WO2010147411A2 - 무선 통신 시스템에서 사운딩 기준 신호 전송 방법 및 장치 - Google Patents
무선 통신 시스템에서 사운딩 기준 신호 전송 방법 및 장치 Download PDFInfo
- Publication number
- WO2010147411A2 WO2010147411A2 PCT/KR2010/003924 KR2010003924W WO2010147411A2 WO 2010147411 A2 WO2010147411 A2 WO 2010147411A2 KR 2010003924 W KR2010003924 W KR 2010003924W WO 2010147411 A2 WO2010147411 A2 WO 2010147411A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- srs configuration
- srs
- reference signal
- sounding reference
- terminal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
Definitions
- the present invention relates to wireless communication, and more particularly, to a method and apparatus for transmitting a sounding reference signal in a wireless communication system.
- 3GPP LTE long term evolution
- UMTS Universal Mobile Telecommunications System
- 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier-frequency division multiple access
- MIMO multiple input multiple output
- LTE-A 3GPP LTE-Advanced
- 3GPP LTE-A Techniques introduced in 3GPP LTE-A include carrier aggregation, relay, and the like.
- the 3GPP LTE system is a single carrier system supporting only one bandwidth (that is, one component carrier) of ⁇ 1.4, 3, 5, 10, 15, 20 ⁇ MHz.
- LTE-A introduces multiple carriers using carrier aggregation.
- a component carrier is defined by a center frequency and a bandwidth.
- Multi-carrier system is to use a plurality of component carriers having a bandwidth less than the total bandwidth.
- the sounding reference signal is a uplink signal transmitted from the terminal to the base station for uplink scheduling of the base station.
- the base station measures the state of the uplink channel using the sounding reference signal.
- the base station allocates an uplink radio resource to the terminal based on the measured uplink channel.
- the existing 3GPP LTE system considers the transmission of sounding reference signals based on a single carrier. However, as a multi-carrier is introduced, a technique for transmitting a sounding reference signal has not been disclosed.
- the present invention provides a sounding reference signal transmission method and apparatus in a multi-carrier system.
- a method of transmitting a sounding reference signal in a multi-carrier system includes a terminal receiving an SRS configuration including a cell-specific sounding reference signal (SRS) configuration and a terminal-specific SRS configuration from a base station through a downlink carrier, and the terminal And transmitting a sounding reference signal based on the SRS configuration through an uplink carrier linked with a link carrier.
- SRS cell-specific sounding reference signal
- the downlink carrier may be one of a plurality of downlink carriers assigned to the terminal.
- the SRS configuration may be received through all of the plurality of downlink carriers assigned to the terminal.
- the method may further include transmitting, by the terminal, a first sounding reference signal through a first uplink carrier, wherein the first uplink carrier may not be linked with the downlink carrier.
- the SRS configuration may include SRS configuration for a plurality of uplink carriers.
- a terminal for transmitting a sounding reference signal in a multi-carrier system includes a radio frequency (RF) unit for transmitting the sounding reference signal through an uplink carrier; And a processor connected to the RF unit to set the sounding reference signal, wherein an SRS setting for setting the sounding reference signal is received from a base station through a downlink carrier, and the SRS setting is a cell specific SRS. (Sounding Reference Signal) configuration and UE-specific SRS configuration, the uplink carrier is linked to the downlink carrier.
- RF radio frequency
- the carrier aggregation method it is possible to flexibly set a sounding reference signal.
- compatibility with the existing single carrier system can be maintained, and the complexity and signaling overhead of the terminal can be reduced.
- 1 shows a structure of a radio frame in 3GPP LTE.
- FIG. 2 shows a structure of a downlink subframe in 3GPP LTE.
- 3 shows an example of an uplink subframe in 3GPP LTE.
- FIG. 7 shows SRS setup in Case 1.
- FIG. 8 shows SRS setup in case 2.
- 16 is a block diagram illustrating wireless devices in which an embodiment of the present invention is implemented.
- the user equipment may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). It may be called other terms such as digital assistant, wireless modem, handheld device.
- MS mobile station
- MT mobile terminal
- UT user terminal
- SS subscriber station
- PDA personal digital assistant
- a base station generally refers to a fixed station communicating with a terminal, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point.
- eNB evolved-NodeB
- BTS base transceiver system
- access point an access point
- Each base station provides communication services for a particular geographic area (commonly called a cell).
- the cell can in turn be divided into a number of regions (called sectors).
- downlink means communication from the base station to the terminal
- uplink means communication from the terminal to the base station.
- a transmitter may be part of a base station, and a receiver may be part of a terminal.
- a transmitter may be part of a terminal, and a receiver may be part of a base station.
- a radio frame consists of 10 subframes indexed from 0 to 9, and one subframe consists of two slots.
- TTI transmission time interval
- one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
- One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain. Since OFDM symbols use orthogonal frequency division multiple access (OFDMA) in downlink, the OFDM symbols are only intended to represent one symbol period in the time domain, and the limitation on the multiple access scheme or name is not limited. no.
- OFDM symbol may be called another name such as a single carrier frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
- SC-FDMA single carrier frequency division multiple access
- One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
- CP cyclic prefix
- the primary synchronization signal is the last OFDM symbol of the first slot (the first slot of the first subframe (the subframe with index 0)) and the last of the eleventh slot (the first slot of the sixth subframe (the subframe with index 5)). It is sent in an OFDM symbol. The same PSS is transmitted in two OFDM symbols. PSS is used to obtain OFDM symbol synchronization or slot synchronization and is associated with a Physical Cell Identity (PCI).
- PCI Physical Cell Identity
- the Secondary Synchronization Signal includes a first SSS transmitted in the previous OFDM symbol of the last OFDM symbol of the first slot and a second SSS transmitted in the previous OFDM symbol of the last OFDM symbol of the eleventh slot. Unlike the PSS, different SSSs are transmitted in two OFDM symbols. SSS is used to obtain frame synchronization. SSS is used to acquire PCI along with PSS.
- the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe.
- the PBCH carries system information necessary for the terminal to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
- MIB master information block
- SIB system information transmitted on a physical downlink shared channel (PDSCH) indicated by a physical downlink control channel (PDCCH) is called a system information block (SIB).
- SIB system information block
- a physical channel in LTE is a physical downlink shared channel (PDSCH), a physical downlink shared channel (PUSCH), and a physical downlink control channel (PDCCH), which is a control channel. It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
- PCFICH Physical Control Format Indicator Channel
- PHICH Physical Hybrid-ARQ Indicator Channel
- PUCCH Physical Uplink Control Channel
- the subframe is divided into a control region and a data region in the time domain.
- the control region includes up to 3 OFDM symbols before the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
- PDCCH is allocated to the control region and PDSCH is allocated to the data region.
- a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the RB includes 12 subcarriers in the frequency domain, one RB may include 7 ⁇ 12 resource elements (REs). .
- the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
- CFI control format indicator
- the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH.
- the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (ACK) signal for an uplink hybrid automatic repeat request (HARQ).
- ACK positive-acknowledgement
- ACK negative-acknowledgement
- HARQ uplink hybrid automatic repeat request
- the DCI may include resource allocation of the PDSCH (also called downlink grant), resource allocation of the PUSCH (also called uplink grant), a set of transmit power control commands for individual UEs in any UE group, and / or VoIP (Voice). over Internet Protocol).
- DCI downlink control information
- the DCI may include resource allocation of the PDSCH (also called downlink grant), resource allocation of the PUSCH (also called uplink grant), a set of transmit power control commands for individual UEs in any UE group, and / or VoIP (Voice). over Internet Protocol).
- blind decoding is used for the detection of the PDCCH.
- Blind decoding is a method of demasking a specific identifier in a cyclic redundancy check (CRC) of a received PDCCH (this is called a PDCCH candidate), and checking the CRC error to confirm the owner or purpose of the PDCCH.
- CRC cyclic redundancy check
- the UE monitors one or more PDCCHs in every subframe. In this case, the monitoring means that the UE attempts to decode the PDCCH according to the monitored PDCCH format.
- 3 shows an example of an uplink subframe in 3GPP LTE.
- the uplink subframe may be divided into a control region to which a physical uplink control channel (PUCCH) carrying uplink control information is allocated and a data region to which a physical uplink shared channel (PUSCH) carrying uplink data is allocated.
- PUCCH for one UE is allocated as an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the first slot and the second slot.
- m is a position index indicating a logical frequency domain position of an RB pair allocated to a PUCCH in a subframe. It is shown that an RB having the same m value occupies different subcarriers in two slots.
- the sounding reference signal is transmitted through one OFDM symbol in a subframe.
- the OFDM symbol to which the SRS is transmitted will be referred to as a sounding symbol.
- the last OFDM symbol of the plurality of OFDM symbols in the subframe is a sounding symbol, but this is only an example and the position or number of the sounding symbol in the subframe may be variously changed.
- the SRS may not be transmitted in the control domain but may be transmitted in the data domain.
- the terminal may transmit the SRS over the entire frequency band in the data region or may transmit the partial frequency band in the data region.
- the terminal may transmit the SRS periodically or aperiodically.
- SRS is transmitted in a form in which a specific cyclic shift is applied to a basic sequence.
- SRS sequence r SRS (n) can be represented as follows.
- ⁇ which is a cyclic shift of SRS, is given by
- the SRS sequence starts with r SRS (0) and starts with the resource element (k, is mapped to:
- k 0 is the starting point of the frequency domain of the SRS
- M RS sc is the length of the SRS sequence, defined as follows.
- N UL sc is the number of subcarriers per RB
- m SRS is a value dependent on the uplink bandwidth N UL RB .
- the transmission power P SRS (i) of the SRS in subframe i is defined as follows.
- P CMAX is the maximum transmit power
- M SRS is given from an upper layer is the bandwidth of the SRS transmitted in sub-frame i
- f (j) is the current power control adjustment state for the PUSCH
- P PUSCH (j) is set
- ⁇ (j) are parameters.
- 'SoundingRS-UL-ConfigCommon' is cell specific SRS configuration information including cell specific parameters applied to terminals in a cell
- 'SoundingRS-UL-ConfigDedicated' is applied to a specific UE.
- UE-specific SRS configuration information including UE-specific parameters.
- 'srs-BandwidthConfiguration' C SRS is a cell specific parameter that configures the bandwidth of the SRS.
- 'srs-SubframeConfiguration' is a cell specific parameter representing a set of subframes in which an SRS can be transmitted in a cell.
- 'ackNackSRS-SimultaneousTransmission' is a cell specific parameter indicating whether the SRS can be transmitted simultaneously with HARQ ACK / NACK and / or scheduling request (SR).
