WO2010150465A1 - Av (audio visual) data playback circuit, av data playback device, integrated circuit, and av data playback method - Google Patents

Av (audio visual) data playback circuit, av data playback device, integrated circuit, and av data playback method Download PDF

Info

Publication number
WO2010150465A1
WO2010150465A1 PCT/JP2010/003630 JP2010003630W WO2010150465A1 WO 2010150465 A1 WO2010150465 A1 WO 2010150465A1 JP 2010003630 W JP2010003630 W JP 2010003630W WO 2010150465 A1 WO2010150465 A1 WO 2010150465A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
processor
reproduction
execute
processing
Prior art date
Application number
PCT/JP2010/003630
Other languages
French (fr)
Japanese (ja)
Inventor
音村英二
中嶋廣二
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010150465A1 publication Critical patent/WO2010150465A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/5044Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering hardware capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording

Definitions

  • the present invention relates to an AV data reproducing circuit, an AV data reproducing device, an integrated circuit, and an AV data reproducing method for performing processing for reproducing AV data using a plurality of processors.
  • Patent Document 1 discloses a technique for processing a moving image by software.
  • a processor or the like When executing AV data processing with software, a processor or the like is usually used. However, when AV data processing is executed by software, it is not practical unless a very high performance processor is used or processing is distributed to a plurality of processors.
  • the AV data processing is generally divided into a plurality of processes, and the plurality of processes are generally assigned to a plurality of processors so as not to overlap.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to enable effective use of a processor when reproducing AV data using a plurality of processors.
  • An AV data reproducing circuit and the like are provided.
  • an AV data reproduction circuit performs reproduction processing for reproducing AV (Audio Visual) data using N (integer of 2 or more) processors.
  • the reproduction process includes K (an integer greater than or equal to 2) processes.
  • the AV data reproduction circuit includes an obtaining unit that obtains parameters of AV data to be reproduced in the reproduction process, and first processing that is one of K processes based on the obtained parameters.
  • a processing execution control unit that causes at least one of the processors to execute the processing.
  • the process execution control unit selects a processor for executing the first process from among the N processors based on the acquired parameters, and selects K of the N processors based on the acquired parameters.
  • a processor that executes a second process that is a process other than the first process is selected.
  • the process execution control unit causes the processor selected to execute the first process to execute the first process, and causes the selected processor to execute the second process to execute the second process.
  • the acquisition unit acquires AV data parameters.
  • the process execution control unit executes a first process that is one of the K processes included in the reproduction process for reproducing AV data among the N processors based on the acquired parameters.
  • a processor is selected, and a processor for executing the second process is selected from the N processors based on the acquired parameters.
  • the process execution control unit causes the processor selected to execute the first process to execute the first process, and causes the selected processor to execute the second process to execute the second process.
  • the selected processor is caused to execute each of the first process and the second process included in the reproduction process for reproducing the AV data. That is, the processor that executes each of the first process and the second process included in the reproduction process is dynamically changed based on the parameters of the AV data.
  • the processors can be used effectively.
  • the predetermined processor of the N processors can execute the predetermined process of the K processes, and the parameter of the AV data needs to be executed. If the AV data parameter indicates that the predetermined process does not need to be executed, the process execution control unit instructs the predetermined processor to execute the predetermined process among the K processes. A process requiring a calculation amount equal to or less than the calculation amount is executed.
  • the predetermined processor can execute another process, and the usage rate of the predetermined processor can be prevented from becoming extremely small. That is, when reproducing AV data using a plurality of processors, the processors can be used effectively.
  • the AV data includes audio data and video data
  • the first process is an audio reproduction process for reproducing the audio data
  • the second process is an image reproduction process for reproducing the video data.
  • the AV data reproduction circuit further includes a separation unit that separates the AV data into audio data and video data.
  • the acquisition unit acquires video data parameters
  • the process execution control unit causes one of the N processors to execute audio reproduction processing based on the video data parameters.
  • the first processor which is one of the N processors, executes the video playback process, and the video playback process includes the third process, and the audio playback process as the first process is performed.
  • the amount of calculation required for execution is less than or equal to the amount of calculation required for execution of the third process, and the parameter of the video data indicates whether the third process needs to be executed on the video data.
  • the execution control unit causes the first processor to execute the audio reproduction process and does not cause the first processor to execute the third process.
  • the first processor can execute the audio reproduction process, and the usage rate of the first processor can be prevented from becoming extremely small. That is, when reproducing AV data using a plurality of processors, the processors can be used effectively.
  • the AV data includes video data
  • the second process is a video playback process for playing back the video data.
  • the acquisition unit acquires a parameter of the video data. 3 processing, 4th processing, and 5th processing are included, the amount of calculation required for execution of the 5th processing is less than the amount of calculation required for execution of the 4th processing, and the amount of calculation required for execution of the 4th processing is , The amount of calculation is less than or equal to the amount of computation required for execution of the third process, and the video data parameter indicates whether or not the third process needs to be executed.
  • the first processor which is one of the N processors, executes the third process and the fifth process, and the N processors other than the first processor Processor
  • the process execution control unit causes the first processor to execute the fourth process when the parameter of the video data indicates that the third process does not need to be executed, The second processor is caused to execute the fifth process.
  • the first processor can be caused to execute the fourth process, and the usage rate of the first processor can be prevented from becoming extremely small. That is, when reproducing AV data using a plurality of processors, the processors can be used effectively.
  • the video playback process is a playback process using correlation between frames
  • the fourth process is a luminance motion compensation process
  • the fifth process is a color difference motion compensation process.
  • the video reproduction process further includes a variable length decoding process
  • the process execution control unit causes the second processor to execute the variable length decoding process
  • the video playback processing is performed by H.264.
  • the reproduction process conforms to the H.264 / AVC standard, and the third process is a deblocking filter process.
  • the AV data includes video data
  • the parameter of the AV data is a size of a frame constituting the video data.
  • the AV data includes video data
  • the parameter of the AV data is a frame rate of the video data.
  • the AV data includes video data
  • the parameter of the AV data is a bit rate of the video data
  • the AV data includes video data
  • the video data is compressed by a predetermined encoding method
  • the parameter of the AV data is a type of the encoding method
  • the parameter of the AV data is an arithmetic processing capability value necessary for processing the AV data.
  • An AV data reproducing device is an AV data reproducing device including the AV data reproducing circuit.
  • the AV data reproducing apparatus further includes a memory for storing audio data and video data, and a decoded data obtained by the audio data reproducing circuit performing audio reproducing processing for reproducing the audio data on the audio data.
  • An audio output device that outputs audio based on the audio data of the video and an AV data reproduction circuit that is based on decoded video data obtained by performing video reproduction processing for reproducing the video data on the video data
  • a display device for displaying for a display.
  • An integrated circuit performs reproduction processing for reproducing AV (Audio Visual) data using N (integer of 2 or more) processors.
  • the reproduction process includes K (integer greater than or equal to 2) processes, and the integrated circuit obtains a parameter of AV data to be reproduced in the reproduction process, and K pieces based on the obtained parameters.
  • a process execution control unit that causes at least one of the N processors to execute a first process that is one of the processes, and the process execution control unit includes the N processors based on the acquired parameters.
  • the processor that selects the processor that executes the first process, and executes the second process that is a process other than the first process among the K processes, among the N processors, based on the acquired parameters.
  • the process execution control unit causes the processor selected to execute the first process to execute the first process and causes the processor selected to execute the second process to execute the second process. To be executed.
  • the AV data reproduction method is performed by an AV data reproduction circuit that performs reproduction processing for reproducing AV (Audio Visual) data using N (integer of 2 or more) processors.
  • the reproduction process includes K (integer of 2 or more) processes, and the AV data reproduction circuit obtains a parameter of AV data to be reproduced in the reproduction process, and K based on the obtained parameter.
  • a process execution control unit that causes at least one of the N processors to execute a first process that is one of the processes.
  • the acquisition unit acquires a parameter of AV data
  • the process execution control unit selects a processor for executing the first process among the N processors based on the acquired parameter.
  • a processor that executes a second process that is a process other than the first process among the K processes among the N processors is selected, and the process execution control unit selects the first process Causing the processor selected to execute the process to execute the first process and causing the selected processor to execute the second process to execute the second process.
  • the present invention may be realized not only as such an AV data reproduction method but also as a program for causing a computer to execute each step included in such an AV data reproduction method.
  • a program may be distributed via a recording medium such as a CD-ROM or a transmission medium such as the Internet.
  • the processors when reproducing AV data using a plurality of processors, the processors can be used effectively.
  • FIG. 1 is a diagram showing a configuration of an AV data reproducing circuit according to the first embodiment.
  • FIG. 2 is a flowchart of the reproduction execution process.
  • FIG. 3 is a diagram illustrating a configuration of an AV data reproducing circuit according to the second embodiment.
  • FIG. 4 is a diagram illustrating a configuration of an AV data reproducing circuit according to the third embodiment.
  • FIG. 5 is a diagram showing a configuration of an AV data reproducing apparatus according to the fourth embodiment.
  • FIG. 6 is a block diagram showing a characteristic functional configuration of the AV data reproducing circuit.
  • FIG. 1 is a diagram showing a configuration of an AV data reproducing circuit 1000 according to the first embodiment.
  • the AV data reproduction circuit 1000 is an integrated circuit such as an LSI (Large Scale Integration). Although details will be described later, the AV data reproduction circuit 1000 performs a reproduction process for reproducing AV data using N (integer of 2 or more) processors.
  • LSI Large Scale Integration
  • the AV data reproduction circuit 1000 includes a separation unit 110, an acquisition unit 120, a parameter storage unit 130, and processors 200.1, 200.2, 200.3.
  • the separation unit 110 acquires AV (Audio Visual) data from the outside.
  • AV data is data encoded by a predetermined encoding method.
  • AV data includes audio data, video data, and parameter information.
  • the audio data included in the AV data is, for example, data encoded by an encoding method according to the MPEG (Moving Picture Experts Group) standard.
  • the video data included in the AV data is, for example, H.264. It is data encoded by an encoding method according to the H.264 / AVC standard. That is, the video data is compressed by a predetermined encoding method.
  • the audio data is not limited to the MPEG standard, and may be data encoded by another encoding method such as AAC (Advance Audio Coding) or AC3 (Audio Code 3).
  • the video data is H.264.
  • the data is not limited to the H.264 / AVC standard, and may be data encoded by another encoding method such as MPEG2 or MPEG4.
  • the AV data is data stored in a memory (not shown).
  • the AV data may be data received as a broadcast wave.
  • the separation unit 110 separates the acquired AV data into audio data and video data. Then, the separation unit 110 transmits the audio data and the video data to the processor 200.1.
  • the parameter storage unit 130 is a memory that stores parameter information.
  • the acquisition unit 120 acquires AV data from the outside, and acquires parameter information included in the AV data from the AV data.
  • the parameter information indicates a plurality of parameters of corresponding AV data.
  • the parameters of the AV data are, for example, a frame size, a frame rate, a bit rate, the number of channels, a codec type, an arithmetic processing capability value, deblocking filter necessary information, and the like.
  • the frame size is the size of the frame constituting the corresponding video data. That is, the frame size as a parameter of AV data is the size of a frame constituting video data.
  • the frame rate is the frame rate of the corresponding video data. That is, the frame rate as a parameter of AV data is the frame rate of video data.
  • the bit rate is the bit rate of the corresponding audio data and the corresponding video data. That is, the bit rate as a parameter of AV data is the bit rate of video data.
  • the number of channels is the number of channels of corresponding audio data.
  • the codec type is the type of encoding method used when generating corresponding audio data and corresponding video data. That is, the codec type as a parameter of AV data is the type of encoding method.
  • the codec type is, for example, H.264. H.264 / AVC, MPEG2, and the like.
  • the arithmetic processing capability value is a value of the arithmetic processing capability required to normally reproduce the corresponding video data. That is, the arithmetic processing capability value as a parameter of AV data is an arithmetic processing capability value necessary for processing AV data.
  • the arithmetic processing capability value is, for example, a MIPS (Million Instructions Per Per Second) value.
  • the deblocking filter necessary information indicates whether or not the deblocking filter processing as the in-loop filter needs to be executed when the corresponding video data is reproduced. That is, the deblocking filter necessary information indicates whether or not the deblocking filter processing as the in-loop filter is necessary when the corresponding video data is reproduced. That is, the deblocking filter necessary information as a parameter of AV data indicates whether or not a predetermined process (deblocking filter process) needs to be executed.
  • the acquisition unit 120 causes the parameter storage unit 130 to store the acquired parameter information.
  • Processors 200.1, 200.2, and 200.3 perform reproduction processing for reproducing AV data.
  • the reproduction process includes a plurality of processes (processes A, B, C, D, and E in FIG. 1).
  • Each of the processors 200.1, 200.2, and 200.3 is assigned in advance a plurality of program modules for executing some or all of the plurality of processes included in the reproduction process.
  • the processor 200.1 includes a control unit 210.
  • the control unit 210 is an arithmetic processing circuit such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processing).
  • a program module for executing each of the processes A, B, C, D, and E is assigned to the control unit 210 in advance. Thereby, the control unit 210 can execute the processes A, B, C, D, and E.
  • the control unit 210 is a process execution control unit that performs processing for causing a processor to execute processing.
  • a program module for executing each of the processes B, C, D, and E is assigned to the processor 200.2 in advance. Thereby, the processor 200.2 can execute the processes B, C, D, and E.
  • a program module for executing each of the processes C, D, and E is allocated to the processor 200.3 in advance. Thereby, the processor 200.3 can execute the processes C, D, and E.
  • a predetermined processor for example, the processor 200.3 among N (integers greater than or equal to 2) processors performs a predetermined process (of integers greater than or equal to 2) included in the reproduction process ( For example, the processes C, D, and E) can be executed.
  • the processor 200.1 can execute the process A.
  • the assignment of program modules in each of the processors 200.1, 200.2, 200.3 is not limited to the above.
  • the program module assigned to each of the processors 200.1, 200.2, 200.3 may be a program module for executing different processes.
  • reproduction execution processing processing for reproducing AV data (hereinafter referred to as reproduction execution processing) performed by the AV data reproduction circuit 1000
  • the processor 200.1 receives the above-described audio data and video data from the separation unit 110 by a process independent of the reproduction execution process.
  • FIG. 2 is a flowchart of the reproduction execution process.
  • step S111 parameter acquisition processing is performed.
  • the acquisition unit 120 acquires AV data from the outside, and acquires parameter information included in the AV data from the AV data.
  • the acquisition unit 120 causes the parameter storage unit 130 to store the acquired parameter information.
  • the acquisition unit 120 acquires AV data parameters. That is, the acquisition unit 120 acquires AV data parameters to be played back in the playback process.
  • step S112 a process execution control process is performed.
  • the control unit 210 reads parameter information stored in the parameter storage unit 130.
  • the parameter information indicates the above-described frame size, frame rate, bit rate, number of channels, codec type, arithmetic processing capability value, deblocking filter necessary information, and the like as parameters.
  • control unit 210 performs each process (for example, processes A, B, C, D, and E) included in the reproduction process based on at least one of the plurality of parameters of the corresponding AV data indicated by the parameter information. Select a processor to run.
  • control part 210 selects the processor which performs each process, the processing load (henceforth a utilization rate) of each processor (processor 200.1, 200.2, 200.3) becomes substantially equivalent. Like that. That is, a processor whose usage rate is significantly smaller than other processors among a plurality of processors is not generated.
  • control unit 210 causes the processor selected to execute the process to execute the process.
  • video data of AV data is H.264. It is assumed that the data is encoded by an encoding method according to the H.264 / AVC standard. In this case, the process of reproducing AV data in the AV data reproducing circuit 1000 is H.264. H.264 / AVC standard reproduction processing.
  • the processes A, B, C, D, and E shown in FIG. 1 are, for example, a variable length decoding process, an inverse quantization process, an inverse DCT process, a speech decoding process, and a deblocking filter process, respectively.
  • the process E is a deblocking filter process. Since the variable-length decoding process, the inverse quantization process, the inverse DCT process, and the deblocking filter process are well-known processes, detailed description thereof will not be repeated.
  • the audio decoding process is a process for decoding audio data.
  • the amount of calculation processing necessary for executing both the processing C and the processing D is set to be equal to or less than the amount of calculation processing required for executing the deblocking filter processing.
  • the parameter used by the control unit 210 for selecting a processor is, for example, deblocking filter necessary information indicated by the parameter information.
  • the process execution control process when the control unit 210 indicates that the deblocking filter necessary information indicates that the deblocking filter process is not necessary, that is, the deblocking filter process is not necessary, as an example, the process C , D is selected as a processor 200.3.
  • the control unit 210 selects the processor 200.1 as the processor that executes the process A.
  • the control unit 210 selects the processor 200.2 as the processor that executes the process B.
  • the process execution control unit (the control unit 210) performs a first process (for example, processes C and D) out of N (integer of 2 or more) processors based on the acquired parameters. ) Is selected.
  • the process execution control unit is a process other than the first process among the K (integers greater than or equal to 2) processes included in the reproduction process among the N processors based on the acquired parameters.
  • a processor for executing a process (for example, process A) is selected.
  • control unit 210 transmits a command for executing each process to the processor selected to execute each of the processes A, B, C, and D.
  • control unit 210 transmits a command for executing the processes C and D to the processor 200.3.
  • the processor 200.1 executes the variable length decoding process as the process A.
  • the processor 200.2 that has received the instruction executes an inverse quantization process as the process B.
  • the processor 200.3 that has received the instruction executes an inverse DCT process as the process C and a speech decoding process as the process D. That is, the control unit 210 causes a processor selected to execute each process (for example, processes A, B, C, and D) to execute a corresponding process.
  • the process execution control unit causes the processor selected to execute the first process to execute the first process and causes the processor selected to execute the second process to The second process is executed. That is, the process execution control unit (control unit 210) causes at least one of the N processors to execute the first process, which is one of the K processes, based on the acquired parameter.
  • control unit 210 makes the usage rate of each processor almost equal.
  • the processor 200.1 transmits the data and audio data obtained by the processing (processing A) performed on the received video data to the processor 200.2.
  • the processor 200.2 transmits data and audio data obtained by the executed processing to the processor 200.3.
  • the processor 200.3 outputs decoded audio data (hereinafter referred to as decoded audio data) and decoded video data (hereinafter referred to as decoded video data) obtained by the executed processing to the outside.
  • the control unit 210 selects the processor 200.3 as a processor that executes the process E as an example. In this case, as an example, the control unit 210 selects the processor 200.1 as the processor that executes the processes A and B. In this case, as an example, the control unit 210 selects the processor 200.2 as a processor that executes the processes C and D. Then, the control unit 210 transmits a command for executing each process to the processor selected to execute each of the processes A, B, C, and D.
  • the AV data that is the encoded data is decoded by the above processing. That is, AV data is reproduced.
  • the parameter used by the control unit 210 to select a processor is one of the frame size, the frame rate, the bit rate, the codec type, and the arithmetic processing capability value indicated by the parameter information. There may be.
  • control unit 210 makes the usage rate of each processor substantially equal when selecting a processor to execute each process. .
  • a parameter used for selecting a processor indicates whether or not a predetermined process (for example, deblocking filter process) is necessary.
  • the process execution control unit controls a calculation necessary for executing the predetermined process on a processor capable of executing the predetermined process.
  • a process that requires a calculation amount equal to or less than the amount is executed. That is, when the AV data parameter indicates that the predetermined process does not need to be executed, the process execution control unit (control unit 210) sends a predetermined processor to the predetermined process among the K processes included in the reproduction process. The processing that requires a calculation amount equal to or less than the calculation amount necessary for executing this process is executed.
  • the processor capable of executing the predetermined process can execute another process, and the usage rate of the processor can be prevented from becoming extremely small. That is, when reproducing AV data using a plurality of processors, the processors can be used effectively.
  • the usage rate of each processor is made substantially equal. Thereby, it is possible to prevent the usage rate of the processor from becoming extremely small.
  • control unit 210 that causes each processor to execute processing is included in the processor.
  • the present invention is not limited to this, and the control unit 210 may be provided outside the processor. Good.
  • the separation unit 110, the acquisition unit 120, and the parameter storage unit 130 are provided outside the processor, the separation unit 110, the acquisition unit 120, and the parameter storage unit 130 are partly or entirely included in the processor. (For example, the processor 200.1) may be provided.
  • parameters used for selecting a processor are not limited to those described above.
  • it may be information (eg, playback time) included in audio data, information (eg, playback time) included in video data, and the like.
  • the processing to be executed by each processor is switched based on the parameter indicated by the parameter information included in the AV data.
  • the information for switching the processing to be executed by each processor may be, for example, information related to multiplexing of AV data or information given from the outside.
  • the processing when the number of processing (processing A, B, C, D, E) included in the playback processing is five has been described, but the present invention is limited to this. There is no.
  • the number of processes included in the reproduction process may be 4 or less or 6 or more.
  • the processing using three processors has been described when reproducing AV data.
  • the present invention is not limited to this.
  • two or less or four or more processors may be used.
  • FIG. 3 is a diagram showing the configuration of the AV data reproducing circuit 1000A in the second embodiment.
  • the AV data reproduction circuit 1000A is an integrated circuit such as an LSI (Large Scale Integration).
  • AV data reproduction circuit 1000A is further provided with a control unit 210 as compared with AV data reproduction circuit 1000 in FIG. 1, and a program module corresponding to each process is assigned to control unit 210.
  • the difference is that the processor 200.1A, 200.2A is provided instead of the processor 200.1, 200.2, 200.3. Since the other configuration is the same as that of the AV data reproducing circuit 1000, detailed description will not be repeated.
  • the separation unit 110 transmits audio data and video data obtained by separating the AV data to the control unit 210.
  • the control unit 210 transmits the received audio data to one of the processors 200.1A and 200.2A by a process described later. Further, the control unit 210 transmits the received video data to the processor 200.2A.
  • the processors 200.1A and 200.2A perform a reproduction process A for reproducing AV data.
  • the reproduction process A includes an audio reproduction process and a video reproduction process.
  • the audio reproduction process is a process for decoding the encoded audio data.
  • the video reproduction process is a process for decoding the encoded video data.
  • the sound reproduction process is also referred to as a first process.
  • the video reproduction process is also referred to as a second process. That is, the first process (audio reproduction process) is a process for reproducing audio data.
  • the second process video playback process is a video playback process for playing back video data.
  • the processor 200.2A is also referred to as a first processor.
  • a program module for executing a sound reproduction process is assigned to the processor 200.1A in advance. As a result, the processor 200.1A can execute the audio reproduction process.
  • a program module for executing each of the audio reproduction process and the video reproduction process is allocated in advance to the processor 200.2A. Thereby, the processor 200.2A can execute the audio reproduction process and the video reproduction process.
  • the video reproduction process is preset so that the processor 200.2A executes. That is, the first processor (processor 200.2A), which is one of the N processors, is executing the video reproduction process.
  • control unit 210 transmits the video data received from the separation unit 110 to the processor 200.2A by a process independent of the reproduction execution process. Further, it is assumed that control unit 210 transmits a command for executing video reproduction processing to processor 200.2A. Receiving the command, the processor 200.2A executes video reproduction processing independently of other processing.
  • step S111 the same processing as in the first embodiment is performed, and thus detailed description will not be repeated.
  • the acquisition unit 120 acquires parameter information included in the AV data, and causes the parameter storage unit 130 to store the parameter information included in the AV data. That is, the acquisition unit 120 acquires audio data and video data parameters included in the AV data.
  • step S112 the process execution control process is performed in the same manner as in the first embodiment, and thus detailed description will not be repeated.
  • the control unit 210 reads the parameter information stored in the parameter storage unit 130.
  • the parameter information indicates the above-described frame size, frame rate, bit rate, number of channels, codec type, arithmetic processing capability value, deblocking filter necessary information, and the like as parameters.
  • control unit 210 selects a processor for executing the audio reproduction process included in the reproduction process A based on at least one of the plurality of parameters of the corresponding AV data indicated by the parameter information. .
  • video data of AV data is H.264. It is assumed that the data is encoded by an encoding method according to the H.264 / AVC standard. In this case, the video reproduction processing for reproducing video data in the AV data reproduction circuit 1000A is H.264. H.264 / AVC standard reproduction processing.
  • the video reproduction process includes a deblocking filter process as an in-loop filter.
  • the deblocking filter process is also referred to as a third process. That is, the video reproduction process includes a third process.
  • the video reproduction processing includes variable length decoding processing, inverse quantization processing, inverse DCT processing, and the like in addition to the deblocking filter processing.
  • the parameter used by the control unit 210 for selecting a processor is, for example, deblocking filter necessary information indicated by the parameter information. Further, it is assumed that the calculation processing amount necessary for executing the audio reproduction processing is equal to or less than the calculation processing amount required for executing the deblocking filter processing.
  • the amount of calculation necessary for executing the audio reproduction process as the first process is less than the amount of calculation required for executing the third process (deblocking filter process).
  • the video data parameter indicates whether or not the third process needs to be executed on the video data.
  • the control unit 210 executes the sound reproduction process.
  • the processor 200.2A is selected as the processor to be executed.
  • control unit 210 instructs the processor 200.2A selected to execute the audio reproduction process to execute the audio reproduction process, an instruction not to execute the deblocking filter process, and the separation unit 110 The received audio data is transmitted.
  • the processor 200.2A that has received the command executes a sound reproduction process for decoding the received sound data.
  • the processor 200.2A outputs decoded audio data (hereinafter referred to as decoded audio data) obtained by the executed audio reproduction process to the outside.
  • the process execution control unit causes the first processor (processor 200.2A) to execute the audio reproduction process when the parameter of the video data indicates that the third process need not be executed.
  • the first processor is not allowed to execute the third process.
  • the process execution control unit assigns one of N (an integer greater than or equal to 2) processors to the processor based on the video data parameters. Perform audio playback processing.
  • the processor 200.2A executes the video reproduction process independently of the other processes. Therefore, when receiving an instruction not to execute the deblocking filter process, the processor 200.2A executes processes other than the deblocking filter process among a plurality of processes included in the video reproduction process. Then, the processor 200.2A outputs decoded video data (hereinafter referred to as decoded video data) obtained by each process included in the executed video reproduction process to the outside.
  • decoded video data decoded video data obtained by each process included in the executed video reproduction process to the outside.
  • the processor 200.2A Since the processor 200.2A does not need to execute the deblocking filter process included in the video reproduction process, the amount of calculation required to execute the deblocking filter process is reduced. Therefore, the processor 200.2A can execute an audio reproduction process that requires a calculation amount equal to or less than the calculation amount necessary for executing the deblocking filter process. That is, the processor 200.2A can be effectively used.
  • control unit 210 selects the processor 200.1A as the processor for executing the audio reproduction process.
  • control unit 210 transmits a command for executing the audio reproduction process and the audio data received from the separation unit 110 to the processor 200.1A selected to execute the audio reproduction process.
  • the processor 200.1A that has received the command executes a sound reproduction process for decoding the sound data.
  • the processor 200.1A outputs the decoded audio data obtained by the executed audio reproduction process to the outside.
  • the AV data that is the encoded data is decoded by the above processing. That is, AV data is reproduced.
  • the parameter used by the control unit 210 to select a processor may be any of a frame size, a frame rate, a bit rate, a codec type, and an arithmetic processing capability value. .
  • the control unit 210 performs the audio reproduction.
  • the processor 200.1A is selected as a processor for executing processing.
  • the parameter used by the control unit 210 to select a processor is a frame size.
  • the control unit 210 selects the processor 200.1A as a processor for executing the audio reproduction process.
  • the control unit 210 selects the processor 200.2A as a processor for executing the audio reproduction process.
  • a predetermined size for example, a size of 640 pixels in the horizontal direction and 480 pixels in the vertical direction
  • the control unit 210 selects the processor 200.2A as a processor for executing the audio reproduction process. Note that the processing after selecting a processor is the same as the processing described above in the case where the parameter used for selecting the processor is deblocking filter necessary information, so detailed description will not be repeated.
  • the parameter used by the control unit 210 to select a processor is a bit rate.
  • the control unit 210 selects the processor 200.1A as a processor for executing the audio reproduction process.
  • the control unit 210 selects the processor 200.2A as a processor for executing the audio reproduction process. Note that the processing after selecting a processor is the same as the processing described above in the case where the parameter used for selecting the processor is deblocking filter necessary information, so detailed description will not be repeated.
  • a parameter used for selecting a processor is a parameter indicating whether or not a predetermined process (for example, deblocking filter process) is necessary.
  • a processor capable of executing the predetermined process is caused to execute a process that requires a calculation amount equal to or less than the calculation amount necessary for executing the predetermined process. .
  • the processor capable of executing the predetermined process can execute another process. That is, when reproducing AV data using a plurality of processors, the processors can be used effectively.
  • the control unit 210 performs the audio reproduction process as a processor.
  • the processor 200.1A is selected.
  • the usage rate of the processor 200.2A can be prevented from exceeding a predetermined value, and the audio reproduction process and the video reproduction process can be executed in parallel by two different processors. . Therefore, even when the arithmetic processing capability of the processor 200.2A is low, the audio reproduction process and the video reproduction process can be executed in parallel by two different processors. That is, the audio reproduction process and the video reproduction process can be congested.
  • control unit 210 that causes each processor to execute processing is provided outside the processor.
  • the present invention is not limited to this, and the control unit 210 is provided inside the processor. May be.
  • the separation unit 110, the acquisition unit 120, and the parameter storage unit 130 are provided outside the processor, the separation unit 110, the acquisition unit 120, and the parameter storage unit 130 are partly or entirely included in the processor. (For example, the processor 200.1A) may be provided.
  • parameters used for selecting a processor are not limited to those related to video data as described above.
  • the parameter used for selecting the processor may be, for example, a bit rate, the number of channels, a codec type, an arithmetic processing capability value, etc. in audio data.
  • the parameter used for selection by the processor may be, for example, information (for example, reproduction time) included in the audio data.
  • the present invention may switch the processor that executes the video reproduction process.
  • the number of processors to be selected as a processor for executing the audio reproduction processing is two, but the present invention is not limited to this. Three or more processors may be selected as a target for selecting a processor that executes the audio reproduction process.
  • FIG. 4 is a diagram showing a configuration of the AV data reproducing circuit 1000B according to the third embodiment.
  • the AV data reproduction circuit 1000B is an integrated circuit such as an LSI (Large Scale Integration).
  • AV data reproduction circuit 1000B is different from AV data reproduction circuit 1000A in FIG. 3 in that processors 200.1B, 200.2B, 200.3B are used instead of processors 200.1A, 200.2A. Is different. Since the other configuration is the same as that of AV data reproducing circuit 1000A, detailed description will not be repeated.
  • the separation unit 110 transmits the audio data obtained by separating the AV data to the processor 200.1B. Further, the separation unit 110 transmits the video data obtained by separating the AV data to the processor 200.2B.
  • the processors 200.1B, 200.2B and 200.3B perform a reproduction process B for reproducing AV data.
  • the reproduction process B includes an audio reproduction process and a video reproduction process.
  • the audio reproduction process in the present embodiment is the same process as the process described in the second embodiment.
  • the video reproduction process in the present embodiment is a process for decoding the encoded video data.
  • processor 200.3B and the processor 200.2B are also referred to as a first processor and a second processor, respectively.
  • a program module for executing a sound reproduction process is allocated to the processor 200.1B in advance. As a result, the processor 200.1B can execute the audio reproduction process.
  • the video playback processing in this embodiment is H.264.
  • the video data reproduction processing conforms to the H.246 / AVC standard. That is, the video playback process is a playback process that uses the correlation between frames.
  • the video reproduction process is H.264. It is not limited to the H.246 / AVC standard, but may be a video data reproduction process according to the MPEG2 standard, for example.
  • the video playback processing in this embodiment includes header analysis processing, variable length decoding processing, motion vector calculation processing, luminance motion compensation processing, color difference motion compensation processing, inverse quantization processing, inverse DCT processing, intra prediction processing, and image reconstruction. Processing and deblocking filtering.
  • variable-length decoding process the inverse quantization process, the inverse DCT process, the intra prediction process, and the deblocking filter process are well-known processes and will not be described in detail.
  • the header analysis process is a process for analyzing header information of video data.
  • the motion vector calculation process in the present embodiment is a process for calculating a motion vector between frames.
  • the luminance motion compensation processing is processing for performing luminance motion compensation based on the motion vector calculated by the motion vector calculation processing.
  • the color difference motion compensation process is a process of performing color difference motion compensation based on the motion vector calculated by the motion vector calculation process. Note that motion compensation is a well-known technique and will not be described in detail.
  • the intra prediction process is executed when the macro block type analyzed by the header analysis process is an intra macro block.
  • Image reconstruction processing is processing for reconstructing an image from data obtained by luminance motion compensation processing, color difference motion compensation processing, inverse DCT processing, intra prediction processing, and the like.
  • the deblocking filter process is an in-loop filter process. The deblocking filter process is performed on the image obtained by the image reconstruction process.
  • Motion vector calculation processing, luminance motion compensation processing, and chrominance motion compensation processing are executed when the macro block type analyzed by the header analysis processing is an inter macro block.
  • a program module for executing each of header analysis processing, variable length decoding processing, motion vector calculation processing, luminance motion compensation processing, and chrominance motion compensation processing is assigned in advance to the processor 200.2B.
  • the processor 200.2B can execute header analysis processing, variable length decoding processing, motion vector calculation processing, luminance motion compensation processing, and color difference motion compensation processing.
  • the processor 200.2B transmits the data obtained by executing the variable length decoding process (hereinafter referred to as variable length decoded data) to the processor 200.3B.
  • the processor 200.3B previously has a program module for executing each of inverse quantization processing, inverse DCT processing, intra prediction processing, luminance motion compensation processing, color difference motion compensation processing, image reconstruction processing, and deblocking filter processing. Is assigned. Thereby, the processor 200.3B can execute the inverse quantization process, the inverse DCT process, the intra prediction process, the luminance motion compensation process, the color difference motion compensation process, the image reconstruction process, and the deblocking filter process.
  • the processor 200.3B When the processor 200.3B receives the variable-length decoded data from the processor 200.2B, the processor 200.3B performs an inverse quantization process on the received variable-length decoded data.
  • the separation unit 110 transmits audio data to the processor 200.1B. Further, it is assumed that the separating unit 110 transmits the video data to the processor 200.2B.
  • the audio playback process is preset so that the processor 200.1B executes.
  • the processor 200.1B executes a sound reproduction process independently of other processes in response to reception of sound data. Therefore, the processor 200.1B outputs the decoded audio data to the outside as in the second embodiment.
  • control unit 210 transmits an instruction for executing a header analysis process and a variable length decoding process to the processor 200.2B at a predetermined timing.
  • the processor 200.2B that has received the instruction executes header analysis processing and variable length decoding processing at a predetermined timing.
  • the processor 200.2B sequentially executes a header analysis process and a variable length decoding process in response to reception of video data.
  • control unit 210 causes the second processor (processor 200.2B) to execute variable-length decoding processing.
  • the processor 200.2B executes the motion vector calculation process at a predetermined timing.
  • the processor 200.3B executes the image reconstruction process at a predetermined timing.
  • step S111 the same processing as in the first embodiment is performed, and thus detailed description will not be repeated.
  • parameter information included in the AV data is stored in the parameter storage unit 130. That is, the acquisition unit 120 acquires audio data and video data parameters included in the AV data.
  • step S112 the process execution control process is performed in the same manner as in the first embodiment, and thus detailed description will not be repeated.
  • control unit 210 reads the parameter information stored in the parameter storage unit 130.
  • the parameter information is assumed to indicate the aforementioned frame size, frame rate, bit rate, number of channels, codec type, arithmetic processing capability value, deblocking filter necessary information, and the like as parameters.
  • control unit 210 selects a processor that executes each of the luminance motion compensation processing and the chrominance motion compensation processing based on at least one of the plurality of parameters of the corresponding AV data indicated by the parameter information.
  • control unit 210 causes the processor selected to execute the process to execute the process.
  • video data of AV data is H.264. It is assumed that the data is encoded by an encoding method according to the H.264 / AVC standard. In this case, the video playback processing for playing back video data in the AV data playback circuit 1000B is H.264. H.264 / AVC standard reproduction processing. Further, as an example, it is assumed that the macro block type analyzed by the header analysis process is an inter macro block.
  • the parameter used by the control unit 210 for selecting a processor is, for example, deblocking filter necessary information indicated by the parameter information. Further, it is assumed that the calculation processing amount necessary for executing the color difference motion compensation processing is less than the calculation processing amount required for executing the luminance motion compensation processing. Further, it is assumed that the calculation processing amount necessary for executing the luminance motion compensation processing is equal to or less than the calculation processing amount required for executing the deblocking filter processing.
  • the deblocking filter process is also referred to as a third process.
  • the luminance motion compensation process is also referred to as a fourth process.
  • the color difference motion compensation process is also referred to as a fifth process.
  • the calculation amount necessary for executing the fifth process is less than the calculation amount required for executing the fourth process (luminance motion compensation process).
  • the amount of calculation required for executing the fourth process is less than the amount of calculation required for executing the third process (deblocking filter process).
  • the video reproduction process includes a third process, a fourth process, and a fifth process.
  • the control unit 210 performs the luminance motion compensation process when the deblocking filter necessary information indicates that the deblocking filter process is not required, that is, the deblocking filter process is not necessary.
  • the processor 200.3B is selected as the processor to be executed, and the processor 200.2B is selected as the processor that executes the color difference motion compensation processing.
  • control part 210 transmits the command for performing a luminance motion compensation process to the processor 200.3B selected in order to perform a luminance motion compensation process.
  • control unit 210 transmits a command for executing the color difference motion compensation process to the processor 200.2B selected to execute the color difference motion compensation process.
  • the processor 200.3B that has received the command executes luminance motion compensation processing
  • the processor 200.2B that has received the command executes color difference motion compensation processing
  • the process execution control unit causes the first processor (processor 200.3B) to 4 processing (luminance motion compensation processing) is executed, and the second processor (processor 200.2B) is caused to execute fifth processing (color difference motion compensation processing).
  • the processor 200.2B executes the motion vector calculation process, and uses the motion vector obtained by the motion vector calculation process as the processor. Send to 200.3B.
  • the processor 200.3B executes luminance motion compensation processing based on the received motion vector.
  • the processor 200.2B executes a color difference motion compensation process based on the motion vector obtained by the motion vector calculation process, and transmits data obtained by the execution of the color difference motion compensation process to the processor 200.3B.
  • the processor 200.3B executes the image reconstruction process, thereby obtaining data obtained by executing the luminance motion compensation process, data obtained by executing the color difference motion compensation process, and data obtained by the inverse DCT process. And reconstruct the image.
  • the processor 200.3B outputs data indicating the reconstructed image to the outside as decoded video data.
  • the control unit 210 selects the processor 200.2B as the processor that executes the luminance motion compensation process. At the same time, the processor 200.3B is selected as a processor for executing the color difference motion compensation processing.
  • control part 210 transmits the command for performing a luminance motion compensation process to the processor 200.2B selected in order to perform a luminance motion compensation process.
  • the control unit 210 also instructs the processor 200.3B selected to execute the color difference motion compensation process to execute the color difference motion compensation process and an instruction to execute the deblocking filter process at a predetermined timing. And send.
  • the processor 200.2B that has received the command executes luminance motion compensation processing
  • the processor 200.3B that has received the command executes color difference motion compensation processing and deblocking filter processing.
  • the process execution control unit causes the first processor (processor 200.3B) to The third process and the fifth process (color difference motion compensation process) are executed, and the fourth process (luminance motion compensation process) is executed by a second processor (processor 200.2B) other than the first processor among the N processors. .
  • the processor 200.2B executes the motion vector calculation process, and uses the motion vector obtained by the motion vector calculation process as the processor. Send to 200.3B.
  • the processor 200.2B executes luminance motion compensation processing based on the motion vector obtained by the motion vector calculation processing, and transmits data obtained by execution of the luminance motion compensation processing to the processor 200.3B.
  • the processor 200.3B executes color difference motion compensation processing based on the received motion vector.
  • the processor 200.3B executes the image reconstruction process, thereby obtaining data obtained by executing the luminance motion compensation process, data obtained by executing the color difference motion compensation process, and data obtained by the inverse DCT process. And reconstruct the image.
  • the processor 200.3B performs deblocking filter processing on the reconstructed image. Then, the processor 200.3B outputs the data obtained by the deblocking filter process to the outside as decoded video data.
  • the AV data that is the encoded data is decoded by the above processing. That is, AV data is reproduced.
  • the parameter used by the control unit 210 to select a processor may be any of a frame size, a frame rate, a bit rate, a codec type, and an arithmetic processing capability value. .
  • the processor 200.3B executes the luminance motion compensation process
  • the processor 200.2B executes the color difference motion compensation process.
  • the amount of calculation processing necessary for executing the color difference motion compensation processing is less than the amount of calculation processing required for executing the luminance motion compensation processing. Further, the calculation processing amount necessary for executing the luminance motion compensation processing is equal to or less than the calculation processing amount required for executing the deblocking filter processing.
  • the processor 200.3B which has sufficient capacity for executing the calculation process, has a luminance motion larger than the color difference motion compensation process.
  • the compensation process is executed.
  • the processor 200.2B is caused to execute a color difference motion compensation process in which the calculation processing amount (usage rate) required at the time of execution is smaller than the luminance motion compensation process.
  • the usage rate of the processor 200.3B can be prevented from becoming extremely small, and the processor 200.3B can be used effectively.
  • the processor 200.2B is caused to execute the luminance motion compensation process
  • the processor 200.3B is caused to execute the color difference motion compensation process and the deblocking filter process.
  • the processor 200.2B is caused to execute a luminance motion compensation process in which the calculation processing amount (usage rate) required at the time of execution is larger than the color difference motion compensation process.
  • the processor 200.3B that needs to execute the deblocking filter process is caused to execute a chrominance motion compensation process in which the calculation processing amount (usage rate) required at the time of execution is smaller than the luminance motion compensation process.
  • the processor 200.2B and the processor 200.3B can be effectively used.
  • the processors when reproducing AV data using a plurality of processors, the processors can be used effectively.
  • control unit 210 that causes each processor to execute processing is provided outside the processor.
  • the present invention is not limited to this, and the control unit 210 is provided inside the processor. May be.
  • the separation unit 110, the acquisition unit 120, and the parameter storage unit 130 are provided outside the processor, the separation unit 110, the acquisition unit 120, and the parameter storage unit 130 are partly or entirely included in the processor. (For example, the processor 200.2B) may be provided.
  • parameters used for selecting a processor are not limited to those related to video data as described above.
  • the parameter used for selecting the processor may be, for example, a bit rate, the number of channels, a codec type, an arithmetic processing capability value, etc. in audio data.
  • the parameter used for selection by the processor may be, for example, information (for example, reproduction time) included in the audio data.
  • the motion compensation processing is divided into chrominance motion compensation processing and luminance motion compensation processing, and processing in which each of the chrominance motion compensation processing and luminance motion compensation processing is executed by different processors has been described.
  • the present invention is not limited to this.
  • the processes other than the color difference motion compensation process and the luminance motion compensation process shown in FIG. 4 are divided into a plurality of processes. Each may be executed by a different processor.
  • the processing using three processors has been described when reproducing AV data.
  • the present invention is not limited to this.
  • two or less or four or more processors may be used.
  • the processes to be executed by a plurality of processors are the processes included in the video reproduction process and the audio reproduction process.
  • processing to be executed by a plurality of processors may be media processing such as video shooting processing and audio recording processing, file container processing such as multiplexing processing and demultiplexing processing, OS processing, application processing, etc. Good.
  • the processing for executing each processing by a plurality of processors has been described.
  • the present invention is not limited to this.
  • the plurality of processes included in the deblocking filter process may be switched according to the parameters of the AV data. Good.
  • FIG. 5 is a diagram illustrating a configuration of an AV data reproducing device 2000 according to the fourth embodiment.
  • AV data reproducing device 2000 includes a memory 410, an AV data reproducing circuit 1000, an audio output device 420, and a video display device 430.
  • the AV data reproduction device 2000 may include an AV data reproduction circuit 1000A or an AV data reproduction circuit 1000B instead of the AV data reproduction circuit 1000.
  • the audio output device 420 is a speaker.
  • the video display device 430 is, for example, a liquid crystal monitor.
  • the video display device 430 is not limited to a liquid crystal monitor, and may be any device as long as it can display video.
  • AV data playback device 2000 stores AV data received from the outside in memory 410.
  • AV data is, for example, data received as a broadcast wave.
  • the AV data includes audio data, video data, and parameter information.
  • the AV data reproduction circuit 1000 reproduces (decodes) the audio data by performing the above-described processing (for example, audio reproduction processing) on the audio data included in the AV data stored in the memory 410. As a result, the AV data reproduction circuit 1000 obtains decoded audio data. That is, the AV data reproduction circuit 1000 obtains decoded audio data by performing audio reproduction processing on the audio data.
  • the AV data reproducing circuit 1000 transmits the obtained decoded audio data to the audio output device 420.
  • the AV data reproduction circuit 1000 reproduces (decodes) the video data by performing the above-described processing (for example, video reproduction processing) on the video data included in the AV data stored in the memory 410. As a result, the AV data reproduction circuit 1000 obtains decoded video data. That is, the AV data playback circuit 1000 obtains decoded video data by performing video playback processing on the video data.
  • the AV data reproduction circuit 1000 transmits the obtained decoded video data to the video display device 430.
  • the audio output device 420 outputs audio based on the received decoded audio data.
  • the video display device 430 displays a video based on the received decoded video data.
  • the processing performed by the AV data reproducing circuit 1000 may be performed by the AV data reproducing circuit 1000A or the AV data reproducing circuit 1000B.
  • the AV data reproducing apparatus 2000 that performs the process of reproducing the AV data according to the parameters of the AV data using the AV data reproducing circuit of the present invention.
  • an AV data reproducing apparatus that reproduces AV data can be constructed using the AV data reproducing circuit of the present invention.
  • the process of storing AV data in the memory 410 has been described, but the present invention is not limited to this.
  • the AV data may be directly received by the AV data reproducing circuit without storing the AV data in the memory 410.
  • the audio output device 420 has described the process of outputting audio based on the decoded audio data, but the present invention is not limited to this.
  • the decoded audio data may be stored in an external memory.
  • the video display device 430 has described the process of displaying video based on the decoded video data, but the present invention is not limited to this.
  • the decoded video data may be stored in an external memory.
  • FIG. 6 is a block diagram showing a characteristic functional configuration of the AV data reproduction circuit 3000.
  • the AV data reproduction circuit 3000 is one of the AV data reproduction circuits 1000, 1000A, and 1000B.
  • FIG. 6 is a block diagram showing the main functions related to the present invention among the functions of any one of the AV data reproduction circuits 1000, 1000A, and 1000B.
  • the AV data reproduction circuit 3000 performs reproduction processing for reproducing AV data using N (an integer of 2 or more) processors.
  • the reproduction process includes K (an integer greater than or equal to 2) processes.
  • the AV data reproduction circuit 3000 includes an acquisition unit 120 and a process execution control unit 400.
  • the acquisition unit 120 acquires AV data parameters to be reproduced in the reproduction process.
  • the acquisition unit 120 corresponds to the acquisition unit 120 of FIGS. 1, 3, and 4 that performs the process of step S ⁇ b> 111 of FIG. 2.
  • the process execution control unit 400 causes at least one of the N processors to execute the first process, which is one of the K processes, based on the acquired parameter.
  • the process execution control unit 400 selects a processor for executing the first process from among the N processors based on the acquired parameters, and selects the K of the N processors based on the acquired parameters.
  • the process execution control unit 400 causes the processor selected to execute the first process to execute the first process and causes the processor selected to execute the second process to execute the second process.
  • the process execution control unit 400 corresponds to the control unit 210 of FIGS. 1, 3, and 4 that performs the process of step S112 of FIG.
  • all or part of the acquisition unit 120 and the processing execution control unit 400 in FIG. 6 may be configured by hardware such as an LSI (Large Scale Integration). All or part of the acquisition unit 120 and the process execution control unit 400 may be a module of a program executed by a processor such as a CPU.
  • LSI Large Scale Integration
  • the processor is a computer such as a DSP, a microcomputer, a CPU, and a media processor that operates software installed on an LSI.
  • first to fourth embodiments have been described on the premise of processing by software, the present invention can be similarly implemented even when realized by hardware processing. As described above, the first to fourth embodiments of the present invention are intended to explain the present invention, and do not limit the contents of the present invention.
  • all or some of the plurality of constituent elements constituting any one of the AV data reproducing circuits 1000, 1000A, and 1000B may be configured by hardware. Further, all or a part of the constituent elements constituting any of the AV data reproduction circuits 1000, 1000A, and 1000B may be a module of a program executed by a CPU (Central Processing Unit) or the like.
  • a CPU Central Processing Unit
  • all or some of the plurality of constituent elements constituting any one of the AV data reproduction circuits 1000, 1000A, and 1000B may be configured by one system LSI (Large Scale Integration). Good.
  • the system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on one chip. Specifically, a microprocessor, a ROM (Read Only Memory), a RAM (Random Access Memory), etc. It is a computer system comprised including.
  • the present invention may be realized as an AV data reproduction method in which the operation of a characteristic component included in any one of the AV data reproduction circuits 1000, 1000A, and 1000B is a step.
  • the present invention may also be realized as a program that causes a computer to execute each step included in such an AV data reproduction method.
  • the present invention may be realized as a computer-readable recording medium that stores such a program.
  • the program may be distributed via a transmission medium such as the Internet.
  • the present invention can be used as an AV data reproducing circuit that makes it possible to effectively use a processor.
  • Separation unit 120 Acquisition unit 200.1, 200.2, 200.3, 200.1A, 200.2A, 200.1B, 200.2B, 200.3B Processor 210
  • Control unit 400 Processing execution control unit 410
  • Memory 420 Audio Output device 430

Abstract

An acquisition unit (120) acquires the parameters of AV data. A control unit (210), on the basis of the acquired parameters, selects from among three processors (200.1, 200.2, 200.3) the processor which executes processing C included in playback processing for playing AV data, and, on the basis of the acquired parameters, selects from among the three processors (200.1,200.2,200.3) the processor which executes processing E. The control unit (210) makes the processor selected to execute processing C execute processing C, and makes the processor selected to execute processing E execute processing E.

Description

AV(Audio Visual)データ再生回路、AVデータ再生装置、集積回路およびAVデータ再生方法AV (Audio Visual) data reproduction circuit, AV data reproduction device, integrated circuit, and AV data reproduction method
 本発明は、複数のプロセッサを利用してAVデータを再生するための処理を行うAVデータ再生回路、AVデータ再生装置、集積回路およびAVデータ再生方法に関する。 The present invention relates to an AV data reproducing circuit, an AV data reproducing device, an integrated circuit, and an AV data reproducing method for performing processing for reproducing AV data using a plurality of processors.
 近年、高画質な映像および高音質な音声のデータであるAVデータを処理する装置(以下、AV(Audio Visual)装置という)を、低コストで実現する要望が高まっている。低コストなAV装置を実現するためには、AV装置において、映像処理および音声処理を、ソフトウエアで行うことが考えられる。以下においては、映像処理および音声処理を、総括的に、AVデータ処理という。 In recent years, there has been a growing demand for realizing an apparatus for processing AV data (hereinafter referred to as AV (Audio Visual) apparatus) which is high-quality video and high-quality sound data at a low cost. In order to realize a low-cost AV device, it is conceivable to perform video processing and audio processing by software in the AV device. In the following, video processing and audio processing are collectively referred to as AV data processing.
 特許文献1では、ソフトウエアによって動画の処理をおこなうための技術が開示されている。 Patent Document 1 discloses a technique for processing a moving image by software.
特開2001-245294号公報JP 2001-245294 A
 AVデータ処理を、ソフトウエアで実行する場合、通常、プロセッサ等が使用される。しかしながら、AVデータ処理を、ソフトウエアで実行する場合、非常に高性能なプロセッサを使用するか、複数のプロセッサに、処理を分散させて行わないと実用的でない。 When executing AV data processing with software, a processor or the like is usually used. However, when AV data processing is executed by software, it is not practical unless a very high performance processor is used or processing is distributed to a plurality of processors.
 複数のプロセッサに、処理を分散させる場合、AVデータ処理を複数の処理に分割し、当該複数の処理を、重複しないように、複数のプロセッサに割り当てて行われるのが一般的である。 When processing is distributed to a plurality of processors, the AV data processing is generally divided into a plurality of processes, and the plurality of processes are generally assigned to a plurality of processors so as not to overlap.
 しかしながら、この手法では、複数のプロセッサの各々が実行する処理は、固定されているのが一般的である。そのため、再生対象のAVデータのパラメータによっては、実行しなくてよい処理も生じる。この場合、実行しなくてよい処理が割り当てられたプロセッサの使用率が低くなり、当該プロセッサが有効に活用されなくなる。 However, in this method, the processing executed by each of the plurality of processors is generally fixed. Therefore, depending on the parameters of the AV data to be reproduced, there is a process that may not be executed. In this case, the usage rate of a processor to which processing that need not be executed is assigned becomes low, and the processor is not effectively used.
 本発明は、上述の問題点を解決するためになされたものであって、その目的は、複数のプロセッサを利用してAVデータを再生する場合において、プロセッサを有効に活用することを可能とするAVデータ再生回路等を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to enable effective use of a processor when reproducing AV data using a plurality of processors. An AV data reproducing circuit and the like are provided.
 上述の課題を解決するために、この発明のある局面に従うAVデータ再生回路は、N(2以上の整数)個のプロセッサを利用してAV(Audio Visual)データを再生するための再生処理を行う。再生処理は、K(2以上の整数)個の処理を含む。AVデータ再生回路は、再生処理において再生対象となるAVデータのパラメータを取得する取得部と、取得されたパラメータに基づいて、K個の処理のいずれかの処理である第1処理を、N個のプロセッサのいずれかに少なくとも実行させる処理実行制御部とを備える。処理実行制御部は、取得されたパラメータに基づいて、N個のプロセッサのうち、第1処理を実行させるプロセッサを選択し、取得されたパラメータに基づいて、N個のプロセッサのうち、K個の処理のうち第1処理以外の処理である第2処理を実行させるプロセッサを選択する。処理実行制御部は、第1処理を実行させるために選択したプロセッサに第1処理を実行させ、第2処理を実行させるために選択したプロセッサに第2処理を実行させる。 In order to solve the above-described problem, an AV data reproduction circuit according to an aspect of the present invention performs reproduction processing for reproducing AV (Audio Visual) data using N (integer of 2 or more) processors. . The reproduction process includes K (an integer greater than or equal to 2) processes. The AV data reproduction circuit includes an obtaining unit that obtains parameters of AV data to be reproduced in the reproduction process, and first processing that is one of K processes based on the obtained parameters. A processing execution control unit that causes at least one of the processors to execute the processing. The process execution control unit selects a processor for executing the first process from among the N processors based on the acquired parameters, and selects K of the N processors based on the acquired parameters. A processor that executes a second process that is a process other than the first process is selected. The process execution control unit causes the processor selected to execute the first process to execute the first process, and causes the selected processor to execute the second process to execute the second process.
 すなわち、取得部は、AVデータのパラメータを取得する。処理実行制御部は、取得されたパラメータに基づいて、N個のプロセッサのうち、AVデータを再生するための再生処理に含まれるK個の処理のいずれかの処理である第1処理を実行させるプロセッサを選択し、取得されたパラメータに基づいて、N個のプロセッサのうち、第2処理を実行させるプロセッサを選択する。処理実行制御部は、第1処理を実行させるために選択したプロセッサに第1処理を実行させ、第2処理を実行させるために選択したプロセッサに第2処理を実行させる。 That is, the acquisition unit acquires AV data parameters. The process execution control unit executes a first process that is one of the K processes included in the reproduction process for reproducing AV data among the N processors based on the acquired parameters. A processor is selected, and a processor for executing the second process is selected from the N processors based on the acquired parameters. The process execution control unit causes the processor selected to execute the first process to execute the first process, and causes the selected processor to execute the second process to execute the second process.
 つまり、AVデータのパラメータに基づいて、AVデータを再生するための再生処理に含まれる第1処理および第2処理の各々を、選択されたプロセッサに実行させる。すなわち、AVデータのパラメータに基づいて、再生処理に含まれる第1処理および第2処理の各々を実行させるプロセッサを動的に変化させる。 That is, based on the parameters of the AV data, the selected processor is caused to execute each of the first process and the second process included in the reproduction process for reproducing the AV data. That is, the processor that executes each of the first process and the second process included in the reproduction process is dynamically changed based on the parameters of the AV data.
 したがって、複数のプロセッサを利用してAVデータを再生する場合において、プロセッサを有効に活用することができる。 Therefore, when reproducing AV data using a plurality of processors, the processors can be used effectively.
 また、好ましくは、N個のプロセッサのうちの所定のプロセッサは、K個の処理のうちの所定の処理を実行可能であり、AVデータのパラメータは、所定の処理が実行される必要があるか否かを示し、処理実行制御部は、AVデータのパラメータが所定の処理が実行される必要がないことを示す場合、所定のプロセッサに、K個の処理のうち所定の処理の実行に必要な演算量以下の演算量が必要な処理を実行させる。 Preferably, the predetermined processor of the N processors can execute the predetermined process of the K processes, and the parameter of the AV data needs to be executed. If the AV data parameter indicates that the predetermined process does not need to be executed, the process execution control unit instructs the predetermined processor to execute the predetermined process among the K processes. A process requiring a calculation amount equal to or less than the calculation amount is executed.
 これにより、所定の処理が実行される必要がない場合、所定のプロセッサに他の処理を実行させることができ、当該所定のプロセッサの使用率が極端に小さくなることを防止することができる。すなわち、複数のプロセッサを利用してAVデータを再生する場合において、プロセッサを有効に活用することができる。 Thus, when it is not necessary to execute a predetermined process, the predetermined processor can execute another process, and the usage rate of the predetermined processor can be prevented from becoming extremely small. That is, when reproducing AV data using a plurality of processors, the processors can be used effectively.
 また、好ましくは、AVデータは、音声データおよび映像データを含み、第1処理は、音声データを再生するための音声再生処理であり、第2処理は、映像データを再生するための映像再生処理であり、AVデータ再生回路は、さらに、AVデータを、音声データおよび映像データに分離する分離部を備える。 Preferably, the AV data includes audio data and video data, the first process is an audio reproduction process for reproducing the audio data, and the second process is an image reproduction process for reproducing the video data. The AV data reproduction circuit further includes a separation unit that separates the AV data into audio data and video data.
 また、好ましくは、取得部は、映像データのパラメータを取得し、処理実行制御部は、映像データのパラメータに基づいて、N個のプロセッサのいずれかのプロセッサに音声再生処理を実行させる。 Also preferably, the acquisition unit acquires video data parameters, and the process execution control unit causes one of the N processors to execute audio reproduction processing based on the video data parameters.
 また、好ましくは、N個のプロセッサのいずれかのプロセッサである第1プロセッサは、映像再生処理を実行しており、映像再生処理は、第3処理を含み、第1処理としての音声再生処理の実行に必要な演算量は、第3処理の実行に必要な演算量以下であり、映像データのパラメータは、映像データに対して第3処理が実行される必要があるか否かを示し、処理実行制御部は、映像データのパラメータが第3処理が実行される必要がないことを示す場合、第1プロセッサに音声再生処理を実行させるとともに第1プロセッサに第3処理を実行させない。 Preferably, the first processor, which is one of the N processors, executes the video playback process, and the video playback process includes the third process, and the audio playback process as the first process is performed. The amount of calculation required for execution is less than or equal to the amount of calculation required for execution of the third process, and the parameter of the video data indicates whether the third process needs to be executed on the video data. When the parameter of the video data indicates that the third process does not need to be executed, the execution control unit causes the first processor to execute the audio reproduction process and does not cause the first processor to execute the third process.
 これにより、第3処理が実行される必要がない場合、第1プロセッサに音声再生処理を実行させることができ、第1プロセッサの使用率が極端に小さくなることを防止することができる。すなわち、複数のプロセッサを利用してAVデータを再生する場合において、プロセッサを有効に活用することができる。 Thus, when the third process does not need to be executed, the first processor can execute the audio reproduction process, and the usage rate of the first processor can be prevented from becoming extremely small. That is, when reproducing AV data using a plurality of processors, the processors can be used effectively.
 また、好ましくは、AVデータは、映像データを含み、第2処理は、映像データを再生するための映像再生処理であり、取得部は、映像データのパラメータを取得し、映像再生処理は、第3処理、第4処理および第5処理を含み、第5処理の実行に必要な演算量は、第4処理の実行に必要な演算量未満であり、第4処理の実行に必要な演算量は、第3処理の実行に必要な演算量以下であり、映像データのパラメータは、第3処理が実行される必要があるか否かを示し、処理実行制御部は、映像データのパラメータが第3処理が実行される必要があることを示す場合、N個のプロセッサのいずれかのプロセッサである第1プロセッサに第3処理および第5処理を実行させるとともに、N個のプロセッサのうち第1プロセッサ以外のプロセッサである第2プロセッサに第4処理を実行させ、処理実行制御部は、映像データのパラメータが第3処理が実行される必要がないことを示す場合、第1プロセッサに第4処理を実行させるとともに、第2プロセッサに第5処理を実行させる。 Preferably, the AV data includes video data, and the second process is a video playback process for playing back the video data. The acquisition unit acquires a parameter of the video data. 3 processing, 4th processing, and 5th processing are included, the amount of calculation required for execution of the 5th processing is less than the amount of calculation required for execution of the 4th processing, and the amount of calculation required for execution of the 4th processing is , The amount of calculation is less than or equal to the amount of computation required for execution of the third process, and the video data parameter indicates whether or not the third process needs to be executed. When indicating that the process needs to be executed, the first processor, which is one of the N processors, executes the third process and the fifth process, and the N processors other than the first processor Processor When a certain second processor executes the fourth process, and the process execution control unit causes the first processor to execute the fourth process when the parameter of the video data indicates that the third process does not need to be executed, The second processor is caused to execute the fifth process.
 これにより、第3処理が実行される必要がない場合、第1プロセッサに第4処理を実行させることができ、第1プロセッサの使用率が極端に小さくなることを防止することができる。すなわち、複数のプロセッサを利用してAVデータを再生する場合において、プロセッサを有効に活用することができる。 Thereby, when the third process does not need to be executed, the first processor can be caused to execute the fourth process, and the usage rate of the first processor can be prevented from becoming extremely small. That is, when reproducing AV data using a plurality of processors, the processors can be used effectively.
 また、好ましくは、映像再生処理は、フレーム間の相関関係を利用した再生処理であり、第4処理は、輝度の動き補償処理であり、第5処理は、色差の動き補償処理である。 Also preferably, the video playback process is a playback process using correlation between frames, the fourth process is a luminance motion compensation process, and the fifth process is a color difference motion compensation process.
 また、好ましくは、映像再生処理は、さらに、可変長復号処理を含み、処理実行制御部は、第2プロセッサに可変長復号処理を実行させる。 Also preferably, the video reproduction process further includes a variable length decoding process, and the process execution control unit causes the second processor to execute the variable length decoding process.
 また、好ましくは、映像再生処理は、H.264/AVC規格に従った再生処理であり、第3処理は、デブロッキングフィルタ処理である。 Also preferably, the video playback processing is performed by H.264. The reproduction process conforms to the H.264 / AVC standard, and the third process is a deblocking filter process.
 また、好ましくは、AVデータは、映像データを含み、AVデータのパラメータは、映像データを構成するフレームのサイズである。 Also preferably, the AV data includes video data, and the parameter of the AV data is a size of a frame constituting the video data.
 また、好ましくは、AVデータは、映像データを含み、AVデータのパラメータは、映像データのフレームレートである。 Also preferably, the AV data includes video data, and the parameter of the AV data is a frame rate of the video data.
 また、好ましくは、AVデータは、映像データを含み、AVデータのパラメータは、映像データのビットレートである。 Also preferably, the AV data includes video data, and the parameter of the AV data is a bit rate of the video data.
 また、好ましくは、AVデータは、映像データを含み、映像データは、所定の符号化方式により圧縮されており、AVデータのパラメータは、符号化方式の種別である。 Also preferably, the AV data includes video data, the video data is compressed by a predetermined encoding method, and the parameter of the AV data is a type of the encoding method.
 また、好ましくは、AVデータのパラメータは、AVデータを処理するために必要な演算処理能力値である。 Also preferably, the parameter of the AV data is an arithmetic processing capability value necessary for processing the AV data.
 この発明の他の局面に従うAVデータ再生装置は、前記AVデータ再生回路を含むAVデータ再生装置である。前記AVデータ再生装置は、さらに、音声データおよび映像データを記憶するメモリと、AVデータ再生回路が、音声データに対し該音声データを再生するための音声再生処理を行うことにより得られた復号済の音声データに基づく音声を出力する音声出力装置と、AVデータ再生回路が、映像データに対し該映像データを再生するための映像再生処理を行うことにより得られた復号済の映像データに基づく映像を表示する表示装置とを含む。 An AV data reproducing device according to another aspect of the present invention is an AV data reproducing device including the AV data reproducing circuit. The AV data reproducing apparatus further includes a memory for storing audio data and video data, and a decoded data obtained by the audio data reproducing circuit performing audio reproducing processing for reproducing the audio data on the audio data. An audio output device that outputs audio based on the audio data of the video and an AV data reproduction circuit that is based on decoded video data obtained by performing video reproduction processing for reproducing the video data on the video data And a display device for displaying.
 この発明のさらに他の局面に従う集積回路は、N(2以上の整数)個のプロセッサを利用してAV(Audio Visual)データを再生するための再生処理を行う。再生処理は、K(2以上の整数)個の処理を含み、集積回路は、再生処理において再生対象となるAVデータのパラメータを取得する取得部と、取得されたパラメータに基づいて、K個の処理のいずれかの処理である第1処理を、N個のプロセッサのいずれかに少なくとも実行させる処理実行制御部とを備え、処理実行制御部は、取得されたパラメータに基づいて、N個のプロセッサのうち、第1処理を実行させるプロセッサを選択し、取得されたパラメータに基づいて、N個のプロセッサのうち、K個の処理のうち第1処理以外の処理である第2処理を実行させるプロセッサを選択し、処理実行制御部は、第1処理を実行させるために選択したプロセッサに第1処理を実行させ、第2処理を実行させるために選択したプロセッサに第2処理を実行させる。 An integrated circuit according to still another aspect of the present invention performs reproduction processing for reproducing AV (Audio Visual) data using N (integer of 2 or more) processors. The reproduction process includes K (integer greater than or equal to 2) processes, and the integrated circuit obtains a parameter of AV data to be reproduced in the reproduction process, and K pieces based on the obtained parameters. A process execution control unit that causes at least one of the N processors to execute a first process that is one of the processes, and the process execution control unit includes the N processors based on the acquired parameters. The processor that selects the processor that executes the first process, and executes the second process that is a process other than the first process among the K processes, among the N processors, based on the acquired parameters. The process execution control unit causes the processor selected to execute the first process to execute the first process and causes the processor selected to execute the second process to execute the second process. To be executed.
 この発明のさらに他の局面に従うAVデータ再生方法は、N(2以上の整数)個のプロセッサを利用してAV(Audio Visual)データを再生するための再生処理を行うAVデータ再生回路が行う。再生処理は、K(2以上の整数)個の処理を含み、AVデータ再生回路は、再生処理において再生対象となるAVデータのパラメータを取得する取得部と、取得されたパラメータに基づいて、K個の処理のいずれかの処理である第1処理を、N個のプロセッサのいずれかに少なくとも実行させる処理実行制御部とを備える。AVデータ再生方法は、取得部が、AVデータのパラメータを取得するステップと、処理実行制御部が、取得されたパラメータに基づいて、N個のプロセッサのうち、第1処理を実行させるプロセッサを選択し、取得されたパラメータに基づいて、N個のプロセッサのうち、K個の処理のうち第1処理以外の処理である第2処理を実行させるプロセッサを選択し、処理実行制御部が、第1処理を実行させるために選択したプロセッサに第1処理を実行させ、第2処理を実行させるために選択したプロセッサに第2処理を実行させるステップとを含む。 The AV data reproduction method according to still another aspect of the present invention is performed by an AV data reproduction circuit that performs reproduction processing for reproducing AV (Audio Visual) data using N (integer of 2 or more) processors. The reproduction process includes K (integer of 2 or more) processes, and the AV data reproduction circuit obtains a parameter of AV data to be reproduced in the reproduction process, and K based on the obtained parameter. A process execution control unit that causes at least one of the N processors to execute a first process that is one of the processes. In the AV data reproduction method, the acquisition unit acquires a parameter of AV data, and the process execution control unit selects a processor for executing the first process among the N processors based on the acquired parameter. Then, based on the acquired parameter, a processor that executes a second process that is a process other than the first process among the K processes among the N processors is selected, and the process execution control unit selects the first process Causing the processor selected to execute the process to execute the first process and causing the selected processor to execute the second process to execute the second process.
 なお、本発明は、このようなAVデータ再生方法として実現するだけでなく、このようなAVデータ再生方法に含まれる各ステップをコンピュータに実行させるプログラムとして実現してもよい。そして、そのようなプログラムは、CD-ROM等の記録媒体又はインターネット等の伝送媒体を介して配信されてもよい。 Note that the present invention may be realized not only as such an AV data reproduction method but also as a program for causing a computer to execute each step included in such an AV data reproduction method. Such a program may be distributed via a recording medium such as a CD-ROM or a transmission medium such as the Internet.
 本発明により、複数のプロセッサを利用してAVデータを再生する場合において、プロセッサを有効に活用することができる。 According to the present invention, when reproducing AV data using a plurality of processors, the processors can be used effectively.
図1は、第1の実施の形態におけるAVデータ再生回路の構成を示す図である。FIG. 1 is a diagram showing a configuration of an AV data reproducing circuit according to the first embodiment. 図2は、再生実行処理のフローチャートである。FIG. 2 is a flowchart of the reproduction execution process. 図3は、第2の実施の形態におけるAVデータ再生回路の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of an AV data reproducing circuit according to the second embodiment. 図4は、第3の実施の形態におけるAVデータ再生回路の構成を示す図である。FIG. 4 is a diagram illustrating a configuration of an AV data reproducing circuit according to the third embodiment. 図5は、第4の実施の形態におけるAVデータ再生装置の構成を示す図である。FIG. 5 is a diagram showing a configuration of an AV data reproducing apparatus according to the fourth embodiment. 図6は、AVデータ再生回路の特徴的な機能構成を示すブロック図である。FIG. 6 is a block diagram showing a characteristic functional configuration of the AV data reproducing circuit.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 <第1の実施の形態>
 図1は、第1の実施の形態におけるAVデータ再生回路1000の構成を示す図である。AVデータ再生回路1000は、LSI(Large Scale Integration)等の集積回路である。AVデータ再生回路1000は、詳細は後述するが、N(2以上の整数)個のプロセッサを利用してAVデータを再生するための再生処理を行う。
<First Embodiment>
FIG. 1 is a diagram showing a configuration of an AV data reproducing circuit 1000 according to the first embodiment. The AV data reproduction circuit 1000 is an integrated circuit such as an LSI (Large Scale Integration). Although details will be described later, the AV data reproduction circuit 1000 performs a reproduction process for reproducing AV data using N (integer of 2 or more) processors.
 図1を参照して、AVデータ再生回路1000は、分離部110と、取得部120と、パラメータ記憶部130と、プロセッサ200.1,200.2,200.3とを備える。 Referring to FIG. 1, the AV data reproduction circuit 1000 includes a separation unit 110, an acquisition unit 120, a parameter storage unit 130, and processors 200.1, 200.2, 200.3.
 分離部110は、外部からAV(Audio Visual)データを取得する。AVデータは、所定の符号化方式により符号化されたデータである。AVデータは、音声データ、映像データおよびパラメータ情報を含む。 The separation unit 110 acquires AV (Audio Visual) data from the outside. AV data is data encoded by a predetermined encoding method. AV data includes audio data, video data, and parameter information.
 AVデータに含まれる音声データは、例えば、MPEG(Moving Picture Experts Group)規格に従った符号化方式により符号化されたデータである。AVデータに含まれる映像データは、例えば、H.264/AVC規格に従った符号化方式により符号化されたデータでる。すなわち、映像データは、所定の符号化方式により圧縮されている。 The audio data included in the AV data is, for example, data encoded by an encoding method according to the MPEG (Moving Picture Experts Group) standard. The video data included in the AV data is, for example, H.264. It is data encoded by an encoding method according to the H.264 / AVC standard. That is, the video data is compressed by a predetermined encoding method.
 なお、音声データは、MPEG規格に限定されず、例えば、AAC(Advance Audio Coding)やAC3(Audio Code 3)など他の符号化方式により符号化されたデータであってもよい。また、映像データは、H.264/AVC規格に限定されず、例えば、MPEG2やMPEG4など他の符号化方式により符号化されたデータであってもよい。 Note that the audio data is not limited to the MPEG standard, and may be data encoded by another encoding method such as AAC (Advance Audio Coding) or AC3 (Audio Code 3). The video data is H.264. The data is not limited to the H.264 / AVC standard, and may be data encoded by another encoding method such as MPEG2 or MPEG4.
 AVデータは、図示しないメモリに記憶されているデータである。なお、AVデータは、放送波として受信されたデータであってもよい。 AV data is data stored in a memory (not shown). The AV data may be data received as a broadcast wave.
 分離部110は、取得したAVデータを、音声データおよび映像データに分離する。そして、分離部110は、音声データおよび映像データを、プロセッサ200.1へ送信する。 The separation unit 110 separates the acquired AV data into audio data and video data. Then, the separation unit 110 transmits the audio data and the video data to the processor 200.1.
 パラメータ記憶部130は、パラメータ情報を記憶するメモリである。 The parameter storage unit 130 is a memory that stores parameter information.
 取得部120は、外部からAVデータを取得し、当該AVデータから、当該AVデータに含まれるパラメータ情報を取得する。パラメータ情報は、対応するAVデータの複数のパラメータを示す。当該AVデータのパラメータは、例えば、フレームサイズ、フレームレート、ビットレート、チャネル数、コーデック種別、演算処理能力値およびデブロッキングフィルタ必要情報等である。 The acquisition unit 120 acquires AV data from the outside, and acquires parameter information included in the AV data from the AV data. The parameter information indicates a plurality of parameters of corresponding AV data. The parameters of the AV data are, for example, a frame size, a frame rate, a bit rate, the number of channels, a codec type, an arithmetic processing capability value, deblocking filter necessary information, and the like.
 フレームサイズは、対応する映像データを構成するフレームのサイズである。すなわち、AVデータのパラメータとしてのフレームサイズは、映像データを構成するフレームのサイズである。フレームレートは、対応する映像データのフレームレートである。すなわち、AVデータのパラメータとしてのフレームレートは、映像データのフレームレートである。ビットレートは、対応する音声データおよび対応する映像データのビットレートである。すなわち、AVデータのパラメータとしてのビットレートは、映像データのビットレートである。チャネル数は、対応する音声データのチャネルの数である。 The frame size is the size of the frame constituting the corresponding video data. That is, the frame size as a parameter of AV data is the size of a frame constituting video data. The frame rate is the frame rate of the corresponding video data. That is, the frame rate as a parameter of AV data is the frame rate of video data. The bit rate is the bit rate of the corresponding audio data and the corresponding video data. That is, the bit rate as a parameter of AV data is the bit rate of video data. The number of channels is the number of channels of corresponding audio data.
 コーデック種別は、対応する音声データおよび対応する映像データを生成する際に使用された符号化方式の種別である。すなわち、AVデータのパラメータとしてのコーデック種別は、符号化方式の種別である。コーデック種別は、例えば、H.264/AVC、MPEG2等である。演算処理能力値は、対応する映像データを正常に再生するのに必要とされる演算処理能力の値である。すなわち、AVデータのパラメータとしての演算処理能力値は、AVデータを処理するために必要な演算処理能力値である。演算処理能力値は、例えば、MIPS(Million Instructions Per Second)値である。 The codec type is the type of encoding method used when generating corresponding audio data and corresponding video data. That is, the codec type as a parameter of AV data is the type of encoding method. The codec type is, for example, H.264. H.264 / AVC, MPEG2, and the like. The arithmetic processing capability value is a value of the arithmetic processing capability required to normally reproduce the corresponding video data. That is, the arithmetic processing capability value as a parameter of AV data is an arithmetic processing capability value necessary for processing AV data. The arithmetic processing capability value is, for example, a MIPS (Million Instructions Per Per Second) value.
 デブロッキングフィルタ必要情報は、対応する映像データが再生される場合に、ループ内フィルタとしてのデブロッキングフィルタ処理が実行される必要があるか否かを示す。すなわち、デブロッキングフィルタ必要情報は、対応する映像データが再生される場合に、ループ内フィルタとしてのデブロッキングフィルタ処理が必要であるか否かを示す。つまり、AVデータのパラメータとしてのデブロッキングフィルタ必要情報は、所定の処理(デブロッキングフィルタ処理)が実行される必要があるか否かを示す。 The deblocking filter necessary information indicates whether or not the deblocking filter processing as the in-loop filter needs to be executed when the corresponding video data is reproduced. That is, the deblocking filter necessary information indicates whether or not the deblocking filter processing as the in-loop filter is necessary when the corresponding video data is reproduced. That is, the deblocking filter necessary information as a parameter of AV data indicates whether or not a predetermined process (deblocking filter process) needs to be executed.
 取得部120は、取得したパラメータ情報を、パラメータ記憶部130に記憶させる。 The acquisition unit 120 causes the parameter storage unit 130 to store the acquired parameter information.
 プロセッサ200.1,200.2,200.3は、AVデータを再生するための再生処理を行う。当該再生処理は、複数の処理(図1の処理A,B,C,D,E)を含む。 Processors 200.1, 200.2, and 200.3 perform reproduction processing for reproducing AV data. The reproduction process includes a plurality of processes (processes A, B, C, D, and E in FIG. 1).
 プロセッサ200.1,200.2,200.3の各々には、予め、再生処理に含まれる複数の処理の一部または全てを実行するための複数のプログラムモジュールが割り当てられている。 Each of the processors 200.1, 200.2, and 200.3 is assigned in advance a plurality of program modules for executing some or all of the plurality of processes included in the reproduction process.
 プロセッサ200.1は、制御部210を含む。制御部210は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)等の演算処理回路である。制御部210には、処理A,B,C,D,Eの各々を実行するためのプログラムモジュールが予め割り当てられている。これにより、制御部210は、処理A,B,C,D,Eを実行可能である。制御部210は、プロセッサに処理を実行させる処理等を行う処理実行制御部である。 The processor 200.1 includes a control unit 210. The control unit 210 is an arithmetic processing circuit such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processing). A program module for executing each of the processes A, B, C, D, and E is assigned to the control unit 210 in advance. Thereby, the control unit 210 can execute the processes A, B, C, D, and E. The control unit 210 is a process execution control unit that performs processing for causing a processor to execute processing.
 プロセッサ200.2には、予め、処理B,C,D,Eの各々を実行するためのプログラムモジュールが割り当てられている。これにより、プロセッサ200.2は、処理B,C,D,Eを実行可能である。 A program module for executing each of the processes B, C, D, and E is assigned to the processor 200.2 in advance. Thereby, the processor 200.2 can execute the processes B, C, D, and E.
 プロセッサ200.3には、予め、処理C,D,Eの各々を実行するためのプログラムモジュールが割り当てられている。これにより、プロセッサ200.3は、処理C,D,Eを実行可能である。 A program module for executing each of the processes C, D, and E is allocated to the processor 200.3 in advance. Thereby, the processor 200.3 can execute the processes C, D, and E.
 すなわち、N(2以上の整数)個のプロセッサのうちの所定のプロセッサ(例えば、プロセッサ200.3)は、再生処理に含まれるK(2以上の整数)個の処理のうちの所定の処理(例えば、処理C,D,E)を実行可能である。 That is, a predetermined processor (for example, the processor 200.3) among N (integers greater than or equal to 2) processors performs a predetermined process (of integers greater than or equal to 2) included in the reproduction process ( For example, the processes C, D, and E) can be executed.
 これにより、例えば、処理Aを実行できるのは、プロセッサ200.1のみとなる。なお、プロセッサ200.1,200.2,200.3の各々におけるプログラムモジュールの割り当ては、上記に限定されない。例えば、プロセッサ200.1,200.2,200.3の各々に割り当てられるプログラムモジュールは、互いに異なる処理を実行するためのプログラムモジュールであってもよい。 Thus, for example, only the processor 200.1 can execute the process A. Note that the assignment of program modules in each of the processors 200.1, 200.2, 200.3 is not limited to the above. For example, the program module assigned to each of the processors 200.1, 200.2, 200.3 may be a program module for executing different processes.
 次に、AVデータ再生回路1000が行うAVデータを再生するための処理(以下、再生実行処理という)について説明する。なお、プロセッサ200.1は、再生実行処理とは独立した処理により、分離部110から、前述した音声データおよび映像データを受信しているとする。 Next, processing for reproducing AV data (hereinafter referred to as reproduction execution processing) performed by the AV data reproduction circuit 1000 will be described. Assume that the processor 200.1 receives the above-described audio data and video data from the separation unit 110 by a process independent of the reproduction execution process.
 図2は、再生実行処理のフローチャートである。 FIG. 2 is a flowchart of the reproduction execution process.
 ステップS111では、パラメータ取得処理が行われる。パラメータ取得処理では、取得部120が、外部からAVデータを取得し、当該AVデータから、当該AVデータに含まれるパラメータ情報を取得する。取得部120は、取得したパラメータ情報を、パラメータ記憶部130に記憶させる。 In step S111, parameter acquisition processing is performed. In the parameter acquisition process, the acquisition unit 120 acquires AV data from the outside, and acquires parameter information included in the AV data from the AV data. The acquisition unit 120 causes the parameter storage unit 130 to store the acquired parameter information.
 すなわち、パラメータ取得処理では、取得部120が、AVデータのパラメータを取得する。つまり、取得部120は、再生処理において再生対象となるAVデータのパラメータを取得する。 That is, in the parameter acquisition process, the acquisition unit 120 acquires AV data parameters. That is, the acquisition unit 120 acquires AV data parameters to be played back in the playback process.
 ステップS112では、処理実行制御処理が行われる。処理実行制御処理では、制御部210が、パラメータ記憶部130に記憶されたパラメータ情報を読み出す。ここで、パラメータ情報は、パラメータとして、前述したフレームサイズ、フレームレート、ビットレート、チャネル数、コーデック種別、演算処理能力値およびデブロッキングフィルタ必要情報等を示すとする。 In step S112, a process execution control process is performed. In the process execution control process, the control unit 210 reads parameter information stored in the parameter storage unit 130. Here, it is assumed that the parameter information indicates the above-described frame size, frame rate, bit rate, number of channels, codec type, arithmetic processing capability value, deblocking filter necessary information, and the like as parameters.
 そして、制御部210は、パラメータ情報が示す、対応するAVデータの複数のパラメータの少なくとも1つに基づいて、再生処理に含まれる各処理(例えば、処理A,B,C,D,E)を実行させるプロセッサを選択する。 Then, the control unit 210 performs each process (for example, processes A, B, C, D, and E) included in the reproduction process based on at least one of the plurality of parameters of the corresponding AV data indicated by the parameter information. Select a processor to run.
 なお、制御部210は、各処理を実行させるプロセッサを選択する場合、各プロセッサ(プロセッサ200.1,200.2,200.3)の処理負荷(以下、使用率ともいう)がほぼ同等になるようにする。すなわち、複数のプロセッサのうち、他のプロセッサより使用率が大幅に小さいプロセッサが生じないようにする。 In addition, when the control part 210 selects the processor which performs each process, the processing load (henceforth a utilization rate) of each processor (processor 200.1, 200.2, 200.3) becomes substantially equivalent. Like that. That is, a processor whose usage rate is significantly smaller than other processors among a plurality of processors is not generated.
 そして、制御部210は、処理を実行させるために選択したプロセッサに当該処理を実行させる。 Then, the control unit 210 causes the processor selected to execute the process to execute the process.
 次に、処理実行制御処理について、一例を挙げて詳細に説明する。 Next, the process execution control process will be described in detail with an example.
 ここで、一例として、AVデータの映像データが、H.264/AVC規格に従った符号化方式により符号化されたデータであるとする。この場合、AVデータ再生回路1000においてAVデータを再生する処理は、H.264/AVC規格に従った再生処理である。 Here, as an example, video data of AV data is H.264. It is assumed that the data is encoded by an encoding method according to the H.264 / AVC standard. In this case, the process of reproducing AV data in the AV data reproducing circuit 1000 is H.264. H.264 / AVC standard reproduction processing.
 また、図1に示される、処理A,B,C,D,Eは、一例として、それぞれ、可変長復号処理、逆量子化処理、逆DCT処理、音声復号処理およびデブロッキングフィルタ処理であるとする。すなわち、処理Eがデブロッキングフィルタ処理であるとする。可変長復号処理、逆量子化処理、逆DCT処理およびデブロッキングフィルタ処理については、周知な処理であるので詳細な説明は繰り返さない。音声復号処理は、音声データを復号するための処理である。 Further, the processes A, B, C, D, and E shown in FIG. 1 are, for example, a variable length decoding process, an inverse quantization process, an inverse DCT process, a speech decoding process, and a deblocking filter process, respectively. To do. That is, it is assumed that the process E is a deblocking filter process. Since the variable-length decoding process, the inverse quantization process, the inverse DCT process, and the deblocking filter process are well-known processes, detailed description thereof will not be repeated. The audio decoding process is a process for decoding audio data.
 また、処理Cおよび処理Dの両方の実行に必要な演算処理量は、デブロッキングフィルタ処理の実行に必要な演算処理量以下とする。また、制御部210が、プロセッサの選択に利用するパラメータは、一例として、パラメータ情報が示すデブロッキングフィルタ必要情報であるとする。 In addition, the amount of calculation processing necessary for executing both the processing C and the processing D is set to be equal to or less than the amount of calculation processing required for executing the deblocking filter processing. Further, the parameter used by the control unit 210 for selecting a processor is, for example, deblocking filter necessary information indicated by the parameter information.
 この場合、処理実行制御処理では、制御部210が、デブロッキングフィルタ必要情報が、デブロッキングフィルタ処理が必要でないこと、すなわち、デブロッキングフィルタ処理が不要であることを示す場合、一例として、処理C,Dを実行させるプロセッサとして、プロセッサ200.3を選択する。この場合、制御部210は、一例として、処理Aを実行させるプロセッサとして、プロセッサ200.1を選択する。また、この場合、制御部210は、一例として、処理Bを実行させるプロセッサとして、プロセッサ200.2を選択する。 In this case, in the process execution control process, when the control unit 210 indicates that the deblocking filter necessary information indicates that the deblocking filter process is not necessary, that is, the deblocking filter process is not necessary, as an example, the process C , D is selected as a processor 200.3. In this case, as an example, the control unit 210 selects the processor 200.1 as the processor that executes the process A. In this case, as an example, the control unit 210 selects the processor 200.2 as the processor that executes the process B.
 すなわち、処理実行制御処理では、処理実行制御部(制御部210)が、取得されたパラメータに基づいて、N(2以上の整数)個のプロセッサのうち、第1処理(例えば、処理C,D)を実行させるプロセッサを選択する。また、処理実行制御部が、取得されたパラメータに基づいて、N個のプロセッサのうち、再生処理に含まれるK(2以上の整数)個の処理のうち第1処理以外の処理である第2処理(例えば、処理A)を実行させるプロセッサを選択する。 In other words, in the process execution control process, the process execution control unit (the control unit 210) performs a first process (for example, processes C and D) out of N (integer of 2 or more) processors based on the acquired parameters. ) Is selected. In addition, the process execution control unit is a process other than the first process among the K (integers greater than or equal to 2) processes included in the reproduction process among the N processors based on the acquired parameters. A processor for executing a process (for example, process A) is selected.
 そして、処理実行制御処理では、制御部210は、処理A,B,C,Dの各々を実行させるために選択したプロセッサに、各処理を実行させるための命令を送信する。例えば、制御部210は、プロセッサ200.3に、処理C,Dを実行させる命令を送信する。 In the process execution control process, the control unit 210 transmits a command for executing each process to the processor selected to execute each of the processes A, B, C, and D. For example, the control unit 210 transmits a command for executing the processes C and D to the processor 200.3.
 これにより、プロセッサ200.1は、処理Aとしての可変長復号処理を実行する。また、命令を受信したプロセッサ200.2は、処理Bとしての逆量子化処理を実行する。また、命令を受信したプロセッサ200.3は、処理Cとしての逆DCT処理と、処理Dとしての音声復号処理を実行する。すなわち、制御部210は、各処理(例えば、処理A,B,C,D)を実行させるために選択したプロセッサに、対応する処理を実行させる。 Thereby, the processor 200.1 executes the variable length decoding process as the process A. In addition, the processor 200.2 that has received the instruction executes an inverse quantization process as the process B. In addition, the processor 200.3 that has received the instruction executes an inverse DCT process as the process C and a speech decoding process as the process D. That is, the control unit 210 causes a processor selected to execute each process (for example, processes A, B, C, and D) to execute a corresponding process.
 すなわち、処理実行制御処理では、処理実行制御部(制御部210)が、第1処理を実行させるために選択したプロセッサに第1処理を実行させ、第2処理を実行させるために選択したプロセッサに第2処理を実行させる。つまり、処理実行制御部(制御部210)は、取得されたパラメータに基づいて、K個の処理のいずれかの処理である第1処理を、N個のプロセッサのいずれかに少なくとも実行させる。 That is, in the process execution control process, the process execution control unit (control unit 210) causes the processor selected to execute the first process to execute the first process and causes the processor selected to execute the second process to The second process is executed. That is, the process execution control unit (control unit 210) causes at least one of the N processors to execute the first process, which is one of the K processes, based on the acquired parameter.
 なお、制御部210は、前述したように、各処理を実行させるプロセッサを選択する場合、各プロセッサの使用率がほぼ同等になるようにする。 Note that, as described above, when the processor that executes each process is selected, the control unit 210 makes the usage rate of each processor almost equal.
 プロセッサ200.1は、受信した映像データに対して実行した処理(処理A)により得られたデータおよび音声データを、プロセッサ200.2へ送信する。プロセッサ200.2は、実行した処理により得られたデータおよび音声データを、プロセッサ200.3へ送信する。プロセッサ200.3は、実行した処理により得られた復号済みの音声データ(以下、復号済音声データという)および復号済みの映像データ(以下、復号済映像データという)を、外部へ出力する。 The processor 200.1 transmits the data and audio data obtained by the processing (processing A) performed on the received video data to the processor 200.2. The processor 200.2 transmits data and audio data obtained by the executed processing to the processor 200.3. The processor 200.3 outputs decoded audio data (hereinafter referred to as decoded audio data) and decoded video data (hereinafter referred to as decoded video data) obtained by the executed processing to the outside.
 また、制御部210は、デブロッキングフィルタ必要情報が、デブロッキングフィルタ処理が必要であることを示す場合、一例として、処理Eを実行させるプロセッサとして、プロセッサ200.3を選択する。この場合、制御部210は、一例として、処理A,Bを実行させるプロセッサとして、プロセッサ200.1を選択する。また、この場合、制御部210は、一例として、処理C,Dを実行させるプロセッサとして、プロセッサ200.2を選択する。そして、制御部210は、処理A,B,C,Dの各々を実行させるために選択したプロセッサに、各処理を実行させるための命令を送信する。 Further, when the deblocking filter necessary information indicates that the deblocking filter process is necessary, the control unit 210 selects the processor 200.3 as a processor that executes the process E as an example. In this case, as an example, the control unit 210 selects the processor 200.1 as the processor that executes the processes A and B. In this case, as an example, the control unit 210 selects the processor 200.2 as a processor that executes the processes C and D. Then, the control unit 210 transmits a command for executing each process to the processor selected to execute each of the processes A, B, C, and D.
 なお、命令を受信した各プロセッサにおける処理は、デブロッキングフィルタ必要情報が、デブロッキングフィルタ処理が必要でないことを示す場合に説明した処理と同様なので詳細な説明は繰り返さない。 Note that the processing in each processor that has received the command is the same as the processing described when the deblocking filter necessary information indicates that the deblocking filter processing is not necessary, and therefore detailed description will not be repeated.
 以上の処理により、符号化されたデータであるAVデータが、復号される。すなわち、AVデータが再生される。 The AV data that is the encoded data is decoded by the above processing. That is, AV data is reproduced.
 なお、処理実行制御処理の他の例として、制御部210が、プロセッサの選択に利用するパラメータは、パラメータ情報が示すフレームサイズ、フレームレート、ビットレート、コーデック種別および演算処理能力値のいずれかであってもよい。 As another example of the process execution control process, the parameter used by the control unit 210 to select a processor is one of the frame size, the frame rate, the bit rate, the codec type, and the arithmetic processing capability value indicated by the parameter information. There may be.
 なお、プロセッサの選択に利用するパラメータが上記複数のパラメータのいずれであっても、制御部210は、各処理を実行させるプロセッサを選択する場合、各プロセッサの使用率がほぼ同等になるようにする。 Regardless of the parameters used for selecting a processor, the control unit 210 makes the usage rate of each processor substantially equal when selecting a processor to execute each process. .
 以上説明したように、本実施の形態では、AVデータの再生において、プロセッサの選択に利用されるパラメータが、所定の処理(例えば、デブロッキングフィルタ処理)が必要であるか否かを示す。 As described above, in the present embodiment, in the reproduction of AV data, a parameter used for selecting a processor indicates whether or not a predetermined process (for example, deblocking filter process) is necessary.
 この場合、処理実行制御部(制御部210)は、所定の処理(例えば、デブロッキングフィルタ処理)が不要である場合、所定の処理が実行可能なプロセッサに、所定の処理の実行に必要な演算量以下の演算量が必要な処理を実行させる。すなわち、処理実行制御部(制御部210)は、AVデータのパラメータが所定の処理が実行される必要がないことを示す場合、所定のプロセッサに、再生処理に含まれるK個の処理のうち所定の処理の実行に必要な演算量以下の演算量が必要な処理を実行させる。 In this case, when the predetermined process (for example, deblocking filter process) is unnecessary, the process execution control unit (control unit 210) performs a calculation necessary for executing the predetermined process on a processor capable of executing the predetermined process. A process that requires a calculation amount equal to or less than the amount is executed. That is, when the AV data parameter indicates that the predetermined process does not need to be executed, the process execution control unit (control unit 210) sends a predetermined processor to the predetermined process among the K processes included in the reproduction process. The processing that requires a calculation amount equal to or less than the calculation amount necessary for executing this process is executed.
 これにより、所定の処理が不要である場合、所定の処理が実行可能なプロセッサに他の処理を実行させることができ、当該プロセッサの使用率が極端に小さくなることを防止することができる。すなわち、複数のプロセッサを利用してAVデータを再生する場合において、プロセッサを有効に活用することができる。 Thus, when the predetermined process is unnecessary, the processor capable of executing the predetermined process can execute another process, and the usage rate of the processor can be prevented from becoming extremely small. That is, when reproducing AV data using a plurality of processors, the processors can be used effectively.
 したがって、複数のプロセッサ全体の処理を向上させることができ、AVデータ再生回路1000の単位時間当たりの処理量を向上させることができる。すなわち、AVデータ再生回路1000の性能を向上させることができる。 Therefore, it is possible to improve the processing of the plurality of processors as a whole, and to improve the processing amount per unit time of the AV data reproducing circuit 1000. That is, the performance of the AV data reproduction circuit 1000 can be improved.
 また、本実施の形態では、AVデータの再生において、制御部210は、各処理を実行させるプロセッサを選択する場合、各プロセッサの使用率がほぼ同等になるようにする。これにより、プロセッサの使用率が極端に小さくなることを防止することができる。 Further, in this embodiment, when reproducing AV data, when the control unit 210 selects a processor to execute each process, the usage rate of each processor is made substantially equal. Thereby, it is possible to prevent the usage rate of the processor from becoming extremely small.
 したがって、複数のプロセッサ全体の処理を向上させることができ、AVデータ再生回路1000の単位時間当たりの処理量を向上させることができる。すなわち、AVデータ再生回路1000の性能を向上させることができる。 Therefore, it is possible to improve the processing of the plurality of processors as a whole, and to improve the processing amount per unit time of the AV data reproducing circuit 1000. That is, the performance of the AV data reproduction circuit 1000 can be improved.
 なお、本実施の形態では、各プロセッサに処理を実行させる制御部210は、プロセッサに含まれるとしたが、本発明はこれに限定されず、制御部210は、プロセッサの外部に設けられてもよい。 In this embodiment, the control unit 210 that causes each processor to execute processing is included in the processor. However, the present invention is not limited to this, and the control unit 210 may be provided outside the processor. Good.
 また、分離部110、取得部120およびパラメータ記憶部130は、プロセッサの外部に設けられるとしたが、分離部110、取得部120およびパラメータ記憶部130パラメータ記憶部130の一部または全ては、プロセッサ(例えば、プロセッサ200.1)内に設けられてもよい。 In addition, although the separation unit 110, the acquisition unit 120, and the parameter storage unit 130 are provided outside the processor, the separation unit 110, the acquisition unit 120, and the parameter storage unit 130 are partly or entirely included in the processor. (For example, the processor 200.1) may be provided.
 なお、処理実行制御処理において、プロセッサの選択に利用するパラメータは、前述したものに限定されない。例えば、音声データに含まれる情報(例えば、再生時間)、映像データに含まれる情報(例えば、再生時間)等であってもよい。 In the process execution control process, parameters used for selecting a processor are not limited to those described above. For example, it may be information (eg, playback time) included in audio data, information (eg, playback time) included in video data, and the like.
 また、本実施の形態では、AVデータに含まれるパラメータ情報が示すパラメータに基づいて、各プロセッサに実行させる処理を切替えていたが、本発明はこれに限定されることはない。各プロセッサに実行させる処理を切替える情報は、例えば、AVデータの多重化に関連する情報や、外部から与えられた情報であってもよい。 In the present embodiment, the processing to be executed by each processor is switched based on the parameter indicated by the parameter information included in the AV data. However, the present invention is not limited to this. The information for switching the processing to be executed by each processor may be, for example, information related to multiplexing of AV data or information given from the outside.
 なお、本実施の形態では、再生処理に含まれる処理(処理A,B,C,D,E)の数が5個である場合の処理について説明したが、本発明はこれに限定されることはない。再生処理に含まれる処理の数は、4個以下または6個以上であってもよい。 In the present embodiment, the processing when the number of processing (processing A, B, C, D, E) included in the playback processing is five has been described, but the present invention is limited to this. There is no. The number of processes included in the reproduction process may be 4 or less or 6 or more.
 なお、本実施の形態では、AVデータを再生する場合において、3個のプロセッサを使用した処理を説明したが、本発明はこれに限定されることはない。AVデータを再生する場合において、2個以下または4個以上のプロセッサを使用してもよい。 In the present embodiment, the processing using three processors has been described when reproducing AV data. However, the present invention is not limited to this. When reproducing AV data, two or less or four or more processors may be used.
 <第2の実施の形態>
 図3は、第2の実施の形態におけるAVデータ再生回路1000Aの構成を示す図である。AVデータ再生回路1000Aは、LSI(Large Scale Integration)等の集積回路である。
<Second Embodiment>
FIG. 3 is a diagram showing the configuration of the AV data reproducing circuit 1000A in the second embodiment. The AV data reproduction circuit 1000A is an integrated circuit such as an LSI (Large Scale Integration).
 図3を参照して、AVデータ再生回路1000Aは、図1のAVデータ再生回路1000と比較して、制御部210をさらに備える点と、制御部210に各処理に対応するプログラムモジュールが割り当てられていない点と、プロセッサ200.1,200.2,200.3の代わりにプロセッサ200.1A,200.2Aを備える点とが異なる。それ以外の構成は、AVデータ再生回路1000と同様な構成なので詳細な説明は繰り返さない。 Referring to FIG. 3, AV data reproduction circuit 1000A is further provided with a control unit 210 as compared with AV data reproduction circuit 1000 in FIG. 1, and a program module corresponding to each process is assigned to control unit 210. The difference is that the processor 200.1A, 200.2A is provided instead of the processor 200.1, 200.2, 200.3. Since the other configuration is the same as that of the AV data reproducing circuit 1000, detailed description will not be repeated.
 分離部110は、AVデータを分離することにより得られた音声データおよび映像データを、制御部210へ送信する。 The separation unit 110 transmits audio data and video data obtained by separating the AV data to the control unit 210.
 制御部210は、受信した音声データを、後述する処理により、プロセッサ200.1A,200.2Aのいずれかへ送信する。また、制御部210は、受信した映像データを、プロセッサ200.2Aへ送信する。 The control unit 210 transmits the received audio data to one of the processors 200.1A and 200.2A by a process described later. Further, the control unit 210 transmits the received video data to the processor 200.2A.
 プロセッサ200.1A,200.2Aは、AVデータを再生するための再生処理Aを行う。再生処理Aは、音声再生処理と、映像再生処理とを含む。音声再生処理は、符号化された音声データを復号するための処理である。映像再生処理は、符号化された映像データを復号するための処理である。 The processors 200.1A and 200.2A perform a reproduction process A for reproducing AV data. The reproduction process A includes an audio reproduction process and a video reproduction process. The audio reproduction process is a process for decoding the encoded audio data. The video reproduction process is a process for decoding the encoded video data.
 以下においては、音声再生処理を、第1処理ともいう。また、以下においては映像再生処理を、第2処理ともいう。すなわち、第1処理(音声再生処理)は、音声データを再生するための処理である。また、第2処理(映像再生処理)は、映像データを再生するための映像再生処理である。 Hereinafter, the sound reproduction process is also referred to as a first process. Hereinafter, the video reproduction process is also referred to as a second process. That is, the first process (audio reproduction process) is a process for reproducing audio data. The second process (video playback process) is a video playback process for playing back video data.
 また、以下においては、プロセッサ200.2Aを、第1プロセッサともいう。 In the following, the processor 200.2A is also referred to as a first processor.
 プロセッサ200.1Aには、予め、音声再生処理を実行するためのプログラムモジュールが割り当てられている。これにより、プロセッサ200.1Aは、音声再生処理を実行可能である。プロセッサ200.2Aには、予め、音声再生処理および映像再生処理の各々を実行するためのプログラムモジュールが割り当てられている。これにより、プロセッサ200.2Aは、音声再生処理および映像再生処理を実行可能である。 A program module for executing a sound reproduction process is assigned to the processor 200.1A in advance. As a result, the processor 200.1A can execute the audio reproduction process. A program module for executing each of the audio reproduction process and the video reproduction process is allocated in advance to the processor 200.2A. Thereby, the processor 200.2A can execute the audio reproduction process and the video reproduction process.
 なお、プロセッサ200.1A,200.2Aの各々における、プログラムモジュールの割り当ては、上記に限定されない。 Note that the assignment of program modules in each of the processors 200.1A and 200.2A is not limited to the above.
 次に、AVデータ再生回路1000Aが行うAVデータを再生するための処理(再生実行処理)について説明する。なお、映像再生処理は、プロセッサ200.2Aが実行するように予め設定されている。すなわち、N個のプロセッサのいずれかのプロセッサである第1プロセッサ(プロセッサ200.2A)は、映像再生処理を実行している。 Next, a process (playback execution process) for playing back AV data performed by the AV data playback circuit 1000A will be described. Note that the video reproduction process is preset so that the processor 200.2A executes. That is, the first processor (processor 200.2A), which is one of the N processors, is executing the video reproduction process.
 また、制御部210は、再生実行処理とは独立した処理により、分離部110から受信する映像データをプロセッサ200.2Aへ送信する。また、制御部210は、映像再生処理を実行させるための命令を、プロセッサ200.2Aへ送信したとする。命令を受信したプロセッサ200.2Aは、他の処理とは独立して、映像再生処理を実行する。 Further, the control unit 210 transmits the video data received from the separation unit 110 to the processor 200.2A by a process independent of the reproduction execution process. Further, it is assumed that control unit 210 transmits a command for executing video reproduction processing to processor 200.2A. Receiving the command, the processor 200.2A executes video reproduction processing independently of other processing.
 再び、図2を参照して、ステップS111では、第1の実施の形態と同様な処理が行なわれるので詳細な説明は繰り返さない。この処理により、取得部120が、AVデータに含まれるパラメータ情報を取得し、当該AVデータに含まれるパラメータ情報を、パラメータ記憶部130に記憶させる。すなわち、取得部120は、AVデータに含まれる音声データおよび映像データのパラメータを取得する。 Referring to FIG. 2 again, in step S111, the same processing as in the first embodiment is performed, and thus detailed description will not be repeated. Through this process, the acquisition unit 120 acquires parameter information included in the AV data, and causes the parameter storage unit 130 to store the parameter information included in the AV data. That is, the acquisition unit 120 acquires audio data and video data parameters included in the AV data.
 ステップS112では、第1の実施の形態と同様に処理実行制御処理が行われるので詳細な説明は繰り返さない。 In step S112, the process execution control process is performed in the same manner as in the first embodiment, and thus detailed description will not be repeated.
 この処理により、制御部210は、パラメータ記憶部130に記憶されたパラメータ情報を読み出す。ここで、パラメータ情報は、パラメータとして、前述したフレームサイズ、フレームレート、ビットレート、チャネル数、コーデック種別、演算処理能力値およびデブロッキングフィルタ必要情報等を示すとする。 By this process, the control unit 210 reads the parameter information stored in the parameter storage unit 130. Here, it is assumed that the parameter information indicates the above-described frame size, frame rate, bit rate, number of channels, codec type, arithmetic processing capability value, deblocking filter necessary information, and the like as parameters.
 また、処理実行制御処理では、制御部210は、パラメータ情報が示す、対応するAVデータの複数のパラメータの少なくとも1つに基づいて、再生処理Aに含まれる音声再生処理を実行させるプロセッサを選択する。 In the process execution control process, the control unit 210 selects a processor for executing the audio reproduction process included in the reproduction process A based on at least one of the plurality of parameters of the corresponding AV data indicated by the parameter information. .
 次に、第2の実施の形態における処理実行制御処理について、一例を挙げて詳細に説明する。 Next, the process execution control process in the second embodiment will be described in detail with an example.
 ここで、一例として、AVデータの映像データが、H.264/AVC規格に従った符号化方式により符号化されたデータであるとする。この場合、AVデータ再生回路1000Aにおいて映像データを再生する映像再生処理は、H.264/AVC規格に従った再生処理である。 Here, as an example, video data of AV data is H.264. It is assumed that the data is encoded by an encoding method according to the H.264 / AVC standard. In this case, the video reproduction processing for reproducing video data in the AV data reproduction circuit 1000A is H.264. H.264 / AVC standard reproduction processing.
 また、一例として、映像再生処理は、ループ内フィルタとしてのデブロッキングフィルタ処理を含むとする。以下においては、デブロッキングフィルタ処理を、第3処理ともいう。すなわち、映像再生処理は、第3処理を含む。 Further, as an example, it is assumed that the video reproduction process includes a deblocking filter process as an in-loop filter. Hereinafter, the deblocking filter process is also referred to as a third process. That is, the video reproduction process includes a third process.
 なお、映像再生処理は、デブロッキングフィルタ処理以外に、可変長復号処理、逆量子化処理、逆DCT処理等を含むとする。 Note that the video reproduction processing includes variable length decoding processing, inverse quantization processing, inverse DCT processing, and the like in addition to the deblocking filter processing.
 また、制御部210が、プロセッサの選択に利用するパラメータは、一例として、パラメータ情報が示すデブロッキングフィルタ必要情報であるとする。また、音声再生処理の実行に必要な演算処理量は、デブロッキングフィルタ処理の実行に必要な演算処理量以下であるとする。 In addition, the parameter used by the control unit 210 for selecting a processor is, for example, deblocking filter necessary information indicated by the parameter information. Further, it is assumed that the calculation processing amount necessary for executing the audio reproduction processing is equal to or less than the calculation processing amount required for executing the deblocking filter processing.
 すなわち、第1処理としての音声再生処理の実行に必要な演算量は、第3処理(デブロッキングフィルタ処理)の実行に必要な演算量以下である。また、映像データのパラメータ(デブロッキングフィルタ必要情報)は、映像データに対して第3処理が実行される必要があるか否かを示す。 That is, the amount of calculation necessary for executing the audio reproduction process as the first process is less than the amount of calculation required for executing the third process (deblocking filter process). The video data parameter (deblocking filter necessary information) indicates whether or not the third process needs to be executed on the video data.
 この場合、処理実行制御処理では、制御部210が、デブロッキングフィルタ必要情報が、デブロッキングフィルタ処理が必要でないこと、すなわち、デブロッキングフィルタ処理が不要であることを示す場合、音声再生処理を実行させるプロセッサとして、プロセッサ200.2Aを選択する。 In this case, in the process execution control process, when the deblocking filter necessity information indicates that the deblocking filter process is not necessary, that is, the deblocking filter process is not necessary, the control unit 210 executes the sound reproduction process. The processor 200.2A is selected as the processor to be executed.
 そして、制御部210は、音声再生処理を実行させるために選択したプロセッサ200.2Aへ、音声再生処理を実行させるための命令と、デブロッキングフィルタ処理を実行させないための命令と、分離部110から受信した音声データとを送信する。 Then, the control unit 210 instructs the processor 200.2A selected to execute the audio reproduction process to execute the audio reproduction process, an instruction not to execute the deblocking filter process, and the separation unit 110 The received audio data is transmitted.
 これにより、命令を受信したプロセッサ200.2Aは、受信した音声データを復号するための音声再生処理を実行する。プロセッサ200.2Aは、実行した音声再生処理により得られた復号済みの音声データ(以下、復号済音声データという)を、外部へ出力する。 Thereby, the processor 200.2A that has received the command executes a sound reproduction process for decoding the received sound data. The processor 200.2A outputs decoded audio data (hereinafter referred to as decoded audio data) obtained by the executed audio reproduction process to the outside.
 すなわち、処理実行制御部(制御部210)は、映像データのパラメータが第3処理が実行される必要がないことを示す場合、第1プロセッサ(プロセッサ200.2A)に音声再生処理を実行させるとともに第1プロセッサに第3処理を実行させない。つまり、第2の実施の形態における処理実行制御処理では、処理実行制御部(制御部210)が、映像データのパラメータに基づいて、N(2以上の整数)個のプロセッサのいずれかのプロセッサに音声再生処理を実行させる。 That is, the process execution control unit (control unit 210) causes the first processor (processor 200.2A) to execute the audio reproduction process when the parameter of the video data indicates that the third process need not be executed. The first processor is not allowed to execute the third process. In other words, in the process execution control process according to the second embodiment, the process execution control unit (control unit 210) assigns one of N (an integer greater than or equal to 2) processors to the processor based on the video data parameters. Perform audio playback processing.
 なお、前述したように、プロセッサ200.2Aは、他の処理とは独立して、映像再生処理を実行している。そのため、プロセッサ200.2Aは、デブロッキングフィルタ処理を実行させないための命令を受信すると、映像再生処理に含まれる複数の処理のうち、デブロッキングフィルタ処理以外の処理を実行する。そして、プロセッサ200.2Aは、実行した映像再生処理に含まれる各処理により得られた復号済みの映像データ(以下、復号済映像データという)を、外部へ出力する。 As described above, the processor 200.2A executes the video reproduction process independently of the other processes. Therefore, when receiving an instruction not to execute the deblocking filter process, the processor 200.2A executes processes other than the deblocking filter process among a plurality of processes included in the video reproduction process. Then, the processor 200.2A outputs decoded video data (hereinafter referred to as decoded video data) obtained by each process included in the executed video reproduction process to the outside.
 プロセッサ200.2Aは、映像再生処理に含まれるデブロッキングフィルタ処理を実行する必要がないため、デブロッキングフィルタ処理の実行に必要な演算量が削減される。そのため、プロセッサ200.2Aは、デブロッキングフィルタ処理の実行に必要な演算量以下の演算量が必要な音声再生処理を実行することができる。すなわち、プロセッサ200.2Aを有効に活用することができる。 Since the processor 200.2A does not need to execute the deblocking filter process included in the video reproduction process, the amount of calculation required to execute the deblocking filter process is reduced. Therefore, the processor 200.2A can execute an audio reproduction process that requires a calculation amount equal to or less than the calculation amount necessary for executing the deblocking filter process. That is, the processor 200.2A can be effectively used.
 また、処理実行制御処理では、制御部210は、デブロッキングフィルタ必要情報が、デブロッキングフィルタ処理が必要であることを示す場合、音声再生処理を実行させるプロセッサとして、プロセッサ200.1Aを選択する。 In the process execution control process, when the deblocking filter necessary information indicates that the deblocking filter process is necessary, the control unit 210 selects the processor 200.1A as the processor for executing the audio reproduction process.
 そして、制御部210は、音声再生処理を実行させるために選択したプロセッサ200.1Aへ、音声再生処理を実行させるための命令と、分離部110から受信した音声データとを送信する。 Then, the control unit 210 transmits a command for executing the audio reproduction process and the audio data received from the separation unit 110 to the processor 200.1A selected to execute the audio reproduction process.
 これにより、命令を受信したプロセッサ200.1Aは、音声データを復号するための音声再生処理を実行する。プロセッサ200.1Aは、実行した音声再生処理により得られた復号済音声データを、外部へ出力する。 Thereby, the processor 200.1A that has received the command executes a sound reproduction process for decoding the sound data. The processor 200.1A outputs the decoded audio data obtained by the executed audio reproduction process to the outside.
 以上の処理により、符号化されたデータであるAVデータが、復号される。すなわち、AVデータが再生される。 The AV data that is the encoded data is decoded by the above processing. That is, AV data is reproduced.
 なお、処理実行制御処理の他の例として、制御部210が、プロセッサの選択に利用するパラメータは、フレームサイズ、フレームレート、ビットレート、コーデック種別および演算処理能力値のいずれかであってもよい。 As another example of the process execution control process, the parameter used by the control unit 210 to select a processor may be any of a frame size, a frame rate, a bit rate, a codec type, and an arithmetic processing capability value. .
 この場合、プロセッサ200.2Aが映像再生処理および音声再生処理の両方を実行した場合におけるプロセッサ200.2Aの使用率が所定値(例えば、80%)より大きくなる場合、制御部210は、音声再生処理を実行させるプロセッサとして、プロセッサ200.1Aを選択する。 In this case, when the usage rate of the processor 200.2A becomes larger than a predetermined value (for example, 80%) when the processor 200.2A executes both the video reproduction process and the audio reproduction process, the control unit 210 performs the audio reproduction. The processor 200.1A is selected as a processor for executing processing.
 例えば、制御部210が、プロセッサの選択に利用するパラメータは、フレームサイズであるとする。この場合、制御部210は、フレームサイズが、所定サイズ(例えば、横640画素、縦480画素のサイズ)より大きい場合、音声再生処理を実行させるプロセッサとして、プロセッサ200.1Aを選択する。 For example, it is assumed that the parameter used by the control unit 210 to select a processor is a frame size. In this case, when the frame size is larger than a predetermined size (for example, a size of 640 pixels in the horizontal direction and 480 pixels in the vertical direction), the control unit 210 selects the processor 200.1A as a processor for executing the audio reproduction process.
 また、制御部210は、フレームサイズが、所定サイズ(例えば、横640画素、縦480画素のサイズ)以下の場合、音声再生処理を実行させるプロセッサとして、プロセッサ200.2Aを選択する。なお、プロセッサを選択した後の処理は、プロセッサの選択に利用するパラメータがデブロッキングフィルタ必要情報である場合における前述した処理と同様なので詳細な説明は繰り返さない。 Further, when the frame size is equal to or smaller than a predetermined size (for example, a size of 640 pixels in the horizontal direction and 480 pixels in the vertical direction), the control unit 210 selects the processor 200.2A as a processor for executing the audio reproduction process. Note that the processing after selecting a processor is the same as the processing described above in the case where the parameter used for selecting the processor is deblocking filter necessary information, so detailed description will not be repeated.
 また、例えば、制御部210が、プロセッサの選択に利用するパラメータは、ビットレートであるとする。この場合、制御部210は、映像データのビットレートが、所定値(例えば、10Mbps)より大きい場合、音声再生処理を実行させるプロセッサとして、プロセッサ200.1Aを選択する。 Also, for example, it is assumed that the parameter used by the control unit 210 to select a processor is a bit rate. In this case, when the bit rate of the video data is greater than a predetermined value (for example, 10 Mbps), the control unit 210 selects the processor 200.1A as a processor for executing the audio reproduction process.
 また、制御部210は、映像データのビットレートが、所定値(例えば、10Mbps)以下の場合、音声再生処理を実行させるプロセッサとして、プロセッサ200.2Aを選択する。なお、プロセッサを選択した後の処理は、プロセッサの選択に利用するパラメータがデブロッキングフィルタ必要情報である場合における前述した処理と同様なので詳細な説明は繰り返さない。 Further, when the bit rate of the video data is equal to or less than a predetermined value (for example, 10 Mbps), the control unit 210 selects the processor 200.2A as a processor for executing the audio reproduction process. Note that the processing after selecting a processor is the same as the processing described above in the case where the parameter used for selecting the processor is deblocking filter necessary information, so detailed description will not be repeated.
 以上説明したように、本実施の形態では、AVデータの再生において、プロセッサの選択に利用するパラメータが、所定の処理(例えば、デブロッキングフィルタ処理)が必要であるか否かを示すパラメータとする。また、所定の処理(例えば、デブロッキングフィルタ処理)が不要である場合、所定の処理が実行可能なプロセッサに、所定の処理の実行に必要な演算量以下の演算量が必要な処理を実行させる。 As described above, in the present embodiment, in the reproduction of AV data, a parameter used for selecting a processor is a parameter indicating whether or not a predetermined process (for example, deblocking filter process) is necessary. . In addition, when a predetermined process (for example, deblocking filter process) is unnecessary, a processor capable of executing the predetermined process is caused to execute a process that requires a calculation amount equal to or less than the calculation amount necessary for executing the predetermined process. .
 これにより、所定の処理が不要である場合、所定の処理が実行可能なプロセッサに他の処理を実行させることができる。すなわち、複数のプロセッサを利用してAVデータを再生する場合において、プロセッサを有効に活用することができる。 Thereby, when the predetermined process is unnecessary, the processor capable of executing the predetermined process can execute another process. That is, when reproducing AV data using a plurality of processors, the processors can be used effectively.
 したがって、複数のプロセッサ全体の処理を向上させることができ、AVデータ再生回路1000Aの単位時間当たりの処理量を向上させることができる。すなわち、AVデータ再生回路1000Aの性能を向上させることができる。 Therefore, it is possible to improve the processing of the plurality of processors as a whole, and to improve the processing amount per unit time of the AV data reproduction circuit 1000A. That is, the performance of the AV data reproduction circuit 1000A can be improved.
 また、制御部210は、プロセッサ200.2Aが映像再生処理および音声再生処理の両方を実行した場合におけるプロセッサ200.2Aの使用率が所定値より大きくなる場合、音声再生処理を実行させるプロセッサとして、プロセッサ200.1Aを選択する。 In addition, when the usage rate of the processor 200.2A becomes larger than a predetermined value when the processor 200.2A executes both the video reproduction process and the audio reproduction process, the control unit 210 performs the audio reproduction process as a processor. The processor 200.1A is selected.
 これにより、プロセッサ200.2Aの使用率が所定値より大きくなることを防ぐことができ、音声再生処理および映像再生処理を、それぞれ、異なる2つのプロセッサで、並列して実行することが可能になる。したがって、プロセッサ200.2Aの演算処理能力が低い場合であっても、音声再生処理および映像再生処理を、それぞれ、異なる2つのプロセッサで、並列して実行することが可能になる。すなわち、音声再生処理と、映像再生処理との輻輳が可能になる。 As a result, the usage rate of the processor 200.2A can be prevented from exceeding a predetermined value, and the audio reproduction process and the video reproduction process can be executed in parallel by two different processors. . Therefore, even when the arithmetic processing capability of the processor 200.2A is low, the audio reproduction process and the video reproduction process can be executed in parallel by two different processors. That is, the audio reproduction process and the video reproduction process can be congested.
 なお、本実施の形態では、各プロセッサに処理を実行させる制御部210は、プロセッサの外部に設けられるようにしたが、本発明はこれに限定されず、制御部210は、プロセッサの内部に設けられてもよい。 In the present embodiment, the control unit 210 that causes each processor to execute processing is provided outside the processor. However, the present invention is not limited to this, and the control unit 210 is provided inside the processor. May be.
 また、分離部110、取得部120およびパラメータ記憶部130は、プロセッサの外部に設けられるとしたが、分離部110、取得部120およびパラメータ記憶部130パラメータ記憶部130の一部または全ては、プロセッサ(例えば、プロセッサ200.1A)内に設けられてもよい。 In addition, although the separation unit 110, the acquisition unit 120, and the parameter storage unit 130 are provided outside the processor, the separation unit 110, the acquisition unit 120, and the parameter storage unit 130 are partly or entirely included in the processor. (For example, the processor 200.1A) may be provided.
 なお、処理実行制御処理において、プロセッサの選択に利用するパラメータは、前述したように、映像データに関するものに限定されない。プロセッサの選択に利用するパラメータは、例えば、音声データにおける、ビットレート、チャネル数、コーデック種別、演算処理能力値等であってもよい。また、プロセッサの選択に利用するパラメータは、例えば、音声データに含まれる情報(例えば、再生時間)等であってもよい。 In the process execution control process, parameters used for selecting a processor are not limited to those related to video data as described above. The parameter used for selecting the processor may be, for example, a bit rate, the number of channels, a codec type, an arithmetic processing capability value, etc. in audio data. Further, the parameter used for selection by the processor may be, for example, information (for example, reproduction time) included in the audio data.
 なお、本実施の形態では、AVデータに含まれる映像データのパラメータに基づいて、音声再生処理を実行するプロセッサを切り替える例を説明したが、本発明はこれに限定されない。例えば、本発明は、映像再生処理を実行するプロセッサを切り替えてもよい。 In this embodiment, the example in which the processor for executing the audio reproduction process is switched based on the parameter of the video data included in the AV data has been described, but the present invention is not limited to this. For example, the present invention may switch the processor that executes the video reproduction process.
 なお、本実施の形態では、音声再生処理を実行するプロセッサを選択する対象となるプロセッサの数は2個としたが、本発明はこれに限定されない。音声再生処理を実行するプロセッサを選択する対象となるプロセッサの数は3個以上であってもよい。 In the present embodiment, the number of processors to be selected as a processor for executing the audio reproduction processing is two, but the present invention is not limited to this. Three or more processors may be selected as a target for selecting a processor that executes the audio reproduction process.
 <第3の実施の形態>
 図4は、第3の実施の形態におけるAVデータ再生回路1000Bの構成を示す図である。AVデータ再生回路1000Bは、LSI(Large Scale Integration)等の集積回路である。
<Third Embodiment>
FIG. 4 is a diagram showing a configuration of the AV data reproducing circuit 1000B according to the third embodiment. The AV data reproduction circuit 1000B is an integrated circuit such as an LSI (Large Scale Integration).
 図4を参照して、AVデータ再生回路1000Bは、図3のAVデータ再生回路1000Aと比較して、プロセッサ200.1A,200.2Aの代わりにプロセッサ200.1B,200.2B,200.3Bを備える点が異なる。それ以外の構成は、AVデータ再生回路1000Aと同様な構成なので詳細な説明は繰り返さない。 Referring to FIG. 4, AV data reproduction circuit 1000B is different from AV data reproduction circuit 1000A in FIG. 3 in that processors 200.1B, 200.2B, 200.3B are used instead of processors 200.1A, 200.2A. Is different. Since the other configuration is the same as that of AV data reproducing circuit 1000A, detailed description will not be repeated.
 分離部110は、AVデータを分離することにより得られた音声データを、プロセッサ200.1Bへ送信する。また、分離部110は、AVデータを分離することにより得られた映像データを、プロセッサ200.2Bへ送信する。 The separation unit 110 transmits the audio data obtained by separating the AV data to the processor 200.1B. Further, the separation unit 110 transmits the video data obtained by separating the AV data to the processor 200.2B.
 プロセッサ200.1B,200.2B,200.3Bは、AVデータを再生するための再生処理Bを行う。再生処理Bは、音声再生処理と、映像再生処理とを含む。本実施の形態における音声再生処理は、第2の実施の形態で説明した処理と同様な処理である。本実施の形態における映像再生処理は、符号化された映像データを復号するための処理である。 The processors 200.1B, 200.2B and 200.3B perform a reproduction process B for reproducing AV data. The reproduction process B includes an audio reproduction process and a video reproduction process. The audio reproduction process in the present embodiment is the same process as the process described in the second embodiment. The video reproduction process in the present embodiment is a process for decoding the encoded video data.
 以下においては、プロセッサ200.3Bおよびプロセッサ200.2Bを、それぞれ、第1プロセッサおよび第2プロセッサともいう。 Hereinafter, the processor 200.3B and the processor 200.2B are also referred to as a first processor and a second processor, respectively.
 プロセッサ200.1Bには、予め、音声再生処理を実行するためのプログラムモジュールが割り当てられている。これにより、プロセッサ200.1Bは、音声再生処理を実行可能である。 A program module for executing a sound reproduction process is allocated to the processor 200.1B in advance. As a result, the processor 200.1B can execute the audio reproduction process.
 本実施の形態における映像再生処理は、H.246/AVC規格に従った映像データの再生処理であるとする。すなわち、映像再生処理は、フレーム間の相関関係を利用した再生処理である。なお、映像再生処理は、H.246/AVC規格に限定されず、例えば、MPEG2規格に従った映像データの再生処理であってもよい。 The video playback processing in this embodiment is H.264. Assume that the video data reproduction processing conforms to the H.246 / AVC standard. That is, the video playback process is a playback process that uses the correlation between frames. Note that the video reproduction process is H.264. It is not limited to the H.246 / AVC standard, but may be a video data reproduction process according to the MPEG2 standard, for example.
 本実施の形態における映像再生処理は、ヘッダ解析処理、可変長復号処理、動きベクトル演算処理、輝度動き補償処理、色差動き補償処理、逆量子化処理、逆DCT処理、イントラ予測処理、画像再構成処理およびデブロッキングフィルタ処理を含む。 The video playback processing in this embodiment includes header analysis processing, variable length decoding processing, motion vector calculation processing, luminance motion compensation processing, color difference motion compensation processing, inverse quantization processing, inverse DCT processing, intra prediction processing, and image reconstruction. Processing and deblocking filtering.
 可変長復号処理、逆量子化処理、逆DCT処理、イントラ予測処理およびデブロッキングフィルタ処理については、周知な処理であるので詳細な説明は行わない。 The variable-length decoding process, the inverse quantization process, the inverse DCT process, the intra prediction process, and the deblocking filter process are well-known processes and will not be described in detail.
 ヘッダ解析処理は、映像データのヘッダ情報を解析する処理である。 The header analysis process is a process for analyzing header information of video data.
 本実施の形態における動きベクトル演算処理は、フレーム間における動きベクトルを計算する処理である。輝度動き補償処理は、動きベクトル演算処理により計算された動きベクトルに基づいて、輝度の動き補償を行う処理である。色差動き補償処理は、動きベクトル演算処理により計算された動きベクトルに基づいて、色差の動き補償を行う処理である。なお、動き補償は、周知な技術であるので詳細な説明は行わない。 The motion vector calculation process in the present embodiment is a process for calculating a motion vector between frames. The luminance motion compensation processing is processing for performing luminance motion compensation based on the motion vector calculated by the motion vector calculation processing. The color difference motion compensation process is a process of performing color difference motion compensation based on the motion vector calculated by the motion vector calculation process. Note that motion compensation is a well-known technique and will not be described in detail.
 イントラ予測処理は、ヘッダ解析処理により解析されたマクロブロックタイプがイントラマクロブロックの場合に実行される。 The intra prediction process is executed when the macro block type analyzed by the header analysis process is an intra macro block.
 画像再構成処理は、輝度動き補償処理、色差動き補償処理、逆DCT処理およびイントラ予測処理等により得られたデータから画像を再構成するための処理である。デブロッキングフィルタ処理は、ループ内フィルタ処理である。デブロッキングフィルタ処理は、画像再構成処理により得られた画像に対し行われる。 Image reconstruction processing is processing for reconstructing an image from data obtained by luminance motion compensation processing, color difference motion compensation processing, inverse DCT processing, intra prediction processing, and the like. The deblocking filter process is an in-loop filter process. The deblocking filter process is performed on the image obtained by the image reconstruction process.
 動きベクトル演算処理、輝度動き補償処理および色差動き補償処理は、ヘッダ解析処理により解析されたマクロブロックタイプがインターマクロブロックの場合に実行される。 Motion vector calculation processing, luminance motion compensation processing, and chrominance motion compensation processing are executed when the macro block type analyzed by the header analysis processing is an inter macro block.
 なお、本実施の形態における映像再生処理に含まれる各処理が行われる順序は、H.246/AVC規格に従った順序と同様なので詳細な説明は行わない。 It should be noted that the order in which each process included in the video playback process in this embodiment is performed is H.264. Since it is the same as the order according to the H.246 / AVC standard, detailed description will not be given.
 プロセッサ200.2Bには、予め、ヘッダ解析処理、可変長復号処理、動きベクトル演算処理、輝度動き補償処理および色差動き補償処理の各々を実行するためのプログラムモジュールが割り当てられている。これにより、プロセッサ200.2Bは、ヘッダ解析処理、可変長復号処理、動きベクトル演算処理、輝度動き補償処理および色差動き補償処理を実行可能である。 A program module for executing each of header analysis processing, variable length decoding processing, motion vector calculation processing, luminance motion compensation processing, and chrominance motion compensation processing is assigned in advance to the processor 200.2B. Thus, the processor 200.2B can execute header analysis processing, variable length decoding processing, motion vector calculation processing, luminance motion compensation processing, and color difference motion compensation processing.
 プロセッサ200.2Bは、可変長復号処理を実行することにより得られたデータ(以下、可変長復号済データという)を、プロセッサ200.3Bへ送信する。 The processor 200.2B transmits the data obtained by executing the variable length decoding process (hereinafter referred to as variable length decoded data) to the processor 200.3B.
 プロセッサ200.3Bには、予め、逆量子化処理、逆DCT処理、イントラ予測処理、輝度動き補償処理、色差動き補償処理、画像再構成処理およびデブロッキングフィルタ処理の各々を実行するためのプログラムモジュールが割り当てられている。これにより、プロセッサ200.3Bは、逆量子化処理、逆DCT処理、イントラ予測処理、輝度動き補償処理、色差動き補償処理、画像再構成処理およびデブロッキングフィルタ処理を実行可能である。 The processor 200.3B previously has a program module for executing each of inverse quantization processing, inverse DCT processing, intra prediction processing, luminance motion compensation processing, color difference motion compensation processing, image reconstruction processing, and deblocking filter processing. Is assigned. Thereby, the processor 200.3B can execute the inverse quantization process, the inverse DCT process, the intra prediction process, the luminance motion compensation process, the color difference motion compensation process, the image reconstruction process, and the deblocking filter process.
 プロセッサ200.3Bは、プロセッサ200.2Bから、可変長復号済データを受信すると、受信した可変長復号済データに対し逆量子化処理を実行する。 When the processor 200.3B receives the variable-length decoded data from the processor 200.2B, the processor 200.3B performs an inverse quantization process on the received variable-length decoded data.
 なお、プロセッサ200.1B,200.2B,200.3Bの各々における、プログラムモジュールの割り当ては、上記に限定されない。 Note that the assignment of program modules in each of the processors 200.1B, 200.2B, and 200.3B is not limited to the above.
 次に、AVデータ再生回路1000Bが行うAVデータを再生するための処理(再生実行処理)について説明する。 Next, a process (playback execution process) for playing back AV data performed by the AV data playback circuit 1000B will be described.
 なお、分離部110は、音声データを、プロセッサ200.1Bへ送信したとする。また、分離部110は、映像データを、プロセッサ200.2Bへ送信したとする。 Note that it is assumed that the separation unit 110 transmits audio data to the processor 200.1B. Further, it is assumed that the separating unit 110 transmits the video data to the processor 200.2B.
 また、音声再生処理は、プロセッサ200.1Bが実行するように予め設定されている。また、プロセッサ200.1Bは、音声データの受信に応じて、他の処理とは独立して、音声再生処理を実行するとする。そのため、プロセッサ200.1Bは、第2の実施の形態と同様、復号済音声データを外部へ出力する。 Also, the audio playback process is preset so that the processor 200.1B executes. In addition, it is assumed that the processor 200.1B executes a sound reproduction process independently of other processes in response to reception of sound data. Therefore, the processor 200.1B outputs the decoded audio data to the outside as in the second embodiment.
 また、制御部210は、所定のタイミングで、ヘッダ解析処理および可変長復号処理を実行させるための命令を、プロセッサ200.2Bへ送信したとする。命令を受信したプロセッサ200.2Bは、所定のタイミングで、ヘッダ解析処理、可変長復号処理を実行する。プロセッサ200.2Bは、例えば、映像データの受信に応じて、ヘッダ解析処理、可変長復号処理を順に実行する。 Further, it is assumed that the control unit 210 transmits an instruction for executing a header analysis process and a variable length decoding process to the processor 200.2B at a predetermined timing. The processor 200.2B that has received the instruction executes header analysis processing and variable length decoding processing at a predetermined timing. For example, the processor 200.2B sequentially executes a header analysis process and a variable length decoding process in response to reception of video data.
 すなわち、処理実行制御部(制御部210)は、第2プロセッサ(プロセッサ200.2B)に可変長復号処理を実行させる。 That is, the process execution control unit (control unit 210) causes the second processor (processor 200.2B) to execute variable-length decoding processing.
 また、プロセッサ200.2Bは、ヘッダ解析処理により解析されたマクロブロックタイプがインターマクロブロックの場合、所定のタイミングで、動きベクトル演算処理を実行するとする。 In addition, when the macro block type analyzed by the header analysis process is an inter macro block, the processor 200.2B executes the motion vector calculation process at a predetermined timing.
 また、プロセッサ200.3Bは、所定のタイミングで、画像再構成処理を実行するとする。 Further, it is assumed that the processor 200.3B executes the image reconstruction process at a predetermined timing.
 再び、図2を参照して、ステップS111では、第1の実施の形態と同様な処理が行なわれるので詳細な説明は繰り返さない。この処理により、AVデータに含まれるパラメータ情報が、パラメータ記憶部130に記憶される。すなわち、取得部120は、AVデータに含まれる音声データおよび映像データのパラメータを取得する。 Referring to FIG. 2 again, in step S111, the same processing as in the first embodiment is performed, and thus detailed description will not be repeated. By this processing, parameter information included in the AV data is stored in the parameter storage unit 130. That is, the acquisition unit 120 acquires audio data and video data parameters included in the AV data.
 ステップS112では、第1の実施の形態と同様に処理実行制御処理が行われるので詳細な説明は繰り返さない。 In step S112, the process execution control process is performed in the same manner as in the first embodiment, and thus detailed description will not be repeated.
 この処理により、制御部210は、パラメータ記憶部130に記憶されたパラメータ情報を読み出す。パラメータ情報は、パラメータとして、前述したフレームサイズ、フレームレート、ビットレート、チャネル数、コーデック種別、演算処理能力値およびデブロッキングフィルタ必要情報等を示すとする。 By this process, the control unit 210 reads the parameter information stored in the parameter storage unit 130. The parameter information is assumed to indicate the aforementioned frame size, frame rate, bit rate, number of channels, codec type, arithmetic processing capability value, deblocking filter necessary information, and the like as parameters.
 そして、制御部210は、パラメータ情報が示す、対応するAVデータの複数のパラメータの少なくとも1つに基づいて、輝度動き補償処理および色差動き補償処理の各々を実行させるプロセッサを選択する。 Then, the control unit 210 selects a processor that executes each of the luminance motion compensation processing and the chrominance motion compensation processing based on at least one of the plurality of parameters of the corresponding AV data indicated by the parameter information.
 そして、制御部210は、処理を実行させるために選択したプロセッサに当該処理を実行させる。 Then, the control unit 210 causes the processor selected to execute the process to execute the process.
 次に、本実施の形態における処理実行制御処理について、一例を挙げて詳細に説明する。 Next, the process execution control process in the present embodiment will be described in detail with an example.
 ここで、一例として、AVデータの映像データが、H.264/AVC規格に従った符号化方式により符号化されたデータであるとする。この場合、AVデータ再生回路1000Bにおいて映像データを再生する映像再生処理は、H.264/AVC規格に従った再生処理である。また、一例として、ヘッダ解析処理により解析されたマクロブロックタイプがインターマクロブロックであるとする。 Here, as an example, video data of AV data is H.264. It is assumed that the data is encoded by an encoding method according to the H.264 / AVC standard. In this case, the video playback processing for playing back video data in the AV data playback circuit 1000B is H.264. H.264 / AVC standard reproduction processing. Further, as an example, it is assumed that the macro block type analyzed by the header analysis process is an inter macro block.
 また、制御部210が、プロセッサの選択に利用するパラメータは、一例として、パラメータ情報が示すデブロッキングフィルタ必要情報であるとする。また、色差動き補償処理の実行に必要な演算処理量は、輝度動き補償処理の実行に必要な演算処理量未満であるとする。また、輝度動き補償処理の実行に必要な演算処理量は、デブロッキングフィルタ処理の実行に必要な演算処理量以下であるとする。 In addition, the parameter used by the control unit 210 for selecting a processor is, for example, deblocking filter necessary information indicated by the parameter information. Further, it is assumed that the calculation processing amount necessary for executing the color difference motion compensation processing is less than the calculation processing amount required for executing the luminance motion compensation processing. Further, it is assumed that the calculation processing amount necessary for executing the luminance motion compensation processing is equal to or less than the calculation processing amount required for executing the deblocking filter processing.
 以下においては、デブロッキングフィルタ処理を、第3処理ともいう。また、以下においては、輝度動き補償処理を、第4処理ともいう。また、以下においては、色差動き補償処理を、第5処理ともいう。 Hereinafter, the deblocking filter process is also referred to as a third process. In the following, the luminance motion compensation process is also referred to as a fourth process. In the following, the color difference motion compensation process is also referred to as a fifth process.
 すなわち、第5処理(色差動き補償処理)の実行に必要な演算量は、第4処理(輝度動き補償処理)の実行に必要な演算量未満である。また、第4処理(輝度動き補償処理)の実行に必要な演算量は、第3処理(デブロッキングフィルタ処理)の実行に必要な演算量以下である。 That is, the calculation amount necessary for executing the fifth process (color difference motion compensation process) is less than the calculation amount required for executing the fourth process (luminance motion compensation process). In addition, the amount of calculation required for executing the fourth process (luminance motion compensation process) is less than the amount of calculation required for executing the third process (deblocking filter process).
 なお、映像再生処理は、第3処理、第4処理および第5処理を含む。 Note that the video reproduction process includes a third process, a fourth process, and a fifth process.
 この場合、処理実行制御処理では、制御部210が、デブロッキングフィルタ必要情報が、デブロッキングフィルタ処理が必要でないこと、すなわち、デブロッキングフィルタ処理が不要であることを示す場合、輝度動き補償処理を実行させるプロセッサとして、プロセッサ200.3Bを選択するとともに、色差動き補償処理を実行させるプロセッサとして、プロセッサ200.2Bを選択する。 In this case, in the process execution control process, the control unit 210 performs the luminance motion compensation process when the deblocking filter necessary information indicates that the deblocking filter process is not required, that is, the deblocking filter process is not necessary. The processor 200.3B is selected as the processor to be executed, and the processor 200.2B is selected as the processor that executes the color difference motion compensation processing.
 そして、制御部210は、輝度動き補償処理を実行させるために選択したプロセッサ200.3Bへ、輝度動き補償処理を実行させるための命令を送信する。また、制御部210は、色差動き補償処理を実行させるために選択したプロセッサ200.2Bへ、色差動き補償処理を実行させるための命令を送信する。 And the control part 210 transmits the command for performing a luminance motion compensation process to the processor 200.3B selected in order to perform a luminance motion compensation process. In addition, the control unit 210 transmits a command for executing the color difference motion compensation process to the processor 200.2B selected to execute the color difference motion compensation process.
 これにより、命令を受信したプロセッサ200.3Bは輝度動き補償処理を実行し、命令を受信したプロセッサ200.2Bは、色差動き補償処理を実行する。 Thus, the processor 200.3B that has received the command executes luminance motion compensation processing, and the processor 200.2B that has received the command executes color difference motion compensation processing.
 すなわち、処理実行制御部(制御部210)は、映像データのパラメータが第3処理(デブロッキングフィルタ処理)が実行される必要がないことを示す場合、第1プロセッサ(プロセッサ200.3B)に第4処理(輝度動き補償処理)を実行させるとともに、第2プロセッサ(プロセッサ200.2B)に第5処理(色差動き補償処理)を実行させる。 That is, when the parameter of the video data indicates that the third process (deblocking filter process) does not need to be executed, the process execution control unit (control unit 210) causes the first processor (processor 200.3B) to 4 processing (luminance motion compensation processing) is executed, and the second processor (processor 200.2B) is caused to execute fifth processing (color difference motion compensation processing).
 前述したように、ヘッダ解析処理により解析されたマクロブロックタイプがインターマクロブロックであるため、プロセッサ200.2Bは、動きベクトル演算処理を実行し、動きベクトル演算処理により得られた動きベクトルを、プロセッサ200.3Bへ送信する。 As described above, since the macro block type analyzed by the header analysis process is the inter macro block, the processor 200.2B executes the motion vector calculation process, and uses the motion vector obtained by the motion vector calculation process as the processor. Send to 200.3B.
 プロセッサ200.3Bでは、受信した動きベクトルに基づいて、輝度動き補償処理を実行する。プロセッサ200.2Bでは、動きベクトル演算処理により得られた動きベクトルに基づいて、色差動き補償処理を実行し、色差動き補償処理の実行により得られたデータを、プロセッサ200.3Bへ送信する。 The processor 200.3B executes luminance motion compensation processing based on the received motion vector. The processor 200.2B executes a color difference motion compensation process based on the motion vector obtained by the motion vector calculation process, and transmits data obtained by the execution of the color difference motion compensation process to the processor 200.3B.
 プロセッサ200.3Bは、画像再構成処理を実行することにより、輝度動き補償処理の実行により得られたデータと、色差動き補償処理の実行により得られたデータと、逆DCT処理により得られたデータとから、画像を再構成する。 The processor 200.3B executes the image reconstruction process, thereby obtaining data obtained by executing the luminance motion compensation process, data obtained by executing the color difference motion compensation process, and data obtained by the inverse DCT process. And reconstruct the image.
 そして、プロセッサ200.3Bは、再構成した画像を示すデータを、復号済映像データとして、外部へ出力する。 The processor 200.3B outputs data indicating the reconstructed image to the outside as decoded video data.
 また、処理実行制御処理では、制御部210が、デブロッキングフィルタ必要情報が、デブロッキングフィルタ処理が必要であることを示す場合、輝度動き補償処理を実行させるプロセッサとして、プロセッサ200.2Bを選択するとともに、色差動き補償処理を実行させるプロセッサとして、プロセッサ200.3Bを選択する。 In the process execution control process, when the deblocking filter necessary information indicates that the deblocking filter process is necessary, the control unit 210 selects the processor 200.2B as the processor that executes the luminance motion compensation process. At the same time, the processor 200.3B is selected as a processor for executing the color difference motion compensation processing.
 そして、制御部210は、輝度動き補償処理を実行させるために選択したプロセッサ200.2Bへ、輝度動き補償処理を実行させるための命令を送信する。また、制御部210は、色差動き補償処理を実行させるために選択したプロセッサ200.3Bへ、色差動き補償処理を実行させるための命令と、デブロッキングフィルタ処理を所定のタイミングで実行させるための命令とを送信する。 And the control part 210 transmits the command for performing a luminance motion compensation process to the processor 200.2B selected in order to perform a luminance motion compensation process. The control unit 210 also instructs the processor 200.3B selected to execute the color difference motion compensation process to execute the color difference motion compensation process and an instruction to execute the deblocking filter process at a predetermined timing. And send.
 これにより、命令を受信したプロセッサ200.2Bは輝度動き補償処理を実行し、命令を受信したプロセッサ200.3Bは、色差動き補償処理およびデブロッキングフィルタ処理を実行する。 Thus, the processor 200.2B that has received the command executes luminance motion compensation processing, and the processor 200.3B that has received the command executes color difference motion compensation processing and deblocking filter processing.
 すなわち、処理実行制御部(制御部210)は、映像データのパラメータが第3処理(デブロッキングフィルタ処理)が実行される必要があることを示す場合、第1プロセッサ(プロセッサ200.3B)に第3処理および第5処理(色差動き補償処理)を実行させるとともに、N個のプロセッサのうち第1プロセッサ以外の第2プロセッサ(プロセッサ200.2B)に第4処理(輝度動き補償処理)を実行させる。 That is, when the parameter of the video data indicates that the third process (deblocking filter process) needs to be executed, the process execution control unit (control unit 210) causes the first processor (processor 200.3B) to The third process and the fifth process (color difference motion compensation process) are executed, and the fourth process (luminance motion compensation process) is executed by a second processor (processor 200.2B) other than the first processor among the N processors. .
 前述したように、ヘッダ解析処理により解析されたマクロブロックタイプがインターマクロブロックであるため、プロセッサ200.2Bは、動きベクトル演算処理を実行し、動きベクトル演算処理により得られた動きベクトルを、プロセッサ200.3Bへ送信する。 As described above, since the macro block type analyzed by the header analysis process is the inter macro block, the processor 200.2B executes the motion vector calculation process, and uses the motion vector obtained by the motion vector calculation process as the processor. Send to 200.3B.
 プロセッサ200.2Bでは、動きベクトル演算処理により得られた動きベクトルに基づいて、輝度動き補償処理を実行し、輝度動き補償処理の実行により得られたデータを、プロセッサ200.3Bへ送信する。プロセッサ200.3Bでは、受信した動きベクトルに基づいて、色差動き補償処理を実行する。 The processor 200.2B executes luminance motion compensation processing based on the motion vector obtained by the motion vector calculation processing, and transmits data obtained by execution of the luminance motion compensation processing to the processor 200.3B. The processor 200.3B executes color difference motion compensation processing based on the received motion vector.
 プロセッサ200.3Bは、画像再構成処理を実行することにより、輝度動き補償処理の実行により得られたデータと、色差動き補償処理の実行により得られたデータと、逆DCT処理により得られたデータとから、画像を再構成する。 The processor 200.3B executes the image reconstruction process, thereby obtaining data obtained by executing the luminance motion compensation process, data obtained by executing the color difference motion compensation process, and data obtained by the inverse DCT process. And reconstruct the image.
 そして、プロセッサ200.3Bは、再構成した画像に対し、デブロッキングフィルタ処理を実行する。そして、プロセッサ200.3Bは、デブロッキングフィルタ処理により得られたデータを、復号済映像データとして、外部へ出力する。 Then, the processor 200.3B performs deblocking filter processing on the reconstructed image. Then, the processor 200.3B outputs the data obtained by the deblocking filter process to the outside as decoded video data.
 以上の処理により、符号化されたデータであるAVデータが、復号される。すなわち、AVデータが再生される。 The AV data that is the encoded data is decoded by the above processing. That is, AV data is reproduced.
 なお、処理実行制御処理の他の例として、制御部210が、プロセッサの選択に利用するパラメータは、フレームサイズ、フレームレート、ビットレート、コーデック種別および演算処理能力値のいずれかであってもよい。 As another example of the process execution control process, the parameter used by the control unit 210 to select a processor may be any of a frame size, a frame rate, a bit rate, a codec type, and an arithmetic processing capability value. .
 以上説明したように、本実施の形態では、デブロッキングフィルタ処理が必要でない場合、プロセッサ200.3Bに輝度動き補償処理を実行させ、プロセッサ200.2Bに、色差動き補償処理を実行させる。色差動き補償処理の実行に必要な演算処理量は、輝度動き補償処理の実行に必要な演算処理量未満である。また、輝度動き補償処理の実行に必要な演算処理量は、デブロッキングフィルタ処理の実行に必要な演算処理量以下である。 As described above, in this embodiment, when the deblocking filter process is not necessary, the processor 200.3B executes the luminance motion compensation process, and the processor 200.2B executes the color difference motion compensation process. The amount of calculation processing necessary for executing the color difference motion compensation processing is less than the amount of calculation processing required for executing the luminance motion compensation processing. Further, the calculation processing amount necessary for executing the luminance motion compensation processing is equal to or less than the calculation processing amount required for executing the deblocking filter processing.
 すなわち、デブロッキングフィルタ処理を実行する必要がなくなり、演算処理を実行するための余力が生じたプロセッサ200.3Bに、実行時に必要な演算処理量(使用率)が色差動き補償処理より大きい輝度動き補償処理を実行させる。また、プロセッサ200.2Bに、実行時に必要な演算処理量(使用率)が輝度動き補償処理より小さい色差動き補償処理を実行させる。 In other words, it is not necessary to execute the deblocking filter process, and the processor 200.3B, which has sufficient capacity for executing the calculation process, has a luminance motion larger than the color difference motion compensation process. The compensation process is executed. In addition, the processor 200.2B is caused to execute a color difference motion compensation process in which the calculation processing amount (usage rate) required at the time of execution is smaller than the luminance motion compensation process.
 これにより、プロセッサ200.3Bの使用率が極端に小さくなることを防止することができ、プロセッサ200.3Bを有効に活用することができる。 Thus, the usage rate of the processor 200.3B can be prevented from becoming extremely small, and the processor 200.3B can be used effectively.
 また、デブロッキングフィルタ処理が必要である場合、プロセッサ200.2Bに輝度動き補償処理を実行させ、プロセッサ200.3Bに、色差動き補償処理およびデブロッキングフィルタ処理を実行させる。 Further, when the deblocking filter process is necessary, the processor 200.2B is caused to execute the luminance motion compensation process, and the processor 200.3B is caused to execute the color difference motion compensation process and the deblocking filter process.
 すなわち、プロセッサ200.2Bには、実行時に必要な演算処理量(使用率)が色差動き補償処理より大きい輝度動き補償処理を実行させる。また、デブロッキングフィルタ処理を実行する必要があるプロセッサ200.3Bには、実行時に必要な演算処理量(使用率)が輝度動き補償処理より小さい色差動き補償処理を実行させる。 That is, the processor 200.2B is caused to execute a luminance motion compensation process in which the calculation processing amount (usage rate) required at the time of execution is larger than the color difference motion compensation process. In addition, the processor 200.3B that needs to execute the deblocking filter process is caused to execute a chrominance motion compensation process in which the calculation processing amount (usage rate) required at the time of execution is smaller than the luminance motion compensation process.
 これにより、プロセッサ200.2Bおよびプロセッサ200.3Bを有効に活用することができる。 Thereby, the processor 200.2B and the processor 200.3B can be effectively used.
 以上により、複数のプロセッサを利用してAVデータを再生する場合において、プロセッサを有効に活用することができる。 As described above, when reproducing AV data using a plurality of processors, the processors can be used effectively.
 したがって、複数のプロセッサ全体の処理を向上させることができ、AVデータ再生回路1000Bの単位時間当たりの処理量を向上させることができる。すなわち、AVデータ再生回路1000Bの性能を向上させることができる。 Therefore, it is possible to improve the processing of the plurality of processors as a whole, and to improve the processing amount per unit time of the AV data reproduction circuit 1000B. That is, the performance of the AV data reproduction circuit 1000B can be improved.
 なお、本実施の形態では、各プロセッサに処理を実行させる制御部210は、プロセッサの外部に設けられるようにしたが、本発明はこれに限定されず、制御部210は、プロセッサの内部に設けられてもよい。 In the present embodiment, the control unit 210 that causes each processor to execute processing is provided outside the processor. However, the present invention is not limited to this, and the control unit 210 is provided inside the processor. May be.
 また、分離部110、取得部120およびパラメータ記憶部130は、プロセッサの外部に設けられるとしたが、分離部110、取得部120およびパラメータ記憶部130パラメータ記憶部130の一部または全ては、プロセッサ(例えば、プロセッサ200.2B)内に設けられてもよい。 In addition, although the separation unit 110, the acquisition unit 120, and the parameter storage unit 130 are provided outside the processor, the separation unit 110, the acquisition unit 120, and the parameter storage unit 130 are partly or entirely included in the processor. (For example, the processor 200.2B) may be provided.
 なお、処理実行制御処理において、プロセッサの選択に利用するパラメータは、前述したように、映像データに関するものに限定されない。プロセッサの選択に利用するパラメータは、例えば、音声データにおける、ビットレート、チャネル数、コーデック種別、演算処理能力値等であってもよい。また、プロセッサの選択に利用するパラメータは、例えば、音声データに含まれる情報(例えば、再生時間)等であってもよい。 In the process execution control process, parameters used for selecting a processor are not limited to those related to video data as described above. The parameter used for selecting the processor may be, for example, a bit rate, the number of channels, a codec type, an arithmetic processing capability value, etc. in audio data. Further, the parameter used for selection by the processor may be, for example, information (for example, reproduction time) included in the audio data.
 なお、本実施の形態では、動き補償処理を、色差動き補償処理と、輝度動き補償処理とに分け、色差動き補償処理および輝度動き補償処理の各々を異なるプロセッサで実行させる処理を説明したが、本発明はこれに限定されない。例えば、図4に示される色差動き補償処理および輝度動き補償処理以外の処理(例えば、可変長復号処理、デブロッキングフィルタ処理等)を、複数の処理に分割して、分割された複数の処理の各々を異なるプロセッサで実行するようにしてもよい。 In the present embodiment, the motion compensation processing is divided into chrominance motion compensation processing and luminance motion compensation processing, and processing in which each of the chrominance motion compensation processing and luminance motion compensation processing is executed by different processors has been described. The present invention is not limited to this. For example, the processes other than the color difference motion compensation process and the luminance motion compensation process shown in FIG. 4 (for example, variable length decoding process, deblocking filter process, etc.) are divided into a plurality of processes. Each may be executed by a different processor.
 なお、本実施の形態では、AVデータを再生する場合において、3個のプロセッサを使用した処理を説明したが、本発明はこれに限定されることはない。AVデータを再生する場合において、2個以下または4個以上のプロセッサを使用してもよい。 In the present embodiment, the processing using three processors has been described when reproducing AV data. However, the present invention is not limited to this. When reproducing AV data, two or less or four or more processors may be used.
 また、本実施の形態では、複数のプロセッサで実行する対象となる処理を、映像再生処理に含まれる各処理および音声再生処理としたが、本発明はこれに限定されることはない。例えば、複数のプロセッサで実行する対象となる処理は、ビデオ撮影処理、オーディオ録音処理等のメディア処理、多重化処理、多重分離処理等のファイルコンテナ処理や、OS処理、アプリケーション処理等であってもよい。 In the present embodiment, the processes to be executed by a plurality of processors are the processes included in the video reproduction process and the audio reproduction process. However, the present invention is not limited to this. For example, processing to be executed by a plurality of processors may be media processing such as video shooting processing and audio recording processing, file container processing such as multiplexing processing and demultiplexing processing, OS processing, application processing, etc. Good.
 また、本実施の形態では、各処理を複数のプロセッサで実行する処理を説明したが、本発明はこれに限定されることはない。例えば、デブロッキングフィルタ処理が、複数のパラメータにそれぞれ対応した複数の処理を含むようにさせることで、AVデータのパラメータに応じて、デブロッキングフィルタ処理に含まれる複数の処理を切替えるようにしてもよい。 In the present embodiment, the processing for executing each processing by a plurality of processors has been described. However, the present invention is not limited to this. For example, by causing the deblocking filter process to include a plurality of processes respectively corresponding to a plurality of parameters, the plurality of processes included in the deblocking filter process may be switched according to the parameters of the AV data. Good.
 <第4の実施の形態>
 図5は、第4の実施の形態におけるAVデータ再生装置2000の構成を示す図である。図5を参照して、AVデータ再生装置2000は、メモリ410と、AVデータ再生回路1000と、音声出力装置420と、映像表示装置430とを含む。なお、AVデータ再生装置2000は、AVデータ再生回路1000の代わりにAVデータ再生回路1000AまたはAVデータ再生回路1000Bを含んでもよい。
<Fourth embodiment>
FIG. 5 is a diagram illustrating a configuration of an AV data reproducing device 2000 according to the fourth embodiment. Referring to FIG. 5, AV data reproducing device 2000 includes a memory 410, an AV data reproducing circuit 1000, an audio output device 420, and a video display device 430. Note that the AV data reproduction device 2000 may include an AV data reproduction circuit 1000A or an AV data reproduction circuit 1000B instead of the AV data reproduction circuit 1000.
 音声出力装置420は、スピーカーである。映像表示装置430は、例えば、液晶モニタである。なお、映像表示装置430は、液晶モニタに限定されず、映像を表示可能な装置であればどのような装置であってもよい。 The audio output device 420 is a speaker. The video display device 430 is, for example, a liquid crystal monitor. The video display device 430 is not limited to a liquid crystal monitor, and may be any device as long as it can display video.
 AVデータ再生装置2000は、外部から受信したAVデータを、メモリ410に記憶させる。AVデータは、例えば、放送波として受信されたデータである。AVデータは、前述したように、音声データ、映像データおよびパラメータ情報を含む。  AV data playback device 2000 stores AV data received from the outside in memory 410. AV data is, for example, data received as a broadcast wave. As described above, the AV data includes audio data, video data, and parameter information.
 AVデータ再生回路1000は、メモリ410に記憶されたAVデータに含まれる音声データに対し前述した処理(例えば、音声再生処理)を行うことにより、音声データを再生(復号)する。これにより、AVデータ再生回路1000は、復号済音声データを得る。すなわち、AVデータ再生回路1000は、音声データに対し音声再生処理を行うことにより、復号済音声データを得る。 The AV data reproduction circuit 1000 reproduces (decodes) the audio data by performing the above-described processing (for example, audio reproduction processing) on the audio data included in the AV data stored in the memory 410. As a result, the AV data reproduction circuit 1000 obtains decoded audio data. That is, the AV data reproduction circuit 1000 obtains decoded audio data by performing audio reproduction processing on the audio data.
 そして、AVデータ再生回路1000は、得られた復号済音声データを、音声出力装置420へ送信する。 Then, the AV data reproducing circuit 1000 transmits the obtained decoded audio data to the audio output device 420.
 また、AVデータ再生回路1000は、メモリ410に記憶されたAVデータに含まれる映像データに対し前述した処理(例えば、映像再生処理)を行うことにより、映像データを再生(復号)する。これにより、AVデータ再生回路1000は、復号済映像データを得る。すなわち、AVデータ再生回路1000は、映像データに対し映像再生処理を行うことにより、復号済映像データを得る。 The AV data reproduction circuit 1000 reproduces (decodes) the video data by performing the above-described processing (for example, video reproduction processing) on the video data included in the AV data stored in the memory 410. As a result, the AV data reproduction circuit 1000 obtains decoded video data. That is, the AV data playback circuit 1000 obtains decoded video data by performing video playback processing on the video data.
 そして、AVデータ再生回路1000は、得られた復号済映像データを、映像表示装置430へ送信する。 Then, the AV data reproduction circuit 1000 transmits the obtained decoded video data to the video display device 430.
 音声出力装置420は、受信した復号済音声データに基づく音声を出力する。映像表示装置430は、受信した復号済映像データに基づく映像を表示する。 The audio output device 420 outputs audio based on the received decoded audio data. The video display device 430 displays a video based on the received decoded video data.
 なお、本実施の形態において、AVデータ再生回路1000が行う処理は、AVデータ再生回路1000AまたはAVデータ再生回路1000Bが行ってもよい。 In the present embodiment, the processing performed by the AV data reproducing circuit 1000 may be performed by the AV data reproducing circuit 1000A or the AV data reproducing circuit 1000B.
 以上により、本発明のAVデータ再生回路を使用して、AVデータのパラメータに応じて、AVデータを再生する処理を行うAVデータ再生装置2000を構築出来る。 As described above, it is possible to construct the AV data reproducing apparatus 2000 that performs the process of reproducing the AV data according to the parameters of the AV data using the AV data reproducing circuit of the present invention.
 以上説明したように、本実施の形態では、本発明のAVデータ再生回路を使用して、AVデータを再生するAVデータ再生装置を構築出来る。 As described above, in the present embodiment, an AV data reproducing apparatus that reproduces AV data can be constructed using the AV data reproducing circuit of the present invention.
 なお、本実施の形態では、AVデータをメモリ410に記憶させる処理を説明したが、本発明はこれに限定されるものではない。例えば、メモリ410にAVデータを記憶させず、AVデータ再生回路が直接AVデータを受信してもよい。 In the present embodiment, the process of storing AV data in the memory 410 has been described, but the present invention is not limited to this. For example, the AV data may be directly received by the AV data reproducing circuit without storing the AV data in the memory 410.
 なお、本実施の形態では、音声出力装置420が復号済音声データに基づく音声を出力する処理を説明したが、本発明はこれに限定されることはない。例えば、復号済音声データは、外部メモリに記憶されてもよい。 In the present embodiment, the audio output device 420 has described the process of outputting audio based on the decoded audio data, but the present invention is not limited to this. For example, the decoded audio data may be stored in an external memory.
 なお、本実施の形態では、映像表示装置430が復号済映像データに基づく映像を表示する処理を説明したが、本発明はこれに限定されることはない。例えば、復号済映像データは、外部メモリに記憶されてもよい。 In the present embodiment, the video display device 430 has described the process of displaying video based on the decoded video data, but the present invention is not limited to this. For example, the decoded video data may be stored in an external memory.
 (機能ブロック図)
 図6は、AVデータ再生回路3000の特徴的な機能構成を示すブロック図である。AVデータ再生回路3000は、AVデータ再生回路1000,1000A,1000Bのいずれかである。
(Function block diagram)
FIG. 6 is a block diagram showing a characteristic functional configuration of the AV data reproduction circuit 3000. The AV data reproduction circuit 3000 is one of the AV data reproduction circuits 1000, 1000A, and 1000B.
 つまり、図6は、AVデータ再生回路1000,1000A,1000Bのいずれかの有する機能のうち、本発明に関わる主要な機能を示すブロック図である。 That is, FIG. 6 is a block diagram showing the main functions related to the present invention among the functions of any one of the AV data reproduction circuits 1000, 1000A, and 1000B.
 AVデータ再生回路3000は、N(2以上の整数)個のプロセッサを利用してAVデータを再生するための再生処理を行う。再生処理は、K(2以上の整数)個の処理を含む。 The AV data reproduction circuit 3000 performs reproduction processing for reproducing AV data using N (an integer of 2 or more) processors. The reproduction process includes K (an integer greater than or equal to 2) processes.
 図6に示されるように、AVデータ再生回路3000は、取得部120と、処理実行制御部400とを備える。 As shown in FIG. 6, the AV data reproduction circuit 3000 includes an acquisition unit 120 and a process execution control unit 400.
 取得部120は、再生処理において再生対象となるAVデータのパラメータを取得する。取得部120は、図2のステップS111の処理を行う、図1、図3および図4の取得部120に相当する。 The acquisition unit 120 acquires AV data parameters to be reproduced in the reproduction process. The acquisition unit 120 corresponds to the acquisition unit 120 of FIGS. 1, 3, and 4 that performs the process of step S <b> 111 of FIG. 2.
 処理実行制御部400は、取得されたパラメータに基づいて、K個の処理のいずれかの処理である第1処理を、N個のプロセッサのいずれかに少なくとも実行させる。 The process execution control unit 400 causes at least one of the N processors to execute the first process, which is one of the K processes, based on the acquired parameter.
 処理実行制御部400は、取得されたパラメータに基づいて、N個のプロセッサのうち、第1処理を実行させるプロセッサを選択し、取得された前記パラメータに基づいて、N個のプロセッサのうち、K個の処理のうち第1処理以外の処理である第2処理を実行させるプロセッサを選択する。 The process execution control unit 400 selects a processor for executing the first process from among the N processors based on the acquired parameters, and selects the K of the N processors based on the acquired parameters. A processor that executes a second process, which is a process other than the first process, is selected.
 処理実行制御部400は、第1処理を実行させるために選択したプロセッサに前記第1処理を実行させ、第2処理を実行させるために選択したプロセッサに第2処理を実行させる。 The process execution control unit 400 causes the processor selected to execute the first process to execute the first process and causes the processor selected to execute the second process to execute the second process.
 処理実行制御部400は、図2のステップS112の処理を行う、図1、図3および図4の制御部210に相当する。 The process execution control unit 400 corresponds to the control unit 210 of FIGS. 1, 3, and 4 that performs the process of step S112 of FIG.
 なお、図6の取得部120および処理実行制御部400の全てまたは一部は、LSI(Large Scale Integration:大規模集積回路)等のハードウエアで構成されてもよい。また、取得部120および処理実行制御部400の全てまたは一部は、CPU等のプロセッサにより実行されるプログラムのモジュールであってもよい。 Note that all or part of the acquisition unit 120 and the processing execution control unit 400 in FIG. 6 may be configured by hardware such as an LSI (Large Scale Integration). All or part of the acquisition unit 120 and the process execution control unit 400 may be a module of a program executed by a processor such as a CPU.
 なお、第1~第4の実施の形態では、複数のソフトウエア処理を、複数のプロセッサを使用して実行する処理を説明した。プロセッサは、DSP、マイコン、CPU、メディアプロセッサ等、LSI上に搭載されたソフトウエアが動作する計算機である。 In the first to fourth embodiments, the process of executing a plurality of software processes using a plurality of processors has been described. The processor is a computer such as a DSP, a microcomputer, a CPU, and a media processor that operates software installed on an LSI.
 なお、第1~第4の実施の形態ではソフトウエアによる処理を前提として説明したが、本発明は、ハードウエア処理で実現する場合でも同様に実施可能である。このように、本発明の第1~第4の実施の形態は本発明の説明を目的とするものであって、本発明の内容をそれらに限定するものではない。 Although the first to fourth embodiments have been described on the premise of processing by software, the present invention can be similarly implemented even when realized by hardware processing. As described above, the first to fourth embodiments of the present invention are intended to explain the present invention, and do not limit the contents of the present invention.
 また、上記のAVデータ再生回路1000,1000A,1000Bのいずれかを構成する複数の構成要素の全てまたは一部は、ハードウエアで構成されてもよい。また、上記のAVデータ再生回路1000,1000A,1000Bのいずれかを構成する構成要素の全てまたは一部は、CPU(Central Processing Unit)等により実行されるプログラムのモジュールであってもよい。 Further, all or some of the plurality of constituent elements constituting any one of the AV data reproducing circuits 1000, 1000A, and 1000B may be configured by hardware. Further, all or a part of the constituent elements constituting any of the AV data reproduction circuits 1000, 1000A, and 1000B may be a module of a program executed by a CPU (Central Processing Unit) or the like.
 また、上記のAVデータ再生回路1000,1000A,1000Bのいずれかを構成する複数の構成要素の全てまたは一部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されてもよい。システムLSIは、複数の構成要素を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM(Read Only Memory)及びRAM(Random Access Memory)などを含んで構成されるコンピュータシステムである。 Further, all or some of the plurality of constituent elements constituting any one of the AV data reproduction circuits 1000, 1000A, and 1000B may be configured by one system LSI (Large Scale Integration). Good. The system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on one chip. Specifically, a microprocessor, a ROM (Read Only Memory), a RAM (Random Access Memory), etc. It is a computer system comprised including.
 また、本発明は、AVデータ再生回路1000,1000A,1000Bのいずれかが備える特徴的な構成部の動作をステップとするAVデータ再生方法として実現してもよい。また、本発明は、そのようなAVデータ再生方法に含まれる各ステップをコンピュータに実行させるプログラムとして実現してもよい。また、本発明は、そのようなプログラムを格納するコンピュータ読み取り可能な記録媒体として実現されてもよい。また、当該プログラムは、インターネット等の伝送媒体を介して配信されてもよい。 Further, the present invention may be realized as an AV data reproduction method in which the operation of a characteristic component included in any one of the AV data reproduction circuits 1000, 1000A, and 1000B is a step. The present invention may also be realized as a program that causes a computer to execute each step included in such an AV data reproduction method. Further, the present invention may be realized as a computer-readable recording medium that stores such a program. The program may be distributed via a transmission medium such as the Internet.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、プロセッサを有効に活用することを可能とするAVデータ再生回路として、利用することができる。  The present invention can be used as an AV data reproducing circuit that makes it possible to effectively use a processor.
110 分離部
120 取得部
200.1,200.2,200.3,200.1A,200.2A,200.1B,200.2B,200.3B プロセッサ
210 制御部
400 処理実行制御部
410 メモリ
420 音声出力装置
430 映像表示装置
1000,1000A,1000B,3000 AVデータ再生回路
2000 AVデータ再生装置 
110 Separation unit 120 Acquisition unit 200.1, 200.2, 200.3, 200.1A, 200.2A, 200.1B, 200.2B, 200.3B Processor 210 Control unit 400 Processing execution control unit 410 Memory 420 Audio Output device 430 Video display device 1000, 1000A, 1000B, 3000 AV data playback circuit 2000 AV data playback device

Claims (17)

  1.  N(2以上の整数)個のプロセッサを利用してAV(Audio Visual)データを再生するための再生処理を行うAVデータ再生回路であって、
     前記再生処理は、K(2以上の整数)個の処理を含み、
     前記AVデータ再生回路は、
      前記再生処理において再生対象となるAVデータのパラメータを取得する取得部と、
      取得された前記パラメータに基づいて、前記K個の処理のいずれかの処理である第1処理を、前記N個のプロセッサのいずれかに少なくとも実行させる処理実行制御部とを備え、
     前記処理実行制御部は、取得された前記パラメータに基づいて、前記N個のプロセッサのうち、前記第1処理を実行させるプロセッサを選択し、取得された前記パラメータに基づいて、前記N個のプロセッサのうち、前記K個の処理のうち前記第1処理以外の処理である第2処理を実行させるプロセッサを選択し、
     前記処理実行制御部は、前記第1処理を実行させるために選択したプロセッサに前記第1処理を実行させ、前記第2処理を実行させるために選択したプロセッサに前記第2処理を実行させる、
     AVデータ再生回路。
    An AV data reproduction circuit that performs reproduction processing for reproducing AV (Audio Visual) data using N (integer of 2 or more) processors,
    The reproduction process includes K (integer of 2 or more) processes,
    The AV data reproduction circuit includes:
    An acquisition unit for acquiring parameters of AV data to be reproduced in the reproduction process;
    A process execution control unit that causes at least one of the N processors to execute a first process that is one of the K processes based on the acquired parameter;
    The process execution control unit selects a processor for executing the first process among the N processors based on the acquired parameters, and the N processors based on the acquired parameters Out of the K processes, a processor that executes a second process that is a process other than the first process is selected,
    The process execution control unit causes the processor selected to execute the first process to execute the first process, and causes the processor selected to execute the second process to execute the second process;
    AV data reproduction circuit.
  2.  前記N個のプロセッサのうちの所定のプロセッサは、前記K個の処理のうちの所定の処理を実行可能であり、
     前記AVデータのパラメータは、前記所定の処理が実行される必要があるか否かを示し、
     前記処理実行制御部は、前記AVデータのパラメータが前記所定の処理が実行される必要がないことを示す場合、前記所定のプロセッサに、前記K個の処理のうち前記所定の処理の実行に必要な演算量以下の演算量が必要な処理を実行させる、
     請求項1に記載のAVデータ再生回路。
    A predetermined processor of the N processors can execute a predetermined process of the K processes.
    The parameter of the AV data indicates whether the predetermined process needs to be executed,
    When the AV data parameter indicates that the predetermined process does not need to be executed, the process execution control unit is required for the predetermined processor to execute the predetermined process among the K processes. To execute a process that requires a calculation amount less than or equal to
    The AV data reproducing circuit according to claim 1.
  3.  前記AVデータは、音声データおよび映像データを含み、
     前記第1処理は、前記音声データを再生するための音声再生処理であり、
     前記第2処理は、前記映像データを再生するための映像再生処理であり、
     前記AVデータ再生回路は、さらに、
      前記AVデータを、前記音声データおよび前記映像データに分離する分離部を備える、
     請求項1または2に記載のAVデータ再生回路。
    The AV data includes audio data and video data,
    The first process is an audio reproduction process for reproducing the audio data,
    The second process is a video reproduction process for reproducing the video data,
    The AV data reproduction circuit further includes:
    A separation unit that separates the AV data into the audio data and the video data;
    The AV data reproducing circuit according to claim 1 or 2.
  4.  前記取得部は、前記映像データのパラメータを取得し、
     前記処理実行制御部は、前記映像データのパラメータに基づいて、前記N個のプロセッサのいずれかのプロセッサに前記音声再生処理を実行させる、
     請求項3に記載のAVデータ再生回路。
    The acquisition unit acquires parameters of the video data,
    The process execution control unit causes one of the N processors to execute the audio reproduction process based on the parameter of the video data.
    The AV data reproducing circuit according to claim 3.
  5.  前記N個のプロセッサのいずれかのプロセッサである第1プロセッサは、前記映像再生処理を実行しており、
     前記映像再生処理は、第3処理を含み、
     前記第1処理としての前記音声再生処理の実行に必要な演算量は、前記第3処理の実行に必要な演算量以下であり、
     前記映像データのパラメータは、前記映像データに対して前記第3処理が実行される必要があるか否かを示し、
     前記処理実行制御部は、前記映像データのパラメータが前記第3処理が実行される必要がないことを示す場合、前記第1プロセッサに前記音声再生処理を実行させるとともに前記第1プロセッサに前記第3処理を実行させない、
     請求項4に記載のAVデータ再生回路。
    A first processor, which is one of the N processors, executes the video reproduction process;
    The video reproduction process includes a third process,
    The amount of computation required for executing the audio reproduction processing as the first processing is equal to or less than the amount of computation required for executing the third processing,
    The parameter of the video data indicates whether the third process needs to be executed on the video data,
    When the parameter of the video data indicates that the third process does not need to be executed, the process execution control unit causes the first processor to execute the audio reproduction process and causes the first processor to execute the third process. Do not execute the process,
    The AV data reproducing circuit according to claim 4.
  6.  前記AVデータは、映像データを含み、
     前記第2処理は、前記映像データを再生するための映像再生処理であり、
     前記取得部は、前記映像データのパラメータを取得し、
     前記映像再生処理は、第3処理、第4処理および第5処理を含み、
     前記第5処理の実行に必要な演算量は、前記第4処理の実行に必要な演算量未満であり、
     前記第4処理の実行に必要な演算量は、前記第3処理の実行に必要な演算量以下であり、
     前記映像データのパラメータは、前記第3処理が実行される必要があるか否かを示し、
     前記処理実行制御部は、前記映像データのパラメータが前記第3処理が実行される必要があることを示す場合、前記N個のプロセッサのいずれかのプロセッサである第1プロセッサに前記第3処理および前記第5処理を実行させるとともに、前記N個のプロセッサのうち前記第1プロセッサ以外のプロセッサである第2プロセッサに前記第4処理を実行させ、
     前記処理実行制御部は、前記映像データのパラメータが前記第3処理が実行される必要がないことを示す場合、前記第1プロセッサに前記第4処理を実行させるとともに、前記第2プロセッサに前記第5処理を実行させる、
     請求項1に記載のAVデータ再生回路。
    The AV data includes video data,
    The second process is a video reproduction process for reproducing the video data,
    The acquisition unit acquires parameters of the video data,
    The video reproduction process includes a third process, a fourth process, and a fifth process,
    The amount of calculation required for executing the fifth process is less than the amount of calculation required for executing the fourth process,
    The amount of calculation required for executing the fourth process is equal to or less than the amount of calculation required for executing the third process,
    The parameter of the video data indicates whether the third process needs to be executed,
    When the parameter of the video data indicates that the third process needs to be executed, the process execution control unit sends the third process and the first processor, which is one of the N processors, to the first processor. Causing the fifth process to be executed, and causing the second processor, which is a processor other than the first processor, of the N processors to execute the fourth process,
    The process execution control unit causes the first processor to execute the fourth process and the second processor to execute the second process when the parameter of the video data indicates that the third process does not need to be executed. 5 process is executed,
    The AV data reproducing circuit according to claim 1.
  7.  前記映像再生処理は、フレーム間の相関関係を利用した再生処理であり、
     前記第4処理は、輝度の動き補償処理であり、
     前記第5処理は、色差の動き補償処理である、
     請求項6に記載のAVデータ再生回路。
    The video playback process is a playback process using a correlation between frames,
    The fourth process is a luminance motion compensation process,
    The fifth process is a color difference motion compensation process.
    The AV data reproducing circuit according to claim 6.
  8.  前記映像再生処理は、さらに、可変長復号処理を含み、
     前記処理実行制御部は、前記第2プロセッサに前記可変長復号処理を実行させる、
     請求項6または7に記載のAVデータ再生回路。
    The video reproduction process further includes a variable length decoding process,
    The process execution control unit causes the second processor to execute the variable length decoding process.
    The AV data reproducing circuit according to claim 6 or 7.
  9.  前記映像再生処理は、H.264/AVC規格に従った再生処理であり、
     前記第3処理は、デブロッキングフィルタ処理である、
     請求項5~8のいずれかに記載のAVデータ再生回路。
    The video reproduction process is the same as in H.264. H.264 / AVC standard reproduction processing,
    The third process is a deblocking filter process.
    The AV data reproducing circuit according to any one of claims 5 to 8.
  10.  前記AVデータは、映像データを含み、
     前記AVデータのパラメータは、前記映像データを構成するフレームのサイズである、
     請求項1に記載のAVデータ再生回路。
    The AV data includes video data,
    The parameter of the AV data is a size of a frame constituting the video data.
    The AV data reproducing circuit according to claim 1.
  11.  前記AVデータは、映像データを含み、
     前記AVデータのパラメータは、前記映像データのフレームレートである、
     請求項1に記載のAVデータ再生回路。
    The AV data includes video data,
    The parameter of the AV data is a frame rate of the video data.
    The AV data reproducing circuit according to claim 1.
  12.  前記AVデータは、映像データを含み、
     前記AVデータのパラメータは、前記映像データのビットレートである、
     請求項1に記載のAVデータ再生回路。
    The AV data includes video data,
    The parameter of the AV data is a bit rate of the video data.
    The AV data reproducing circuit according to claim 1.
  13.  前記AVデータは、映像データを含み、
     前記映像データは、所定の符号化方式により圧縮されており、
     前記AVデータのパラメータは、前記符号化方式の種別である、 
     請求項1に記載のAVデータ再生回路。
    The AV data includes video data,
    The video data is compressed by a predetermined encoding method,
    The parameter of the AV data is the type of the encoding method.
    The AV data reproducing circuit according to claim 1.
  14.  前記AVデータのパラメータは、前記AVデータを処理するために必要な演算処理能力値である、
     請求項1に記載のAVデータ再生回路。
    The parameter of the AV data is an arithmetic processing capability value necessary for processing the AV data.
    The AV data reproducing circuit according to claim 1.
  15.  請求項3~14のいずれかに記載のAVデータ再生回路を含むAVデータ再生装置であって、
     前記AVデータ再生装置は、さらに、
      音声データおよび映像データを記憶するメモリと、
      前記AVデータ再生回路が、前記音声データに対し該音声データを再生するための音声再生処理を行うことにより得られた復号済の音声データに基づく音声を出力する音声出力装置と、
      前記AVデータ再生回路が、前記映像データに対し該映像データを再生するための映像再生処理を行うことにより得られた復号済の映像データに基づく映像を表示する表示装置とを含む、
     AVデータ再生装置。
    An AV data reproducing device including the AV data reproducing circuit according to any one of claims 3 to 14,
    The AV data reproducing device further includes:
    A memory for storing audio data and video data;
    An audio output device for outputting audio based on decoded audio data obtained by the audio data reproduction circuit performing audio reproduction processing for reproducing the audio data with respect to the audio data;
    The AV data playback circuit includes a display device for displaying video based on decoded video data obtained by performing video playback processing for playing back the video data with respect to the video data;
    AV data playback device.
  16.  N(2以上の整数)個のプロセッサを利用してAV(Audio Visual)データを再生するための再生処理を行う集積回路であって、
     前記再生処理は、K(2以上の整数)個の処理を含み、
     前記集積回路は、
      前記再生処理において再生対象となるAVデータのパラメータを取得する取得部と、
      取得された前記パラメータに基づいて、前記K個の処理のいずれかの処理である第1処理を、前記N個のプロセッサのいずれかに少なくとも実行させる処理実行制御部とを備え、
     前記処理実行制御部は、取得された前記パラメータに基づいて、前記N個のプロセッサのうち、前記第1処理を実行させるプロセッサを選択し、取得された前記パラメータに基づいて、前記N個のプロセッサのうち、前記K個の処理のうち前記第1処理以外の処理である第2処理を実行させるプロセッサを選択し、
     前記処理実行制御部は、前記第1処理を実行させるために選択したプロセッサに前記第1処理を実行させ、前記第2処理を実行させるために選択したプロセッサに前記第2処理を実行させる、
     集積回路。
    An integrated circuit that performs playback processing for playing back AV (Audio Visual) data using N (integer greater than or equal to 2) processors,
    The reproduction process includes K (integer of 2 or more) processes,
    The integrated circuit comprises:
    An acquisition unit for acquiring parameters of AV data to be reproduced in the reproduction process;
    A process execution control unit that causes at least one of the N processors to execute a first process that is one of the K processes based on the acquired parameter;
    The process execution control unit selects a processor for executing the first process among the N processors based on the acquired parameters, and the N processors based on the acquired parameters Out of the K processes, a processor that executes a second process that is a process other than the first process is selected,
    The process execution control unit causes the processor selected to execute the first process to execute the first process, and causes the processor selected to execute the second process to execute the second process;
    Integrated circuit.
  17.  N(2以上の整数)個のプロセッサを利用してAV(Audio Visual)データを再生するための再生処理を行うAVデータ再生回路が行うAVデータ再生方法であって、
     前記再生処理は、K(2以上の整数)個の処理を含み、
     前記AVデータ再生回路は、
      前記再生処理において再生対象となるAVデータのパラメータを取得する取得部と、
      取得された前記パラメータに基づいて、前記K個の処理のいずれかの処理である第1処理を、前記N個のプロセッサのいずれかに少なくとも実行させる処理実行制御部とを備え、
     前記AVデータ再生方法は、
      前記取得部が、前記AVデータのパラメータを取得するステップと、
      前記処理実行制御部が、取得された前記パラメータに基づいて、前記N個のプロセッサのうち、前記第1処理を実行させるプロセッサを選択し、取得された前記パラメータに基づいて、前記N個のプロセッサのうち、前記K個の処理のうち前記第1処理以外の処理である第2処理を実行させるプロセッサを選択し、前記処理実行制御部が、前記第1処理を実行させるために選択したプロセッサに前記第1処理を実行させ、前記第2処理を実行させるために選択したプロセッサに前記第2処理を実行させるステップとを含む、
     AVデータ再生方法。 
     
     
    An AV data reproduction method performed by an AV data reproduction circuit that performs reproduction processing for reproducing AV (Audio Visual) data using N (integer of 2 or more) processors,
    The reproduction process includes K (integer of 2 or more) processes,
    The AV data reproduction circuit includes:
    An acquisition unit for acquiring parameters of AV data to be reproduced in the reproduction process;
    A process execution control unit that causes at least one of the N processors to execute a first process that is one of the K processes based on the acquired parameter;
    The AV data reproduction method includes:
    The obtaining unit obtaining parameters of the AV data;
    The process execution control unit selects a processor for executing the first process from the N processors based on the acquired parameters, and the N processors based on the acquired parameters Out of the K processes, a processor that executes a second process that is a process other than the first process is selected, and the process execution control unit selects a processor that is selected to execute the first process. Including causing the processor selected to execute the first process and causing the processor selected to execute the second process to execute the second process.
    AV data playback method.

PCT/JP2010/003630 2009-06-25 2010-05-31 Av (audio visual) data playback circuit, av data playback device, integrated circuit, and av data playback method WO2010150465A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009151494 2009-06-25
JP2009-151494 2009-06-25

Publications (1)

Publication Number Publication Date
WO2010150465A1 true WO2010150465A1 (en) 2010-12-29

Family

ID=43386255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003630 WO2010150465A1 (en) 2009-06-25 2010-05-31 Av (audio visual) data playback circuit, av data playback device, integrated circuit, and av data playback method

Country Status (1)

Country Link
WO (1) WO2010150465A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057738A (en) * 2003-07-18 2005-03-03 Canon Inc Signal processing apparatus, signal processing method, and program
JP2006517362A (en) * 2003-01-20 2006-07-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Video encoding
JP2007512749A (en) * 2003-11-26 2007-05-17 エスティーマイクロエレクトロニクス、リミテッド Video decoding device
JP2007184871A (en) * 2006-01-10 2007-07-19 Toshiba Corp Moving picture decoding apparatus and moving picture decoding method
JP2007219577A (en) * 2006-02-14 2007-08-30 Sony Corp Data processor, data processing method, program for data processing method and recording medium with its program recorded
JP2008117313A (en) * 2006-11-07 2008-05-22 Sony Computer Entertainment Inc Task distribution method and information processor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517362A (en) * 2003-01-20 2006-07-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Video encoding
JP2005057738A (en) * 2003-07-18 2005-03-03 Canon Inc Signal processing apparatus, signal processing method, and program
JP2007512749A (en) * 2003-11-26 2007-05-17 エスティーマイクロエレクトロニクス、リミテッド Video decoding device
JP2007184871A (en) * 2006-01-10 2007-07-19 Toshiba Corp Moving picture decoding apparatus and moving picture decoding method
JP2007219577A (en) * 2006-02-14 2007-08-30 Sony Corp Data processor, data processing method, program for data processing method and recording medium with its program recorded
JP2008117313A (en) * 2006-11-07 2008-05-22 Sony Computer Entertainment Inc Task distribution method and information processor

Similar Documents

Publication Publication Date Title
US8902966B2 (en) Video decoding device
EP1775961B1 (en) Video decoding device and method for motion compensation with sequential transfer of reference pictures
RU2511595C2 (en) Image signal decoding apparatus, image signal decoding method, image signal encoding apparatus, image encoding method and programme
JP4746550B2 (en) Image encoding device
JPH06326996A (en) Method and equipment for decoding compressed video data
JP2005175997A (en) Decoding apparatus, electronic apparatus, computer, decoding method, program, and recording medium
JP2011147189A (en) Transcoding apparatus and transcoding method
JP2010141821A (en) Streaming processor and processor system
JP5395307B2 (en) Moving picture decoding apparatus and moving picture decoding method
TWI330976B (en) Method and apparatus for encoding/decoding dynamic graphic content
US20220191517A1 (en) Device and method of video encoding with first and second encoding code
KR20060093743A (en) Method and apparatus of video transcoding and pvr of using the same
WO2010100991A1 (en) Movie stream decoding apparatus, control method of same, program, and recording medium
JP2008136187A (en) Transcoding apparatus and transcoding method
WO2010150465A1 (en) Av (audio visual) data playback circuit, av data playback device, integrated circuit, and av data playback method
KR100623710B1 (en) Method of processing a plurality of moving picture contents by sharing a hardware resource
Neto et al. Configurable Power/Quality-Aware Hardware Design for the AV1 Directional Intra Frame Prediction
JP2008193444A (en) Information processor
JP2005005997A (en) Image data processor
JP6649212B2 (en) Encoding device, decoding device, and image processing system
JP2007318443A (en) Image decoding device
JP2016149770A (en) Minimization system of streaming latency and method of using the same
JP2015106837A (en) Image decoding apparatus, image encoding apparatus, imaging apparatus, image decoding method, image encoding method, and program
KR200422852Y1 (en) Device of processing a plurality of moving picture contents by sharing a hardware resource
JP2009225190A (en) Decoding method, decoder and decoding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10791791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP