WO2011000685A1 - Vorrichtung zur reinigung von nox haltigen abgasen - Google Patents

Vorrichtung zur reinigung von nox haltigen abgasen Download PDF

Info

Publication number
WO2011000685A1
WO2011000685A1 PCT/EP2010/058265 EP2010058265W WO2011000685A1 WO 2011000685 A1 WO2011000685 A1 WO 2011000685A1 EP 2010058265 W EP2010058265 W EP 2010058265W WO 2011000685 A1 WO2011000685 A1 WO 2011000685A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas stream
jacket
channel
exhaust
Prior art date
Application number
PCT/EP2010/058265
Other languages
English (en)
French (fr)
Inventor
Sebastian Hirschberg
Original Assignee
Sulzer Chemtech Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Chemtech Ag filed Critical Sulzer Chemtech Ag
Priority to CN201080029726.8A priority Critical patent/CN102472142B/zh
Priority to EP10725158A priority patent/EP2470759A1/de
Priority to US13/377,287 priority patent/US20120087840A1/en
Publication of WO2011000685A1 publication Critical patent/WO2011000685A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/70Pre-treatment of the materials to be mixed
    • B01F23/711Heating materials, e.g. melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3132Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices
    • B01F25/31322Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices used simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3133Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit characterised by the specific design of the injector
    • B01F25/31331Perforated, multi-opening, with a plurality of holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a device for purifying a NOx exhaust gas stream.
  • a DeNoX system is a system for denitrating exhaust gases, ie for the removal of nitrous gases, ie gases with the molecular formula NOx.
  • x can in particular assume the values 1 or 2, that is to say NO, mean NO 2 , non-integer values for x are also possible, for example in a combination as N 2 Os.
  • SCR selective catalytic reaction
  • ammonia NH 3
  • the catalyst one
  • NOx and NH 3 are converted to nitrogen (N 2 ) and water (H 2 O).
  • ammonia can be stored as a water-ammonia mixture or water-urea mixture, which is much safer from a safety point of view. But with this solution is the necessary Apparalive installation and the energy required to evaporate the water-ammonia mixture respectively for evaporation of the water-urea mixture and the subsequent hydrolysis of the urea in ammonia very large. That makes this solution less economically interesting
  • a reaction agent can also be distributed in an exhaust pipe by means of a diaphragm or throttle installed in the interior of a spray pipe, which is shown in DE19946901. This orifice or throttle is to avoid a non-uniform Wandfiim, which forms on the inside of the spray tube.
  • This solution is disadvantageous as a
  • the patent US 7 * ⁇ 9 ⁇ '81 ⁇ B2 describes a method for exhaust gas purification in power plants, in which a part of the exhaust gas flow is diverted. A urea-water solution is added to the branched exhaust gas stream in a separate chamber, evaporated and converted by hydrolysis into ammonia and C ⁇ 2. This partial flow of exhaust gas is then returned by a blower and a static mixer with the main flow mixed. Due to the storage of ammonia in the form of the much less problematic urea and the conversion to ammonia until shortly before use, the risk potential can be considerably reduced, but the Druckveriust increases, which precludes an application of this solution, especially for exhaust gas flows with large volume, because the energy needs an essential one for overcoming pressure ulceration
  • a heating element is provided to evaporate a reactive liquid coming from an injection nozzle. Oxidation reactions are the source of the reactive behavior of the reactive fluid.
  • the chamber of the heating element is provided to evaporate a reactive liquid coming from an injection nozzle. Oxidation reactions are the source of the reactive behavior of the reactive fluid.
  • the chamber of the heating element is provided to evaporate a reactive liquid coming from an injection nozzle. Oxidation reactions are the source of the reactive behavior of the reactive fluid.
  • the atomizing nozzle can be designed as a single-substance nozzle or as a two-component nozzle.
  • the term single-fluid nozzle is used specifically for atomizing nozzles, in which only the liquid to be atomized is conveyed through the nozzle.
  • a propellant gas is also conveyed into the nozzle, as a result of which the atomization can be improved, ie in particular the production of very fine drops with a narrow
  • Liquid flow is possible. However, one is
  • This compression device for the compression of the propellant gas required.
  • This compression device has a high demand for energy, which is especially for large exhaust streams, such as in
  • problems with dust-laden exhaust gases can arise when the dust is wetted by not yet vaporized droplets and accumulates as an impurity on walls of a film evaporator or catalyst or on a static mixer disposed in the exhaust stream upstream of the catalyst.
  • a gas pressure of, for example, 8-8 bar such two-fluid nozzles typically produce
  • Drop size distributions with a Sauter diameter of 20 - 50 ⁇ m, but single large drops of up to 120 ⁇ m. Because of the contamination previously described by the accumulating on the walls dust must be taken to ensure that no drops can get into the catalyst or on the mixer.
  • the time of flight of the droplets before the catalyst or a mixing device must be sufficient so that a complete evaporation of these droplets is ensured and requires correspondingly large length of the exhaust ducts.
  • the time of flight of the drops to the catalyst is only a few milliseconds, which is not sufficient to evaporate larger drops during the flight phase. For this reason, at least the larger drops must be separated from the exhaust gas and vaporized in a liquid.
  • EP 1956206 A provides a film evaporator. In the case of motor vehicles, this is often permissible since a particle filler removes the dust from the exhaust gas in advance and thus there is no longer the risk of contamination.
  • WO 2004/079171 A1 is a combined
  • Evaporator and distributor made up of porous ribs
  • Urea-water solution should be distributed inside the porous structure and evaporated. According to this application, the evaporation energy is extracted from the flow of hot exhaust gas via heat conduction through the fins. Through openings in the ribs then the gaseous ammonia can escape. A large number of such ribs is necessary to remove the heat necessary for the evaporation of the flow of the flow. The proper distribution of the liquid urea water solution to these many fins is technically difficult to realize because of the complex 2-phase flow inside the fins. It's tough
  • the solution should be at least as safe in terms of safety as the use of a two-fluid nozzle.
  • An inventive apparatus for purifying an NOx containing exhaust gas stream comprises a closed channel which NH 3 containing from one Christsrnittel can flow, the channel being a
  • Exhaust opening includes.
  • the jacket element can be flowed around by the exhaust gas flow containing NO x, wherein a distributor element for distributing the NH 3 -containing reaction medium can be connected to the jacket element so that the NH 3 -containing reaction medium can be introduced into the exhaust gas flow and mixed with the exhaust gas flow by means of the distributor element.
  • the upgrading element has one or more openings through which the Nhh-containing reactant can be introduced as a gas phase into the exhaust gas stream.
  • the NH 3 -containing reactant is vaporizable within the Manteielements.
  • the jacket element comprises a heat-transmitting element, so that the jacket element can be heated by means of the exhaust gas flow.
  • the heat-transmitting element may be formed as a rib or a tube.
  • the heat-transferring element as a pipe
  • the heat-transmitting element formed as a tube, which
  • Downstream of the distributor element may be arranged a mixer, in particular a static mixer, in order to mix the exhaust gas stream with the NH 3 -containing reactant.
  • a mixer in particular a static mixer
  • the conversion of NOx with NH 3 to N 2 and H 2 O takes place in a catalyst arranged downstream of the mixer.
  • the catalyst extends over the entire cross-sectional area of an exhaust gas channel leading to the exhaust gas stream, so that the conversion described above along a path as short as possible of the catalyst can take place, thus the length of the catalyst seen in the flow direction of the exhaust gas flow can be as small as possible.
  • the Manteieiement a reactor element for
  • Conversion of urea into MH 3 include, in particular, the
  • Urea be supplied to the reactor element in the liquid phase.
  • the NH 3 -containing reactant according to one of the preceding variants remains in the interior of the jacket element and can only occur in the interior in the liquid state. This ensures that no liquid enters the exhaust gas flow and deposits on the inner surface of the exhaust duct or the heat transfer elements located in the exhaust duct. For this reason, dust particles are not on the inner surface of the
  • Exhaust gas ducts deposited on the jacket element or on the heat-transferring elements.
  • the distribution element for example, the distribution element or a static mixer
  • Reactant is present in the distribution element in the gas phase, it comes downstream of the distribution element to a mixing of NHs-containing reactant with the exhaust gas stream without formation of a liquid
  • the jacket element may contain flow-deflecting internals, in particular, the jacket element may be a metal foam or
  • Ceramic foam included. The heat that has been removed from the exhaust gas flow is distributed by heat conduction throughout the foam.
  • Flow deflecting internals are used for rearrangement or deflection of the flow of Nhh-containing reactant.
  • the combination of heat transfer and heat conduction is for a metal or
  • the metal or ceramic foam is open-pored, so that the entire volume, which is occupied by the metal or Kzmramikaum, for the heat transfer and the deflection or rearrangement of
  • the jacket element as well as the metal or ceramic foam advantageously have a thermal conductivity of at least 15 W / m K, preferably at least 30 W / m K, particularly preferably at least 60 W / m K, so that the heat transfer from the exhaust gas stream to the NH 3 - containing reaction center! additionally improved.
  • the jacket element and / or the metal foam may have a catalytically active surface, in particular if a variant
  • the metal foam may contain aluminum, especially as one
  • Aiuminiumiegêt be formed.
  • a metal foam made of aluminum can be easily manufactured and is therefore relatively inexpensive to procure.
  • the ceramic foam can be embodied, for example, as a silicon carbide ceramic. Silicon carbide has a very high thermal conductivity, high wear resistance and good strength and can be processed into open-pored foam structures.
  • the NH 3 spherical reaction mixture may comprise an aqueous ammonia solution. The aqueous ammonia solution is introduced into the jacket element in the region of the inlet opening. Due to the heat transfer, the water evaporates, so that both the resulting NH 3 , as well as the remaining water in the gaseous phase.
  • the exhaust gas stream may be at least 12 m 3 / h, preferably at least 1000 SiT 3 Zh, more preferably at least 10000 Hi 3 Zh.
  • Inlet temperature of the exhaust gas into the channel is at least 150 of v N >.
  • the channel in which the exhaust gas stream flows may have a cross-sectional area which is at least 0.0007 m 2 , preferably at least 0.05 m z , particularly preferably at least 1 m 2 .
  • Industrial plant in particular a power plant can be used.
  • Other possible uses include denitrification plants for exhaust gases from power plants, for exhaust gases from diesel engines or exhaust gases
  • FIG. 1 shows a schematic view of the device according to the invention.
  • FIG. 2 shows a schematic view of a second embodiment variant of FIG.
  • a closed channel 3 which can be flowed through by a NH3-containing reagent 4.
  • the channel is partially cut in Fig. 1 to make the internals visible.
  • the channel has a jacket element 5. which the channel 3 surrounds and an inlet opening 8 for supplying NH 3- containing
  • the outlet opening 7 opens into a distributing element 8.
  • the holding element 5 can be moved in the direction of the exhaust gas flow 2 containing NOx.
  • a distributing element 8 for distributing the NH 3 -containing reactant 4
  • the distribution element 8 has a hollow interior and one or more openings 9 through which the NH 3 halves
  • Reaction center! 4 as a gas phase in the exhaust stream 2 can be introduced.
  • the NH 3 -containing reactant 4 is vaporizable within the shell element, that is, the NH 3 -containing reactant 4 evaporates in the interior of the shell element
  • the sheath element 5 comprises a
  • FIG. 2 shows a schematic view of a second embodiment of the inventive device. The individual elements of the same function receive the same reference numerals as in FIG. 1.
  • FIG. 2 shows an exhaust gas canister. 14, which includes a device 1 for purifying a NOx-containing
  • Exhaust gas stream 2 contains.
  • a closed channel 3, is traversed by a NH 3- containing reagent 4. This channel 3 is as
  • serpentine running pipe shown.
  • the course of the closed channel 3 does not have to be serpentine, it could, for example, also run helically, which is not shown here.
  • the course of the tube in the exhaust duct 14 is such that the entire
  • Cross-sectional area of the exhaust passage 14 is usable for heat exchange.
  • the exhaust passage 14 is partially cut in Fig. 2 to make the internals visible. Furthermore, the channel 3 is shown cut at two parts to show its internals.
  • a tage ⁇ beriragendes element be attached, which is formed for example as a metal or ceramic foam, but the heat-transferring element may also comprise packing or a combination of different internals.
  • the internals can also be provided only on some sections of the channel.
  • the channel has an inlet opening 6 for the supply of NH 3- containing
  • the outlet opening 7 opens into a Verteilelemenl 8.
  • gehl formed as a tube jacket element directly into a pipe over, soft to
  • Distribution element 8 leads.
  • the distributor 8 is used for distribution of the NH 3 containing reaction means 4, so that the NH 3 containing reactant 4 is introduced into and be mixed with the exhaust gas stream 2 by means of the distributing element in the exhaust gas stream.
  • the distribution element 8 branches into at least two oil elements 15, 16, 17, 18, which have a hollow interior and one or more openings 9, through which the NH 3 -containing
  • Reactant 4 is introduced as a gas phase in the exhaust stream 2.
  • the NH 3 -containing Christsmittei 4 is vaporizable within the Manteleiements, that is, the NH 3 -containing reactant 4 evaporates in the interior of the Manteleiements 5.
  • the jacket member 5 comprises a heat-transmitting member 10, so that the jacket member 5 is heated by the exhaust stream 3, in particular the heat-transmitting element 10 according to FIG. 1 or FIG. 2 may be formed as a rib 11 or as a tube 12.
  • a plurality of ribs 11 is provided, which are formed as plate-shaped elements.
  • the plates extend in the flow direction of the exhaust gas stream 2, so that the exhaust gas stream 2 passes along the plate-shaped elements.
  • the plate-shaped elements are only a preferred embodiment of a heat-transmitting element.
  • tubular elements, thickenings, disk-shaped elements, rod-like elements, schaufeiförmige elements, lattice structures, Metal foams and the like may be provided.
  • these elements can be arranged in any combination.
  • the exhaust gas flow has a higher temperature than the heat-transferring member 10, so that heat transfer from the heat-transferring member 10 to the NH? containing reactant 4 takes place.
  • the heat-transferring element 10 is formed as a tube 12, it simultaneously assumes the function of the jacket element 5. The heat transfer takes place in this case from the exhaust gas flow through the tube wall to the NH3-containing reaction center! 4, This heat transfer may be sufficient if the required temperature difference between the exhaust stream 2 and the NH 3 -containing reactant 4 is large enough, or the volume flow 2 at NH 3- containing reaction center! 4 is so small that the available heat transfer surface is sufficient in each case.
  • jacket element 5 according to FIG. 1 or FIG. 2 is preferably made of good heat-conducting material. manufactured, so that the heat transfer
  • the sheath element 5 has a thermal
  • Downstream of the distributor 8 may be shown after each of
  • Embodiments be arranged a mixer, in particular a static mixer to mix the exhaust gas stream with the NH3-containing reactant.
  • This mixer is not shown in the drawing.
  • the NH 3 -high reactant 4 can be obtained by conversion of urea.
  • This reaction could also take place inside the jacket element 5.
  • the jacket element can comprise a non-illustrated reactor element for converting urea into NH 3 ; in particular, the urea can be supplied to the reactor element in the liquid phase.
  • the supply of urea can be carried out, for example, by means of a device as shown in EP 1956208 A.
  • the Manteielement according to FIG. 1 or 2 may contain Strömungsumienkende and good heat conducting internals, which, as metal foam or
  • Ceramic foam 13 may be formed. The metal or
  • Ceramic foam 13 is preferably open-pore, thus the NH 3- containing reactant 4 can flow through the metal foam evenly.
  • the metal or ceramic foam 13 may in particular be in heat-conducting connection with the manure element, so that the heat of the exhaust gas stream can be transferred to the NH 3 -containing reactant 4 via heat conduction through the jacket element 5 as well as through the metal or ceramic foam 13.
  • the exhaust gas flow 2 has a higher temperature than the heat-transmitting element 10, so that a heat transfer from the heat-transferring
  • the heat-transferring element 10 is formed as a tube 12 with ribs 11 arranged thereon and at the same time assumes the function of the jacket element 5. The heat transfer takes place in this case from
  • Reactant 4 This heat transfer may be sufficient if the required temperature difference between the exhaust stream 2 and the NH 3 -containing reactant 4 is large enough, or the volume flow 2 of NH 3 containing reactant 4 is so small that the available heat transfer surface in each Case is sufficient.
  • a small exhaust gas can! with 1 m 2 of cross-sectional area one
  • Pressure loss in the NH 3 -ha ⁇ term reactant is significantly lower than in the previously known evaporator in the inventive evaporator.
  • pressure losses of about 1 bar / m are achieved in the inventive evaporator, while 3 bar / m are formed in the evaporator according to the prior art.
  • the erf ⁇ ndungshiele evaporator generates a pressure drop of 0.22 mbar in the exhaust stream while the previously known evaporator with 2.4 mbar causes a more than an order of magnitude higher pressure drop in the exhaust gas.
  • Embodiments thus a comparable pressure loss is generated as in the downstream of the device optionally arranged static mixer.
  • the length of the channel 3 is significantly lower than for a solution according to the prior art.
  • the pressure loss generated by the channel 3 in Abgaskana! 14 surprisingly significantly lower than in the previously known solution due to the shorter length of the device according to the invention.

Abstract

Eine Vorrichtung (1) zur Reinigung eines NOx enthaltenden Abgasstroms (2). umfasst einen Kanal (3), welcher von einem NH3 haltigen Reaktionsmittel (4) durchströmbar ist, wobei der Kanal (3) ein Mantelelement (5) aufweist, welches den Kanal (3) umgibt und eine Eintrittsöffnung (6) zur Zufuhr des NH3 haltigen Reaktionsmittels (4) und eine Austrittsöffnung (7) umfasst. Das das Mantelelement (5) ist von dem NOx enthaltenden Abgasstrom (2) umströmbar, wobei an das Mantelelement (5) ein Verteilelement (8) zur Verteilung des NH3 haltigen Reaktionsmittels (4) anschliessbar ist, sodass mittels des Verteilelements (8) das NH3 haltige Reaktionsmittel (4) in den Abgasstrom (2) einbringbar und mit dem Abgasstrom (2) vermischbar ist. Das Verteilelement (8) weist eine Öffnung (9) auf, durch welche das NH3 haltige Reaktionsmittel (4) als Gasphase in den Abgasstrom (2) einleitbar ist, wobei das NH3 haltige Reaktionsmittel (4) innerhalb des Mantelelements (5) verdampfbar ist. Das Mantelelement (5) umfasst ein wärmeübertragendes Element (10), sodass das Mantelelement (5) mittels des Abgasstroms (2) beheizbar ist.

