WO2011001104A2 - Maintenance pour cables electriques par auto-cicatrisation - Google Patents

Maintenance pour cables electriques par auto-cicatrisation Download PDF

Info

Publication number
WO2011001104A2
WO2011001104A2 PCT/FR2010/051359 FR2010051359W WO2011001104A2 WO 2011001104 A2 WO2011001104 A2 WO 2011001104A2 FR 2010051359 W FR2010051359 W FR 2010051359W WO 2011001104 A2 WO2011001104 A2 WO 2011001104A2
Authority
WO
WIPO (PCT)
Prior art keywords
oil
cable
drying
outer sheath
composition
Prior art date
Application number
PCT/FR2010/051359
Other languages
English (en)
Other versions
WO2011001104A3 (fr
Inventor
Yves Bertrand
Céline MARTIN
Gérard MORTHA
Original Assignee
Electricite De France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite De France filed Critical Electricite De France
Priority to CA2766904A priority Critical patent/CA2766904C/fr
Priority to US13/381,414 priority patent/US8772639B2/en
Priority to AU2010267805A priority patent/AU2010267805B2/en
Priority to EP10745370.6A priority patent/EP2449639B1/fr
Publication of WO2011001104A2 publication Critical patent/WO2011001104A2/fr
Publication of WO2011001104A3 publication Critical patent/WO2011001104A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/16Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for repairing insulation or armouring of cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/20Cable fittings for cables filled with or surrounded by gas or oil

Definitions

  • the present invention relates to maintenance of an electrical cable which comprises at least one electrical conductor surrounded by an outer sheath which contains an insulating oil distributed around the electrical conductor, such as a fluid oil cable or an oleostatic cable.
  • the oil is introduced into the cable during the manufacturing process of the electric cable or may be injected into the cable after its manufacture from one or more oil tanks.
  • the cable may be buried and at least one oil tank, which is connected to the underground cable, may be disposed at at least one end of the cable in an oil pressurization station for example.
  • the present invention provides a method of maintaining an electrical cable which comprises at least one electrical conductor surrounded by an outer sheath which contains an insulating oil distributed around the electrical conductor.
  • the method consists in adding in the insulating oil of the cable a drying oil which is selected to solidify in contact with the air, in a proportion chosen to seal any leakage of oil which would appear accidentally through the outer sheath.
  • the electric cable maintenance method according to the invention makes it possible to repair a lesion of the outer sheath of the cable as soon as it appears without the need for direct intervention by an operator on this sheath itself. In particular no trench access to the cable is necessary.
  • Another advantage provided by the invention is that it is not necessary to dig a trench to repair an oil leak to the outside.
  • Another advantage of the process in the sense of the invention is that it is compatible with both fluid oil electric cables with oleostatic cables. In addition, these cables may already have been installed prior to the present invention.
  • Yet another advantage of the invention is that the method of maintenance of an electric cable is thus very inexpensive and simple to implement because it does not require the use of expensive equipment, cumbersome and complex use , such as a mass spectrometer.
  • the method according to the invention is also effective in suppressing an oil leak through an accidental opening of the outer sheath of the cable.
  • the drying oil polymerizes in contact with oxygen, typically with ambient air, for example.
  • oxygen typically with ambient air, for example.
  • the drying oil when the electric cable communicates with at least one oil tank, the drying oil can be added in the insulating oil of the cable via one or more of these oil tanks.
  • the maintenance method can therefore be implemented easily in this way, in particular for fluid oil cables and for oleostatic cables, already installed before the implementation of the present invention.
  • it may be a buried electrical cable with oil tanks directly accessible at the pressurization stations located at least one end of the cable and optionally along the cable, without detachment necessary.
  • a maintenance process according to the invention thus allows to seal a leak without the need to dig a trench to clear the portion of electric cable that has a leak.
  • the insulating oil of the cable can be kept under pressure in the outer sheath without modifying the means used at the pressurization stations.
  • the pressurization of the cable oil avoids the formation of bubbles that can be the cause of arcing that may damage the electrical insulation of the cable.
  • the present invention also provides a self-healing electric cable device that includes:
  • the composition of the insulating oil of the cable comprises at least one drying oil.
  • the proportion of the drying oil in the composition of the oil of the cable is chosen to seal any leakage of oil through the outer sheath.
  • the drying oil may be a vegetable oil such as linseed oil or Chinese wood oil, also called “Tung oil”, or a mixture of Linseed oil and Tung oil.
  • the final composition of the cable oil may further comprise a polymerization catalyst.
  • a polymerization catalyst promotes and / or accelerates the polymerization of the drying oil. The clogging of the leak is then faster.
  • the composition of the catalyst of polymerization may comprise a cobalt salt.
  • the cobalt salt promotes the reaction of the drying oil with the oxygen which ensures an effective initiation of the drying oil polymerization reaction and thus allows a faster clogging of an oil leakage through the outer sheath .
  • the electric cable may be adapted to withstand a pressure of the cable oil which is between 1 and 20 bar. The cable can then contain the oil of the cable under pressure sufficient to reduce the risk of bubbles, notwithstanding the presence of drying oil in the cable oil.
  • FIG. 1 is a cross-section of a fluid oil electric cable (single-phase) to which the invention can be applied,
  • FIG. 2 diagrammatically illustrates a particular implementation of a complete connection of a cable according to FIG. 1, and
  • FIG. 3 is a cross section of an oleostatic (three-phase) electrical cable to which the invention can be applied.
  • an electrical conductor 2 of electrical cable has the shape of a hollow core segmented into several sectors bathed in insulating oil.
  • an oil channel 1 is delimited by internal faces of the sectors.
  • This channel allows the supply of the cable by an insulating liquid, such as an oil.
  • the liquid contains at least one hydrocarbon-based oil, such as a mineral oil, and a drying oil, for example a vegetable oil, added to the mineral oil, and optionally a polymerization catalyst.
  • the drying oil can be introduced into the oil of the cable already present in the channel 1 when the cable has been installed before the present invention.
  • the oil of the cable to which the drying oil is added is static or set in motion in the oil channel 1, and is subjected to a low pressure, less than 5 bar, preferably included between 1 and 2 bars.
  • the electrical conductor 2 may be surrounded by a shielding layer of the core 3.
  • the electrical conductor 2 with the shielding of the core 3 possible, is surrounded by tapes of a porous electrical insulating material 4 which are wound in successive layers.
  • This insulating material which may be paper for example, is impregnated with a mixture of cable oil and drying oil. This mixture of oils, which is present in the oil channel 1, can circulate to the insulation material 4, passing between the sectors of the electrical conductor 2 and through the possible shielding of the core 3.
  • the insulating material 4 which is thus impregnated with the oil mixture is itself surrounded by an outer sheath 5, one of the functions of which is to maintain the oil mixture inside the electric cable.
  • Oil tanks 7 and 8 are arranged at the ends of the cable, for example in oil pressurization stations.
  • An intermediate oil tank may optionally be arranged along the cable, for example in an intermediate pressurization station.
  • the tanks 7 and 8 which are located near the ends of the cable, are connected to a hydraulic circuit of the cable through respective intermediate hydraulic circuits 9 and 10 and respective connection accessories 13 and 14.
  • Each connection accessories 13 and 14 separate the hydraulic oil circuit of the cable from the electrical circuit of the cable and ensure the continuity of the hydraulic circuit oil.
  • Cable termination modules 17 and 18, commonly referred to as “cable ends”, provide continuity of the electrical circuit of the cable, and isolation of the hydraulic oil circuit of the cable.
  • the continuity of the hydraulic oil circuit of the cable is provided by the connection accessories 13 and 14, which are connected to the tanks 7 and 8 respectively via the intermediate hydraulic circuits 9 and 10.
  • the tanks 7 and 8 are located in facilities, such as pressurization stations, allowing an operator to easily access these tanks.
  • the configuration of the complete connection of a cable which is illustrated in FIG. 2, is in accordance with the installations of fluid oil cables which are already known.
  • the cable may leak, for example because of aging of its outer sheath 5.
  • the oil mixture then flows through the sheath external 5 towards the outside of the cable, which causes pollution of the environment.
  • an oil leak can cause a drop in pressure and cause bubbles to form inside the cable, particularly in the insulating material 4 of a fluid oil cable. Arcs can then occur and cause irreversible damage in the cable.
  • the drying oil can be initially added to the cable oil in the absence of leakage.
  • the addition of the drying oil to the oil of the cable then produces a clogging of the leak as soon as it appears.
  • the drying oil polymerizes in contact with the oxygen, typically the ambient air that is present outside the cable at the location of the leak. The clogging that is obtained is particularly early.
  • the drying oil is added to the oil of the cable in the oil tanks 7, 8, when the leak is detected. Indeed, if an oil leak occurs, this leak is detected by noting a drop in oil level in at least one of the tanks 7 and 8. The leak is then clogged by the polymerization of the drying oil. without additional intervention by an operator, other than the addition of drying oil in the tank.
  • the diffusion of the drying oil into the oil of the cable where the leak occurs can be rapid when the oil of the cable is set in motion in the oil channel 1. For a fluid oil cable said "circulating oil, the cable oil is permanently circulated in the oil channel 1.
  • the oil of the cable can be set oscillating to go and return to the oil channel 1 by alternately increasing the pressure of the oil in a station of pressurizing at one end of the cable and decreasing it alternately in the pressurization station at the other end of the cable.
  • the diffusion rate of the drying oil in the oil of the cable is increased and the clogging of the leak by polymerization of the drying oil is faster.
  • the invention applies to any cable having at least one electrical conductor and an outer sheath which is disposed around the electrical conductor and which contains an oil distributed around the electrical conductor.
  • the fluid oil cables and oleostatic cables have such a structure.
  • an electrical insulation of an electrical conductor of a fluid oil cable is obtained by a winding of successive layers of a porous electrical insulating material impregnated with an oil, for example by a paper winding.
  • An outer sheath surrounds the insulating material and contains the oil inside the cable.
  • An oleostatic cable comprises several assembled phases, generally three, each of which comprises an electrical conductor which is surrounded by an insulation sheath.
  • An outer sheath surrounds the phases and contains an oil distributed around the phases inside the cable.
  • the outer sheath 5 contains the insulating oil of the cable 19 which is distributed around three phases.
  • Each of the phases comprises an electrical conductor 2 and an insulation sheath 20 which surrounds the electrical conductor 2.
  • the insulation sheath 20 comprises a porous electrical insulating material which is wound in successive layers and which is impregnated with an oil viscous
  • a pressure drop may occur locally and bubbles may form at the inside of the cable, in particular in the insulation sheath 20 of at least one of the phases of the oleostatic cable. Arcs can then occur and cause irreversible damage in the cable.
  • the insulating oil of the cable 19 is subjected to a high pressure, which may be between 10 and 20 bar for example, preferably between 12 and 18 bar.
  • the configuration of a complete connection of an oleostatic cable which is already known, is very similar to that illustrated in FIG. 2.
  • the oleostatic cable is buried in the ground and at least one oil reservoir 7, 8 is arranged at at least one end of the cable, for example in an oil pressurization station.
  • the oil reservoir 7, 8 is connected to the hydraulic circuit of the cable via an intermediate hydraulic circuit 9, 10 and the respective connection accessory 13, 14.
  • drying oil which generally has a high viscosity
  • the oil of the cable gives the oil mixture a viscosity which is higher than that of the oil. initial cable oil.
  • the oil leakage rate is reduced by the addition of drying oil, thanks to the increased viscosity of the oil mixture, even before clogging. complete leakage resulting from the polymerization of the drying oil.
  • the soil pollution around the cable is therefore already reduced thanks to the higher viscosity that the drying oil provides to the cable oil.
  • a drying oil for example linseed oil or Chinese wood oil, also called Tung oil, is added to the oil of the cable in a proportion chosen to seal the leak.
  • the proportion of drying oil added is further selected to maintain the high electrical insulation that is provided by the porous insulating material impregnated with the oil blend.
  • such a mixture may have hydraulic properties, and especially a viscosity, which are different from those of the cable oil. initial.
  • the proportion of drying oil is then preferably chosen to modify little or no hydraulic behavior of the cable.
  • This hydraulic behavior can in particular be characterized by a rheological profile of the oil mixture, and by the radial diffusion (or “diffusibility” in this case) of the mixture of oils through the materials present from the oil channel 1 up to to the inner face of the outer sheath 5.
  • the proportion of drying oil must be low enough to best maintain the electrical and hydraulic behavior of the cable.
  • the proportion of drying oil in the composition of the cable oil is preferably less than 50% (percent) by weight, more preferably less than 30% by weight;
  • the proportion of drying oil is preferably sufficiently high to quickly and effectively plug an oil leakage through the outer sheath 5 of the cable.
  • the proportion of drying oil in the oil mixture is preferably greater than 5% by weight, more preferably greater than 10% by weight.
  • the proportion of drying oil in the composition of the insulating cable oil may be between 5% and 50%, preferably between 10% and 30%.
  • the insulating cable oil within the meaning of the invention may comprise a polymerization catalyst which comprises a mineral salt, for example a cobalt salt.
  • a polymerization catalyst which comprises a mineral salt, for example a cobalt salt.
  • a catalyst promotes and / or accelerates the polymerization of the drying oil in contact with oxygen.
  • the drying oil polymerizes more rapidly and produces a faster and more effective clogging, for a proportion of drying oil in the mixture which can be scaled down.
  • the proportion of polymerization catalyst in the oil mixture can be less than 10% by weight, preferably less than 5% by weight, to avoid a polymerization of the drying oil inside the cable in the absence of leakage.
  • the manufacture of the mixture of the cable oil and the drying oil may comprise the following steps:
  • composition of the oil mixture that impregnates the insulating material 4 with a fluid oil cable can comprise:
  • the mixture thus obtained is homogeneous and has a satisfactory viscosity, especially for an application of circulation of the fluid oil in the cable.
  • this mixture according to the tests carried out, makes it possible to seal in less than twenty-four hours a leakage through the outer sheath 5 of a fluid oil cable, in which the mixture is subjected to a pressure of 1 , 5 bar, and with an initial oil leakage rate that is greater than 250 liters per week.
  • the invention is not limited to its implementations in cables whose structures correspond to FIGS. 1 and 3.
  • the cable may in particular incorporate additional constituent elements.
  • the conductive core of the fluid oil cable may have a different embodiment than that based on separate sectors and that the shielding layer 3 of the core 2 is not essential for the invention.

Landscapes

  • Gas Or Oil Filled Cable Accessories (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Insulated Conductors (AREA)
  • Processing Of Terminals (AREA)
  • Organic Insulating Materials (AREA)

Abstract

L'invention concerne un procédé de maintenance d'un câble électrique, ledit câble électrique comprenant au moins un conducteur électrique (2) entouré d'une gaine externe (5), ladite gaine externe (5) contenant une huile isolante répartie autour dudit conducteur électrique (2), tel qu'un câble à huile fluide ou un câble oléostatique. Une huile siccative, qui est sélectionnée pour se solidifier au contact de l'air, est ajoutée dans l'huile du câble pour colmater une fuite accidentelle d'huile à travers une gaine externe (5) du câble électrique.

Description

MAINTENANCE POUR CABLES ELECTRIQUES PAR AUTO-CICATRISATION
La présente invention concerne une maintenance d'un câble électrique qui comprend au moins un conducteur électrique entouré d'une gaine externe qui contient une huile isolante répartie autour du conducteur électrique, tel qu'un câble à huile fluide ou un câble oléostatique.
Dans de tels câbles, l'huile est introduite dans le câble au cours du procédé de fabrication du câble électrique ou peut être injectée dans le câble après sa fabrication à partir d'un ou plusieurs réservoirs d'huile. Pour certaines applications, le câble peut être enterré et au moins un réservoir d'huile, qui est connecté au câble souterrain, peut être disposé à au moins une des extrémités du câble dans une station de pressurisation de l'huile par exemple.
Toutefois, des fuites d'huile accidentelles peuvent survenir à travers la gaine externe du câble. Ces fuites peuvent être dues au vieillissement de la gaine, par exemple. On peut alors détecter une diminution du niveau d'huile dans l'un des réservoirs d'huile, et il est alors nécessaire de rechercher l'endroit de la fuite puis de la colmater. La localisation et la réparation des fuites sont des opérations lourdes et complexes à mettre en œuvre, qui nécessitent toujours in fine d'importants travaux de terrassement qui sont généralement réalisés en milieu urbain. On peut injecter dans l'huile un agent chimique spécifique qui diffuse dans l'huile du câble et s'échappe du câble au niveau de la fuite. La position de la fuite peut alors être identifiée avec une précision de quelques mètres seulement le long du câble en détectant les émanations de l'agent chimique à travers le sol. Toutefois, cette méthode de localisation de fuite par traceur chimique présente plusieurs inconvénients, à savoir :
- Elle nécessite encore de creuser une portion de tranchée sur quelques mètres pour réparer la fuite. - Elle nécessite d'utiliser un détecteur de gaz de type spectromètre de masse, qui est coûteux, encombrant et d'utilisation complexe.
- Le gaz qui se dégage par la fuite peut nuire à l'environnement. La présente invention vient améliorer la situation. A cet effet, la présente invention propose un procédé de maintenance d'un câble électrique qui comprend au moins un conducteur électrique entouré d'une gaine externe qui contient une huile isolante répartie autour du conducteur électrique. Selon la présente invention, le procédé consiste à ajouter dans l'huile isolante du câble une huile siccative qui est sélectionnée pour se solidifier au contact de l'air, en proportion choisie pour colmater une fuite éventuelle d'huile qui apparaîtrait accidentellement à travers la gaine externe.
Lorsqu'une fuite diffuse d'huile se produit au niveau de la gaine externe du câble, par exemple à travers une porosité due au vieillissement de cette gaine, l'huile siccative contenue dans l'huile du câble entre au contact de l'air. L'huile siccative polymérise alors et provoque la solidification du mélange d'huiles réalisant le colmatage de l'orifice de fuite. L'épanchement d'huile à l'extérieur du câble est ainsi arrêté, évitant une pollution de l'environnement du câble. La gaine externe du câble est alors de nouveau étanche, grâce à un film d'huile solidifiée.
Par ailleurs, le procédé de maintenance de câble électrique selon l'invention permet de réparer une lésion de la gaine externe du câble dès son apparition sans qu'une intervention directe d'un opérateur sur cette gaine elle-même soit nécessaire. Notamment aucune tranchée d'accès jusqu'au câble n'est nécessaire.
Ainsi, avantageusement, on évite précocement une fuite d'huile ou d'une autre substance qui peut être préjudiciable pour l'environnement. Un autre avantage que procure l'invention est qu'il n'est pas nécessaire de creuser de tranchée pour réparer une fuite d'huile vers l'extérieur.
Un autre avantage du procédé au sens de l'invention est qu'il est compatible aussi bien avec des câbles électriques à huile fluide qu'avec des câbles oléostatiques. En outre, ces câbles peuvent déjà avoir été installés avant la présente invention.
Encore un autre avantage de l'invention est que le procédé de maintenance d'un câble électrique est ainsi très peu coûteux et simple à mettre en œuvre car il ne nécessite pas l'utilisation d'un matériel coûteux, encombrant et d'utilisation complexe, tel qu'un spectromètre de masse.
Enfin, le procédé selon l'invention est aussi efficace pour supprimer une fuite d'huile à travers une ouverture accidentelle de la gaine externe du câble.
Selon un premier perfectionnement de l'invention, l'huile siccative polymérise au contact du dioxygène, typiquement à l'air ambiant par exemple. Ainsi, lorsqu'une fuite d'huile se produit à travers la gaine externe, l'huile siccative entre en contact avec le dioxygène qui est présent à l'extérieur du câble et polymérise. Le colmatage de la fuite est obtenu par obstruction de l'orifice de fuite.
Selon un deuxième perfectionnement de l'invention, lorsque le câble électrique communique avec au moins un réservoir d'huile, l'huile siccative peut être ajoutée dans l'huile isolante du câble via un ou plusieurs de ces réservoirs d'huile. Le procédé de maintenance peut donc être mis en œuvre facilement de cette façon, notamment pour des câbles à huile fluide et pour des câbles oléostatiques, déjà installés avant la mise en œuvre de la présente invention. En particulier, il peut s'agir d'un câble électrique enterré avec des réservoirs d'huile directement accessibles au niveau des stations de pressurisation localisées à au moins une extrémité du câble et optionnellement le long du câble, sans déterrement nécessaire. Un procédé de maintenance selon l'invention permet donc de colmater une fuite sans qu'il soit nécessaire de creuser une tranchée pour dégager la portion de câble électrique qui comporte une fuite.
Selon un troisième perfectionnement de l'invention, l'huile isolante du câble peut être maintenue sous pression dans la gaine externe sans modification des moyens mis en œuvre au niveau des stations de pressurisation. En effet, la mise sous pression de l'huile du câble permet d'éviter la formation de bulles qui peuvent être à l'origine d'arcs électriques susceptibles de détériorer l'isolation électrique du câble. La présente invention propose aussi un dispositif de câble électrique autocicatrisant qui comprend :
- au moins un conducteur électrique,
- une gaine externe qui est disposée autour du conducteur électrique, et qui contient une huile isolante répartie autour du conducteur électrique. Dans un tel dispositif de câble selon l'invention, la composition de l'huile isolante du câble comprend au moins une huile siccative. La proportion de l'huile siccative dans la composition de l'huile du câble est choisie pour colmater une fuite éventuelle d'huile à travers la gaine externe.
Dans des modes de mise en œuvre différents de la présente invention, l'huile siccative peut être une huile végétale telle qu'une huile de lin ou une huile de bois de Chine, aussi appelée « huile de Tung », ou un mélange d'huile de lin et d'huile de Tung.
Selon un perfectionnement du dispositif de la présente invention, la composition finale de l'huile du câble peut comprendre en outre un catalyseur de polymérisation. L'addition d'un tel catalyseur de polymérisation favorise et/ou accélère la polymérisation de l'huile siccative. Le colmatage de la fuite est alors plus rapide. En particulier, la composition du catalyseur de polymérisation peut comprendre un sel de cobalt. Le sel de cobalt favorise la réaction de l'huile siccative avec le dioxygène ce qui assure un amorçage efficace de la réaction de polymérisation de l'huile siccative et permet ainsi un colmatage plus rapide d'une fuite d'huile à travers la gaine externe. Selon encore une autre caractéristique de l'invention, le câble électrique peut être adapté pour supporter une pression de l'huile du câble qui est comprise entre 1 et 20 bars. Le câble peut alors contenir l'huile du câble sous pression suffisante pour diminuer un risque de formation de bulles, et ce nonobstant la présence d'huile siccative dans l'huile du câble. D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins sur lesquels :
- la figure 1 est une coupe transversale d'un câble électrique à huile fluide (monophasé) auquel l'invention peut être appliquée,
- la figure 2 illustre schématiquement une mise en œuvre particulière d'une liaison complète d'un câble conforme à la figure 1 , et
- la figure 3 est une coupe transversale d'un câble électrique oléostatique (triphasé) auquel l'invention peut être appliquée.
Dans le mode de réalisation qui est illustré par la figure 1 , un conducteur électrique 2 de câble électrique présente la forme d'une âme creuse segmentée en plusieurs secteurs baignant dans de l'huile isolante.
Au centre du câble, un canal d'huile 1 est délimité par des faces internes des secteurs. Ce canal permet l'approvisionnement du câble par un liquide isolant, tel qu'une huile. Selon l'invention, le liquide contient au moins une huile à base d'hydrocarbures, telle qu'une huile minérale, et une huile siccative, par exemple une huile végétale, ajoutée à l'huile minérale, et éventuellement un catalyseur de polymérisation. L'huile siccative peut être introduite dans l'huile du câble déjà présente dans le canal 1 lorsque le câble a été installé avant la présente invention.
Pour des câbles à huile fluide, l'huile du câble à laquelle est ajoutée l'huile siccative est statique ou mise en mouvement dans le canal d'huile 1 , et est soumis à une pression faible, inférieure à 5 bars, de préférence comprise entre 1 et 2 bars.
Optionnellement, le conducteur électrique 2 peut être entouré par une couche de blindage de l'âme 3.
Le conducteur électrique 2, avec le blindage de l'âme 3 éventuel, est entouré par des rubans d'un matériau isolant électrique poreux 4 qui sont enroulés en couches successives. Ce matériau isolant, qui peut être du papier par exemple, est imprégné par un mélange d'huile du câble et d'huile siccative. Ce mélange d'huiles, qui est présent dans le canal d'huile 1 , peut circuler jusqu'au matériau d'isolation 4, en passant entre les secteurs du conducteur électrique 2 et au travers du blindage éventuel de l'âme 3.
Le matériau isolant 4 qui est ainsi imprégné par le mélange d'huiles est lui- même entouré par une gaine externe 5, dont l'une des fonctions est de maintenir le mélange d'huiles à l'intérieur du câble électrique.
En se référant à la figure 2, un câble électrique tel que décrit précédemment est enterré dans le sol. Des réservoirs d'huile 7 et 8 sont disposés aux extrémités du câble, par exemple dans des stations de pressurisation de l'huile. Un réservoir d'huile intermédiaire peut optionnellement être disposé le long du câble, par exemple dans une station de pressurisation intermédiaire.
Ces réservoirs permettent de maintenir constante la pression de l'huile dans le câble. En effet, lorsque la température du câble augmente, l'huile du câble se dilate et le volume d'huile dans la liaison complète augmente. Inversement, lorsque la température du câble diminue, le volume d'huile dans la liaison complète diminue. Ainsi, les réservoirs d'huile des stations de pressurisation se comportent comme des vases d'expansion pour l'huile du câble et permettent de compenser une variation du volume de l'huile du câble qui est liée à une variation de température du câble, tout en maintenant constante la pression de l'huile dans le câble.
Pour cela, les réservoirs 7 et 8, qui sont situés à proximité des extrémités du câble, sont reliés à un circuit hydraulique du câble par le biais de circuits hydrauliques intermédiaires respectifs 9 et 10 et d'accessoires de raccordement respectifs 13 et 14. Chacun des accessoires de raccordement 13 et 14 permet de séparer le circuit hydraulique d'huile du câble du circuit électrique du câble et d'assurer la continuité du circuit hydraulique d'huile. Des modules de terminaison du câble 17 et 18, communément appelés « extrémités de câble », assurent une continuité du circuit électrique du câble, et une isolation du circuit hydraulique d'huile du câble. La continuité du circuit hydraulique d'huile du câble est assurée par les accessoires de raccordement 13 et 14, lesquels sont reliés aux réservoirs 7 et 8 via respectivement les circuits hydrauliques intermédiaires 9 et 10.
Les réservoirs 7 et 8 sont localisés dans des installations, telles que les stations de pressurisation, permettant à un opérateur d'accéder facilement à ces réservoirs. La configuration de la liaison complète d'un câble qui est illustrée à la figure 2, est conforme aux installations de câbles à huile fluide qui sont déjà connues.
Lorsque l'huile siccative est introduite dans les réservoirs d'huile 7 et 8, elle diffuse dans l'huile déjà présente dans le câble par l'intermédiaire des circuits hydrauliques intermédiaires respectifs 9 et 10 et des accessoires de raccordement respectifs 13 et 14.
Le câble peut présenter une fuite, par exemple à cause d'un vieillissement de sa gaine externe 5. Le mélange d'huiles s'écoule alors à travers la gaine externe 5 vers l'extérieur du câble, ce qui provoque une pollution de l'environnement. En outre, une telle fuite d'huile peut provoquer une chute de pression et engendrer une formation de bulles à l'intérieur du câble, notamment dans le matériau isolant 4 d'un câble à huile fluide. Des arcs électriques peuvent alors se produire et causer des dommages irréversibles dans le câble.
On peut prévoir alors deux mises en œuvre possibles pour éviter de tels dommage : un ajout d'huile siccative à titre préventif ou un ajout d'huile siccative en cas de détection de fuite. Ainsi, selon une première mise en œuvre de la présente invention, l'huile siccative peut être initialement ajoutée dans l'huile du câble en l'absence de fuite. L'ajout de l'huile siccative à l'huile du câble produit alors un colmatage de la fuite dès l'apparition de celle-ci. En effet, l'huile siccative polymérise au contact du dioxygène, typiquement à l'air ambiant qui est présent à l'extérieur du câble à l'endroit de la fuite. Le colmatage qui est obtenu est particulièrement précoce.
Selon une autre mise en œuvre de l'invention, l'huile siccative est ajoutée à l'huile du câble dans les réservoirs d'huile 7, 8, lorsque la fuite est détectée. En effet, si une fuite d'huile se produit, on détecte cette fuite en relevant une baisse de niveau d'huile dans l'un au moins des réservoirs 7 et 8. La fuite est alors colmatée par la polymérisation de l'huile siccative sans intervention supplémentaire d'un opérateur, autre que l'ajout d'huile siccative dans le réservoir. La diffusion de l'huile siccative dans l'huile du câble où se produit la fuite peut être rapide lorsque l'huile du câble est mise en mouvement dans le canal d'huile 1. Pour un câble à huile fluide dit « à circulation d'huile », l'huile du câble est mise en circulation de manière permanente dans le canal d'huile 1. Pour d'autres types de câbles à huile fluide, l'huile du câble peut être mise en mouvement oscillant d'aller et retour dans le canal d'huile 1 en augmentant alternativement la pression de l'huile dans une station de pressurisation à une extrémité du câble et en la diminuant alternativement dans la station de pressurisation à l'autre extrémité du câble. Grâce à cette mise en mouvement d'huile dans le câble, la vitesse de diffusion de l'huile siccative dans l'huile du câble est accrue et le colmatage de la fuite par polymérisation de l'huile siccative est plus rapide.
L'invention s'applique à tout câble comportant au moins un conducteur électrique et une gaine externe qui est disposée autour du conducteur électrique et qui contient une huile répartie autour du conducteur électrique. De manière connue, les câbles à huile fluide et les câbles oléostatiques présentent une telle structure.
On rappelle en effet que l'isolation électrique d'un conducteur électrique d'un câble à huile fluide est obtenue par un enroulement de couches successives d'un matériau isolant électrique poreux imprégné d'une huile, par exemple par un enroulement de papier. Une gaine externe entoure le matériau isolant et contient l'huile à l'intérieur du câble.
Un câble oléostatique comprend plusieurs phases assemblées, généralement trois, qui comportent chacune un conducteur électrique qui est entouré par une gaine d'isolation. Une gaine externe entoure les phases et contient une huile répartie autour des phases à l'intérieur du câble. Selon un mode de réalisation d'un câble oléostatique illustré en coupe à la figure 3, la gaine externe 5 contient l'huile isolante du câble 19 qui est répartie autour de trois phases. Chacune des phases comprend un conducteur électrique 2 et une gaine d'isolation 20 qui entoure le conducteur électrique 2. Généralement, la gaine d'isolation 20 comprend un matériau isolant électrique poreux qui est enroulé en couches successives et qui est imprégné d'une huile visqueuse
Lorsqu'une fuite d'huile se produit à travers la gaine externe 5, une chute de pression peut apparaître localement et des bulles peuvent se former à l'intérieur du câble, notamment dans la gaine d'isolation 20 d'au moins une des phases du câble oléostatique. Des arcs électriques peuvent alors se produire et causer des dommages irréversibles dans le câble. Pour éviter la formation de bulles, l'huile isolante du câble 19 est soumise à une pression élevée, qui peut être comprise entre 10 et 20 bars par exemple, de préférence entre 12 et 18 bars.
La configuration d'une liaison complète d'un câble oléostatique, qui est déjà connue, est très semblable à celle qui est illustrée à la figure 2. Le câble oléostatique est enterré dans le sol et au moins un réservoir d'huile 7, 8 est disposé à au moins une extrémité du câble, par exemple dans une station de pressurisation de l'huile. Le réservoir d'huile 7, 8 est relié au circuit hydraulique du câble par le biais d'un circuit hydraulique intermédiaire 9, 10 et de l'accessoire de raccordement respectif 13, 14.
Pour les deux types de câbles, oléostatique et à huile fluide, l'ajout d'huile siccative, qui présente généralement une viscosité élevée, dans l'huile du câble confère au mélange d'huiles une viscosité qui est supérieure à celle de l'huile du câble initiale. Ainsi, si une fuite se produit à travers la gaine externe 5 du câble, le débit de la fuite d'huile est réduit par l'ajout d'huile siccative, grâce à la viscosité accrue du mélange d'huiles, avant même le colmatage complet de la fuite qui résulte de la polymérisation de l'huile siccative. La pollution du sol autour du câble est donc déjà réduite grâce à la viscosité supérieure que procure l'huile siccative à l'huile du câble.
Une huile siccative, par exemple de l'huile de lin ou de l'huile de bois de Chine, aussi appelée huile de Tung, est ajoutée dans l'huile du câble en proportion choisie pour colmater la fuite. La proportion d'huile siccative ajoutée est en outre choisie pour conserver l'isolation électrique élevée qui est procurée par le matériau isolant poreux imprégné par le mélange d'huiles. Par ailleurs, un tel mélange peut présenter des propriétés hydrauliques, et notamment une viscosité, qui sont différentes de celles de l'huile du câble initiale. La proportion d'huile siccative est alors en outre choisie de préférence pour modifier peu ou pas le comportement hydraulique du câble. Ce comportement hydraulique peut notamment être caractérisé par un profil rhéologique du mélange d'huiles, et par la diffusion (ou « diffusibilité » en l'espèce) radiale du mélange d'huiles au travers des matériaux présents depuis le canal d'huile 1 jusqu'à la face interne de la gaine externe 5.
Il existe alors un compromis pour le choix de la proportion d'huile siccative ajoutée dans l'huile du câble :
- la proportion d'huile siccative doit être suffisamment faible pour conserver au mieux les comportements électrique et hydraulique du câble. Ainsi, la proportion d'huile siccative dans la composition de l'huile du câble est de préférence inférieure à 50 % (pourcent) en masse, plus préférablement inférieure à 30 % en masse ;
- la proportion d'huile siccative est de préférence suffisamment élevée pour colmater rapidement et efficacement une fuite d'huile à travers la gaine externe 5 du câble. Ainsi, la proportion d'huile siccative dans le mélange d'huiles est de préférence supérieure à 5 % en masse, encore plus de préférence supérieure à 10 % en masse.
Ainsi, la proportion d'huile siccative dans la composition de l'huile isolante du câble peut être comprise entre 5 % et 50 %, de préférence entre 10 % et 30 %.
Pour optimiser ce compromis, l'huile isolante du câble au sens de l'invention peut comprendre un catalyseur de polymérisation qui comporte un sel minéral, par exemple un sel de cobalt. En effet, un tel catalyseur favorise et/ou accélère la polymérisation de l'huile siccative au contact du dioxygène. Ainsi, lorsqu'une fuite se produit à travers la gaine externe 5, l'huile siccative polymérise plus rapidement et produit un colmatage plus rapide et plus efficace, pour une proportion d'huile siccative dans le mélange qui peut être réduite. En raison de la présence de dioxygène en faible quantité à l'intérieur du câble, la proportion de catalyseur de polymérisation dans le mélange d'huiles peut être inférieure à 10 % en masse, de préférence inférieure à 5% en masse, pour éviter une polymérisation de l'huile siccative à l'intérieur du câble en l'absence de fuite.
Une adaptation des proportions dans le mélange d'huiles, c'est-à-dire des proportions dans la composition de l'huile du câble telle qu'elle résulte de l'utilisation de l'invention, est possible, notamment en fonction de la vitesse qui est désirée pour le colmatage. Selon un mode de réalisation préféré de l'invention, la fabrication du mélange de l'huile du câble et de l'huile siccative peut comporter les étapes suivantes :
- dissolution dans l'huile siccative du sel minéral qui constitue le catalyseur de polymérisation, à une température supérieure à 40 °C, de préférence supérieure à 50 °C, puis - mélange de l'huile siccative qui comprend le sel minéral dissout avec l'huile du câble initiale.
Dans un exemple de réalisation, la composition du mélange d'huiles qui imprègne le matériau isolant 4 d'un câble à huile fluide peut comprendre :
- environ 20 % en masse d'huile de Tung, - environ 1 % en masse de sel de cobalt, et
- le complément (environ 79 % en masse) d'huile fluide standard, par exemple d'huile de référence T 3788 DUSSEK CAMPBELL ®.
Le mélange ainsi obtenu est homogène et présente une viscosité satisfaisante, notamment pour une application de circulation de l'huile fluide dans le câble. En outre, ce mélange, d'après les essais réalisés, permet de colmater en moins de vingt-quatre heures une fuite à travers la gaine externe 5 d'un câble à huile fluide, dans lequel le mélange est soumis à une pression de 1 ,5 bars, et avec un débit initial de fuite d'huile qui est supérieur à 250 litres par semaine.
Il est entendu que l'invention n'est pas limitée à ses mises en œuvre dans des câbles dont les structures correspondent aux figures 1 et 3. Le câble peut notamment incorporer des éléments constitutifs additionnels. En outre, il est précisé que l'âme conductrice du câble à huile fluide peut avoir une réalisation différente de celle à base de secteurs séparés et que la couche de blindage 3 de l'âme 2 n'est pas indispensable pour l'invention.

Claims

Revendications
1. Procédé de maintenance d'un câble électrique comprenant au moins un conducteur électrique (2) entouré d'une gaine externe (5), ladite gaine externe (5) contenant une huile isolante (19) répartie autour dudit conducteur électrique (2), caractérisé en ce que l'on ajoute dans l'huile isolante du câble (19) une huile siccative sélectionnée pour se solidifier au contact de l'air et en proportion choisie pour colmater une fuite éventuelle d'huile à travers la gaine externe (5).
2. Procédé selon la revendication 1 , caractérisé en ce que l'huile siccative polymérise au contact du dioxygène.
3. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit câble électrique communique avec au moins un réservoir d'huile (7, 8), et caractérisé en ce que l'huile siccative est ajoutée à l'huile isolante du câble (19) dans ledit réservoir d'huile (7, 8).
4. Procédé selon la revendication 3, caractérisé en ce que ledit câble est enterré tandis que ledit réservoir (7, 8) est directement accessible sans déterrement.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'huile isolante du câble (19) est maintenue sous pression dans ladite gaine externe (5).
6. Dispositif de câble électrique auto-cicatrisant comprenant : - au moins un conducteur électrique (2), - une gaine externe (5) disposée autour dudit conducteur électrique (2), ladite gaine externe (5) contenant une huile isolante (19) répartie autour dudit conducteur électrique (2), caractérisé en ce qu'une composition de l'huile isolante du câble (19) comprend au moins une huile siccative, une proportion de l'huile siccative dans la composition de l'huile du câble (19) étant choisie pour colmater une fuite éventuelle d'huile à travers la gaine externe (5).
7. Dispositif selon la revendication 6, caractérisé en ce qu'une composition de l'huile siccative comprend une huile de lin.
8. Dispositif selon l'une quelconque des revendications 6 et 7, caractérisé en ce qu'une composition de l'huile siccative comprend une huile de bois de Chine.
9. Dispositif selon l'une quelconque des revendications 6 à 8, caractérisé en ce que la proportion d'huile siccative dans la composition de l'huile isolante du câble (19) est comprise entre 5 % et 50 %.
10. Dispositif selon la revendication 9, caractérisé en ce que ladite proportion d'huile siccative est comprise entre 10 % et 30 %.
11. Dispositif selon l'une quelconque des revendications 6 à 10, caractérisé en ce que la composition de l'huile isolante du câble (19) comprend en outre un catalyseur de polymérisation, pour favoriser et/ou accélérer une polymérisation de l'huile siccative.
12. Dispositif selon la revendication 11 , caractérisé en ce qu'une composition du catalyseur de polymérisation comprend un sel de cobalt.
13. Dispositif selon l'une quelconque des revendications 1 1 et 12, caractérisé en ce qu'une proportion dudit catalyseur de polymérisation dans la composition de l'huile isolante du câble (19) est inférieure à 5 %.
14. Dispositif selon l'une quelconque des revendications 6 à 13, caractérisé en ce que le câble électrique est adapté pour supporter une pression de l'huile isolante du câble (19) comprise entre 1 et 20 bars.
PCT/FR2010/051359 2009-06-30 2010-06-29 Maintenance pour cables electriques par auto-cicatrisation WO2011001104A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2766904A CA2766904C (fr) 2009-06-30 2010-06-29 Maintenance pour cables electriques par auto-cicatrisation
US13/381,414 US8772639B2 (en) 2009-06-30 2010-06-29 Maintenance of electric cables by self-repairing
AU2010267805A AU2010267805B2 (en) 2009-06-30 2010-06-29 Maintenance of electric cables by self-repairing
EP10745370.6A EP2449639B1 (fr) 2009-06-30 2010-06-29 Maintenance pour cables electriques par auto-cicatrisation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0954463A FR2947374B1 (fr) 2009-06-30 2009-06-30 Maintenance pour cables electriques par auto-cicatrisation.
FR0954463 2009-06-30

Publications (2)

Publication Number Publication Date
WO2011001104A2 true WO2011001104A2 (fr) 2011-01-06
WO2011001104A3 WO2011001104A3 (fr) 2011-10-27

Family

ID=41651527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051359 WO2011001104A2 (fr) 2009-06-30 2010-06-29 Maintenance pour cables electriques par auto-cicatrisation

Country Status (6)

Country Link
US (1) US8772639B2 (fr)
EP (1) EP2449639B1 (fr)
AU (1) AU2010267805B2 (fr)
CA (1) CA2766904C (fr)
FR (1) FR2947374B1 (fr)
WO (1) WO2011001104A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10538337B2 (en) 2017-04-21 2020-01-21 General Electric Company Propulsion system for an aircraft
GB201711185D0 (en) * 2017-07-12 2017-08-23 Gnosys Global Ltd Self-healing insulation fluid for repairing damaged fluid filled cables
CN112582102B (zh) * 2020-12-07 2022-08-12 广西嘉意发科技有限公司 一种防渗自愈型地下预埋电缆护套
CN113690806B (zh) * 2021-08-02 2022-09-06 杭州富通通信技术股份有限公司 线缆护套修复装置及使用方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2029546A (en) * 1929-08-22 1936-02-04 Gen Cable Corp Insulated conductor
US3819037A (en) * 1972-08-28 1974-06-25 Minnesota Mining & Mfg Cable plugging apparatus
FR2612009B1 (fr) * 1987-03-04 1989-05-05 Cables De Lyon Geoffroy Delore Jonction souple pour cable sous-marin au papier impregne
EP0556522A1 (fr) * 1992-02-19 1993-08-25 France Telecom Sa Bouchon de pressurisation des câbles de télécommunications
SE514063C2 (sv) * 1997-12-22 2000-12-18 Abb Ab Förfarande för framställning av en elektrisk anordning med ett isoleringssystem som omfattar en porös, fibrös och/eller laminerad fast del impregnerad med en dielektrisk vätska, en porös, fibrös och/eller laminerad kropp och användning därav i en elektrisk anordning
JP3024627B2 (ja) * 1998-02-03 2000-03-21 住友電気工業株式会社 海底ソリッドケーブル
DE20022732U1 (de) 2000-01-12 2002-05-16 Silu Verwaltung Ag, Meggen Einkomponentige Dichtmasse auf Basis einer Dispersion von Vinylpolymeren
US7285306B1 (en) * 2003-04-18 2007-10-23 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Process for self-repair of insulation material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
US8772639B2 (en) 2014-07-08
CA2766904A1 (fr) 2011-01-06
US20120103654A1 (en) 2012-05-03
EP2449639B1 (fr) 2014-06-11
WO2011001104A3 (fr) 2011-10-27
EP2449639A2 (fr) 2012-05-09
FR2947374A1 (fr) 2010-12-31
FR2947374B1 (fr) 2011-08-26
CA2766904C (fr) 2015-11-24
AU2010267805A1 (en) 2012-02-02
AU2010267805B2 (en) 2014-08-28

Similar Documents

Publication Publication Date Title
EP2449639B1 (fr) Maintenance pour cables electriques par auto-cicatrisation
BE1005440A5 (fr) Compositions de matieres lubrifiees de maniere intrinseque et leurs produits.
EP3455536A1 (fr) Dispositif chauffant pour le transport d'un mélange multiphasique d'hydrocarbures et procédé associé
EP0958584B1 (fr) Parafoudre perfectionne a base de varistances
EP0922177B1 (fr) Procede de fabrication d'une conduite flexible
US20120102729A1 (en) Method for treating electrical cable at sustained elevated pressure
FR2597255A1 (fr) Cable electrique a isolant extrude et a conducteur etanche par bourrage, matiere de bourrage pour conducteurs de cables electriques et procede de fabrication de ces cables
EP0883007A1 (fr) Câble à tube étanche comprenant au moins un conducteur optique
EP2938512B1 (fr) Detection d'avarie d'une bande de captage
FR2498000A1 (fr) Cable electrique perfectionne, notamment cable sous-marin pour courant continu a haute tension
FR2503476A1 (fr) Procede de depose d'une gaine protectrice sur l'extremite d'un cable electrique et dispositif pour la mise en oeuvre de celui-ci
FR2967258A1 (fr) Dispositif de detection d'une elevation de temperature
EP0418209A1 (fr) Procédé de détection de fuites
FR2493584A1 (fr) Dispositif d'impermeabilisation longitudinale d'un cable
CA2474081A1 (fr) Procede d'installation d'un cable de fortes ou moyennes puissances dans le sol
FR2777628A1 (fr) Procede de realisation d'une conduite calorifugee a enveloppe externe de protection et conduite ainsi realisee
FR2547102A1 (fr) Procede pour rendre des cables electriques a huile fluide non propagateurs de l'incendie, liaison electrique et cables a huile fluide obtenus par ce procede
EP1657365A2 (fr) Procédé de chemisage de puits
FR2498368A1 (fr) Fluide isolant et cable electrique impregne d'un tel fluide isolant
EP4187726A1 (fr) Procédé de colmatage d'une jonction à surface et contre-surface de contact d'un élément d'un compartiment de poste électrique sous enveloppe métallique à isolation gazeuse et jonction résultante
CA2400218A1 (fr) Procede de mesure des caracteristiques electriques d'un cable de telecommunication
FR2549280A1 (fr) Cables a isolation par rubans entierement synthetiques
FR2489034A1 (fr) Procede d'impregnation d'un cable par un materiau d'etancheite
FR2523507A1 (fr) Procede et installation pour la vulcanisation continue d'un cable electrique
JP3429233B2 (ja) 直流海底ソリッドケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745370

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010745370

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2766904

Country of ref document: CA

Ref document number: 2010267805

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13381414

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010267805

Country of ref document: AU

Date of ref document: 20100629

Kind code of ref document: A