WO2010150550A1 - Optical element, illumination apparatus, exposure apparatus, and method for manufacturing device - Google Patents

Optical element, illumination apparatus, exposure apparatus, and method for manufacturing device Download PDF

Info

Publication number
WO2010150550A1
WO2010150550A1 PCT/JP2010/004232 JP2010004232W WO2010150550A1 WO 2010150550 A1 WO2010150550 A1 WO 2010150550A1 JP 2010004232 W JP2010004232 W JP 2010004232W WO 2010150550 A1 WO2010150550 A1 WO 2010150550A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical element
substrate
exposure
mask
Prior art date
Application number
PCT/JP2010/004232
Other languages
French (fr)
Japanese (ja)
Inventor
菊池牧子
瀧優介
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2011519608A priority Critical patent/JPWO2010150550A1/en
Publication of WO2010150550A1 publication Critical patent/WO2010150550A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation

Definitions

  • the present invention relates to an optical element, an illumination apparatus, an exposure apparatus, and a device manufacturing method.
  • the exposure apparatus is provided with an integrator sensor that detects the amount of illumination light divided by a half mirror or the like provided in the illumination optical system. Further, an ND (darkening) filter that reduces the energy density of the illumination light in accordance with the light reception allowable range of the integrator sensor is provided between the integrator sensor and the half mirror that divides the illumination light.
  • ND darking
  • An object according to the present invention is to provide a low-reflection optical element, and an illumination apparatus, an exposure apparatus, and a device manufacturing method using the optical element.
  • the optical element according to an aspect of the present invention includes a carbon nanotube aggregate in a region irradiated with light.
  • An illuminating device is an illuminating device that illuminates an object with light emitted from a light source, and includes an optical element to which light from the light source is supplied. It has an element.
  • An illuminating device is an illuminating device that illuminates an object with light emitted from a light source, and includes the optical element in the vicinity of an optical path of light from the light source.
  • An illuminating device is an illuminating device that illuminates an object with light emitted from a light source, and includes the optical element described above and a measuring device that measures light via the optical element.
  • a detection device is provided.
  • An exposure apparatus is an exposure apparatus that illuminates a mask with exposure light and exposes a substrate with the exposure light from the mask.
  • a lighting device is provided.
  • An exposure apparatus includes: an illumination optical system that illuminates a mask with exposure light; and a projection optical system that projects an image of a mask pattern illuminated with the exposure light onto the substrate. At least one of the optical system and the projection optical system has the optical element described above on the optical path of the exposure light or at a position facing the optical path.
  • a device manufacturing method includes exposing a substrate coated with a photosensitive agent using any of the exposure apparatuses described above and developing the exposed substrate. .
  • a low reflection optical element can be provided. Moreover, according to the aspect of this invention, the illuminating device and exposure apparatus with which stray light was reduced can be provided.
  • FIG. 1 is a perspective view showing an optical element according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the optical element shown in FIG.
  • a CNT layer 102 made of a carbon nanotube aggregate oriented substantially perpendicular to the surface 101a is formed on one surface 101a of a substrate 101.
  • a substrate made of an arbitrary material can be used.
  • quartz glass, silicon single crystal, various ceramics or metal substrates can be used.
  • the material of the substrate may be appropriately selected according to the function required for the optical element.
  • ND darking
  • a transparent substrate such as quartz glass is used as the substrate 101.
  • the substrate 101 does not need to be transparent, and a substrate made of silicon, ceramics, metal, or the like can be used.
  • the CNT layer 102 is composed of carbon nanotubes (aggregate of carbon nanotubes) that stand on the surface 101a of the substrate 101 with high density.
  • the CNT layer 102 may be formed by directly growing carbon nanotubes on the substrate 101, or may be formed by bonding a carbon nanotube aggregate formed using another substrate to the substrate 101. .
  • the CNT layer 102 may be formed on both surfaces of the substrate 101 or may be partially formed on the surface 101a.
  • the orientation direction of the aggregate of carbon nanotubes is not limited to the normal direction of the surface 101a, and can be any direction.
  • the CNT layer 102 may include a plurality of aggregates of carbon nanotubes having different orientation directions.
  • the CNT layer 102 is composed of an aggregate of carbon nanotubes, it is black and excellent in light absorption, and extremely low transmittance and reflectance can be obtained. This is because the CNT layer 102 has a structure in which a large number of carbon nanotubes are bundled, so that the light irradiated to the CNT layer 102 is absorbed by the carbon nanotubes before reaching the substrate 101. This is probably because of this. That is, the CNT layer 102 exhibits excellent light absorption by absorption being promoted by a structure in which many carbon nanotubes are accumulated in a bundle in addition to absorption by the black carbon nanotubes themselves.
  • the latter action becomes remarkable when the direction in which light enters and the alignment direction of the carbon nanotubes in the CNT layer 102 substantially coincide.
  • the light incident on the CNT layer 102 is reflected and reflected between the carbon nanotubes before reaching the substrate 101. This is considered to be because it is converted into thermal energy every time and attenuates.
  • the optical element 100 can be suitably used as an ND filter or a light absorbing element by utilizing the above light absorbing action by the CNT layer 102.
  • the CNT layer 102 functions as a light amount adjustment film in the ND filter.
  • the transmittance is less than 0.02%
  • an ND filter having an OD (Optical Density) value of about 5 to 6 can be configured.
  • the thickness of the CNT layer 102 is not limited to about 100 ⁇ m.
  • the length can be about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, or longer.
  • the transmittance of the optical element 100 is related to the thickness of the CNT layer 102. By making the CNT layer 102 thinner, the transmittance can be increased and the OD value can be controlled to a desired value. That is, the transmittance (OD value) of the optical element 100 can be controlled by adjusting the length of the carbon nanotubes in the carbon nanotube aggregate constituting the CNT layer 102.
  • the transmittance of the optical element 100 can be adjusted by the area density of the carbon nanotubes constituting the carbon nanotube aggregate.
  • the area density of the carbon nanotubes constituting the aggregate of carbon nanotubes By reducing the area density of the carbon nanotubes constituting the aggregate of carbon nanotubes, the amount of light transmitted through the gaps between the carbon nanotubes can be increased, and the transmittance of the optical element 100 can be increased (the OD value is decreased). it can.
  • the transmittance of the optical element 100 can be decreased (the OD value is increased).
  • the reflectance of the optical element 100 is very low, less than 0.2%, when the length and area density of the carbon nanotubes in the CNT layer 102 are large to some extent and there is almost no gap through which light passes through the CNT layer 102. Become. As an ND filter or a light absorption element, there is almost no advantage of adjusting the reflectance, but when the carbon nanotubes constituting the CNT layer 102 are extremely short or the area density is extremely low, the length of the carbon nanotubes or The reflectance can be adjusted by changing the area density.
  • the optical element 100 becomes a substantially non-reflective and substantially non-transmissive optical element, and the carbon nanotubes Is short or has a small area density, it becomes a substantially non-reflective and substantially semi-transmissive optical element.
  • the CNT layer 102 functions as a light absorption film in the light absorption element.
  • the length and area density of the carbon nanotubes in the CNT layer 102 are appropriately set, thereby obtaining a light absorbing element that exhibits a desired light absorbing action. be able to. That is, as the carbon nanotubes in the CNT layer 102 are lengthened and the area density of the carbon nanotubes is increased, the absorbance of the light absorbing element can be increased.
  • the optical element can be configured as shown in FIG.
  • FIG. 3 is a cross-sectional view showing an optical element according to another embodiment.
  • a metal film 103 is formed between the substrate 101 and the CNT layer 102. Any metal or alloy can be used as the metal film 103, and the film thickness t is not particularly limited. The material, film thickness, and the like of the metal film 103 can be appropriately set according to the use of the optical element 100.
  • the optical element 100 ⁇ / b> A can also be used as an ND filter or a light absorbing element that utilizes the light absorbing action of the CNT layer 102, similarly to the optical element 100 illustrated in FIGS. 1 and 2.
  • the optical element 100 ⁇ / b> A is used as an ND filter
  • chromium or the like conventionally used for ND filters can be used as the metal film 103.
  • the transmittance (OD value) of the optical element 100 ⁇ / b> A can be adjusted by the film thickness of the metal film 103. That is, the metal film 103 can function as a light amount adjustment film in the ND filter.
  • the metal film 103 can be formed using a conventionally known film formation method such as a sputtering method, the film thickness can be controlled with relatively high accuracy and can be formed to have a uniform film thickness. Therefore, the transmittance can be controlled with higher accuracy than when the transmittance is adjusted by the length or area density of the carbon nanotubes in the CNT layer 102.
  • the CNT layer 102 In the optical element 100A, the CNT layer 102 only needs to have a sufficient function as an antireflection layer. Therefore, the length and area density of the carbon nanotubes constituting the CNT layer 102 are the same as those of the optical element 100 shown in FIG. It can be made smaller.
  • the optical element 100A when used as a light absorbing element, an excellent light absorbing action can be obtained only by the CNT layer 102, so that the metal film 103 hardly requires a light absorbing action. Therefore, as the metal film 103, a film made of any metal or alloy can be formed. However, a metal or alloy that can improve the adhesion strength between the CNT layer 102 and the substrate 101, or a metal that can be used for carbon nanotube growth control. Alternatively, an alloy can be used.
  • FIG. 4 is a cross-sectional view showing an optical element according to another embodiment.
  • an adhesive portion 104 may be formed in order to increase the adhesion strength between the CNT layer 102 and the substrate 101.
  • a resin material or the like can be used for the bonding portion 104, but is not particularly limited as long as the material can fix the CNT layer 102 to the substrate 101.
  • the bonding portion 104 is formed by forming a CNT layer 102 on the substrate 101, applying a resin material or the like from the CNT layer 102 side, and curing the carbon nanotubes constituting the CNT layer 102 on the base end side. be able to. By providing such an adhesive portion, peeling of the CNT layer 102 can be prevented.
  • the bonding portion 104 may fix the entire CNT layer 102, but as shown in FIG. 4, it is formed only on the base end side of the carbon nanotubes that stand on the substrate 101, and the surface of the CNT layer 102 Can be prevented from being formed. This is because when the bonding portion 104 is exposed on the surface of the CNT layer 102, the reflectance of the optical element 100 increases due to reflection of light by a resin material or the like constituting the bonding portion 104.
  • the adhesion part 104 can be formed without a problem also in the optical element 100A shown in FIG. Also in this case, the same effect as the case where the adhesion part 104 is formed in the optical element 100 can be obtained.
  • the optical element 100 can be manufactured by growing carbon nanotubes on a substrate 101 and forming a CNT layer 102 made of a carbon nanotube aggregate on the substrate 101. More specifically, a production method including a catalyst particle forming step, a reduction step, and a CVD step is preferable.
  • the catalyst particle forming step is a step of forming catalyst particles on the substrate.
  • a reduction process is a process of reducing catalyst particles and imparting catalytic activity.
  • the CVD process is a process of growing carbon nanotubes using catalyst particles as a starting point.
  • the substrate 101 is prepared.
  • quartz glass, silicon single crystal, various ceramics and metals can be used as a material of the substrate 101.
  • the size and thickness of the substrate 101 are arbitrary and can be selected according to the use of the optical element 100 to be manufactured.
  • the thickness of the substrate can be 5 mm or less.
  • the thickness of the substrate is not limited to 5 mm or less.
  • the surface shape of the substrate 101 can be processed into a smooth surface having a surface roughness (RMS) of several nm or less in order to form metal catalyst particles having a desired particle diameter. If the substrate 101 is prepared, it is precisely cleaned with a detergent, water, an alcohol solvent or the like under ultrasonic vibration as a pretreatment if necessary. This is for uniformly forming metal catalyst particles having a desired particle diameter.
  • RMS surface roughness
  • a metal that acts as a catalyst for carbon nanotube growth is used as the metal catalyst particles formed on the substrate 101.
  • at least one metal selected from the group consisting of cobalt, molybdenum, nickel, and iron, or an alloy made of these metals can be used.
  • the particle size of the metal catalyst particles is adjusted according to the number of graphene sheet layers of carbon nanotubes to be produced. For example, when producing single-walled carbon nanotubes, a metal catalyst particle group having a particle size of 8 nm or less is formed on the substrate 101.
  • a metal catalyst particle group having a particle size of 8 nm or more and 11 nm or less (preferably more than 8 nm and 11 nm or less) is formed on the substrate 101.
  • the particle size of the metal catalyst particle group is not limited to 8 nm or less or 11 nm or less.
  • a first method for forming metal catalyst particles having a desired particle diameter on the substrate 101 is a method using magnetron sputtering.
  • the substrate 101 is stored in a film forming chamber of a magnetron sputtering apparatus and evacuated to a high vacuum.
  • a rare gas such as argon gas is introduced into the film formation chamber, and the pressure is adjusted to a range of 0.1 Pa to 3 Pa.
  • a target made of the above-described metal or alloy is used as a target, and sputtering is performed by applying a negative high voltage to the target.
  • Monoatomic or cluster-sized metal catalyst particles released from the target surface by sputtering adhere to a substrate disposed opposite to the target.
  • the particle size of the metal catalyst particles on the surface of the substrate 101 can be adjusted by sputtering conditions, and the particle size can be reduced as the power input to the target is reduced and the discharge time is shortened.
  • the power density can be adjusted in the range of 0.2 to 1 W / cm 2 and the discharge time can be adjusted in the range of 1 second to several tens of seconds.
  • the distribution (variation) of the particle diameter of the metal catalyst particles can be adjusted by the discharge time. That is, as the discharge time is shortened, the particle size variation can be reduced, and by selecting an appropriate discharge time, the particle size variation can be controlled to a predetermined value or less.
  • aluminum may be formed on the substrate 101 as the base structure of the metal catalyst particles.
  • Aluminum tends to form an island-shaped structure having a uniform particle size at the initial stage of film formation. By appropriately adjusting the film formation speed, the film formation time, and the like, an island structure having a desired particle size can be easily formed on the substrate. If the metal catalyst particles are formed on such an aluminum base structure, the metal catalyst particles are aggregated only on the aluminum base structure when the metal catalyst particles are heated, and agglomerate beyond the aluminum base structure. None will happen. Therefore, metal catalyst particles having a particle size larger than that of the aluminum base structure are not generated, and carbon nanotubes having a desired property can be easily formed.
  • aluminum is more easily oxidized than cobalt and iron constituting the metal catalyst particles, aluminum is preferentially oxidized in the process of growing carbon nanotubes, thereby preventing deactivation due to oxidation of the metal catalyst particles, It is possible to prevent defects in the growth of carbon nanotubes.
  • the base structure is not limited to the above-described aluminum as long as it is a substance that can form an island-shaped structure on the substrate. Moreover, you may use substances other than aluminum in order to prevent the oxidation of a metal catalyst particle.
  • particles (aggregation-inhibiting particles) for preventing aggregation of the metal catalyst particles may be formed on the substrate 101.
  • the metal catalyst particles an alloy of a catalyst substance that acts as a catalyst for promoting carbon nanotube growth and an aggregation inhibitor that prevents aggregation of the metal catalyst particles may be used.
  • at least one metal selected from the group consisting of cobalt, nickel, iron and the like can be used as the catalyst substance.
  • a refractory metal having a melting point of 1500 ° C. or higher can be used.
  • obstacle particles may be disposed on the substrate 101 in order to adjust the deposition density of the metal catalyst particles on the substrate 101 and thereby control the growth density of the carbon nanotubes.
  • inorganic compound particles are preferable.
  • the inorganic compounds it is more preferable to use a high-melting-point inorganic compound that hardly causes a chemical reaction with the catalyst substance constituting the metal catalyst particles.
  • the particle diameter of the obstacle particles is not particularly limited and is appropriately selected according to the desired precipitation density of the metal catalyst particles, but is preferably in the range of 2 nm to 50 nm.
  • a second method for forming metal catalyst particles having a predetermined particle diameter on the substrate 101 is a dip coating method.
  • the dip coating method is a method in which the substrate is immersed in a solution containing metal ions and then pulled up, and the solvent is removed to deposit metal catalyst particles on the substrate.
  • a solution used for the dip coating method a solution in which a salt (such as acetate, nitrate, chloride) containing a metal to be precipitated is dissolved in a solvent such as ethanol, acetone, water, or the like can be used.
  • a salt such as acetate, nitrate, chloride
  • a solvent such as ethanol, acetone, water, or the like
  • the particle size can be controlled by adjusting the pulling speed of the substrate 101.
  • the pulling speed of the substrate 101 also affects the particle size distribution (variation). In order to reduce the variation in the particle diameter, it is effective to reduce the pulling rate of the substrate 101. Therefore, the pulling speed of the substrate 101 is adjusted so that the particle size and, if necessary, the variation in the particle size become a predetermined value.
  • the magnetron sputtering method and the dip coating method described above it is possible to form metal catalyst particles having a desired particle diameter by shortening the deposition time in a vacuum film forming process such as vacuum deposition.
  • the surface of the metal catalyst particles formed on the substrate 101 is often oxidized, and it is difficult to grow carbon nanotubes uniformly as it is. Therefore, metal catalyst particles are reduced before carbon nanotube growth.
  • the surface of the metal catalyst particles is performed by storing the substrate on which the metal catalyst particles are formed in a reaction furnace and heating the metal fine particles to a predetermined reduction reaction temperature with the inside of the reaction furnace as a reducing atmosphere.
  • a reducing gas such as hydrogen gas, diluted hydrogen gas, or carbon monoxide gas is introduced into the reaction furnace.
  • hydrogen concentration is 1 volume% or more.
  • the pressure in the reactor is not particularly limited, and can be appropriately set within a range of 0.1 Pa to 10 5 Pa.
  • the reduction temperature is 300 ° C. or higher, the surface of the metal catalyst particles can be reduced.
  • a reduction temperature is 400 degrees C or less from a viewpoint of preventing aggregation of a metal catalyst particle. That is, when the reduction temperature is set to 300 ° C. or more and 400 ° C. or less, the reduction reaction can be sufficiently advanced without aggregating the metal catalyst particles, and the carbon nanotube aggregate having a desired property can be easily formed.
  • the holding time at the reduction temperature in the reduction step is preferably 480 seconds or more, and more preferably 600 seconds or more. If the holding time is too short, the surface of the metal catalyst particles is not sufficiently reduced, and as a result, the growth of the carbon nanotubes may be insufficient.
  • ⁇ CVD process> After reducing the surface of the metal catalyst particles by the reduction step, carbon nanotubes are grown on the substrate 101 using this as a catalyst. It is preferable that the reduction process and the carbon nanotube growth process are continuously performed in the same apparatus. This is because when the metal catalyst particles whose surfaces have been reduced are exposed to an oxidizing atmosphere such as air, the surfaces of the metal catalyst particles are oxidized again, the catalytic activity is lowered, and it becomes difficult to grow desired carbon nanotubes. In order to grow the carbon nanotubes on the metal catalyst particles, the metal catalyst particles are heated to a predetermined reaction temperature and brought into contact with the organic compound vapor.
  • FIG. 5 is a diagram showing a carbon nanotube aggregate production apparatus that can be suitably used in the carbon nanotube aggregate production process of the present embodiment.
  • the manufacturing apparatus shown in FIG. 5 includes a reaction furnace 11, a raw material container 21 that contains the raw material supplied to the reaction furnace 11, and a reducing gas that supplies a reducing gas and an inert gas to the reaction furnace 11 and the raw material container 21.
  • a supply unit 1 and an inert gas supply unit 2, an exhaust device 19 connected to the reaction furnace 11, and a control device 17 that controls the operating state of the reaction furnace 11 are provided.
  • a furnace core tube 14 capable of evacuation and gas replacement is disposed.
  • a radiant heater 12 having a peak of the energy spectral distribution in the wavelength range of 1.0 ⁇ m to 1.7 ⁇ m is provided outside the furnace core tube 14.
  • the substrate 101 on the substrate holder 15 disposed inside the core tube 14 can be uniformly and rapidly heated by the radiation heater 12.
  • the radiant heater 12 is preferably an infrared furnace.
  • the temperature of the substrate 101 is measured by the thermometer 18, and the power supplied to the radiation heater 12 is controlled by the control device 17 so as to be a predetermined temperature programmed in advance.
  • a reducing gas supply unit 1 and an inert gas supply unit 2 are provided outside the reaction furnace 11, and the gas supplied from each is supplied to the manufacturing apparatus via the valve 3 and the valve 4.
  • Each gas flow rate is controlled to be constant by a flow rate control mechanism 1a, 2a provided with a mass flow controller or the like.
  • the reducing gas and the inert gas are supplied into the raw material container 21 through the valve 5.
  • the raw material container 21 is configured to be heated and held at a predetermined temperature by the heater 8 and the water bath 9, and can generate the vapor of the raw material 10 accommodated therein at a constant vapor pressure.
  • the raw material vapor generated inside the raw material container 21 can independently control the supply amounts of reducing gas, inert gas, and organic compound vapor supplied through the valve 5.
  • Each of the gases supplied to the core tube 14 is used for the reduction reaction of the metal catalyst particles on the substrate 101 disposed in the core tube 14 or the carbon nanotube growth reaction on the metal catalyst particles.
  • the contained exhaust gas is discharged out of the system through an exclusion device 20 such as a cold trap and an exhaust device 19 such as an oil rotary pump. Note that the manufacturing apparatus having the configuration shown in FIG. 5 can continuously perform a reduction process for reducing the surface of the metal catalyst particles and a CVD process for growing carbon nanotubes.
  • the metal catalyst particles are heated to a predetermined reaction temperature.
  • the reaction temperature varies depending on the type of catalyst and the type of organic compound used as a raw material. For example, when ethanol is used as a raw material, it is about 600 ° C. to 1000 ° C., and when methane is used as a raw material, it is about 700 ° C. to 1200 ° C. It is preferable.
  • the reaction temperature is lower than 500 ° C., the growth of amorphous carbon becomes dominant, resulting in a problem that the yield of carbon nanotubes is lowered.
  • the reaction temperature is set to a temperature higher than 1300 ° C.
  • a material that can withstand high temperatures must be used as the constituent material of the substrate 101 and the reaction furnace 11, which increases the restrictions on the apparatus. Therefore, the reaction temperature is preferably 500 ° C. or higher, more preferably 1300 ° C. or lower.
  • the atmosphere during the temperature rise may be a reducing atmosphere or an inert gas atmosphere such as a rare gas.
  • the radiant heater 12 having the peak of the energy spectral distribution in the wavelength range of 1.0 ⁇ m to 1.7 ⁇ m is provided as a means for obtaining a necessary temperature increase rate. By using this radiation heater 12, it becomes possible to rapidly heat the metal catalyst particles to be heated and the substrate 101 on which the metal catalyst particles are formed.
  • a control device is provided so that a predetermined temperature increase rate can be obtained by measuring the temperature of the surface of the substrate 101 on which the metal catalyst particles are formed (the surface having the metal catalyst particles) with a thermometer 18 equipped with a thermocouple or the like.
  • the radiant heater 12 is controlled by 17. Since the metal catalyst particles are fine particles, the heat capacity is very small, and since the metal catalyst particles are metal, the heat conductivity is high. Therefore, the temperature of the metal catalyst particles can be regarded as almost the same as the surface temperature of the substrate 101. Therefore, the temperature of the metal catalyst particles can be controlled by the above control method. Even when the metal catalyst particles are formed on both surfaces of the substrate 101, it is sufficient to measure the temperature of one surface of the substrate 101 if the temperatures of both surfaces of the substrate 101 can be regarded as substantially equal.
  • an organic compound vapor serving as a carbon nanotube raw material is introduced into the core tube 14 of the reaction furnace 11.
  • the organic compound used as a raw material for the carbon nanotube is at least one compound selected from the group consisting of methane, ethane, propane, butane, ethylene, and acetylene, which are linear hydrocarbons, or a linear monohydric alcohol At least one compound selected from the group consisting of methanol, ethanol and propanol, or at least one compound selected from the group consisting of aromatic hydrocarbons such as benzene, naphthalene, anthracene, and derivatives thereof Compounds can be used. In addition to these compounds, organic compounds capable of generating carbon nanotubes on metal catalyst particles can be used as raw materials.
  • the carbon nanotubes When the organic compound vapor is introduced into the reaction furnace 11, if the temperature of the metal catalyst particles reaches a predetermined reaction temperature, the carbon nanotubes immediately start to grow. After carbon nanotubes begin to grow, the surface of the metal catalyst particles is covered with raw material compounds, carbon, and reaction intermediates, so that even if the reaction temperature exceeds 450 ° C, the aggregation of the metal catalyst particles further proceeds. Rather, the particle size at the start of growth is maintained. Therefore, the carbon nanotubes having the number of graphene sheet layers corresponding to the particle diameter of the metal catalyst particles at the start of growth grow continuously.
  • the supply of the organic compound vapor is stopped, and the carbon nanotubes are formed on the surface after the reaction furnace 11 is returned to room temperature.
  • the substrate 101 is taken out.
  • the optical element 100 having the carbon nanotube aggregate formed on the surface of the substrate 101 can be manufactured.
  • a metal film forming step for forming the metal film 103 on the substrate 101 is provided prior to the catalyst particle forming step in the manufacturing process of the optical element 100.
  • a metal film forming step for example, a chromium film is formed with a predetermined film thickness on the substrate 101 by magnetron sputtering.
  • the catalyst particle formation process, the reduction process, and the CVD process after the metal film formation process are the same as the manufacturing process of the optical element 100 described above.
  • the optical element according to the above-described embodiment can be suitably used as a constituent member of the exposure apparatus.
  • an exposure apparatus according to an embodiment will be described in detail with reference to FIG.
  • FIG. 6 is a view showing an exposure apparatus to which the optical element can be applied.
  • the exposure apparatus EX is a scanning exposure apparatus (so-called scanning stepper) that exposes the image of the pattern PA formed on the mask M onto the substrate P while moving the mask M and the substrate P synchronously in the scanning direction.
  • the exposure apparatus EX includes a mask stage MST that is movable while holding the mask M, a substrate stage PST that is movable while holding the substrate P, and illumination optics that illuminates the mask M held on the mask stage MST with the exposure light EL.
  • the substrate includes a substrate in which a photosensitive material (resist) is coated on a base material such as a semiconductor wafer, and the mask includes a reticle on which a device pattern to be reduced and projected is formed on the substrate.
  • a transmissive mask is used as a mask, but a reflective mask can also be used.
  • the synchronous movement direction (scanning direction) of the mask M and the substrate P in the horizontal plane is the Y-axis direction
  • the direction orthogonal to the Y-axis direction in the horizontal plane is the X-axis direction (non-scanning direction)
  • the X-axis is defined as a Z-axis direction
  • the rotation (inclination) directions around the X, Y, and Z axes are the ⁇ X, ⁇ Y, and ⁇ Z directions, respectively.
  • the exposure apparatus EX is an immersion exposure apparatus to which an immersion method is applied in order to improve the resolution by substantially shortening the exposure wavelength and substantially increase the depth of focus.
  • a liquid immersion mechanism 210 that fills the optical path space K of the exposure light EL on the image plane side with the liquid LQ is provided.
  • the exposure apparatus EX fills the optical path space K of the exposure light EL with the liquid LQ by using the liquid immersion mechanism 210 while exposing at least the pattern image of the mask M to the substrate P.
  • the exposure apparatus EX irradiates the substrate P with the exposure light EL that has passed through the mask M via the projection optical system PL and the liquid LQ filled in the optical path space K, whereby the image of the pattern PA of the mask M is formed on the substrate. P is exposed.
  • the liquid LQ filled in the optical path space K is larger than the projection area AR in a part of the area on the substrate P including the projection area AR of the projection optical system PL.
  • a local liquid immersion method is adopted in which the liquid immersion region LR of the liquid LQ smaller than P is locally formed.
  • pure water is used as the liquid LQ.
  • the illumination optical system 230 includes an optical system housing 230H as a housing for housing various optical devices, a light source device 231 that emits exposure light EL as a laser beam, and a cross section of exposure light (laser beam) EL emitted from the light source device 231.
  • the first and second relay lenses 238A, 238B constituting Blind apparatus 250 for setting the irradiation area (illumination area) IA of the exposure light EL on the mask M, the condenser lens 240, a photodetector 260, and the like.
  • a beam shaping optical system 232 In the optical system housing 230H, a beam shaping optical system 232, an energy adjuster 233, a mirror 234, an optical integrator 235, an aperture stop 236, a relay lens system 238, a blind device 250, a condenser lens 240, and the like are housed.
  • the light source device 231 includes an excimer laser light source.
  • exposure light (laser beam) EL emitted from the light source device 231 far ultraviolet light (DUV light) such as KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength 193 nm), and F2 laser light (wavelength) Vacuum ultraviolet light (VUV light) such as 157 nm) is used.
  • DUV light far ultraviolet light
  • ArF excimer laser light such as KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength 193 nm), and F2 laser light (wavelength) Vacuum ultraviolet light (VUV light) such as 157 nm)
  • an ArF excimer laser light source is used as the light source device 231
  • ArF excimer laser light is used as the exposure light EL.
  • the exposure light EL (laser beam) emitted from the light source device 231 is not only KrF excimer laser light, ArF excimer laser light, and F2 laser light, but also bright lines (g line, h line) emitted from a mercury lamp. , I-line) or the like.
  • the exposure light (laser beam) EL emitted from the light source device 231 enters the beam shaping optical system 232.
  • the beam shaping optical system 232 shapes the cross-sectional shape of the exposure light EL so that the exposure light EL emitted from the light source device 231 efficiently enters the optical integrator 235.
  • a cylindrical lens or a beam expander is used. Etc.
  • the exposure light EL that has passed through the beam shaping optical system 232 enters the energy adjuster 233.
  • the energy adjuster 233 adjusts the energy of the exposure light EL emitted from the energy adjuster 233.
  • the energy adjuster 233 includes a plurality of ND filters F0 to F2 disposed on the rotatable revolver Rv and having different transmittances for the exposure light EL. More specifically, the revolver Rv is configured to be rotatable about the rotation axis O, and the revolver Rv includes a plurality of ND filters F0, F1, and F2 having different transmittances (dimming rates) at equal angular intervals in the circumferential direction. Is arranged.
  • the energy adjuster 233 rotates the revolver Rv to switch the ND filters F0 to F2 arranged on the optical path of the exposure light EL, thereby changing the energy of the exposure light EL emitted from the energy adjuster 233 in a plurality of stages. Can be adjusted.
  • the revolver Rv may be formed with a through hole through which the exposure light EL passes, and may have two or less or four or more ND filters.
  • the exposure light EL emitted from the energy adjuster 233 is bent in its optical path by the mirror 234 and is incident on the optical integrator 235.
  • the optical integrator 235 makes the illuminance of the exposure light EL on the mask M uniform, and forms a large number of secondary light sources from the exposure light EL incident through the mirror 234.
  • the exposure light EL that has been emitted from the optical integrator 235 and passed through the aperture stop 236 is branched in two directions by a beam splitter 237 that has low reflectance and high transmittance.
  • the exposure light EL that has passed through the beam splitter 237 passes through the blind device 250 via the first relay lens 238A.
  • the blind device 250 is provided on the optical path of the exposure light EL, and determines an irradiation area (illumination area) IA of the exposure light EL on the mask M and an irradiation area (projection area) AR of the exposure light EL on the substrate P. It can be adjusted.
  • the blind device 250 is disposed in the vicinity of the conjugate plane with respect to the plane of the pattern PA of the mask M.
  • the blind device 250 is configured by combining a plurality of movable blades 252 and includes a plurality of linear motors 255 that drive the plurality of movable blades 252.
  • These movable blades 252 form an opening 250K for setting an irradiation area (illumination area) IA of the exposure light EL on the mask M on the optical path of the exposure light EL.
  • the opening 250K has a rectangular shape, and the irradiation area (illumination area) IA of the exposure light EL on the mask M and the irradiation area (projection area) AR of the exposure light EL on the substrate P are set to be rectangular.
  • the irradiation area (illumination area) IA of the exposure light EL on the mask M the irradiation area (projection area) AR of the exposure light EL on the substrate P is also set.
  • the control device 207 adjusts the size of the opening 250 ⁇ / b> K by driving the movable blade 252 via the linear motor 255 of the blind device 250.
  • the size of the opening 250K of the blind device 250 By adjusting the size of the irradiation area (illumination area) IA of the exposure light EL on the mask M and the projection area (irradiation area) of the exposure light EL on the substrate P The size of AR can be adjusted.
  • the control device 207 drives the movable blade 252 using the linear motor 255 of the blind device 250, so that the control device 207 in the direction corresponding to each of the scanning direction (Y-axis direction) and the non-scanning direction (X-axis direction).
  • the width and position of the opening 250K can be adjusted.
  • the control device 207 controls the irradiation area (illumination area) IA on the mask M of the exposure light EL in the scanning direction (Y-axis direction) and the non-scanning direction (X-axis direction), and the substrate P.
  • the size of the irradiation area (projection area) AR can be adjusted.
  • the exposure light EL that has passed through the blind device 250 illuminates the rectangular illumination area IA on the mask M held on the mask stage MST with a uniform illuminance distribution via the second relay lens 238B and the condenser lens 240.
  • the exposure light EL reflected by the beam splitter 237 is guided to the light detection device 260 and used for energy measurement.
  • the light detection device 260 includes a condenser lens 241, a measuring instrument (measuring device) 242, an ND filter 243, a sensor housing 260H that accommodates these, and the like.
  • the exposure light EL reflected by the beam splitter 237 is collected by the condenser lens 241, then enters the measuring instrument 242 (measuring device) via the ND filter 243, and is measured by the measuring instrument 242.
  • the measuring instrument 242 measures the energy of the exposure light EL, and is composed of, for example, a photoelectric conversion element.
  • the measurement signal of the measuring instrument 242 is output to the control device 207.
  • the mask stage MST holds the mask M on the mask table 203 and is driven by a mask stage driving device 203D including an actuator such as a linear motor, so that the mask table 203 is moved on the base member 203B by the X axis, Y axis, and It can move in the ⁇ Z direction.
  • Position information of the mask table 203 (and thus the mask M) is measured by the laser interferometer 203L.
  • the laser interferometer 203L measures the position information of the mask table 203 using a reflecting mirror 203K provided on the mask table 203.
  • the control device 207 drives the mask stage driving device 203D based on the measurement result of the laser interferometer 203L, and controls the position of the mask M held on the mask table 203.
  • the projection optical system PL projects an image of the pattern PA of the mask M onto the substrate P at a predetermined projection magnification, and has a plurality of optical elements, and these optical elements are held by a lens barrel PK. Yes.
  • the projection optical system PL of the present embodiment is a reduction system whose projection magnification is, for example, 1/4, 1/5, 1/8 or the like. Note that the projection optical system PL may be either an equal magnification system or an enlargement system.
  • the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element.
  • the projection optical system PL may form either an inverted image or an erect image. Of the plurality of optical elements of the projection optical system PL, only the final optical element FL closest to the image plane of the projection optical system PL is in contact with the liquid LQ in the optical path space K.
  • the substrate stage PST can move the substrate table 204 on the base member 205 in the direction of 6 degrees of freedom while holding the substrate P on the substrate table 204.
  • the substrate table 204 has six degrees of freedom in the X-axis, Y-axis, Z-axis, ⁇ X, ⁇ Y, and ⁇ Z directions while holding the substrate P by driving a substrate stage driving device 204D including an actuator such as a linear motor. It can move in the direction.
  • the position information of the substrate table 204 (and thus the substrate P) is measured by the laser interferometer 204L.
  • the laser interferometer 204L uses the reflecting mirror 204K provided on the substrate table 204 to measure position information regarding the X axis, the Y axis, and the ⁇ Z direction of the substrate table 204. Further, surface position information (position information regarding the Z-axis, ⁇ X, and ⁇ Y directions) of the surface of the substrate P held on the substrate table 204 is detected by a focus / leveling detection system (not shown).
  • the control device 207 drives the substrate stage driving device 204D based on the measurement result of the laser interferometer 204L and the detection result of the focus / leveling detection system, and controls the position of the substrate P held on the substrate table 204.
  • the liquid immersion mechanism 210 is provided at a position facing the final optical element FL of the projection optical system PL through which the exposure light EL passes, and the substrate P held on the substrate table 204, and located at a position facing the final optical element FL.
  • the space K is filled with the liquid LQ.
  • the liquid LQ that fills the optical path space K contacts the lower surface FLA of the final optical element FL, and the exposure light EL passes through the lower surface FLA of the final optical element FL.
  • the liquid immersion mechanism 210 is provided in the vicinity of the optical path space K, and includes a nozzle member 225, a supply pipe 213, and a nozzle member 225 having a supply port for supplying the liquid LQ to the optical path space K and a recovery port for recovering the liquid LQ.
  • a liquid supply device 211 that supplies the liquid LQ through the supply port, a recovery port of the nozzle member 225, a liquid recovery device 221 that recovers the liquid LQ through the recovery pipe 223, and the like are provided. Inside the nozzle member 225, a flow path connecting the supply port and the supply pipe 213 and a flow path connecting the recovery port and the recovery pipe 223 are formed. The operations of the liquid supply device 211 and the liquid recovery device 221 are controlled by the control device 207.
  • the liquid supply device 211 can deliver a clean and temperature-adjusted liquid LQ, and the liquid recovery device 221 including a vacuum system and the like can recover the liquid LQ.
  • the control device 207 controls the liquid immersion mechanism 210 to perform the liquid supply operation by the liquid supply device 211 and the liquid recovery operation by the liquid recovery device 221 in parallel, so that the optical path space K is filled with the liquid LQ, and the substrate An immersion region LR of the liquid LQ is locally formed in a partial region on P.
  • the optical elements 100 and 100A described above can be applied to a plurality of constituent members.
  • the optical element 100 or the optical element 100A can be used as the ND filter 243 that attenuates the exposure light EL branched from the illumination optical system 230.
  • the ND filter 243 By configuring the ND filter 243 with the optical elements 100 and 100A, reflection of light incident on the ND filter 243 from the condenser lens 241 can be suppressed to an extremely low level. Thereby, it is possible to prevent the light reflected by the ND filter 243 from entering the measuring instrument 242, and to improve the measurement accuracy of the exposure light EL.
  • the optical elements 100 and 100A can be used as light absorbing elements that absorb light scattered from the optical path of the exposure light EL to the surroundings.
  • the optical element 100 or the optical element 100A can be installed on the inner wall 230w of the optical system housing 230H, the inner wall 260w of the sensor housing 260H, and the inner wall PKw of the lens barrel PK.
  • the optical elements 100 and 100A can be installed on the inner wall of the housing or the lens barrel, the scattered light from the optical path can be absorbed by the optical elements 100 and 100A. Thereby, it is possible to prevent the scattered light from being reflected by the inner wall of the housing or the lens barrel and returning to the optical path side.
  • the surface of the substrate 101 is formed by the CVD method.
  • the CNT layer 102 made of carbon nanotubes oriented substantially vertically can be used, and the substrate 101 on which the CNT layer 102 is formed can be used by being disposed on the inner walls 230w, 260w, and PKw. it can.
  • a CNT layer 102 made of carbon nanotubes oriented substantially perpendicular to the substrate surface is formed by CVD on a substrate 101 that can withstand a CVD reaction temperature such as quartz glass.
  • the CNT layer 102 is separated from the substrate 101.
  • a method for separation a method of separating the CNT layer 102 and the substrate 101 by immersing the substrate 101 on which the CNT layer 102 is formed in warm water of about 60 ° C. can be used.
  • a method of separating only the carbon nanotube aggregate (CNT layer 102) in the vertically aligned state to obtain a self-supporting film has been proposed by Maruyama (see Japanese Patent Application Laid-Open No.
  • the optical elements 100 and 100A can be applied to some or all of the ND filters F0, F1, and F2 constituting the energy adjuster 233.
  • the transmittance can be adjusted by changing the length or area density of the carbon nanotubes in the CNT layer 102.
  • the transmittance is also adjusted by the thickness of the metal film 103. Can do. Therefore, the energy adjuster 233 can be suitably used for a plurality of ND filters F0 to F2 having different transmittances, and a low reflection energy adjuster 233 can be configured.
  • the optical elements 100 and 100A are provided on the optical path or at a position facing the optical path.
  • the optical elements 100 and 100A are arranged so that at least the CNT layer 102 is in an inert gas atmosphere. Can be done. Thereby, oxygen and the like in the atmosphere can be reduced, so that it is possible to prevent the carbon nanotubes from being easily damaged or decomposed due to the presence of oxygen or the like when the CNT layer 102 is irradiated with light.
  • the CNT film formed by separating the CNT layer 102 formed on the optical elements 100 and 100A or the substrate 101 of the previous embodiment may be used as another constituent member of the exposure apparatus EX.
  • the illumination optical system 230 of the exposure apparatus EX and the light source device 231 are installed at a distance from each other, and a light routing unit for routing light from the light source device 231 to the illumination optical system 230 is provided
  • the optical elements 100 and 100A and the CNT film may be used for the casing and optical system of the light routing unit.
  • the light source device 231 can be used for a housing and an optical system.
  • the substrate P in the above-described embodiment not only a glass substrate for a display device but also a semiconductor wafer for manufacturing a semiconductor device, a ceramic wafer for a thin film magnetic head, or an original mask (reticle) used in an exposure apparatus ( Synthetic quartz, silicon wafer) or the like is applied.
  • a step-and-scan type scanning exposure apparatus that scans and exposes the substrate P with the exposure light EL through the pattern of the mask M by moving the mask M and the substrate P synchronously.
  • the pattern of the mask M is collectively exposed while the mask M and the substrate P are stationary, and is applied to a step-and-repeat type projection exposure apparatus (stepper) that sequentially moves the substrate P stepwise.
  • the present invention can be applied to a proximity type exposure apparatus, a mirror projection aligner, and the like as the exposure apparatus EX.
  • the present invention also relates to a twin-stage type exposure having a plurality of substrate stages as disclosed in US Pat. No. 6,341,007, US Pat. No. 6,208,407, US Pat. No. 6,262,796, and the like. It can also be applied to devices.
  • the present invention relates to a substrate stage for holding a substrate as disclosed in US Pat. No. 6,897,963, European Patent Application No. 1713113, etc., and a reference mark without holding the substrate.
  • the present invention can also be applied to an exposure apparatus that includes a formed reference member and / or a measurement stage on which various photoelectric sensors are mounted.
  • An exposure apparatus including a plurality of substrate stages and measurement stages can be employed.
  • the type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a liquid crystal display element or a display, but an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate P, a thin film magnetic head, an image sensor (CCD)
  • the present invention can be widely applied to an exposure apparatus for manufacturing a micromachine, MEMS, DNA chip, reticle, mask, or the like.
  • the exposure apparatus EX of the above-described embodiment is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • various electrical systems are Adjustments are made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus.
  • comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
  • the exposure apparatus can be manufactured in a clean room in which temperature, cleanliness, etc. are controlled.
  • a confocal microscope such as that disclosed in Japanese Patent Application Laid-Open No. 11-183806 is used as the ND filter with the optical element including the region where the carbon nanotube aggregate (CNT) is formed. It can be applied to a light control device.
  • a type in which the density changes in the circumferential direction can be adopted.
  • the amount of transmitted light can be selectively adjusted by dividing a plurality of regions in the circumferential direction and arranging ND filters having different CNT concentrations (CNT density or CNT length) for each region. .
  • it can be set as the ND filter which changes a transmitted light quantity continuously by changing CNT density
  • the substrate is on the beam expander side
  • the CNT film is on the laser light source side
  • the CNT fibers are facing the laser light source side.
  • the optical element including a region where a carbon nanotube aggregate (CNT) is formed may be applied as an ND filter to a microscope other than the confocal microscope, such as a fluorescence microscope or a phase contrast microscope. it can.
  • a fluorescence microscope is expected to detect weak light from a biological sample with high sensitivity.
  • the optical element including the region where the carbon nanotube aggregate (CNT) is formed may be used as a light absorption film on the inner wall of the housing of the optical path of the microscope (from the light source to the objective lens). it can.
  • Light absorption film using CNT has low reflectivity for light up to a high incident angle and extremely low wavelength dependence (low reflectivity from ultraviolet to infrared region), so it efficiently absorbs stray light and absorbs noise. Can be reduced.
  • the optical element including a region where a carbon nanotube aggregate (CNT) is formed can be used as a light absorption film on an inner wall of a housing of an optical system of an inspection apparatus such as a microdevice, As the control film formation, it can be applied to an inspection device such as a micro device or a light amount adjusting device of a device that performs measurement and observation by irradiating a sample with light.
  • CNT carbon nanotube aggregate
  • a device such as a semiconductor device, a display device, or an electronic device is manufactured in step 301 for designing the function / performance of the device, in step 302 for manufacturing a mask M based on this design step, and on a substrate P.
  • Step 303 in accordance with the above-described embodiment, the substrate P is exposed with the exposure light EL from the pattern of the mask M to transfer the pattern to the substrate P, and the substrate P to which the pattern is transferred is developed to form a pattern.
  • Device assembly including processing steps for processing the substrate P via the transfer pattern layer, such as a substrate processing step 304 including a development step for forming a transfer pattern layer having a corresponding shape on the substrate P, a dicing step, a bonding step, and a packaging step. It is manufactured through step 305, inspection step 306, and the like.
  • an optical element according to the present invention was manufactured by using a quartz glass substrate, forming an aggregate of carbon nanotubes using aluminum as a base structure and iron-cobalt as a catalyst.
  • a surface-polished quartz glass substrate (20 mm ⁇ 20 mm ⁇ 0.5 mmt) was prepared.
  • the quartz glass substrate was sufficiently cleaned by ultrasonic cleaning in alcohol and cleaning by ultraviolet irradiation.
  • the quartz glass substrate was placed in a film forming chamber of a magnetron sputtering apparatus, and the inside of the film forming chamber was evacuated to a high vacuum of 1 ⁇ 10 ⁇ 4 Pa or less.
  • argon gas was introduced into the film formation chamber, and the pressure was adjusted to 2.1 Pa.
  • plasma is generated by applying a high frequency of 13.56 MHz to the cathode to which the aluminum target is attached, and aluminum is converted into a film thickness of 5 nm in a 15 mm ⁇ 15 mm region of the quartz glass substrate.
  • a film was formed.
  • a high frequency is applied to the cathode to which the iron target is attached to generate plasma, and iron is converted into a film thickness of 1 nm in a region on the quartz glass substrate on which the aluminum film has been formed.
  • Filmed Thereafter, a high frequency is applied to the cathode to which the cobalt target is attached to generate plasma, so that cobalt is converted into a film thickness of 1 nm in a region on the quartz glass substrate on which aluminum and iron are formed.
  • a film was formed.
  • the sputtering film thickness in the catalyst particle forming step will be described.
  • the thickness of each layer formed by the sputtering method is very thin, so it is not actually a continuous film. It becomes a state. Therefore, the sputter film thickness does not match the actual thickness and particle diameter of aluminum, iron, and cobalt, but is a parameter necessary for performing sputtering while controlling the particle diameter.
  • the desired sputter film thickness can be set by the following procedures (1) to (4).
  • Sputter deposition is performed on a spare quartz glass substrate for 100 minutes.
  • the thickness of the thick continuous film obtained by the film formation for 100 minutes is accurately measured by the step measuring device. Although the film thickness varies depending on the film formation conditions and the target type, in this example, the film thickness was in the range of 90 to 120 nm.
  • the desired sputtering film thickness (nm) deposition time (s) ⁇ deposition rate (nm / s) was calculated.
  • the film formation time is set as a sputtering condition.
  • the desired sputter film thickness is derived in advance as a film forming condition suitable for the growth of carbon nanotubes. For example, a plurality of samples having different film thicknesses are prepared for each layer of aluminum, iron, and cobalt, and a carbon nanotube growth step is performed for each sample. Based on these results, the optimum film formation conditions can be set as the target value of the sputter film thickness.
  • the energization of the radiant heater 12 is started while maintaining the internal pressure of the furnace tube 14, and the radiant heater 12 (infrared furnace, manufactured by ULVAC-RIKO Inc., RHL-) is controlled by the controller 17 so that the substrate temperature rises at 5 ° C./sec.
  • the power supplied to P610) was controlled.
  • the substrate temperature reached 400 ° C. this state was maintained for 30 minutes to sufficiently reduce the surface of the iron-cobalt catalyst particles, thereby imparting catalytic activity for carbon nanotube growth.
  • the reaction temperature is continuously heated to 650 ° C. set at the reaction temperature at a heating rate of 1.3 ° C./sec.
  • the valve 5 and the valve 7 are immediately opened to remove ethanol.
  • Ethanol vapor was introduced into the reaction furnace from the filled raw material container 21 to start growing carbon nanotubes.
  • the temperature of the quartz glass substrate is maintained at 650 ° C.
  • the internal pressure of the furnace core tube 14 is maintained at 1.7 kPa, and is maintained for 30 minutes.
  • the supply of hydrogen gas and ethanol vapor is stopped, and the valve 4 is opened.
  • the quartz glass substrate was cooled to room temperature while flowing argon gas through the furnace core tube 14.
  • the formed CNT layer was composed of a large number of carbon nanotubes standing on a quartz glass substrate, and the thickness thereof was about 100 ⁇ m.
  • FIG. 8A is a graph showing the reflectance when the CNT layer of the optical element is irradiated with light
  • FIG. 8B is a graph showing the transmittance.
  • the reflectance is less than 0.2% and the transmittance is 0.015% over the entire wavelength range of 190 nm to 890 nm. All were extremely low values.
  • the OD value when used as an ND filter for ArF excimer laser light was about 5.7.
  • the reflectance of ArF excimer laser light was 0.002%. This reflectance is a remarkably low value with respect to the reflectance (several tens of percent) of the ND filter using a conventionally used chromium film and the reflectance of the quartz glass substrate (7 percent).
  • the OD value was measured using a spectrophotometer “Cary 5” manufactured by Varian.
  • the reflectance was measured using a spectrophotometer “U-4000” manufactured by Hitachi, Ltd.
  • FIG. 9A is a graph showing changes in reflectance when the angle of light incident on the CNT layer of the optical element is changed.
  • FIG. 9B is a schematic diagram illustrating a method of measuring the angle characteristics. As shown in FIG. 9B, in the measurement of the angle characteristics, inspection light having a wavelength of 193.4 nm was incident on the CNT layer of the optical element from the light source 501 at a predetermined angle ⁇ and reflected by the CNT layer. The light is detected by the detector 502. The reflectance R corresponding to the incident angle ⁇ can be calculated from the ratio between the intensity of the light detected by the detector 502 and the intensity of the light emitted from the light source 501.
  • FIG. 9 (a) uses the above-mentioned ellipsometer “VUV-VASE” with an incident angle ⁇ of 10 ° to 80 °. It is a graph which shows the result of having measured the reflectance by changing by 2 degree increments in the range.
  • a low reflectance of less than 0.35% is obtained when the incident angle ⁇ is 80 ° or less, and the incident angle ⁇ is 78 °.
  • a reflectance of less than 0.1% is obtained.
  • the reflectivity is extremely low of almost 0% (below the measurement limit).
  • the incident angle ⁇ is set to 10 ° or more from the specification of the measuring apparatus, but the reflectance at the incident angle of 0 ° is almost 0% as shown in FIG. 8A.
  • the orientation direction of the carbon nanotubes and the incident direction of light are close to each other, and multiple reflection between the carbon nanotubes is likely to occur. Even in the range of from 10 ° to 10 °, the reflectance is almost 0% (below the measurement limit).
  • the produced optical element was continuously irradiated with ArF excimer laser light (frequency: 1400 Hz) having a wavelength of 193 nm under the conditions of an irradiation fluence of 1 mJ / cm 2 / pulse and an O 2 concentration of 20 ppm.
  • the OD value and reflectance of the optical element were measured for each predetermined dose during a period until the dose reached 1.0 mJ / cm 2 . After the dose reaches 1.0 mJ / cm 2 , the irradiation fluence is increased to 3 mJ / cm 2 / pulse and laser light is irradiated. After a predetermined period of time, the OD value and reflectance of the optical element are measured. It was.
  • FIG. 10A is a graph showing a change in OD value with respect to the dose amount
  • FIG. 10B is a graph showing a change in reflectance with respect to the dose amount.
  • the OD value and the reflectance hardly change during the period until the dose reaches 1.0 mJ / cm 2 , and the CNT layer of the optical element is sufficient. It was confirmed that it had laser light resistance. Further, it was confirmed that the OD value and the reflectivity hardly changed even after the irradiation fluence was tripled and the laser beam was irradiated.
  • FIG. 11 is a graph showing the measurement results of the OD values of a plurality of optical elements produced by varying the lengths of carbon nanotubes (CNT lengths).
  • CNT lengths A plurality of optical elements having different CNT lengths in this example were produced by changing the holding time in the carbon nanotube growth step to form a CNT layer.
  • the carbon nanotube growth step was held at 650 ° C. for 30 minutes to form a CNT layer made of carbon nanotubes having a length of about 100 ⁇ m.
  • a plurality of optical elements each including a CNT layer formed by growing carbon nanotubes were produced by changing the length of the CNTs depending on the length of the holding time. And the OD value was measured about the obtained optical element using the spectrophotometer "Cary5" of a Varian company.
  • the OD value of the optical element changes linearly with respect to the length (CNT length) of the carbon nanotubes constituting the CNT layer. From this, it was confirmed that in the optical element according to the present invention, the OD value can be adjusted by changing the length of the carbon nanotubes constituting the CNT layer.
  • the set of ND filters F0 to F2 provided in the energy adjuster 233 of the exposure apparatus EX shown in FIG. 6 can be easily configured. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

Disclosed is an optical element which contains a carbon nanotube assembly in a region that is irradiated with light.

Description

光学素子、照明装置、露光装置、及びデバイス製造方法Optical element, illumination apparatus, exposure apparatus, and device manufacturing method
 本発明は、光学素子、照明装置、露光装置、及びデバイス製造方法に関するものである。 The present invention relates to an optical element, an illumination apparatus, an exposure apparatus, and a device manufacturing method.
 従来から、露光装置においては、露光量を制御するために、マスクを照明する照明光(露光光)の光量を正確に計測する必要があった。そこで、露光装置には、照明光学系内に設けられたハーフミラー等により分割された照明光の光量検出を行うインテグレーターセンサーが設けられていた。また、インテグレーターセンサーと照明光を分割するハーフミラー等との間には、インテグレーターセンサーの受光許容範囲に応じて照明光のエネルギー密度を低下させるND(減光)フィルターが設けられていた。NDフィルターとしては、石英ガラス等からなる透明基板上にクロム膜を形成したものが用いられていた。 Conventionally, in an exposure apparatus, it has been necessary to accurately measure the amount of illumination light (exposure light) that illuminates the mask in order to control the exposure amount. Therefore, the exposure apparatus is provided with an integrator sensor that detects the amount of illumination light divided by a half mirror or the like provided in the illumination optical system. Further, an ND (darkening) filter that reduces the energy density of the illumination light in accordance with the light reception allowable range of the integrator sensor is provided between the integrator sensor and the half mirror that divides the illumination light. As the ND filter, a ND film formed on a transparent substrate made of quartz glass or the like has been used.
特開2002-033259号公報JP 2002-033259 A
 しかし、クロム膜を用いたNDフィルターは反射率が高いために、NDフィルターで反射された散乱光が照明光学系の筐体(インテグレーターボックス)内の迷光となるという問題があった。 However, since the ND filter using a chrome film has a high reflectivity, there is a problem that scattered light reflected by the ND filter becomes stray light in the housing (integrator box) of the illumination optical system.
 本発明に係る態様は、低反射の光学素子、及びこれを用いた照明装置、露光装置、並びにデバイス製造方法を提供することを目的とする。 An object according to the present invention is to provide a low-reflection optical element, and an illumination apparatus, an exposure apparatus, and a device manufacturing method using the optical element.
 本発明に係る一態様における光学素子は、光が照射される領域にカーボンナノチューブ集合体を含む。 The optical element according to an aspect of the present invention includes a carbon nanotube aggregate in a region irradiated with light.
 本発明に係る一態様における照明装置は、光源から射出される光で物体を照明する照明装置であって、前記光源からの光が供給される光学素子を有し、前記光学素子として上記の光学素子を備えている。 An illuminating device according to an aspect of the present invention is an illuminating device that illuminates an object with light emitted from a light source, and includes an optical element to which light from the light source is supplied. It has an element.
 本発明に係る一態様における照明装置は、光源から射出される光で物体を照明する照明装置であって、前記光源からの光の光路近傍に、上記の光学素子を備えている。 An illuminating device according to an aspect of the present invention is an illuminating device that illuminates an object with light emitted from a light source, and includes the optical element in the vicinity of an optical path of light from the light source.
 本発明に係る一態様における照明装置は、光源から射出される光で物体を照明する照明装置であって、上記の光学素子と、前記光学素子を介した光を計測する計測装置とを有する光検出装置を備えている。 An illuminating device according to one aspect of the present invention is an illuminating device that illuminates an object with light emitted from a light source, and includes the optical element described above and a measuring device that measures light via the optical element. A detection device is provided.
 本発明に係る一態様における露光装置は、マスクを露光光で照明し、前記マスクからの前記露光光で基板を露光する露光装置であって、前記マスクを照明するために、上記のいずれかの照明装置を備えている。 An exposure apparatus according to an aspect of the present invention is an exposure apparatus that illuminates a mask with exposure light and exposes a substrate with the exposure light from the mask. A lighting device is provided.
 本発明に係る一態様における露光装置は、マスクを露光光で照明する照明光学系と、前記露光光で照明されたマスクのパターンの像を前記基板に投影する投影光学系とを備え、前記照明光学系及び前記投影光学系の少なくとも一方における前記露光光の光路上又は光路に面する位置に、上記の光学素子を有する。 An exposure apparatus according to an aspect of the present invention includes: an illumination optical system that illuminates a mask with exposure light; and a projection optical system that projects an image of a mask pattern illuminated with the exposure light onto the substrate. At least one of the optical system and the projection optical system has the optical element described above on the optical path of the exposure light or at a position facing the optical path.
 本発明に係る一態様におけるデバイス製造方法は、上記のいずれかの露光装置を用いて、感光剤が塗布された基板の露光をすることと、前記露光された基板を現像することと、を含む。 A device manufacturing method according to an aspect of the present invention includes exposing a substrate coated with a photosensitive agent using any of the exposure apparatuses described above and developing the exposed substrate. .
 本発明の態様によれば、低反射の光学素子を提供することができる。また本発明の態様によれば迷光が低減された照明装置及び露光装置を提供することができる。 According to the aspect of the present invention, a low reflection optical element can be provided. Moreover, according to the aspect of this invention, the illuminating device and exposure apparatus with which stray light was reduced can be provided.
実施形態に係る光学素子を示す斜視図。The perspective view which shows the optical element which concerns on embodiment. 実施形態に係る光学素子の断面図。Sectional drawing of the optical element which concerns on embodiment. 実施形態に係る光学素子の他の態様を示す断面図。Sectional drawing which shows the other aspect of the optical element which concerns on embodiment. 実施形態に係る光学素子のさらに他の態様を示す断面図。Sectional drawing which shows the other aspect of the optical element which concerns on embodiment. カーボンナノチューブ集合体の製造装置を示す図。The figure which shows the manufacturing apparatus of a carbon nanotube aggregate. 実施形態に係る露光装置を示す図。The figure which shows the exposure apparatus which concerns on embodiment. デバイスの製造工程の一例を示すフローチャート。The flowchart which shows an example of the manufacturing process of a device. 実施例に係る透過率及び反射率の測定結果を示すグラフ。The graph which shows the measurement result of the transmittance | permeability and reflectance which concern on an Example. 実施例に係る反射率の角度特性を示すグラフ。The graph which shows the angle characteristic of the reflectance which concerns on an Example. 実施例に係るOD値及び反射率の測定結果を示すグラフ。The graph which shows the OD value which concerns on an Example, and the measurement result of a reflectance. 実施例に係るCNT長さとOD値との関係を示すグラフ。The graph which shows the relationship between CNT length and OD value which concern on an Example.
 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
 (光学素子)
 図1は、本発明の一実施形態に係る光学素子を示す斜視図である。図2は、図1に示す光学素子の断面図である。
 光学素子100は、基板101の一方の面101aに、面101aに対してほぼ垂直に配向したカーボンナノチューブ集合体からなるCNT層102が形成されたものである。
(Optical element)
FIG. 1 is a perspective view showing an optical element according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the optical element shown in FIG.
In the optical element 100, a CNT layer 102 made of a carbon nanotube aggregate oriented substantially perpendicular to the surface 101a is formed on one surface 101a of a substrate 101.
 基板101としては、任意の材質の基板を用いることができ、例えば石英ガラス、シリコン単結晶、各種セラミックスや金属の基板を用いることができる。基板の材質は光学素子に要求される機能に応じて適宜選択すればよい。例えば、光学素子100をND(減光)フィルターとして用いる場合には、基板101には石英ガラスなどの透明な基板が用いられる。一方、光学素子100を光吸収素子として用いる場合には、基板101は透明である必要はなく、シリコンやセラミックス、金属などからなる基板を用いることができる。 As the substrate 101, a substrate made of an arbitrary material can be used. For example, quartz glass, silicon single crystal, various ceramics or metal substrates can be used. The material of the substrate may be appropriately selected according to the function required for the optical element. For example, when the optical element 100 is used as an ND (darkening) filter, a transparent substrate such as quartz glass is used as the substrate 101. On the other hand, when the optical element 100 is used as a light absorbing element, the substrate 101 does not need to be transparent, and a substrate made of silicon, ceramics, metal, or the like can be used.
 CNT層102は、基板101の面101a上に高密度で林立するカーボンナノチューブ(カーボンナノチューブ集合体)からなる。CNT層102は基板101上に直接カーボンナノチューブを成長させて形成されたものであってもよく、他の基板を用いて形成されたカーボンナノチューブ集合体を基板101に接着したものであってもよい。また、CNT層102は、基板101の両面に形成されていてもよく、面101aに部分的に形成されていてもよい。
 なお、カーボンナノチューブ集合体の配向方向は面101aの法線方向に限らず、任意の方向とすることができる。また、CNT層102内に配向方向の異なる複数のカーボンナノチューブ集合体が含まれていてもよい。
The CNT layer 102 is composed of carbon nanotubes (aggregate of carbon nanotubes) that stand on the surface 101a of the substrate 101 with high density. The CNT layer 102 may be formed by directly growing carbon nanotubes on the substrate 101, or may be formed by bonding a carbon nanotube aggregate formed using another substrate to the substrate 101. . The CNT layer 102 may be formed on both surfaces of the substrate 101 or may be partially formed on the surface 101a.
The orientation direction of the aggregate of carbon nanotubes is not limited to the normal direction of the surface 101a, and can be any direction. The CNT layer 102 may include a plurality of aggregates of carbon nanotubes having different orientation directions.
 CNT層102は、カーボンナノチューブ集合体により構成されていることで、黒色で光吸収性に優れ、極めて低い透過率及び反射率が得られるものとなっている。これは、CNT層102が多数のカーボンナノチューブが束状に集積された構造を有しているため、CNT層102に照射された光が、基板101に到達する以前にカーボンナノチューブに吸収されてしまうためであると考えられる。
 つまり、CNT層102は、黒色のカーボンナノチューブ自体による吸収に加えて、多数のカーボンナノチューブが束状に集積されている構造により吸収が促進されることで、優れた光吸収性を奏する。特に、後者の作用は、光が入射する方向とCNT層102におけるカーボンナノチューブの配向方向とが略一致している場合に顕著なものとなる。これは、微細な針状のカーボンナノチューブが光の入射する方向に延びている場合に、CNT層102に入射した光が基板101に到達するまでにカーボンナノチューブの間で多重反射され、反射される毎に熱エネルギーに変換されて減衰するためであると考えられる。
Since the CNT layer 102 is composed of an aggregate of carbon nanotubes, it is black and excellent in light absorption, and extremely low transmittance and reflectance can be obtained. This is because the CNT layer 102 has a structure in which a large number of carbon nanotubes are bundled, so that the light irradiated to the CNT layer 102 is absorbed by the carbon nanotubes before reaching the substrate 101. This is probably because of this.
That is, the CNT layer 102 exhibits excellent light absorption by absorption being promoted by a structure in which many carbon nanotubes are accumulated in a bundle in addition to absorption by the black carbon nanotubes themselves. In particular, the latter action becomes remarkable when the direction in which light enters and the alignment direction of the carbon nanotubes in the CNT layer 102 substantially coincide. This is because when fine needle-like carbon nanotubes extend in the direction in which light is incident, the light incident on the CNT layer 102 is reflected and reflected between the carbon nanotubes before reaching the substrate 101. This is considered to be because it is converted into thermal energy every time and attenuates.
 光学素子100は、CNT層102による上記の光吸収作用を利用して、NDフィルターや光吸収素子として好適に用いることができる。
 光学素子100をNDフィルターとして用いる場合、CNT層102は、NDフィルターにおける光量調整膜として機能する。例えば厚さ100μm程度のCNT層102を形成すると、透過率が0.02%未満になり、5~6程度のOD(Optical Density)値を有するNDフィルターを構成することができる。なお、CNT層102の厚さは100μm程度に限定されない。例えば、約10,20,30,40,50,60,70,80,90,100,またはそれ以上の長さにすることができる。
The optical element 100 can be suitably used as an ND filter or a light absorbing element by utilizing the above light absorbing action by the CNT layer 102.
When the optical element 100 is used as an ND filter, the CNT layer 102 functions as a light amount adjustment film in the ND filter. For example, when the CNT layer 102 having a thickness of about 100 μm is formed, the transmittance is less than 0.02%, and an ND filter having an OD (Optical Density) value of about 5 to 6 can be configured. Note that the thickness of the CNT layer 102 is not limited to about 100 μm. For example, the length can be about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, or longer.
 光学素子100の透過率は、CNT層102の厚さと関連があり、CNT層102を薄くすることで、透過率を上昇させ、OD値を所望の値に制御することができる。すなわち、CNT層102を構成するカーボンナノチューブ集合体におけるカーボンナノチューブの長さを調整することで、光学素子100の透過率(OD値)を制御することができる。 The transmittance of the optical element 100 is related to the thickness of the CNT layer 102. By making the CNT layer 102 thinner, the transmittance can be increased and the OD value can be controlled to a desired value. That is, the transmittance (OD value) of the optical element 100 can be controlled by adjusting the length of the carbon nanotubes in the carbon nanotube aggregate constituting the CNT layer 102.
 あるいは、光学素子100の透過率は、カーボンナノチューブ集合体を構成するカーボンナノチューブの面積密度により調整することもできる。カーボンナノチューブ集合体を構成するカーボンナノチューブの面積密度を低くすることで、カーボンナノチューブの隙間を透過する光量を多くすることができ、光学素子100の透過率を高く(OD値を小さく)することができる。一方、カーボンナノチューブ集合体におけるカーボンナノチューブの面積密度を高くすることで、カーボンナノチューブに吸収される光量を増加させ、光学素子100の透過率を低く(OD値を高く)することができる。 Alternatively, the transmittance of the optical element 100 can be adjusted by the area density of the carbon nanotubes constituting the carbon nanotube aggregate. By reducing the area density of the carbon nanotubes constituting the aggregate of carbon nanotubes, the amount of light transmitted through the gaps between the carbon nanotubes can be increased, and the transmittance of the optical element 100 can be increased (the OD value is decreased). it can. On the other hand, by increasing the area density of the carbon nanotubes in the aggregate of carbon nanotubes, the amount of light absorbed by the carbon nanotubes can be increased, and the transmittance of the optical element 100 can be decreased (the OD value is increased).
 光学素子100の反射率は、CNT層102におけるカーボンナノチューブの長さ及び面積密度がある程度大きく、CNT層102に光が通過する隙間がほとんどない場合には、0.2%未満の極めて低い値となる。NDフィルターや光吸収素子としては、反射率を調整する利点はほとんど無いが、CNT層102を構成するカーボンナノチューブが極めて短いか、あるいは面積密度が極端に低い場合には、カーボンナノチューブの長さ又は面積密度を変化させることで反射率を調整可能である。
 したがって、CNT層102において、カーボンナノチューブが十分に長いか、あるいは十分に大きい面積密度で形成されている場合には、光学素子100は実質的無反射かつ実質的無透過の光学素子となり、カーボンナノチューブが短いか、あるいは面積密度が小さい場合には、実質的無反射かつ実質的半透過の光学素子となる。
The reflectance of the optical element 100 is very low, less than 0.2%, when the length and area density of the carbon nanotubes in the CNT layer 102 are large to some extent and there is almost no gap through which light passes through the CNT layer 102. Become. As an ND filter or a light absorption element, there is almost no advantage of adjusting the reflectance, but when the carbon nanotubes constituting the CNT layer 102 are extremely short or the area density is extremely low, the length of the carbon nanotubes or The reflectance can be adjusted by changing the area density.
Therefore, in the CNT layer 102, when the carbon nanotubes are sufficiently long or formed with a sufficiently large area density, the optical element 100 becomes a substantially non-reflective and substantially non-transmissive optical element, and the carbon nanotubes Is short or has a small area density, it becomes a substantially non-reflective and substantially semi-transmissive optical element.
 一方、光学素子100を光吸収素子として用いる場合には、CNT層102は光吸収素子における光吸収膜として機能する。この場合にも、光学素子100をNDフィルターとして用いる場合と同様に、CNT層102におけるカーボンナノチューブの長さ及び面積密度を適宜に設定することで、所望の光吸収作用を奏する光吸収素子とすることができる。すなわち、CNT層102におけるカーボンナノチューブを長くし、カーボンナノチューブの面積密度を高めるほど、光吸収素子の吸光度を高めることができる。 On the other hand, when the optical element 100 is used as a light absorption element, the CNT layer 102 functions as a light absorption film in the light absorption element. Also in this case, similarly to the case where the optical element 100 is used as an ND filter, the length and area density of the carbon nanotubes in the CNT layer 102 are appropriately set, thereby obtaining a light absorbing element that exhibits a desired light absorbing action. be able to. That is, as the carbon nanotubes in the CNT layer 102 are lengthened and the area density of the carbon nanotubes is increased, the absorbance of the light absorbing element can be increased.
 また、他の実施形態において、光学素子は、図3に示す構成にできる。図3は、他の実施形態に係る光学素子を示す断面図である。
 光学素子100Aは、基板101とCNT層102との間に、金属膜103が形成されている。金属膜103としては、任意の金属又は合金を用いることができ、その膜厚tについても特に限定されない。金属膜103の材質、膜厚などは、光学素子100の用途に応じて適宜に設定することができる。
In another embodiment, the optical element can be configured as shown in FIG. FIG. 3 is a cross-sectional view showing an optical element according to another embodiment.
In the optical element 100 </ b> A, a metal film 103 is formed between the substrate 101 and the CNT layer 102. Any metal or alloy can be used as the metal film 103, and the film thickness t is not particularly limited. The material, film thickness, and the like of the metal film 103 can be appropriately set according to the use of the optical element 100.
 光学素子100Aも、図1及び図2に示した光学素子100と同様に、CNT層102による光吸収作用を利用したNDフィルターや光吸収素子として用いることができる。
 光学素子100AをNDフィルターとして用いる場合、金属膜103として、従来からNDフィルターに用いられているクロム等を用いることができる。光学素子100Aを用いたNDフィルターでは、金属膜103の膜厚により光学素子100Aの透過率(OD値)を調整することができる。すなわち、金属膜103をNDフィルターにおける光量調整膜として機能させることができる。
 金属膜103は、スパッタリング法などの従来周知の成膜法を用いて形成できるため、膜厚を比較的高い精度で制御でき、また均一な膜厚に形成することができる。そのため、CNT層102におけるカーボンナノチューブの長さや面積密度で透過率を調整する場合に比して高精度に透過率を制御可能である。
 また、光学素子100Aでは、CNT層102は反射防止層として十分な機能が得られればよいため、CNT層102を構成するカーボンナノチューブの長さ及び面積密度は、図2に示した光学素子100と比べて小さくすることができる。
The optical element 100 </ b> A can also be used as an ND filter or a light absorbing element that utilizes the light absorbing action of the CNT layer 102, similarly to the optical element 100 illustrated in FIGS. 1 and 2.
When the optical element 100 </ b> A is used as an ND filter, chromium or the like conventionally used for ND filters can be used as the metal film 103. In the ND filter using the optical element 100 </ b> A, the transmittance (OD value) of the optical element 100 </ b> A can be adjusted by the film thickness of the metal film 103. That is, the metal film 103 can function as a light amount adjustment film in the ND filter.
Since the metal film 103 can be formed using a conventionally known film formation method such as a sputtering method, the film thickness can be controlled with relatively high accuracy and can be formed to have a uniform film thickness. Therefore, the transmittance can be controlled with higher accuracy than when the transmittance is adjusted by the length or area density of the carbon nanotubes in the CNT layer 102.
In the optical element 100A, the CNT layer 102 only needs to have a sufficient function as an antireflection layer. Therefore, the length and area density of the carbon nanotubes constituting the CNT layer 102 are the same as those of the optical element 100 shown in FIG. It can be made smaller.
 一方、光学素子100Aを光吸収素子として用いる場合には、CNT層102のみで優れた光吸収作用を得られるため、金属膜103には光吸収作用はほとんど要求されない。そのため、金属膜103としては任意の金属又は合金からなる膜を形成することができるが、CNT層102と基板101との密着強度を改善できる金属又は合金や、カーボンナノチューブの成長制御に利用できる金属又は合金を用いることができる。 On the other hand, when the optical element 100A is used as a light absorbing element, an excellent light absorbing action can be obtained only by the CNT layer 102, so that the metal film 103 hardly requires a light absorbing action. Therefore, as the metal film 103, a film made of any metal or alloy can be formed. However, a metal or alloy that can improve the adhesion strength between the CNT layer 102 and the substrate 101, or a metal that can be used for carbon nanotube growth control. Alternatively, an alloy can be used.
 さらに、別の実施形態において光学素子は、図4に示す構成にできる。図4は、別の実施形態に係る光学素子を示す断面図である。
 光学素子100では、CNT層102と基板101との密着強度を高めるために、接着部104を形成してもよい。接着部104としては、樹脂材料などを用いることができるが、CNT層102を基板101に固定できる材料であれば特に制限されない。
 例えば、接着部104は、基板101上にCNT層102を形成した後に、CNT層102側から樹脂材料等を塗布し、CNT層102を構成するカーボンナノチューブの基端側で硬化させることで形成することができる。このような接着部を設けることで、CNT層102の剥離を防止することができる。
Furthermore, in another embodiment, the optical element can be configured as shown in FIG. FIG. 4 is a cross-sectional view showing an optical element according to another embodiment.
In the optical element 100, an adhesive portion 104 may be formed in order to increase the adhesion strength between the CNT layer 102 and the substrate 101. A resin material or the like can be used for the bonding portion 104, but is not particularly limited as long as the material can fix the CNT layer 102 to the substrate 101.
For example, the bonding portion 104 is formed by forming a CNT layer 102 on the substrate 101, applying a resin material or the like from the CNT layer 102 side, and curing the carbon nanotubes constituting the CNT layer 102 on the base end side. be able to. By providing such an adhesive portion, peeling of the CNT layer 102 can be prevented.
 接着部104は、CNT層102の全体を固定するものであってもよいが、図4に示すように、基板101上に林立するカーボンナノチューブの基端側のみに形成され、CNT層102の表面には形成されないようにすることができる。接着部104がCNT層102の表面に露出していると、接着部104を構成する樹脂材料等による光の反射で光学素子100の反射率が上昇するからである。 The bonding portion 104 may fix the entire CNT layer 102, but as shown in FIG. 4, it is formed only on the base end side of the carbon nanotubes that stand on the substrate 101, and the surface of the CNT layer 102 Can be prevented from being formed. This is because when the bonding portion 104 is exposed on the surface of the CNT layer 102, the reflectance of the optical element 100 increases due to reflection of light by a resin material or the like constituting the bonding portion 104.
 なお、接着部104は、図3に示した光学素子100Aにおいても問題なく形成することができる。この場合にも、光学素子100に接着部104を形成した場合と同様の作用効果を得ることができる。 In addition, the adhesion part 104 can be formed without a problem also in the optical element 100A shown in FIG. Also in this case, the same effect as the case where the adhesion part 104 is formed in the optical element 100 can be obtained.
 [光学素子の製造方法]
 以下、図1及び図2に示した光学素子100を製造する方法について説明する。
 光学素子100は、基板101上にカーボンナノチューブを成長させ、基板101上にカーボンナノチューブ集合体からなるCNT層102を形成することで製造することができる。より詳しくは、触媒粒子形成工程と、還元工程と、CVD工程とを含む製造方法が好適である。
 触媒粒子形成工程は、基板上に触媒粒子を形成する工程である。還元工程は、触媒粒子を還元して触媒活性を付与する工程である。CVD工程は、触媒粒子を基点としてカーボンナノチューブを成長させる工程である。
 以下、工程ごとにさらに詳細に説明する。
[Method for Manufacturing Optical Element]
Hereinafter, a method for manufacturing the optical element 100 shown in FIGS. 1 and 2 will be described.
The optical element 100 can be manufactured by growing carbon nanotubes on a substrate 101 and forming a CNT layer 102 made of a carbon nanotube aggregate on the substrate 101. More specifically, a production method including a catalyst particle forming step, a reduction step, and a CVD step is preferable.
The catalyst particle forming step is a step of forming catalyst particles on the substrate. A reduction process is a process of reducing catalyst particles and imparting catalytic activity. The CVD process is a process of growing carbon nanotubes using catalyst particles as a starting point.
Hereinafter, it demonstrates in detail for every process.
 <触媒粒子形成工程>
 まず、基板101を用意する。基板101の材質としては、石英ガラス、シリコン単結晶、各種セラミックスや金属を用いることができる。基板101の大きさ、厚さは任意であり、製造する光学素子100の用途に合わせて選択することができる。
 なお、基板101の熱容量が大きいと、還元工程以降における急速加熱に技術的困難が伴う。製造性を考慮すると基板の厚さは5mm以下にできる。なお、基板の厚さは5mm以下に限定されない。
 また、基板101の表面形状は、所望の粒径の金属触媒粒子を形成するために、表面粗さ(RMS)が数nm以下の平滑面に加工されていることができる。
 基板101を用意したならば、必要に応じて前処理として超音波振動下で洗剤、水、アルコール系溶媒等により精密洗浄を行う。所望の粒径の金属触媒粒子を均一に形成するためである。
<Catalyst particle formation step>
First, the substrate 101 is prepared. As a material of the substrate 101, quartz glass, silicon single crystal, various ceramics and metals can be used. The size and thickness of the substrate 101 are arbitrary and can be selected according to the use of the optical element 100 to be manufactured.
In addition, when the heat capacity of the substrate 101 is large, technical difficulties are involved in rapid heating after the reduction step. Considering manufacturability, the thickness of the substrate can be 5 mm or less. The thickness of the substrate is not limited to 5 mm or less.
Further, the surface shape of the substrate 101 can be processed into a smooth surface having a surface roughness (RMS) of several nm or less in order to form metal catalyst particles having a desired particle diameter.
If the substrate 101 is prepared, it is precisely cleaned with a detergent, water, an alcohol solvent or the like under ultrasonic vibration as a pretreatment if necessary. This is for uniformly forming metal catalyst particles having a desired particle diameter.
 次に、基板101上に形成する金属触媒粒子としては、カーボンナノチューブ成長の触媒として作用する金属を使用する。具体的には、コバルト、モリブデン、ニッケル、及び鉄からなる群から選ばれた少なくとも1種の金属、又はこれらの金属からなる合金を用いることができる。
 金属触媒粒子の粒径は、製造しようとするカーボンナノチューブのグラフェンシート層数に応じて調整する。例えば、単層カーボンナノチューブを製造する場合には、粒径が8nm以下である金属触媒粒子群を基板101上に形成する。2層カーボンナノチューブを製造する場合には、粒径が8nm以上11nm以下(好ましくは8nm超11nm以下)である金属触媒粒子群を基板101上に形成する。金属触媒粒子の粒径を大きくするほど、層数の多いカーボンナノチューブを形成することができる。なお、金属触媒粒子群の粒径は、8nm以下又は11nm以下に限定されない。
Next, as the metal catalyst particles formed on the substrate 101, a metal that acts as a catalyst for carbon nanotube growth is used. Specifically, at least one metal selected from the group consisting of cobalt, molybdenum, nickel, and iron, or an alloy made of these metals can be used.
The particle size of the metal catalyst particles is adjusted according to the number of graphene sheet layers of carbon nanotubes to be produced. For example, when producing single-walled carbon nanotubes, a metal catalyst particle group having a particle size of 8 nm or less is formed on the substrate 101. In the case of producing a double-walled carbon nanotube, a metal catalyst particle group having a particle size of 8 nm or more and 11 nm or less (preferably more than 8 nm and 11 nm or less) is formed on the substrate 101. The larger the particle diameter of the metal catalyst particles, the more carbon nanotubes can be formed. The particle size of the metal catalyst particle group is not limited to 8 nm or less or 11 nm or less.
 所望の粒径を有する金属触媒粒子を基板101上に形成する第1の方法は、マグネトロンスパッタリングを用いた方法である。
 まず、マグネトロンスパッタリング装置の成膜室内に基板101を格納して高真空まで排気する。次に、成膜室にアルゴンガス等の希ガスを導入し、0.1Pa~3Paの範囲内の圧力に調整する。ターゲットとしては、上記した金属又は合金からなるものを用い、かかるターゲットに負の高電圧を印加してスパッタリングを行う。ターゲット表面からスパッタリングにより放出された単原子又はクラスターサイズの金属触媒粒子は、ターゲットに対向して配置された基板上に付着する。
A first method for forming metal catalyst particles having a desired particle diameter on the substrate 101 is a method using magnetron sputtering.
First, the substrate 101 is stored in a film forming chamber of a magnetron sputtering apparatus and evacuated to a high vacuum. Next, a rare gas such as argon gas is introduced into the film formation chamber, and the pressure is adjusted to a range of 0.1 Pa to 3 Pa. A target made of the above-described metal or alloy is used as a target, and sputtering is performed by applying a negative high voltage to the target. Monoatomic or cluster-sized metal catalyst particles released from the target surface by sputtering adhere to a substrate disposed opposite to the target.
 基板101の表面における金属触媒粒子の粒径はスパッタリング条件により調整可能であり、ターゲットに入力する電力を小さく、かつ放電時間を短くするほど粒径を小さくすることができる。具体的には、例えば、電力密度を0.2~1W/cm、放電時間は1秒~数十秒の範囲で調整できる。
 また、金属触媒粒子の粒径の分布(ばらつき)も放電時間により調整可能である。すなわち、放電時間を短くするほど粒径のばらつきを小さくすることができ、適切な放電時間を選択することで、粒径のばらつきを所定値以下に制御することができる。
The particle size of the metal catalyst particles on the surface of the substrate 101 can be adjusted by sputtering conditions, and the particle size can be reduced as the power input to the target is reduced and the discharge time is shortened. Specifically, for example, the power density can be adjusted in the range of 0.2 to 1 W / cm 2 and the discharge time can be adjusted in the range of 1 second to several tens of seconds.
Further, the distribution (variation) of the particle diameter of the metal catalyst particles can be adjusted by the discharge time. That is, as the discharge time is shortened, the particle size variation can be reduced, and by selecting an appropriate discharge time, the particle size variation can be controlled to a predetermined value or less.
 あるいは、金属触媒粒子の下地構造物として、アルミニウムを基板101上に形成してもよい。アルミニウムはその成膜初期に均一な粒径の島状構造物を形成しやすい。成膜速度、成膜時間などを適切に調整することで、所望の粒径を有する島状構造物を基板上に容易に形成することができる。このようなアルミニウム下地構造物上に金属触媒粒子を形成すれば、金属触媒粒子が加熱されたときにアルミニウム下地構造物上のみで金属触媒粒子の凝集が生じ、アルミニウム下地構造物を超えて凝集することがなくなる。したがって、アルミニウム下地構造物よりも大きい粒径の金属触媒粒子が発生することがなく、所望の性状のカーボンナノチューブを形成しやすくなる。 Alternatively, aluminum may be formed on the substrate 101 as the base structure of the metal catalyst particles. Aluminum tends to form an island-shaped structure having a uniform particle size at the initial stage of film formation. By appropriately adjusting the film formation speed, the film formation time, and the like, an island structure having a desired particle size can be easily formed on the substrate. If the metal catalyst particles are formed on such an aluminum base structure, the metal catalyst particles are aggregated only on the aluminum base structure when the metal catalyst particles are heated, and agglomerate beyond the aluminum base structure. Nothing will happen. Therefore, metal catalyst particles having a particle size larger than that of the aluminum base structure are not generated, and carbon nanotubes having a desired property can be easily formed.
 また、アルミニウムは金属触媒粒子を構成するコバルトや鉄よりも酸化されやすいため、カーボンナノチューブを成長させる工程においてアルミニウムが優先的に酸化されることで、金属触媒粒子の酸化による失活を防止し、カーボンナノチューブの成長に不具合が生じるのを防止することができる。 In addition, since aluminum is more easily oxidized than cobalt and iron constituting the metal catalyst particles, aluminum is preferentially oxidized in the process of growing carbon nanotubes, thereby preventing deactivation due to oxidation of the metal catalyst particles, It is possible to prevent defects in the growth of carbon nanotubes.
 なお、下地構造物としては、基板上に島状構造物を形成できる物質であれば、上記のアルミニウムに限らず任意の物質を用いることができる。また、金属触媒粒子の酸化を防止する目的で、アルミニウム以外の物質を用いてもよい。 Note that the base structure is not limited to the above-described aluminum as long as it is a substance that can form an island-shaped structure on the substrate. Moreover, you may use substances other than aluminum in order to prevent the oxidation of a metal catalyst particle.
 また、金属触媒粒子の凝集を防止するための粒子(凝集阻害粒子)を基板101上に形成してもよい。あるいは、金属触媒粒子として、カーボンナノチューブ成長を促す触媒として作用する触媒物質と、金属触媒粒子の凝集を防止する凝集阻害物質との合金を用いてもよい。触媒物質としては、先に記載のように、コバルトやニッケル、鉄などからなる群から選ばれる少なくとも1種類の金属を用いることができる。 Alternatively, particles (aggregation-inhibiting particles) for preventing aggregation of the metal catalyst particles may be formed on the substrate 101. Alternatively, as the metal catalyst particles, an alloy of a catalyst substance that acts as a catalyst for promoting carbon nanotube growth and an aggregation inhibitor that prevents aggregation of the metal catalyst particles may be used. As described above, at least one metal selected from the group consisting of cobalt, nickel, iron and the like can be used as the catalyst substance.
 凝集阻害粒子及び凝集阻害物質としては、融点が1500℃以上の高融点金属を用いることができる。例えば、モリブデン(融点2620℃)、タングステン(融点3400℃)、タンタル(融点3027℃)、レニウム(融点3100℃)、オスミウム(融点3045℃)、イリジウム(融点2454℃)、白金(融点1772℃)、ハフニウム(融点2222℃)、ロジウム(融点1966℃)、パラジウム(融点1555℃)、ルテニウム(融点2500℃)、テクネチウム(融点2172℃)、ニオブ(融点2415℃)、ジルコニウム(融点1852℃)、イットリウム(1520℃)からなる群から選ばれる少なくとも1種類の高融点金属を用いることができる。 As the aggregation-inhibiting particles and the aggregation-inhibiting substance, a refractory metal having a melting point of 1500 ° C. or higher can be used. For example, molybdenum (melting point 2620 ° C.), tungsten (melting point 3400 ° C.), tantalum (melting point 3027 ° C.), rhenium (melting point 3100 ° C.), osmium (melting point 3045 ° C.), iridium (melting point 2454 ° C.), platinum (melting point 1772 ° C.) Hafnium (melting point 2222 ° C), rhodium (melting point 1966 ° C), palladium (melting point 1555 ° C), ruthenium (melting point 2500 ° C), technetium (melting point 2172 ° C), niobium (melting point 2415 ° C), zirconium (melting point 1852 ° C), At least one refractory metal selected from the group consisting of yttrium (1520 ° C.) can be used.
さらに、基板101上における金属触媒粒子の析出密度を調節し、それによってカーボンナノチューブの成長密度を制御するために、金属触媒粒子に加えて、障害粒子を基板101上に配置してもよい。このような障害粒子としては、無機化合物粒子が好ましい。無機化合物のうちでも、金属触媒粒子を構成する触媒物質と化学反応を起こしにくい高融点無機化合物を用いることがより好ましい。例えば、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化珪素からなる群から選択される少なくとも1種類の酸化物を用いることが好ましい。なお、障害粒子の粒径は特に制限されず、金属触媒粒子の所望の析出密度などに応じて適宜選択されるが、2nm以上50nm以下の範囲とすることが好ましい。 Furthermore, in addition to the metal catalyst particles, obstacle particles may be disposed on the substrate 101 in order to adjust the deposition density of the metal catalyst particles on the substrate 101 and thereby control the growth density of the carbon nanotubes. As such obstacle particles, inorganic compound particles are preferable. Among the inorganic compounds, it is more preferable to use a high-melting-point inorganic compound that hardly causes a chemical reaction with the catalyst substance constituting the metal catalyst particles. For example, it is preferable to use at least one oxide selected from the group consisting of aluminum oxide, magnesium oxide, titanium oxide, and silicon oxide. The particle diameter of the obstacle particles is not particularly limited and is appropriately selected according to the desired precipitation density of the metal catalyst particles, but is preferably in the range of 2 nm to 50 nm.
 所定の粒径を有する金属触媒粒子を基板101上に形成する第2の方法は、ディップコート法である。ディップコート法は、金属イオンを含有する溶液中に基板を浸漬してから引き上げ、溶媒を除去して基板上に金属触媒粒子を析出させる方法である。
 ディップコート法に用いる溶液としては、析出させようとする金属を含む塩(酢酸塩、硝酸塩、塩化物等)を、エタノール、アセトン、水等の溶媒に溶解させたものを用いることができる。
 ディップコート法を用いて金属触媒粒子を基板101上に形成する場合、金属触媒粒子の粒径は金属イオン濃度により制御することができる。金属イオン濃度が低いほど金属触媒粒子の粒径は小さくなり、金属イオン濃度が高いほど粒径は大きくなる。また金属イオン濃度以外にも、基板101の引き上げ速度を調整することによっても粒径を制御することが可能である。
 基板101の引き上げ速度は粒径の分布(ばらつき)にも影響する。粒径のばらつきを小さくするためには基板101の引き上げ速度を遅くすることが有効である。したがって基板101の引き上げ速度は、粒径及び必要に応じて粒径のばらつきが所定値となるように調整する。
 以上に挙げたマグネトロンスパッタリング法及びディップコート法以外にも、真空蒸着等の真空成膜プロセスにおいて堆積時間を短くすることによって、所望の粒径を有する金属触媒粒子を形成することが可能である。
A second method for forming metal catalyst particles having a predetermined particle diameter on the substrate 101 is a dip coating method. The dip coating method is a method in which the substrate is immersed in a solution containing metal ions and then pulled up, and the solvent is removed to deposit metal catalyst particles on the substrate.
As a solution used for the dip coating method, a solution in which a salt (such as acetate, nitrate, chloride) containing a metal to be precipitated is dissolved in a solvent such as ethanol, acetone, water, or the like can be used.
When the metal catalyst particles are formed on the substrate 101 using the dip coating method, the particle size of the metal catalyst particles can be controlled by the metal ion concentration. The lower the metal ion concentration, the smaller the particle size of the metal catalyst particles, and the higher the metal ion concentration, the larger the particle size. In addition to the metal ion concentration, the particle size can be controlled by adjusting the pulling speed of the substrate 101.
The pulling speed of the substrate 101 also affects the particle size distribution (variation). In order to reduce the variation in the particle diameter, it is effective to reduce the pulling rate of the substrate 101. Therefore, the pulling speed of the substrate 101 is adjusted so that the particle size and, if necessary, the variation in the particle size become a predetermined value.
In addition to the magnetron sputtering method and the dip coating method described above, it is possible to form metal catalyst particles having a desired particle diameter by shortening the deposition time in a vacuum film forming process such as vacuum deposition.
<還元工程>
 基板101上に形成された金属触媒粒子は、表面が酸化されていることが多く、そのままではカーボンナノチューブを均一に成長させることが困難である。そこで、カーボンナノチューブ成長前に金属触媒粒子を還元することが行われる。
 金属触媒粒子の表面は、金属触媒粒子を形成した基板を反応炉に格納し、反応炉内を還元雰囲気として、金属微粒子を所定の還元反応温度に加熱することによって行われる。反応炉内を還元雰囲気とするには、水素ガスや希釈水素ガス、一酸化炭素ガス等の還元性ガスを反応炉内に導入する。また、水素ガスを含有する還元雰囲気とする場合、水素濃度が1容量%以上であることが好ましい。さらに、反応炉内の圧力は特に制限されず、0.1Pa~10Paの範囲内で適宜に設定することができる。
 還元温度は300℃以上であれば金属触媒粒子の表面を還元することができる。また、金属触媒粒子の凝集を防止する観点から、還元温度は400℃以下であることが好ましい。すなわち、還元温度を300℃以上400℃以下とすれば、金属触媒粒子を凝集させることなく十分に還元反応を進行させることができ、所望の性状のカーボンナノチューブ集合体を容易に形成することができる。
 還元工程における還元温度での保持時間は、480秒以上であることが好ましく、600秒以上であることがより好ましい。保持時間が短すぎると金属触媒粒子の表面が十分に還元されず、結果としてカーボンナノチューブの成長が不十分になるおそれがある。
<Reduction process>
The surface of the metal catalyst particles formed on the substrate 101 is often oxidized, and it is difficult to grow carbon nanotubes uniformly as it is. Therefore, metal catalyst particles are reduced before carbon nanotube growth.
The surface of the metal catalyst particles is performed by storing the substrate on which the metal catalyst particles are formed in a reaction furnace and heating the metal fine particles to a predetermined reduction reaction temperature with the inside of the reaction furnace as a reducing atmosphere. In order to create a reducing atmosphere in the reaction furnace, a reducing gas such as hydrogen gas, diluted hydrogen gas, or carbon monoxide gas is introduced into the reaction furnace. Moreover, when it is set as the reducing atmosphere containing hydrogen gas, it is preferable that hydrogen concentration is 1 volume% or more. Further, the pressure in the reactor is not particularly limited, and can be appropriately set within a range of 0.1 Pa to 10 5 Pa.
If the reduction temperature is 300 ° C. or higher, the surface of the metal catalyst particles can be reduced. Moreover, it is preferable that a reduction temperature is 400 degrees C or less from a viewpoint of preventing aggregation of a metal catalyst particle. That is, when the reduction temperature is set to 300 ° C. or more and 400 ° C. or less, the reduction reaction can be sufficiently advanced without aggregating the metal catalyst particles, and the carbon nanotube aggregate having a desired property can be easily formed. .
The holding time at the reduction temperature in the reduction step is preferably 480 seconds or more, and more preferably 600 seconds or more. If the holding time is too short, the surface of the metal catalyst particles is not sufficiently reduced, and as a result, the growth of the carbon nanotubes may be insufficient.
<CVD工程>
 還元工程により金属触媒粒子の表面を還元した後、これを触媒としてカーボンナノチューブを基板101上に成長させる。還元工程とカーボンナノチューブ成長工程とは同一装置で連続して行うことが好ましい。表面が還元された金属触媒粒子を大気等の酸化性雰囲気に曝すと、金属触媒粒子の表面が再び酸化して触媒活性が低下し、所望のカーボンナノチューブを成長させにくくなるためである。
 カーボンナノチューブを金属触媒粒子上に成長させるためには、金属触媒粒子を所定の反応温度に加熱し、有機化合物蒸気と接触させる。
<CVD process>
After reducing the surface of the metal catalyst particles by the reduction step, carbon nanotubes are grown on the substrate 101 using this as a catalyst. It is preferable that the reduction process and the carbon nanotube growth process are continuously performed in the same apparatus. This is because when the metal catalyst particles whose surfaces have been reduced are exposed to an oxidizing atmosphere such as air, the surfaces of the metal catalyst particles are oxidized again, the catalytic activity is lowered, and it becomes difficult to grow desired carbon nanotubes.
In order to grow the carbon nanotubes on the metal catalyst particles, the metal catalyst particles are heated to a predetermined reaction temperature and brought into contact with the organic compound vapor.
 ここで、図5は、本実施形態のカーボンナノチューブ集合体の製造工程に好適に用いることができるカーボンナノチューブ集合体の製造装置を示す図である。
 図5に示す製造装置は、反応炉11と、反応炉11に供給される原料を収容した原料容器21と、反応炉11及び原料容器21に還元性ガス及び不活性ガスを供給する還元性ガス供給部1及び不活性ガス供給部2と、反応炉11と接続された排気装置19と、反応炉11の作動状態を制御する制御装置17と、を備えている。
Here, FIG. 5 is a diagram showing a carbon nanotube aggregate production apparatus that can be suitably used in the carbon nanotube aggregate production process of the present embodiment.
The manufacturing apparatus shown in FIG. 5 includes a reaction furnace 11, a raw material container 21 that contains the raw material supplied to the reaction furnace 11, and a reducing gas that supplies a reducing gas and an inert gas to the reaction furnace 11 and the raw material container 21. A supply unit 1 and an inert gas supply unit 2, an exhaust device 19 connected to the reaction furnace 11, and a control device 17 that controls the operating state of the reaction furnace 11 are provided.
反応炉11の中心には、真空排気及びガス置換が可能な炉心管14が配置される。炉心管14の外側には、波長1.0μm~1.7μmの範囲にエネルギー分光分布のピークを有する輻射ヒーター12が備えられている。輻射ヒーター12により、炉心管14の内部に配置された基板ホルダー15上の基板101を均一かつ急速に加熱することができる。輻射ヒーター12は、赤外線炉であることが好ましい。基板101の温度は温度計18により計測され、予めプログラムされた所定の温度となるよう、制御装置17により輻射ヒーター12への供給電力が制御される。 In the center of the reaction furnace 11, a furnace core tube 14 capable of evacuation and gas replacement is disposed. A radiant heater 12 having a peak of the energy spectral distribution in the wavelength range of 1.0 μm to 1.7 μm is provided outside the furnace core tube 14. The substrate 101 on the substrate holder 15 disposed inside the core tube 14 can be uniformly and rapidly heated by the radiation heater 12. The radiant heater 12 is preferably an infrared furnace. The temperature of the substrate 101 is measured by the thermometer 18, and the power supplied to the radiation heater 12 is controlled by the control device 17 so as to be a predetermined temperature programmed in advance.
 反応炉11の外部には、還元性ガス供給部1と不活性ガス供給部2とが設けられており、それぞれから供給されるガスはバルブ3及びバルブ4を介して製造装置に供給される。それぞれのガス流量はマスフローコントローラー等を備えた流量制御機構1a、2aにより一定に制御される。 A reducing gas supply unit 1 and an inert gas supply unit 2 are provided outside the reaction furnace 11, and the gas supplied from each is supplied to the manufacturing apparatus via the valve 3 and the valve 4. Each gas flow rate is controlled to be constant by a flow rate control mechanism 1a, 2a provided with a mass flow controller or the like.
 還元性ガスと不活性ガスとは、バルブ5を介して原料容器21の内部に供給される。原料容器21はヒーター8及び水浴9により所定温度に加熱保持可能に構成されており、内部に収容された原料10の蒸気を一定蒸気圧で生成することができる。原料容器21の内部で発生した原料蒸気は、バルブ5を介して供給される還元性ガス、不活性ガス、有機化合物蒸気の供給量をそれぞれ独立に制御することができる。
 炉心管14に供給された上記各ガスは、炉心管14内に配置された基板101上の金属触媒粒子の還元反応、又は金属触媒粒子上のカーボンナノチューブ成長反応に使用され、副生成物等を含む排気ガスはコールドトラップ等の除外装置20及び油回転ポンプ等の排気装置19を通じて系外へ排出される。
 なお、図5に示した構成を有する製造装置は、金属触媒粒子の表面を還元する還元工程とカーボンナノチューブを成長させるCVD工程とを連続して行うことができるものである。
The reducing gas and the inert gas are supplied into the raw material container 21 through the valve 5. The raw material container 21 is configured to be heated and held at a predetermined temperature by the heater 8 and the water bath 9, and can generate the vapor of the raw material 10 accommodated therein at a constant vapor pressure. The raw material vapor generated inside the raw material container 21 can independently control the supply amounts of reducing gas, inert gas, and organic compound vapor supplied through the valve 5.
Each of the gases supplied to the core tube 14 is used for the reduction reaction of the metal catalyst particles on the substrate 101 disposed in the core tube 14 or the carbon nanotube growth reaction on the metal catalyst particles. The contained exhaust gas is discharged out of the system through an exclusion device 20 such as a cold trap and an exhaust device 19 such as an oil rotary pump.
Note that the manufacturing apparatus having the configuration shown in FIG. 5 can continuously perform a reduction process for reducing the surface of the metal catalyst particles and a CVD process for growing carbon nanotubes.
次に、上記の製造装置を用いたCVD工程について具体的に説明する。
 前工程で基板101上の金属触媒粒子の表面を還元した後、金属触媒粒子を所定の反応温度まで加熱する。反応温度は触媒の種類や、原料として用いる有機化合物の種類によって異なるが、例えばエタノールを原料として用いる場合に600℃~1000℃程度、メタンを原料として用いる場合には700℃~1200℃程度とすることが好ましい。
 ここで、反応温度が500℃より低い場合には、アモルファスカーボンの成長が優位となり、カーボンナノチューブの収率が低下する不具合が生じる。一方、反応温度を1300℃より高い温度に設定すると、基板101や反応炉11の構成材として高温に耐える材料を用いなければならず、装置上の制約が大きくなる。したがって反応温度は500℃以上とすることが好ましく、1300℃以下であればより好ましい。
 昇温中の雰囲気は還元雰囲気であってもよいし、希ガス等の不活性ガス雰囲気であってもよい。
Next, the CVD process using the above manufacturing apparatus will be specifically described.
After reducing the surface of the metal catalyst particles on the substrate 101 in the previous step, the metal catalyst particles are heated to a predetermined reaction temperature. The reaction temperature varies depending on the type of catalyst and the type of organic compound used as a raw material. For example, when ethanol is used as a raw material, it is about 600 ° C. to 1000 ° C., and when methane is used as a raw material, it is about 700 ° C. to 1200 ° C. It is preferable.
Here, when the reaction temperature is lower than 500 ° C., the growth of amorphous carbon becomes dominant, resulting in a problem that the yield of carbon nanotubes is lowered. On the other hand, if the reaction temperature is set to a temperature higher than 1300 ° C., a material that can withstand high temperatures must be used as the constituent material of the substrate 101 and the reaction furnace 11, which increases the restrictions on the apparatus. Therefore, the reaction temperature is preferably 500 ° C. or higher, more preferably 1300 ° C. or lower.
The atmosphere during the temperature rise may be a reducing atmosphere or an inert gas atmosphere such as a rare gas.
 なお、カーボンナノチューブが成長を開始する前に、金属触媒粒子を450℃を超える温度に保持すると、雰囲気の如何によらず金属触媒粒子が凝集し始める。そのため、CVD工程では、基板101上の金属触媒粒子を急速に反応温度まで上昇させる必要がある。そこで図5に示した製造装置では、必要な昇温速度を得るための手段として、波長1.0μm~1.7μmの範囲にエネルギー分光分布のピークを有する輻射ヒーター12が設けられている。かかる輻射ヒーター12を用いることにより、加熱対象となる金属触媒粒子及び金属触媒粒子が形成された基板101を急速に加熱することが可能となる。 If the metal catalyst particles are held at a temperature exceeding 450 ° C. before the carbon nanotube starts growing, the metal catalyst particles start to aggregate regardless of the atmosphere. Therefore, in the CVD process, it is necessary to rapidly raise the metal catalyst particles on the substrate 101 to the reaction temperature. Therefore, in the manufacturing apparatus shown in FIG. 5, the radiant heater 12 having the peak of the energy spectral distribution in the wavelength range of 1.0 μm to 1.7 μm is provided as a means for obtaining a necessary temperature increase rate. By using this radiation heater 12, it becomes possible to rapidly heat the metal catalyst particles to be heated and the substrate 101 on which the metal catalyst particles are formed.
 金属触媒粒子は粒径が極めて小さいため、その温度を直接測定して所望の昇温速度が得られるように制御することは困難である。そこで金属触媒粒子が形成された基板101の表面(金属触媒粒子を有する面)の温度を熱電対等を備えた温度計18により測定することで、所定の昇温速度が得られるように、制御装置17により輻射ヒーター12を制御する。金属触媒粒子は微細な粒子であるため熱容量が非常に小さく、また金属であるため熱伝導性が高いので、金属触媒粒子の温度は基板101の表面温度とほぼ同一と見なすことができる。したがって、上記の制御方法により金属触媒粒子の温度を制御することができる。
 なお、基板101の両面に金属触媒粒子を形成した場合でも、基板101においてその両面の温度がほぼ等しいと見なせる場合には、基板101の片面の温度を測定すれば十分である。
Since the metal catalyst particles have a very small particle size, it is difficult to control the temperature so that a desired temperature increase rate can be obtained by directly measuring the temperature. Therefore, a control device is provided so that a predetermined temperature increase rate can be obtained by measuring the temperature of the surface of the substrate 101 on which the metal catalyst particles are formed (the surface having the metal catalyst particles) with a thermometer 18 equipped with a thermocouple or the like. The radiant heater 12 is controlled by 17. Since the metal catalyst particles are fine particles, the heat capacity is very small, and since the metal catalyst particles are metal, the heat conductivity is high. Therefore, the temperature of the metal catalyst particles can be regarded as almost the same as the surface temperature of the substrate 101. Therefore, the temperature of the metal catalyst particles can be controlled by the above control method.
Even when the metal catalyst particles are formed on both surfaces of the substrate 101, it is sufficient to measure the temperature of one surface of the substrate 101 if the temperatures of both surfaces of the substrate 101 can be regarded as substantially equal.
 上記の加熱手段を用い、金属触媒粒子を所定の反応温度まで加熱したら、カーボンナノチューブの原料となる有機化合物蒸気を反応炉11の炉心管14に導入する。
 カーボンナノチューブの原料となる有機化合物としては、直鎖の炭化水素類であるメタン、エタン、プロパン、ブタン、エチレン、アセチレンからなる群から選ばれた少なくとも1種の化合物、又は直鎖の1価アルコール類であるメタノール、エタノール、プロパノールからなる群から選ばれた少なくとも1種の化合物、又は芳香族炭化水素類であるベンゼン、ナフタレン、アントラセン、及びこれらの誘導体からなる群から選ばれた少なくとも1種の化合物を用いることができる。また、これらの化合物以外にも、金属触媒粒子上にカーボンナノチューブを生成可能な有機化合物を原料として用いることができる。
When the metal catalyst particles are heated to a predetermined reaction temperature using the above heating means, an organic compound vapor serving as a carbon nanotube raw material is introduced into the core tube 14 of the reaction furnace 11.
The organic compound used as a raw material for the carbon nanotube is at least one compound selected from the group consisting of methane, ethane, propane, butane, ethylene, and acetylene, which are linear hydrocarbons, or a linear monohydric alcohol At least one compound selected from the group consisting of methanol, ethanol and propanol, or at least one compound selected from the group consisting of aromatic hydrocarbons such as benzene, naphthalene, anthracene, and derivatives thereof Compounds can be used. In addition to these compounds, organic compounds capable of generating carbon nanotubes on metal catalyst particles can be used as raw materials.
 反応炉11に有機化合物蒸気が導入されると、金属触媒粒子の温度が所定の反応温度に到達していれば、直ちにカーボンナノチューブが成長し始める。カーボンナノチューブが成長を始めた後は、金属触媒粒子表面が原料化合物や炭素、反応中間体により覆われるため、反応温度が450℃を超えていたとしてもそれ以上金属触媒粒子の凝集が進行することはなく、成長開始時における粒径が維持される。したがって、成長開始時の金属触媒粒子の粒径に応じたグラフェンシート層数のカーボンナノチューブが連続的に成長することになる。 When the organic compound vapor is introduced into the reaction furnace 11, if the temperature of the metal catalyst particles reaches a predetermined reaction temperature, the carbon nanotubes immediately start to grow. After carbon nanotubes begin to grow, the surface of the metal catalyst particles is covered with raw material compounds, carbon, and reaction intermediates, so that even if the reaction temperature exceeds 450 ° C, the aggregation of the metal catalyst particles further proceeds. Rather, the particle size at the start of growth is maintained. Therefore, the carbon nanotubes having the number of graphene sheet layers corresponding to the particle diameter of the metal catalyst particles at the start of growth grow continuously.
 以上の手順により、金属触媒粒子上に所望の長さのカーボンナノチューブを成長させたならば、有機化合物蒸気の供給を停止し、反応炉11内を常温に戻した後にカーボンナノチューブが表面に形成された基板101を取り出す。
 以上により、基板101の表面に形成されたカーボンナノチューブ集合体を有する光学素子100を製造することができる。
When carbon nanotubes having a desired length are grown on the metal catalyst particles by the above procedure, the supply of the organic compound vapor is stopped, and the carbon nanotubes are formed on the surface after the reaction furnace 11 is returned to room temperature. The substrate 101 is taken out.
As described above, the optical element 100 having the carbon nanotube aggregate formed on the surface of the substrate 101 can be manufactured.
 なお、図3に示した光学素子100Aを製造する場合には、光学素子100の製造工程における触媒粒子形成工程に先立って、基板101上に金属膜103を形成する金属膜形成工程を設ければよい。金属膜形成工程では、例えば、マグネトロンスパッタリング法により、基板101上にクロム膜を所定の膜厚で形成する。金属膜形成工程の後の触媒粒子形成工程、還元工程、及びCVD工程は、上述した光学素子100の製造工程と同様である。 In the case of manufacturing the optical element 100A shown in FIG. 3, a metal film forming step for forming the metal film 103 on the substrate 101 is provided prior to the catalyst particle forming step in the manufacturing process of the optical element 100. Good. In the metal film forming step, for example, a chromium film is formed with a predetermined film thickness on the substrate 101 by magnetron sputtering. The catalyst particle formation process, the reduction process, and the CVD process after the metal film formation process are the same as the manufacturing process of the optical element 100 described above.
 (露光装置)
 先に説明した実施形態に係る光学素子は、露光装置の構成部材として好適に用いることができる。以下、図6を参照しつつ一実施形態に係る露光装置について詳細に説明する。
(Exposure equipment)
The optical element according to the above-described embodiment can be suitably used as a constituent member of the exposure apparatus. Hereinafter, an exposure apparatus according to an embodiment will be described in detail with reference to FIG.
 図6は、上記光学素子を適用できる露光装置を示す図である。
 露光装置EXは、マスクMと基板Pとを走査方向に同期移動しつつマスクMに形成されたパターンPAの像を基板Pに露光する走査型露光装置(所謂スキャニングステッパ)である。露光装置EXは、マスクMを保持して移動可能なマスクステージMST、基板Pを保持して移動可能な基板ステージPST、マスクステージMSTに保持されているマスクMを露光光ELで照明する照明光学系230(照明装置)、照明光学系230に設けられた光検出装置260、露光光ELで照明されたマスクMのパターンPAの像を基板P上に投影する投影光学系PL、露光装置EX全体の動作を制御する制御装置207等を備えている。
 なお、ここでいう基板は半導体ウエハ等の基材上に感光材(レジスト)を塗布したものを含み、マスクは基板上に縮小投影されるデバイスパターンを形成されたレチクルを含む。また、本実施形態においては、マスクとして透過型のマスクを用いるが、反射型のマスクを用いることもできる。
 以下の説明において、水平面内においてマスクMと基板Pとの同期移動方向(走査方向)をY軸方向、水平面内においてY軸方向と直交する方向をX軸方向(非走査方向)、X軸及びY軸方向に垂直で投影光学系PLの光軸AXと一致する方向をZ軸方向とする。また、X軸、Y軸、及びZ軸まわりの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。
FIG. 6 is a view showing an exposure apparatus to which the optical element can be applied.
The exposure apparatus EX is a scanning exposure apparatus (so-called scanning stepper) that exposes the image of the pattern PA formed on the mask M onto the substrate P while moving the mask M and the substrate P synchronously in the scanning direction. The exposure apparatus EX includes a mask stage MST that is movable while holding the mask M, a substrate stage PST that is movable while holding the substrate P, and illumination optics that illuminates the mask M held on the mask stage MST with the exposure light EL. System 230 (illumination device), photodetection device 260 provided in illumination optical system 230, projection optical system PL that projects an image of pattern PA of mask M illuminated by exposure light EL onto substrate P, and overall exposure apparatus EX A control device 207 and the like for controlling the operation.
Here, the substrate includes a substrate in which a photosensitive material (resist) is coated on a base material such as a semiconductor wafer, and the mask includes a reticle on which a device pattern to be reduced and projected is formed on the substrate. In this embodiment, a transmissive mask is used as a mask, but a reflective mask can also be used.
In the following description, the synchronous movement direction (scanning direction) of the mask M and the substrate P in the horizontal plane is the Y-axis direction, the direction orthogonal to the Y-axis direction in the horizontal plane is the X-axis direction (non-scanning direction), the X-axis, and A direction perpendicular to the Y-axis direction and coincident with the optical axis AX of the projection optical system PL is defined as a Z-axis direction. In addition, the rotation (inclination) directions around the X, Y, and Z axes are the θX, θY, and θZ directions, respectively.
 また、露光装置EXは、露光波長を実質的に短くして解像度を向上するとともに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、投影光学系PLの像面側の露光光ELの光路空間Kを液体LQで満たす液浸機構210を備えている。そして、露光装置EXは、少なくともマスクMのパターンの像を基板Pに露光している間、液浸機構210を使って、露光光ELの光路空間Kを液体LQで満たす。露光装置EXは、投影光学系PLと光路空間Kに満たされた液体LQとを介してマスクMを通過した露光光ELを基板P上に照射することによって、マスクMのパターンPAの像を基板Pに露光する。
 また、本実施形態の露光装置EXは、光路空間Kに満たされた液体LQが、投影光学系PLの投影領域ARを含む基板P上の一部の領域に、投影領域ARよりも大きく且つ基板Pよりも小さい液体LQの液浸領域LRを局所的に形成する局所液浸方式を採用している。本実施形態においては、液体LQとして純水を用いる。
The exposure apparatus EX is an immersion exposure apparatus to which an immersion method is applied in order to improve the resolution by substantially shortening the exposure wavelength and substantially increase the depth of focus. A liquid immersion mechanism 210 that fills the optical path space K of the exposure light EL on the image plane side with the liquid LQ is provided. The exposure apparatus EX fills the optical path space K of the exposure light EL with the liquid LQ by using the liquid immersion mechanism 210 while exposing at least the pattern image of the mask M to the substrate P. The exposure apparatus EX irradiates the substrate P with the exposure light EL that has passed through the mask M via the projection optical system PL and the liquid LQ filled in the optical path space K, whereby the image of the pattern PA of the mask M is formed on the substrate. P is exposed.
Further, in the exposure apparatus EX of the present embodiment, the liquid LQ filled in the optical path space K is larger than the projection area AR in a part of the area on the substrate P including the projection area AR of the projection optical system PL. A local liquid immersion method is adopted in which the liquid immersion region LR of the liquid LQ smaller than P is locally formed. In the present embodiment, pure water is used as the liquid LQ.
 照明光学系230は、各種光学機器を収容する筐体としての光学系ハウジング230H、露光光ELをレーザビームとして射出する光源装置231、光源装置231から射出された露光光(レーザビーム)ELの断面形状を整形するビーム整形光学系232、通過する露光光ELのエネルギーを調整するエネルギー調整器233、エネルギー調整器233から射出され、ミラー234によってその光路を折り曲げられた露光光ELにより2次光源を形成してマスクM上での露光光ELの照度を均一化するフライアイレンズ等を含むオプティカルインテグレーター235、オプティカルインテグレーター235の光射出面に設けられた開口絞り(σ絞り)236、リレーレンズ系238を構成する第1及び第2リレーレンズ238A、238B、マスクM上での露光光ELの照射領域(照明領域)IAを設定するブラインド装置250、コンデンサーレンズ240、光検出装置260等を備えている。
 光学系ハウジング230H内には、ビーム整形光学系232、エネルギー調整器233、ミラー234、オプティカルインテグレーター235、開口絞り236、リレーレンズ系238、ブラインド装置250、コンデンサーレンズ240等が収容されている。
The illumination optical system 230 includes an optical system housing 230H as a housing for housing various optical devices, a light source device 231 that emits exposure light EL as a laser beam, and a cross section of exposure light (laser beam) EL emitted from the light source device 231. A beam shaping optical system 232 for shaping the shape, an energy adjuster 233 for adjusting the energy of the exposure light EL that passes through, and a secondary light source by the exposure light EL that is emitted from the energy adjuster 233 and whose optical path is bent by the mirror 234 An optical integrator 235 including a fly-eye lens and the like that is formed to make the illuminance of the exposure light EL uniform on the mask M, an aperture stop (σ stop) 236 provided on the light exit surface of the optical integrator 235, a relay lens system 238 The first and second relay lenses 238A, 238B constituting Blind apparatus 250 for setting the irradiation area (illumination area) IA of the exposure light EL on the mask M, the condenser lens 240, a photodetector 260, and the like.
In the optical system housing 230H, a beam shaping optical system 232, an energy adjuster 233, a mirror 234, an optical integrator 235, an aperture stop 236, a relay lens system 238, a blind device 250, a condenser lens 240, and the like are housed.
 光源装置231はエキシマレーザー光源を備えている。光源装置231から射出される露光光(レーザービーム)ELとしては、KrFエキシマレーザー光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザー光(波長193nm)及びF2レーザー光(波長157nm)等の真空紫外光(VUV光)などが用いられる。本実施形態においては、光源装置231としてArFエキシマレーザー光源を用い、露光光ELとしてArFエキシマレーザー光を用いる。
 なお、光源装置231から射出される露光光EL(レーザービーム)としては、KrFエキシマレーザー光、ArFエキシマレーザー光、及びF2レーザー光のみならず、水銀ランプから射出される輝線(g線、h線、i線)等を用いることもできる。
The light source device 231 includes an excimer laser light source. As exposure light (laser beam) EL emitted from the light source device 231, far ultraviolet light (DUV light) such as KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength 193 nm), and F2 laser light (wavelength) Vacuum ultraviolet light (VUV light) such as 157 nm) is used. In the present embodiment, an ArF excimer laser light source is used as the light source device 231, and ArF excimer laser light is used as the exposure light EL.
The exposure light EL (laser beam) emitted from the light source device 231 is not only KrF excimer laser light, ArF excimer laser light, and F2 laser light, but also bright lines (g line, h line) emitted from a mercury lamp. , I-line) or the like.
 光源装置231から射出される露光光(レーザービーム)ELは、ビーム整形光学系232に入射する。
 ビーム整形光学系232は、光源装置231から射出された露光光ELがオプティカルインテグレーター235に効率良く入射するように、その露光光ELの断面形状を整形するものであって、例えばシリンドリカルレンズやビームエキスパンダー等を備えている。
The exposure light (laser beam) EL emitted from the light source device 231 enters the beam shaping optical system 232.
The beam shaping optical system 232 shapes the cross-sectional shape of the exposure light EL so that the exposure light EL emitted from the light source device 231 efficiently enters the optical integrator 235. For example, a cylindrical lens or a beam expander is used. Etc.
 ビーム整形光学系232を通過した露光光ELは、エネルギー調整器233に入射する。
 エネルギー調整器233は、そのエネルギー調整器233から射出される露光光ELのエネルギーを調整するものである。エネルギー調整器233は、回転可能なレボルバーRv上に配置され、露光光ELに対する透過率が互いに異なる複数のNDフィルターF0~F2を備えている。より詳しくは、レボルバーRvは回転軸Oを中心に回転自在に構成されており、レボルバーRvには透過率(減光率)の異なる複数のNDフィルターF0、F1、F2が周方向に等角度間隔に配置されている。
 エネルギー調整器233は、レボルバーRvを回転させて、露光光ELの光路上に配置されるNDフィルターF0~F2を切り換えることにより、エネルギー調整器233から射出される露光光ELのエネルギーを複数段階で調整することができる。レボルバーRvには、露光光ELを素通りさせる透孔が形成されていてもよく、2つ以下又は4つ以上のNDフィルターを備える構成としてもよい。
The exposure light EL that has passed through the beam shaping optical system 232 enters the energy adjuster 233.
The energy adjuster 233 adjusts the energy of the exposure light EL emitted from the energy adjuster 233. The energy adjuster 233 includes a plurality of ND filters F0 to F2 disposed on the rotatable revolver Rv and having different transmittances for the exposure light EL. More specifically, the revolver Rv is configured to be rotatable about the rotation axis O, and the revolver Rv includes a plurality of ND filters F0, F1, and F2 having different transmittances (dimming rates) at equal angular intervals in the circumferential direction. Is arranged.
The energy adjuster 233 rotates the revolver Rv to switch the ND filters F0 to F2 arranged on the optical path of the exposure light EL, thereby changing the energy of the exposure light EL emitted from the energy adjuster 233 in a plurality of stages. Can be adjusted. The revolver Rv may be formed with a through hole through which the exposure light EL passes, and may have two or less or four or more ND filters.
 エネルギー調整器233から射出された露光光ELは、ミラー234によってその光路を折り曲げられ、オプティカルインテグレーター235に入射する。
 オプティカルインテグレーター235は、マスクM上での露光光ELの照度を均一化するものであって、ミラー234を介して入射された露光光ELから多数の2次光源を形成する。オプティカルインテグレーター235から射出され、開口絞り236を通過した露光光ELは、反射率が小さく透過率が大きいビームスプリッター237によって2つの方向に分岐される。
The exposure light EL emitted from the energy adjuster 233 is bent in its optical path by the mirror 234 and is incident on the optical integrator 235.
The optical integrator 235 makes the illuminance of the exposure light EL on the mask M uniform, and forms a large number of secondary light sources from the exposure light EL incident through the mirror 234. The exposure light EL that has been emitted from the optical integrator 235 and passed through the aperture stop 236 is branched in two directions by a beam splitter 237 that has low reflectance and high transmittance.
 ビームスプリッター237を透過した露光光ELは、第1リレーレンズ238Aを介してブラインド装置250を通過する。
 ブラインド装置250は、露光光ELの光路上に設けられ、マスクM上での露光光ELの照射領域(照明領域)IA、及び基板P上での露光光ELの照射領域(投影領域)ARを調整可能である。ブラインド装置250は、マスクMのパターンPAの面に対する共役面近傍に配置されている。
 ブラインド装置250は、複数の可動ブレード252を組み合わせて構成されており、複数の可動ブレード252を駆動する複数のリニアモータ255を備えている。そして、これら可動ブレード252によって、露光光ELの光路上に、マスクM上の露光光ELの照射領域(照明領域)IAを設定するための開口250Kが形成される。開口250Kは矩形状であり、マスクM上での露光光ELの照射領域(照明領域)IA及び基板P上での露光光ELの照射領域(投影領域)ARは矩形状に設定される。マスクM上の露光光ELの照射領域(照明領域)IAが設定されることにより、基板P上の露光光ELの照射領域(投影領域)ARも設定される。
The exposure light EL that has passed through the beam splitter 237 passes through the blind device 250 via the first relay lens 238A.
The blind device 250 is provided on the optical path of the exposure light EL, and determines an irradiation area (illumination area) IA of the exposure light EL on the mask M and an irradiation area (projection area) AR of the exposure light EL on the substrate P. It can be adjusted. The blind device 250 is disposed in the vicinity of the conjugate plane with respect to the plane of the pattern PA of the mask M.
The blind device 250 is configured by combining a plurality of movable blades 252 and includes a plurality of linear motors 255 that drive the plurality of movable blades 252. These movable blades 252 form an opening 250K for setting an irradiation area (illumination area) IA of the exposure light EL on the mask M on the optical path of the exposure light EL. The opening 250K has a rectangular shape, and the irradiation area (illumination area) IA of the exposure light EL on the mask M and the irradiation area (projection area) AR of the exposure light EL on the substrate P are set to be rectangular. By setting the irradiation area (illumination area) IA of the exposure light EL on the mask M, the irradiation area (projection area) AR of the exposure light EL on the substrate P is also set.
 制御装置207は、ブラインド装置250のリニアモータ255を介して可動ブレード252を駆動することにより、開口250Kの大きさを調整する。ブラインド装置250の開口250Kの大きさを調整することによって、マスクM上での露光光ELの照射領域(照明領域)IAの大きさ及び基板P上での露光光ELの投影領域(照射領域)ARの大きさを調整可能である。また、制御装置207は、ブラインド装置250のリニアモータ255を用いて可動ブレード252を駆動することにより、走査方向(Y軸方向)及び非走査方向(X軸方向)のそれぞれに対応する方向での開口250Kの幅及び位置を調整可能である。
 このようにして、制御装置207は、走査方向(Y軸方向)及び非走査方向(X軸方向)のそれぞれにおける露光光ELのマスクM上での照射領域(照明領域)IA、及び基板P上での照射領域(投影領域)ARの大きさを調整することができる。
The control device 207 adjusts the size of the opening 250 </ b> K by driving the movable blade 252 via the linear motor 255 of the blind device 250. By adjusting the size of the opening 250K of the blind device 250, the size of the irradiation area (illumination area) IA of the exposure light EL on the mask M and the projection area (irradiation area) of the exposure light EL on the substrate P The size of AR can be adjusted. In addition, the control device 207 drives the movable blade 252 using the linear motor 255 of the blind device 250, so that the control device 207 in the direction corresponding to each of the scanning direction (Y-axis direction) and the non-scanning direction (X-axis direction). The width and position of the opening 250K can be adjusted.
In this way, the control device 207 controls the irradiation area (illumination area) IA on the mask M of the exposure light EL in the scanning direction (Y-axis direction) and the non-scanning direction (X-axis direction), and the substrate P. The size of the irradiation area (projection area) AR can be adjusted.
 ブラインド装置250を通過した露光光ELは、第2リレーレンズ238B及びコンデンサーレンズ240を介して、マスクステージMST上に保持されたマスクM上の矩形状の照明領域IAを均一な照度分布で照明する。
 一方、ビームスプリッター237へ入射した露光光ELのうち、ビームスプリッター237で反射した露光光ELは、光検出装置260に導かれ、エネルギー計測に供される。光検出装置260は、集光レンズ241、計測器(計測装置)242、NDフィルター243、これらを収容するセンサーハウジング260H等を備えている。
 ビームスプリッター237で反射された露光光ELは、集光レンズ241で集光された後、NDフィルター243を介して計測器242(計測装置)に入射し、計測器242で計測される。計測器242は、露光光ELのエネルギーを計測するものであって、例えば光電変換素子などによって構成されている。計測器242の計測信号は制御装置207に出力される。
The exposure light EL that has passed through the blind device 250 illuminates the rectangular illumination area IA on the mask M held on the mask stage MST with a uniform illuminance distribution via the second relay lens 238B and the condenser lens 240. .
On the other hand, of the exposure light EL that has entered the beam splitter 237, the exposure light EL reflected by the beam splitter 237 is guided to the light detection device 260 and used for energy measurement. The light detection device 260 includes a condenser lens 241, a measuring instrument (measuring device) 242, an ND filter 243, a sensor housing 260H that accommodates these, and the like.
The exposure light EL reflected by the beam splitter 237 is collected by the condenser lens 241, then enters the measuring instrument 242 (measuring device) via the ND filter 243, and is measured by the measuring instrument 242. The measuring instrument 242 measures the energy of the exposure light EL, and is composed of, for example, a photoelectric conversion element. The measurement signal of the measuring instrument 242 is output to the control device 207.
 マスクステージMSTは、マスクテーブル203上にマスクMを保持した状態で、リニアモータ等のアクチュエータを含むマスクステージ駆動装置203Dの駆動により、マスクテーブル203をベース部材203B上でX軸、Y軸、及びθZ方向に移動可能である。
 マスクテーブル203(ひいてはマスクM)の位置情報は、レーザ干渉計203Lによって計測される。レーザ干渉計203Lは、マスクテーブル203上に設けられた反射鏡203Kを用いてマスクテーブル203の位置情報を計測する。制御装置207は、レーザ干渉計203Lの計測結果に基づいてマスクステージ駆動装置203Dを駆動し、マスクテーブル203に保持されているマスクMの位置制御を行う。
The mask stage MST holds the mask M on the mask table 203 and is driven by a mask stage driving device 203D including an actuator such as a linear motor, so that the mask table 203 is moved on the base member 203B by the X axis, Y axis, and It can move in the θZ direction.
Position information of the mask table 203 (and thus the mask M) is measured by the laser interferometer 203L. The laser interferometer 203L measures the position information of the mask table 203 using a reflecting mirror 203K provided on the mask table 203. The control device 207 drives the mask stage driving device 203D based on the measurement result of the laser interferometer 203L, and controls the position of the mask M held on the mask table 203.
 投影光学系PLは、マスクMのパターンPAの像を所定の投影倍率で基板Pに投影するものであって、複数の光学素子を有しており、それら光学素子は鏡筒PKで保持されている。本実施形態の投影光学系PLは、その投影倍率が例えば1/4、1/5、1/8等の縮小系である。
 なお、投影光学系PLは等倍系及び拡大系のいずれでもよい。また、投影光学系PLは、反射光学素子を含まない屈折系、屈折光学素子を含まない反射系、反射光学素子と屈折光学素子とを含む反射屈折系のいずれであってもよい。また、投影光学系PLは、倒立像と正立像とのいずれを形成してもよい。
 投影光学系PLの複数の光学素子のうち、投影光学系PLの像面に最も近い最終光学素子FLのみが光路空間Kの液体LQと接触する。
The projection optical system PL projects an image of the pattern PA of the mask M onto the substrate P at a predetermined projection magnification, and has a plurality of optical elements, and these optical elements are held by a lens barrel PK. Yes. The projection optical system PL of the present embodiment is a reduction system whose projection magnification is, for example, 1/4, 1/5, 1/8 or the like.
Note that the projection optical system PL may be either an equal magnification system or an enlargement system. The projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element. Further, the projection optical system PL may form either an inverted image or an erect image.
Of the plurality of optical elements of the projection optical system PL, only the final optical element FL closest to the image plane of the projection optical system PL is in contact with the liquid LQ in the optical path space K.
 基板ステージPSTは、基板テーブル204上に基板Pを保持した状態で、基板テーブル204をベース部材205上で6自由度の方向に移動可能である。
 基板テーブル204は、リニアモータ等のアクチュエータを含む基板ステージ駆動装置204Dの駆動により、基板Pを保持した状態で、X軸、Y軸、Z軸、θX、θY、及びθZ方向の6自由度の方向に移動可能である。
 基板テーブル204(ひいては基板P)の位置情報はレーザ干渉計204Lによって計測される。レーザ干渉計204Lは基板テーブル204に設けられた反射鏡204Kを用いて基板テーブル204のX軸、Y軸、及びθZ方向に関する位置情報を計測する。また、基板テーブル204に保持されている基板Pの表面の面位置情報(Z軸、θX、及びθY方向に関する位置情報)は、不図示のフォーカス・レベリング検出系によって検出される。制御装置207は、レーザ干渉計204Lの計測結果及びフォーカス・レベリング検出系の検出結果に基づいて基板ステージ駆動装置204Dを駆動し、基板テーブル204に保持されている基板Pの位置制御を行う。
The substrate stage PST can move the substrate table 204 on the base member 205 in the direction of 6 degrees of freedom while holding the substrate P on the substrate table 204.
The substrate table 204 has six degrees of freedom in the X-axis, Y-axis, Z-axis, θX, θY, and θZ directions while holding the substrate P by driving a substrate stage driving device 204D including an actuator such as a linear motor. It can move in the direction.
The position information of the substrate table 204 (and thus the substrate P) is measured by the laser interferometer 204L. The laser interferometer 204L uses the reflecting mirror 204K provided on the substrate table 204 to measure position information regarding the X axis, the Y axis, and the θZ direction of the substrate table 204. Further, surface position information (position information regarding the Z-axis, θX, and θY directions) of the surface of the substrate P held on the substrate table 204 is detected by a focus / leveling detection system (not shown). The control device 207 drives the substrate stage driving device 204D based on the measurement result of the laser interferometer 204L and the detection result of the focus / leveling detection system, and controls the position of the substrate P held on the substrate table 204.
 液浸機構210は、露光光ELが通過する投影光学系PLの最終光学素子FLと、その最終光学素子FLと対向する位置に設けられ、基板テーブル204に保持された基板Pとの間の光路空間Kを液体LQで満たす。光路空間Kを満たす液体LQは最終光学素子FLの下面FLAと接触し、露光光ELはその最終光学素子FLの下面FLAを通過する。
 液浸機構210は、光路空間Kの近傍に設けられ、光路空間Kに対して液体LQを供給する供給口及び液体LQを回収する回収口を有するノズル部材225、供給管213及びノズル部材225の供給口を介して液体LQを供給する液体供給装置211、ノズル部材225の回収口及び回収管223を介して液体LQを回収する液体回収装置221等を備えている。
 ノズル部材225の内部には、供給口と供給管213とを接続する流路、及び回収口と回収管223とを接続する流路が形成されている。
 液体供給装置211及び液体回収装置221の動作は制御装置207に制御される。液体供給装置211は清浄で温度調整された液体LQを送出可能であり、真空系等を含む液体回収装置221は液体LQを回収可能である。制御装置207は、液浸機構210を制御して、液体供給装置211による液体供給動作と液体回収装置221による液体回収動作とを並行して行うことで、光路空間Kを液体LQで満たし、基板P上の一部の領域に液体LQの液浸領域LRを局所的に形成する。
The liquid immersion mechanism 210 is provided at a position facing the final optical element FL of the projection optical system PL through which the exposure light EL passes, and the substrate P held on the substrate table 204, and located at a position facing the final optical element FL. The space K is filled with the liquid LQ. The liquid LQ that fills the optical path space K contacts the lower surface FLA of the final optical element FL, and the exposure light EL passes through the lower surface FLA of the final optical element FL.
The liquid immersion mechanism 210 is provided in the vicinity of the optical path space K, and includes a nozzle member 225, a supply pipe 213, and a nozzle member 225 having a supply port for supplying the liquid LQ to the optical path space K and a recovery port for recovering the liquid LQ. A liquid supply device 211 that supplies the liquid LQ through the supply port, a recovery port of the nozzle member 225, a liquid recovery device 221 that recovers the liquid LQ through the recovery pipe 223, and the like are provided.
Inside the nozzle member 225, a flow path connecting the supply port and the supply pipe 213 and a flow path connecting the recovery port and the recovery pipe 223 are formed.
The operations of the liquid supply device 211 and the liquid recovery device 221 are controlled by the control device 207. The liquid supply device 211 can deliver a clean and temperature-adjusted liquid LQ, and the liquid recovery device 221 including a vacuum system and the like can recover the liquid LQ. The control device 207 controls the liquid immersion mechanism 210 to perform the liquid supply operation by the liquid supply device 211 and the liquid recovery operation by the liquid recovery device 221 in parallel, so that the optical path space K is filled with the liquid LQ, and the substrate An immersion region LR of the liquid LQ is locally formed in a partial region on P.
 以上の構成を備えた露光装置EXでは、複数の構成部材について、先に記載の光学素子100、100Aを適用することができる。
 具体的には、光学素子100又は光学素子100Aは、照明光学系230から分岐された露光光ELを減光するNDフィルター243として用いることができる。NDフィルター243を光学素子100、100Aにより構成することで、集光レンズ241からNDフィルター243に入射した光の反射を極めて低レベルに抑えることができる。これにより、NDフィルター243で反射した光が計測器242に回り込むのを防止することができ、露光光ELの計測精度を高めることができる。
In the exposure apparatus EX having the above configuration, the optical elements 100 and 100A described above can be applied to a plurality of constituent members.
Specifically, the optical element 100 or the optical element 100A can be used as the ND filter 243 that attenuates the exposure light EL branched from the illumination optical system 230. By configuring the ND filter 243 with the optical elements 100 and 100A, reflection of light incident on the ND filter 243 from the condenser lens 241 can be suppressed to an extremely low level. Thereby, it is possible to prevent the light reflected by the ND filter 243 from entering the measuring instrument 242, and to improve the measurement accuracy of the exposure light EL.
 また、光学素子100、100Aは、露光光ELの光路から周囲に散乱する光を吸収する光吸収素子として用いることができる。例えば、光学系ハウジング230Hの内壁230w、センサーハウジング260Hの内壁260w、及び鏡筒PKの内壁PKwに、光学素子100又は光学素子100Aを設置することができる。
 このように光学素子100、100Aをハウジングや鏡筒の内壁に設置することで、光路からの散乱光を光学素子100、100Aにより吸収させることができる。これにより、ハウジングや鏡筒の内壁で散乱光が反射し、光路側へ戻るのを防止することができる。
The optical elements 100 and 100A can be used as light absorbing elements that absorb light scattered from the optical path of the exposure light EL to the surroundings. For example, the optical element 100 or the optical element 100A can be installed on the inner wall 230w of the optical system housing 230H, the inner wall 260w of the sensor housing 260H, and the inner wall PKw of the lens barrel PK.
Thus, by installing the optical elements 100 and 100A on the inner wall of the housing or the lens barrel, the scattered light from the optical path can be absorbed by the optical elements 100 and 100A. Thereby, it is possible to prevent the scattered light from being reflected by the inner wall of the housing or the lens barrel and returning to the optical path side.
 光学系ハウジング230Hの内壁230w、センサーハウジング260Hの内壁260w、鏡筒PKの内壁PKwに設置される光学素子100としては、例えば、石英ガラス等の基板101上に、CVD法により基板101表面に対してほぼ垂直に配向したカーボンナノチューブからなるCNT層102を形成したものを用いることができ、このようなCNT層102が形成された基板101を内壁230w、260w、PKwに配置して使用することができる。 As the optical element 100 installed on the inner wall 230w of the optical system housing 230H, the inner wall 260w of the sensor housing 260H, and the inner wall PKw of the lens barrel PK, for example, on the substrate 101 such as quartz glass, the surface of the substrate 101 is formed by the CVD method. The CNT layer 102 made of carbon nanotubes oriented substantially vertically can be used, and the substrate 101 on which the CNT layer 102 is formed can be used by being disposed on the inner walls 230w, 260w, and PKw. it can.
 さらに、上記とは別に次のような形態で使用することもできる。
 まず、石英ガラス等のCVDの反応温度に耐えうる基板101の上にCVD法により基板表面に対してほぼ垂直に配向したカーボンナノチューブからなるCNT層102を形成する。
 次に、CNT層102を基板101から分離する。分離する方法としては、約60℃の温水にCNT層102が形成された基板101を浸漬し、CNT層102と基板101とを分離する方法を用いることができる。このように垂直配向した状態でカーボンナノチューブ集合体(CNT層102)のみを分離し、自立膜を得る方法は、丸山により提案されている(特開2007-182342号公報参照)。
 そして、このように分離されたCNT膜(CNT層102)を、接着剤を用いて光学系ハウジング230Hの内壁230w、センサーハウジング260Hの内壁260w、鏡筒PKの内壁PKw等に固定することで、光吸収素子を備えた構成を得ることができる。CNT膜と壁材との接着に用いる接着剤としては、紫外線が照射された場合でも揮発性ガスの発生が少ないものを用いることができる。
In addition to the above, it can be used in the following form.
First, a CNT layer 102 made of carbon nanotubes oriented substantially perpendicular to the substrate surface is formed by CVD on a substrate 101 that can withstand a CVD reaction temperature such as quartz glass.
Next, the CNT layer 102 is separated from the substrate 101. As a method for separation, a method of separating the CNT layer 102 and the substrate 101 by immersing the substrate 101 on which the CNT layer 102 is formed in warm water of about 60 ° C. can be used. A method of separating only the carbon nanotube aggregate (CNT layer 102) in the vertically aligned state to obtain a self-supporting film has been proposed by Maruyama (see Japanese Patent Application Laid-Open No. 2007-182342).
Then, by fixing the separated CNT film (CNT layer 102) to the inner wall 230w of the optical system housing 230H, the inner wall 260w of the sensor housing 260H, the inner wall PKw of the lens barrel PK, and the like using an adhesive, A configuration including a light absorbing element can be obtained. As the adhesive used for bonding the CNT film and the wall material, an adhesive that generates little volatile gas even when irradiated with ultraviolet rays can be used.
 さらに、光学素子100、100Aは、エネルギー調整器233を構成するNDフィルターF0、F1、F2の一部又は全部に適用することができる。光学素子100では、CNT層102におけるカーボンナノチューブの長さ又は面積密度を変更することで透過率を調整することができ、光学素子100Aではさらに金属膜103の厚さによっても透過率を調整することができる。したがって、エネルギー調整器233に備えられる透過率の異なる複数のNDフィルターF0~F2に好適に用いることができ、低反射のエネルギー調整器233を構成することができる。 Furthermore, the optical elements 100 and 100A can be applied to some or all of the ND filters F0, F1, and F2 constituting the energy adjuster 233. In the optical element 100, the transmittance can be adjusted by changing the length or area density of the carbon nanotubes in the CNT layer 102. In the optical element 100A, the transmittance is also adjusted by the thickness of the metal film 103. Can do. Therefore, the energy adjuster 233 can be suitably used for a plurality of ND filters F0 to F2 having different transmittances, and a low reflection energy adjuster 233 can be configured.
 なお、波長が250nmよりも短い光を露光光として用いる場合、酸素による吸収によって露光光の強度が低下するため、全ての光路が窒素などの不活性ガスでパージされる。本実施形態の露光装置EXでは、光路上又は光路に面する位置に光学素子100、100Aが設けられるが、光学素子100、100Aは、少なくともCNT層102が不活性ガス雰囲気下となるように配置されることができる。これにより、雰囲気中の酸素等を少なくすることができるので、CNT層102に光が照射されたときに酸素などの存在によってカーボンナノチューブの損傷や分解が生じやすくなるのを防止することができる。 Note that when light having a wavelength shorter than 250 nm is used as exposure light, the intensity of the exposure light is reduced by absorption by oxygen, so that all the optical paths are purged with an inert gas such as nitrogen. In the exposure apparatus EX of the present embodiment, the optical elements 100 and 100A are provided on the optical path or at a position facing the optical path. The optical elements 100 and 100A are arranged so that at least the CNT layer 102 is in an inert gas atmosphere. Can be done. Thereby, oxygen and the like in the atmosphere can be reduced, so that it is possible to prevent the carbon nanotubes from being easily damaged or decomposed due to the presence of oxygen or the like when the CNT layer 102 is irradiated with light.
 また、先の実施形態の光学素子100、100A、あるいは基板101上に形成されたCNT層102を分離してなるCNT膜は、露光装置EXの他の構成部材に使用してもよい。例えば、露光装置EXの照明光学系230と光源装置231とが離れた場所に設置されており、光源装置231からの光を照明光学系230へ引き回す光引き回しユニットが設けられている場合には、この光引き回しユニットの筐体や光学系に光学素子100、100Aや上記CNT膜を使用してもよい。あるいはまた、光源装置231の筐体及び光学系などに使用することもできる。 Further, the CNT film formed by separating the CNT layer 102 formed on the optical elements 100 and 100A or the substrate 101 of the previous embodiment may be used as another constituent member of the exposure apparatus EX. For example, when the illumination optical system 230 of the exposure apparatus EX and the light source device 231 are installed at a distance from each other, and a light routing unit for routing light from the light source device 231 to the illumination optical system 230 is provided, The optical elements 100 and 100A and the CNT film may be used for the casing and optical system of the light routing unit. Alternatively, the light source device 231 can be used for a housing and an optical system.
 なお、上述の実施形態の基板Pとしては、ディスプレイデバイス用のガラス基板のみならず、半導体デバイス製造用の半導体ウエハ、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。 As the substrate P in the above-described embodiment, not only a glass substrate for a display device but also a semiconductor wafer for manufacturing a semiconductor device, a ceramic wafer for a thin film magnetic head, or an original mask (reticle) used in an exposure apparatus ( Synthetic quartz, silicon wafer) or the like is applied.
 なお、露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを介した露光光ELで基板Pを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。 As the exposure apparatus EX, a step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the substrate P with the exposure light EL through the pattern of the mask M by moving the mask M and the substrate P synchronously. In addition, the pattern of the mask M is collectively exposed while the mask M and the substrate P are stationary, and is applied to a step-and-repeat type projection exposure apparatus (stepper) that sequentially moves the substrate P stepwise. Can do.
 また、露光装置EXとして、プロキシミティ方式の露光装置、ミラープロジェクション・アライナーなどにも本発明を適用することができる。 Also, the present invention can be applied to a proximity type exposure apparatus, a mirror projection aligner, and the like as the exposure apparatus EX.
 また、本発明は、米国特許第6341007号明細書、米国特許第6208407号明細書、米国特許第6262796号明細書等に開示されているような、複数の基板ステージを備えたツインステージ型の露光装置にも適用できる。 The present invention also relates to a twin-stage type exposure having a plurality of substrate stages as disclosed in US Pat. No. 6,341,007, US Pat. No. 6,208,407, US Pat. No. 6,262,796, and the like. It can also be applied to devices.
 また、本発明は、米国特許第6897963号明細書、欧州特許出願公開第1713113号明細書等に開示されているような、基板を保持する基板ステージと、基板を保持せずに、基準マークが形成された基準部材及び/又は各種の光電センサを搭載した計測ステージとを備えた露光装置にも適用することができる。また、複数の基板ステージと計測ステージとを備えた露光装置を採用することができる。 Further, the present invention relates to a substrate stage for holding a substrate as disclosed in US Pat. No. 6,897,963, European Patent Application No. 1713113, etc., and a reference mark without holding the substrate. The present invention can also be applied to an exposure apparatus that includes a formed reference member and / or a measurement stage on which various photoelectric sensors are mounted. An exposure apparatus including a plurality of substrate stages and measurement stages can be employed.
 露光装置EXの種類としては、液晶表示素子製造用又はディスプレイ製造用の露光装置に限られず、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、MEMS、DNAチップ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。 The type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a liquid crystal display element or a display, but an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate P, a thin film magnetic head, an image sensor (CCD) In addition, the present invention can be widely applied to an exposure apparatus for manufacturing a micromachine, MEMS, DNA chip, reticle, mask, or the like.
 上述の実施形態の露光装置EXは、各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことができる。 The exposure apparatus EX of the above-described embodiment is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy. The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. The exposure apparatus can be manufactured in a clean room in which temperature, cleanliness, etc. are controlled.
他の実施形態において、カーボンナノチューブ集合体(CNT)が形成された領域を含む上記の光学素子をNDフィルターとして、特開平11-183806号明細書等に開示されているような、コンフォーカル顕微鏡の調光装置に適用することができる。この場合、NDフィルターの構成例として、円周方向に濃度が変化するタイプを採用することができる。例えば、円周方向に複数の領域に分割し、この領域ごとにCNT濃度(CNTの密度あるいはCNTの長さ)の異なるNDフィルターを配置することで、透過光量を選択的に調整することができる。あるいは、円周方向にCNT濃度を連続的に変化させることにより、透過光量を連続的に変化させるNDフィルターとすることができる。この例では、基板がビームエキスパンダー側にあり、CNT膜がレーザ光源側にあり、CNT繊維がレーザ光源側に向いている。このように、CNTを用いた光吸収膜を、顕微鏡のNDフィルターに用いることにより、実質的無反射で光量調整をすることが可能になる。その結果、光路中に多くの光学部材が配置される顕微鏡において、ノイズが低減された高解像の観察が可能になる。 In another embodiment, a confocal microscope such as that disclosed in Japanese Patent Application Laid-Open No. 11-183806 is used as the ND filter with the optical element including the region where the carbon nanotube aggregate (CNT) is formed. It can be applied to a light control device. In this case, as a configuration example of the ND filter, a type in which the density changes in the circumferential direction can be adopted. For example, the amount of transmitted light can be selectively adjusted by dividing a plurality of regions in the circumferential direction and arranging ND filters having different CNT concentrations (CNT density or CNT length) for each region. . Or it can be set as the ND filter which changes a transmitted light quantity continuously by changing CNT density | concentration continuously in the circumferential direction. In this example, the substrate is on the beam expander side, the CNT film is on the laser light source side, and the CNT fibers are facing the laser light source side. As described above, by using the light absorption film using CNT for the ND filter of the microscope, the light amount can be adjusted substantially without reflection. As a result, in a microscope in which many optical members are arranged in the optical path, high-resolution observation with reduced noise becomes possible.
別の実施形態において、カーボンナノチューブ集合体(CNT)が形成された領域を含む上記の光学素子をNDフィルターとして、上記コンフォーカル顕微鏡以外の顕微鏡、例えば蛍光顕微鏡や位相差顕微鏡等に適用することができる。この場合、例えば蛍光顕微鏡では、生体試料からの微弱な光を高感度で検出することが期待される。 In another embodiment, the optical element including a region where a carbon nanotube aggregate (CNT) is formed may be applied as an ND filter to a microscope other than the confocal microscope, such as a fluorescence microscope or a phase contrast microscope. it can. In this case, for example, a fluorescence microscope is expected to detect weak light from a biological sample with high sensitivity.
更に別の実施形態において、カーボンナノチューブ集合体(CNT)が形成された領域を含む上記の光学素子を、顕微鏡の光路(光源から対物レンズまで)のハウジングの内壁の光吸収膜として使用することができる。CNTを用いた光吸収膜は、高入射角までの光に対して反射率が低くさらに波長依存性が極めて少ない(紫外から赤外域まで反射率が低い)ため、迷光を効率よく吸収しノイズを低減することができる。 In still another embodiment, the optical element including the region where the carbon nanotube aggregate (CNT) is formed may be used as a light absorption film on the inner wall of the housing of the optical path of the microscope (from the light source to the objective lens). it can. Light absorption film using CNT has low reflectivity for light up to a high incident angle and extremely low wavelength dependence (low reflectivity from ultraviolet to infrared region), so it efficiently absorbs stray light and absorbs noise. Can be reduced.
更に別の実施形態において、カーボンナノチューブ集合体(CNT)が形成された領域を含む上記の光学素子を光吸収膜として、マイクロデバイス等の検査装置の光学系のハウジングの内壁等に適用でき、光量調成膜として、マイクロデバイス等の検査装置や光を試料に照射して測定や観察を行う装置の光量調整機に適用できる。 In still another embodiment, the optical element including a region where a carbon nanotube aggregate (CNT) is formed can be used as a light absorption film on an inner wall of a housing of an optical system of an inspection apparatus such as a microdevice, As the control film formation, it can be applied to an inspection device such as a micro device or a light amount adjusting device of a device that performs measurement and observation by irradiating a sample with light.
 半導体デバイス、ディスプレイデバイス、電子デバイス等のデバイスは、図7に示すように、デバイスの機能・性能設計を行うステップ301、この設計ステップに基づいたマスクMを製作するステップ302、基板Pを製造するステップ303、上述の実施形態に従って、マスクMのパターンからの露光光ELで基板Pを露光して、パターンを基板Pに転写する転写工程、及びパターンが転写された基板Pを現像し、パターンに対応する形状の転写パターン層を基板Pに形成する現像工程を含む基板処理ステップ304、ダイシング工程、ボンディング工程、及びパッケージ工程等、転写パターン層を介して基板Pを加工する加工工程を含むデバイス組み立てステップ305、及び検査ステップ306等を経て製造される。 As shown in FIG. 7, a device such as a semiconductor device, a display device, or an electronic device is manufactured in step 301 for designing the function / performance of the device, in step 302 for manufacturing a mask M based on this design step, and on a substrate P. Step 303, in accordance with the above-described embodiment, the substrate P is exposed with the exposure light EL from the pattern of the mask M to transfer the pattern to the substrate P, and the substrate P to which the pattern is transferred is developed to form a pattern. Device assembly including processing steps for processing the substrate P via the transfer pattern layer, such as a substrate processing step 304 including a development step for forming a transfer pattern layer having a corresponding shape on the substrate P, a dicing step, a bonding step, and a packaging step. It is manufactured through step 305, inspection step 306, and the like.
 なお、上述の実施形態及び変形例の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、法令で許容される限りにおいて、上述の実施形態及び変形例で引用した露光装置などに関する全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 It should be noted that the requirements of the above-described embodiments and modifications can be combined as appropriate. Some components may not be used. In addition, as long as it is permitted by law, the disclosure of all published publications and US patents related to the exposure apparatus and the like cited in the above-described embodiments and modifications are incorporated herein by reference.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples.
 本実施例では、石英ガラス基板を用い、アルミニウムを下地構造物とし、鉄-コバルトを触媒として、カーボンナノチューブ集合体を形成することで本発明に係る光学素子を製造した。 In this example, an optical element according to the present invention was manufactured by using a quartz glass substrate, forming an aggregate of carbon nanotubes using aluminum as a base structure and iron-cobalt as a catalyst.
 <触媒粒子形成>
 まず、表面研磨した石英ガラス基板(20mm×20mm×0.5mmt)を用意した。石英ガラス基板をアルコール中での超音波洗浄、紫外線照射による洗浄により十分に清浄化した。
 洗浄後、石英ガラス基板をマグネトロンスパッタ装置の成膜チャンバー内に設置し、成膜チャンバー内を1×10-4Pa以下の高真空まで排気した。
 次に、成膜チャンバー内にアルゴンガスを導入し、圧力を2.1Paに調整した。その後、アルミニウムターゲットの取り付けられたカソードに対して13.56MHzの高周波を印加してプラズマを発生させ、石英ガラス基板の15mm×15mmの領域に、アルミニウムを膜厚に換算して5nmとなるように成膜した。
 その後、鉄ターゲットが取り付けられたカソードに対して高周波を印加してプラズマを発生させ、アルミニウムが成膜された石英ガラス基板上の領域に、鉄を膜厚に換算して1nmとなるように成膜した。
 その後、コバルトターゲットが取り付けられたカソードに対して高周波を印加してプラズマを発生させ、アルミニウム及び鉄が成膜された石英ガラス基板上の領域に、コバルトを膜厚に換算して1nmとなるように成膜した。
<Catalyst particle formation>
First, a surface-polished quartz glass substrate (20 mm × 20 mm × 0.5 mmt) was prepared. The quartz glass substrate was sufficiently cleaned by ultrasonic cleaning in alcohol and cleaning by ultraviolet irradiation.
After cleaning, the quartz glass substrate was placed in a film forming chamber of a magnetron sputtering apparatus, and the inside of the film forming chamber was evacuated to a high vacuum of 1 × 10 −4 Pa or less.
Next, argon gas was introduced into the film formation chamber, and the pressure was adjusted to 2.1 Pa. Thereafter, plasma is generated by applying a high frequency of 13.56 MHz to the cathode to which the aluminum target is attached, and aluminum is converted into a film thickness of 5 nm in a 15 mm × 15 mm region of the quartz glass substrate. A film was formed.
Thereafter, a high frequency is applied to the cathode to which the iron target is attached to generate plasma, and iron is converted into a film thickness of 1 nm in a region on the quartz glass substrate on which the aluminum film has been formed. Filmed.
Thereafter, a high frequency is applied to the cathode to which the cobalt target is attached to generate plasma, so that cobalt is converted into a film thickness of 1 nm in a region on the quartz glass substrate on which aluminum and iron are formed. A film was formed.
 ここで、触媒粒子形成工程におけるスパッタ膜厚について説明する。
 触媒粒子形成工程では、スパッタリング法により形成される各層の膜厚が非常に薄いため、実際には連続的な膜になっているわけではなく、成膜される物質の粒子が島状に堆積した状態となる。そのため、スパッタ膜厚はアルミニウム、鉄、コバルトの実際の厚さや粒径とは一致しないが、粒径を制御してスパッタリングを行う上で必要なパラメータである。
Here, the sputtering film thickness in the catalyst particle forming step will be described.
In the catalyst particle formation process, the thickness of each layer formed by the sputtering method is very thin, so it is not actually a continuous film. It becomes a state. Therefore, the sputter film thickness does not match the actual thickness and particle diameter of aluminum, iron, and cobalt, but is a parameter necessary for performing sputtering while controlling the particle diameter.
 所望のスパッタ膜厚は、以下の(1)~(4)の手順により設定することができる。
 (1)予備の石英ガラス基板に100分間のスパッタ成膜を行う。
 (2)100分間の成膜で得られた厚い連続膜の膜厚を段差測定装置にて正確に計測する。膜厚は成膜条件及びターゲット種類により異なるが、本例の場合、90~120nmの範囲内の膜厚であった。
 (3)堆積速度(nm/s)=膜厚(nm)/3600(s)の式により堆積速度を算出する。
 (4)カーボンナノチューブ集合体を形成するために用意した石英ガラス基板に対して、所望のスパッタ膜厚(nm)=成膜時間(s)×堆積速度(nm/s)の式で算出された成膜時間をスパッタ条件として設定する。
 なお、所望のスパッタ膜厚は、カーボンナノチューブの成長に好適な成膜条件として予め導出しておく。例えば、アルミニウム、鉄、コバルトの各層について膜厚を異ならせた複数のサンプルを用意し、それぞれについてカーボンナノチューブ成長工程を実施する。それらの結果に基づいて最適な成膜条件をスパッタ膜厚の目標値として設定することができる。
The desired sputter film thickness can be set by the following procedures (1) to (4).
(1) Sputter deposition is performed on a spare quartz glass substrate for 100 minutes.
(2) The thickness of the thick continuous film obtained by the film formation for 100 minutes is accurately measured by the step measuring device. Although the film thickness varies depending on the film formation conditions and the target type, in this example, the film thickness was in the range of 90 to 120 nm.
(3) Deposition rate is calculated by the equation of deposition rate (nm / s) = film thickness (nm) / 3600 (s).
(4) With respect to the quartz glass substrate prepared for forming the carbon nanotube aggregate, the desired sputtering film thickness (nm) = deposition time (s) × deposition rate (nm / s) was calculated. The film formation time is set as a sputtering condition.
The desired sputter film thickness is derived in advance as a film forming condition suitable for the growth of carbon nanotubes. For example, a plurality of samples having different film thicknesses are prepared for each layer of aluminum, iron, and cobalt, and a carbon nanotube growth step is performed for each sample. Based on these results, the optimum film formation conditions can be set as the target value of the sputter film thickness.
 <触媒粒子の還元>
 触媒粒子が形成された石英ガラス基板を、図5に示した製造装置の炉心管14に格納した。このとき石英ガラス基板の温度を計測するため、石英ガラス基板上面に温度計18を接触させて固定した。
 次に反応炉11を密閉し、内部を0.4Paまで真空排気した後、バルブ3及びバルブ6を開放してアルゴンと水素の混合ガス(H:Ar=3%:97%)を供給し、炉心管14の内圧を70kPaとした。炉心管14の内圧を維持しながら輻射ヒーター12への通電を開始し、基板温度が5℃/秒で上昇するように制御装置17により輻射ヒーター12(赤外線炉、アルバック理工株式会社製、RHL-P610)への供給電力を制御した。
 基板温度が400℃に達したら、その状態を30分間保持して鉄-コバルト触媒粒子の表面を十分に還元し、カーボナノチューブ成長のための触媒活性を付与した。
<Reduction of catalyst particles>
The quartz glass substrate on which the catalyst particles were formed was stored in the core tube 14 of the manufacturing apparatus shown in FIG. At this time, in order to measure the temperature of the quartz glass substrate, a thermometer 18 was brought into contact with the upper surface of the quartz glass substrate and fixed.
Next, after the reactor 11 is sealed and the inside is evacuated to 0.4 Pa, the valve 3 and the valve 6 are opened and a mixed gas of argon and hydrogen (H 2 : Ar = 3%: 97%) is supplied. The internal pressure of the core tube 14 was set to 70 kPa. The energization of the radiant heater 12 is started while maintaining the internal pressure of the furnace tube 14, and the radiant heater 12 (infrared furnace, manufactured by ULVAC-RIKO Inc., RHL-) is controlled by the controller 17 so that the substrate temperature rises at 5 ° C./sec. The power supplied to P610) was controlled.
When the substrate temperature reached 400 ° C., this state was maintained for 30 minutes to sufficiently reduce the surface of the iron-cobalt catalyst particles, thereby imparting catalytic activity for carbon nanotube growth.
 <カーボンナノチューブ成長>
 上記の還元工程が終了した後、引き続き反応温度に設定した650℃まで1.3℃/秒の昇温速度で加熱し、650℃に達したら直ちにバルブ5及びバルブ7を開放して、エタノールを充填した原料容器21からエタノール蒸気を反応炉に導入し、カーボンナノチューブの成長を開始した。
 カーボンナノチューブの成長中は石英ガラス基板の温度を650℃、炉心管14の内圧を1.7kPaに維持し、30分間保持した後、水素ガス及びエタノール蒸気の供給を止め、バルブ4を開放して炉心管14内にアルゴンガスを流通させながら石英ガラス基板を室温まで冷却した。
<Carbon nanotube growth>
After the above reduction step is completed, the reaction temperature is continuously heated to 650 ° C. set at the reaction temperature at a heating rate of 1.3 ° C./sec. When the temperature reaches 650 ° C., the valve 5 and the valve 7 are immediately opened to remove ethanol. Ethanol vapor was introduced into the reaction furnace from the filled raw material container 21 to start growing carbon nanotubes.
During the growth of carbon nanotubes, the temperature of the quartz glass substrate is maintained at 650 ° C., the internal pressure of the furnace core tube 14 is maintained at 1.7 kPa, and is maintained for 30 minutes. Then, the supply of hydrogen gas and ethanol vapor is stopped, and the valve 4 is opened. The quartz glass substrate was cooled to room temperature while flowing argon gas through the furnace core tube 14.
 以上の工程により、石英ガラス基板上にカーボンナノチューブ集合体からなるCNT層が形成された光学素子を得た。形成されたCNT層は、石英ガラス基板上に林立した多数のカーボンナノチューブからなり、その厚さは約100μmであった。 Through the above steps, an optical element in which a CNT layer composed of a carbon nanotube aggregate was formed on a quartz glass substrate was obtained. The formed CNT layer was composed of a large number of carbon nanotubes standing on a quartz glass substrate, and the thickness thereof was about 100 μm.
 <光学素子の評価>
 作製した光学素子について、透過率及び反射率の測定を行った。
 図8(a)は、上記光学素子のCNT層に光を照射したときの反射率を示すグラフであり、図8(b)は、透過率を示すグラフである。
 図8に示すように、厚さ約100μmのCNT層を備えた本実施例の光学素子では、波長190nm~890nmの範囲全体において、反射率が0.2%未満、透過率は0.015%未満であり、いずれも極めて低い値であった。また、ArFエキシマレーザー光(波長193nm)のNDフィルターとして用いた場合のOD値は、約5.7であった。さらに、ArFエキシマレーザー光の反射率は0.002%であった。この反射率は、従来から用いられているクロム膜を用いたNDフィルターの反射率(数10%)、及び石英ガラス基板の反射率(7%)に対して著しく低い値である。
 なお、OD値の測定は、バリアン社の分光光度計「Cary5」を用いて行った。また、反射率の測定は、日立製作所製の分光光度計「U-4000」を用いて行った。
<Evaluation of optical element>
About the produced optical element, the transmittance | permeability and the reflectance were measured.
FIG. 8A is a graph showing the reflectance when the CNT layer of the optical element is irradiated with light, and FIG. 8B is a graph showing the transmittance.
As shown in FIG. 8, in the optical element of this example provided with a CNT layer having a thickness of about 100 μm, the reflectance is less than 0.2% and the transmittance is 0.015% over the entire wavelength range of 190 nm to 890 nm. All were extremely low values. The OD value when used as an ND filter for ArF excimer laser light (wavelength 193 nm) was about 5.7. Furthermore, the reflectance of ArF excimer laser light was 0.002%. This reflectance is a remarkably low value with respect to the reflectance (several tens of percent) of the ND filter using a conventionally used chromium film and the reflectance of the quartz glass substrate (7 percent).
The OD value was measured using a spectrophotometer “Cary 5” manufactured by Varian. The reflectance was measured using a spectrophotometer “U-4000” manufactured by Hitachi, Ltd.
 また、上記の光学素子について、反射率の角度特性についても評価を行った。
 図9(a)は、上記光学素子のCNT層に入射させる光の角度を変化させたときの反射率の変化を示すグラフである。図9(b)は、角度特性の測定方法を示す概略図である。
 図9(b)に示すように、角度特性の測定では、光学素子のCNT層に対して、光源501から所定の角度θで波長193.4nmの検査光を入射させ、CNT層で反射された光を検出器502で検出する。検出器502で検出された光の強度と、光源501から射出された光の強度との比率から入射角θに対応する反射率Rを算出することができる。実際の測定では、例えば、J.A.ウーラム社のエリプソメーター「VUV-VASE(登録商標)」を使用することができ、図9(a)は、上記のエリプソメーター「VUV-VASE」を用い、入射角θを10°から80°の範囲で2°刻みで変化させて反射率を測定した結果を示すグラフである。
In addition, the above-described optical element was also evaluated for the angle characteristics of reflectance.
FIG. 9A is a graph showing changes in reflectance when the angle of light incident on the CNT layer of the optical element is changed. FIG. 9B is a schematic diagram illustrating a method of measuring the angle characteristics.
As shown in FIG. 9B, in the measurement of the angle characteristics, inspection light having a wavelength of 193.4 nm was incident on the CNT layer of the optical element from the light source 501 at a predetermined angle θ and reflected by the CNT layer. The light is detected by the detector 502. The reflectance R corresponding to the incident angle θ can be calculated from the ratio between the intensity of the light detected by the detector 502 and the intensity of the light emitted from the light source 501. In actual measurement, for example, J. et al. A. Woollam's ellipsometer “VUV-VASE (registered trademark)” can be used, and FIG. 9 (a) uses the above-mentioned ellipsometer “VUV-VASE” with an incident angle θ of 10 ° to 80 °. It is a graph which shows the result of having measured the reflectance by changing by 2 degree increments in the range.
 図9(a)に示すように、本実施例に係る光学素子では、入射角θが80°以下の範囲で0.35%未満の低反射率が得られており、入射角θが78°以下の範囲では0.1%未満の反射率が得られている。さらに、入射角θが74°以下の範囲ではほぼ0%(測定限界未満)の極めて低い反射率となっている。
 なお、図9(a)のグラフでは、測定装置の仕様から入射角θが10°以上とされているが、図8(a)に示したように入射角0°における反射率がほぼ0%(波長193nm)であること、及び、入射角θが小さくなると、カーボンナノチューブの配向方向と光の入射方向とが近づき、カーボンナノチューブ間での多重反射が生じやすくなることから、入射角θが0°以上10°以下の範囲においても、反射率はほぼ0%(測定限界未満)となる。
As shown in FIG. 9A, in the optical element according to this example, a low reflectance of less than 0.35% is obtained when the incident angle θ is 80 ° or less, and the incident angle θ is 78 °. In the following range, a reflectance of less than 0.1% is obtained. Furthermore, in the range where the incident angle θ is 74 ° or less, the reflectivity is extremely low of almost 0% (below the measurement limit).
In the graph of FIG. 9A, the incident angle θ is set to 10 ° or more from the specification of the measuring apparatus, but the reflectance at the incident angle of 0 ° is almost 0% as shown in FIG. 8A. When the wavelength is 193 nm and the incident angle θ is small, the orientation direction of the carbon nanotubes and the incident direction of light are close to each other, and multiple reflection between the carbon nanotubes is likely to occur. Even in the range of from 10 ° to 10 °, the reflectance is almost 0% (below the measurement limit).
 次に、作製した光学素子にレーザー光を連続照射して耐久性を評価を行った。
 作製した光学素子に、波長193nmのArFエキシマレーザー光(周波数1400Hz)を、照射フルエンス1mJ/cm/pulse、O濃度20ppmの条件で連続照射した。ドーズ量が1.0mJ/cmに達するまでの期間に所定のドーズ量ごとに光学素子のOD値と反射率の測定を行った。ドーズ量が1.0mJ/cmに達した後、照射フルエンスを3mJ/cm/pulseに上昇させてレーザー光を照射し、所定期間の経過後に光学素子のOD値と反射率の測定を行った。
Next, durability was evaluated by continuously irradiating the produced optical element with laser light.
The produced optical element was continuously irradiated with ArF excimer laser light (frequency: 1400 Hz) having a wavelength of 193 nm under the conditions of an irradiation fluence of 1 mJ / cm 2 / pulse and an O 2 concentration of 20 ppm. The OD value and reflectance of the optical element were measured for each predetermined dose during a period until the dose reached 1.0 mJ / cm 2 . After the dose reaches 1.0 mJ / cm 2 , the irradiation fluence is increased to 3 mJ / cm 2 / pulse and laser light is irradiated. After a predetermined period of time, the OD value and reflectance of the optical element are measured. It was.
 図10(a)は、ドーズ量に対するOD値の変化を示すグラフであり、図10(b)は、ドーズ量に対する反射率の変化を示すグラフである。
 図10(a)及び図10(b)に示すように、ドーズ量1.0mJ/cmに達するまでの期間において、OD値及び反射率はほとんど変化せず、光学素子のCNT層は十分なレーザー光耐性を備えていることが確認された。さらに、照射フルエンスを3倍にしてレーザー光を照射させた後でもOD値及び反射率はほとんど変化していないことが確認された。
FIG. 10A is a graph showing a change in OD value with respect to the dose amount, and FIG. 10B is a graph showing a change in reflectance with respect to the dose amount.
As shown in FIG. 10 (a) and FIG. 10 (b), the OD value and the reflectance hardly change during the period until the dose reaches 1.0 mJ / cm 2 , and the CNT layer of the optical element is sufficient. It was confirmed that it had laser light resistance. Further, it was confirmed that the OD value and the reflectivity hardly changed even after the irradiation fluence was tripled and the laser beam was irradiated.
 次に、CNT層を構成するカーボンナノチューブの長さと、OD値との関係を検証した。
 図11は、カーボンナノチューブの長さ(CNT長さ)を異ならせて作製した複数の光学素子のOD値の測定結果を示すグラフである。
 本例のCNT長さを異ならせた複数の光学素子は、カーボンナノチューブ成長工程における保持時間を変えてCNT層を形成することにより作製した。例えば、先に記載の条件では、カーボンナノチューブ成長工程において650℃で30分間保持することとし、長さ約100μmのカーボンナノチューブからなるCNT層を形成した。また本例では、上記の保持時間の長さによりCNTの長さを変化させ、カーボンナノチューブを成長させてなるCNT層を備えた光学素子を複数作製した。そして、得られた光学素子について、バリアン社の分光光度計「Cary5」を用いたOD値の測定を行った。
Next, the relationship between the length of the carbon nanotube constituting the CNT layer and the OD value was verified.
FIG. 11 is a graph showing the measurement results of the OD values of a plurality of optical elements produced by varying the lengths of carbon nanotubes (CNT lengths).
A plurality of optical elements having different CNT lengths in this example were produced by changing the holding time in the carbon nanotube growth step to form a CNT layer. For example, under the conditions described above, the carbon nanotube growth step was held at 650 ° C. for 30 minutes to form a CNT layer made of carbon nanotubes having a length of about 100 μm. Further, in this example, a plurality of optical elements each including a CNT layer formed by growing carbon nanotubes were produced by changing the length of the CNTs depending on the length of the holding time. And the OD value was measured about the obtained optical element using the spectrophotometer "Cary5" of a Varian company.
 図11に示すように、光学素子のOD値は、CNT層を構成するカーボンナノチューブの長さ(CNT長さ)に対してリニアに変化している。このことから、本発明に係る光学素子では、CNT層を構成するカーボンナノチューブの長さを変えることでOD値を調整できることが確認された。このようにOD値を自在に調整できる本発明の光学素子によれば、図6に示した露光装置EXのエネルギー調整器233に備えられるNDフィルターF0~F2のセットを容易に構成することができる。 As shown in FIG. 11, the OD value of the optical element changes linearly with respect to the length (CNT length) of the carbon nanotubes constituting the CNT layer. From this, it was confirmed that in the optical element according to the present invention, the OD value can be adjusted by changing the length of the carbon nanotubes constituting the CNT layer. As described above, according to the optical element of the present invention in which the OD value can be freely adjusted, the set of ND filters F0 to F2 provided in the energy adjuster 233 of the exposure apparatus EX shown in FIG. 6 can be easily configured. .
 100,100A 光学素子、101 基板、101a 面、102 CNT層、103 金属膜、104 接着部、230 照明光学系(照明装置)、242 計測器(計測装置)、260 光検出装置、EX 露光装置、PL 投影光学系 100, 100A optical element, 101 substrate, 101a surface, 102 CNT layer, 103 metal film, 104 adhesive portion, 230 illumination optical system (illumination device), 242 measurement device (measurement device), 260 photodetection device, EX exposure device, PL projection optical system

Claims (16)

  1.  光が照射される領域にカーボンナノチューブ集合体を含む光学素子。 An optical element including a carbon nanotube aggregate in a region irradiated with light.
  2.  前記カーボンナノチューブ集合体が形成された光照射側の面を有する基板を更に含む、請求項1に記載の光学素子。 The optical element according to claim 1, further comprising a substrate having a light irradiation side surface on which the carbon nanotube aggregates are formed.
  3.  前記カーボンナノチューブ集合体を含む光量調整膜を有する、請求項2に記載の光学素子。 The optical element according to claim 2, further comprising a light amount adjusting film containing the carbon nanotube aggregate.
  4.  前記カーボンナノチューブ集合体を含む光吸収膜を有する、請求項2に記載の光学素子。 The optical element according to claim 2, further comprising a light absorption film containing the carbon nanotube aggregate.
  5.  前記基板と前記光吸収膜との間に形成された光量調整膜を更に有する、請求項4に記載の光学素子。 The optical element according to claim 4, further comprising a light amount adjustment film formed between the substrate and the light absorption film.
  6.  前記光量調整膜が金属膜である、請求項5に記載の光学素子。 The optical element according to claim 5, wherein the light amount adjustment film is a metal film.
  7.  前記基板と前記カーボンナノチューブ集合体とを接着する接着部を更に有する、請求項2から6のいずれか1項に記載の光学素子。 The optical element according to any one of claims 2 to 6, further comprising an adhesive portion for adhering the substrate and the carbon nanotube aggregate.
  8.  前記接着部が、前記カーボンナノチューブ集合体の前記基板側に偏在している、請求項7に記載の光学素子。 The optical element according to claim 7, wherein the adhesion portion is unevenly distributed on the substrate side of the carbon nanotube aggregate.
  9.  前記カーボンナノチューブ集合体におけるカーボンナノチューブの配向方向と前記光が入射する方向とが実質的に一致する、請求項1から8のいずれか1項に記載の光学素子。 The optical element according to any one of claims 1 to 8, wherein an orientation direction of the carbon nanotubes in the carbon nanotube aggregate substantially coincides with a direction in which the light is incident.
  10.  光源から射出される光で物体を照明する照明装置であって、
     前記光源からの光が供給される光学素子を有し、
     前記光学素子が請求項1から9のいずれか1項に記載の光学素子である照明装置。
    An illumination device that illuminates an object with light emitted from a light source,
    An optical element to which light from the light source is supplied;
    The illuminating device whose said optical element is an optical element of any one of Claim 1 to 9.
  11.  光源から射出される光で物体を照明する照明装置であって、
     前記光源からの光の光路近傍に、請求項1から9のいずれか1項に記載の光学素子が配置される照明装置。
    An illumination device that illuminates an object with light emitted from a light source,
    The illuminating device by which the optical element of any one of Claim 1 to 9 is arrange | positioned in the optical path vicinity of the light from the said light source.
  12.  光源から射出される光で物体を照明する照明装置であって、
     請求項1から9のいずれか1項に記載の光学素子と、前記光学素子を介した光を計測する計測装置とを有する光検出装置を更に備える照明装置。
    An illumination device that illuminates an object with light emitted from a light source,
    An illumination device further comprising: a light detection device including the optical element according to any one of claims 1 to 9 and a measuring device that measures light via the optical element.
  13.  マスクを露光光で照明し、前記マスクからの前記露光光で基板を露光する露光装置であって、
     前記マスクを照明するために、請求項10から12のいずれか1項に記載の照明装置を備える露光装置。
    An exposure apparatus that illuminates a mask with exposure light and exposes a substrate with the exposure light from the mask,
    An exposure apparatus comprising the illumination device according to claim 10 to illuminate the mask.
  14.  マスクを露光光で照明する照明光学系と、前記露光光で照明されたマスクのパターンの像を前記基板に投影する投影光学系とを備え、
     前記照明光学系及び前記投影光学系の少なくとも一方における前記露光光の光路上又は光路に面する位置に、請求項1から9のいずれか1項に記載の光学素子を有する露光装置。
    An illumination optical system that illuminates a mask with exposure light; and a projection optical system that projects an image of a pattern of the mask illuminated with the exposure light onto the substrate,
    An exposure apparatus having the optical element according to any one of claims 1 to 9 at a position on or facing the optical path of the exposure light in at least one of the illumination optical system and the projection optical system.
  15.  前記光学素子の少なくとも前記カーボンナノチューブ集合体が、不活性ガスを主体とする雰囲気中に配置される、請求項13又は14に記載の露光装置。 The exposure apparatus according to claim 13 or 14, wherein at least the aggregate of carbon nanotubes of the optical element is disposed in an atmosphere mainly composed of an inert gas.
  16.  請求項13から15のいずれか1項に記載の露光装置を用いて、感光剤が塗布された基板の露光をすることと、前記露光された基板を現像することと、を含むデバイス製造方法。 A device manufacturing method, comprising: exposing a substrate coated with a photosensitive agent using the exposure apparatus according to any one of claims 13 to 15; and developing the exposed substrate.
PCT/JP2010/004232 2009-06-25 2010-06-25 Optical element, illumination apparatus, exposure apparatus, and method for manufacturing device WO2010150550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011519608A JPWO2010150550A1 (en) 2009-06-25 2010-06-25 Optical element, illumination apparatus, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009150799 2009-06-25
JP2009-150799 2009-06-25

Publications (1)

Publication Number Publication Date
WO2010150550A1 true WO2010150550A1 (en) 2010-12-29

Family

ID=43386335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004232 WO2010150550A1 (en) 2009-06-25 2010-06-25 Optical element, illumination apparatus, exposure apparatus, and method for manufacturing device

Country Status (3)

Country Link
JP (1) JPWO2010150550A1 (en)
TW (1) TW201122564A (en)
WO (1) WO2010150550A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530961A (en) * 2012-07-11 2015-10-29 カーバイス ナノテクノロジーズ, インコーポレイテッド Vertically aligned array of carbon nanotubes formed on a multilayer substrate
KR101783104B1 (en) 2015-10-30 2017-09-28 연세대학교 산학협력단 Nanowire bundle array, broadband and ultrahigh optical film and method for manufacturing of the same
CN108132581A (en) * 2016-12-01 2018-06-08 清华大学 Photo mask board
JP2018092144A (en) * 2016-12-01 2018-06-14 ツィンファ ユニバーシティ Photomask and method for manufacturing the same
WO2020066376A1 (en) * 2018-09-28 2020-04-02 富士フイルム株式会社 Front member of led display, and manufacturing method thereof
JPWO2020066338A1 (en) * 2018-09-28 2021-05-20 富士フイルム株式会社 Transfer material, laminate, and method for manufacturing the laminate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142384A (en) * 1993-09-21 1995-06-02 Sony Corp Semiconductor aligner
JPH08279458A (en) * 1995-04-07 1996-10-22 Nikon Corp Projecting aligner
JPH0936038A (en) * 1995-07-14 1997-02-07 Samsung Electron Co Ltd Projection exposure device, transmitivity adjustment filter that is used for it and its preparation
JP2004309850A (en) * 2003-04-08 2004-11-04 Aterio Design Kk Prism light shielding sheet
JP2006165439A (en) * 2004-12-10 2006-06-22 Canon Inc Transparent wavefront measuring apparatus, exposure device, and device manufacturing method
JP2006303193A (en) * 2005-04-20 2006-11-02 Canon Inc Exposure device, calibrating method, and device manufacturing method
JP2007012942A (en) * 2005-06-30 2007-01-18 Canon Inc Container and method of transporting substrate using the same
JP2008083505A (en) * 2006-09-28 2008-04-10 Seiko Precision Inc Optical filter and manufacturing method therefor
JP2008152017A (en) * 2006-12-18 2008-07-03 Toyo Ink Mfg Co Ltd Adhesive optical filter, manufacturing method of the same and use of the filter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142384A (en) * 1993-09-21 1995-06-02 Sony Corp Semiconductor aligner
JPH08279458A (en) * 1995-04-07 1996-10-22 Nikon Corp Projecting aligner
JPH0936038A (en) * 1995-07-14 1997-02-07 Samsung Electron Co Ltd Projection exposure device, transmitivity adjustment filter that is used for it and its preparation
JP2004309850A (en) * 2003-04-08 2004-11-04 Aterio Design Kk Prism light shielding sheet
JP2006165439A (en) * 2004-12-10 2006-06-22 Canon Inc Transparent wavefront measuring apparatus, exposure device, and device manufacturing method
JP2006303193A (en) * 2005-04-20 2006-11-02 Canon Inc Exposure device, calibrating method, and device manufacturing method
JP2007012942A (en) * 2005-06-30 2007-01-18 Canon Inc Container and method of transporting substrate using the same
JP2008083505A (en) * 2006-09-28 2008-04-10 Seiko Precision Inc Optical filter and manufacturing method therefor
JP2008152017A (en) * 2006-12-18 2008-07-03 Toyo Ink Mfg Co Ltd Adhesive optical filter, manufacturing method of the same and use of the filter

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530961A (en) * 2012-07-11 2015-10-29 カーバイス ナノテクノロジーズ, インコーポレイテッド Vertically aligned array of carbon nanotubes formed on a multilayer substrate
KR101783104B1 (en) 2015-10-30 2017-09-28 연세대학교 산학협력단 Nanowire bundle array, broadband and ultrahigh optical film and method for manufacturing of the same
CN108132581A (en) * 2016-12-01 2018-06-08 清华大学 Photo mask board
JP2018092144A (en) * 2016-12-01 2018-06-14 ツィンファ ユニバーシティ Photomask and method for manufacturing the same
JP2018092145A (en) * 2016-12-01 2018-06-14 ツィンファ ユニバーシティ Photomask and method for manufacturing the same
CN108132581B (en) * 2016-12-01 2020-07-10 清华大学 Photoetching mask plate
WO2020066376A1 (en) * 2018-09-28 2020-04-02 富士フイルム株式会社 Front member of led display, and manufacturing method thereof
JPWO2020066338A1 (en) * 2018-09-28 2021-05-20 富士フイルム株式会社 Transfer material, laminate, and method for manufacturing the laminate
JPWO2020066376A1 (en) * 2018-09-28 2021-08-30 富士フイルム株式会社 LED display front member and its manufacturing method
JP7057431B2 (en) 2018-09-28 2022-04-19 富士フイルム株式会社 LED display front member and its manufacturing method
JP7091463B2 (en) 2018-09-28 2022-06-27 富士フイルム株式会社 Transfer material, laminate, and method for manufacturing the laminate

Also Published As

Publication number Publication date
TW201122564A (en) 2011-07-01
JPWO2010150550A1 (en) 2012-12-10

Similar Documents

Publication Publication Date Title
KR100702199B1 (en) Method for the removal of deposition on an optical element, method for the protection of an optical element, device manufacturing method, apparatus including an optical element, and lithographic apparatus
US6504903B1 (en) Laser-excited plasma light source, exposure apparatus and its making method, and device manufacturing method
TWI400580B (en) Optical element for a lithographic apparatus, lithographic apparatus comprising such optical element and method for making the optical element
WO2010150550A1 (en) Optical element, illumination apparatus, exposure apparatus, and method for manufacturing device
JP4563930B2 (en) Lithographic apparatus, illumination system, and filter system
JP4799620B2 (en) Radiation system and lithographic apparatus
TWI506379B (en) Source collector apparatus, lithographic apparatus and device manufacturing method
TWI444782B (en) Lithographic apparatus comprising an internal sensor and a mini-reactor, and method for treating a sensing surface of an internal sensor of a lithographic apparatus
JP2007059904A (en) Method of removing deposit on optical element, method of protecting optical element, method of manufacturing device, apparatus including optical element, and lithographic apparatus
US10534279B1 (en) Methods and apparatus for removing contamination from lithographic tool
NL2005114A (en) Euv radiation system and lithographic apparatus.
TW201013304A (en) EUV reticle substrates with high thermal conductivity
JP2007208239A (en) Lithography device and method for manufacturing device
CN102621815B (en) Reflection optics and device making method for lithographic equipment
TWI505038B (en) Radiation source device, lithographic apparatus and device manufacturing method
NL2004787A (en) Spectral purity filter, lithographic apparatus, and method for manufacturing a spectral purity filter.
TWI413871B (en) Method for removing a deposition on an uncapped multilayer mirror of a lithographic apparatus, lithographic apparatus and device manufacturing method
TW201122570A (en) Spectral purity filter, lithographic apparatus, method for manufacturing a spectral purity filter and method of manufacturing a device using lithographic apparatus
JP2010045355A (en) Radiation source, lithography apparatus and device manufacturing method
NL2013700A (en) An apparatus, a device and a device manufacturing method.
TW201337470A (en) Radiation source and method for lithographic apparatus and device manufacture
NL2006627A (en) Reflective optical components for lithographic apparatus and device manufacturing method.
NL2004968A (en) Radiation source, lithographic apparatus and device manufacturing method.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791872

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519608

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10791872

Country of ref document: EP

Kind code of ref document: A1