WO2011000320A1 - 调度授权的分配方法与通信设备 - Google Patents

调度授权的分配方法与通信设备 Download PDF

Info

Publication number
WO2011000320A1
WO2011000320A1 PCT/CN2010/074883 CN2010074883W WO2011000320A1 WO 2011000320 A1 WO2011000320 A1 WO 2011000320A1 CN 2010074883 W CN2010074883 W CN 2010074883W WO 2011000320 A1 WO2011000320 A1 WO 2011000320A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
data stream
block size
transport block
offset value
Prior art date
Application number
PCT/CN2010/074883
Other languages
English (en)
French (fr)
Inventor
闫坤
李靖
范叔炬
高永强
马雪利
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP10793615.5A priority Critical patent/EP2437565B1/en
Priority to BRPI1015581-3A priority patent/BRPI1015581B1/pt
Publication of WO2011000320A1 publication Critical patent/WO2011000320A1/zh
Priority to US13/340,376 priority patent/US8908622B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present invention relates to communication technologies, and more particularly to a method for allocating scheduling grants and a communication device.
  • HSUPA high speed uplink packet access
  • SP from the mobile terminal (User Equipment, hereinafter referred to as: UE) to the direction of the radio access network
  • UE User Equipment
  • HSUPA technology utilizes adaptive coding, physical layer hybrid retransmission, base station (Node B)-based fast scheduling, and 2ms transmission time interval (TTI) short frame transmission to achieve the highest data transmission. Enhancements in rate, cell throughput, and latency.
  • the data transmission rate and transmission time of the UE; the Node B determines the current maximum transmission rate of the UE according to the load of the cell, the channel quality of the UE, and the amount of data to be transmitted.
  • multiple input multiple output (Multiple Input Multiple Output) is introduced in the downlink direction.
  • MIMO MIMO technology to improve performance such as throughput of the downlink system.
  • the uplink spectrum utilization is low, the coverage performance is poor, and the user peak rate is also low, which is to be improved.
  • the technical problem to be solved by the embodiments of the present invention is to provide a scheduling authorization allocation method and a communication device, and apply MIMO technology to the HSUPA technology to improve spectrum utilization, coverage performance, and user peak rate in the uplink direction, and ensure uplink.
  • an authorization value returned by the base station an enhanced dedicated transport channel transport format combination indication E-TFCI offset value, and a data flow identifier corresponding to the E-TFCI offset value, where the E-TFCI offset value is determined by the base station according to the mobile terminal Determined by data transmitted by two data streams;
  • the authorization value the E-TFCI offset value, and the data flow identifier of the one data stream corresponding to the E-TFCI offset value.
  • a first receiving module configured to receive an authorization value returned by the base station, an E-TFCI offset value, and a data flow identifier corresponding to the E-TFCI offset value, where the E-TFCI offset value is adopted by the base station according to the mobile terminal
  • the data transmitted by the two data streams is determined;
  • a first determining module configured to determine, according to the authorization value, a transport block size of the data stream identified by the data flow identifier in a current TTI
  • a second determining module configured to determine, according to the transport block size and the E-TFCI offset value, a transport block size of the another data stream at a current TTI.
  • a second receiving module configured to receive data that is transmitted by the mobile terminal through two data streams
  • An allocating module configured to allocate an authorization value to the mobile terminal
  • a fifth determining module configured to determine an E-TFCI offset value of one of the two data streams according to data transmitted by the two data streams;
  • a second sending module configured to send, to the mobile terminal, the authorization value, the E-TFCI offset value, and the data flow identifier of the one data stream corresponding to the E-TFCI offset value.
  • the scheduling method and the communication device provided by the foregoing embodiments of the present invention can apply MIMO technology to the HSUPA technology, and transmit uplink data through two data streams to improve spectrum utilization, coverage, and user peaks in the uplink direction. Rate, and realize the scheduling and authorization allocation of two data streams, so as to ensure the demodulation performance of the data transmitted through the two data streams at the receiving end after using the HSUPA technology in the uplink direction.
  • DRAWINGS 1 is a flowchart of an embodiment of a method for allocating scheduling grants according to the present invention
  • FIG. 2 is a flowchart of another embodiment of a method for allocating scheduling authorization according to the present invention.
  • FIG. 3 is a flowchart of still another embodiment of a method for allocating scheduling authorization according to the present invention.
  • FIG. 4 is a schematic structural diagram of an embodiment of a communication device according to the present invention.
  • FIG. 5 is a schematic structural diagram of another embodiment of a communication device according to the present invention.
  • FIG. 6 is a schematic structural diagram of still another embodiment of a communication device according to the present invention.
  • FIG. 7 is a schematic structural diagram of still another embodiment of a communication device according to the present invention.
  • FIG. 8 is a schematic structural diagram of still another embodiment of a communication device according to the present invention.
  • FIG. 9 is a schematic structural diagram of an embodiment of a communication system according to the present invention.
  • the MIMO technology is applied to the HSUPA technology to transmit uplink data through two data streams to improve the uplink spectrum. Utilize efficiency to improve uplink coverage performance and user peak rate.
  • the UE can simultaneously transmit two data blocks to the Node B in the same TTI, that is, transmit data to the Node B through two data streams, which is also called dual stream transmission data.
  • the UE When the UE is in MIMO mode and transmits uplink data to the Node B through two data streams, if the UE receives an absolute grant value or a relative grant value that the Node B delivers for the entire UE, or two of the same for the two data streams.
  • the value is authorized, due to various differences in channel conditions, the two data streams sent by the UE using the same authorization value may have a difference in the performance of the I-period at the receiving end, thereby affecting the correct decoding of the data. Therefore, it is necessary to eliminate the transport block size of the two data streams, thereby ensuring that the uplink data transmitted through the two data streams has the same or similar demodulation performance at the receiving end.
  • FIG. 1 is a flowchart of an embodiment of a method for allocating scheduling grants according to the present invention. The process of this embodiment may be specifically implemented by a UE. As shown in FIG. 1, this embodiment includes the following steps:
  • Step 101 Receive an authorization value returned by the Node B, an Enhanced Dedicated Transport Channel (E-DCH) transport format combination indication (E-TFC Indication, E-TFCI) offset value, and the The data stream identifier corresponding to the E-TFCI offset value, wherein the E-TFCI offset value is determined by the Node B according to data transmitted by the mobile terminal through two data streams.
  • E-DCH Enhanced Dedicated Transport Channel
  • E-TFCI transport format combination indication
  • the E-TFCI offset value may be the previous one of the Node B in the current TTI.
  • the data generated by the two data streams in the TTI may be generated by the data transmitted by the two data streams in the previous RTT of the current round-trip time (RTT), or It is generated at any other time after the Node B receives the data transmitted by the mobile terminal through the two data streams.
  • RTT current round-trip time
  • Step 102 Determine, according to the authorization value returned by the Node B, the transport block size of the data stream identified by the data flow identifier in the current TTI, and the index number corresponding to the transport block size may be represented as an E-TFCI.
  • Step 103 Determine, according to the data packet identifier, the transport block size of the current TTI, and the E-TFCI offset value returned by the Node B, determine the transport block size of the other data stream in the current TTI.
  • FIG. 2 is a flowchart of another embodiment of a method for allocating scheduling grants according to the present invention. The process of this embodiment may also be implemented by a UE. As shown in FIG. 2, the embodiment includes the following steps:
  • Step 201 Receive an authorization value returned by the Node B, an E-TFCI offset value, and a data flow identifier corresponding to the E-TFCI offset value.
  • the E-TFCI offset value is generated by the Node B for data transmitted by the mobile terminal through two data streams, so as to calculate the transport block size of the two data streams in the current TTI.
  • the two data streams include the data stream identified by the data stream identifier and another data stream.
  • Step 202 Obtain an authorization value of the current TTI of the data stream identified by the data flow identifier according to the authorization value returned by the Node B, where the authorization value is a Hybrid Automatic Repeat Request (Hybrid Automatic Repeat Request). : HARQ) The authorization value of the process.
  • the authorized value returned by the Node B is an authorized value allocated to the UE
  • the half value of the authorized value is used as the data flow identifier to identify the data flow at the current transmission time interval (Transport Time Interval, hereinafter referred to as: The authorized value of TTI).
  • TTI Transmission Time Interval
  • the authorization value returned by the Node B is two identical authorization values assigned to the two data flows, the authorization value is directly used as the authorization value of the current TTI identified by the data flow identifier.
  • Step 203 Determine, according to the authorization value determined in step 202 and the modulation mode adopted by the UE, a calculation formula of the E-TFC selection process, and calculate, according to the calculation formula, a data size that the scheduling authorization service can send in the current TTT, and assume the data size representation. For a.
  • Step 204 According to the maximum available transmit power of the UE, and other used uplinks other than the E-DCH Dedicated Physical Data Channel (E-DCH Dedicated Physical Data Channel, E-DPDCH) The transmit power of the channel is calculated, and the remaining transmit power that can be used as the E-DPDCH transmit power is calculated, and according to the half value of the remaining transmit power, the data stream identified by the data stream identifier is calculated by the E-TFC restriction process to be supported by the current TTI.
  • the transport block size assuming that the calculated transport block size is represented as B.
  • step 204 may also be performed before step 203 or simultaneously with step 203.
  • Step 205 The size of the data volume that the UE needs to transmit in the current TTI according to the data flow identifier, the maximum supported transport block size B, and the size a of the data that can be sent by the authorized service, determine the identifier of the data flow identifier.
  • the transport block size of the current TTI, the transport block size can be expressed as C1, and its corresponding index number is represented as E-TFCI1.
  • the data volume identified by the data flow identifier indicates that the total amount of data to be transmitted in the current TTI is represented as A, and if only the scheduled authorization service data needs to be transmitted, the data flow identified by the data flow identifier needs to be total in the current TTI.
  • comparing the size A of the data to be transmitted with the size B of the transport block calculated by the E-TFC restriction process, and determining that the size of the transport block identified by the data stream identifier in the current TTI is Cl min ⁇ A , B ⁇ .
  • SI non-scheduled authorization service data and/or scheduling information
  • the non-scheduled authorization service data size is represented as b
  • the SI size to be transmitted is represented as c
  • the data flow identifier identified by the data flow identifier needs to transmit a total amount of data A in the current TTI, which is equal to the scheduling authorization service data size a
  • Step 206 Calculate a corresponding E-DPDCH power offset factor according to the determined data stream identifier of the identified data stream in the current TTI transport block size C1, thereby determining the E-DPDCH transmit power of the data stream in the current TTI, The transmit power of the other data stream in the data stream is the same as the transmit power.
  • Step 207 Determine, according to the determined data flow identifier, an index number E-TFCI1 corresponding to the transport block size C1 of the current TTI, and an E-TFCI offset value returned by the Node B, to determine another data stream in the current TTI.
  • the transport block size C2, the index value corresponding to the transport block size C2 is represented as E-TFCIC2.
  • the data stream identified by the data stream identifier may be a data stream that transmits data with better demodulation performance in the two data streams.
  • the E-TFCI offset returned by the NodeB The value is a number greater than or equal to zero.
  • the difference between the E-TFCI1 and the E-TFCI offset value corresponding to the transport block size C1 of the current TTI may be obtained from the data stream identifier, BP: E-TFCIl -E - TFCI offset value, using the obtained difference E-TFCI1-E-TFCI offset value as another data stream at the current TTI transport block size C2 corresponding index number E-TFCI2, another data stream That is, the data stream of the demodulated data is transmitted in the two data streams.
  • the difference between the E-TFCI1 and the E-TFCI offset value corresponding to the transport block size C1 of the data stream is The value, as the E-TFCI2 corresponding to the transport block size C2 of the data stream transmitting the data with poor demodulation performance, that is, in the case where the transmission power is constant, the data stream transmission for transmitting the data with poor demodulation performance is reduced.
  • the number of bits increases the energy of the number of bits transmitted, thereby effectively improving the demodulation performance of the data stream transmitting the data with poor demodulation performance, so that the two data streams have the same or similar demodulation at the receiving end. performance.
  • the data stream identified by the data stream identifier is a data stream in which data with poor demodulation performance is transmitted in the two data streams.
  • the E-TFCI offset value returned by the NodeB is A value less than or equal to zero.
  • the difference between the E-TFCI1 and the E-TFCI offset value corresponding to the current TTI transport block size C1 of the data stream identified by the data stream identifier may be BP: E-TFCI1 -E-TFCI
  • the offset value is taken as the E-TFCI2 corresponding to the transport block size C2 with the difference E-TFCI1-E-TFCI offset value.
  • the E-TFCI2 corresponding to the transport block size C2 may be determined in another manner according to the E-TFCI offset value returned by the E-TFCI1 and the Node B corresponding to the transport block size C1.
  • step 207 may also be performed prior to step 206 or concurrently with step 206.
  • Step 208 In the current TTI, the transmit power determined by step 205, on the E-DPDCH, respectively, the uplink data stream of the transport block size C2 corresponding to the transport block size C1 and E-TFCI2 corresponding to the E-TFCI1, to the Node B. send data.
  • the current TTT may also be identified first.
  • the data transmitted through the two data streams includes scheduling authorization service data.
  • the data transmitted through the two data streams includes the scheduling authorization service data, or when the data sent by one of the data streams includes the scheduling authorization service data, by step 207, according to the transport block size C1 corresponding to E-TFCI1 and E- TFCI offset value to determine the transport block size E-TFCI 2 corresponding to C2.
  • the E-TFCI corresponding to the transport block size C1 may be directly used as the E-TFCI corresponding to the transport block size C2 of the other data stream.
  • FIG. 3 is a flowchart of still another embodiment of a method for allocating scheduling authorization according to the present invention.
  • the process of this embodiment may be specifically implemented by a Node. As shown in FIG. 3, this embodiment includes the following steps:
  • Step 301 Receive data sent by the UE by using two data streams. Specifically, each data stream carries a data flow identifier that is used to identify the data flow.
  • Step 302 Assign an authorization value to the UE, and determine an E-TFCI offset value of one of the two data streams according to data transmitted by the UE through the two data streams.
  • a data stream for determining an E-TFCI offset value may be a data stream in which two demodulated data with better or worse performance are transmitted, or two preset data, according to a preset setting. Any one of the streams in the stream.
  • assigning an authorization value to the UE may be: assigning an absolute grant value to the UE or a relative grant value of an authorization value of the HARQ process allocated to the UE in the previous RTT; or, respectively, to the two data streams Two identical grant values are assigned, the grant value being an absolute grant value or a relative grant value of the grant value of the HARQ process assigned to the UE in the previous RTT.
  • Step 303 Return, to the UE, an assigned authorization value, a determined E-TFCI offset value, and a data flow identifier of a data stream corresponding to the E-TFCI offset value.
  • the Node B determines the E-TFCI offset value of one of the two data streams according to the data transmitted by the two data streams, and sends the E-TFCI offset value to the UE, so that the UE determines another data stream according to the E-TFCI offset value in the current TTI.
  • the E-TFCI corresponding to the transport block size thereby realizing the adjustment of the E-TFCI corresponding to the transport block size of the current TTI of another data stream, that is, adjusting the transport block size of the other data stream in the current TTI, In this way, in the case that the transmission powers of the two data streams are the same, it can be ensured that the data transmitted through the two data streams have the same or similar demodulation performance at the receiving end, thereby effectively ensuring the correct decoding of the dual-stream transmission data by the receiving end.
  • the E-TFCI offset corresponding to the transport block size of the current TTI of one of the two data streams may be determined according to the data transmitted through the two data streams. Value: Demodulate the data transmitted through the two data streams and compare the demodulation performance of the data transmitted through the two data streams to obtain the difference in demodulation performance of the data transmitted through the two data streams; The difference in demodulation performance of the data transmitted by the data stream determines the E-TFCI offset value of a data stream.
  • Determining the E-TFCI offset value of a data stream in the difference in demodulation performance of data transmitted through two data streams When the E-TFCI corresponding to the current TTI transport block size is adjusted by the E-TFCI offset value, the data transmitted through the two data streams can be controlled more directly and accurately at the current TTI. Demodulation performance ensures that the demodulation performance is the same or similar.
  • FIG. 4 is a schematic structural diagram of an embodiment of a communication device according to the present invention.
  • the communication device of the embodiment can be used as a UE to implement the process of the embodiment shown in FIG. 1 or FIG. 2 of the present invention.
  • the communication device of this embodiment includes a first receiving module 401, a first determining module 402, and a second determining module 403.
  • the first receiving module 401 is configured to receive an authorization value returned by the Node B, an E-TFCI offset value, and a data flow identifier corresponding to the E-TFCI offset value.
  • the E-TFCI offset value is determined by the Node B based on the data transmitted by the UE through the two data streams.
  • the E-TFCI offset value may be generated by the Node B in the data transmitted by the two data streams in the previous TTI of the current TTI, or may be the previous RTT of the Node B in the current RTT. Generated by data transmitted by two data streams.
  • the first determining module 402 is configured to determine, according to the authorization value received by the first receiving module 401, the size of the data block identified by the data stream identifier in the current TTI, and the corresponding index number may be represented as E-TFCI1.
  • the second determining module 403 is configured to determine, according to the transport block size determined by the first determining module 402 and the E-TFCI offset value received by the first receiving module 401, a transport block size of another data stream in the current TTI, where the corresponding The index number can be expressed as E-TFCI2.
  • the first determining module 402 includes a first obtaining unit 501 and a first determining unit 502, as compared with the embodiment shown in FIG.
  • the first obtaining unit 501 is configured to obtain, according to the identifier received by the first receiving module 401, the authorization value of the data stream identified by the data stream identifier in the current TTI, where the authorization value is the authorization of the HARQ process corresponding to the data stream. value.
  • the first determining unit 502 is configured to determine, according to the authorized value of the current TTI, the data stream identified by the data flow identifier, the transport block size of the data stream identified by the data flow identifier in the current TTI.
  • FIG. 6 is a schematic structural diagram of still another embodiment of the communication device according to the present invention.
  • the communication device of the embodiment can also be used as a UE to implement the process of the embodiment shown in FIG. 1 or FIG. 2 of the present invention.
  • the communication device of this embodiment further includes an identification module 404.
  • the identification module 404 is configured to identify whether data transmitted through the two data streams in the current TTI includes scheduling authorization service data.
  • the second determining module 403 specifically, according to the identification result of the identification module 404, when the data transmitted by the two data streams in the current TTI includes the scheduling authorization service data, or the data transmitted through one of the data streams includes the scheduling authorization service.
  • the data is received by the first receiving module 401 according to the E-TFCI1 corresponding to the transmission fast size C1 determined by the first determining module 402.
  • the E-TFCI offset value determines the E-TFCI2 of the other data stream in the current TTI transport block size C2.
  • the communication device of the embodiment of the present invention may further include a third determining module 405, according to the identification result of the identification module 404, when the data transmitted by the two data streams in the current TTI does not include the scheduling authorization service data, E-TFCI1 corresponding to the transport block size C2 of the current TTI is directly used as E-TFCI1 as another data stream.
  • the communication device of the embodiment of the present invention may further include a fourth determining module 406 and a first sending module 407.
  • the fourth determining module 406 is configured to determine, according to the E-TFCI1 corresponding to the transport block size C1 determined by the first determining module 402, the transmit power of the two data streams at the current TTI.
  • the first sending module 407 transmits the uplink power stream of the transport block size C1 corresponding to the E-TFCI1 and the transport block size C2 corresponding to the E-TFCI2 to the Node B according to the transmit power determined by the fourth determining module 406 in the current TTI.
  • the data may further include a fourth determining module 406 and a first sending module 407.
  • the fourth determining module 406 is configured to determine, according to the E-TFCI1 corresponding to the transport block size C1 determined by the first determining module 402, the transmit power of the two data streams at the current TTI.
  • the first sending module 407 transmits the uplink power stream of the transport block size C1
  • FIG. 7 is a schematic structural diagram of still another embodiment of a communication device according to the present invention, where the communication device can be used as
  • Node B implements the flow of the embodiment shown in Fig. 3 of the present invention.
  • the communication device of this embodiment includes a second receiving module 601, an allocating module 602, a fifth determining module 603, and a second transmitting module 604.
  • the second receiving module 601 is configured to receive data that is sent by the UE through two data streams.
  • the allocating module 602 is configured to allocate an authorization value to the UE after the UE receives the data transmitted by the two data streams by the second receiving module 601.
  • the fifth determining module 603 is configured to determine an E-TFCI offset value of one of the two data streams according to the data transmitted by the two data streams received by the second receiving module 601.
  • the second sending module 604 is configured to send, to the UE, an authorization value allocated by the allocation module 602, an E-TFCI offset value determined by the fifth determining module 603, and a data flow identifier of a data stream corresponding to the E-TFCI offset value. .
  • the allocation module 602 may specifically allocate an absolute authorization value or a relative authorization value of the authorization value of the HARQ process allocated to the UE in the previous RTT.
  • the allocation module 602 may specifically allocate two identical authorization values to the two data streams, and the authorization value may be an absolute authorization value, or may be a relative value of the authorization value of the HARQ process allocated to the UE in the previous RTT.
  • Authorization value may be an absolute authorization value, or may be a relative value of the authorization value of the HARQ process allocated to the UE in the previous RTT.
  • FIG. 8 is a schematic structural diagram of another embodiment of the communication device according to the present invention.
  • the communication device of the embodiment can also be used as a Node B to implement the process of the embodiment shown in FIG. 3 of the present invention.
  • the fifth determining module 603 includes a demodulating unit 701, a second obtaining unit 702, and a second determining unit 703, as compared with the embodiment shown in FIG.
  • the demodulation unit 701 is configured to demodulate data transmitted by the UE received by the second receiving module 601 through two data streams.
  • the second obtaining unit 702 is configured to acquire a demodulation performance difference of data transmitted through the two data streams according to the demodulation result of the demodulation unit 701.
  • the second determining unit 703 is configured to determine an E-TFCI offset value of the one data stream according to the demodulation performance difference acquired by the second obtaining unit 702.
  • a communication system provided by an embodiment of the present invention includes a Node B and a UE.
  • Node B is used for receiving The data transmitted by the UE through two data streams; the assignment value is assigned to the UE, and the E-TFCI offset value of one of the two data streams is determined according to the data transmitted through the two data streams; the authorization value is returned to the UE,
  • the E-TFCI offset value and the E-TFCI offset value correspond to a data stream identifier of a data stream.
  • the Node B can be implemented by any of the embodiments shown in FIG. 7 or 8.
  • the UE is configured to receive an authorization value returned by the Node B, an E-TFCI offset value, and a data flow identifier of a data stream; determining, according to the authorization value therein, a transport block size of the data stream identified by the data flow identifier in the current TTI; The transport block size and the E-TFCI offset value returned by the Node B determine the transport block size of the other data stream at the current TTI.
  • the UE may be implemented by any of the embodiments shown in FIG. 4-6.
  • FIG. 9 is a schematic structural diagram of an embodiment of a communication system according to the present invention.
  • the Node B is implemented by using the embodiment shown in FIG. 8.
  • the UE is implemented by using the embodiment shown in FIG. 6.
  • the MIMO technology can be applied to the HSUPA technology to transmit uplink data through two data streams, thereby improving uplink spectrum utilization efficiency, improving uplink coverage performance and user peak rate, and adjusting two data streams by using an authorization value.
  • the transport block size is ensured, and after the HSUPA technology is used in the uplink direction, the data transmitted through the two data streams has the same or similar demodulation performance at the receiving end, thereby effectively ensuring correct decoding of the two data streams by the receiving end.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

调度授权的分配方法与通信设备 本申请要求于 2009年 7月 1日提交中国专利局、 申请号为 CN 200910088051. 3、 发 明名称为 "调度授权的分配方法与通信设备"的中国专利申请的优先权, 其全部内容通 过引用结合在本申请中。 技术领域 本发明涉及通信技术, 尤其是 '种调度授权的分配方法与通信设备。 背景技术 高速上行分组接入 (high speed uplink packet access, 以下简称: HSUPA) 技术, 在 上行链路方向, SP: 从移动终端 (User Equipment, 以下简称: UE ) 到无线接入网络的 方向, 针对分组业务进行了优化和演进。 HSUPA 技术利用自适应编码、 物理层混合重 传、 基于基站 (Node B ) 的快速调度和 2ms传输时间间隔 (Transport Time Interval, 以 下简称: TTI ) 的短帧传输等机制, 实现了在最高数据传输速率、 小区吞吐量以及延迟 方面的增强。
依据现有 HSUPA下的分组调度原则, 针对每个 UE进行调度。 由 Node B来控制
UE的数据传输速率和传输时间; Node B根据小区的负载、 UE的信道质量和所需传输 的数据量等情况, 来确定 UE当前的最高传输速率。
目前, 在下行方向引入了多入多出天线 (Multiple Input Multiple Output, 以下简称:
MIMO ) 技术, 以提高下行系统的吞吐量等性能。 但是上行方向的频谱利用率较低, 覆 盖性能较差, 并且用户峰值速率也较低, 有待进 '步提高。
发明内容
本发明实施例所要解决的技术问题是: 提供一种调度授权的分配方法与通信设备, 将 MIMO技术应用于 HSUPA技术, 以提高上行方向的频谱利用率、 覆盖性能与用户峰 值速率, 并且保证上行方向使用 MIMO技术后两个数据流在接收端的解调性能。
本发明实施例提供的一种调度授权的分配方法, 包括:
接收基站返回的授权值、 增强专用传输信道传输格式组合指示 E-TFCI偏置值以及 该 E-TFCI偏置值对应的数据流标识,所述 E-TFCI偏置值由所述基站根据移动终端通过 两个数据流传送的数据确定;
根据所述授权值确定所述数据流标识所标识的数据流在当前传输时间间隔 TTI 的 传输块大小;
根据所述传输块大小与所述 E-TFCI偏置值, 确定所述另一个数据流在当前 TTI的 传输块大小。
本发明实施例提供的另一种调度授权的分配方法, 包括:
接收移动终端通过两个数据流传送的数据;
向所述移动终端分配授权值, 并根据通过所述两个数据流传送的数据, 确定所述两 个数据流中一个数据流的 E-TFCI偏置值;
向所述移动终端返回所述授权值、所述 E-TFCI偏置值以及该 E-TFCI偏置值对应的 所述一个数据流的数据流标识。
本发明实施例提供的一种通信设备, 包括:
第一接收模块, 用于接收基站返回的授权值、 E-TFCI偏置值以及该 E-TFCI偏置值 对应的数据流标识, 所述 E-TFCI偏置值由所述基站根据移动终端通过两个数据流传送 的数据确定;
第一确定模块, 用于根据所述授权值确定所述数据流标识所标识的数据流在当前 TTI的传输块大小;
第二确定模块, 用于根据所述传输块大小与所述 E-TFCI偏置值, 确定所述另一个 数据流在当前 TTI的传输块大小。
本发明实施例提供的另一种通信设备, 其特征在于, 包括:
第二接收模块, 用于接收移动终端通过两个数据流传送的数据;
分配模块, 用于向所述移动终端分配授权值;
第五确定模块, 用于根据通过所述两个数据流传送的数据, 确定所述两个数据流中 一个数据流的 E-TFCI偏置值;
第二发送模块, 用于向所述移动终端发送所述授权值、 所述 E-TFCI偏置值以及该 E-TFCI偏置值对应的所述一个数据流的数据流标识。
基于本发明上述实施例提供的调度授权的分配方法与通信设备, 可以将 MIMO 技 术应用于 HSUPA技术,通过两个数据流传送上行数据, 来提高上行方向的频谱利用率、 覆盖件能与用户峰值速率, 并实现两个数据流的调度授权分配, 从而保证上行方向使用 HSUPA技术后, 通过两个数据流传送的数据在接收端的解调性能。
下面通过附图和实施例, 对本发明实施例的技术方案做进一步的详细描述。
附图说明 图 1为本发明调度授权的分配方法一个实施例的流程图;
图 2为本发明调度授权的分配方法另一个实施例的流程图;
图 3为本发明调度授权的分配方法又一个实施例的流程图;
图 4为本发明通信设备一个实施例的结构示意图;
图 5为本发明通信设备另一个实施例的结构示意图;
图 6为本发明通信设备又一个实施例的结构示意图;
图 7为本发明通信设备再一个实施例的结构示意图;
图 8为本发明通信设备还一个实施例的结构示意图;
图 9为本发明通信系统一个实施例的结构示意图。
具体实施方式 由于 MIMO技术可以在不增加带宽的情况下, 成倍地提高通信系统的容量和频谱 利用率, 将 MIMO技术应用于 HSUPA技术, 通过两个数据流传送上行数据, 来提高上 行的频谱利用效率, 提高上行覆盖性能与用户峰值速率。 将 MIMO技术应用于 HSUPA 技术后, UE在同一个 TTI可以同时向 Node B传送两个数据块, 即: 通过两个数据流向 Node B传送数据, 该过程也称为双流传送数据。
当 UE处于 MIMO模式并且通过两个数据流向 Node B传送上行数据时, 如果 UE 收到 Node B针对整个 UE下发的绝对授权值或相对授权值, 或者, 针对两个数据流分 配的两个相同授权值时, 由于信道条件等多方面的差异, UE使用相同授权值发送的两 个数据流在接收端可能存在解 I周性能差异, 从而影响数据的正确译码。 因此, 就需要凋 整两个数据流的传输块大小,从而保证通过两个数据流传送的上行数据在接收端有相同 或相近似的解调性能。
图 1为本发明调度授权的分配方法一个实施例的流程图, 该实施例的流程具体可以 由 UE实现。 如图 1所示, 该实施例包括以下步骤:
步骤 101 , 接收 Node B 返回的授权值、 增强专用传输信道 (Enhanced Dedicated Transport Channel, 以下简称: E-DCH) 传输格式组合指示 (E-TFC Indication,以下简 称: E-TFCI)偏置值以及该 E-TFCI偏置值对应的数据流标识, 其中, E-TFCI偏置值由 Node B根据移动终端通过两个数据流传送的数据确定。
根据本发明的一个具体实施例, E-TFCI偏置值可以是 Node B在当前 TTI的前一个 TTI内通过两个数据流传送的数据生成的,也可以是 Node B在当前往返时间(Route-Trip Time, 以下简称: RTT) 的前一个 RTT 内通过两个数据流传送的数据生成的, 或者在 Node B在接收到移动终端通过两个数据流传送的数据后的其它任意时刻生成。
步骤 102,根据 Node B返回的授权值, 确定数据流标识所标识的数据流在当前 TTI 的传输块大小, 该传输块大小对应的索引号可以表示为 E-TFCI。
步骤 103 , 根据数据流标识所标识的数据流在当前 TTI的传输块大小, 与 Node B 返回的 E-TFCI偏置值, 确定另一个数据流在当前 TTI的传输块大小。
可以在确定数据流标识所标识的数据流的 E-TFCI后,根据 Node B针对两个数据流 返回的 E-TFCI偏置值确定另一个数据流的 E-TFCI, 从而实现对另一个数据流 E-TFCI 的调整, 这样, 在两个数据流发射功率相同的情况下, 可以保证通过两个数据流传送的 数据在接收端有相同或相近似的解调性能, 有效保障接收端对数据的正确译码。
图 2为本发明调度授权的分配方法另一个实施例的流程图, 该实施例的流程具体也 可以由 UE实现。 如图 2所示, 该实施例包括以下步骤:
步骤 201 , 接收 Node B返回的授权值、 E-TFCI偏置值以及该 E-TFCI偏置值对应 的数据流标识。
其中的 E-TFCI偏置值由 Node B针对移动终端通过两个数据流传送的数据生成,以 便用于计算两个数据流在当前 TTI的传输块大小。两个数据流包括数据流标识所标识的 数据流和另一个数据流。
步骤 202,根据 Node B返回的授权值, 获取数据流标识所标识的数据流在当前 TTI 的授权值, 该授权值也即该数据流对应的混合自动重传请求 (Hybrid Automatic Repeat Request, 以下简称: HARQ) 进程的授权值。
具体地, 若 Node B返回的授权值为针对 UE分配的一个授权值, 则以该授权值的 半值, 作为数据流标识所标识的数据流在当前传输时间间隔 (Transport Time Interval, 以下简称: TTI)的授权值。 若 Node B返回的授权值为针对两个数据流分配的两个相同 的授权值, 则直接以该授权值作为数据流标识所标识的数据流在当前 TTI的授权值。
步骤 203 , 根据步骤 202确定的授权值与 UE采用的调制方式, 确定 E-TFC选择过 程的计算公式, 并根据该计算公式计算调度授权业务在当前 TTT可发送的数据大小, 假 设该数据大小表示为 a。
步骤 204, 根据 UE的最大可用发射功率、 与 E-DCH专用物理数据信道 (E-DCH Dedicated Physical Data Channel, 以下简称: E-DPDCH) 以外的其它正在使用的上行物 理信道的发射功率, 计算可用作为 E-DPDCH发射功率的剩余发射功率, 并根据该剩余 发射功率的半值, 利用 E-TFC限制过程计算数据流标识所标识的数据流在当前 TTI最 大支持的传输块大小, 假设计算出的该传输块大小表示为 B。
作为本发明的其它实施例, 上述步骤 204也可以先于步骤 203执行或与步骤 203同 时执行。
步骤 205, UE根据数据流标识所标识的数据流在当前 TTI总共需要传送的数据量 大小、 最大支持的传输块大小 B与凋度授权业务可发送数据的大小 a, 确定数据流标识 所标识的数据流在当前 TTI的传输块大小, 该传输块大小可以表示为 C1 , 其对应的索 引号表示为 E-TFCI1。
具体地,假设数据流标识所标识的数据流在当前 TTI总共需要传送的数据量大小表 示为 A, 如果需要传送的只有调度授权业务数据, 则数据流标识所标识的数据流在当前 TTI总共需要传送的数据量大小 A等于调度授权业务数据大小 a, BP: A=a。 并将该需 要传送的数据量大小 A与利用 E-TFC限制过程计算出来的传输块大小 B进行比较, 确 定数据流标识所标识的数据流在当前 TTI传送的传输块大小为 Cl=min{A, B}。
如果数据流标识所标识的数据流在当前 TTI, 除了调度授权业务数据外, 同时还有 非调度授权业务数据和 /或调度信息 (scheduling information, 以下简称: SI) 需要传送, 假设该需要传送的非调度授权业务数据大小表示为 b, 该需要传送的 SI大小表示为 c, 则数据流标识所标识的数据流在当前 TTI总共需要传送的数据量大小 A,等于调度授权 业务数据大小 a, 与相应需要传送的非调度授权业务数据大小 b和 /或 SI大小之和, S卩: A=a+b+c , 或者 A=a+b, 或者 A=a+c。 将数据流标识所标识的数据流在当前 TTI总共 需要传送的数据量 A与利用 E-TFC限制程序计算出来的传输块大小 B进行比较, 确定 数据流标识所标识的数据流在当前 TTI传送的传输块大小为 Cl=min{A, B}。 如果当前 TTI总共需要传送的数据量大小 A超出利用 E-TFC限制过程计算出来的传输块大小 B, 则降低 A中调度授权业务数据量, 以实现按照传输块大小 B来传输数据。
步骤 206,根据确定的数据流标识所标识的数据流在当前 TTI的传输块大小 C1 ,计 算对应的 E-DPDCH功率偏置因子, 从而确定该数据流在当前 TTI的 E-DPDCH发射功 率, 两个数据流中另一个数据流的发射功率与该发射功率相同。
步骤 207, 根据确定的数据流标识所标识的数据流在当前 TTI的传输块大小 C1对 应的索引号 E-TFCI1 , 与 Node B返回的 E-TFCI偏置值, 确定另一个数据流在当前 TTI 的传输块大小 C2 , 该传输块大小 C2对应的索引值表示为 E-TFCIC2。 具体地, 根据预先设定, 步骤 201中, 数据流标识所标识的数据流可以为两个数据 流中传送解调性能较好的数据的数据流, 此时, NodeB返回的 E-TFCI偏置值为一个大 于或等于零的数值。 相应的, 该步骤 207中, 可以求取数据流标识所标识的数据流在当 前 TTI的传输块大小 C1对应的 E-TFCI1与 E-TFCI偏置值的差值, BP: E-TFCIl -E-TFCI 偏置值, 以该求取的差值 E-TFCI1-E-TFCI偏置值作为另一个数据流在当前 TTI的传输 块大小 C2对应的索引号 E-TFCI2, 其中的另一个数据流也即两个数据流中传送解调性 能较差的数据的数据流。
数据流标识所标识的数据流为两个数据流中传送解调性能较好的数据的数据流时, 以该数据流的传输块大小 C1对应的 E-TFCI1与 E-TFCI偏置值的差值, 作为传送解调 性能较差的数据的数据流的传输块大小 C2对应的 E-TFCI2, 即在发射功率一定的情况 下, 减小了传送该解调性能较差的数据的数据流传输的比特数, 提高了传输单位比特数 的能量, 从而可以有效提高传送该解调性能较差的数据的数据流的解调性能, 使得两个 数据流在接收端有相同或相近似的解调性能。
另外, 根据预先设定, 步骤 201中, 数据流标识所标识的数据流为两个数据流中传 送解调性能较差的数据的数据流, 此时, NodeB返回的 E-TFCI偏置值为一个小于或等 于零的数值。 相应的, 该步骤 207中, 可以对数据流标识所标识的数据流在当前 TTI传 输块大小 C1对应的 E-TFCI1与 E-TFCI偏置值的差值, BP: E-TFCIl -E-TFCI偏置值, 并以该差值 E-TFCI1-E-TFCI偏置值作为传输块大小 C2对应的 E-TFCI2。
此外, 也可以根据预先设定, 根据传输块大小 C1对应的 E-TFCI1与 Node B返回 的 E-TFCI偏置值, 采用其它的方式确定传输块大小 C2对应的 E-TFCI2。
作为本发明的其它实施例, 该步骤 207也可以先于步骤 206执行或与步骤 206同时 执行。
步骤 208, 在当前 TTI, 以步骤 205确定的发射功率, 在 E-DPDCH上, 分别通过 E-TFCI1对应的传输块大小 C1与 E-TFCI2对应的传输块大小 C2的上行数据流,向 Node B发送数据。
作为本发明的另一个实施例,通过步骤 201 ,接收到 Node B返回的授权值、 E-TFCI 偏置值以及该 E-TFCT偏置值对应的数据流标识后, 也可以先识别在当前 TTT, 通过两 个数据流传送的数据是否包括调度授权业务数据。在通过两个数据流传送的数据都包括 调度授权业务数据时, 或通过其中一个数据流发送的数据包括调度授权业务数据时, 通 过步骤 207, 根据传输块大小 C1对应的 E-TFCI1与 E-TFCI偏置值, 来确定传输块大小 C2对应的 E-TFCI 2。 否则, 若通过两个数据流在当前 TTI发送的数据都不包括调度授 权业务数据,可以直接以传输块大小 C1对应的 E-TFCI 1作为另外一个数据流的传输块 大小 C2对应的 E-TFCI 2。
图 3为本发明调度授权的分配方法又一个实施例的流程图, 该实施例的流程具体可 以由 Node Β实现。 如图 3所示, 该实施例包括以下步骤:
步骤 301 , 接收 UE通过两个数据流发送的数据。 具体地, 每个数据流中携带有用 于标识该数据流的数据流标识。
步骤 302, 向 UE分配授权值, 并根据 UE通过两个数据流传送的数据, 确定两个 数据流中一个数据流的 E-TFCI偏置值。
具体地, 确定 E-TFCI偏置值的一个数据流, 根据预先设定, 可以是两个数据流中 传送解调性能较好或较差的数据的数据流,或者预先设定的两个数据流中的任意一个数 据流。
作为本发明的一个实施例, 向 UE分配授权值可以是: 向 UE分配一个绝对授权值 或相对上一个 RTT内向 UE分配的 HARQ进程的授权值的相对授权值; 或者, 向两个 数据流分别分配两个相同的授权值, 该授权值为一个绝对授权值或相对上一个 RTT 内 向 UE分配的 HARQ进程的授权值的相对授权值。
步骤 303 , 向 UE返回分配的授权值、 确定的 E-TFCI偏置值以及该 E-TFCI偏置值 对应的一个数据流的数据流标识。
Node B根据两个数据流传送的数据, 确定两个数据流中一个数据流的 E-TFCI偏置 值并发送给 UE,以便 UE根据该 E-TFCI偏置值确定另一个数据流在当前 TTI的传输块 大小对应的 E-TFCI, 从而实现对另一个数据流在当前 TTI的传输块大小对应的 E-TFCI 的调整, 也即: 对另一个数据流在当前 TTI的传输块大小进行调整, 这样, 在两个数据 流发射功率相同的情况下,可以保证通过两个数据流传送的数据在接收端有相同或相近 似的解调性能, 有效保障接收端对双流传送数据的正确译码。
作为本发明的一个实施例, 步骤 302中, 可以通过如下方法, 根据通过两个数据流 传送的数据, 确定两个数据流中一个数据流在当前 TTI的传输块大小对应的 E-TFCI偏 置值: 对通过两个数据流传送的数据进行解调, 并比较通过两个数据流传送的数据的解 调性能, 来获取通过两个数据流传送的数据的解调性能差异; 根据通过两个数据流传送 的数据的解调性能差异, 确定一个数据流的 E-TFCI偏置值。
在通过两个数据流传送的数据的解调性能差异确定一个数据流的 E-TFCI偏置值 时,通过该 E-TFCI偏置值对另一个数据流在当前 TTI的传输块大小对应的 E-TFCI进行 调整, 可以更直接、 更精确的控制通过两个数据流传送的数据在当前 TTI的解调性能, 保证其解调性能相同或相近似。
图 4 为本发明通信设备一个实施例的结构示意图, 该实施例的通信设备可以作为 UE, 实现如本发明图 1或图 2所示实施例的流程。 如图 4所示, 该实施例的通信设备 包括第一接收模块 401、 第一确定模块 402与第二确定模块 403。
其中, 第一接收模块 401用于接收 Node B返回的授权值、 E-TFCI偏置值以及该 E-TFCI偏置值对应的数据流标识。 其中的 E-TFCI偏置值由 Node B根据 UE在通过两 个数据流传送的数据确定。根据本发明的一个具体实施例, E-TFCI偏置值可以是 Node B 在当前 TTI的前一个 TTI内通过两个数据流传送的数据生成的, 也可以是 Node B在当 前 RTT的前一个 RTT内通过两个数据流传送的数据生成的。 第一确定模块 402用于根 据第一接收模块 401接收到的授权值,确定数据流标识所标识的数据流在当前 TTI的传 输块大小, 其对应的索引号可以表示为 E-TFCI1。 第二确定模块 403用于根据第一确定 模块 402确定的传输块大小与第一接收模块 401接收到的 E-TFCI偏置值, 确定另一个 数据流在当前 TTI的传输块大小, 其对应的索引号可以表示为 E-TFCI2。
如图 5所示, 为本发明通信设备另一个实施例的结构示意图, 该实施例的通信设备 也可以作为 UE, 实现如本发明图 1或图 2所示实施例的流程。 与图 4所示的实施例相 比, 该实施例的通信设备中, 第一确定模块 402包括第一获取单元 501与第一确定单元 502。
其中, 第一获取单元 501用于根据第一接收模块 401接收到授权值, 获取数据流标 识所标识的数据流在当前 TTI的授权值, 该授权值也即该数据流对应的 HARQ进程的 授权值。 第一确定单元 502用于根据数据流标识所标识的数据流在当前 TTI的授权值, 确定数据流标识所标识的数据流在当前 TTI的传输块大小。
图 6为本发明通信设备又一个实施例的结构示意图, 该实施例的通信设备也可以作 为 UE, 实现如本发明图 1或图 2所示实施例的流程。与图 4或图 5所示的实施例相比, 该实施例的通信设备中,还包括识别模块 404。其中,识别模块 404用于识别在当前 TTI 通过两个数据流传送的数据是否包括调度授权业务数据。相应的, 第二确定模块 403具 体根据识别模块 404的识别结果,在通过两个数据流在当前 TTI传送的数据都包括调度 授权业务数据时, 或通过其中一个数据流传送的数据包括调度授权业务数据时, 根据第 一确定模块 402确定的传输快大小 C1对应的 E-TFCI1 , 与第一接收模块 401接收到的 E-TFCI偏置值, 确定另一个数据流在当前 TTI的传输块大小 C2对应的 E-TFCI2.
再参见图 6, 本发明实施例的通信设备还可以包括第三确定模块 405, 根据识别模 块 404的识别结果,在通过两个数据流在当前 TTI传送的数据都不包括调度授权业务数 据时,直接以 E-TFCI1作为另一个数据流在当前 TTI的传输块大小 C2对应的 E-TFCI2。
再参见图 6, 本发明实施例的通信设备还可以包括第四确定模块 406与第一发送模 块 407。 其中, 第四确定模块 406用于根据第一确定模块 402确定的传输块大小 C1对 应的 E-TFCI1 ,确定两个数据流在当前 TTI的发射功率。第一发送模块 407在当前 TTI, 分别以第四确定模块 406 确定的发射功率, 通过 E-TFCI1 对应的传输块大小 C1 与 E-TFCI2对应的传输块大小 C2的上行数据流, 向 Node B传送的数据。
图 7为本发明通信设备再一个实施例的结构示意图, 该实施例的通信设备可以作为
Node B, 实现如本发明图 3所示实施例的流程。 如图 7所示, 该实施例的通信设备包括 第二接收模块 601、 分配模块 602、 第五确定模块 603与第二发送模块 604。
其中, 第二接收模块 601用于接收 UE通过两个数据流传送的数据。 分配模块 602 用于在第二接收模块 601接收到的 UE通过两个数据流传送的数据后, 向 UE分配授权 值。第五确定模块 603用于根据第二接收模块 601接收到的通过两个数据流传送的数据, 确定两个数据流中一个数据流的 E-TFCI偏置值。 第二发送模块 604用于向 UE发送由 分配模块 602分配的授权值、 由第五确定模块 603确定的 E-TFCI偏置值以及该 E-TFCI 偏置值对应的一个数据流的数据流标识。
作为本发明的一个实施例, 分配模块 602具体可以向 UE分配一个绝对授权值或相 对上一个 RTT内向 UE分配的 HARQ进程的授权值的相对授权值。另外,分配模块 602 具体也可以向两个数据流分别分配两个相同的授权值, 该授权值可以是一个绝对授权 值, 也可以是相对上一个 RTT内向 UE分配的 HARQ进程的授权值的相对授权值。
图 8为本发明通信设备还一个实施例的结构示意图, 该实施例的通信设备也可以作 为 Node B, 实现如本发明图 3所示实施例的流程。 与图 7所示的实施例相比, 该实施 例的通信设备中, 第五确定模块 603包括解调单元 701、 第二获取单元 702与第二确定 单元 703。 其中, 解调单元 701用于对第二接收模块 601接收到的 UE通过两个数据流 传送的数据进行解调。第二获取单元 702用于根据解调单元 701的解调结果, 获取通过 两个数据流传送的数据的解调性能差异。 第二确定单元 703用于根据第二获取单元 702 获取到的解调性能差异, 确定所述一个数据流的 E-TFCI偏置值。
本发明实施例提供的一种通信系统, 包括 Node B与 UE。 其中, Node B用于接收 UE通过两个数据流传送的数据; 向 UE分配授权值, 并根据通过两个数据流传送的数 据, 确定两个数据流中一个数据流的 E-TFCI偏置值; 向 UE返回授权值、 E-TFCI偏置 值以及该 E-TFCI偏置值对应一个数据流的数据流标识。具体地, 该 Node B可以通过图 7或图 8所示的任一实施例实现。
UE用于接收 Node B返回的授权值、 E-TFCI偏置值以及一个数据流的数据流标识; 根据其中的授权值确定数据流标识所标识的数据流在当前 TTI的传输块大小;根据确定 的传输块大小与 Node B返回的 E-TFCI偏置值,确定另一个数据流在当前 TTI的传输块 大小。 具体地, 该 UE可以通过图 4-图 6所示的任一实施例实现。 如图 9所示, 为本发 明通信系统一个实施例的结构示意图, 该实施例中, Node B采用图 8所示的实施例实 现, UE采用图 6所示的实施例实现。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤可以通过程 序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读取存储介质中, 该程序 在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
本发明实施例可以将 MIMO技术应用于 HSUPA技术,通过两个数据流传送上行数 据, 来提高上行的频谱利用效率, 提高上行覆盖性能与用户峰值速率, 并通过授权值来 调整两个数据流的传输块大小, 从而保证上行方向使用 HSUPA技术后, 通过两个数据 流传送的数据在接收端有相同或相近似的解调性能,有效保障接收端对两个数据流的正 确译码。
最后所应说明的是, 以上实施例仅用以说明本发明的技术方案而非限制, 尽管参照 较佳实施例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 可以对本发明 的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的精神和范围。

Claims

权利要求
1、 一种调度授权的分配方法, 其特征在于, 包括:
接收基站返回的授权值、 增强专用传输信道传输格式组合指示 E-TFCI偏置值以及 该 E-TFCI偏置值对应的数据流标识,所述 E-TFCI偏置值由所述基站根据移动终端通过 两个数据流传送的数据确定;
根据所述授权值确定所述数据流标识所标识的数据流在当前传输时间间隔 TTI 的 传输块大小;
根据所述数据流标识所标识的数据流的传输块大小与所述 E-TFCI偏置值, 确定所 述两个数据流中另一个数据流在当前 TTI的传输块大小。
2、 根据权利要求 1所述的方法, 其特征在于, 根据所述授权值确定所述数据流标 识所标识的数据流在当前 TTI的传输块大小包括:
根据所述授权值获取所述数据流标识所标识的数据流在当前 TTI的授权值; 根据所述数据流标识所标识的数据流在当前 TTI的授权值,确定所述数据流标识所 标识的数据流在当前 TTI的传输块大小。
3、 根据权利要求 1所述的方法, 其特征在于, 根据所述数据流标识所标识的数据 流的传输块大小与所述 E-TFCI偏置值, 确定所述另一个数据流在当前 TTI的传输块大 小包括:
在通过所述两个数据流传送的数据都包括调度授权业务数据时,或通过其中一个数 据流传送的数据包括调度授权业务数据时,根据所述数据流标识所标识的数据流的传输 块大小与所述 E-TFCI偏置值, 确定所述另一个数据流在当前 TTI的传输块大小。
4、 根据权利要求 3所述的方法, 其特征在于, 进一步包括: 在通过所述两个数据 流传送的数据都不包括调度授权业务数据时, 以所述数据流标识所标识的数据流在当前 TTI的传输块大小作为所述另一个数据流在当前 TTI的传输块大小。
5、 根据权利要求 1至 4任意一项所述的方法, 其特征在于, 还包括:
确定所述两个数据流在当前 TTI的发射功率;
在当前 TTT, 分别以确定的发射功率, 通过确定的传输块大小的所述两个数据流, 向所述基站发送数据。
6、 一种调度授权的分配方法, 其特征在于, 包括:
接收移动终端通过两个数据流传送的数据; 向所述移动终端分配授权值, 并根据通过所述两个数据流传送的数据, 确定所述两 个数据流中一个数据流的 E-TFCI偏置值;
向所述移动终端返回所述授权值、所述 E-TFCI偏置值以及该 E-TFCI偏置值对应所 述一个数据流的数据流标识。
7、 根据权利要求 6所述的方法, 其特征在于, 根据通过所述两个数据流传送的数 据, 确定所述一个数据流的 E-TFCI偏置值包括:
对通过所述两个数据流传送的数据进行解调, 并获取通过所述两个数据流传送的数 据的解调性能差异;
根据通过所述两个数据流传送的数据的解调性能差异, 确定所述一个数据流的 E-TFCI偏置值。
8、 一种通信设备, 其特征在于, 包括:
第一接收模块, 用于接收基站返回的授权值、 E-TFCI偏置值以及该 E-TFCI偏置值 对应的数据流标识, 所述 E-TFCI偏置值由所述基站根据移动终端通过两个数据流传送 的数据确定;
第一确定模块, 用于根据所述授权值确定所述数据流标识所标识的数据流在当前
TTI的传输块大小;
第二确定模块, 用于根据所述数据流标识所标识的数据流的传输块大小与所述
E-TFCI偏置值, 确定所述另一个数据流在当前 TTI的传输块大小。
9、 根据权利要求 8所述的通信设备, 其特征在于, 所述第一确定模块包括: 第一获取单元, 用于根据所述授权值, 获取所述数据流标识所标识的数据流在当前
TTI的授权值;
第一确定单元, 用于根据所述数据流标识所标识的数据流在当前 TTI的授权值, 确 定所述数据流标识所标识的数据流在当前 TTI的传输块大小。
10、 根据权利要求 8或 9所述的通信设备, 其特征在于, 还包括:
识别模块,用于识别在当前 TTI通过所述两个数据流传送的数据是否包括调度授权 业务数据;
所述第二确定模块具体用于当所述识别模块识别通过所述两个数据流传送的数据 都包括调度授权业务数据时,或通过其中一个数据流传送的数据包括调度授权业务数据 时, 根据所述数据流标识所标识的数据流的传输块大小与所述 E-TFCI偏置值, 确定所 述另一个数据流在当前 TTI的传输块大小。
11、 根据权利要求 10所述的通信设备, 其特征在于, 还包括:
第三确定模块,用于当所述识别模块识别在通过所述两个数据流传送的数据都不包 括调度授权业务数据时, 以所述数据流标识所标识的数据流在当前 TTI的传输块大小作 为所述另一个数据流在当前 TTI的传输块大小。
12、 根据权利要求 11所述的通信设备, 其特征在于, 还包括:
第四确定模块, 用于根据所述数据流标识所标识的数据流在当前 TTI 的传输块大 小, 确定所述两个数据流在当前 TTI的发射功率;
第一发送模块, 用于在当前 TTI, 分别以确定的发射功率, 通过所述第一确定模块 与所述第二确定模块分别确定的传输块大小的所述两个数据流, 向所述基站发送数据。
13、 一种通信设备, 其特征在于, 包括:
第二接收模块, 用于接收移动终端通过两个数据流传送的数据;
分配模块, 用于向所述移动终端分配授权值;
第五确定模块, 用于根据通过所述两个数据流传送的数据, 确定所述两个数据流中 一个数据流的 E-TFCI偏置值;
第二发送模块, 用于向所述移动终端发送所述授权值、 所述 E-TFCI偏置值以及该
E-TFCI偏置值对应的所述一个数据流的数据流标识。
14、 根据权利要求 13所述的通信设备, 其特征在于, 所述第五确定模块包括: 解调单元, 用于对通过所述两个数据流传送的数据进行解调;
第二获取单元, 用于获取通过所述两个数据流传送的数据的解调性能差异; 第二确定单元, 用于根据通过所述两个数据流传送的数据的解调性能差异, 确定所 述一个数据流的 E-TFCI偏置值。
PCT/CN2010/074883 2009-07-01 2010-07-01 调度授权的分配方法与通信设备 WO2011000320A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10793615.5A EP2437565B1 (en) 2009-07-01 2010-07-01 Methods and communication devices for assigning a scheduling grant
BRPI1015581-3A BRPI1015581B1 (pt) 2009-07-01 2010-07-01 método para atribuir concessão de escalonamento e dispositivo de comunicação
US13/340,376 US8908622B2 (en) 2009-07-01 2011-12-29 Method and communication device for assigning scheduling grant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100880513A CN101938786B (zh) 2009-07-01 2009-07-01 调度授权的分配方法与通信设备
CN200910088051.3 2009-07-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/340,376 Continuation US8908622B2 (en) 2009-07-01 2011-12-29 Method and communication device for assigning scheduling grant

Publications (1)

Publication Number Publication Date
WO2011000320A1 true WO2011000320A1 (zh) 2011-01-06

Family

ID=43391861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074883 WO2011000320A1 (zh) 2009-07-01 2010-07-01 调度授权的分配方法与通信设备

Country Status (5)

Country Link
US (1) US8908622B2 (zh)
EP (1) EP2437565B1 (zh)
CN (1) CN101938786B (zh)
BR (1) BRPI1015581B1 (zh)
WO (1) WO2011000320A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012006716A1 (en) * 2010-07-12 2012-01-19 Smart Technologies Ulc Interactive input system and method
WO2013119938A1 (en) * 2012-02-08 2013-08-15 Qualcomm Incorporated Method and apparatus for e-tfc selection for uplink mimo communication
EP2809125A1 (en) * 2012-03-15 2014-12-03 Huawei Technologies Co., Ltd Scheduling information transmission method, device and communications system
US9380490B2 (en) 2010-11-08 2016-06-28 Qualcomm Incorporated System and method for uplink multiple input multiple output transmission
US9516609B2 (en) 2010-11-08 2016-12-06 Qualcomm Incorporated System and method for uplink multiple input multiple output transmission

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5990193B2 (ja) 2011-01-07 2016-09-07 インターデイジタル パテント ホールディングス インコーポレイテッド 送信ダイバーシティ端末に対する送信パラメータの選択
CN102932095B (zh) * 2011-08-11 2015-06-17 华为技术有限公司 辅流数据块长的确定方法、装置和系统
US9014135B2 (en) * 2012-01-03 2015-04-21 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for link adaptation for single user and multi-user MIMO
CN103200693B (zh) * 2012-01-05 2015-09-30 华为技术有限公司 调度授权处理方法及用户设备
CN102571286B (zh) * 2012-02-02 2015-04-08 华为技术有限公司 传输格式的选择方法及装置
CN102629885B (zh) * 2012-03-15 2015-04-08 华为技术有限公司 一种上行多入多出的单双流选择方法及装置
EP2640145B1 (en) * 2012-03-16 2017-07-26 Alcatel Lucent Multiple-input-multiple-output (MIMO) communication with selection of TBS per stream based on E-DPDCH to DPCCH power ratios
CN103312461B (zh) 2012-03-16 2016-07-06 华为技术有限公司 一种上行多输入多输出系统中传输格式的选择方法及相关方法和设备
CN102711235B (zh) * 2012-05-28 2014-12-17 华为技术有限公司 绝对授权值与信道状态参数的同步控制方法及相关设备
CN102820953B (zh) * 2012-07-13 2015-05-06 华为技术有限公司 E-tfc选择的控制信令的发送、接收方法和相关装置
WO2014019215A1 (zh) * 2012-08-03 2014-02-06 华为技术有限公司 一种多天线技术的调度授权方法和用户设备
WO2014043855A1 (zh) * 2012-09-18 2014-03-27 华为技术有限公司 数据发送、接收方法、用户设备及基站
CN104812044B (zh) * 2014-01-23 2019-06-21 华为技术有限公司 一种发射控制方法、用户设备及基站
KR102250056B1 (ko) * 2014-05-09 2021-05-10 주식회사 아이티엘 D2d 통신을 위한 스케줄링 방법 및 그 장치
CN107079423B (zh) * 2014-10-31 2020-08-07 华为技术有限公司 一种数据传输方法及设备
US10172155B2 (en) * 2015-07-29 2019-01-01 Qualcomm Incorporated Bundling and hybrid automatic repeat request operation for enhanced machine-type communication
JP6462052B2 (ja) * 2017-06-30 2019-01-30 アルカテル−ルーセント 多入力多出力(mimo)通信
CN110807430B (zh) * 2019-11-06 2022-06-21 桂林电子科技大学 一种实况全景交通标志图片预处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026799A (zh) * 2007-03-13 2007-08-29 中兴通讯股份有限公司 一种ue调度授权请求分配及提高hsupa调度性能的方法
CN101141779A (zh) * 2007-10-12 2008-03-12 中兴通讯股份有限公司 一种多载波hsupa的调度授权方法及其装置
WO2008097019A1 (en) * 2007-02-06 2008-08-14 Lg Electronics Inc. Method of transmitting and receiving data in wireless communication system
WO2009045026A2 (en) * 2007-10-02 2009-04-09 Lg Electronics Inc. Method of allocating uplink radio resource

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8331878B2 (en) * 2006-10-02 2012-12-11 Koninklijke Philips Electronics N.V. Efficient CQI signaling MIMO systems with variable numbers of beams
US20080107197A1 (en) * 2006-11-07 2008-05-08 Innovative Sonic Limited Method and apparatus for setting transmission grant of a multi-input multi-output user equipment in a network of a wireless communications system
JP5165397B2 (ja) * 2008-01-16 2013-03-21 株式会社エヌ・ティ・ティ・ドコモ 無線基地局
US8594155B2 (en) * 2009-01-06 2013-11-26 Qualcomm Incorporated Multi-carrier transmitter design on adjacent carriers in a single frequency band on the uplink in W-CDMA/HSPA
US9130698B2 (en) * 2009-05-21 2015-09-08 Qualcomm Incorporated Failure indication for one or more carriers in a multi-carrier communication environment
US8571488B2 (en) * 2010-04-09 2013-10-29 Interdigital Patent Holdings, Inc. Power control for closed loop transmit diversity and MIMO in uplink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008097019A1 (en) * 2007-02-06 2008-08-14 Lg Electronics Inc. Method of transmitting and receiving data in wireless communication system
CN101026799A (zh) * 2007-03-13 2007-08-29 中兴通讯股份有限公司 一种ue调度授权请求分配及提高hsupa调度性能的方法
WO2009045026A2 (en) * 2007-10-02 2009-04-09 Lg Electronics Inc. Method of allocating uplink radio resource
CN101141779A (zh) * 2007-10-12 2008-03-12 中兴通讯股份有限公司 一种多载波hsupa的调度授权方法及其装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012006716A1 (en) * 2010-07-12 2012-01-19 Smart Technologies Ulc Interactive input system and method
US9380490B2 (en) 2010-11-08 2016-06-28 Qualcomm Incorporated System and method for uplink multiple input multiple output transmission
US9516609B2 (en) 2010-11-08 2016-12-06 Qualcomm Incorporated System and method for uplink multiple input multiple output transmission
WO2013119938A1 (en) * 2012-02-08 2013-08-15 Qualcomm Incorporated Method and apparatus for e-tfc selection for uplink mimo communication
US8842542B2 (en) 2012-02-08 2014-09-23 Qualcomm Incorporated Method and apparatus for scheduling resources for uplink MIMO communication
CN104094532A (zh) * 2012-02-08 2014-10-08 高通股份有限公司 用于上行链路mimo通信的e-tfc选择的方法和装置
JP2015511464A (ja) * 2012-02-08 2015-04-16 クアルコム,インコーポレイテッド アップリンクmimo通信のためのe−tfc選択のための方法および装置
US9055604B2 (en) 2012-02-08 2015-06-09 Qualcomm Incorporated Method and apparatus for E-TFC selection for uplink MIMO communication
US9497773B2 (en) 2012-02-08 2016-11-15 QUALOCOMM Incorporated Method and apparatus for enhancing resource allocation for uplink MIMO communication
EP2809125A1 (en) * 2012-03-15 2014-12-03 Huawei Technologies Co., Ltd Scheduling information transmission method, device and communications system
EP2809125A4 (en) * 2012-03-15 2015-01-14 Huawei Tech Co Ltd PLANNING INFORMATION TRANSMISSION METHOD, DEVICE AND COMMUNICATION SYSTEM

Also Published As

Publication number Publication date
EP2437565A1 (en) 2012-04-04
US20120099548A1 (en) 2012-04-26
CN101938786A (zh) 2011-01-05
CN101938786B (zh) 2013-03-20
BRPI1015581A2 (pt) 2016-04-26
US8908622B2 (en) 2014-12-09
BRPI1015581B1 (pt) 2021-01-26
EP2437565B1 (en) 2013-12-25
EP2437565A4 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2011000320A1 (zh) 调度授权的分配方法与通信设备
KR101939052B1 (ko) 무선 자원 할당 방법 및 이를 수행하는 무선 자원 할당 장치
JP5764239B2 (ja) Cqi取得方法、基地局装置及び集積回路
KR101943670B1 (ko) 단일 및 다중 클러스터 전송을 위한 자원 할당
JP5059982B1 (ja) 移動通信システムにおけるアップリンクリソースの割当て
JP4711750B2 (ja) 移動通信システム、移動局及び基地局並びに通信制御方法
US9736849B2 (en) Method and apparatus for managing client initiated transmissions in multiple-user communication schemes
TWI499261B (zh) 高速封包存取演進及長期演進系統中以服務品質為基礎之資源決定及配置裝置及方法
JP4965642B2 (ja) 無線通信システムにおける高速アクセスのための装置および方法
EP3723317A2 (en) Multiplexing method of uplink control information (uci) for ultra-reliable and low latency communications (urllc)
KR101540372B1 (ko) 무선 근거리 통신망에서 역방향 프로토콜 전송을 위한 방법 및 장치
TW201210380A (en) Communication device and method thereof
WO2012079517A1 (zh) 一种资源调度的方法、装置和基站
JP2009525644A5 (zh)
Lee Using OFDMA for MU-MIMO user selection in 802.11 ax-based Wi-Fi networks
CN107006025B (zh) 用于设备到设备的混合自动重复请求进程管理的方法和装置
WO2012142811A1 (zh) 物理下行共享信道的调度方法及装置
WO2012068905A1 (zh) Comp模式下信道信息反馈的方法和系统
TW200830916A (en) Efficient uplink operation with high instantaneous data rates
EP2198532A1 (en) Tpc command signaling in dl control channel - identifying the target and limiting blind decoding
WO2011082533A1 (zh) 一种多载波通信的方法
JP2019145859A (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2013113254A1 (zh) 一种调度用户终端上行数据速率的方法和装置
KR101284743B1 (ko) 업링크중 재전송 판정에 사용되는 방법 및 장치
WO2017211276A1 (zh) 实体管理方法、mac实体、系统及计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793615

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 9965/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010793615

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1015581

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1015581

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111230