Description

Vorrichtung zur Reinigung von NOx haltigen Abgasen
Die Erfindung betrifft eine Vorrichtung zur Reinigung eines NOx enthaltenden Abgasstroms.
Ein DeNoX System ist ein System zur Entstickung von Abgasen, das heisst zur Entfernung von nitrosen Gasen, das heisst Gasen mit der Summenformel NOx. x kann dabei insbesondere die Werte 1 oder 2 annehmen, das heisst NO, NO2 bedeuten, es sind auch nicht ganzzahlige Werte für x möglich, z.B. in einer Kombination als N2Os. Bei DeNoX Systemen mit SCR (selective catalytic reaction) Katalysatoren, wie sie z.B. in Kraftwerken mit fossilen Brennstoffen oder aber auch Dieselmotoren, Verbrennungsanlagen oder Zementwerken eingesetzt oder geplant werden, muss Ammoniak (NH3) vor dem Katalysator ins Abgas dosiert werden. Im Katalysator, einem
sogenannter Reduktionskatalysator, werden NOx und NH3 zu Stickstoff (N2) und Wasser (H2O) umgesetzt.
Zur Bereitstellung des Ammoniaks werden zur Zeit hauptsächlich die beiden nachfolgenden Prinzipien angewendet.
Nach einem ersten vorbekannten Funktionsprinzip erfolgt die Verdampfung des Ammoniaks ausserhalb des Abgaskanals. Das erfordert ein separates Verdampfungssystem oder ein System zur Bereitstellung von gasförmigem Ammoniak und hat sicherheitstechnische Nachteile, da dies die Lagerung grosser Mengen von flüssigem Ammoniak bei sehr tiefer Temperatur und/oder grossem Druck erfordert, was ein beträchtliches Gefahrenpotential darstellt. Aus diesem Grund wird diese Lösung heute zunehmend in Frage gestellt . Alternativ kann Ammoniak auch als Wasser-Ammoniak Gemisch oder Wasser-Harnstoff Gemisch gelagert werden, was sicherheitstechnisch wesentlich unbedenklicher ist. Bei dieser Lösung ist aber die notwendige apparalive Installation sowie die benötigte Energie zur Verdampfung des Wasser-Ammoniak Gemisches respektive zur Verdampfung des Wasser- Harnstoff Gemischs und der anschliessenden Hydrolyse des Harnstoffes in Ammoniak sehr gross. Das macht diese Lösung wirtschaftlich weniger interessant
Alternativ kann ein Reaktionsmittel auch mittels einer im Inneren eines Sprührohrs angebrachten Blende oder Drossel in einer Abgasleitung verteilt werden, was in der DE19946901 gezeigt ist. Diese Blende oder Drossel soll einen ungleichmässigen Wandfiim vermeiden, welcher sich an der Innenseite des Sprührohrs bildet. Diese Lösung ist insofern nachteilig, als ein
Wärmeübergang auf das Reaktionsmittel nicht vorgesehen ist. Das
Reaktionsmittel verdampft daher nicht im Sprührohr, sondern die
Verdampfung erfolgt, wie nachfolgend beschrieben, durch den direkten Kontakt der Tröpfchen des Reaktionsmittels mit dem heissen Abgas, Das Dokument US6449947 beschreibt eine Lösung, in welcher das aus einer Zuleitung austretende Reaktionsmitte! im Abgasstrom verdampft wird. Das Reaktionsmittel wird in den Abgasstrom injiziert, dort verdampft und durch ein Turbulenzsieb intensiv mit dem Abgasstrom durchmischt. Das heisst die Verdampfung des Reaküonsmittels erfolgt durch Kontakt mit dem Abgas nach dem Austritt aus der Zuleitung, sodass flüssiges Reaktionsmittel in den Abgasstrom gelangt, also das Reaktionsmittel nicht bereits in der Zuleitung verdampft werden kann. Auch das Dokument US2006/0191254 beschreibt eine Lösung zur Einmischung von flüssigem Ammoniak, welches mit komprimierten Gas vermischt sein kann, in einen Abgasstrom. In der Patentschrift US 7*Ö9Ö'81Ö B2 wird ein Verfahren zur Abgasreinigung bei Kraftwerken beschrieben, bei dem ein Teil des Abgasstroms abgezweigt wird. Dem abgezweigten Abgasstrom wird in einer separaten Kammer eine Harnstoff-Wasserlösung zugegeben, verdampft und durch Hydrolyse in Ammoniak und CÖ2 umgewandelt. Dieser Teilstrom des Abgases wird dann durch ein Gebläse und einen statischen Mischer wieder mit dem Hauptstrom vermischt. Durch die Lagerung des Ammoniaks in Form des wesentlich unproblematischeren Harnstoffs und der Umwandlung zu Ammoniak erst kurz vor der Verwendung lässt sich das Gefahrenpotential beträchtlich reduzieren, allerdings steigt der Druckveriust an, was einer Anwendung dieser Lösung insbesondere für Abgasströme mit grossem Volumen entgegensteht, weil der Energiebedarf zur Überwindung des Druckvβriusts ein wesentlicher
Einflussfaktor wird, der einen Kostennachteii für diese Lösung zur Folge hat.
In dem Dokument WO2QÖ6/122581 wird ein Heizelement vorgesehen, um eine reaktive Flüssigkeit, welche von einer Einspritzdüse kommt, zu verdampfen. Oxidationsreaktionen sind die Quelle des reaktiven Verhaltens der reaktiven Flüssigkeit. Zusätzlich wird die Kammer der
Regeneriervorrichtung durch strömende Abgase erwärmt. Im Prinzip handelt es sich bei dieser Lösung um einen Teilstrom wie in der US 7'090'81O B2. Würde der die oxidierbare Flüssigkeit allein durch den Abgasstrom aufgeheizt werden, wäre ein sehr grosser Teilstrom erforderlich, um die erforderliche Energie zu deren Verdampfung bereitzustellen. Zusätzlich wäre ein Gebläse erforderlich, was den Plaizbedarf für die Anlage und den Druckverlust dieser Lösung erhöhen würde. Es ist auch nicht ausgeschlossen, dass Tröpfchen in den Hauptstrom des Abgases gelangen. Nach einem weiteren vorbekannten Funktionsprinzip erfolgt das Zerstäuben und danach Verdampfen eines Wasser - Ammoniak - Gemisches direkt im Abgaskanal. Diese Lösung ist bezüglich Sicherheit unproblematischer, da sich ein solches Gemisch relativ problemlos lagern lässt, erfordert aber eine Investition in sehr teure Zerstäubungsdüsen. Ein Beispiel für eine derartige Lösung ist in der EP 1956208 A angegeben. Die Zerstäubungsdüse kann als Einstoffdüse oder als Zweistoffdüse ausgebildet sein. Der Begriff Einstoffdüse wird speziell für Zerstäubungsdüsen verwendet, in welchen nur die zu zerstäubende Flüssigkeit durch die Düse gefördert wird. Bei Zweistoffdüsen wird zusätzlich zur zu zerstäubenden Flüssigkeit auch ein Treibgas in die Düse gefördert, wodurch die Zerstäubung verbessert werden kann, d.h. insbesondere die Erzeugung sehr feiner Tropfen mit einer engen
Tropfengrössenverteilungund geringer Abhängigkeit vom
Flüssigkeitsdurchsatz ermöglicht wird. Allerdings ist eine
Kompressionsvorrichtung für die Komprimierung des Treibgases erforderlich. Diese Kompressionsvorrichtung hat einen hohen Bedarf an Energie, was insbesondere für grosse Abgasströme, wie sie beispielsweise in
Industrieanlagen und Kraftwerken auftreten, zu nicht wirtschaftlich
umsetzbaren Lösungen führt.
Ausserdem können Probleme mit Staub beladenen Abgasen entstehen, wenn der Staub durch noch nicht verdampfte Tropfen befeuchtet wird und sich an Wänden eines Filmverdampfers oder eines Katalysators oder an einem im Abgasstrom vor dem Katalysator angeordneten statischen Mischer als Verunreinigung anlagert. Bei einem Gasdruck von beispielsweise 8-8 bar erzeugen derartige Zweistoffdüsen typischerweise
Tropfengrössenverteüungen mit einem Sauterdurchmesser von 20 - 50 μm, aber einzelnen grossen Tropfen von bis zu 120 μm. Wegen der vorgängig beschriebenen Verunreinigung durch den sich an den Wänden anlagernden Staub muss dafür gesorgt werden, dass keine Tropfen in den Katalysator oder auf den Mischer gelangen können. Die Flugzeit der Tröpfchen vor dem Katalysator oder einer Mischvorrichtung muss ausreichend sein damit eine vollständige Verdampfung dieser Tröpfchen gewährleistet ist und bedingt entsprechende grosse Baulänge der Abgaskanäle. In kleinen Kanälen, wie z.B. Abgasrohren von Kraftfahrzeugen, beträgt die Flugzeit der Tropfen bis zum Katalysator nur wenige Millisekunden, was nicht ausreichend ist, um grossere Tropfen während der Flugphase zu verdampfen. Aus diesem Grund müssen zumindest die grosseren Tropfen aus dem Abgas abgeschieden werden und in einem Flüssigkeitsfürn verdampfen. Hierzu wird in der EP 1956206 A ein Filmverdampfer vorgesehen. Bei Kraftfahrzeugen ist das oft zulässig, da vorgängig ein Partikelfüter den Staub aus dem Abgas entfernt und somit die Gefahr einer Verunreinigung nicht mehr gegeben ist. In der Patentanmeldung WO 2004/079171 A1 wird ein kombinierter
Verdampfer und Verteiler, der aus porösen Rippen aufgebaut ist,
beschrieben. Harnstoff-Wasserlösung soll im Innern der porösen Struktur verteilt und verdampft werden. Die Verdampfungsenergie wird laut dieser Anmeldung über Wärmeieitung durch die Rippen aus der Strömung des heissen Abgases entzogen. Durch Öffnungen in den Rippen kann dann das gasförmige Ammoniak entweichen. Eine grosse Zahl derartiger Rippen ist notwendig, um der Strömung die für die Verdampfung notwendige Wärme zu entziehen. Die richtige Verteilung der flüssigen Harnstoff-Wasserlösung auf diese vielen Rippen ist technisch wegen der komplexen 2-Phasenströmung im Innern der Rippen schwierig zu realisieren. Es ist schwierig
sicherzustellen, dass aus den Öffnungen keine Flüssigkeit austreten kann.
Aus den an unterschiedlichen Positionen befindlichen Öffnungen in diesen Rippen können, je nach Position der Öffnung, sehr unterschiedliche
Volumenströme an verdampfter Lösung oder nur teilweise verdampfter Dampf-Flüssigkeitsmischungen austreten. Dadurch kann die erforderliche gleichmässige Vorverteilung des Ammoniaks über den Querschnitt des Kanals, in welchem der Verdampfer angeordnet ist, nicht garantiert werden.
Daher ist es Aufgabe der Erfindung, eine Vorrichtung zur sicheren und vollständigen Verdampfung von Ammoniak sowie zu dessen gleichmässiger Verteilung über den Querschnitt des Kanals zu schaffen, die einen verminderten Energiebedarf, kurze Baulänge, beziehungsweise wenig Platzbedarf und die einen geringen Druckverlust im Abgaskanal aufweist. Gleichzeitig soll die Lösung sicherheitstechnisch zumindest ebenso unbedenklich sein, wie die Verwendung einer Zweistoffdüse.
Es ist eine weitere Aufgabe der Erfindung, zu vermeiden, dass
Fesisloffparükβl, wie Staub, in Berührung mit dem NH3 haltigen
Reaktionsmitte! kommen. Eine erfindungsgemässe Vorrichtung zur Reinigung eines NOx enthaltenden Abgasstroms umfasst einen geschlossenen Kanal welcher von einem NH3 haltigen Reaktionsrnittel durchströmbar ist, wobei der Kanal ein
SVianteletement aufweist, weiches den Karsai umgibt und eine Eintrittsöffnung zur Zufuhr von flüssigem, NH3 haltigem Reaktionsmittel und eine
Austrittsöffnung umfasst. Das Mantelelement ist von dem NOx enthaltenden Abgasstrom umströmbar, wobei an das Manteleiement ein Verteilelement zur Verteilung des NH3 haltigen Reaktionsmittels anschliessbar ist, sodass mittels des Verteilelements das NH3 haltige Reaktionsmittel in den Abgasstrom einbringbar und mit dem Abgasstrom vermischbar ist. Das Verteitetement weist eine oder mehrere Öffnungen auf, durch welche das Nhh-haltige Reaktionsmittel als Gasphase in den Abgasstrom einleitbar ist. Das NH3 haltige Reaktionsmittel ist innerhalb des Manteielements verdampfbar. Hierzu umfasst das Mantelelement ein wärmeübertragendes Element, sodass das Mantelelement mittels des Abgasstroms beheizbar ist.
Insbesondere kann das wärmeübertragende Element als Rippe oder als Rohr ausgebildet sein. Wenn das wärmeübertragende Element als Rohr
ausgebildet ist, kann es gleichzeitig die Funktion des Mantelelements übernehmen. Ist das wärmeübertragende Element als Rohr ausgebildet, welches
gleichzeitig das Manteleiement ausbildet, ist eine sehr kompakte Vorrichtung erhältlich.
Stromabwärts des Verteilelements kann ein Mischer angeordnet sein, insbesondere ein statischer Mischer, um den Abgasstrom mit dem NH3 haltigen Reaktionsmittel zu mischen. Die Umwandlung von NOx mit NH3 zu N2 und H2O erfolgt in einem stromabwärts des Mischers angeordneten Katalysator. Vorzugsweise erstreckt sich der Katalysator über die gesamte Querschnittsfläche eines den Abgasstrom führenden Abgaskanal, sodass die oben beschriebene Umwandlung entlang einer möglichst kurzen Wegstrecke des Katalysators erfolgen kann, somit die Länge des Katalysators gesehen in Strömungsrichtung des Abgasstroms möglichst klein sein kann.
Nach einer Variante kann das Manteieiement ein Reaktorelement zur
Umwandlung von Harnstoff in MH3 umfassen, insbesondere kann der
Harnstoff dem Reaktorelement in flüssiger Phase zugeführt werden.
Das NHs-haltige Reaktionsmittel nach einer der vorhergehenden Varianten verbleibt im Innenraum des Mantelelements und kann nur im Innenraum in flüssigem Zustand auftreten. Somit ist gewährleistet, dass keine Flüssigkeit in den Abgasstrom gelangt und sich auf der Innenfläche des Abgaskanals oder der im Abgaskanal befindlichen wärmeübertragenden Elemente ablagert. Aus diesem Grund werden Staubpartikel nicht auf der Innenfläche des
Abgaskanals, auf dem Mantelelement oder auf den wärmeübertragenden Elementen abgelagert. Somit kann eine Verunreinigung der Innenfläche des Abgaskanals, des Mantelelements, der wärmeübertragenden Elemente sowie auch allfälliger stromabwärts gelegener Einbauelemente, wie
beispielsweise des Verteilelements oder eines statischen Mischers
ausgeschlossen werden. Das NHs-haltige Reaktionsmittel tritt aus dem
Verteilelement über zumindest eine Öffnung aus. Da das NH3-haltige
Reaktionsmittel im Verteilelement in der Gasphase vorliegt, kommt es stromabwärts des Verteilelements zu einer Vermischung des NHs-haltigen Reaktionsmittels mit dem Abgasstrom ohne Ausbildung einer flüssigen
Phase. Somit können allfällige im Abgasstrom mitgerissene Staubpartikel nicht an einer mit einer Flüssigkeit benetzten Oberfläche anhaften, weil keine Flüssigkeit in den Abgasstrom gelangen kann. Das Mantelelement kann strömungsumlenkende Einbauten enthalten, insbesondere kann das Mantelelement einen Metallschaum oder
Keramikschaum enthalten. Die Wärme, die dem Abgasstrom entzogen wurde, wird mittels Wärmeleitung im gesamten Schaum verteilt. Die
Strömungsumlenkenden Einbauten dienen der Umlagerung oder Umlenkung der Strömung des Nhh-haltigen Reaktionsmittels. Durch die Umlagerung oder Umienkung kommt es zur Ausbildung von Ablösungen und/oder Wirbeln, was eine Erhöhung des Wärmeübergangs zur Folge hat wodurch eine effiziente Erwärmung des NH3-haltigen Reaktionsmitte! möglich wird. Die Kombination aus Wärmeübergang und Wärmeleitung ist für einen Metall- oder
Keramikschaum überraschenderweise viel höher als für
strömungsumlenkende Einbauten, wie sie beispielsweise für statische
Mischer gebräuchlich sind.
Insbesondere ist der Metall- oder Keramikschaum offenporig, sodass das gesamte Volumen, welches vom Metall- oder Kβramikschaum eingenommen wird, für den Wärmeübergang sowie die Umlenkung oder Umlagerung zur
Das Mantelelement wie auch der Metall- oder Keramikschaum weisen vorteilhafterweise eine thermische Leitfähigkeit von mindestens 15 W/m K, vorzugsweise mindestens 30 W/m K, besonders bevorzugt mindestens 60 W/m K auf, sodass der Wärmeübergang vom Abgasstrom auf das NH3-haltige Reaktionsmitte! zusätzlich verbessert ist.
Das Mantelelement und/oder der Metallschaum kann eine katalytisch wirksame Oberfläche aufweisen, insbesondere wenn eine Variante
vorgesehen ist, in welcher eine Zersetzung von Harnstoff zur Erzeugung eines NH3-haltigen Reaktionsmittels vorgesehen ist.
Der Metallschaum kann Aluminium enthalten, insbesondere als eine
Aiuminiumiegierung ausgebildet sein. Ein Metallschaum aus Aluminium kann einfach hergestellt werden und ist somit vergleichsweise kostengünstig zu beschaffen. Der Keramikschaum kann beispielsweise als Siliziumkarbid - Keramik ausgeführt sein. Siliziumkarbid weist eine sehr hohe thermische Leitfähigkeit, hohe Verschleissfestigkeit und gute Festigkeit auf und kann zu offenporigen Schaumstrukturen verarbeitet werden. Das NH3 ballige ReaktionsmiUel kann eine wässrige Ammoniaklösung umfassen. Die wässrige Ammoniaklösung wird im Bereich der Eintrittsöffnung in das Mantelelement eingetragen. Durch den Wärmeübergang verdampft das Wasser, sodass sowohl das entstehende NH3, als auch das verbleibende Wasser in der gasförmigen Phase vorliegen.
Der Abgasstrorn kann mindestens 12 m3/h, vorzugsweise mindestens 1000 SiT3Zh, besonders bevorzugt mindestens 10000 Hi3Zh betragen. Die
Eintrittstemperatur des Abgassiroms in den Kanal beträgt mindestens 150 Of vN>.
Der Kanal, in welchem der Abgasstrom strömt, kann eine Querschnittsfläche aufweisen, die mindestens 0.0007 m2, vorzugsweise mindestens 0.05 mz, besonders bevorzugt mindestens 1 m2 beträgt.
Die Vorrichtung nach einem der vorhergehenden Ausführungsbeispiele kann zur Reinigung eines NOx enthaltenden Abgasstroms aus einer
Industrieanlage, insbesondere einem Kraftwerk verwendet werden. Als weitere mögliche Verwendungen sind Entstickungsanlagen für Abgase aus Kraftwerken, für Abgase aus Dieselmotoren oder Abgase aus
Kehrichtsverbrennungsaniagen zu nennen.
Nachfolgend wird die Erfindung anhand der Zeichnungen erläutert. Es zeigt: Fig. 1 eine schematische Ansicht der erfindungsgemässen Vorrichtung Fig. 2 eine schematische Ansicht einer zweiten Ausführungsvariante der
erfindungsgemässen Vorrichtung
Eine erfindungsgemässe Vorrichtung 1 zur Reinigung eines NOx
enthaltenden Abgasstroms 2 gemäss Fig. 1 umfasst einen geschlossenen Kanal 3, welcher von einem NH3 haltigen Reaktionsmittel 4 durchströmbar ist. Der Kanal ist in Fig. 1 teilweise aufgeschnitten, um die Einbauten sichtbar zu machen. Der Kanal weist ein Mantelelement 5 auf. welches den Kanal 3 umgibt und eine Eintrittsöffnung 8 zur Zufuhr von NH3 haltigem
Reaktionsmitte! und eine Austrittsöffnung 7 umfasst. Die Austrittsöffnung 7 mündet in ein Verteiielement 8, Das Manteielement 5 ist von dem NOx enthaltenden Abgasstrom 2 υmströmbar. An das ManteteSement 5 ist ein Verteiielement 8 zur Verteilung des NH3 haltigen Reaktionsmittels 4
anschliessbar, sodass mittels des Verteilelements das NHb haltige
Reaktionsmittef 4 in den Abgasstrom 2 einbringbar und mit dem Abgasstrom 2 vermischbar ist. Das Verteilelement 8 weist einen hohlen Innenraum sowie eine oder mehrere Öffnungen 9 auf, durch welche das NH3-halüge
Reaktionsmitte! 4 als Gasphase in den Abgasstrom 2 einleitbar ist. Das NH3 haltige Reaktionsmittel 4 ist innerhalb des Mantelelements verdampfbar, das heisst, das NH3 haltige Reaktionsmittel 4 verdampft im Innenraum des
Mantelelements 5. Hierzu umfasst das Mantelelement 5 ein
wärmeübertragendes Element 10, sodass das Mantelelement 5 mittels des Abgasstroms 2 beheizbar ist
Fig. 2 zeigt eine schematische Ansicht einer zweiten Ausführungsvariante der erfindungsgemässen Vorrichtung. Die einzelnen Elemente gleicher Funktion erhalten dieselben Bezugszeichen wie in Fig. 1. Fig. 2 zeigt einen Abgaskana! 14, welcher eine Vorrichtung 1 zur Reinigung eines NOx enthaltenden
Abgasstroms 2 enthält. Ein geschlossener Kanal 3, ist von einem NH3 haltigen Reaktionsmittel 4 durchströmbar. Dieser Kanal 3 ist als
serpentinenartig verlaufendes Rohr gezeigt. Selbstverständlich muss der Verlauf des geschlossenen Kanals 3 nicht serpentinenartig sein, er könnte beispielweise auch spiralförmig verlaufen, was hier nicht gezeigt ist. Der Verlauf des Rohres im Abgaskanal 14 ist dergestalt, dass die gesamte
Querschnittsfläche des Abgaskanals 14 zum Wärmeaustausch verwendbar ist.
Der Abgaskanal 14 ist in Fig. 2 teilweise aufgeschnitten, um die Einbauten sichtbar zu machen. Des weiteren ist der Kanal 3 an zwei Steilen geschnitten gezeigt um dessen Einbauten zu zeigen. Im Innenraum des Kanals 3 der als ein von einem Mantelelement 5 umgebener Hohlraum ausgebildet ist, kann ein wärmeϋberiragendes Element angebracht sein, welches beispielsweise als Metall- oder Keramikschaum ausgebildet ist, Das wärmeübertragende Element kann aber auch Füllkörper oder eine Kombination verschiedener Einbauten umfassen. Die Einbauten können auch nur an einigen Abschnitten des Kanals vorgesehen werden.
Der Kanal hat eine Eintrittsöffnung 6 zur Zufuhr von NH3 haltigem
Reaktionsmittel und eine Austrittsöffnung 7. Die Austrittsöffnung 7 mündet in ein Verteilelemenl 8. In der vorliegenden Darstellung gehl das als Rohr ausgebildete Mantelelement direkt in ein Rohr über, weiches zum
Verteiielement 8 führt. Das Verteilelement 8 dient zur Verteilung des NH3 haltigen Reaktionsmittels 4, sodass mittels des Verteilelements das NH3 haltige Reaktionsmittel 4 in den Abgasstrom 2 einbringbar und mit dem Abgasstrom 2 vermischbar ist. Das Verteilelement 8 verzweigt in zumindest zwei ϊeiielemente 15, 16, 17 ,18, die einen hohlen Innenraum sowie eine oder mehrere Öffnungen 9 aufweisen, durch welche das NH3-haltige
Reaktionsmittel 4 als Gasphase in den Abgasstrom 2 einleitbar ist.
Das NH3 haltige Reaktionsmittei 4 ist innerhalb des Manteleiements verdampfbar, das heisst das NH3 haltige Reaktionsmittel 4 verdampft im Innenraum des Manteleiements 5. Hierzu umfasst das Mantelelement 5 ein wärmeübertragendes Element 10, sodass das Mantelelement 5 mittels des Abgasstroms 3 beheizbar ist, Insbesondere kann das wärmeübertragende Element 10 gemäss Fig. 1 oder Fig. 2 als Rippe 11 oder als Rohr 12 ausgebildet sein. In der Regel ist eine Mehrzahl von Rippen 11 vorgesehen, welche als plattenförmige Elemente ausgebildet sind. Vorzugsweise erstrecken sich die Platten in Strömungsrichtung des Abgasstroms 2, sodass der Abgasstrom 2 entlang der plattenförmigen Elemente vorbeistreicht.
Selbstverständlich sind die plattenförmigen Elemente nur ein bevorzugtes Ausführungsbeispiel für ein wärmeübertragendes Element. Alternativ oder in Ergänzung können rohrförmige Elemente, Verdickungen, scheibenförmige Elemente, stabartige Elemente, schaufeiförmige Elemente, Gitterstrukturen, Metalischäume und dergleichen vorgesehen sein. Selbstverständlich können diese Elemente in beliebiger Kombination zueinander angeordnet sein.
Der Abgasstrom weist eine höhere Temperatur aSs das wärmeübertragende Element 10 auf, sodass ein Wärmeübergang vom wärmeübertragenden Element 10 auf das NH? haltige Reaktionsmittel 4 erfolgt. Wenn das wärmeübertragende Element 10 als Rohr 12 ausgebildet ist, übernimmt es gleichzeitig die Funktion des Mantelelements 5. Der Wärmeübergang erfolgt in diesem Fall vom Abgasstrom über die Rohrwand auf das NH3 haltige Reaktionsmitte! 4, Dieser Wärmeübergang kann ausreichend sein, wenn die erforderliche Temperaturdifferenz zwischen dem Abgasstrom 2 und dem NH3 haltigen Reaktionsmittel 4 gross genug ist, oder der Volumenstrom 2 an NH3 haltigem Reaktionsmitte! 4 so klein ist, dass die zur Verfügung stehende Wärmeübergangsfläche in jedem Fall ausreichend ist.
Zudem ist das Mantelelement 5 gemäss Fig. 1 oder Fig. 2 vorzugsweise aus gut wärmeleitendem Materia! gefertigt, sodass der Wärmeübergang
verbessert werden kann. Das Manteleiement 5 weist eine thermische
Leitfähigkeit von mindestens 15 W/m K, vorzugsweise mindestens 30 W/m K, besonders bevorzugt mindestens 60 W/m K auf.
Wenn die Temperaturdifferenz zwischen Abgasstrom 2 und NH3 haltigem Reaktionsmitte! 4 gering ist und/oder ein grosserer Anteil an NH3 haltigem Reaktionsmittel erforderlich ist. weil die Konzentration an NOx im Abgasstrom hoch ist, kann die von dem Manteleiement 5 allein bereitgestellte
Wärmeübergangsfläche nicht ausreichend sein, sodass die
wärmeübertragenden Elemente zumindest eine der oben genannten
Ausführungsformen annehmen können.
Stromabwärts des Verteilelements 8 kann nach jedem der gezeigten
Ausführungsbeispiele ein Mischer angeordnet sein, insbesondere ein statischer Mischer, um den Abgasstrom mit dem NH3 haltigen Reaktionsmittel zu mischen. Dieser Mischer ist zeichnerisch nicht dargestellt. Gemäss einer Verfahrensvariante kann das NH3 haitigern Reaktiαnsmittel 4 durch Umwandlung von Harnstoff erhalten werden. Diese Reaktion könnte auch im Inneren des Mantelelements 5 ablaufen. Das Mantelelement kann hierzu ein nicht dargestelltes Reaktoreiement zur Umwandlung von Harnstoff in NH3 umfassen, insbesondere kann der Harnstoff dem Reaktorelement in flüssiger Phase zugeführt werden. Die Zuführung des Harnstoffs kann beispielsweise mittels einer Vorrichtung, wie sie in EP 1956208 A gezeigt ist, erfolgen.
Das Manteielement gemäss Fig. 1 oder 2 kann strömungsumienkende und gut wärmeleitende Einbauten enthalten, die, als Metallschaum oder
Keramikschaum 13 ausgebildet sein können. Der Metall- oder
Keramikschaum 13 ist vorzugsweise offenporig, somit kann das NH3 haltige Reaktionsmittel 4 den Metailschaum gleichmässig durchströmen. Der Metalloder Keramikschaum 13 kann insbesondere in wärmeleitender Verbindung mit dem Manteielement stehen, sodass die Wärme des Abgasstroms über Wärmeleiiung durch das Mantelelement 5 sowie durch den Metall- oder Keramikschaum 13 auf das NH3 haltige Reaktionsmittel 4 übertragen werden kann.
Der Abgasstrom 2 weist eine höhere Temperatur als das wärmeübertragende Element 10 auf, sodass ein Wärmeübergang vom wärmeübertragenden
Element 10 auf das NH3 haltige Reaktionsmittel 4 erfolgt. Gemäss Fig. 2 ist das wärmeübertragende Element 10 als Rohr 12 mit darauf angeordneten Rippen 11 ausgebildet und übernimmt es gleichzeitig die Funktion des Mantelelements 5. Der Wärmeübergang erfolgt in diesem Fall vom
Abgasstrom über die Rippen und die Rohrwand auf das NH3 haltige
Reaktionsmittel 4. Dieser Wärmeübergang kann ausreichend sein, wenn die erforderliche Temperaturdifferenz zwischen dem Abgasstrom 2 und dem NH3 haltigen Reaktionsmittel 4 gross genug ist, oder der Volumenstrom 2 an NH3 haltigem Reaktionsmittel 4 so klein ist, dass die zur Verfügung stehende Wärmeübergangsfläche in jedem Fall ausreichend ist. In einem kleinen Abgaskana! mit 1 m2 Querschnitisflächβ, einer
Abgastemperatur von 200 0C bei einer Geschwindigkeit des Abgasstroms von 8.2 m/s wurde ein erfindungsgemässes Verdampfersystem getestet und mit einem Verdampferrohr, das mit Einbauten nach dem Stand der Technik (EP 0 655 275 B1 ) bestückt war, verglichen. Das Massenstromverhältnis des zuzudosierenden Wasser-Ammoniak - Gemisches relativ zum Abgas war 0.3%. Das Wasser-Ammoniak-Gemisch hatte einen Ammoniakanteil von 20%. In diesem Fall konnte ein erfindungsgemässer Verdampfer mit einem Innendurchmesser von 30 mm und einer Länge des Verdampfers von 6 m realisiert werden. Im Gegensatz dazu hatte der vorbekannte Verdampfer, einen Innendurchmesser von 20 mm und eine Länge von 86 m. Der
Druckverlust im NH3-ha!tigen Reaktionsmittel ist im erfindungsgemässen Verdampfer deutlich geringer als im vorbekannten Verdampfer. Im letzten Teil des Verdampfers, wo das Reaktionsmittel schon weitgehend verdampft ist, werden im erfindungsgemässen Verdampfer Druckverluste von rund 1 bar/m erreicht, während im Verdampfer nach dem Stand der Technik 3 bar/m entstehen. Der erfϊndungsgemässe Verdampfer erzeugt im Abgasstrom einen Druckverlust von 0.22 mbar während der vorbekannte Verdampfer mit 2.4 mbar einen mehr als eine Grössenordnung höheren Druckverlust im Abgas bewirkt. Mit der Vorrichtung gemäss eines der erfindungsgemässen
Ausführungsbeispiele wird somit ein vergleichbarer Druckverlust wie in dem stromabwärts der Vorrichtung optional angeordneten statischen Mischer erzeugt.
Die Länge des Kanals 3 ist deutlich geringer als für eine Lösung gemäss des Standes der Technik. Zudem ist der durch den Kanal 3 erzeugte Druckverlust im Abgaskana! 14 aufgrund der geringeren Länge der erfindungsgemässen Vorrichtung überraschenderweise deutlich niedriger als bei der vorbekannten Lösung.

Claims

Patentansprüche
1. Vorrichtung (1 ) zur Reinigung eines NOx enthaltenden Abgasstroms (2), umfassend einen Kanal (3), welcher von einem NH3 haltigen Reaktionsmitte! {4} durchströmbar ist, wobei der Kanal (3) ein
Mantelelement (5) aufweist, welches den Kanal (3) umgibt und eine Eintrittsöffnung (6) zur Zufuhr des NH3 haltigen Reaktionsmittels (4) und eine Austrittsöffnυng (7) υmfasst, wobei das Mantelelement (5) von dem NOx enthaltenden Abgasstrom (2) umströmbar ist, wobei an das Mantelelement (5) ein Verieilelement (8) zur Verteilung des NH3 haltigen Reaktionsmittels (4) angeschlossen ist, sodass mittels des Verteilelements (8) das NH3 haltige Reaktionsmittel (4) in den
Abgasstrom (2) einbringbar und mit dem Abgasstrom (2) vermischbar ist, wobei das Vβrteilelement (8) eine Öffnung (9) aufweist, durch welche das NH3 haltige Reaktionsmittel (4) als Gasphase in den
Abgasstrom (2) einleitbar ist, wobei das NH3 haltige Reaktionsmittel (4) innerhalb des Mantelelements (5) verdampft wird, dadurch
gekennzeichnet, dass das Mantelelement (5) ein wärmeübertragendes Element (10) umfasst. sodass das Mantelelement (5) mittels des Abgasstroms (2) beheizbar ist.
2. Vorrichtung nach Anspruch 1 , wobei das wärmeübertragende Element (10) als Rippe (11 ) ausgebildet ist,
3. Vorrichtung nach Anspruch 1 , wobei das wärmeübertragende Element (10) als Rohr (12) ausgebildet ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei
stromabwärts des Verteilelements (8) ein Mischer angeordnet ist, insbesondere ein statischer Mischer.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das Manteielement (5) ein Reaktorelement zur Umwandlung von Harnstoff in NH3 umfasst,
6. Vorrichtung nach Anspruch 5, wobei der Harnstoff dem
Reaktorelement in flüssiger Phase zuführbar ist.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das Mantelelement (5) strömungsumlenkende Einbauten enthält.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das Mantelelement (5) einen offenporigen Schaum (13) enthält.
9. Vorrichtung nach Anspruch 8, wobei der Schaum (13) ein Metall- oder
Keramikschaum ist.
10. Vorrichtung nach einem der vorhergehenden Ansprüche wobei das Mantelelement (5) und/oder der Metall- oder Keramikschaum (13) eine thermische Leitfähigkeit von mindestens 15 W/m K1 vorzugsweise mindestens 30 W/m K, besonders bevorzugt mindestens 80 W/m K aufweist.
11. Vorrichtung nach einem der vorhergehenden Ansprüche wobei das Manteielement (5) und/oder der der Metall- oder Keramikschaum (13) eine kataiytisch wirksame Oberfläche aufweisen.
12. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das
NH3 haltige Reaktionsmittel (4) eine wässrige Ammoniaklösung umfasst.
13. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei der
Abgasstrom (2) mindestens 12 m3/h, vorzugsweise mindestens 1000 m3/h, besonders bevorzugt mindestens 10000 m3/h beträgt.
14. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei der Kanal (3) eine Guerschnittsfiäche aufweist, die mindestens Ö.0Ö07 m2, vorzugsweise mindestens 0.05 m2, besonders bevorzugt mindestens 1 m2 beträgt.
15. Verwendung der Vorrichtung (1 ) nach einem der vorhergehenden
Ansprüche zur Reinigung eines NOx enthaltenden Abgasstroms aus einer Industrieanlage, insbesondere einem Kraftwerk.
PCT/EP2010/058265 2009-07-01 2010-06-11 Vorrichtung zur reinigung von nox haltigen abgasen WO2011000685A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080029726.8A CN102472142B (zh) 2009-07-01 2010-06-11 用于净化含NOx废气的装置
EP10725158A EP2470759A1 (de) 2009-07-01 2010-06-11 Vorrichtung zur reinigung von nox haltigen abgasen
US13/377,287 US20120087840A1 (en) 2009-07-01 2010-06-11 Apparatus for the Purification of Exhaust Gases containing NOx

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09164280 2009-07-01
EP09164280.1 2009-07-01

Publications (1)

Publication Number Publication Date
WO2011000685A1 true WO2011000685A1 (de) 2011-01-06

Family

ID=41171155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/058265 WO2011000685A1 (de) 2009-07-01 2010-06-11 Vorrichtung zur reinigung von nox haltigen abgasen

Country Status (4)

Country Link
US (1) US20120087840A1 (de)
EP (1) EP2470759A1 (de)
CN (1) CN102472142B (de)
WO (1) WO2011000685A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010045072A1 (de) * 2010-09-10 2012-03-15 Friedrich Boysen Gmbh & Co. Kg Abgasreinigungseinrichtung
WO2012107637A1 (en) 2011-02-10 2012-08-16 Wärtsilä Finland Oy Exhaust gas receiver, internal combustion engine and method for selective catalytic reduction
WO2013117230A1 (en) * 2012-02-09 2013-08-15 Toyota Motor Europe Nv/Sa Reduction agent injector
CN106823716A (zh) * 2015-12-03 2017-06-13 安努阿清洁空气国际有限公司 清洁受污染空气流的方法和装置
EP3190277A1 (de) * 2016-01-11 2017-07-12 Eberspächer Exhaust Technology GmbH & Co. KG Abgasanlage für eine brennkraftmaschine und verfahren zum betreiben einer solchen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2991711B1 (fr) * 2012-06-06 2014-07-04 Faurecia Sys Echappement Dispositif de generation d'ammoniac
FR2995629B1 (fr) * 2012-09-14 2014-10-17 Faurecia Sys Echappement Dispositif de stockage d'ammoniac et ligne d'echappement equipee d'un tel dispositif
US9878288B2 (en) 2012-12-21 2018-01-30 Alzchem Ag Ammonia gas generator, method for producing ammonia and use of the same for reducing nitrogen oxides in exhaust gases
US9926822B2 (en) * 2013-08-16 2018-03-27 Cummins Emission Solutions, Inc. Air curtain for urea mixing chamber
CN108126730A (zh) * 2017-12-15 2018-06-08 中国第汽车股份有限公司 改善整体挤出式蜂窝催化剂导热系数的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444233A (en) * 1977-09-16 1979-04-07 Hitachi Ltd Apparatus to reduce nitrogen oxide in burnt exhaust gas
JPH06272539A (ja) * 1993-03-17 1994-09-27 Toyota Motor Corp 内燃機関の排気浄化装置
EP0655275B1 (de) 1993-11-26 1999-10-06 Sulzer Chemtech AG Statische Mischvorrichtung
DE19946901A1 (de) 1999-09-30 2001-04-05 Bosch Gmbh Robert Vorrichtung zur Beaufschlagung eines strömenden Gases mit einem Reaktionsmittel
US6449947B1 (en) 2001-10-17 2002-09-17 Fleetguard, Inc. Low pressure injection and turbulent mixing in selective catalytic reduction system
WO2004079171A1 (en) 2003-03-01 2004-09-16 Imi Vision Limited Improvements in engine emissions
US20060191254A1 (en) 2005-02-28 2006-08-31 Caterpillar Inc. Exhaust gas mixing system
WO2006122581A1 (de) 2005-05-20 2006-11-23 Emcon Technologies Germany (Augsburg) Gmbh Abgasanlage für ein kraftfahrzeug
US20070245718A1 (en) * 2006-04-24 2007-10-25 Cheng C R Exhaust aftertreatment mixer with stamped muffler flange
EP1956206A2 (de) 2007-02-09 2008-08-13 Sulzer Chemtech AG Abgasreinigungssystem

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380499A (en) * 1993-06-15 1995-01-10 The Babcock & Wilcox Company Combined heat exchanger and ammonia injection process
US6361754B1 (en) * 1997-03-27 2002-03-26 Clean Diesel Technologies, Inc. Reducing no emissions from an engine by on-demand generation of ammonia for selective catalytic reduction
US5968464A (en) * 1997-05-12 1999-10-19 Clean Diesel Technologies, Inc. Urea pyrolysis chamber and process for reducing lean-burn engine NOx emissions by selective catalytic reduction
WO2003100225A1 (en) * 2002-05-07 2003-12-04 Extengine Transport Systems Emission control system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444233A (en) * 1977-09-16 1979-04-07 Hitachi Ltd Apparatus to reduce nitrogen oxide in burnt exhaust gas
JPH06272539A (ja) * 1993-03-17 1994-09-27 Toyota Motor Corp 内燃機関の排気浄化装置
EP0655275B1 (de) 1993-11-26 1999-10-06 Sulzer Chemtech AG Statische Mischvorrichtung
DE19946901A1 (de) 1999-09-30 2001-04-05 Bosch Gmbh Robert Vorrichtung zur Beaufschlagung eines strömenden Gases mit einem Reaktionsmittel
US6449947B1 (en) 2001-10-17 2002-09-17 Fleetguard, Inc. Low pressure injection and turbulent mixing in selective catalytic reduction system
WO2004079171A1 (en) 2003-03-01 2004-09-16 Imi Vision Limited Improvements in engine emissions
US20060191254A1 (en) 2005-02-28 2006-08-31 Caterpillar Inc. Exhaust gas mixing system
WO2006122581A1 (de) 2005-05-20 2006-11-23 Emcon Technologies Germany (Augsburg) Gmbh Abgasanlage für ein kraftfahrzeug
US20070245718A1 (en) * 2006-04-24 2007-10-25 Cheng C R Exhaust aftertreatment mixer with stamped muffler flange
EP1956206A2 (de) 2007-02-09 2008-08-13 Sulzer Chemtech AG Abgasreinigungssystem

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010045072A1 (de) * 2010-09-10 2012-03-15 Friedrich Boysen Gmbh & Co. Kg Abgasreinigungseinrichtung
WO2012107637A1 (en) 2011-02-10 2012-08-16 Wärtsilä Finland Oy Exhaust gas receiver, internal combustion engine and method for selective catalytic reduction
CN103370509A (zh) * 2011-02-10 2013-10-23 瓦锡兰芬兰有限公司 排气接收器、内燃发动机和用于选择性催化还原的方法
EP2673484B1 (de) 2011-02-10 2015-08-26 Wärtsilä Finland Oy Abgassammler, brennkraftmaschine und verfahren zur selektiven katalytischen reduktion
WO2013117230A1 (en) * 2012-02-09 2013-08-15 Toyota Motor Europe Nv/Sa Reduction agent injector
CN106823716A (zh) * 2015-12-03 2017-06-13 安努阿清洁空气国际有限公司 清洁受污染空气流的方法和装置
CN106823716B (zh) * 2015-12-03 2021-08-31 安努阿清洁空气国际有限公司 清洁受污染空气流的方法和装置
EP3190277A1 (de) * 2016-01-11 2017-07-12 Eberspächer Exhaust Technology GmbH & Co. KG Abgasanlage für eine brennkraftmaschine und verfahren zum betreiben einer solchen
US10502111B2 (en) 2016-01-11 2019-12-10 Eberspächer Exhaust Technology GmbH & Co. KG Exhaust system for an internal combustion engine and method for operating an exhaust system

Also Published As

Publication number Publication date
CN102472142B (zh) 2015-04-29
CN102472142A (zh) 2012-05-23
US20120087840A1 (en) 2012-04-12
EP2470759A1 (de) 2012-07-04

Similar Documents

Publication Publication Date Title
EP2470759A1 (de) Vorrichtung zur reinigung von nox haltigen abgasen
EP1956206B1 (de) Abgasreinigungssystem
EP1085939B1 (de) Verfahren und vorrichtung zur selektiven katalytischen reduktion von stickoxiden in einem sauerstoffhaltigen gasförmigen medium
EP1206630B1 (de) Vorrichtung zum einbringen eines zuschlagstoffes in ein abgas
EP1890016B1 (de) Verfahren zur Zugabe mindestens eines Reaktanden zu einem Abgasstrom und Vorrichtung zur Aufbereitung eines Abgasstroms einer Verbrennungskraftmaschine
EP2691618B1 (de) Kompakte abgasbehandlungseinheit mit mischbereich und verfahren zur vermischung eines abgases
EP2726414B1 (de) Ammoniakgasgenerator sowie verfahren zur erzeugung von ammoniak zur reduzierung von stickoxiden in abgasen
DE102013005206B3 (de) Einströmkammer für einen Katalysator einer Abgasreinigungsanlage
EP3068989B1 (de) Abgasnachbehandlungssystem
EP2700442A1 (de) Abgasanlage mit Misch- und/oder Verdampfungseinrichtung
EP2935105B1 (de) Ammoniakgasgenerator sowie verwendung desselben zur reduktion von stickoxiden in abgasen
WO2011147556A1 (de) Abgasnachbehandlungsvorrichtung
DE102015204296A1 (de) Kompaktes zylindrisches SCR-System zur Reduktion von Stickstoffoxiden im sauerstoffreichen Abgas von Verbrennungsmotoren mit 500 bis 4500 kW
DE102015204294A1 (de) Kompaktes selektives katalytisches Reduktionssystem für die Stickoxidreduktion in sauerstoffreichem Abgsas aus Brennkraftmaschinen von 500 bis 4500 kW
EP3953022A1 (de) Vorrichtung und verfahren zur herstellung von lackdrähten
EP2570178B1 (de) Mischeinrichtung
DE102012014528A1 (de) Mehrstufiger Plattenmischer
DE102011106237A1 (de) Ammoniakgasgenerator sowie Verfahren zur Erzeugung von Ammoniak zur Reduzierung von Stickoxiden in Abgasen
DE102011106233A1 (de) Verfahren zur Erzeugung von Ammoniak aus einer Ammoniakvorläufersubstanz zur Reduzierung von Stickoxiden in Abgasen
EP3299079B1 (de) Gasbehandlungsanlage und verfahren zum betrieb einer gasbehandlungsanlage mit einer injektionslanze
DE102011106243A1 (de) Ammoniakgasgenerator zur Erzeugung von Ammoniak zur Reduzierung von Stickoxiden in Abgasen
DE102016014966A1 (de) Abgasnachbehandlungseinrichtung für einen Kraftwagen
EP3161286A1 (de) Vorrichtung zur erzeugung von ammoniak
DE102006027499A1 (de) Abgasnachbehandlungseinrichtung einer Brennkraftmaschine
DE102012025113A1 (de) Ammoniakgasgenerator, Verfahren zur Herstellung von Ammoniak sowie Verwendung derselben zur Reduktion von Stickoxiden in Abgasen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029726.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10725158

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010725158

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010725158

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13377287

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE