WO2010148871A1 - 一种波分时分混合复用的无源光网络系统 - Google Patents

一种波分时分混合复用的无源光网络系统 Download PDF

Info

Publication number
WO2010148871A1
WO2010148871A1 PCT/CN2010/073159 CN2010073159W WO2010148871A1 WO 2010148871 A1 WO2010148871 A1 WO 2010148871A1 CN 2010073159 W CN2010073159 W CN 2010073159W WO 2010148871 A1 WO2010148871 A1 WO 2010148871A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
sub
summer
dense
Prior art date
Application number
PCT/CN2010/073159
Other languages
English (en)
French (fr)
Inventor
苏婕
何子安
朱松林
刘波
李长垒
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010148871A1 publication Critical patent/WO2010148871A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0228Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
    • H04J14/023Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON]
    • H04J14/0232Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON] for downstream transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0261Optical medium access at the optical multiplex section layer
    • H04J14/0265Multiplex arrangements in bidirectional systems, e.g. interleaved allocation of wavelengths or allocation of wavelength groups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J2014/0253Allocation of downstream wavelengths for upstream transmission

Definitions

  • Wood has low cost, multi-user connection, long distance, high, etc., and has gradually replaced the existing copper
  • the main wood will be connected to the wood.
  • the existing elements are mainly used (T e v o pex g-Pa veOp ca ewo , T PO ), T PO
  • the wavelength of the sheep and the utilization of the wavelength band are very low.
  • the T PO of the sheep wavelength can not meet the wood requirements, so the new wave of multi-wavelength alpaca (Wavee gh v o pex g a veOp ca ewo , W PO ) is proposed.
  • the end user occupies the medium channel, and the multi-wavelength channel uses the same method in the same root port, so that the end user can mediate the wavelength band resources.
  • W PO Hugh users have provided more, and have taken advantage of the ⁇ wavelength band resources, the land has expanded.
  • the W PO system requires the terminal (Op ca e Te a, OT) sheep (Op ca ewo, O, the same uplink and downlink use multiple wavelengths, of course W PO provides users with a large increase in width, but the system and the user accept the limitation of wavelength channel teaching.
  • Multi-wavelength form and the form used below each wavelength
  • the PO system not only retains the special features of the T PO connection, but also has the W PO system multi-wavelength configuration and high security.
  • the wood to be solved by the firm is to provide low-cost O.
  • the wood solution for solving the technical problem is to provide a hybrid system, including the middle, the client and the optical distribution in the user terminal, including the terminal, the user. End includes at least sheep
  • the terminal is at multiple wavelengths down to the optical distribution, and the multi-wavelength uplink through the received optical distribution
  • Light is distributed over multiple wavelengths and will get the downlink down at least , and ascend
  • the sheep includes the ascending sheep, and the ascending sheep is on the upside to form an upward wave with a specific wavelength, and will go up.
  • Optical distribution includes channel-dense wavelength summer interpreter and at least inter-beam splitter channel dense wavelength summer demultiplexer for multi-wavelength downlink
  • the downlink will be obtained according to the different wavelengths of the splitter, and the multi-wavelength uplink splitter is used for the uplink of the different splitters for the downlink at least the sheep, which is close to at least the upstream of the sheep.
  • the user end is included in the receiving and each receiving, the light distribution includes the second user
  • the first wave is used for multi-wavelength downlink and
  • the second device is used for multi-wavelength downlink and parallel, and is close to the multi-wavelength uplink of the channel-dense wavelength summer decoder.
  • Step the terminal includes the first, and the multi-wavelength is up.
  • the middle includes the sub-light source, and the ascending sheep includes the reflection absorber.
  • Sub-light source in household multi-wavelength sub-light The first device is used for multi-wavelength sub-light and multi-wavelength downlink same channel dense wavelength summer decomposer, and multi-wavelength uplink terminal for channel dense wavelength summer decomposer
  • the channel-dense wavelength summer approximation is close to the multi-wavelength sub-light, and the different wavelengths respectively get the Shenzi light down with different splitters, and the uplink, which will get the multi-wavelength uplink
  • the beam splitter is close to the sub-light and at least reflects the reflection in the sheep, which is close to at least the reflection in the sheep.
  • the wavelength summer applicator has an up-going of a specific wavelength, which is nearly reversed to the splitter.
  • the multi-wavelength sub-laser source includes a multi-wavelength laser at least between the household light, the first dense wavelength summer device, and the second largest device, the second largest device for multi-wavelength sub-light, which is much larger Wavelength sub-light.
  • the ⁇ includes an uplink ⁇ and a downlink ⁇ ,
  • the downlink is higher than the multi-wavelength sub-light and the multi-wavelength downlink
  • Multi-wavelength uplink terminal Multi-wavelength uplink terminal.
  • the multi-wavelength sub-laser source includes at least a child
  • the first dense wavelength summer solution is used for sub-light to form multi-wave long sub-light
  • Gain sheep use the pumping multi-wavelength sub-light to channel the dense wavelength summer decomposer, which is close to the multi-wavelength uplink of the channel-dense wavelength summer applicator.
  • the gain sheep include the second and third optics and the rare earth.
  • the second device is used to multi-wavelength sub-light and pump rare earth erbium, and to multi-wavelength up the third light
  • the rare earth ⁇ is pumped by pumping, the multi-wavelength sub-light is large, and the third light is
  • the third illuminator is used to multiply the large multi-wavelength sub-optical channel dense wavelength summer interrogator, and the multi-wavelength upstream of the channel dense wavelength summer decoupling second.
  • the sub-light source ASE sub-light source includes a general-purpose ASE source for multi-wavelength sub-light.
  • the ASE sub-light source includes a third optical amplifier, a reverse-connected dense wavelength summer decomposer, and a fifth dense wavelength summer decomposer.
  • the third optical amplifier has a large multi-wavelength sub-light.
  • the terminal includes a second dense wavelength summer disintegrator and at least a first wavelength laser, and the ascending sheep includes a second wavelength laser.
  • the first wavelength laser can be used for downlink to form a downlink with a specific wavelength
  • the second dense wavelength for the second dense wavelength summer demultiplexer is used for downlink forming a multi-wavelength downlink
  • the multi-downlink light is Distribution
  • the second wavelength can be used by the laser to form an uplink with a specific wavelength to distribute the upstream light.
  • the use of the multi-wavelength light source of the rabbit reaches form the source with the specific wavelength to meet the user's needs, and maintains the meta-source characteristics, thus reducing the cost.
  • This friend's mixed elemental system is mainly based on "O wood, which is the wood of the e ec ve Se co d co Opca A pe (RS), and the other element of the hybrid.
  • the system of the first rest, as shown in Figure 1, the mixed elementary system includes the medium, the client and the light distribution in the user's end.
  • the terminal includes the terminal O T , and each of the CATV and the first wave device W, and the user terminal includes at least a sheep.
  • O T receives the multi-upstream of O
  • O is more downstream, 2 " and , will get the downlink at least the sheep O , near the upstream of O , and will get the multi-wavelength uplink , ⁇
  • Steps at o may include a second user W 2 channel dense wavelength summer applicator x/e x and at least a splitter.
  • W 2 is down at multiple wavelengths of W , , " and each decomposition , respectively , received by the client and each
  • x/ e x can be an array or a combination of thin film filters, which can be different at multiple wavelengths.
  • each splitter is at least O. x/ ex, x/ em x for different wavelengths of different splitters to obtain multi-wavelength uplink,
  • the upstream form of the splitter is uplinked, and the uplinks of different splitters are uplinked in the same form.
  • the O includes the uplink sheep, the uplink sheep on the uplink to form a specific uplink, and the uplink O in the uplink O.
  • the user can take the uplink to teach lasers of different wavelengths, or use different wavelengths.
  • the Son of God goes up to form an upward movement.
  • the smooth uphill sheep can be a wavelength laser that can be used for a specific wavelength of a household.
  • the rabbit has a multi-wavelength at O, and the low-cost "O wood” has reduced the PO system.
  • the uplink sheep includes RSOA, O is near (1), and includes up and down ⁇ , and the next line is ⁇ ⁇ multi-wavelength sub-light, (
  • W includes low-cost, low-power, multi-wavelength lasers at least between households 2. .. , near the dense wavelength summer applicator x/ ex and the second largest A2
  • A2 is multi-wavelength sub-light," large, will multi-wavelength sub-light, W W will multi-wavelength sub-light, multi-wavelength down, "and the light in each of the lower ⁇ O.
  • x/ex is multi-wavelength sub-light of nearly 1, "divided to have different light beams of different gods, different wavelengths will respectively sub-light down the different beamsplitters, for example, /, with the splitter 1, and the uplink to obtain multiple wavelengths Upward, ,
  • the beam splitter is close to the light of the gods with a certain wavelength and descends, at least the RS A in the O, which is close to the uplink x/ e x of the RSOA in at least
  • the RSOA forms an uplink with a specific wavelength on the upper side of the large sub-optical light, which is close to the optical splitter that will reverse the upstream.
  • Example 6, O Nearly includes the third waver W 3, the dice light and the downlink, / the shot O, the first pass W 3 will go down, and the sub-light, decompose, downlink, shoot to receive, sub-light, shoot RSOA, RSOA big uplink, connect Look at the reverse, then the W 3 splitter.
  • the method can be direct or external.
  • the solution is that only the light in the same direction is in the root.
  • the rabbits have high-power multi-wavelength laser sub-sources and the up-and-down in the same root is normal because of non-domain. This program is increasing
  • the power, as well as the multi-wavelength uplink, "the front of the line is large, and the gain of the sheep within the gain of O is reduced, which helps to reduce the cost and reduce the cost.
  • the second method of the combination of the power system, 2, the second light mode of the gods light source is also W, O the first rest mode is the same, this mode includes at least in the household light. .. , other than x/ e x , including pumped sheep pumped by the household, this method of 1 in the middle, O includes nearly the benefit of the sheep, the way up and down the sheep.
  • the multi-wavelength of the pass of the sheep is up, "1 to 2, and 3 to A.
  • the gain in the second rest mode, shown in 3, the gain of the way sheep includes W 2, 2 ( 2), 3 ( 4 ) W 4 and rare earth ⁇ .
  • Gain sheep are mainly used to pump most wavelengths of sub-lights to x/ex, as well as
  • Rare earth lanthanum, rare earth lanthanum pumped by pumping multi-wavelength sub-light, "large, will be 3, 2 near
  • the uplink In the uplink, the uplink, multi-wavelength uplink, "W 4, 2, 3 of the forester 3, directly shot to the forestwalker 3, then 2 W 2 sheep Hey.
  • the gain of the pump in the pump is used, and the multi-wavelength sub-optical power in the rabbit is high, which solves the high-power multi-wavelength laser sub-light source and large multi-wavelength uplink, "in the same root Non-domain and normal.
  • the first mode is the same, the sub-source large radiation source (p edSpo a eo and o, ASE) sub-light source, which is included in the multi-wavelength sub-mode.
  • Light "The universal ASE source.
  • W will multi-wavelength down, and each multi-wavelength upstream of the ASE source, "
  • the power of the x/e x-divided sheep is small, which may cause the cyan power budget to remain unchanged.
  • the ASE sub-light source includes the third illuminator 3, the reverse connection of the dense wavelength summer decompressor x / e x4 and the fifth dense wavelength summer decomposer x / e x5
  • x/ e x4 is a multi-wavelength sub-light of a general ASE source
  • x/ e x5 is a multi-wavelength sub-light of a general ASE source
  • x/e x x/ e x2 x/ e x3 x/ e x4 x e x5 can be used for an array of ordinary arrays or a combination of thin film filters.
  • the low-cost wavelength of the laser can be used as the light source group.
  • the wavelength of the laser can be 5 wavelengths, so each of the user-side upstream wavelength lasers and the downstream wavelength lasers can be connected to the same splitter.
  • the wavelengths are the same, but the wavelengths of the users connecting different beamsplitters are different. Because the forces of the upstream and downstream wavelengths are different, they are not non-domain, so this method is a sheep.
  • the O T of this mode is at least the first wavelength of the laser T S T S . . . T S et al., x/ e x2 and the first A4, 8 show that the ascending sheep in O includes the second wavelength laser T S, for example
  • the first wavelength laser can be used for downlink to form a downlink with a specific 5 wavelength, which will be x/e x2 x/ e x2 is at least in the lower wavelength of the first wavelength laser
  • the A4 can be nearly large.
  • T S T S for different users . . . T S to make it have a specific wavelength, each downlink down, multiple downlink with different wavelengths
  • the downward W 3 of O is incident on the phase of the light
  • the second wavelength in O is the wavelength of the T S phase of the laser
  • the upward of each uplink is O.
  • Hugh, 7 shows a splitter with W 3 on the rise, each splitter hits x/ e x to form a multi-wavelength uplink
  • W2 is connected to the ⁇ ⁇ . In the middle, multi-wavelength up,” hits the pre-amplifier A before receiving the large, then x/e x3 respectively.
  • And CATV can be any of the communication C-band, band and band, or other bands, and it does not overlap with the household.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种波分时分混合复用的无源光网络系统,包括中心局端、用户端和设置在所述中心局端与用户端之间的光分配网络,中心局端包括光线路终端,用户端包括至少一个光网络单元;光网络单元包括上行处理单元,所述上行处理单元用于加载上行调制信号以形成具有特定波长的上行光信号,以及将所述上行光信号输入所述光分配网络。本发明在保证高带宽和多用户数,满足整个网络光功率预算的前提下,使用了无需多波长光源的低成本"无色"ONU技术,并且保持了整个ODN的无源特性,因此显著降低了建网成本。

Description

合 用的元 統 木領域
本 涉及光接 領域, 尤其涉及 混合 用的元 統。
背景 木
看 ( a veOp ca ewo , O ) 木的 和成熟, TTX 木 ( 仟到戶、 仟到 、 仟到 等 列 接 木) 在全球領域得到戶 。 木具有低成本、 多用戶接 、 長距 、 高 等 , 目前已 逐漸取代現有的以銅
的有 接 , 將 接 木的主流 木。
現有的元 主要是 于 用的元 (T e v o pex g-Pa veOp ca ewo , T PO ), T PO
羊 波長, 波長帶 的利用率很低。
看 們 于 需求的不 提高, 于羊 波長的 T PO 接 木 然不能滿足 木要求, 因此提出了 于多波長羊仟 的新型 統 波 (Wavee gh v o pex g a veOp ca ewo , W PO ), 工作原理
終端用戶羊 占用 介 通道, 多 波長通道 用的方式在同 根 仟中 , 使 終端用戶都 介波長帶 資源。W PO 休用戶提供了更大的 , 而且充分利用了 仟的波 長帶 資源, 大地拓展了 的 。 然而, W PO 統 要求 終端 (Op ca e Te a, O T) 羊 (Op ca ewo , O 同的上下行 都使用多波長 , 然 W PO 提供 用戶的 寬大大增 , 但是 統的 以 及用戶接 受到波長通道教的限制。
上 , 考慮到 T PO 統和W PO 統的利弊, 們 提出將 形式的元 相結合, 形成 混合
( yb d a veOp ca ewo , PO ), 即 接
用的多波長形式, 而每 介波長下面 用的形式
。 PO 統既保留了 T PO 統接 用戶 多的特 , 兼具 W PO 統多波長 配置、 安全性高的 。
PO 統 然 各 多 , 但是其 成本仍然是 介 重的 , 果O 使用多波長, 增 各 和 各成本, 而且降低 各的通用性, 因此 何降低成本的 , 在于 何在 PO 中引 兔使 用多波長光源的 " O 木, 何 " O 已 W PO 統研究的 介 。 內容
本 所要解決的 木 是, 提供 低成本 O 本 解決其技木 用的 木方案是 提供了 混 合 用的元 統, 包括中 、 用戶端和 在所 中 占用戶端 同的光分配 , 包括 終端, 用戶端包括至少 介 羊
終端 于 仟 多波長下行 至 光分配 , 以及通 仟接收 光分配 的多波長上行
光分配 于 多波長下行 和 , 將得到 的下行 至少 介 羊 , 以及 上行
和 , 將得到的多波長上行 仟 終端 羊 包括上行 羊 , 上行 羊 于 上行 以形成具有特定波長的上行 , 以及將 上行
光分配 。
光分配 包括 通道密集波長夏用解 用器和至少 介分光器 通道密集波長夏用解 用器用于 多波長下行
, 將得到的下行 按照不同的波長分別 不同的分光器, 近 于 不同的分光器的上行 得到多波長上行 分光器用于 下行 至少 介 羊 , 近 于 至少 介 羊 的上行
通道密集波長夏用解 用器。
近包括第 波 用器和 于 並各 的 並各 , 用戶端近包括 于接收 並各 的 並各接收 , 光分配 近包括第二 用器
第 波 用器用于 多波長下行 和 並各
仟 第二 用器
第二 用器用于 多波長下行 和 並各 , 近 于將 通道密集波長夏用解 用器的多波長上行
仟 終端。
步 , 終端近包括第 大器, 于 多波長上行 大。
近包括 在中 或者光分配 的第 , 中 近 包括 子光源, 上行 羊 包括反射 休 大器
子光源 于戶生多波長 子光 第 器用于將 多波長 子光和多波長下行 同 通道密集波長夏用解 用器, 以及將 通道密集波長夏用 解 用器的多波長上行 終端
通道密集波長夏用解 用器近 于 多波長 子光 , 不同的波長分別將 得到的神子光 下行 同 不同的分光器, 以及 所述上行 , 將得到的多波長 上行 第
分光器近 于 子光 至少 介 羊 中的反射 休 大器, 近 于 至少 介 羊 中的 反射 休
波長夏用解 用器 具有特定波長的上行 , 近 于將 上行 反向 至 分 光器。
子光源 多波長 子激光源。
方式中, 所述多波長 子激光源包括至少 介 于戶生 子 光的多波長激光器、 第 密集波長夏用解 用器和第二 大器 第 第二 大器用于 多波長 子光 大, 將 大 的多波長 子光 第 。
利用 仟 , 所述 仟包括上行 仟和下行 仟, 第
在所 光分配 中 下行 仟 于將 多波長 子光和多波長 下行 第 上行 仟 于將 第
的多波長上行 終端。
利用羊仟 , 所述多波長 子激光源包括至少 介 于戶生 子 的多波長激光器、 第 密集波長夏用解 用器和 于戶生泵浦 的泵浦 羊 , 第 杯 在所 中 , 光分配 近包括 增 益羊
第 密集波長夏用解 用器用于 子光 形成多波 長 子光
第 近 于將 泵浦 、 多波長 子光和多波長下行 羊 仟 增益羊
增益羊 于利用 泵浦 大 多波長 子光 將 通道密集波長夏用解 用器, 近 于將 通道密集波長夏 用解 用器的多波長上行 羊 仟 第
其中, 增益羊 包括第二 、 第三光 器和稀土 . 第二 器用于將 多波長 子光和泵浦 稀土 仟, 以及將 第三光 的多波長上行 羊 仟 第
稀土 仟 于利用 泵浦 作力泵浦 多波長 子光 大, 將 所述第三光
第三光 器用于將 大 的多波長 子光 通道密集 波長夏用解 用器, 以及將 通道密集波長夏用解 用器的多波 長上行 第二 。
另 方式中, 子光源 ASE 子光源, 其中包括 于 多波長 子光的通用 ASE光源。
步 , ASE 子光源近包括第三光 大器、 反向連接的第 密集波長夏用解 用器和第五密集波長夏用解 用器 其中, 所述第 密集波長夏用解 用器, 于 多波長 子光 所述第五密集波長夏用解 用器, 于 的多波長 子光 第三光 大器
所述第三光 大器, 于 多波長 子光 大。
近有 方式中, 終端近包括第二密集波長夏用解 用器和至少 介第 波長可 激光器, 上行 羊 包括第二波長 可 激光器
第 波長可 激光器用于 下行 以形成具有特定波長的 下行 , 將 下行 第二密集波長夏用解 用器 第二密集波長夏用解 用器用于 下行 形成 多波長下行 , 將所述多 下行 所述光分配
第二波長可 激光器用于 上行 以形成具有特定波長的 上行 , 將 上行 光分配 。
本 的有益效果是 在 高 和多用戶 , 滿足
預算的前提下, 利用 兔使用多波長光源的 " 木, 通 在 內的上行 羊 上行 形成具有滿足用戶需求、具有 特定波長的上行 , 且保持了 的元源特性, 因此 著降低 了 成本。
本 了 于 的神子光 上行 , 通 上 仟 , 或者增大中 端的 功率有效地解決了非域性 的影 , 了 效率。
本 具有羊仟接 容量大、 用戶分享 、 成本低、 于 和 等 。 說明
1 力本 的 混合 用的元 統第 休 方式
2力本 的 混合 用的元 統第二 休 方式
3 第二 休 方式中的 增益羊
4力本 的 混合 用的元 統第三 休 方式
5 ASE 子光源的
6 第 、 第二 和第三 休 方式通用的O 示意
7 力本 的 混合 用的元 統第 休 方式
8 第 休 方式的O 示意 。
休 方式
以下結合
本友 的 混合 用的元 統的 休 方式主要 于 " O 木, 是 于 休 大器 ( e ec ve Se co d co Op ca A p e , RS ) 的 木, 另 是 1 力本 的 混合 用的元 統第 休 方式 , 1 所示, 混合 用的元 統 般包括中 、 用戶端和 在中 占用戶端 同的光分配 Op ca b o ewo , O
其中, 包括 終端 O T, 于 並各 的 並各 CATV 和第 波 用器W , 用戶端包括至少 介 羊 。
于 仟 多波長下行 , "至O , 休 程力 Tx 、 Tx2.‥Tx 的具有不同波長的下行 第二密集波長夏用解 用器 x/ e x2 , 形成多波長下 行 , ,
" W 將多波長下行 , "和 並各 C 仟 O
O T 于 仟接收 O 的多 上行 , ,
" 休需要, 果多波長上行 , "的功率不移大, O T 近 第 大器 A 多波長上行 , " 功率 大, 大 的多波長上行 , 第三密集波長夏
" 用解 用器 x e x 3 , 將具有不同波長的上行 分別 其中相 的 接收 RX RX2. RX
O 于 多 下行 , 2 " 和 , 將得 到的下行 至少 介 羊 O , 近 于 O 中的上行 和 , 將得到的多波長上行 , 仟
步 , 在 的O 近可包括第二 用器W 2 通道密集波長夏用解 用器 x/ e x和至少 介分光器。
W 2 于 W 仟 的多波長下行 , " 和 各 分解 , 分別 用戶端接收 並各
的 CATV接收 和 x/ e x, 近 于將 x/ e x的多 上行 , J" O
x/ e x可以是 的陣列 , 也可以是薄膜濾光 的 組合, 于 多波長下行 , 得到具有不同
" 波 長的下行 , 再將 按照不同的波長分別 不同的分光器, 分 光器 接收到的下行 至少 介O 。 相 , 各 分光器 至少 介 O 的上行 x/ e x, x/ em x 不同分光器的具有不同波長的上行 得到多波長上行 , , 同
" 介分光器 的上行 形式上行, 不同分光器 的上行 同通 用的形式上行。
本 的O 中包括上行 羊 , 上行 羊 于 上行 以形成具有特定 的上行 , 以及將上行 O 所有O 中的上行 羊 統 ,用戶可以 休需要將上行教 在不同 波長的激光器上, 或者利用具有不同波長的神子 光 上行 以形成上行 。
上行 羊 的 方式具有多 , 例 包括RSOA , 提 供多波長 子光源 于O 的 , 以 多波長上行 ,
"的順利 上行 羊 近可以是包括 戶生特定波長的上 行 的波長可 激光器等。 由于 兔了在O 引 多波長, 了低成本的 " O 的 木, 本 著降低了 PO 統的 本。
第 休 方式的 PO 統中,上行 羊 包括RSOA,O 中近 第 ( 1), 仟包括上行 仟和下行 仟, 下 行 仟 于將多波長 子光 , (
" 由于 子光在O 中 上行 形成上行 , 了 方便, 本 的上行 和 子 光采 同 )、 多波長下行 , "和 並各 同 上行 仟 于將 1的多波長上行 , O
" T
4r 近包括 于戶生多波長 子光的神子光源, 子光源 高 功率多波長激光 子光源, 多波長 子激光源 ( W )
W 包括至少 介 于戶生 子光的低成本小功率的多波長激光器 2.‥ , 近包括第 密集波長夏用解 用器 x/ e x 以及第 二 大器 A2
其中, x/ e x 于 具有不同波長的神子光 形成多 波長 子光 , ,
" A2 于 多波長 子光 , " 大, 將 大 的多波長 子光 , W W 將多 波長 子光 , 多波長下行 , "和 並各 下行 仟 O 中的光 1。
下行 中, 1將多波長 子光 , 、 多
" 波長 下行 , "和 並各 同 W 2, 即多波長 子光 、 多波長下行 "和 並各 。 射到林行器 1的 1 , 再 2 口出 W 2
上行 中, 1將 x/ e x的多波長上行 " O T, 即多波長上行 1 " 射到 林 行器 1的2 , 再 3 口出 上行 仟 端的 A
大。
x/ e x近 于 1的多波長 子光 , " 分得到具有不同 的神子光, 不同的波長分別將 子 光 下行 同 不同的分光器, 例 將 ,/ , 同 分光器 1, 以及 上行 得到多波長上行 , ,
" 將 1。
分光器近 于 具有 定波長的神子光和下行 起 , 至少 介O 中的RS A, 近 于 至少 介O 中的 RSOA的上行 x/ e x
RSOA 于 大 子光 上行 形成具有特定波長的上行 , 近 于將 上行 反向 至 的分光器。 例 6所示, O 近包括第三波 用器W 3, 吋 子光和下行 ,/ 射 O , 先通 W 3將下行 ,和 子光 , 分解 , 下 行 , 射至 接收 , 子光 , 射RSOA, RSOA 大 上行 , 接看反向 , 再 W 3 的分光器。
方式可以是直接 , 也可以是外 。
仟 方案的 在于, 根 仟中只 同 方向的光 。 而 兔了高功率多波長激光 子光源和上行 在同 根 仟 中由于非域性 而 法 常 的 。 本方案 增大中
的 功率, 以及 多波長上行 , " 行前置 大, 有 降低了 于O 內 增益羊 的增益 , 有利于降低成本, 降低 凡 。
2力本 的 混合 用的元 統第二 休 方式 , 2所示,本 的第二 休 方式的神子光源也 W , O 第 休 方式相同, 本 方式除了包括至少 介 于戶生 子光的 2.‥ , x/ e x 以外, 近包括 于戶生泵浦 的泵浦羊 , 本 方式的 1 在中 , O 中近包括 增 益羊 , 本 方式的上下行 都 羊 仟 。
下行 中, 1 將泵浦 p 和多波長 子光 , 多波長下行 "和 並各 。 羊 仟 增益羊 , 其 休方式 多波長 子光 , 多波 長下行 , 、 泵
" 浦 、 並各 W
, 射到林行器 1的 1 , 再 2 口出 羊 仟 增益羊 。
上行 中,通 羊 仟 的多波長上行 , " 射到 1的2 , 再 3 口出 A 大。 3 第二 休 方式中的 增益羊 , 3所示, 方式的 增益羊 包括W 2、 第二 ( 2)、 第 三光 ( 3) W 4和稀土 仟。 增益羊 主要用 于利用泵浦 大多波長 子光 將 x/ e x, 以及將
x/ e x的多波長上行 , " 羊 仟
1。
其中, 2 于將多波長 子光 , "和泵浦
稀土 仟, 稀土 仟利用泵浦 作力泵浦 多波長 子光 , " 大, 將 3, 2近 于將
3的多波長上行 , " 羊 仟 1。
3 于將 大 的多波長 子光 , " x/ e x,以及將 x/ e x的多波長上行 , "
2。
休 , 下行 中, W 2 多波長 子光 , 、 多
" 波長下行 , 、 泵
" 浦 、 和 並各 分解 , 即將其分成波長 c,
"和 "/ p三部分, 並各 直接 仟 到用戶端的 CATV接收 , 多波長 子光 , 和泵浦
" 射到 林行器2的 2 , 3 口出 稀土 仟, 多波長 子光 , " 稀土 仟 大 , 射到 林行器 3的 1 , 再 2 , 多波長下行 , W 4 x/ e x
"
上行 中, 了上行 、 的多波長上行 , " W 4 , 林行器3的2 , 3 , 直接 射至 林行器3的 1 , 再 2 W 2 羊 仟 。
羊仟 方案中,利用中 的泵浦 注 內的 增益羊 , 兔了中 出的多波長 子光功率 高, 解決了高功率 多波長激光 子光源和 大的多波長上行 , "在 同 根 仟中由于非域性 而 法 常 的 。
4力本 的 混合 用的元 統第三 休 方式 , 4所示的 方式中, 第 休 方式相同, 子光源 大 輻射光源 ( p edSpo a eo 而 o , ASE) 子 光源, 其中包括 于 多波長 子光 , "的通用 ASE光源。
本 方式中, 由于ASE 子光 于 的 ,相干 很 , 因此不 大的多波長上行 , " 生明 的非 域性相互作用, 了充分利用現有的 資源, 因此 羊仟 , 即
1 在中 。
本 方式中, W 將多波長下行 , 並各 和 通用 ASE光源的多波長上行 , "
1, 1將 羊 仟 O 中 的W 2 分解 相 , 上、 下行 方式 第 休 方式相同。 ASE 子光的泵浦 在O 中 x/ e x 分割成多波長 子光 , ,
" 在用戶端 RSOA 大
由于 ASE 子光直接下行至 O 分割 , 在中 受到 仟 功率的限制,而 的 x/ e x 引 較大的 外損耗, 因此 x/ e x 分割 的羊 功率 很小, 可能 造成 青光功率預算不移。
因此, 5 所示, 的 ASE 子光源近包括第三光 大器 3、 反向連接的第 密集波長夏用解 用器 x/ e x4和第五密集波 長夏用解 用器 x/ e x5
其中, x/ e x4 于 通用 ASE光源的多波長 子光 , , x/ e x5
" 于 的多波長 子光 , "
3, 3 于 多波長 子光 , " 大。 , 通 x/ e x4和 x/ e x5將 分割 合井 , 可 以將具有多波長的 功率 大至接近羊 的 仟 功率上限, 兔
以上 的各 方式中, x/ e x x/ e x2 x/ e x3 x/ e x4 x e x5 都可力普通的陣列 、 的陣列 , 也可以是薄膜濾光 的組合。
7 力本 的 混合 用的元 統第 休 方式 , 7 所示的第 休 方式中, 上下行 低 成本的波長可 激光器作力光源的組 方案。 波長可 激光器的5 波長可以 , 因此 各 只需 統 的用戶端上行波長可 激光器 和局 下行波長可 激光器, , 將 同 分光器相連的
波長 力相同, 而將不同分光器 連接的用戶的 波長 力不 同, 由于上下行波長 般 力不同, 相互 同不 生非域性 , 因 此本 方式 羊仟 。
0 本 方式的 O T近 至少 介第 波長可 激光器 T S T S .‥ T S 等、 x/ e x2和第 大器 A4, 8所示, O 中的上行 羊 近包括第二波長可 激光器 T S, 例
中包含 T S , O 中包含 T S
其中, 第 波長可 激光器用于 下行 以形成具有特定5 波長的下行 , 將 x/ e x2 x/ e x2 于 至少 介第 波長可 激光器中的下行
形成多波長下行 , 近可將 A4 大。
多波長下行 , "至 O 的 休 程力
不同用戶的 T S T S .‥ T S , 使其 出具有特定波長、 各 下行 的下行 , 具有不同波長的多 下行
x/ e x2 形成多波長下行 , ,
" A4 多 波長下行 , " 大 W W 將多波長 下行 , "和 並各 仟 O 中的W 2, W 2 分解 相 。
8所示, O 的下行 W 3 射到相 的光接 收 中, 而 O 中的第二波長可 激光器 T S 相 的 波長, 各 上行 的上行 然 將 O 。 休 , 7所示, 上行 可 W 3 的分光器, 各分光器 射到 x/ e x 中 形成多波長上行 , ,
" 再 W 2連接到 仟中上行 。 在中 , 多波長上行 , " 射到前置 大器 A 接收前的 大 , 再 x/ e x3 分別 相 的光接收 。
本 的多波長下行 , , 多
" 波長上行 , 以
" 及CATV 並各 可以分別是 通信C波段, 波段和 波段中的任何 介, 也可以是其他波段, 者 同 不戶生重疊。
本 具有羊仟接 容量大、 用戶分享 、 成本低、 于 和 等 , 統的 PO 統不同的是, 本 在 高 和多用戶 , 滿足 功率預算的前提下, 既保持了 光 分配 的元源特性, 有效地解決了非域性 的影 , 了
效率。 以上內容是結合 休的 方式 本 所作的 步 細說 明, 不能 本 的 休 只局限于 說明。 于本 木 領域的普通 木 東說, 在不 本 的前提下, 近可以做出若 干 羊推演或替換, 都 視力 于本 的保 。

Claims

要求
1. 混合 用的元 統, 包括中 、 用戶端 和 在所 中 占用戶端 同的光分配 , 其特 在于, 中 包括 終端, 用戶端包括至少 介 羊 其中, 終端, 于 仟 多波長下行 至 光分配 阿 , 以及通 仟接收 所述光分配阿 的多波長上行
光分配 , 于 多波長下行 和 , 將得到的下行 至少 介 羊 , 以及 上行
和 , 將得到的多波長上行 仟
終端
羊 包括上行 羊 , 于 上行 以形成具 有特定波長的上行 , 以及將 上行 光分配 。
2. 要求 1所述的 統, 其特 在于, 光分配 包括 通道密集波長夏用解 用器和至少 介分光器 其中,
通道密集波長夏用解 用器, 于 多波長下行
, 將得到的下行 按照不同的波長分別 不同的分光器, 近 于 不同的分光器的上行 得到多波長上行 分光器, 于 下行 至少 介 羊 , 近 于 至少 介 羊 的上行
通道密集波長夏用解 用器。
3. 要求 2所述的 統, 其特 在于, 中 近包括第 波 用器和 于 並各 的 並各 用戶端近 包括 于接收 並各 的 並各接收 光分配 近包括第二 用器 其中, 第 波 用器, 于 多波長下行 和 並各
仟 第二 用器
第二 用器, 于 多波長下行 和 並各 分解 , 分別 通道密集波長夏用解 用器和 並 各接收 以及將 所述 通道密集波長夏用解 用器的多波長上行 仟 終端。
4. 要求 2所述的 統, 其特 在于, 終端近包括 第 大器, 于 所述多波長上行 大。
5. 要求2至4任 項 的 統, 其特 在于, 統近包 括 在中 或者光分配 的第 , 近包括 子 光源, 上行 羊 包括反射 休 大器 其中,
子光源, 于戶生多波長 子光
第 , 于將 多波長 子光和多波長下行 同 通道密集 用解 用器, 以及將 通道密集 通道密集波長夏用解 用器, 近 于 多波長 子光 , 不同的波長分別將 得到的神子光 下行
同 不同的分光器, 以及 上行 , 將得到的 多波長上行 所述第
分光器, 近 于 子光 至少 介 羊 中的反射 休 大器, 近 于 至少 介 羊 中的反射 休 大器的上行 通 道密集波長夏用解 用器
反射 休 大器, 于 大 子光 上行 形成具有特定波長的上行 , 近 于將 上行 反向 至 分光器。
6. 要求 5 的 統, 其特 在于, 子光源 多波長 子激光源。
7. 要求 6 的 統, 其特 在于, 多波長 子激光源 包括至少 介多波長激光器、 第 密集波長夏用解 用器和第二 大器 其中,
所述多波長激光器, 于戶生 子光
所述第 密集波長夏用解 用器, 于 子光 形 成多波長 子光
所述第二 大器, 于 多波長 子光 大, 將 大 的多波長 子光 所述第 。
8. 要求7 的 統, 其特 在于, 仟包括上行 仟 和下行 仟, 第 在所 光分配 中 第
所述上行 仟 于將 第 的多波長上行
終端。
9. 要求 6 的 統, 其特 在于, 多波長 子激光源 包括至少 介 于戶生 子光的多波長激光器、 第 密集波長夏用解 器和 于戶生泵浦 的泵浦羊 , 第 杯 在所 中 , 光分配 近包括 增益羊 其中,
所述第 密集波長夏用解 用器, 于 子光 形 成多波長 子光
所述第 , 近 于將 泵浦 、 多波長 子光和多波長下 羊 仟 增益羊 增益羊 , 于利用 泵浦 大 多波長 子光 將 通道密集 用解 用器, 近 于將 通道密集 波長夏用解 用器的多 上行 羊 仟 第
5 0. 要求9 的 統, 其特 在于, 增益羊 包括 第二 、 第三光 器和稀土 仟 其中,
第二 , 于將 多波長 子光和泵浦 稀土 仟, 以及將 所述第三光 的多波長上行 羊 仟 第
10 稀土 仟, 于利用 泵浦 作力泵浦 多波長 子光 大, 將 第三光
第三光 , 于將 大 的多波長 子光 通 道密集波長夏用解 用器, 以及將 通道密集波長夏用解 用器 的多波長上行 第二 。
15 1. 要求5 的 統, 其特 在于, 子光源 大 輻射光源 ASE 子光源,其中包括 于 多波長 子光的通用 ASE光 源。
12 要求 11 的 統, 其特 在于, ASE 子光源近 包括 第三光 大器、 反向連接的第 密集波長夏用解 用器和第五密集 20 波長夏用解 用器 其中,
第 密集波長夏用解 用器, 于 多波長 子光
第五密集波長夏用解 用器, 于 的多波長 子光 第三光 大器
第三光 大器, 于 多波長 子光 大。
25 3. 要求 1至4中任 項 的 統, 其特 在于, 終端近包括第二密集波長夏用解 用器和至少 介第一波長可 激光 器, 上行 羊 包括第二 可 激光器
第 波長可 激光器用于 下行 以形成具有特定波長的 下行 , 將 下行 第二密集 用解 用器 第二密集波長夏用解 用器用于 下行 形成 多波長下行 , 將 多波長下行 所述光分配
第二波長可 激光器用于 上行 以形成具有特定波長的 上行 , 將 上行 光分配 。
PCT/CN2010/073159 2009-11-20 2010-05-24 一种波分时分混合复用的无源光网络系统 WO2010148871A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910109681.4 2009-11-20
CN2009101096814A CN102075819A (zh) 2009-11-20 2009-11-20 一种波分时分混合复用的无源光网络系统

Publications (1)

Publication Number Publication Date
WO2010148871A1 true WO2010148871A1 (zh) 2010-12-29

Family

ID=43385960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073159 WO2010148871A1 (zh) 2009-11-20 2010-05-24 一种波分时分混合复用的无源光网络系统

Country Status (2)

Country Link
CN (1) CN102075819A (zh)
WO (1) WO2010148871A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297873A (zh) * 2013-06-20 2013-09-11 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103384354A (zh) * 2013-07-04 2013-11-06 北京邮电大学 一种无源光网络光分配网的优化设计方法
EP2744135A3 (en) * 2012-12-16 2014-06-25 Juniper Networks, Inc. Optical access network having emitter-free customer premise equipment and adaptive communication scheduling
CN104205627A (zh) * 2012-03-30 2014-12-10 森特拉克斯股份有限公司 行波放大器中用于减轻直流(dc)偏置电感器自谐振效应的锥形衰减器网络

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2737646B1 (en) * 2011-07-29 2017-09-27 Telefonaktiebolaget LM Ericsson (publ) Optical access network
CN103248447A (zh) * 2012-02-09 2013-08-14 北京邮电大学 波分复用无源光网络系统
CN103503339B (zh) * 2013-03-04 2016-06-29 华为技术有限公司 光发射机、信号传输方法以及系统
CN104065415A (zh) * 2013-03-18 2014-09-24 北京邮电大学 一种基于瑞利散射效应实现无色onu上行波长的装置及方法
CN103281612A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统的下行传输方法
CN103297872A (zh) * 2013-06-19 2013-09-11 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281610A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN104883226B (zh) * 2014-02-28 2018-12-21 北京邮电大学 基于拍频噪声实现无色光网络单元上行光波长设定的方法
CN106341190B (zh) * 2015-07-07 2019-10-25 上海诺基亚贝尔股份有限公司 一种无源光网络系统及其装置
US10135218B2 (en) 2015-10-02 2018-11-20 Ayar Labs, Inc. Multi-wavelength laser system for optical data communication links and associated methods
CN108449660A (zh) * 2018-06-25 2018-08-24 北京华麒通信科技有限公司 一种pon系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855834A (zh) * 2005-04-20 2006-11-01 华为技术有限公司 一种实现无源光网络组播的方法
US20070230481A1 (en) * 2006-03-31 2007-10-04 Hiroki Ikeda Passive optical network system for supporting virtual ethernet service and method for the same
CN101237293A (zh) * 2008-03-03 2008-08-06 中兴通讯股份有限公司 波分时分混合复用无源光网络系统
CN101267681A (zh) * 2008-04-23 2008-09-17 中兴通讯股份有限公司 一种无源光网络的接入设备及组播控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855834A (zh) * 2005-04-20 2006-11-01 华为技术有限公司 一种实现无源光网络组播的方法
US20070230481A1 (en) * 2006-03-31 2007-10-04 Hiroki Ikeda Passive optical network system for supporting virtual ethernet service and method for the same
CN101237293A (zh) * 2008-03-03 2008-08-06 中兴通讯股份有限公司 波分时分混合复用无源光网络系统
CN101267681A (zh) * 2008-04-23 2008-09-17 中兴通讯股份有限公司 一种无源光网络的接入设备及组播控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205627A (zh) * 2012-03-30 2014-12-10 森特拉克斯股份有限公司 行波放大器中用于减轻直流(dc)偏置电感器自谐振效应的锥形衰减器网络
EP2744135A3 (en) * 2012-12-16 2014-06-25 Juniper Networks, Inc. Optical access network having emitter-free customer premise equipment and adaptive communication scheduling
US9350453B2 (en) 2012-12-16 2016-05-24 Juniper Networks, Inc. Optical access network having emitter-free customer premise equipment and adaptive communication scheduling
EP3096477A3 (en) * 2012-12-16 2017-01-25 Juniper Networks, Inc. Optical access network having emitter-free customer premise equipment and adaptive communication scheduling
CN103297873A (zh) * 2013-06-20 2013-09-11 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103384354A (zh) * 2013-07-04 2013-11-06 北京邮电大学 一种无源光网络光分配网的优化设计方法

Also Published As

Publication number Publication date
CN102075819A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
WO2010148871A1 (zh) 一种波分时分混合复用的无源光网络系统
CN102710361B (zh) 一种分布式基站信号传输系统及通信系统
CN105637784B (zh) 用于无源光学波分复用网络的光学线路终端
EP0721261A1 (en) Self-amplified optical networks
WO2007071154A1 (fr) Reseau optique passif a multiplexage par repartition en longueur d'onde et son procede de mise en oeuvre
JP2010507313A (ja) 波長非依存wdm受動型光加入者網のためのolt及びonu装置及び方法
Du et al. Long-reach wavelength-routed TWDM PON: technology and deployment
CN101729146A (zh) 无源光网络中自激励多波长动态调度的光网络单元
Oh et al. Enhancement of the performance of a reflective SOA-based hybrid WDM/TDM PON system with a remotely pumped erbium-doped fiber amplifier
Manharbhai et al. A flexible remote node architecture for energy efficient direct ONU internetworking in TDM PON
Ueda et al. Novel intra-and inter-datacenter converged network exploiting space-and wavelength-dimensional switches
Garg et al. Overall/subgroup ONU intercommunication based on two stage flexible PON network
JP4938839B2 (ja) ブースタを有さない光通信システムを実現するシステム及び方法
Lee et al. Extended-reach gigabit passive optical network for rural areas using distributed Raman amplifiers
CN102256186A (zh) 新型无源光网络的光模块
CN201821465U (zh) 混合复用无源光网络的光模块
CN102893544B (zh) 一种光放大装置、方法及无源光网络系统和设备
KR100752858B1 (ko) 발광다이오드를 이용한 파장분할 다중화 방식 수동형광가입자망 시스템 및 이를 위한 광송수신기
CN102104814A (zh) 一种无源光网络
CN107710647A (zh) 用于在中央单元和至少一个远程单元之间传输光信号的装置
JP3568145B2 (ja) 光波長多重を用いる高周波の光ファイバ伝送システム
Kuno et al. 4.71-Pbps-Throughput Multiband OXC Based on Space-and Wavelength-Granular Hybrid Switching
Talli et al. Multi-service SDN controlled reconfigurable long-reach optical access network
CN216699066U (zh) 掺饵光纤放大器及通信系统
CN201957194U (zh) 一种无源光网络

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10791377

Country of ref document: EP

Kind code of ref document: A1