand temperature is lower than (A) (hereinafter also referred to as “case (B)”).
  • FIG. 4C shows an output waveform when the distance between the hand and the sensor 10 is far from (A) (hereinafter also referred to as “case (C)”).
  • FIG. 4D shows a case where a human hand is moved in a direction (vertical direction) perpendicular to the arrangement direction of the pyroelectric elements 10a and 10b at a short distance of the sensor 10 (hereinafter also referred to as “case (D)”).
  • the output waveform of is shown.
  • FIG. 4E shows an output waveform when the hand is moved in the parallel direction at a short distance of the sensor 10 and stopped on the sensor (hereinafter also referred to as “case (E)”).
  • of the second peak P2 is larger than the absolute value
  • the amplitude of the output waveform decreases as the temperature of the hand decreases and the distance between the hand and the sensor 10 increases.
  • of the peak value of the second peak P2 with respect to the absolute value
  • the higher the speed at which the hand is moved the smaller the amplitude of the output waveform under all conditions, and the absolute value of the peak value of the second peak P2 relative to the absolute value
  • tends to decrease. Note that the peak interval (t2-t1) decreases as the speed at which the hand is moved increases.
  • the peak calculator 25 detects the time interval (peak interval) (t2-t1) between the first peak P1 (t1, y1) and the second peak P2 (t2, y2) detected by the peak detector 24, and The ratio (peak ratio) (
  • ) obtained by the peak calculation unit 25 are output to the validity determination unit 26.
  • the validity determination unit 26 determines whether the detection signal is valid (that is, the detection signal). Whether or not the movement is desired. More specifically, the validity determination unit 26 is based on information that defines an effective region for determining whether or not a detection signal is valid, which is stored in a storage unit 27 that includes a ROM. , The peak interval (t2 ⁇ t1) and the peak ratio (
  • FIG. 5 is a diagram illustrating an example of an effective area and an ineffective area defined by a peak interval (t2-t1) and a peak ratio (
  • an output waveform is acquired by changing the moving speed, a peak is detected, and a point (t2-t1) is detected for each output waveform.
  • the horizontal axis (X-axis) is the peak interval (t2-t1)
  • the vertical axis (Y-axis) is the peak ratio (
  • the result of the case (A) described above is “+ ”
  • the result of case (B) is plotted with“ ⁇ ”
  • the result of case (C) is“ * ”
  • the result of case (D) is“ ⁇ ”
  • the result of case (E) is plotted with“ ⁇ ”.
  • the unit of the horizontal axis (X axis) is 1/480 seconds.
  • the peak values y1 and y2 are smaller than the case (A), but the peak ratio (
  • the peak interval (t2-t1) is slightly wider and the peak ratio (
  • Case (E) tends to have a smaller peak ratio (
  • the cases (A), (B), and (C) of the obtained distribution are valid (that is, the movement in the parallel direction is valid), and the cases (D) and (E) are invalid (vertical direction).
  • the following equations (1) and (2) are set as equations for distinguishing the cases (A), (B), and (C) from the cases (D) and (E). (See the dashed line in FIG. 5).
  • Expressions (1) and (2) correspond to “information defining an effective area” described in the claims, and are stored in the storage unit 27.
  • region and Formula (1) (2) are illustrations, It can set arbitrarily, without being restricted to these.
  • the validity judgment unit 26 determines a point (t2-t1) determined by the peak interval (t2-t1) between the two peaks P1 and P2 extracted from the output waveform and the peak ratio (
  • ) determines whether or not the detection result (detection signal) belongs to the effective region depending on whether or not the expression (1) or (2) is satisfied. If it belongs to the effective area, it is determined to be effective as a hand movement. Note that the determination result by the validity determination unit 26 is output to the movement direction determination unit 28.
  • the movement direction determination unit 28 when the validity determination unit 26 determines that the detection signal is valid, that is, when the point (t2-t1,
  • the moving direction of the human body or the like is determined based on the polarity (positive / negative) of the first peak P1. That is, the movement direction determination unit 28 functions as a movement direction determination unit described in the claims.
  • Information indicating the movement direction determined by the movement direction determination unit 28 is output together with information indicating the presence or absence of a predetermined movement.
  • FIG. 6 is a flowchart showing a processing procedure of infrared emitter detection processing and movement direction determination processing by the infrared detection device 1. This process is repeatedly executed in the information processing unit 20 at a predetermined cycle (480 Hz).
  • step S100 the detection signal output from the dual type pyroelectric infrared sensor 10 is amplified by the amplifying unit 21, filtered by the band pass filter 22, and then converted into digital data by the A / D converting unit 23. Converted and read.
  • step S102 the peak of the read detection signal is detected.
  • step S102 the detected peak value and time are acquired. Since the peak detection method is as described above, detailed description thereof is omitted here.
  • step S104 it is determined whether or not two peaks having different polarities, that is, a positive peak and a negative peak are acquired.
  • the process proceeds to step S106.
  • the process proceeds to step S100, and the above-described processes of steps S100 to S104 are repeatedly executed until two peaks are acquired.
  • step S106 When two peaks having different polarities are acquired, in step S106, a peak interval (t2-t1) between the two peaks, that is, the first peak P1 (t1, y1) and the second peak P2 (t2, y2). ) And peak ratio (
  • step S108 a point (t2-t1,
  • step S110 the moving direction of the hand or the like (see FIG. 2) is determined based on the polarity of the first peak P1. Then, information indicating the moving direction is output together with information indicating that the movement in the parallel direction is detected. Thereafter, the process is temporarily exited.
  • whether or not the detection signal is valid is determined based on the peak interval between the first peak P1 and the second peak P2 and the peak ratio of both peaks. Therefore, it is possible to determine whether or not the detection result is valid in consideration of the movement and conditions of the infrared radiator, that is, whether or not the movement is in the parallel direction to be detected.
  • the validity of the detection result is determined from the peak interval and the peak ratio, so even in a case where the sensor output is small, there is no undetected or erroneous detection. It is possible to detect movement. As a result, it is possible to selectively and reliably detect only the movement in the parallel direction regardless of the conditions (the temperature of the infrared radiator, the distance to the sensor 10 and the moving speed).
  • the polarity of the first pyroelectric infrared sensor 10 that is output first is utilized using the characteristic of the dual-type pyroelectric infrared sensor 10 that the polarity of the detection signal is reversed when the moving direction of the infrared radiator is reversed.
  • the moving direction can be determined from Therefore, when the movement in the parallel direction is detected, it is possible to determine the moving direction together.
  • an effective area in which the detection signal is valid is set for the peak interval and the peak ratio, and a calculation formula that defines the effective area is stored in advance. Therefore, when the detection signal is output, by determining whether or not the peak interval and the peak ratio of the detection signal belong to the effective region based on this calculation formula, the validity of the detection result, that is, It is possible to accurately determine whether or not the movement is in the parallel direction to be detected.
  • the region where the peak ratio is large, or the peak ratio is such that the detection result when the infrared radiator moves in the parallel direction and the detection result when the infrared radiator moves in the vertical direction can be distinguished. Since a small area with a small peak interval is set as an effective area, the detection result can be determined to be valid only when moving in the parallel direction regardless of conditions such as temperature, distance, and speed. That is, when the sensor moves in the vertical direction or stops on the sensor, it is possible to determine that the detection result is invalid.
  • FIG. 7 is a block diagram showing a configuration of the non-contact input device 2.
  • the same or equivalent components as those of the infrared detecting device 1 are denoted by the same reference numerals.
  • the non-contact type input device 2 is connected to the electronic device 3 in a wired or wireless manner, detects the movement of the operator's hand, etc., and generates and outputs an operation signal corresponding to the detected movement.
  • the electronic device 3 can be operated without touching 3. Therefore, the non-contact input device 2 includes an information processing unit 30 instead of the information processing unit 20 described above.
  • the information processing unit 30 further includes an operation signal generation unit 31 and an operation signal output unit 32.
  • the other configuration is the same as or similar to that of the information processing unit 20 described above, and thus a duplicate description is omitted here.
  • the operation signal generation unit 31 generates an operation signal for the electronic device 3 based on information indicating the movement direction of the hand or the like output from the movement direction determination unit 28 constituting the infrared detection device 1.
  • the operation signal output unit 32 outputs the operation signal generated by the operation signal generation unit 31 to the electronic device 3. That is, the operation signal generation unit 31 functions as an operation signal generation unit described in the claims, and the operation signal output unit 32 functions as an operation signal output unit described in the claims.
  • the operator can operate the electronic device 3 by, for example, the movement of the hand without touching the electronic device 3. Therefore, it is particularly useful in situations where it is desired to operate the electronic device 3 without touching it for the purpose of hygiene and prevention of electric shock.
  • non-contact input device 2 and the electronic device 3 may be separated from each other, or may be housed integrally in one housing. Further, when the non-contact input device 2 and the electronic device 3 are integrally configured, the information processing unit 30 constituting the non-contact input device 2 is constructed by a microcomputer provided in the electronic device 3. Also good.
  • examples of the electronic device 3 to which the non-contact input device 2 is applied include a lighting fixture, a telephone, a digital photo frame, and an AV (Audio Visual) device.
  • lighting equipment ON / OFF operation, telephone incoming call response, digital photo frame photo sending / returning, AV device playback / stop / mode switching, etc. can be performed without contact.
  • the operation signal of the electronic device 3 is generated and output based on the movement of the operator detected by the infrared detection device 1. At that time, since only a predetermined motion to be detected can be selectively detected, the electronic device 3 can be operated without touching it directly by associating the predetermined motion with an operation signal in advance. It becomes possible.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made.
  • ) of the absolute value of the second peak P2 to the absolute value of the first peak P1 is used as the peak ratio, but instead of this, the first peak
  • ) of the absolute value of P1 to the absolute value of the second peak P2 may be used as the peak ratio.
  • the calculation formula is used to determine whether the detection result belongs to the effective region.
  • ) For example, a map in which the effective area is “1” and the invalid area is “0” is set in advance, and whether or not the detection result is valid using this map It may be configured to determine. In this way, the degree of freedom for setting the effective range can be improved. In this case, the map corresponds to “information defining an effective area” described in the claims.
  • the movement in the parallel direction is enabled.
  • the effective movement is not limited to the above-described embodiment, and can be arbitrarily set according to the movement / condition to be detected. .
  • the number of times A / D conversion has been performed is counted and the number of counts is used as the time. Good.
  • the number of the dual-type pyroelectric infrared sensors 10 is one.
  • a combination of a plurality of sensors may be used to detect a two-dimensional or three-dimensional movement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Provided is an infrared detection device whereby, out of movements of infrared radiation emitting bodies such as human bodies, only prescribed movements which are desired to be detected are selectively and reliably detected. An infrared detection device (1) is provided with a dual type pyroelectric infrared sensor (10) and an information processing unit (20). The information processing unit (20) is provided with a peak detection section (24) which chronologically detects the peaks of signals output by the dual type pyroelectric infrared sensor (10); a peak computing device which finds the time interval between a first peak (P1) and a second peak (P2) having different polarities (peak interval), as well as the ratio of the absolute values of both the peaks (peak ratio); a validity determination section (26) which determines whether or not detected results are valid depending on whether or not the peak interval and the peak ratio belong to valid regions; and a movement direction determining section (28) which, if detection results are determined to be valid, determines the movement direction of the pertinent infrared radiation emitting body.

Description

赤外線検知装置及び非接触式入力装置Infrared detector and non-contact input device
 本発明は、赤外線検知装置、及び該赤外線検知装置を用いた非接触式入力装置に関する。 The present invention relates to an infrared detection device and a non-contact type input device using the infrared detection device.
 人体などの赤外線放射体(以下、単に「人体など」ともいう)から入射される赤外線の変化量に応じた電気信号を出力する焦電型赤外線センサを利用して、人体などの有無や移動方向を検知する赤外線式人体検知装置が従来から知られており、例えばセキュリティや家電製品などの分野において使用されている。このような赤外線式人体検知装置として、特許文献1には、デュアルタイプの焦電型赤外線センサを用いて、正確に人体を判別するとともに人体移動方向を判定する焦電型人体検知装置が記載されている。この焦電型人体検知装置によれば、デュアルタイプ焦電型赤外線センサからの出力信号が、増幅され、フィルタリング処理された後、比較回路に入力されて、予め設定された閾値と比較され、該閾値よりも大きい場合に人体検知信号が出力される。そして、この焦電型人体検知装置では、デュアルタイプ焦電型赤外線センサの出力波形の位相が人体の移動方向によって反転する特徴を利用し、プラス側とマイナス側のどちらの人体検知信号が先に出力されたかによって人体の移動方向が判別される。 Using a pyroelectric infrared sensor that outputs an electrical signal corresponding to the amount of change in infrared rays incident from an infrared emitter such as a human body (hereinafter also simply referred to as “human body”), the presence or absence of the human body and the direction of movement Infrared-type human body detection devices that detect the above have been conventionally known, and are used in the fields of security, home appliances, and the like. As such an infrared human body detection apparatus, Patent Document 1 describes a pyroelectric human body detection apparatus that uses a dual-type pyroelectric infrared sensor to accurately determine a human body and determine a human body movement direction. ing. According to this pyroelectric human body detection device, the output signal from the dual type pyroelectric infrared sensor is amplified and filtered, and then input to a comparison circuit, which is compared with a preset threshold value. When it is larger than the threshold value, a human body detection signal is output. This pyroelectric human body detection device utilizes the feature that the phase of the output waveform of the dual-type pyroelectric infrared sensor is inverted depending on the moving direction of the human body, and either the positive or negative human body detection signal is first sent. The moving direction of the human body is determined depending on whether it has been output.
 また、特許文献2には、デュアルタイプ焦電型赤外線センサから出力された波形信号の第1発目のピーク値の絶対値と第2発目のピーク値の絶対値との大小関係を比較し、第2発目のピーク値の絶対値の方が第1発目のピーク値の絶対値よりも大きい場合に人体検知信号を出力する赤外線式人体検知装置が開示されている。 Patent Document 2 compares the magnitude relationship between the absolute value of the first peak value and the absolute value of the second peak value of the waveform signal output from the dual type pyroelectric infrared sensor. An infrared human body detection apparatus is disclosed that outputs a human body detection signal when the absolute value of the second peak value is larger than the absolute value of the first peak value.
特開平10-160856号公報JP-A-10-160856 特許第3333646号公報Japanese Patent No. 3333646
 ところで、デュアルタイプ焦電型赤外線センサの出力波形は、人体などの移動方向(より詳細にはセンサとの成す角度)、移動形態(通過したか、通過中に途中で停止したか)などの動き方によって変化する。また、動き方が同じであっても、人体などの温度(より詳細には周囲との温度差)、センサとの距離、移動速度などの条件によってセンサの出力波形は変化する。特許文献1に記載の焦電型人体検知装置では、単にセンサからの出力信号が閾値を超えた場合に人体検知信号が出力されるため、人体などの所定の動き(例えば、人体などが、デュアルタイプ焦電型赤外線センサを構成する2つの焦電素子の配列方向に沿って通過した動き)のみを区別して検知することが困難である。また、例えば、雰囲気温度と人体などとの温度差が小さい場合やセンサとの距離が離れているときなどには、センサからの出力信号が小さくなるため、人体などが所定の動きをしたにもかかわらず検知できない(非検知)おそれがある。ただし、ここで閾値を小さくすると、不要なセンサ出力やノイズを捉えて誤検知を生じ易くなる。 By the way, the output waveform of the dual-type pyroelectric infrared sensor shows the movement of the human body etc. (more specifically, the angle formed with the sensor), the movement form (whether it passed or stopped halfway during passage), etc. It depends on the direction. Even if the movement is the same, the output waveform of the sensor changes depending on conditions such as the temperature of the human body (more specifically, the temperature difference from the surroundings), the distance to the sensor, and the moving speed. In the pyroelectric human body detection device described in Patent Document 1, since a human body detection signal is output only when the output signal from the sensor exceeds a threshold value, a predetermined movement of the human body or the like (for example, a human body or the like is dual). It is difficult to distinguish and detect only the movement of the two pyroelectric elements composing the type pyroelectric infrared sensor along the arrangement direction. In addition, for example, when the temperature difference between the ambient temperature and the human body is small, or when the distance from the sensor is far away, the output signal from the sensor is small, so the human body etc. Regardless, it may not be detected (not detected). However, if the threshold value is reduced here, unnecessary sensor output and noise are captured and erroneous detection is likely to occur.
 一方、特許文献2に開示されている赤外線式人体検知装置では、人体などの移動速度によってピーク値の大小関係が変化することが考慮されていない。そのため、動き方が同じであっても、移動速度が速く、第2発目のピーク値が第1発目のピーク値よりも小さくなった場合に、誤検知を生じるおそれがある。以上のように、従来の人体検知装置では、人体などの所定の動きのみを、人体などの温度、センサとの距離、移動速度などの条件にかかわらず確実に検知することが困難であった。 On the other hand, in the infrared type human body detection device disclosed in Patent Document 2, it is not considered that the magnitude relationship between the peak values changes depending on the moving speed of the human body or the like. For this reason, even if the movement is the same, if the moving speed is fast and the second peak value is smaller than the first peak value, there is a risk of erroneous detection. As described above, in the conventional human body detection device, it is difficult to reliably detect only a predetermined movement of the human body or the like regardless of conditions such as the temperature of the human body, the distance from the sensor, the moving speed, and the like.
 本発明は、上記問題点を解消する為になされたものであり、人体などの赤外線放射体の動きのうち、検知したい所定の動きのみを選択的にかつ確実に検知することが可能な赤外線検知装置及び非接触式入力装置を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and is an infrared detector capable of selectively and reliably detecting only a predetermined movement to be detected among movements of an infrared radiator such as a human body. An object is to provide a device and a non-contact input device.
 本発明に係る赤外線検知装置は、極性が逆になるように直列に接続された2つの焦電素子を有し赤外線の変化量に応じた検出信号を出力するデュアルタイプ焦電型赤外線センサと、デュアルタイプ焦電型赤外線センサから出力された検出信号のピークを時系列的に検出するピーク検出手段と、ピーク検出手段により検出された、極性が異なる第1のピークと第2のピークとの時間間隔、及び両ピークの絶対値の比を求めるピーク演算手段と、ピーク演算手段により求められた時間間隔及び絶対値の比に基づいて、検出信号が有効であるか否かを判断する判断手段とを備えることを特徴とする。 An infrared detector according to the present invention has a dual type pyroelectric infrared sensor that has two pyroelectric elements connected in series so that the polarities are reversed, and outputs a detection signal corresponding to the amount of change in infrared, Peak detection means for detecting the peak of the detection signal output from the dual type pyroelectric infrared sensor in time series, and the time between the first peak and the second peak having different polarities detected by the peak detection means A peak calculating means for determining the interval and the ratio of absolute values of both peaks, and a determining means for determining whether the detection signal is valid based on the time interval and the ratio of absolute values determined by the peak calculating means; It is characterized by providing.
 上述したように、デュアルタイプ焦電型赤外線センサから出力される検出信号の波形は、人体などの移動方向、移動状態などの動き方、及び、人体などの温度、センサとの距離、移動速度などの条件によって変化する。検出信号の波形の変化に伴い、波形のピークとピークとの時間間隔(以下「ピーク間隔」ともいう)、及び両ピークの絶対値の比(以下「ピーク比」ともいう)も変化する。すなわち、上述した動き方や条件によってピーク間隔、ピーク比が変化するため、検出信号のピーク間隔及びピーク比を求めることにより、該検出信号が出力された際の動き方や条件を推定することができる。ここで、本発明に係る赤外線検知装置によれば、第1のピークと第2のピークとの時間間隔及び両ピークの絶対値の比に基づいて、検出信号が有効であるか否かが判断される。そのため、検出信号が出力された際の動き方や条件を考慮して、検出結果として有効であるか否か、すなわち、検出したい所定の動きか否かを判別することができる。また、本発明に係る赤外線検知装置によれば、ピーク間隔及びピーク比から検知結果の有効性が判断されるため、センサ出力が小さくなるような条件であっても、未検知や誤検知を生じることなく、確実に人体などの動きを検知することができる。その結果、人体などの赤外線放射体の動きのうち、検知したい所定の動きのみを選択的にかつ確実に検知することが可能となる。 As described above, the waveform of the detection signal output from the dual type pyroelectric infrared sensor includes the moving direction of the human body, how to move such as the moving state, the temperature of the human body, the distance from the sensor, the moving speed, etc. Varies depending on the conditions. As the waveform of the detection signal changes, the time interval between the peaks of the waveform (hereinafter also referred to as “peak interval”) and the ratio of the absolute values of both peaks (hereinafter also referred to as “peak ratio”) also change. That is, since the peak interval and the peak ratio change depending on the movement method and conditions described above, it is possible to estimate the movement method and conditions when the detection signal is output by obtaining the peak interval and peak ratio of the detection signal. it can. Here, according to the infrared detection device of the present invention, it is determined whether or not the detection signal is valid based on the time interval between the first peak and the second peak and the ratio of the absolute values of both peaks. Is done. Therefore, it is possible to determine whether or not the detection result is valid, that is, whether or not it is a predetermined movement to be detected, in consideration of the movement method and conditions when the detection signal is output. In addition, according to the infrared detection device of the present invention, the validity of the detection result is determined from the peak interval and the peak ratio, so that no detection or false detection occurs even under conditions where the sensor output is small. Therefore, it is possible to reliably detect the movement of the human body or the like. As a result, it is possible to selectively and reliably detect only a predetermined movement to be detected among movements of an infrared radiator such as a human body.
 本発明に係る赤外線検知装置は、判断手段により検出信号が有効であると判断された場合に、第1のピークの極性に基づいて、赤外線放射体の移動方向を判定する移動方向判定手段を備えることが好ましい。 The infrared detecting device according to the present invention includes a moving direction determining unit that determines a moving direction of the infrared radiator based on the polarity of the first peak when the determining unit determines that the detection signal is valid. It is preferable.
 デュアルタイプ焦電型赤外線センサは、赤外線放射体の移動方向が逆になると検出信号の極性が反転するという特性を有している。そのため、本発明に係る赤外線検知装置によれば、最初に出力された第1のピークの極性から赤外線放射体の移動方向を判定することができる。よって、人体などの赤外線放射体の所定の動きが検知されたときに、該赤外線放射体の移動方向を併せて判定することが可能となる。 The dual type pyroelectric infrared sensor has a characteristic that the polarity of the detection signal is reversed when the moving direction of the infrared radiator is reversed. Therefore, according to the infrared detection device of the present invention, the moving direction of the infrared radiator can be determined from the polarity of the first peak output first. Therefore, when a predetermined movement of an infrared radiator such as a human body is detected, the moving direction of the infrared radiator can be determined together.
 本発明に係る赤外線検知装置は、第1のピークと第2のピークとの時間間隔及び両ピークの絶対値の比について、検出信号が有効であるか否かの判断を行うための有効領域を画定する情報を記憶する記憶手段を備え、判断手段が、記憶手段により記憶されている情報に基づいて、時間間隔及び絶対値の比が、有効領域に属しているか否かを判断し、該有効領域に属していると判断された場合に、検出信号が有効であると判断することが好ましい。 The infrared detection device according to the present invention has an effective region for determining whether or not the detection signal is valid for the time interval between the first peak and the second peak and the ratio of the absolute values of both peaks. Storage means for storing the information to be defined, and the determination means determines whether the ratio between the time interval and the absolute value belongs to the effective area based on the information stored in the storage means, and When it is determined that the detection signal belongs to the area, it is preferable to determine that the detection signal is valid.
 この場合、ピーク間隔及びピーク比について検出信号を有効とする有効領域が設定されるとともに、該有効領域を画定する情報が予め記憶される。そのため、検出信号が出力されたときに、有効領域を画定する情報に基づいて、検出信号のピーク間隔及びピーク比が有効領域に属しているか否かを判別することにより、検出信号の有効性、すなわち、検出したい動きか否かを適確に判断することが可能となる。 In this case, an effective area for validating the detection signal is set for the peak interval and the peak ratio, and information defining the effective area is stored in advance. Therefore, when the detection signal is output, the effectiveness of the detection signal is determined by determining whether the peak interval and the peak ratio of the detection signal belong to the effective region based on information that defines the effective region, That is, it is possible to accurately determine whether or not the movement is desired to be detected.
 また、上記有効領域は、検出信号が無効とされる無効領域と比較して、上記時間間隔が小さく、又は、第2のピークの絶対値の、第1のピークの絶対値に対する比が大きいことが好ましい。 Further, the effective region has a smaller time interval or a larger ratio of the absolute value of the second peak to the absolute value of the first peak than the invalid region where the detection signal is invalidated. Is preferred.
 例えば、人体などが焦電素子の配列方向と並行な方向(以下「並行方向」ともいう)に動いた場合、第2のピークの絶対値の、第1のピークの絶対値に対する比(ピーク比)が大きくなる傾向がある。その際、赤外線放射体の温度が低下するほど、またセンサとの距離が離れるほど、検出信号は小さくなるが、ピーク比はほとんど変化しない。一方、人体などが焦電素子の配列方向と垂直な方向(以下「垂直方向」という)に動いたときやセンサ上で停止した場合、ピーク比が小さくなる傾向がある。さらに、移動速度が速くなるほど、すべての条件において、ピーク間隔及びピーク比それぞれが小さくなる傾向がある。よって、ピーク間隔がより小さい領域、又は、ピーク比がより大きい領域を有効領域として設定することにより、人体などが並行方向に動いた場合のみ、温度や距離、速度などの条件にかかわらず検出結果(検出信号)を有効と判断することができる。すなわち、人体などが垂直方向に動いたときや途中停止した場合には、検出結果を無効と判断することが可能となる。 For example, when the human body moves in a direction parallel to the arrangement direction of pyroelectric elements (hereinafter also referred to as “parallel direction”), the ratio of the absolute value of the second peak to the absolute value of the first peak (peak ratio) ) Tends to increase. At that time, the detection signal decreases as the temperature of the infrared radiator decreases and the distance from the sensor increases, but the peak ratio hardly changes. On the other hand, when the human body moves in a direction perpendicular to the arrangement direction of the pyroelectric elements (hereinafter referred to as “vertical direction”) or stops on the sensor, the peak ratio tends to be small. Furthermore, as the moving speed increases, the peak interval and the peak ratio tend to decrease under all conditions. Therefore, by setting a region with a smaller peak interval or a region with a larger peak ratio as an effective region, the detection result can be obtained regardless of conditions such as temperature, distance, and speed only when the human body moves in the parallel direction. It can be determined that (detection signal) is valid. That is, when the human body moves in the vertical direction or stops halfway, the detection result can be determined to be invalid.
 本発明に係る非接触式入力装置は、上記いずれかの赤外線検知装置と、赤外線検知装置からの出力に基づいて、電子機器の操作信号を生成する操作信号生成手段と、操作信号生成手段により生成された操作信号を電子機器に出力する操作信号出力手段とを備えることを特徴とする。 A non-contact type input device according to the present invention is generated by any one of the above infrared detection devices, an operation signal generation unit that generates an operation signal of an electronic device based on an output from the infrared detection device, and an operation signal generation unit And an operation signal output means for outputting the operated operation signal to an electronic device.
 本発明に係る非接触式入力装置によれば、赤外線検知装置により検知された操作者の動きに基づいて、電子機器の操作信号が生成されて出力される。その際、上記いずれかの赤外線検出装置を用いることにより、検知したい所定の動きのみを選択的に検知することができるため、所定の動きと操作信号とを予め関連付けておくことにより、手で直接触れることなく電子機器の操作を行うことが可能となる。 According to the non-contact input device according to the present invention, an operation signal of the electronic device is generated and output based on the movement of the operator detected by the infrared detection device. At that time, by using any one of the infrared detection devices described above, it is possible to selectively detect only a predetermined movement to be detected. Therefore, by directly associating a predetermined movement with an operation signal, it can be directly performed by hand. Electronic devices can be operated without touching.
 本発明によれば、極性が異なる第1のピークと第2のピークとの時間間隔、及び両ピークの絶対値の比に基づいて、検出信号が有効であるか否かを判断する構成としたので、人体などの赤外線放射体の動きのうち、検知したい所定の動きのみを選択的にかつ確実に検知することが可能となる。 According to the present invention, it is configured to determine whether or not the detection signal is valid based on the time interval between the first peak and the second peak having different polarities and the ratio of the absolute values of both peaks. Therefore, it is possible to selectively and surely detect only a predetermined movement to be detected among movements of an infrared radiator such as a human body.
実施形態に係る赤外線検知装置の構成を示すブロック図である。It is a block diagram which shows the structure of the infrared rays detection apparatus which concerns on embodiment. 赤外線放射体の移動方向とデュアルタイプ焦電型赤外線センサの出力波形との関係を示す図である。It is a figure which shows the relationship between the moving direction of an infrared radiation body, and the output waveform of a dual type pyroelectric infrared sensor. デュアルタイプ焦電型赤外線センサの出力波形の一例、及び該出力波形の第1ピーク、第2ピークを示す図である。It is a figure which shows an example of the output waveform of a dual type pyroelectric infrared sensor, and the 1st peak and 2nd peak of this output waveform. 動き方及び条件とデュアルタイプ焦電型赤外線センサの出力波形との関係を示す図である。It is a figure which shows the relationship between a movement method and conditions, and the output waveform of a dual type pyroelectric infrared sensor. ピーク間隔、ピーク比により定められる有効領域と無効領域、及び両領域を分ける境界線の一例を示す図である。It is a figure which shows an example of the boundary line which divides both the effective area | region and invalid area | region defined by a peak space | interval and a peak ratio, and both area | regions. 実施形態に係る赤外線検知装置による赤外線放射体検知処理、移動方向判定処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the infrared radiation body detection process by the infrared rays detection apparatus which concerns on embodiment, and a moving direction determination process. 実施形態に係る非接触式入力装置の構成を示すブロック図である。It is a block diagram which shows the structure of the non-contact-type input device which concerns on embodiment.
 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図において、同一要素には同一符号を付して重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted.
 まず、図1を用いて、実施形態に係る赤外線検知装置1の構成について説明する。図1は、赤外線検知装置1の構成を示すブロック図である。 First, the configuration of the infrared detection device 1 according to the embodiment will be described with reference to FIG. FIG. 1 is a block diagram illustrating a configuration of the infrared detection device 1.
 赤外線検知装置1は、人体などの赤外線放射体の動きのうち、検知したい所定の動き(又はその所定の動きをした人体などの赤外線放射体)のみを選択的に検知するとともに、その動きの方向(移動方向)を検知するものである。そのために、赤外線検知装置1は、人体(人体の一部を含む)などから入射される赤外線の変化量に応じた電気信号(検出信号)を出力するデュアルタイプ焦電型赤外線センサ(以下、単に「センサ」ともいう)10、及び、デュアルタイプ焦電型赤外線センサ10から出力された検出信号を処理して、所定の動きの有無及び移動方向を検知する情報処理ユニット20を備えている。この情報処理ユニット20は、増幅部21、バンドパスフィルタ22、A/D変換部23、ピーク検出部24、ピーク演算部25、有効性判断部26、記憶部27、及び移動方向判定部28を有している。以下、各構成について詳細に説明する。 The infrared detecting device 1 selectively detects only a predetermined movement to be detected (or an infrared radiator such as a human body that has performed the predetermined movement) among movements of an infrared radiator such as a human body, and a direction of the movement. (Moving direction) is detected. For this purpose, the infrared detection device 1 is a dual type pyroelectric infrared sensor (hereinafter simply referred to as “a detection signal”) that outputs an electrical signal (detection signal) corresponding to the amount of change in infrared rays incident from a human body (including a part of the human body). 10) and an information processing unit 20 that processes detection signals output from the dual type pyroelectric infrared sensor 10 to detect the presence or absence of a predetermined movement and the moving direction. The information processing unit 20 includes an amplification unit 21, a bandpass filter 22, an A / D conversion unit 23, a peak detection unit 24, a peak calculation unit 25, an effectiveness determination unit 26, a storage unit 27, and a movement direction determination unit 28. Have. Hereinafter, each configuration will be described in detail.
 デュアルタイプ焦電型赤外線センサ10は、図2に示されるように、極性が逆になるように直列に接続された2つの焦電素子10a,10bを有しており、この2つの焦電素子10a,10bそれぞれに入射される赤外線の変化量の差動信号を検出信号として出力する。そのため、デュアルタイプ焦電型赤外線センサ10は、人体などの移動方向が逆になると検出信号の極性が反転するという特性を有している。より具体的には、図2に示されるように、2つの焦電素子10a,10bの配列方向と並行な方向に沿って、矢印A1方向に人体などが移動した場合、出力波形は、まず正方向に立ち上がり、その後負方向に反転する。逆に、人体などが矢印A2方向に移動した場合、出力波形は、負方向に立ち下がりその後に正方向に反転する。デュアルタイプ焦電型赤外線センサ10は、情報処理ユニット20に接続されており、検出信号は情報処理ユニット20に出力される。 As shown in FIG. 2, the dual type pyroelectric infrared sensor 10 includes two pyroelectric elements 10a and 10b connected in series so that the polarities are reversed. A differential signal of the amount of change in infrared rays incident on each of 10a and 10b is output as a detection signal. Therefore, the dual type pyroelectric infrared sensor 10 has a characteristic that the polarity of the detection signal is reversed when the moving direction of the human body or the like is reversed. More specifically, as shown in FIG. 2, when a human body or the like moves in the direction of arrow A1 along the direction parallel to the arrangement direction of the two pyroelectric elements 10a and 10b, the output waveform is first positive. Rise in the direction and then reverse in the negative direction. Conversely, when a human body or the like moves in the direction of arrow A2, the output waveform falls in the negative direction and then reverses in the positive direction. The dual type pyroelectric infrared sensor 10 is connected to the information processing unit 20, and a detection signal is output to the information processing unit 20.
 情報処理ユニット20は、上述したように、デュアルタイプ焦電型赤外線センサ10から入力される検出信号を処理して、所定の動きの有無及びその動きの方向(移動方向)を判断するものである。情報処理ユニット20は、入力インターフェースとしての増幅部21、バンドパスフィルタ22、並びにA/D変換部23、及び、A/D変換部23を介して入力される検出信号に対して演算処理を行うマイクロプロセッサ、該マイクロプロセッサに各処理を実行させるためのプログラムやデータを記憶するROM、演算結果などの各種データを一時的に記憶するRAM、及びデータがバックアップされているバックアップRAMなどにより構成されている。情報処理ユニット20では、ROMに記憶されているプログラムが、マイクロプロセッサによって実行されることにより、ピーク検出部24、ピーク演算部25、有効性判断部26、及び移動方向判定部28の機能が実現される。なお、マイクロプロセッサ、ROM、RAMなどはそれぞれ独立したチップから構成されていてもよいし、これらが1つのチップに収められたマイクロコンピュータ(マイコン)により構成されていてもよい。 As described above, the information processing unit 20 processes the detection signal input from the dual type pyroelectric infrared sensor 10 to determine the presence / absence of a predetermined movement and the direction (movement direction) of the movement. . The information processing unit 20 performs arithmetic processing on the detection signal input via the amplification unit 21, the band pass filter 22, the A / D conversion unit 23, and the A / D conversion unit 23 as an input interface. It is composed of a microprocessor, a ROM that stores programs and data for causing the microprocessor to execute each process, a RAM that temporarily stores various data such as calculation results, and a backup RAM in which data is backed up. Yes. In the information processing unit 20, the functions of the peak detection unit 24, the peak calculation unit 25, the validity determination unit 26, and the movement direction determination unit 28 are realized by executing the program stored in the ROM by the microprocessor. Is done. Note that the microprocessor, the ROM, the RAM, and the like may be constituted by independent chips, or may be constituted by a microcomputer (microcomputer) housed in one chip.
 増幅部21は、例えばオペアンプ等を用いた増幅器により構成され、デュアルタイプ焦電型赤外線センサ10から出力された検出信号を増幅(本実施形態では390倍に増幅)する。増幅部21で増幅された検出信号は、バンドパスフィルタ(帯域フィルタ)22に出力される。 The amplifying unit 21 is configured by an amplifier using an operational amplifier, for example, and amplifies the detection signal output from the dual type pyroelectric infrared sensor 10 (amplifies by 390 times in this embodiment). The detection signal amplified by the amplifying unit 21 is output to a band pass filter (band filter) 22.
 バンドパスフィルタ22は、増幅部21から出力される検出信号のうち不要な周波数成分(ノイズ成分)を除去する。本実施形態では、通過帯域が1Hz~30Hzのバンドパスフィルタを用いた。なお、A/D変換後にディジタルフィルタを用いてフィルタリング処理を施すことによりノイズを除去する構成としてもよい。バンドパスフィルタ22から出力された検出信号は、A/D変換部23に出力される。 The band pass filter 22 removes unnecessary frequency components (noise components) from the detection signal output from the amplification unit 21. In this embodiment, a bandpass filter having a passband of 1 Hz to 30 Hz is used. In addition, it is good also as a structure which removes noise by performing a filtering process using a digital filter after A / D conversion. The detection signal output from the band pass filter 22 is output to the A / D conversion unit 23.
 A/D変換部23は、A/Dコンバータにより構成され、バンドパスフィルタ22から出力された検出信号(アナログ信号)を所定のサンプリング周期(本実施形態では480Hz)でディジタルデータに変換する。ディジタル変換された検出信号は、ピーク検出部24に出力される。 The A / D converter 23 is composed of an A / D converter, and converts the detection signal (analog signal) output from the bandpass filter 22 into digital data at a predetermined sampling period (480 Hz in the present embodiment). The digitally converted detection signal is output to the peak detector 24.
 ピーク検出部24は、取り込まれた検出信号のピークを時系列的に検出する。また、ピーク検出部24は、検出したピークの値と時刻を取得する。すなわち、ピーク検出部24は、特許請求の範囲に記載のピーク検出手段として機能する。より具体的には、ピーク検出部24は、初期化(リセット)された状態から、A/D変換された値が読み込まれる毎に、読み込まれたA/D値とRAMに保持されている最大値とを比較し、より大きい方の値を新たな最大値として保持(ピークホールド)する。そして、最大値を順次更新して行き、A/D値が下がり出したときに保持されている最大値をピークとし、当該最大値をピーク値とする。ピーク検出部24は、このピーク検出処理を検出信号波形に対して行うことにより、極性が異なる2つのピーク、すなわちプラス側のピークとマイナス側のピークを時系列的に取得する。ここで、図3に示されるように、先に検出されたピークを第1ピークP1とし、次に検出されたピークを第2ピークP2とする。なお、図3は、検出信号の一例、及び該検出信号の第1ピークP1、第2ピークP2を示す図である。 The peak detector 24 detects the peaks of the captured detection signals in time series. The peak detection unit 24 acquires the detected peak value and time. That is, the peak detection unit 24 functions as a peak detection unit described in the claims. More specifically, the peak detection unit 24 reads the A / D value that has been read and the maximum held in the RAM each time an A / D converted value is read from the initialized (reset) state. The value is compared and the larger value is held as a new maximum value (peak hold). Then, the maximum value is sequentially updated, the maximum value held when the A / D value starts to decrease is set as a peak, and the maximum value is set as the peak value. The peak detection unit 24 performs the peak detection process on the detection signal waveform, thereby acquiring two peaks having different polarities, that is, a positive peak and a negative peak in time series. Here, as shown in FIG. 3, the first detected peak is defined as a first peak P1, and the next detected peak is defined as a second peak P2. FIG. 3 is a diagram illustrating an example of the detection signal and the first peak P1 and the second peak P2 of the detection signal.
 また、ピーク検出部24は、第1ピークP1のピーク値y1及び第2ピークP2のピーク値y2に加え、第1ピークP1の時刻t1と第2ピークP2の時刻t2とを取得して一時的に記憶する。本実施形態では、ピークの時刻として、A/D変換のサンプリング回数を用いた。すなわち、A/D変換は一定のサンプリング周期(本実施形態では480Hz)で行われているため、A/D変換が行われた回数(サンプリング回数)をカウントしておき、ピークが検出された時点のカウンタ値を時刻として取得する。そのため、時刻の単位(1LSB)は、1/サンプリング周期(1/480)秒となる。なお、ピーク検出部24により検出された第1ピークP1のピーク値y1と時刻t1、及び第2ピークP2のピーク値y2と時刻t2それぞれは、ピーク演算部25へ出力される。 In addition to the peak value y1 of the first peak P1 and the peak value y2 of the second peak P2, the peak detector 24 temporarily acquires the time t1 of the first peak P1 and the time t2 of the second peak P2. To remember. In this embodiment, the number of A / D conversion samplings is used as the peak time. That is, since the A / D conversion is performed at a constant sampling period (480 Hz in the present embodiment), the number of times the A / D conversion is performed (sampling number) is counted, and the peak is detected. The counter value of is acquired as time. Therefore, the unit of time (1LSB) is 1 / sampling period (1/480) second. The peak value y1 and time t1 of the first peak P1 and the peak value y2 and time t2 of the second peak P2 detected by the peak detector 24 are output to the peak calculator 25.
 ところで、デュアルタイプ焦電型赤外線センサ10の出力波形は、上述したように、人体などの移動方向(センサ10との成す角度)、移動形態(通過したか、通過中に途中で停止したか)などの動き方によって変化する。また、動き方が同じであっても、人体などの温度(周囲との温度差)、センサ10との距離、移動速度などの条件によってセンサ10の出力波形は変化する。ここで、動き方及び条件とデュアルタイプ焦電型赤外線センサ10の出力波形(検出信号)との関係を図4に示す。図4(A)は、センサ10の近距離で、人の手を焦電素子10a,10bの配列方向と並行な方向(並行方向)に動かした場合(以下「ケース(A)」ともいう)の出力波形を示す。また、図4(A)~(E)では、図面左側から順番に、手を低速で動かした場合、中速で動かした場合、及び高速で動かした場合の出力波形をそれぞれ示す。図4(B)は、(A)に対して、手の温度が低い場合(以下「ケース(B)」ともいう)の出力波形を示す。図4(C)は、(A)に対して、手とセンサ10との距離が離れている場合(以下「ケース(C)」ともいう)の出力波形を示す。図4(D)は、センサ10の近距離で、人の手を焦電素子10a,10bの配列方向と垂直な方向(垂直方向)に動かした場合(以下「ケース(D)」ともいう)の出力波形を示す。図4(E)は、センサ10の近距離で、手を並行方向に動かし、センサ上で止めた場合(以下「ケース(E)」ともいう)の出力波形を示す。 By the way, as described above, the output waveform of the dual type pyroelectric infrared sensor 10 includes the moving direction of the human body (an angle formed with the sensor 10), the moving form (whether it has passed or stopped halfway while passing) It depends on how you move. Even if the way of movement is the same, the output waveform of the sensor 10 changes depending on conditions such as the temperature of the human body (temperature difference from the surroundings), the distance to the sensor 10, and the moving speed. Here, the relationship between the way of movement and conditions and the output waveform (detection signal) of the dual type pyroelectric infrared sensor 10 is shown in FIG. FIG. 4A shows a case where a human hand is moved in a direction (parallel direction) parallel to the arrangement direction of the pyroelectric elements 10a and 10b at a short distance of the sensor 10 (hereinafter also referred to as “case (A)”). The output waveform of is shown. 4A to 4E show output waveforms when the hand is moved at a low speed, at a medium speed, and at a high speed in order from the left side of the drawing. FIG. 4B shows an output waveform when the hand temperature is lower than (A) (hereinafter also referred to as “case (B)”). FIG. 4C shows an output waveform when the distance between the hand and the sensor 10 is far from (A) (hereinafter also referred to as “case (C)”). FIG. 4D shows a case where a human hand is moved in a direction (vertical direction) perpendicular to the arrangement direction of the pyroelectric elements 10a and 10b at a short distance of the sensor 10 (hereinafter also referred to as “case (D)”). The output waveform of is shown. FIG. 4E shows an output waveform when the hand is moved in the parallel direction at a short distance of the sensor 10 and stopped on the sensor (hereinafter also referred to as “case (E)”).
 図4に示されるように、手が並行方向に動かされた場合、第1ピークP1のピーク値の絶対値|y1|に対して第2ピークP2のピーク値の絶対値|y2|が大きくなる傾向がある。その際、手の温度が低下するほど、また手とセンサ10との距離が離れるほど、出力波形の振幅は小さくなる。一方、手が垂直方向に動かされたときやセンサ上で停止した場合には、第1ピークP1のピーク値の絶対値|y1|に対して第2ピークP2のピーク値の絶対値|y2|が小さくなる傾向がある。また、手の動かされる速度が速くなるほど、すべての条件において、出力波形の振幅が小さくなるとともに、第1ピークP1のピーク値の絶対値|y1|に対して第2ピークP2のピーク値の絶対値|y2|が小さくなる傾向がある。なお、手の動かされる速度が速くなるほど、ピーク間隔(t2-t1)は小さくなる。 As shown in FIG. 4, when the hand is moved in the parallel direction, the absolute value | y2 | of the second peak P2 is larger than the absolute value | y1 | of the first peak P1. Tend. At that time, the amplitude of the output waveform decreases as the temperature of the hand decreases and the distance between the hand and the sensor 10 increases. On the other hand, when the hand is moved vertically or stopped on the sensor, the absolute value | y2 | of the peak value of the second peak P2 with respect to the absolute value | y1 | of the peak value of the first peak P1. Tends to be smaller. In addition, the higher the speed at which the hand is moved, the smaller the amplitude of the output waveform under all conditions, and the absolute value of the peak value of the second peak P2 relative to the absolute value | y1 | of the peak value of the first peak P1. The value | y2 | tends to decrease. Note that the peak interval (t2-t1) decreases as the speed at which the hand is moved increases.
 ピーク演算部25は、ピーク検出部24により検出された、第1ピークP1(t1,y1)と第2ピークP2(t2,y2)との時間間隔(ピーク間隔)(t2-t1)、及び、第2ピークP2のピーク値の絶対値|y2|の、第1ピークP1のピーク値の絶対値|y1|に対する比(ピーク比)(|y2|/|y1|)を求める。すなわち、ピーク演算部25は、特許請求の範囲に記載のピーク演算手段として機能する。なお、ピーク演算部25で求められたピーク間隔(t2-t1)及びピーク比(|y2|/|y1|)は、有効性判断部26に出力される。 The peak calculator 25 detects the time interval (peak interval) (t2-t1) between the first peak P1 (t1, y1) and the second peak P2 (t2, y2) detected by the peak detector 24, and The ratio (peak ratio) (| y2 | / | y1 |) of the absolute value | y2 | of the peak value of the second peak P2 to the absolute value | y1 | of the peak value of the first peak P1 is obtained. That is, the peak calculation unit 25 functions as a peak calculation unit described in the claims. The peak interval (t2-t1) and peak ratio (| y2 | / | y1 |) obtained by the peak calculation unit 25 are output to the validity determination unit 26.
 有効性判断部26は、ピーク演算部25により求められたピーク間隔(t2-t1)及びピーク比(|y2|/|y1|)に基づいて、検出信号が有効であるか否か(すなわち検出したい動きであるか否か)を判断する。より詳細には、有効性判断部26は、ROMから構成される記憶部27に記憶されている、検出信号が有効であるか否かの判断を行うための有効領域を画定する情報に基づいて、ピーク間隔(t2-t1)及びピーク比(|y2|/|y1|)が、有効領域に属しているか否かを判断し、該有効領域に属していると判断された場合に、検出信号が有効であると判断する。すなわち、有効性判断部26は、特許請求の範囲に記載の判断手段として機能する。 Based on the peak interval (t2−t1) and the peak ratio (| y2 | / | y1 |) obtained by the peak calculation unit 25, the validity determination unit 26 determines whether the detection signal is valid (that is, the detection signal). Whether or not the movement is desired. More specifically, the validity determination unit 26 is based on information that defines an effective region for determining whether or not a detection signal is valid, which is stored in a storage unit 27 that includes a ROM. , The peak interval (t2−t1) and the peak ratio (| y2 | / | y1 |) are determined whether or not they belong to the effective region, and when it is determined that they belong to the effective region, the detection signal Is determined to be effective. That is, the validity determination unit 26 functions as a determination unit described in the claims.
 ここで、図5を参照しつつ、ピーク間隔(t2-t1)、ピーク比(|y2|/|y1|)により定められる有効領域及び該有効領域を画定する情報の設定方法について説明する。図5は、ピーク間隔(t2-t1)、ピーク比(|y2|/|y1|)により定められる有効領域と無効領域、及び両領域を分ける境界線の一例を示す図である。ここでは、まず、上述したケース(A)~(E)に示された5通りの場合について、移動速度を変えて出力波形が取得されてピークが検出され、出力波形毎に点(t2-t1,|y2|/|y1|)がプロットされることにより、図5に示される分布が取得される。図5では、横軸(X軸)をピーク間隔(t2-t1)、縦軸(Y軸)をピーク比(|y2|/|y1|)とし、上述したケース(A)の結果を「+」、ケース(B)の結果を「×」、ケース(C)の結果を「*」、ケース(D)の結果を「□」、ケース(E)の結果を「■」でプロットした。ちなみに、横軸(X軸)の単位は1/480秒である。 Here, with reference to FIG. 5, a description will be given of an effective region defined by the peak interval (t2-t1) and the peak ratio (| y2 | / | y1 |) and a method for setting information defining the effective region. FIG. 5 is a diagram illustrating an example of an effective area and an ineffective area defined by a peak interval (t2-t1) and a peak ratio (| y2 | / | y1 |), and an example of a boundary line that divides both areas. Here, first, in the five cases shown in the cases (A) to (E) described above, an output waveform is acquired by changing the moving speed, a peak is detected, and a point (t2-t1) is detected for each output waveform. , | Y2 | / | y1 |) is plotted to obtain the distribution shown in FIG. In FIG. 5, the horizontal axis (X-axis) is the peak interval (t2-t1), the vertical axis (Y-axis) is the peak ratio (| y2 | / | y1 |), and the result of the case (A) described above is “+ ”, The result of case (B) is plotted with“ × ”, the result of case (C) is“ * ”, the result of case (D) is“ □ ”, and the result of case (E) is plotted with“ ■ ”. Incidentally, the unit of the horizontal axis (X axis) is 1/480 seconds.
 ここで、ケース(B)とケース(C)では、ケース(A)と比べて、ピーク値y1,y2は小さくなるが、ピーク比(|y2|/|y1|)はほぼ同じ値を示す。ケース(D)は、ケース(A)(B)(C)と比べてピーク間隔(t2-t1)が若干広く、ピーク比(|y2|/|y1|)が小さくなる傾向がある。ケース(E)は、ケース(A)(B)(C)と比べてピーク比(|y2|/|y1|)が小さくなる傾向がある。そのため、ケース(A)~(E)それぞれについて、ピーク間隔(t2-t1)とピーク比(|y2|/|y1|)とで特定される点(t2-t1,|y2|/|y1|)の分布を見てみると、ケース(A)(B)(C)の結果は図5の左上部分に分布し、ケース(D)(E)の結果は図5の右下部分に分布する。 Here, in the case (B) and the case (C), the peak values y1 and y2 are smaller than the case (A), but the peak ratio (| y2 | / | y1 |) shows almost the same value. In the case (D), the peak interval (t2-t1) is slightly wider and the peak ratio (| y2 | / | y1 |) tends to be smaller than in the cases (A), (B), and (C). Case (E) tends to have a smaller peak ratio (| y2 | / | y1 |) than cases (A), (B), and (C). Therefore, for each of the cases (A) to (E), the point (t2-t1, | y2 | / | y1 |) specified by the peak interval (t2-t1) and the peak ratio (| y2 | / | y1 |) ), The results of cases (A), (B), and (C) are distributed in the upper left part of FIG. 5, and the results of cases (D) and (E) are distributed in the lower right part of FIG. .
 そこで、例えば、得られた分布のうちケース(A)(B)(C)の場合を有効(すなわち、並行方向の動きを有効)とし、ケース(D)(E)の場合を無効(垂直方向の動き及び途中停止した場合を無効)とする場合、ケース(A)(B)(C)とケース(D)(E)とを区分する式として次式(1)(2)が設定される(図5の一点鎖線参照)。式(1)(2)は、特許請求の範囲に記載の「有効領域を画定する情報」に相当し、記憶部27に記憶される。なお、この有効領域及び式(1)(2)は例示であり、これらに限られることなく、任意に設定することができる。
 |y2|/|y1|>(2.6/50)*{(t2-t1)-25}  ・・・(1)
  ただし、(t2-t1)<50のとき
 |y2|/|y1|>1.3  ・・・(2)
  ただし、(t2-t1)≧50のとき
Therefore, for example, the cases (A), (B), and (C) of the obtained distribution are valid (that is, the movement in the parallel direction is valid), and the cases (D) and (E) are invalid (vertical direction). The following equations (1) and (2) are set as equations for distinguishing the cases (A), (B), and (C) from the cases (D) and (E). (See the dashed line in FIG. 5). Expressions (1) and (2) correspond to “information defining an effective area” described in the claims, and are stored in the storage unit 27. In addition, this effective area | region and Formula (1) (2) are illustrations, It can set arbitrarily, without being restricted to these.
| Y2 | / | y1 |> (2.6 / 50) * {(t2-t1) -25} (1)
However, when (t2−t1) <50 | y2 | / | y1 |> 1.3 (2)
However, when (t2-t1) ≧ 50
 そして、有効性判断部26は、出力波形から抽出された2つのピークP1,P2のピーク間隔(t2-t1)とピーク比(|y2|/|y1|)とで定められる点(t2-t1,|y2|/|y1|)が、式(1)又は式(2)を満足するか否かによって、検出結果(検出信号)が有効領域に属しているか否かを判断し、検出結果が有効領域に属している場合に手の動きとして有効であると判断する。なお、有効性判断部26による判断結果は、移動方向判定部28に出力される。 Then, the validity judgment unit 26 determines a point (t2-t1) determined by the peak interval (t2-t1) between the two peaks P1 and P2 extracted from the output waveform and the peak ratio (| y2 | / | y1 |). , | Y2 | / | y1 |) determines whether or not the detection result (detection signal) belongs to the effective region depending on whether or not the expression (1) or (2) is satisfied. If it belongs to the effective area, it is determined to be effective as a hand movement. Note that the determination result by the validity determination unit 26 is output to the movement direction determination unit 28.
 移動方向判定部28は、有効性判断部26により検出信号が有効であると判断された場合、すなわち上記点(t2-t1,|y2|/|y1|)が有効領域に含まれている場合に、第1ピークP1の極性(正負)に基づいて、人体などの移動方向を判定する。すなわち、移動方向判定部28は、特許請求の範囲に記載の移動方向判定手段として機能する。なお、移動方向判定部28により判定された移動方向を示す情報は、所定の動きの有無を示す情報と併せて出力される。 The movement direction determination unit 28, when the validity determination unit 26 determines that the detection signal is valid, that is, when the point (t2-t1, | y2 | / | y1 |) is included in the valid region. In addition, the moving direction of the human body or the like is determined based on the polarity (positive / negative) of the first peak P1. That is, the movement direction determination unit 28 functions as a movement direction determination unit described in the claims. Information indicating the movement direction determined by the movement direction determination unit 28 is output together with information indicating the presence or absence of a predetermined movement.
 次に、図6を参照しつつ、赤外線検知装置1の動作について説明する。図6は、赤外線検知装置1による赤外線放射体検知処理、移動方向判定処理の処理手順を示すフローチャートである。なお、本処理は、情報処理ユニット20において、所定の周期(480Hz)で繰り返し実行される。 Next, the operation of the infrared detection device 1 will be described with reference to FIG. FIG. 6 is a flowchart showing a processing procedure of infrared emitter detection processing and movement direction determination processing by the infrared detection device 1. This process is repeatedly executed in the information processing unit 20 at a predetermined cycle (480 Hz).
 まず、ステップS100では、デュアルタイプ焦電型赤外線センサ10から出力された検出信号が、増幅部21で増幅され、バンドパスフィルタ22でフィルタリング処理された後、A/D変換部23でディジタルデータに変換されて読み込まれる。次に、ステップS102では、読み込まれた検出信号のピークが検出される。また、ステップS102では、検出したピークの値と時刻が取得される。なお、ピークの検出方法については、上述した通りであるので、ここでは詳細な説明を省略する。 First, in step S100, the detection signal output from the dual type pyroelectric infrared sensor 10 is amplified by the amplifying unit 21, filtered by the band pass filter 22, and then converted into digital data by the A / D converting unit 23. Converted and read. Next, in step S102, the peak of the read detection signal is detected. In step S102, the detected peak value and time are acquired. Since the peak detection method is as described above, detailed description thereof is omitted here.
 続いて、ステップS104では、極性が異なる2つのピーク、すなわちプラス側のピークとマイナス側のピークとが取得されたか否かについての判断が行われる。ここで、2つのピークが取得された場合には、ステップS106に処理が移行する。一方、まだ2つのピークが取得されていないときには、ステップS100に処理が移行し、2つのピークが取得されるまで、上述したステップS100~S104の処理が繰り返し実行される。 Subsequently, in step S104, it is determined whether or not two peaks having different polarities, that is, a positive peak and a negative peak are acquired. Here, when two peaks are acquired, the process proceeds to step S106. On the other hand, when two peaks have not yet been acquired, the process proceeds to step S100, and the above-described processes of steps S100 to S104 are repeatedly executed until two peaks are acquired.
 極性が異なる2つのピークが取得された場合、ステップS106では、該2つのピーク、すなわち、第1ピークP1(t1,y1)と第2ピークP2(t2,y2)とのピーク間隔(t2-t1)、及びピーク比(|y2|/|y1|)が求められる。 When two peaks having different polarities are acquired, in step S106, a peak interval (t2-t1) between the two peaks, that is, the first peak P1 (t1, y1) and the second peak P2 (t2, y2). ) And peak ratio (| y2 | / | y1 |).
 続いて、ステップS108では、ステップS106で求められたピーク間隔(t2-t1)とピーク比(|y2|/|y1|)とで定められる点(t2-t1,|y2|/|y1|)が、上述した式(1)又は式(2)を満足するか否かによって、検出信号が有効領域に属しているか否かが判断される。ここで、検出信号が有効領域に属していると判断された場合には、検出結果は手の動きとして有効であると判断され、ステップS110に処理が移行する。一方、検出信号が有効領域に属していないと判断されたときには、検出結果は無効であると判断され、本処理から一旦抜ける。 Subsequently, in step S108, a point (t2-t1, | y2 | / | y1 |) determined by the peak interval (t2-t1) obtained in step S106 and the peak ratio (| y2 | / | y1 |). However, whether or not the detection signal belongs to the effective region is determined depending on whether or not Expression (1) or Expression (2) described above is satisfied. Here, when it is determined that the detection signal belongs to the effective region, it is determined that the detection result is effective as a hand movement, and the process proceeds to step S110. On the other hand, when it is determined that the detection signal does not belong to the valid area, it is determined that the detection result is invalid, and the process is temporarily exited.
 ステップS108において有効であると判断された場合、ステップS110では、第1ピークP1の極性に基づいて、手などの移動方向(図2参照)が判定される。そして、移動方向を示す情報が、並行方向の動きが検出されたことを示す情報と併せて出力される。その後、本処理から一旦抜ける。 If it is determined to be effective in step S108, in step S110, the moving direction of the hand or the like (see FIG. 2) is determined based on the polarity of the first peak P1. Then, information indicating the moving direction is output together with information indicating that the movement in the parallel direction is detected. Thereafter, the process is temporarily exited.
 本実施形態によれば、第1ピークP1と第2ピークP2とのピーク間隔及び両ピークのピーク比に基づいて、検出信号が有効であるか否かが判断される。そのため、赤外線放射体の動きや条件を考慮して、検出結果として有効であるか否か、すなわち、検出したい並行方向の動きか否かを判別することができる。また、本実施形態によれば、ピーク間隔、ピーク比から検知結果の有効性が判断されるため、センサ出力が小さくなるようなケースであっても、未検知や誤検知を生じることなく、確実に動きを検知することができる。その結果、条件(赤外線放射体の温度、センサ10との距離や移動速度)にかかわらず、並行方向の動きのみを選択的にかつ確実に検知することが可能となる。 According to the present embodiment, whether or not the detection signal is valid is determined based on the peak interval between the first peak P1 and the second peak P2 and the peak ratio of both peaks. Therefore, it is possible to determine whether or not the detection result is valid in consideration of the movement and conditions of the infrared radiator, that is, whether or not the movement is in the parallel direction to be detected. In addition, according to the present embodiment, the validity of the detection result is determined from the peak interval and the peak ratio, so even in a case where the sensor output is small, there is no undetected or erroneous detection. It is possible to detect movement. As a result, it is possible to selectively and reliably detect only the movement in the parallel direction regardless of the conditions (the temperature of the infrared radiator, the distance to the sensor 10 and the moving speed).
 本実施形態によれば、赤外線放射体の移動方向が逆になると検出信号の極性が反転するというデュアルタイプ焦電型赤外線センサ10の特性を利用し、最初に出力された第1ピークP1の極性から移動方向を判定することができる。よって、並行方向の動きが検知されたときに、移動方向を併せて判定することが可能となる。 According to the present embodiment, the polarity of the first pyroelectric infrared sensor 10 that is output first is utilized using the characteristic of the dual-type pyroelectric infrared sensor 10 that the polarity of the detection signal is reversed when the moving direction of the infrared radiator is reversed. The moving direction can be determined from Therefore, when the movement in the parallel direction is detected, it is possible to determine the moving direction together.
 本実施形態によれば、ピーク間隔及びピーク比について検出信号を有効とする有効領域が設定されるとともに、該有効領域を画定する計算式が予め記憶される。そのため、検出信号が出力されたときに、この計算式に基づいて、該検出信号のピーク間隔及びピーク比が有効領域に属しているか否かを判断することにより、検出結果の有効性、すなわち、検出したい並行方向の動きか否かを適確に判断することが可能となる。 According to the present embodiment, an effective area in which the detection signal is valid is set for the peak interval and the peak ratio, and a calculation formula that defines the effective area is stored in advance. Therefore, when the detection signal is output, by determining whether or not the peak interval and the peak ratio of the detection signal belong to the effective region based on this calculation formula, the validity of the detection result, that is, It is possible to accurately determine whether or not the movement is in the parallel direction to be detected.
 また、本実施形態によれば、赤外線放射体が並行方向に移動した場合の検出結果と垂直方向に移動した場合の検出結果とが区別できるように、ピーク比が大きい領域、又は、ピーク比が小さくかつピーク間隔が小さい領域が有効領域として設定されているため、並行方向に移動した場合のみ、温度や距離、速度などの条件にかかわらず検出結果を有効と判断することができる。すなわち、垂直方向に動いたときやセンサ上で停止した場合には、検出結果を無効と判断することが可能となる。 In addition, according to the present embodiment, the region where the peak ratio is large, or the peak ratio is such that the detection result when the infrared radiator moves in the parallel direction and the detection result when the infrared radiator moves in the vertical direction can be distinguished. Since a small area with a small peak interval is set as an effective area, the detection result can be determined to be valid only when moving in the parallel direction regardless of conditions such as temperature, distance, and speed. That is, when the sensor moves in the vertical direction or stops on the sensor, it is possible to determine that the detection result is invalid.
 上述した赤外線検知装置1は、電子機器に接続され、該電子機器に対して操作信号を入力する非接触式の入力インターフェースとして利用することができる。次に、図7を用いて、赤外線検知装置1を用いた非接触式入力装置2について説明する。図7は、非接触式入力装置2の構成を示すブロック図である。なお、図7において赤外線検知装置1と同一又は同等の構成要素については同一の符号が付されている。 The infrared detection device 1 described above can be used as a non-contact input interface that is connected to an electronic device and inputs an operation signal to the electronic device. Next, the non-contact input device 2 using the infrared detection device 1 will be described with reference to FIG. FIG. 7 is a block diagram showing a configuration of the non-contact input device 2. In FIG. 7, the same or equivalent components as those of the infrared detecting device 1 are denoted by the same reference numerals.
 非接触式入力装置2は、電子機器3と有線又は無線で接続され、操作者の手などの動きを検知するとともに、検知した動きに対応した操作信号を生成して出力することにより、電子機器3に触れることなく電子機器3を操作することを可能とするものである。そのため、非接触式入力装置2は、上述した情報処理ユニット20に代えて情報処理ユニット30を備えている。この情報処理ユニット30は、情報処理ユニット20の構成に加えて、操作信号生成部31、及び操作信号出力部32をさらに有している。その他の構成は、上述した情報処理ユニット20と同一または同様であるので、ここでは重複する説明を省略する。 The non-contact type input device 2 is connected to the electronic device 3 in a wired or wireless manner, detects the movement of the operator's hand, etc., and generates and outputs an operation signal corresponding to the detected movement. The electronic device 3 can be operated without touching 3. Therefore, the non-contact input device 2 includes an information processing unit 30 instead of the information processing unit 20 described above. In addition to the configuration of the information processing unit 20, the information processing unit 30 further includes an operation signal generation unit 31 and an operation signal output unit 32. The other configuration is the same as or similar to that of the information processing unit 20 described above, and thus a duplicate description is omitted here.
 操作信号生成部31は、赤外線検知装置1を構成する移動方向判定部28から出力される手などの移動方向を示す情報に基づいて、電子機器3の操作信号を生成する。操作信号出力部32は、操作信号生成部31により生成された操作信号を電子機器3に出力する。すなわち、操作信号生成部31は、特許請求の範囲に記載の操作信号生成手段として機能し、操作信号出力部32は、特許請求の範囲に記載の操作信号出力手段として機能する。これにより、操作者は、電子機器3に触れることなく、例えば手の動きで電子機器3の操作を行うことができる。そのため、特に、衛生面や感電防止のため手を触れないで電子機器3を操作したい場面において有用である。なお、非接触式入力装置2と電子機器3とは分離されていてもよく、また、1つの筐体の中に一体となって収められていてもよい。また、非接触式入力装置2と電子機器3とが一体となって構成されている場合、非接触式入力装置2を構成する情報処理ユニット30は、電子機器3が備えるマイクロコンピュータにより構築してもよい。 The operation signal generation unit 31 generates an operation signal for the electronic device 3 based on information indicating the movement direction of the hand or the like output from the movement direction determination unit 28 constituting the infrared detection device 1. The operation signal output unit 32 outputs the operation signal generated by the operation signal generation unit 31 to the electronic device 3. That is, the operation signal generation unit 31 functions as an operation signal generation unit described in the claims, and the operation signal output unit 32 functions as an operation signal output unit described in the claims. Thereby, the operator can operate the electronic device 3 by, for example, the movement of the hand without touching the electronic device 3. Therefore, it is particularly useful in situations where it is desired to operate the electronic device 3 without touching it for the purpose of hygiene and prevention of electric shock. Note that the non-contact input device 2 and the electronic device 3 may be separated from each other, or may be housed integrally in one housing. Further, when the non-contact input device 2 and the electronic device 3 are integrally configured, the information processing unit 30 constituting the non-contact input device 2 is constructed by a microcomputer provided in the electronic device 3. Also good.
 ここで、非接触式入力装置2が適用される電子機器3としては、例えば、照明器具、電話機、ディジタルフォトフレーム、AV(Audio Visual)機器などが挙げられる。その場合、例えば、照明器具のオン・オフ操作、電話の着信応答、ディジタルフォトフレームの写真の送り・戻し、AV機器の再生・停止・モード切り替えなどを非接触で行うことができる。 Here, examples of the electronic device 3 to which the non-contact input device 2 is applied include a lighting fixture, a telephone, a digital photo frame, and an AV (Audio Visual) device. In that case, for example, lighting equipment ON / OFF operation, telephone incoming call response, digital photo frame photo sending / returning, AV device playback / stop / mode switching, etc. can be performed without contact.
 本実施形態によれば、赤外線検知装置1により検知された操作者の動きに基づいて、電子機器3の操作信号が生成されて出力される。その際、検出したい所定の動きのみを選択的に検知することができるため、所定の動きと操作信号とを予め関連付けておくことにより、手で直接触れることなく電子機器3の操作を行うことが可能となる。 According to the present embodiment, the operation signal of the electronic device 3 is generated and output based on the movement of the operator detected by the infrared detection device 1. At that time, since only a predetermined motion to be detected can be selectively detected, the electronic device 3 can be operated without touching it directly by associating the predetermined motion with an operation signal in advance. It becomes possible.
 以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、上記実施形態では、ピーク比として、第2ピークP2の絶対値の第1ピークP1の絶対値に対する比(|y2|/|y1|)を用いたが、これに代えて、第1ピークP1の絶対値の第2ピークP2の絶対値に対する比(|y1|/|y2|)をピーク比として用いてもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made. For example, in the above embodiment, the ratio (| y2 | / | y1 |) of the absolute value of the second peak P2 to the absolute value of the first peak P1 is used as the peak ratio, but instead of this, the first peak The ratio (| y1 | / | y2 |) of the absolute value of P1 to the absolute value of the second peak P2 may be used as the peak ratio.
 また、上記実施形態では、検知結果が有効領域に属しているか否かを判断する際に計算式を用いたが、計算式に代えて、ピーク間隔(t2-t1)とピーク比(|y2|/|y1|)により定められる領域のうち、例えば、有効領域を”1”とし、無効領域を”0”としたマップを予め設定し、このマップを用いて検知結果が有効であるか否かを判断する構成にしてもよい。このようにすれば、有効範囲の設定自由度を向上することができる。また、この場合には、当該マップが特許請求の範囲に記載の「有効領域を画定する情報」に相当する。 In the above embodiment, the calculation formula is used to determine whether the detection result belongs to the effective region. Instead of the calculation formula, the peak interval (t2-t1) and the peak ratio (| y2 | / | Y1 |) For example, a map in which the effective area is “1” and the invalid area is “0” is set in advance, and whether or not the detection result is valid using this map It may be configured to determine. In this way, the degree of freedom for setting the effective range can be improved. In this case, the map corresponds to “information defining an effective area” described in the claims.
 また、上記実施形態では、並行方向の動きを有効にしたが、有効な動き(有効領域)は、上記実施形態に限られることなく、検知したい動き・条件に応じて任意に設定することができる。 In the above-described embodiment, the movement in the parallel direction is enabled. However, the effective movement (effective area) is not limited to the above-described embodiment, and can be arbitrarily set according to the movement / condition to be detected. .
 上記実施形態では、A/D変換が行われた回数をカウントし、そのカウント数を時刻として用いたが、リアルタイムクロックを備え、ピークが検出された時の時刻をリアルタイムクロックから取得する構成としてもよい。 In the above embodiment, the number of times A / D conversion has been performed is counted and the number of counts is used as the time. Good.
 上記実施形態では、デュアルタイプ焦電型赤外線センサ10の数は1つであったが、複数のセンサを組み合わせることにより、2次元又は3次元の動きを検知する構成とすることもできる。 In the above embodiment, the number of the dual-type pyroelectric infrared sensors 10 is one. However, a combination of a plurality of sensors may be used to detect a two-dimensional or three-dimensional movement.
 1 赤外線検知装置
 2 非接触式入力装置
 3 電子機器
 10 デュアルタイプ焦電型赤外線センサ
 10a,10b 焦電素子
 20,30 情報処理ユニット
 21 増幅部
 22 バンドパスフィルタ
 23 A/D変換部
 24 ピーク検出部
 25 ピーク演算部
 26 有効性判断部
 27 記憶部
 28 移動方向判定部
 31 操作信号生成部
 32 操作信号出力部
DESCRIPTION OF SYMBOLS 1 Infrared detector 2 Non-contact-type input device 3 Electronic device 10 Dual type pyroelectric infrared sensor 10a, 10b Pyroelectric element 20, 30 Information processing unit 21 Amplification part 22 Band pass filter 23 A / D conversion part 24 Peak detection part 25 Peak calculation unit 26 Effectiveness determination unit 27 Storage unit 28 Movement direction determination unit 31 Operation signal generation unit 32 Operation signal output unit

Claims (5)

  1.  極性が逆になるように直列に接続された2つの焦電素子を有し、赤外線の変化量に応じた検出信号を出力するデュアルタイプ焦電型赤外線センサと、
     前記デュアルタイプ焦電型赤外線センサから出力された検出信号のピークを時系列的に検出するピーク検出手段と、
     前記ピーク検出手段により検出された、極性が異なる第1のピークと第2のピークとの時間間隔、及び両ピークの絶対値の比を求めるピーク演算手段と、
     前記ピーク演算手段により求められた前記時間間隔及び絶対値の比に基づいて、前記検出信号が有効であるか否かを判断する判断手段と、を備えることを特徴とする赤外線検知装置。
    A dual-type pyroelectric infrared sensor having two pyroelectric elements connected in series so that the polarities are reversed, and outputting a detection signal according to the amount of change in infrared;
    Peak detection means for detecting the peak of the detection signal output from the dual type pyroelectric infrared sensor in time series;
    A peak calculating means for obtaining a time interval between a first peak and a second peak having different polarities detected by the peak detecting means and a ratio of absolute values of both peaks;
    An infrared detection apparatus comprising: a determination unit that determines whether or not the detection signal is valid based on a ratio between the time interval and the absolute value obtained by the peak calculation unit.
  2.  前記判断手段により前記検出信号が有効であると判断された場合に、前記第1のピークの極性に基づいて、赤外線放射体の移動方向を判定する移動方向判定手段を備えることを特徴とする請求項1に記載の赤外線検知装置。 A moving direction determining unit that determines a moving direction of an infrared emitter based on the polarity of the first peak when the determining unit determines that the detection signal is valid. Item 2. The infrared detection device according to Item 1.
  3.  前記第1のピークと第2のピークとの時間間隔及び両ピークの絶対値の比について、前記検出信号が有効であるか否かの判断を行うための有効領域を画定する情報を記憶する記憶手段を備え、
     前記判断手段は、前記記憶手段により記憶されている前記情報に基づいて、前記時間間隔及び絶対値の比が、前記有効領域に属しているか否かを判断し、該有効領域に属していると判断された場合に、前記検出信号が有効であると判断することを特徴とする請求項1又は2に記載の赤外線検知装置。
    A memory for storing information defining an effective region for determining whether or not the detection signal is effective with respect to a time interval between the first peak and the second peak and a ratio of absolute values of both peaks. With means,
    The determination means determines whether the ratio of the time interval and the absolute value belongs to the effective area based on the information stored in the storage means, and belongs to the effective area 3. The infrared detection device according to claim 1, wherein when it is determined, the detection signal is determined to be valid.
  4.  前記有効領域は、前記検出信号が無効とされる無効領域と比較して、前記時間間隔が小さく、又は、第2のピークの絶対値の、第1のピークの絶対値に対する比が大きいことを特徴とする請求項3に記載の赤外線検知装置。 The effective region has a smaller time interval or a larger ratio of the absolute value of the second peak to the absolute value of the first peak than the invalid region where the detection signal is invalidated. The infrared detection device according to claim 3, wherein
  5.  請求項1~4のいずれか1項に記載された赤外線検知装置と、
     前記赤外線検知装置からの出力に基づいて、電子機器の操作信号を生成する操作信号生成手段と、
     前記操作信号生成手段により生成された操作信号を前記電子機器に出力する操作信号出力手段と、を備えることを特徴とする非接触式入力装置。
    An infrared detection device according to any one of claims 1 to 4;
    Based on the output from the infrared detection device, an operation signal generating means for generating an operation signal of the electronic device,
    An operation signal output unit that outputs the operation signal generated by the operation signal generation unit to the electronic device.
PCT/JP2010/003228 2009-07-03 2010-05-13 Infrared detection device and non-contact input device WO2011001585A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011520747A JPWO2011001585A1 (en) 2009-07-03 2010-05-13 Infrared detector and non-contact input device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-159336 2009-07-03
JP2009159336 2009-07-03

Publications (1)

Publication Number Publication Date
WO2011001585A1 true WO2011001585A1 (en) 2011-01-06

Family

ID=43410678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003228 WO2011001585A1 (en) 2009-07-03 2010-05-13 Infrared detection device and non-contact input device

Country Status (2)

Country Link
JP (1) JPWO2011001585A1 (en)
WO (1) WO2011001585A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077403A1 (en) * 2011-11-23 2013-05-30 国立大学法人神戸大学 Motion detection device
WO2014080577A1 (en) 2012-11-26 2014-05-30 パナソニック株式会社 Infrared detecting device
CN110384504A (en) * 2019-06-28 2019-10-29 深圳通感微电子有限公司 The method and apparatus in human motion direction are judged using PIR
CN110569736A (en) * 2019-08-14 2019-12-13 深圳通感微电子有限公司 Error correction method and device for human body movement direction and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894766A (en) * 1994-09-26 1996-04-12 Matsushita Electric Works Ltd Infrared human body detector
JP2002310788A (en) * 2001-04-10 2002-10-23 Atsumi Electric Co Ltd Heat-ray sensor system
JP2003130728A (en) * 2001-10-19 2003-05-08 Matsushita Electric Works Ltd Pyroelectric infrared detecting element
JP2007170970A (en) * 2005-12-21 2007-07-05 Mitsubishi Electric Corp Detection device and illumination control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894766A (en) * 1994-09-26 1996-04-12 Matsushita Electric Works Ltd Infrared human body detector
JP2002310788A (en) * 2001-04-10 2002-10-23 Atsumi Electric Co Ltd Heat-ray sensor system
JP2003130728A (en) * 2001-10-19 2003-05-08 Matsushita Electric Works Ltd Pyroelectric infrared detecting element
JP2007170970A (en) * 2005-12-21 2007-07-05 Mitsubishi Electric Corp Detection device and illumination control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077403A1 (en) * 2011-11-23 2013-05-30 国立大学法人神戸大学 Motion detection device
WO2014080577A1 (en) 2012-11-26 2014-05-30 パナソニック株式会社 Infrared detecting device
CN110384504A (en) * 2019-06-28 2019-10-29 深圳通感微电子有限公司 The method and apparatus in human motion direction are judged using PIR
CN110569736A (en) * 2019-08-14 2019-12-13 深圳通感微电子有限公司 Error correction method and device for human body movement direction and electronic equipment
CN110569736B (en) * 2019-08-14 2023-03-24 深圳通感微电子有限公司 Error correction method and device for human body movement direction and electronic equipment

Also Published As

Publication number Publication date
JPWO2011001585A1 (en) 2012-12-10

Similar Documents

Publication Publication Date Title
CN107430854B (en) Household appliance and method for operating a household appliance
KR102092316B1 (en) Method for monitoring
WO2011001585A1 (en) Infrared detection device and non-contact input device
JP6009016B2 (en) Motion and gesture recognition by passive single-pixel thermal sensor system
TWI438725B (en) Child assistance system and child assistance method
JP6420877B2 (en) Infrared presence detection by modeled background difference
KR970007741A (en) Positioning Infrared Sensor and Sensing Method Using It
Erden et al. A robust system for counting people using an infrared sensor and a camera
KR20180046679A (en) Method of sensing fingerprint and electronic apparatus including the same
EP1154387A3 (en) Thermopile far infrared radiation detection apparatus for crime prevention
JP2007285914A (en) Radiation measuring apparatus and noise elimination method
US10037106B2 (en) Optical sensor arrangement and method for gesture detection
JP5321584B2 (en) Infrared detector and electronic device
US20130236056A1 (en) Event detection system and method using image analysis
TWI634455B (en) Motion detection method and motion detection device
KR100554617B1 (en) Passive infrared intrusion detector
JP3869781B2 (en) Object detection method and object detection apparatus
JP6380892B2 (en) Infrared detector and detection method
KR101643248B1 (en) Intelligent thermal image sensor
TW201225013A (en) Fall detecting method and device using the same
JP2012132834A (en) Human body detection device and method
JP2000331252A (en) Composite type monitoring device
JP4757786B2 (en) Sound source direction estimating apparatus, sound source direction estimating method, and robot apparatus
CN211742090U (en) Infrared touch screen and coverage detection device thereof
JP2012047458A (en) Movement direction detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011520747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793763

Country of ref document: EP

Kind code of ref document: A1