- 'srs-Bandwidth' B SRS indicates the SRS transmission band of the terminal according to the C SRS .
- 'srs-HoppingBandwidth' b hop indicates the size of the frequency hop.
- 'frequencyDomainPosition' n RRC is a parameter for obtaining position in the frequency domain of SRS.
- 'Duration' is a parameter indicating whether the base station requires one SRS transmission to the UE or periodic SRS transmission.
- 'srs-ConfigurationIndex' I SRS is a parameter for obtaining an SRS period and an SRS subframe offset.
- 'cyclicShift' n RRC is a parameter used to obtain a cyclic shift of the SRS.
- the 3GPP LTE system supports a case where the downlink bandwidth and the uplink bandwidth are set differently, but this assumes one component carrier (CC).
- CC component carrier
- 3GPP LTE is supported only when the bandwidth of the downlink and the bandwidth of the uplink are the same or different in the situation where one CC is defined for the downlink and the uplink, respectively.
- the 3GPP LTE system supports up to 20MHz and may be different in uplink bandwidth and downlink bandwidth, but only one CC is supported in the uplink and the downlink.
- Spectrum aggregation supports a plurality of CCs.
- Spectral aggregation is introduced to support increased throughput, to prevent cost increases due to the introduction of wideband radio frequency (RF) devices, and to ensure compatibility with existing systems. For example, if five CCs are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.
- RF radio frequency
- the size of the CC may be different. For example, assuming 5 CCs are used for the 70 MHz band configuration, 5 MHz carrier (CC # 0) + 20 MHz carrier (CC # 1) + 20 MHz carrier (CC # 2) + 20 MHz carrier (CC # 3) It may also be configured as a + 5MHz carrier (CC # 4).
- a case in which the number of downlink CCs and the number of uplink CCs are the same or the downlink bandwidth and the uplink bandwidth are the same is called symmetric aggregation.
- a case where the number of downlink CCs and the number of uplink CCs are different or when the downlink bandwidth and the uplink bandwidth are different is called asymmetric aggregation.
- FIG. 4 shows an example of a multi-carrier. Although there are three DL CCs and three UL CCs, the number of DL CCs and UL CCs is not limited. PDCCH and PDSCH are independently transmitted in each DL CC, and PUCCH and PUSCH are independently transmitted in each UL CC.
- linkage between a DL CC and a UL CC may be defined.
- the linkage may be configured through E-UTRA Absolute Radio Frequency Channel Number (EARFCN) information included in downlink system information, or may be configured using a fixed DL / UL Tx / Rx separation relationship.
- the linkage refers to a mapping relationship between a DL CC through which a PDCCH carrying an UL grant is transmitted and a UL CC using the UL grant.
- the linkage may be a mapping relationship between a DL CC (or UL CC) in which data for HARQ is transmitted and a UL CC (or DL CC) in which HARQ ACK / NACK signal is transmitted.
- the linkage information may be informed to the terminal by the base station as part of a higher layer message or system information such as an RRC message.
- the linkage between the DL CC and the UL CC may be fixed but may be changed between cells / terminals.
- CC scheduling is possible in two ways.
- the first is that a PDCCH-PDSCH pair is transmitted in one CC.
- This CC is called a self-scheduling CC.
- the UL CC on which the PUSCH is transmitted becomes the CC linked to the DL CC on which the corresponding PDCCH is transmitted. That is, the PDCCH allocates PDSCH resources on the same CC or allocates PUSCH resources on a linked UL CC.
- the DL CC on which the PDSCH is transmitted or the UL CC on which the PUSCH is transmitted is determined. That is, the PUSCH is transmitted on a DL CC in which the PDCCH and the PDSCH are different from each other, or on a UL CC that is not linked with the DL CC in which the PDCCH is transmitted. This is called cross-carrier scheduling.
- the CC on which the PDCCH is transmitted is called a PDCCH carrier, a monitoring carrier or a scheduling carrier, and the CC on which the PDSCH / PUSCH is transmitted is called a PDSCH / PUSCH carrier or a scheduled carrier.
- Cross-carrier scheduling may be activated / deactivated for each terminal, and the terminal on which cross-carrier scheduling is activated may receive a DCI including CIF.
- the UE may know which scheduled CC the PDCCH received from the CIF included in the DCI is control information.
- the DL-UL linkage predefined by cross-carrier scheduling may be overriding.
- cross-carrier scheduling may schedule a CC other than the linked CC regardless of the DL-UL linkage.
- FIG. 5 shows an example of cross-carrier scheduling. It is assumed that DL CC # 1 and UL CC # 1 are linked, DL CC # 2 and UL CC # 2 are linked, and DL CC # 3 and UL CC # 3 are linked.
- the first PDCCH 501 of the DL CC # 1 carries the DCI for the PDSCH 502 of the same DL CC # 1.
- the second PDCCH 511 of the DL CC # 1 carries the DCI for the PDSCH 512 of the DL CC # 2.
- the third PDCCH 521 of the DL CC # 1 carries the DCI for the PUSCH 522 of the UL CC # 3 that is not linked.
- the DCI of the PDCCH may include a carrier indicator field (CIF).
- CIF indicates a DL CC or UL CC scheduled through DCI.
- the second PDCCH 511 may include a CIF indicating DL CC # 2.
- the third PDCCH 521 may include a CIF indicating the UL CC # 3.
- the multi-carrier system supports a plurality of CCs, the number of CCs supported may vary according to the capability of a cell or a terminal.
- Available CC refers to all CCs available to the system (or base station). Here, there are six CCs from CC # 1 to CC # 6.
- the assigned CC is a CC assigned by the base station to the terminal according to the capability of the terminal among the available CCs. Although CC # 1 to CC # 4 are shown to be assigned CCs, the number of allocated CCs may be less than or equal to the number of usable CCs.
- An active CC is a CC that a terminal uses for receiving and / or transmitting a control signal and / or data with a base station.
- the UE may perform PDCCH monitoring and / or buffering of the PDSCH only for the active CC.
- the active CC is activated or deactivated among the assigned CCs.
- the CC which is always activated among the active CCs and which important control information is transmitted is referred to as a reference CC or a primary CC.
- a carrier configuration may be supported in a cell-specific manner.
- the CC may be allocated symmetrically or asymmetrically UE-specifically according to the capability of the UE supporting the multi-carrier.
- the UE performs an initial access process based on a single CC to establish an RRC connection with the base station.
- the base station may allocate a CC to each terminal through the RRC message.
- CC allocation of the UE may be performed through RRC message or L1 / L2 signaling in consideration of various aspects such as carrier aggregation capability, traffic load, intra-cell UE load, UE geometry, and the like. Can be done.
- SRS configuration is required for scheduling of each UL CC.
- the SRS configuration is composed of a combination of two pieces of information, cell specific SRS configuration information and terminal specific SRS configuration information. Both cell specific SRS configuration information and UE specific SRS configuration information are transmitted to one DL CC for SRS for one UL CC.
- the single CC-based SRS configuration is applied to a multi-carrier system as it is, it may be inefficient.
- the cell specific CC is an available CC, and refers to a CC that the base station can allocate in the entire frequency band.
- the UE specific CC may be an allocation CC or an active CC.
- the table below shows a problem when the SRS configuration of the existing 3GPP LTE is applied to the multi-carrier.
- the cell specification is symmetrical and the terminal specification is DL heavy. This means that more DL CCs are allocated than UE specific UL CCs.
- the number of cell specific DL CCs, the number of cell specific UL CCs, the number of UE specific DL CCs and the number of UE specific UL CCs are just examples.
- FIG. 7 shows SRS setup in Case 1.
- FIG. The cell specific CC and the UE specific CC are both symmetrically allocated.
- Cell-specific DL CCs include DL CC # 1 and DL CC # 2
- cell-specific UL CCs include UL CC # 1 and UL CC # 2.
- DL CC # 1 is linked with UL CC # 1
- DL CC # 2 is linked with UL CC # 2.
- DL / UL CC is mapped to 1: 1.
- DL CC # 1 and UL CC # 1 are allocated to the UE.
- the base station may send the SRS configuration information to the terminal through the linked DL CC.
- the terminal may transmit the SRS for the UL CC # 1 based on the cell specific SRS configuration information and the terminal specific SRS configuration information transmitted through the DL CC # 1.
- FIG. 8 shows SRS setup in case 2.
- FIG. The cell specific CC is symmetrical, but the UE specific CC is an example of being assigned DL heavy.
- DL CC # 1, DL CC # 2, and UL CC # 1 are allocated to the UE.
- the UE may receive the SRS configuration through two DL CCs, DL CC # 1 and DL CC # 2, respectively, but the UL CC to which the SRS is to be transmitted is one UL CC # 1. Therefore, it is necessary for the terminal to limit the DL CC receiving the SRS configuration for one UL CC or to determine the valid information from the SRS configuration received by all the DL CC assigned to the terminal.
- the cell specific SRS information may be transmitted through all DL CCs.
- the UE may determine the cell specific SRS information transmitted through the DL CC (eg, DL CC # 1) linked to the assigned UL CC as valid cell specific SRS information.
- the UE-specific SRS information may be transmitted through a DL CC linked to the UL CC assigned to the UE through Tx / Rx separation information of SIB2.
- the UE specific SRS information may be transmitted through the reference DL CC.
- the UE specific SRS information may be transmitted through at least one of DL CCs allocated to the UE.
- UE-specific SRS information is transmitted through both DL CC # 1 and DL CC # 2 allocated to the UE.
- the UE receives UE specific SRS information in DL CC # 2, it can be seen that this is UE specific SRS information for UL CC # 1.
- the UE specific SRS information may be transmitted through all DL CCs.
- the cell specific CC is symmetrical, but the UE specific CC is an example of being assigned UL heavy.
- the UE is allocated DL CC # 1, UL CC # 1, and UL CC # 2.
- the UE may receive an SRS configuration in one DL CC # 1, but according to the conventional 3GPP LTE, only one SRS for one CC may be configured in one SRS configuration.
- the SRS configuration for the UL CC # 1 linked with the DL CC # 1 may be transmitted.
- this is a problem that the SRS setting for the remaining UL CC # 2 is impossible.
- Cell specific SRS configuration for all UL CCs may be transmitted through one DL CC.
- a CC indicator indicating which UL CC the cell-specific SRS configuration information may include.
- Cell specific SRS configuration information transmitted through a DL CC may be commonly applied to all UL CCs.
- the cell specific SRS configuration information transmitted through the DL CC is used for cell specific SRS configuration for the linked UL CC, and the cell specific SRS configuration of the remaining UL CCs may be predefined without signaling.
- the cell specific SRS configuration of the remaining UL CC has a predefined offset from the cell specific SRS configuration information transmitted through the DL CC.
- the offset may include a time offset, a frequency offset, a cyclic shift pattern, and the like.
- a cell specific SRS configuration may be predefined based on information characteristic of the remaining UL CC (eg, UL CC index or cell ID).
- the cell specific SRS configuration information transmitted through the DL CC may be used for cell specific SRS configuration for the linked UL CC, and an offset may be additionally transmitted for the cell specific SRS configuration of the remaining UL CCs.
- the offset may be included in the cell specific SRS configuration information or transmitted through a separate message.
- the offset may include a time offset, a frequency offset, a cyclic shift pattern, and the like.
- UE specific SRS configuration for all UL CCs may be transmitted through one DL CC.
- a CC indicator indicating which UL CC the UE-specific SRS configuration information may include.
- UE-specific SRS configuration information transmitted through the DL CC may be commonly applied to all UL CCs.
- the UE-specific SRS configuration information transmitted through the DL CC is used for UE-specific SRS configuration for the linked UL CC, and the UE-specific SRS configuration of the remaining UL CCs may be predefined without signaling.
- the UE-specific SRS configuration of the remaining UL CC has a predefined offset from the UE-specific SRS configuration information transmitted through the DL CC.
- the offset may include a time offset, a frequency offset, a cyclic shift pattern, and the like.
- a cell specific SRS configuration may be predefined based on information characteristic of the remaining UL CC (eg, UL CC index or cell ID).
- the UE-specific SRS configuration information transmitted through the DL CC may be used for cell-specific SRS configuration for the linked UL CC, and an offset may be additionally transmitted for the UE-specific SRS configuration of the remaining UL CCs.
- the offset may be included in the terminal specific SRS configuration information or transmitted through a separate message.
- the cell specific SRS configuration information is transmitted in each DL CC, and the UE specific SRS configuration of the UL CC, which is further required according to the capability of the terminal, may be transmitted through UE specific RRC signaling.
- cell specific SRS configuration information for UL CC # 2 is received through DL CC # 1 and shared with UL CC # 1.
- UE specific SRS configuration information for UL CC # 2 is received through a separate UE specific RRC message.
- Cell-specific CC is DL heavy, but the UE-specific CC is symmetrically assigned.
- Cell-specific DL CCs include DL CCs # 1, # 2, # 3, and # 4, and cell-specific UL CCs include UL CC # 1 and UL CC # 2.
- DL CC # 1 and # 2 are linked with UL CC # 1, and DL CC # 3 and # 4 are linked with UL CC # 2.
- DL CC # 1, # 2 and UL CC # 1, # 2 are allocated to the UE.
- the base station may send the SRS configuration information to the terminal through the linked DL CC.
- the terminal may transmit the SRS for the UL CC # 1 based on the cell specific SRS configuration information and the terminal specific SRS configuration information transmitted through the DL CC # 2.
- the terminal may transmit the SRS for the UL CC # 2 based on the cell-specific SRS configuration information and the terminal-specific SRS configuration information transmitted through the DL CC # 3.
- the cell specific CC and the UE specific CC are allocated as DL heavy.
- DL CC # 1, DL CC # 2, and UL CC # 1 are allocated to the UE.
- SRS configuration for UL CC # 1 may be transmitted through DL CC # 1 and # 2. This is also necessary to support terminals using only a single carrier.
- the UE-specific SRS configuration information may be received through DL CC # 1 or DL CC # 2 linked to UL CC # 1 allocated to the UE. Or, the SRS configuration may be limited to receive through the reference DL CC so that duplicate RRC signaling is not transmitted to other terminals.
- the UE-specific SRS configuration information may be transmitted through any CC among DL CCs allocated to the UE, but an indicator indicating a UL CC in which the UE-specific SRS configuration information is used may be included in the UE-specific SRS configuration information.
- the cell specific CC is DL heavy, but the terminal specific CC is an example of being assigned UL heavy.
- the UE is allocated DL CC # 1, UL CC # 1, and UL CC # 2.
- the UE may receive the SRS configuration in one DL CC # 1, but according to the conventional 3GPP LTE, it is possible to set only the SRS for one CC with one SRS configuration.
- the SRS configuration for the UL CC # 1 linked with the DL CC # 1 may be transmitted.
- this is a problem that the SRS setting for the remaining UL CC # 2 is impossible.
- Cell specific SRS configuration for all UL CCs may be transmitted through one DL CC.
- a CC indicator indicating which UL CC the cell-specific SRS configuration information may include.
- Cell specific SRS configuration information transmitted through a DL CC may be commonly applied to all UL CCs.
- the cell specific SRS configuration information transmitted through the DL CC is used for cell specific SRS configuration for the linked UL CC, and the cell specific SRS configuration of the remaining UL CCs may be predefined without signaling.
- the cell specific SRS configuration of the remaining UL CC has a predefined offset from the cell specific SRS configuration information transmitted through the DL CC.
- the offset may include a time offset, a frequency offset, a cyclic shift pattern, and the like.
- a cell specific SRS configuration may be predefined based on information characteristic of the remaining UL CC (eg, UL CC index or cell ID).
- the cell specific SRS configuration information transmitted through the DL CC may be used for cell specific SRS configuration for the linked UL CC, and an offset may be additionally transmitted for the cell specific SRS configuration of the remaining UL CCs.
- the offset may be included in the cell specific SRS configuration information or transmitted through a separate message.
- the offset may include a time offset, a frequency offset, a cyclic shift pattern, and the like.
- UE specific SRS configuration for all UL CCs may be transmitted through one DL CC.
- a CC indicator indicating which UL CC the UE-specific SRS configuration information may include.
- UE-specific SRS configuration information transmitted through the DL CC may be commonly applied to all UL CCs.
- the UE-specific SRS configuration information transmitted through the DL CC is used for UE-specific SRS configuration for the linked UL CC, and the UE-specific SRS configuration of the remaining UL CCs may be predefined without signaling.
- the UE-specific SRS configuration of the remaining UL CC has a predefined offset from the UE-specific SRS configuration information transmitted through the DL CC.
- the offset may include a time offset, a frequency offset, a cyclic shift pattern, and the like.
- UE-specific SRS configuration may be predefined based on information characteristic of the remaining UL CC (eg, UL CC index or cell ID).
- the UE-specific SRS configuration information transmitted through the DL CC may be used for UE-specific SRS configuration for the linked UL CC, and an offset may be additionally transmitted for UE-specific SRS configuration of the remaining UL CCs.
- the offset may be included in the terminal specific SRS configuration information or transmitted through a separate message.
- the cell specific SRS configuration information is transmitted in each DL CC, and the UE specific SRS configuration of the UL CC, which is further required according to the capability of the terminal, may be transmitted through UE specific RRC signaling.
- cell specific SRS configuration information for UL CC # 2 is received through DL CC # 1 and shared with UL CC # 1.
- UE specific SRS configuration information for UL CC # 2 is received through a separate UE specific RRC message.
- Cell-specific DL CCs include DL CCs # 1 and # 2.
- Cell-specific UL CCs include UL CCs # 1, # 2, # 3, and # 4.
- DL CC # 1 is linked with UL CC # 1, # 2, and DL CC # 2 is linked with UL CC # 3, # 4.
- DL CC # 1, # 2 and UL CC # 2, # 3 are allocated to the UE.
- One DL CC may be linked to a plurality of UL CCs. However, since the CC is symmetrically allocated to the UE, the DL CC and the UL CC are mapped 1: 1. Therefore, basically, the SRS configuration transmitted through the DL CC may be used for SRS transmission in the corresponding UL CC.
- the cell specific CC is an UL heavy, but the terminal specific CC is an example of being assigned as DL heavy.
- DL CC # 1, DL CC # 2 and UL CC # 2 are allocated to the UE.
- SRS configuration may be transmitted to DL CC # 1 linked to UL CC # 2.
- cell specific SRS configuration information for a plurality of UL CCs may be transmitted in one DL CC.
- the cell specific SRS configuration information may include an identifier for identifying a UL CC.
- Both the cell specific CC and the UE specific CC are allocated as DL heavy.
- the UE is allocated DL CC # 1, UL CC # 2, and UL CC # 3.
- the number of UL CCs linked to the cell specific DL CC may be different from the number of UL CCs linked to the UE specific CC. Therefore, independent SRS configuration cannot be defined for a plurality of n UL CCs linked to one DL CC. For example, if the SRS configuration defined through DL CC # 0 is used identically in UL CC # 1, # 2, and # 3, it may be a problem in terms of peak-to-average power ratio (PAPR).
- PAPR peak-to-average power ratio
- SRS configuration for all of the linked plurality of UL CCs may be transmitted through one DL CC.
- the SRS configuration may include an identifier for identifying each UL CC.
- Cell specific SRS configuration information transmitted through a DL CC may be commonly applied to all UL CCs.
- the cell specific SRS configuration information transmitted through the DL CC is used for cell specific SRS configuration for the linked UL CC, and the cell specific SRS configuration of the remaining UL CCs may be predefined without signaling.
- the cell specific SRS configuration of the remaining UL CC has a predefined offset from the cell specific SRS configuration information transmitted through the DL CC.
- the offset may include a time offset, a frequency offset, a cyclic shift pattern, and the like.
- a cell specific SRS configuration may be predefined based on information characteristic of the remaining UL CC (eg, UL CC index or cell ID).
- the cell specific SRS configuration information transmitted through the DL CC may be used for cell specific SRS configuration for the linked UL CC, and an offset may be additionally transmitted for the cell specific SRS configuration of the remaining UL CCs.
- the offset may be included in the cell specific SRS configuration information or transmitted through a separate message.
- the offset may include a time offset, a frequency offset, a cyclic shift pattern, and the like.
- UE specific SRS configuration for all UL CCs may be transmitted through one DL CC.
- a CC indicator indicating which UL CC the UE-specific SRS configuration information may include.
- UE-specific SRS configuration information transmitted through the DL CC may be commonly applied to all UL CCs.
- the UE-specific SRS configuration information transmitted through the DL CC is used for UE-specific SRS configuration for the linked UL CC, and the UE-specific SRS configuration of the remaining UL CCs may be predefined without signaling.
- the UE-specific SRS configuration of the remaining UL CC has a predefined offset from the UE-specific SRS configuration information transmitted through the DL CC.
- the offset may include a time offset, a frequency offset, a cyclic shift pattern, and the like.
- UE-specific SRS configuration may be predefined based on information characteristic of the remaining UL CC (eg, UL CC index or cell ID).
- the UE-specific SRS configuration information transmitted through the DL CC may be used for UE-specific SRS configuration for the linked UL CC, and an offset may be additionally transmitted for UE-specific SRS configuration of the remaining UL CCs.
- the offset may be included in the terminal specific SRS configuration information or transmitted through a separate message.
- each method may be independently or a combination thereof for SRS configuration in a multi-carrier system.
- a cell specific RRC message for transmitting cell specific SRS configuration information may be transmitted through all DL CCs.
- the cell specific SRS configuration information transmitted in each DL CC may be the same regardless of the CC, or may differ for each CC.
- cell specific SRS configuration for a plurality of UL CCs may be transmitted in one DL CC.
- the cell specific SRS configuration may include an identifier or indicator for identifying a UL CC.
- the UE specific SRS configuration information may be transmitted through each DL CC.
- the UE specific SRS configuration information may be transmitted through a DL CC linked to a corresponding UL CC.
- the UE-specific SRS configuration information transmitted through the DL CC may include an indicator indicating the UL CC to which the SRS configuration is applied.
- the cell specific SRS configuration of the UL CC linked to one DL CC may be transmitted in the same manner as the existing method, and the cell specific SRS configuration of the remaining UL CC may be included in the UE specific SRS configuration information.
- the cell specific SRS configuration transmitted on one DL CC may be applied to all UL CCs.
- the cell specific SRS configuration of the remaining UL CCs other than the UL CC linked to the DL CC through which the cell specific configuration information is transmitted may be predefined.
- the cell SRS configuration information transmitted through the DL CC may be used for cell specific SRS configuration for the linked UL CC, and an offset may be additionally transmitted for cell specific SRS configuration of the remaining UL CCs.
- the offset may be included in the cell specific SRS configuration information or transmitted through a separate message.
- the offset may include a time offset, a frequency offset, a cyclic shift pattern, and the like.
- a cell specific SRS configuration may be predefined based on information characteristic of the remaining UL CC (eg, UL CC index or cell ID).
- the UE-specific SRS configuration of the UL CC linked to one DL CC may be transmitted in the same manner as the existing method, and the UE-specific SRS configuration of the remaining UL CCs may be included in the UE-specific SRS configuration information.
- UE specific SRS configuration transmitted through one DL CC may be applied to all UL CCs.
- the UE-specific SRS configuration of the remaining UL CCs other than the UL CC linked to the DL CC through which the UE-specific configuration information is transmitted may be predefined.
- the UE-specific SRS configuration information transmitted through the DL CC may be used for UE-specific SRS configuration for the linked UL CC, and an offset may be additionally transmitted for UE-specific SRS configuration of the remaining UL CCs.
- the offset may be included in the terminal specific SRS configuration information or transmitted through a separate message.
- the offset may include a time offset, a frequency offset, a cyclic shift pattern, and the like.
- UE-specific SRS configuration may be predefined based on information characteristic of the remaining UL CC (eg, UL CC index or cell ID).
- the UE may determine the SRS configuration for the remaining CCs other than the UL CC linked with the DL CC through which the SRS configuration is received, based on each UL CC index. That is, the parameters included in the existing cell-specific SRS configuration information and the UE-specific SRS configuration information may be set to change depending on the UL CC index.
- the cell specific DL / UL linkage is as follows. (DL CC # 1-UL CC # 1), (DL CC # 2-UL CC # 2), (DL CC # 3-UL CC # 3), (DL CC # 4-UL CC # 4).
- the UE-specific CC allocation initially set for the terminal may be changed. Also in this respect, the method described above can be applied in various ways as follows.
- SRS configuration can be received from DL CC linked with UL CC.
- SRS configuration can be received from DL CC linked with UL CC.
- the SRS setting may be received from the DL CC linked with the UL CC.
- Symmetrical, UL heavy, UL heavy configuration is maintained, but when the number of CC or CC frequency is changed: SRS configuration can be received from the DL CC linked to the UL CC.
- the proposed embodiments may be transmitted for transmission of UE specific information and cell specific information for setting uplink control channels, uplink data channels, physical signals, and / or uplink reference signals in addition to SRS configuration.
- the proposed embodiments may be applied to configure a PUCCH structure, a cyclic shift, a resource size, selection of a basic sequence, resource hopping, and the like related to PUCCH formats 1 and 2.
- the proposed embodiments may be applied to set UL scrambling code, cyclic shift, basic sequence selection, and hopping pattern selection associated with the cell ID.
- 16 is a block diagram illustrating wireless devices in which an embodiment of the present invention is implemented.
- the terminal 1010 includes a processor 1011, a memory 1012, and an RF unit 1013.
- the processor 1011 supports multiple carriers and implements the operation of the terminal in the embodiments of FIGS. 7 to 15.
- the processor 1011 processes the sounding reference signal through the DL CC based on the received SRS configuration.
- the memory 1012 stores the SRS configuration for each UL CC.
- the RF unit 1013 transmits the SRS.
- the DL CC in which the SRS configuration is received may be at least one of a plurality of DL CCs allocated to the terminal, or the SRS configuration may be received through the plurality of DL CCs assigned to the terminal.
- the SRS configuration may include SRS configuration for a plurality of UL CCs.
- the SRS configuration may include an identifier or an index for identifying the plurality of UL CCs.
- the SRS configuration includes cell specific SRS configuration information and terminal specific SRS configuration information.
- the cell specific SRS configuration information includes at least one of 'srs-BandwidthConfiguration', 'srs-SubframeConfiguration', and 'ackNackSRS-SimultaneousTransmission'.
- the terminal specific SRS configuration information includes at least one of 'srs-Bandwidth', 'srs-HoppingBandwidth', 'frequencyDomainPosition', 'Duration', 'srs-ConfigurationIndex', 'transmissionComb' and 'cyclicShift'.
- the DL CC and the UL CC are linked to each other.
- the DL-UL linkage information may be informed by the base station to the terminal through system information and / or higher layer signaling.
- the SRS may be transmitted through a UL CC (first UL CC) linked with a DL CC through which the SRS configuration (first SRS configuration) is received.
- a second SRS may be transmitted through a UL CC (second UL CC) that is not linked with the DL CC.
- the second SRS configuration for the second SRS may be predefined or obtained based on the first SRS configuration.
- the second SRS setting may be obtained by applying an offset from the first SRS setting.
- the offset may be predefined, included in the first SRS configuration, or given through a separate message.
- the base station 1020 includes a processor 1021, a memory 1022, and an RF unit 1023.
- the processor 1021 supports multiple carriers and implements the operation of the base station in the embodiments of FIGS. 7 to 15.
- the processor 1021 determines the SRS setting for the sounding reference signal and informs the terminal through the DL CC. In addition, UL scheduling is performed based on the received SRS.
- Memory 1022 stores SRS settings for each UL CC.
- the RF unit 1013 transmits the SRS configuration and receives the SRS.
- the base station 1020 may transmit a cell specific RRC message for transmitting cell specific SRS configuration information through all DL CCs.
- the cell specific SRS configuration information transmitted in each DL CC may be the same regardless of the CC, or may differ for each CC.
- the base station 1020 may transmit cell specific SRS configuration for a plurality of UL CCs in one DL CC.
- the cell specific SRS configuration may include an identifier or indicator for identifying a UL CC.
- the base station 1020 may transmit terminal specific SRS configuration information through each DL CC.
- the base station 1020 may transmit the UE-specific SRS configuration information through the DL CC linked to the corresponding UL CC.
- the UE-specific SRS configuration information transmitted through the DL CC may include an indicator indicating the UL CC to which the SRS configuration is applied.
- the cell specific SRS configuration of the UL CC linked to one DL CC may be transmitted in the same manner as the existing method, and the cell specific SRS configuration of the remaining UL CC may be included in the UE specific SRS configuration information.
- the cell specific SRS configuration transmitted on one DL CC may be applied to all UL CCs.
- the cell specific SRS configuration of the remaining UL CCs other than the UL CC linked to the DL CC through which the cell specific configuration information is transmitted may be predefined.
- the cell SRS configuration information transmitted through the DL CC may be used for cell specific SRS configuration for the linked UL CC, and an offset may be additionally transmitted for cell specific SRS configuration of the remaining UL CCs.
- the offset may be included in the cell specific SRS configuration information or transmitted through a separate message.
- the offset may include a time offset, a frequency offset, a cyclic shift pattern, and the like.
- a cell specific SRS configuration may be predefined based on information characteristic of the remaining UL CC (eg, UL CC index or cell ID).
- the UE-specific SRS configuration of the UL CC linked to one DL CC may be transmitted in the same manner as the existing method, and the UE-specific SRS configuration of the remaining UL CCs may be included in the UE-specific SRS configuration information.
- UE specific SRS configuration transmitted through one DL CC may be applied to all UL CCs.
- the UE-specific SRS configuration of the remaining UL CCs other than the UL CC linked to the DL CC through which the UE-specific configuration information is transmitted may be predefined.
- the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
- ASICs application-specific integrated circuits
- the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
사운딩 기준 신호 전송 방법 및 장치가 제공된다. 단말은 기지국으로부터 셀 특정 SRS(Sounding Reference Signla) 설정 및 단말 특정 SRS 설정를 포함하는 SRS 설정을 하향링크 반송파를 통해 수신한다. 단말은 상기 하향링크 반송파와 링크된 상향링크 반송파를 통해 상기 SRS 설정을 기반으로 사운딩 기준 신호를 전송한다.
Description
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 사운딩 기준 신호를 전송하는 방법 및 장치에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
3GPP LTE-A에서 도입되는 기술로는 반송파 집성(carrier aggregation), 중계기(relay) 등이 있다. 3GPP LTE 시스템은 {1.4, 3, 5, 10, 15, 20}MHz 중 하나의 대역폭(즉, 하나의 요소 반송파)만을 지원하는 단일 반송파 시스템이다. 하지만, LTE-A는 반송파 집성을 이용한 다중 반송파를 도입하고 있다. 요소 반송파(component carrier)는 중심 주파수(center frequency)와 대역폭으로 정의된다. 다중 반송파 시스템은 전체 대역폭보다 작은 대역폭을 갖는 복수의 요소 반송파를 사용하는 것이다.
사운딩 기준신호(sounding reference signal)은 기지국의 상향링크 스케줄링을 위해 단말이 기지국으로 보내는 상향링크 신호이다. 기지국은 사운딩 기준신호를 이용하여, 상향링크 채널의 상태를 측정한다. 측정된 상향링크 채널을 기반으로 기지국은 단말에게 상향링크 무선 자원을 할당한다.
기존 3GPP LTE 시스템은 단일 반송파를 기준으로 사운딩 기준신호의 전송을 고려하고 있다. 하지만, 다중 반송파가 도입됨에 따라 사운딩 기준신호를 전송할 수 있는 기법은 개시되지 않고 있다.
본 발명은 다중 반송파 시스템에서 사운딩 기준 신호 전송 방법 및 장치를 제공한다.
일 양태에서, 다중 반송파 시스템에서 사운딩 기준 신호 전송 방법은 단말이 기지국으로부터 셀 특정 SRS(Sounding Reference Signal) 설정 및 단말 특정 SRS 설정를 포함하는 SRS 설정을 하향링크 반송파를 통해 수신하고, 단말이 상기 하향링크 반송파와 링크된 상향링크 반송파를 통해 상기 SRS 설정을 기반으로 사운딩 기준 신호를 전송하는 것을 포함한다.
상기 하향링크 반송파는 상기 단말에게 할당된 복수의 하향링크 반송파 중 하나일 수 있다.
상기 SRS 설정은 상기 단말에게 할당된 복수의 하향링크 반송파 모두를 통해 수신될 수 있다.
상기 방법은 상기 단말이 제1 상향링크 반송파를 통해 제1 사운딩 기준 신호를 전송하는 것을 더 포함하되, 상기 제1 상향링크 반송파는 상기 하향링크 반송파와 링크되지 않을 수 있다.
상기 SRS 설정은 복수의 상향링크 반송파에 대한 SRS 설정을 포함할 수 있다.
다른 양태에서, 다중 반송파 시스템에서 사운딩 기준 신호를 전송하는 단말은 사운딩 기준 신호를 상향링크 반송파를 통해 전송하는 RF(Radio Frequency)부; 및 상기 RF부와 연결되어, 상기 사운딩 기준 신호를 설정하는 프로세서를 포함하되, 상기 사운딩 기준 신호를 설정하기 위한 SRS 설정은 하향링크 반송파를 통해 기지국으로부터 수신되고, 상기 SRS 설정은 셀 특정 SRS(Sounding Reference Signal) 설정 및 단말 특정 SRS 설정를 포함하고, 상기 상향링크 반송파는 상기 하향링크 반송파와 링크된다.
반송파 집성 방식에 따라 유연하게 사운딩 기준 신호의 설정이 가능하다. 또한, 기존 단일 반송파 시스템과의 호환성을 유지하고, 단말의 복잡도와 시그널링 오버헤드를 줄일 수 있다.
도 1은 3GPP LTE에서 무선 프레임의 구조를 나타낸다.
도 2는 3GPP LTE에서 하향링크 서브프레임의 구조를 나타낸다.
도 3은 3GPP LTE에서 상향링크 서브프레임의 일 예를 나타낸다.
도 4는 다중 반송파의 일 예를 나타낸다.
도 5는 크로스-반송파 스케줄링의 일 예를 나타낸다.
도 6은 다중 반송파 운영의 일 예를 나타낸다.
도 7은 케이스 1에서 SRS 설정을 나타낸다.
도 8은 케이스 2에서 SRS 설정을 나타낸다.
도 9는 케이스 3에서 SRS 설정을 나타낸다.
도 10은 케이스 4에서 SRS 설정을 나타낸다.
도 11은 케이스 5에서 SRS 설정을 나타낸다.
도 12는 케이스 6에서 SRS 설정을 나타낸다.
도 13은 케이스 7에서 SRS 설정을 나타낸다.
도 14은 케이스 8에서 SRS 설정을 나타낸다.
도 15는 케이스 9에서 SRS 설정을 나타낸다.
도 16은 본 발명의 실시예가 구현되는 무선 장치들을 나타낸 블록도이다.
단말(User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다.
기지국은 일반적으로 단말과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
각 기지국은 특정한 지리적 영역(일반적으로 셀이라고 함)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다.
이하에서 하향링크(downlink, DL)는 기지국에서 단말로의 통신을 의미하며, 상향링크(uplink, UL)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 전송기는 기지국의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 전송기는 단말의 일부분일 수 있고, 수신기는 기지국의 일부분일 수 있다.
도 1은 3GPP LTE에서 무선 프레임의 구조를 나타낸다. 이는 3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 6절을 참조할 수 있다. 무선 프레임(radio frame)은 0~9의 인덱스가 매겨진 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211 V8.7.0 (2009-05)에 의하면, 노멀 CP에서 1 서브프레임은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 서브프레임은 6 OFDM 심벌을 포함한다.
PSS(Primary Synchronization Signal)은 첫번째 슬롯(첫번째 서브프레임(인덱스 0인 서브프레임)의 첫번째 슬롯)의 마지막 OFDM 심벌과 11번째 슬롯(여섯번째 서브프레임(인덱스 5인 서브프레임)의 첫번째 슬롯)의 마지막 OFDM 심벌에 전송된다. 2개의 OFDM 심벌에는 동일한 PSS가 전송된다. PSS는 OFDM 심벌 동기 또는 슬롯 동기를 얻기 위해 사용되고, 물리적 셀 식별자(Physical Cell Identity, PCI)와 연관되어 있다.
SSS(Secondary Synchronization Signal)은 첫번째 슬롯의 마지막 OFDM 심벌의 이전 OFDM 심벌에서 전송되는 제1 SSS와 11번째 슬롯의 마지막 OFDM 심벌의 이전 OFDM 심벌에서 전송되는 제2 SSS를 포함한다. PSS와 달리, 2개의 OFDM 심벌에서 서로 다른 SSS가 전송된다. SSS는 프레임 동기를 얻기 위해 사용된다. SSS는 PSS와 더불어 PCI를 획득하는데 사용된다.
PBCH(Physical Broadcast Channel)은 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 단말이 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH(physical downlink control channel)에 의해 지시되는 PDSCH(Physical Downlink Shared Channel) 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
3GPP TS 36.211 V8.7.0 (2009-05)에 개시된 바와 같이, LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
도 2는 3GPP LTE에서 하향링크 서브프레임의 구조를 나타낸다. 서브 프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH가 할당되고, 데이터영역에는 PDSCH가 할당된다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7 OFDM 심벌을 포함하고, RB는 주파수 영역에서 12 부반송파를 포함한다면, 하나의 RB는 7×12개의 자원요소(resource element, RE)를 포함할 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/ NACK(negative-acknowledgement) 신호를 나른다. 단말에 의해 전송되는 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 하향링크 그랜트라고도 한다), PUSCH의 자원 할당(이를 상향링크 그랜트라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
3GPP TS 36.213 V8.7.0 (2009-05)의 9절에 개시된 바와 같이, PDCCH의 검출을 위해 블라인드 디코딩이 사용된다. 블라인드 디코딩은 수신되는 PDCCH(이를 PDCCH 후보(candidate)라 함)의 CRC(Cyclic Redundancy Check)에 특정 식별자를 디마스킹하고, CRC 오류를 체크하여 PDCCH의 소유자나 용도를 확인하는 방식이다. 단말은 매 서브프레임마다 하나 또는 그 이상의 PDCCH들을 모니터링한다. 여기서, 모니터링이란 단말이 모니터링되는 PDCCH 포맷에 따라 PDCCH의 디코딩을 시도하는 것을 말한다.
도 3은 3GPP LTE에서 상향링크 서브프레임의 일 예를 나타낸다.
상향링크 서브프레임은 상향링크 제어정보를 나르는 PUCCH(Physical Uplink Control Channel)가 할당되는 제어영역과 상향링크 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)가 할당되는 데이터 영역으로 나눌 수 있다. 하나의 단말에 대한 PUCCH는 서브프레임에서 RB 쌍(pair)으로 할당된다. 자원블록 쌍에 속하는 RB들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. m은 서브프레임 내에서 PUCCH에 할당된 RB 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다. 동일한 m 값을 갖는 RB가 2개의 슬롯에서 서로 다른 부반송파를 차지하고 있음을 보이고 있다.
사운딩 기준신호(sounding reference signal, SRS)는 서브프레임 내 1 OFDM 심벌을 통해 전송된다. SRS가 전송되는 OFDM 심벌을 사운딩 심벌(sounding symbol)이라 칭하기로 한다. 서브프레임내의 복수의 OFDM 심벌 중 마지막 OFDM 심벌이 사운딩 심벌이나, 이는 예시일 뿐 서브프레임 내 사운딩 심벌의 위치나 개수는 다양하게 변경될 수 있다.
주파수 영역에서 SRS는 제어영역에서는 전송되지 않고, 데이터 영역에서 전송될 수 있다. 단말은 SRS를 데이터 영역내의 전체 주파수 대역에 걸쳐 전송하거나, 데이터 영역의 일부 주파수 대역에 걸쳐 전송할 수 있다. 단말은 주기적 또는 비주기적으로 SRS를 전송할 수 있다.
SRS는 기본 시퀀스에 특정 순환시프트(Cyclic Shift)가 적용된 형태로 전송된다. SRS 시퀀스 rSRS(n)는 아래와 같이 나타낼 수 있다.
여기서, u는 PUCCH 시퀀스 그룹 번호(PUCCH sequence-group number)이고, v는 기본 시퀀스 번호(base sequence number)이다. SRS의 순환시프트(cyclic shift)인 α는 아래와 같이 주어진다.
여기서, ncs
SRS는 각 단말을 위하여 상위 계층(higher layer)에 의하여 설정되고, ncs
SRS= 0, 1, 2, 3, 4, 5, 6, 7이다.
전송 전력 PSRS에 순응하도록(conform), SRS 시퀀스 rSRS(n)에 진폭 스케일링 인자(amplitude scaling factor) βSRS와 곱해진 후, SRS 시퀀스는 rSRS(0)로부터 시작하여 자원요소(k,ℓ)에 아래와 같이 맵핑된다.
여기서, k0는 SRS의 주파수 영역 시작점이고, MRS
sc,b는 SRS 시퀀스의 길이로, 아래와 같이 정의된다.
여기서, NUL
sc는 RB당 부반송파의 갯수, mSRS,b는 상향링크 대역폭 NUL
RB에 종속하는 값이다.
보다 자세한 SRS의 구성은 3GPP TS 36.211 V8.7.0 (2009-05)의 5.5.3절과 3GPP TS 36.213 V8.7.0 (2009-05)의 8.2절을 참조할 수 있다.
서브프레임 i에서 SRS의 전송 파워 PSRS(i)는 다음과 같이 정의된다.
여기서, PCMAX는 설정된 최대 전송 파워, PSRS_OFFSET은 상위계층에서 주어지는 파라미터, MSRS는 서브프레임 i에서 SRS 전송의 대역폭, f(j)는 PUSCH를 위한 현재 파워 제어 조절 상태, PPUSCH(j)와 α(j)는 파라미터이다.
SRS 전송을 위한 파라미터들은 RRC 메시지를 통해 설정된다. 3GPP TS 36.331 V8.6.0 (2009-06)의 6.3.2절에 개시된 바와 같이, 'soundingRS-ul-config'는 다음과 같이 주어진다.
SoundingRS-UL-ConfigCommon ::= CHOICE {
release NULL,
setup SEQUENCE {
srs-BandwidthConfig ENUMERATED {bw0, bw1, bw2, bw3, bw4, bw5, bw6, bw7},
srs-SubframeConfig ENUMERATED { sc0, sc1, sc2, sc3, sc4, sc5, sc6, sc7, sc8, sc9, sc10, sc11, sc12, sc13, sc14, sc15},
ackNackSRS-SimultaneousTransmission BOOLEAN,
srs-MaxUpPts ENUMERATED {true} OPTIONAL
}
}
SoundingRS-UL-ConfigDedicated ::= CHOICE{
release NULL,
setup SEQUENCE {
srs-Bandwidth ENUMERATED {bw0, bw1, bw2, bw3},
srs-HoppingBandwidth ENUMERATED {hbw0, hbw1, hbw2, hbw3},
freqDomainPosition INTEGER (0..23),
duration BOOLEAN,
srs-ConfigIndex INTEGER (0..1023),
transmissionComb INTEGER (0..1),
cyclicShift ENUMERATED {cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7}
}
}
여기서, 'SoundingRS-UL-ConfigCommon'는 셀 내의 단말들에게 적용되는 셀 특정 파라미터들을 포함하는 셀 특정적 SRS 설정(cell specific SRS configuration) 정보이고, 'SoundingRS-UL-ConfigDedicated'는 특정 단말에게 적용되는 단말 특정 파라미터들을 포함하는 단말 특정 SRS 설정 정보이다.
'srs-BandwidthConfiguration' CSRS은 SRS의 대역폭을 설정하는 셀 특정 파라미터이다. 'srs-SubframeConfiguration'은 셀 내에서 SRS가 전송될 수 있는 서브프레임들의 집합을 나타내는 셀 특정 파라미터이다. 'ackNackSRS-SimultaneousTransmission'은 SRS가 HARQ ACK/NACK 및/또는 SR(Scheduling Request)와 동시에 전송될 수 있는지 여부를 나타내는 셀 특정 파라미터이다.
'srs-Bandwidth' BSRS는 CSRS에 따른 단말의 SRS 전송 대역을 나타낸다. 'srs-HoppingBandwidth' bhop은 주파수 홉(hop)의 크기를 나타낸다. 'frequencyDomainPosition' nRRC은 SRS의 주파수 영역에서 위치를 구하기 위한 파라미터이다. 'Duration'은 기지국이 단말에게 한번의 SRS 전송을 요구하는지, 아니면 주기적인 SRS의 전송을 요구하는지를 나타내는 파라미터이다. 'srs-ConfigurationIndex' ISRS은 SRS 주기 및 SRS 서브프레임 오프셋을 구하기 위한 파라미터이다. 'transmissionComb' kTC는 SRS가 연속적인 부반송파에 할당되는지 또는 q(q>=1) 부반송파 간격으로 떨어진 부반송파에 할당되는지를 나타낸다. 'cyclicShift' nRRC는 SRS의 순환시프트(cyclic shift)를 구하는데 사용되는 파라미터이다.
이제 다중 반송파(multiple carrier) 시스템에 대해 기술한다.
3GPP LTE 시스템은 하향링크 대역폭과 상향링크 대역폭이 다르게 설정되는 경우를 지원하나, 이는 하나의 요소 반송파(component carrier, CC)를 전제한다. 이는 3GPP LTE는 각각 하향링크와 상향링크에 대하여 각각 하나의 CC가 정의되어 있는 상황에서, 하향링크의 대역폭과 상향링크의 대역폭이 같거나 다른 경우에 대해서만 지원되는 것을 의미한다. 예를 들어, 3GPP LTE 시스템은 최대 20MHz을 지원하고, 상향링크 대역폭과 하향링크 대역폭을 다를 수 있지만, 상향링크와 하향링크에 하나의 CC 만을 지원한다.
스펙트럼 집성(spectrum aggregation)(또는, 대역폭 집성(bandwidth aggregation), 반송파 집성(carrier aggregation)이라고도 함)은 복수의 CC를 지원하는 것이다. 스펙트럼 집성은 증가되는 수율(throughput)을 지원하고, 광대역 RF(radio frequency) 소자의 도입으로 인한 비용 증가를 방지하고, 기존 시스템과의 호환성을 보장하기 위해 도입되는 것이다. 예를 들어, 20MHz 대역폭을 갖는 반송파 단위의 그래뉼래리티(granularity)로서 5개의 CC가 할당된다면, 최대 100Mhz의 대역폭을 지원할 수 있는 것이다.
CC의 크기(또는 CC의 대역폭)는 서로 다를 수 있다. 예를 들어, 70MHz 대역의 구성을 위해 5개의 CC들이 사용된다고 할 때, 5MHz carrier (CC #0) + 20MHz carrier (CC #1) + 20MHz carrier (CC #2) + 20MHz carrier (CC #3) + 5MHz carrier (CC #4)과 같이 구성될 수도 있다.
하향링크 CC 수와 상향링크 CC 수가 동일하거나 또는 하향링크 대역폭과 상향링크 대역폭이 동일한 경우를 대칭적(symmetric) 집성이라고 한다. 하향링크 CC 수와 상향링크 CC 수가 다르거나 또는 하향링크 대역폭과 상향링크 대역폭이 다른 경우를 비대칭적(asymmetric) 집성이라고 한다.
도 4는 다중 반송파의 일 예를 나타낸다. DL CC와 UL CC가 각각 3개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 각 DL CC에서 PDCCH와 PDSCH가 독립적으로 전송되고, 각 UL CC에서 PUCCH와 PUSCH가 독립적으로 전송된다.
다중 반송파 시스템에서, DL CC와 UL CC간의 링키지(linkage)가 정의될 수 있다. 링키지는 하향링크 시스템 정보에 포함되어 있는 EARFCN(E-UTRA Absolute Radio Frequency Channel Number) 정보를 통해 구성될 수 있으며, 고정된 DL/UL Tx/Rx 분할(separation) 관계를 이용해 구성될 수도 있다. 링키지는 UL 그랜트를 나르는 PDCCH가 전송되는 DL CC와 상기 UL 그랜트를 사용하는 UL CC간의 맵핑 관계를 말한다. 또는, 링키지는 HARQ를 위한 데이터가 전송되는 DL CC(또는 UL CC)와 HARQ ACK/NACK 신호가 전송되는 UL CC(또는 DL CC)간의 맵핑 관계일 수도 있다. 링키지 정보는 RRC 메시지와 같은 상위계층 메시지나 시스템 정보의 일부로써 기지국이 단말에게 알려줄 수 있다. DL CC와 UL CC간의 링키지는 고정될 수도 있지만, 셀간/단말간 변경될 수 있다.
다중 반송파 시스템에서, CC 스케줄링은 2가지 방법이 가능하다.
첫번째는 하나의 CC에서 PDCCH-PDSCH 쌍이 전송되는 것이다. 이 CC를 자기-스케줄링(self-scheduling) CC라 한다. 또한, 이는 PUSCH가 전송되는 UL CC는 해당되는 PDCCH가 전송되는 DL CC에 링크된 CC가 됨을 의미한다. 즉, PDCCH는 동일한 CC상에서 PDSCH 자원을 할당하거나, 링크된 UL CC상에서 PUSCH 자원을 할당하는 것이다.
두번째는, PDCCH가 전송되는 DL CC에 상관없이 PDSCH가 전송되는 DL CC 또는 PUSCH가 전송되는 UL CC가 정해지는 것이다. 즉, PDCCH와 PDSCH가 서로 다른 DL CC에서 전송되거나 PDCCH가 전송된 DL CC와 링키지되지 않은 UL CC를 통해 PUSCH가 전송되는 것이다. 이를 크로스-반송파(cross-carrier) 스케줄링이라 한다. PDCCH가 전송되는 CC를 PDCCH 반송파, 모니터링 반송파 또는 스케줄링(scheduling) 반송파라 하고, PDSCH/PUSCH가 전송되는 CC를 PDSCH/PUSCH 반송파 또는 스케줄링된(scheduled) 반송파라 한다.
크로스-반송파 스케줄링은 단말 별로 활성화/비활성화될 수 있으며, 크로스-반송파 스케줄링이 활성화된 단말은 CIF가 포함된 DCI를 수신할 수 있다. 단말은 DCI에 포함된 CIF로부터 수신한 PDCCH가 어느 스케줄링된 CC에 대한 제어 정보인지 알 수 있다.
크로스-반송파 스케줄링에 의해 미리 정의된 DL-UL 링키지는 오버라이딩(overriding)할 수 있다. 즉, 크로스-반송파 스케줄링은 DL-UL 링키지에 상관없이 링크된 CC가 아닌 다른 CC를 스케줄링할 수 있다.
도 5는 크로스-반송파 스케줄링의 일 예를 나타낸다. DL CC #1과 UL CC #1이 링크되어 있고, DL CC #2과 UL CC #2이 링크되어 있고, DL CC #3과 UL CC #3이 링크되어 있다고 하자.
DL CC #1의 제1 PDCCH(501)은 동일한 DL CC #1의 PDSCH(502)에 대한 DCI를 나른다. DL CC #1의 제2 PDCCH(511)은 DL CC #2의 PDSCH(512)에 대한 DCI를 나른다. DL CC #1의 제3 PDCCH(521)은 링크되어 있지 않은 UL CC #3의 PUSCH(522)에 대한 DCI를 나른다.
크로스-반송파 스케줄링을 위해, PDCCH의 DCI는 CIF(carrier indicator field)를 포함할 수 있다. CIF는 DCI를 통해 스케줄링되는 DL CC 또는 UL CC를 지시한다. 예를 들어, 제2 PDCCH(511)는 DL CC #2를 가리키는 CIF를 포함할 수 있다. 제3 PDCCH(521)은 UL CC #3을 가리키는 CIF를 포함할 수 있다.
도 6은 다중 반송파 운영의 일 예를 나타낸다. 다중 반송파 시스템이 복수의 CC를 지원하더라도 셀 또는 단말의 역량(capability)에 따라 지원되는 CC의 개수가 다를 수 있다.
사용가능(available) CC는 시스템(또는 기지국)이 사용할 수 있는 모든 CC를 가리킨다. 여기서는, CC #1 ~ CC #6 까지 6개의 CC가 있다.
할당(assigned) CC는 사용가능 CC들 중 단말의 역량에 따라 기지국이 단말에게 할당하는 CC이다. CC #1 ~ CC #4가 할당 CC인 것을 보이고 있으나, 할당 CC의 개수는 사용가능 CC의 개수보다 작거나 동일할 수 있다.
활성(active) CC는 단말이 기지국과의 제어신호 및/또는 데이터의 수신 및/또는 송신에 사용하는 CC이다. 단말은 활성 CC에 대해서만 PDCCH 모니터링 및/또는 PDSCH의 버퍼링(buffering)을 수행할 수 있다. 활성 CC는 할당 CC 중에서 활성화 또는 비활성화된다. 활성 CC 중 항상 활성화되어, 중요 제어정보가 전송되는 CC를 기준 CC 또는 1차(primary) CC라 한다.
다중 반송파 시스템에서 셀-특정적으로 반송파 설정(carrier configuration)이 지원될 수 있다. 또한, 다중 반송파를 지원하는 단말의 역량에 따라 단말-특정적으로 대칭적 또는 비대칭적으로 CC가 할당될 수 있다.
기본적으로 단말이 단일 CC 기반으로 초기 접속 과정을 수행하여, 기지국과 RRC 연결을 확립한다. 기지국은 RRC 메시지를 통해 각 단말에게 CC를 할당할 수 있다. 이 후, 단말의 CC 할당은 반송파 집성 역량(carrier aggregation capability), 트래픽 부하(traffic load), 셀내 단말들의 부하, 단말 지형(UE geometry) 등 다양한 측면들을 고려하여 RRC 메시지 또는 L1/L2 시그널링을 통해 이루어질 수 있다.
다중 반송파 시스템에서도, 각 UL CC의 스케줄링을 위해 SRS 설정이 필요하다.
기존 LTE 시스템에서, SRS 설정은 셀 특정 SRS 설정 정보와 단말 특정 SRS 설정 정보의 2가지 정보의 조합으로 이루어진다. 하나의 UL CC에 대한 SRS를 위해 셀 특정 SRS 설정 정보와 단말 특정 SRS 설정 정보 양자가 하나의 DL CC로 전송되는 것이다.
하지만, 상기와 같은 단일 CC 기반의 SRS 설정은 다중 반송파 시스템에 그대로 적용하면, 비효율적일 수 있다.
이하에서, 셀 특정 CC는 사용 가능 CC로써, 기지국이 전체 주파수 대역에서 할당 가능한 CC를 말한다. 단말 특정 CC는 할당 CC 또는 활성 CC가 될 수 있다.
아래 표는 기존 3GPP LTE의 SRS 설정을 다중 반송파에 적용할 때, 문제점을 나타낸 것이다.
표 1
Case | Cell-Specific | UE-Specific | Problem |
1 | Symmetric | Symmetric | 기존 3GPP LTE과 동일한 방법으로 SRS 설정 가능. |
2 | DL heavy | 복수의 DL CC에서 셀-특정 SRS 설정 정보를 수신할 수 있지만, SRS 설정을 이용해 SRS를 전송할 UL CC는 1개임. | |
3 | UL heavy | 하나의 DL CC에서 수신할 수 있는 SRS 설정 정보는 해당되는 DL에 링키지되는 UL CC에서의 SRS에 관한 것이고, 나머지 UL CC에 대한 SRS 설정도 필요함. | |
4 | DL Heavy | Symmetric | n개의 DL CC가 모두 접속 가능하다면, 각 DL CC를 통해 링키지된 UL CC에 대한 SRS 설정이 전송 가능함. |
5 | DL heavy | 셀과 단말이 가지고 있는 DL CC의 수, n이 다를 수 있으므로, 모든 DL CC를 통해 동일한 UL CC에 대한 SRS 설정을 전송해야 함. | |
6 | UL heavy | 단말의 DL/UL CC 링키지가 셀의 DL/UL 링키지와 다르게 설정될 수 있기 때문에, 셀의 DL/UL 링키지에 따른 SRS 설정이 단말에게 유효하지 않을 수 있고, 3)의 문제도 존재함. | |
7 | UL Heavy | Symmetric | 하나의 DL CC와 페어인 n개 UL CC에 대해 독립적인 SRS 설정을 정의할 수 없음 |
8 | DL heavy | 단말의 DL/UL CC 링키지가 셀의 DL/UL 링키지와 다르게 설정될 수 있기 때문에, 셀의 DL/UL 링키지에 따른 SRS 설정이 단말에게 유효하지 않을 수 있음. | |
9 | UL heavy | 셀과 단말이 가지고 있는 UL CC의 수, n이 다를 수 있으므로 하나의 DL CC와 페어인 n개 UL CC에 대해 독립적인 SRS 설정을 정의할 수 없음. |
상기 표에서 'DL heavy'는 DL CC:UL CC = n:1의 관계로 DL CC가 UL CC보다 더 많이 할당될 수 있음을 의미한다. 'UL heavy'는 DL CC:UL CC = 1:n의 관계로 UL CC가 DL CC보다 더 많이 할당될 수 있음을 의미한다. 케이스 2에서, 셀 특정이 대칭적이고, 단말 특정이 DL heavy라 함은, 셀 특정 DL CC의 수와 셀 특정 UL CC의 수는 동일하나, 단말의 역량, 트래픽, 부하(load) 등에 의해 단말 특정 DL CC가 단말 특정 UL CC보다 더 많이 할당된 경우를 의미한다.
이제 각 케이스별로 SRS 설정을 제안한다. 이하의 실시예에서, 셀 특정 DL CC의 수, 셀 특정 UL CC의 수, 단말 특정 DL CC의 수 및 단말 특정 UL CC의 수는 예시에 불과하다.
도 7은 케이스 1에서 SRS 설정을 나타낸다. 셀 특정 CC와 단말 특정 CC가 모두 대칭적으로 할당된 예이다.
셀 특정 DL CC로 DL CC #1과 DL CC #2가 있고, 셀 특정 UL CC로 UL CC #1과 UL CC #2가 있다. DL CC #1은 UL CC #1과 링크되어 있고, DL CC #2은 UL CC #2과 링크되어 있다. DL/UL CC가 1:1로 맵핑되어 있다. 단말에게는 DL CC #1과 UL CC #1가 할당된다.
각 UL CC에 대한 SRS 설정을 위해, 링크된 DL CC를 통해 SRS 설정 정보를 기지국이 단말에게 보내줄 수 있다. 단말은 DL CC #1를 통해 전송되는 셀 특정 SRS 설정 정보 및 단말 특정 SRS 설정 정보를 기반으로 UL CC #1을 위한 SRS를 전송할 수 있다.
도 8은 케이스 2에서 SRS 설정을 나타낸다. 셀 특정 CC는 대칭적이지만, 단말 특정 CC는 DL heavy로 할당된 예이다. 단말에게는 DL CC #1, DL CC #2 및 UL CC #1가 할당된다.
단말은 2개의 DL CC들, DL CC #1 및 DL CC #2, 을 통해 각각 SRS 설정을 수신할 수 있지만, SRS가 전송될 UL CC는 UL CC #1 1개이다. 따라서, 단말이 하나의 UL CC를 대한 SRS 설정을 수신한 DL CC를 제한하거나, 단말이 자신에게 할당된 모든 DL CC에서 수신한 SRS 설정으로부터 유효한 정보를 판단하는 과정이 필요하다.
셀 특정 SRS 정보는 모든 DL CC를 통해 전송될 수 있다. 단말은 할당된 UL CC에 링크되어 있는 DL CC(예, DL CC #1)를 통해 전송되는 셀 특정 SRS 정보를 유효한 셀 특정 SRS 정보로 결정할 수 있다.
단말 특정 SRS 정보는 단말에 할당된 UL CC에 SIB2의 Tx/Rx 분할(separation) 정보를 통해 링크되어 있는 DL CC를 통해 전송될 수 있다. 또는, 단말 특정 SRS 정보는 기준 DL CC를 통해 전송될 수 있다.
단말 특정 SRS 정보는 단말에게 할당된 DL CC들 중 적어도 하나를 통해 전송될 수 있다. 예를 들어, 단말에게 할당된 DL CC #1과 DL CC #2 양자를 통해 단말 특정 SRS 정보가 전송되는 것이다. 단말은 DL CC #2에서 단말 특정 SRS 정보를 수신하더라도, 이는 UL CC #1에 대한 단말 특정 SRS 정보임을 알 수 있다.
단말 특정 SRS 정보는 모든 DL CC를 통해 전송될 수도 있다.
도 9는 케이스 3에서 SRS 설정을 나타낸다. 셀 특정 CC는 대칭적이지만, 단말 특정 CC는 UL heavy로 할당된 예이다. 단말에게는 DL CC #1, UL CC #1 및 UL CC #2가 할당된다.
단말은 하나의 DL CC #1에서 SRS 설정을 수신할 수 있지만, 종래 3GPP LTE에 의하면, 하나의 SRS 설정으로 하나의 CC에 대한 SRS만을 설정가능하다. DL CC #1을 통해, DL CC #1과 링크된 UL CC #1에 대한 SRS 설정이 전송될 수 있다. 하지만, 이는 나머지 UL CC #2에 대한 SRS 설정이 불가능한 문제가 있다.
모든 UL CC에 대한 셀 특정 SRS 설정은 하나의 DL CC를 통해 전송될 수 있다. 셀 특정 SRS 설정 정보내에는 셀 특정 SRS 설정 정보가 어느 UL CC에 대한 것인지를 가리키는 CC 지시자가 포함될 수 있다.
DL CC를 통해 전송되는 셀 특정 SRS 설정 정보가 모든 UL CC에 공통적으로 적용될 수 있다.
DL CC를 통해 전송되는 셀 특정 SRS 설정 정보는 링크된 UL CC에 대한 셀 특정 SRS 설정에 사용하고, 나머지 UL CC의 셀 특정 SRS 설정은 시그널링없이 미리 정의될 수 있다. 예를 들어, 나머지 UL CC의 셀 특정 SRS 설정은 DL CC를 통해 전송되는 셀 특정 SRS 설정 정보로부터 미리 정의된 오프셋을 가지는 것이다. 오프셋은 시간 오프셋, 주파수 오프셋, 순환 쉬프트 패턴 등을 포함할 수 있다. 또는, 나머지 UL CC에 특징적인 정보(예를 들어, UL CC 인덱스나 셀 ID)를 기반으로 셀 특정 SRS 설정이 미리 정의될 수 있다.
DL CC를 통해 전송되는 셀 특정 SRS 설정 정보는 링크된 UL CC에 대한 셀 특정 SRS 설정에 사용하고, 나머지 UL CC의 셀 특정 SRS 설정을 위해 오프셋이 추가적으로 전송될 수 있다. 오프셋은 상기 셀 특정 SRS 설정 정보에 포함되거나, 별도의 메시지를 통해 전송될 수 있다. 오프셋은 시간 오프셋, 주파수 오프셋, 순환 쉬프트 패턴 등을 포함할 수 있다.
모든 UL CC에 대한 단말 특정 SRS 설정은 하나의 DL CC를 통해 전송될 수 있다. 단말 특정 SRS 설정 정보내에는 단말 특정 SRS 설정 정보가 어느 UL CC에 대한 것인지를 가리키는 CC 지시자가 포함될 수 있다.
DL CC를 통해 전송되는 단말 특정 SRS 설정 정보가 모든 UL CC에 공통적으로 적용될 수 있다.
DL CC를 통해 전송되는 단말 특정 SRS 설정 정보는 링크된 UL CC에 대한 단말 특정 SRS 설정에 사용하고, 나머지 UL CC의 단말 특정 SRS 설정은 시그널링없이 미리 정의될 수 있다. 예를 들어, 나머지 UL CC의 단말 특정 SRS 설정은 DL CC를 통해 전송되는 단말 특정 SRS 설정 정보로부터 미리 정의된 오프셋을 가지는 것이다. 오프셋은 시간 오프셋, 주파수 오프셋, 순환 쉬프트 패턴 등을 포함할 수 있다. 또는, 나머지 UL CC에 특징적인 정보(예를 들어, UL CC 인덱스나 셀 ID)를 기반으로 셀 특정 SRS 설정이 미리 정의될 수 있다.
DL CC를 통해 전송되는 단말 특정 SRS 설정 정보는 링크된 UL CC에 대한 셀 특정 SRS 설정에 사용하고, 나머지 UL CC의 단말 특정 SRS 설정을 위해 오프셋이 추가적으로 전송될 수 있다. 오프셋은 상기 단말 특정 SRS 설정 정보에 포함되거나, 별도의 메시지를 통해 전송될 수 있다.
셀 특정 SRS 설정 정보는 각 DL CC에서 전송되고, 단말의 역량에 따라 더 요구되는 UL CC의 단말 특정 SRS 설정은 단말 특정 RRC 시그널링을 통해 전송될 수 있다. 예를 들어, UL CC #2에 대한 셀 특정 SRS 설정 정보는 DL CC #1을 통해 수신하여, UL CC #1과 공유한다. UL CC #2에 대한 단말 특정 SRS 설정 정보는 별도의 단말 특정 RRC 메시지를 통해 수신하는 것이다.
도 10은 케이스 4에서 SRS 설정을 나타낸다. 셀 특정 CC는 DL heavy이지만, 단말 특정 CC는 대칭적으로 할당된 예이다. 셀 특정 DL CC로 DL CC #1, #2, #3, #4가 있고, 셀 특정 UL CC로 UL CC #1과 UL CC #2가 있다. DL CC #1, #2은 UL CC #1과 링크되어 있고, DL CC #3, #4은 UL CC #2과 링크되어 있다. 단말에게는 DL CC #1, #2과 UL CC #1, #2가 할당된다.
각 UL CC에 대한 SRS 설정을 위해, 링크된 DL CC를 통해 SRS 설정 정보를 기지국이 단말에게 보내줄 수 있다. 단말은 DL CC #2를 통해 전송되는 셀 특정 SRS 설정 정보 및 단말 특정 SRS 설정 정보를 기반으로 UL CC #1을 위한 SRS를 전송할 수 있다. 또한, 단말은 DL CC #3을 통해 전송되는 셀 특정 SRS 설정 정보 및 단말 특정 SRS 설정 정보를 기반으로 UL CC #2을 위한 SRS를 전송할 수 있다.
도 11은 케이스 5에서 SRS 설정을 나타낸다. 셀 특정 CC과 단말 특정 CC가 DL heavy로 할당된 예이다. 단말에게는 DL CC #1, DL CC #2 및 UL CC #1가 할당된다.
DL CC #1, #2를 통해 UL CC #1에 대한 SRS 설정이 전송될 수 있다. 이는 단일 반송파만을 사용하는 단말들을 지원하기 위해서도 필요하다.
단말 특정 SRS 설정 정보는 단말에게 할당된 UL CC #1에 링크되어 있는 DL CC #1 또는 DL CC #2를 통해 수신할 수 있다. 또는, 다른 단말에게 중복된 RRC 시그널링이 전송되지 않도록, SRS 설정은 기준 DL CC를 통해 수신하도록 제한될 수도 있다.
또는 단말 특정 SRS 설정 정보는 단말에게 할당된 DL CC들 중 어느 CC를 통해서도 전송될 수 있지만, 단말 특정 SRS 설정 정보가 사용되는 UL CC를 지정하는 지시자가 상기 단말 특정 SRS 설정 정보에 포함될 수 있다.
도 12는 케이스 6에서 SRS 설정을 나타낸다. 셀 특정 CC는 DL heavy이지만, 단말 특정 CC는 UL heavy로 할당된 예이다. 단말에게는 DL CC #1, UL CC #1 및 UL CC #2가 할당된다.
단말은 하나의 DL CC #1에서 SRS 설정을 수신할 수 있지만, 종래 3GPP LTE에 의하면, 하나의 SRS 설정으로 하나의 CC에 대한 SRS 만을 설정가능하다. DL CC #1을 통해, DL CC #1과 링크된 UL CC #1에 대한 SRS 설정이 전송될 수 있다. 하지만, 이는 나머지 UL CC #2에 대한 SRS 설정이 불가능한 문제가 있다.
모든 UL CC에 대한 셀 특정 SRS 설정은 하나의 DL CC를 통해 전송될 수 있다. 셀 특정 SRS 설정 정보내에는 셀 특정 SRS 설정 정보가 어느 UL CC에 대한 것인지를 가리키는 CC 지시자가 포함될 수 있다.
DL CC를 통해 전송되는 셀 특정 SRS 설정 정보가 모든 UL CC에 공통적으로 적용될 수 있다.
DL CC를 통해 전송되는 셀 특정 SRS 설정 정보는 링크된 UL CC에 대한 셀 특정 SRS 설정에 사용하고, 나머지 UL CC의 셀 특정 SRS 설정은 시그널링없이 미리 정의될 수 있다. 예를 들어, 나머지 UL CC의 셀 특정 SRS 설정은 DL CC를 통해 전송되는 셀 특정 SRS 설정 정보로부터 미리 정의된 오프셋을 가지는 것이다. 오프셋은 시간 오프셋, 주파수 오프셋, 순환 쉬프트 패턴 등을 포함할 수 있다. 또는, 나머지 UL CC에 특징적인 정보(예를 들어, UL CC 인덱스나 셀 ID)를 기반으로 셀 특정 SRS 설정이 미리 정의될 수 있다.
DL CC를 통해 전송되는 셀 특정 SRS 설정 정보는 링크된 UL CC에 대한 셀 특정 SRS 설정에 사용하고, 나머지 UL CC의 셀 특정 SRS 설정을 위해 오프셋이 추가적으로 전송될 수 있다. 오프셋은 상기 셀 특정 SRS 설정 정보에 포함되거나, 별도의 메시지를 통해 전송될 수 있다. 오프셋은 시간 오프셋, 주파수 오프셋, 순환 쉬프트 패턴 등을 포함할 수 있다.
모든 UL CC에 대한 단말 특정 SRS 설정은 하나의 DL CC를 통해 전송될 수 있다. 단말 특정 SRS 설정 정보내에는 단말 특정 SRS 설정 정보가 어느 UL CC에 대한 것인지를 가리키는 CC 지시자가 포함될 수 있다.
DL CC를 통해 전송되는 단말 특정 SRS 설정 정보가 모든 UL CC에 공통적으로 적용될 수 있다.
DL CC를 통해 전송되는 단말 특정 SRS 설정 정보는 링크된 UL CC에 대한 단말 특정 SRS 설정에 사용하고, 나머지 UL CC의 단말 특정 SRS 설정은 시그널링없이 미리 정의될 수 있다. 예를 들어, 나머지 UL CC의 단말 특정 SRS 설정은 DL CC를 통해 전송되는 단말 특정 SRS 설정 정보로부터 미리 정의된 오프셋을 가지는 것이다. 오프셋은 시간 오프셋, 주파수 오프셋, 순환 쉬프트 패턴 등을 포함할 수 있다. 또는, 나머지 UL CC에 특징적인 정보(예를 들어, UL CC 인덱스나 셀 ID)를 기반으로 단말 특정 SRS 설정이 미리 정의될 수 있다.
DL CC를 통해 전송되는 단말 특정 SRS 설정 정보는 링크된 UL CC에 대한 단말 특정 SRS 설정에 사용하고, 나머지 UL CC의 단말 특정 SRS 설정을 위해 오프셋이 추가적으로 전송될 수 있다. 오프셋은 상기 단말 특정 SRS 설정 정보에 포함되거나, 별도의 메시지를 통해 전송될 수 있다.
셀 특정 SRS 설정 정보는 각 DL CC에서 전송되고, 단말의 역량에 따라 더 요구되는 UL CC의 단말 특정 SRS 설정은 단말 특정 RRC 시그널링을 통해 전송될 수 있다. 예를 들어, UL CC #2에 대한 셀 특정 SRS 설정 정보는 DL CC #1을 통해 수신하여, UL CC #1과 공유한다. UL CC #2에 대한 단말 특정 SRS 설정 정보는 별도의 단말 특정 RRC 메시지를 통해 수신하는 것이다.
도 13은 케이스 7에서 SRS 설정을 나타낸다. 셀 특정 CC는 UL heavy이지만, 단말 특정 CC는 대칭적으로 할당된 예이다. 셀 특정 DL CC로 DL CC #1, #2가 있고, 셀 특정 UL CC로 UL CC #1, #2, #3, #4가 있다. DL CC #1은 UL CC #1, #2과 링크되어 있고, DL CC #2은 UL CC #3, #4과 링크되어 있다. 단말에게는 DL CC #1, #2과 UL CC #2, #3가 할당된다.
하나의 DL CC는 복수의 UL CC에 링크될 수 있다. 하지만, 단말에게는 대칭적으로 CC가 할당되므로, DL-UL 링크지는 DL CC와 UL CC가 1:1로 맵핑된다. 따라서, 기본적으로 DL CC를 통해 전송되는 SRS 설정은 대응되는 UL CC에서의 SRS 전송에 사용될 수 있다.
도 14은 케이스 8에서 SRS 설정을 나타낸다. 셀 특정 CC는 UL heavy이지만, 단말 특정 CC는 DL heavy로 할당된 예이다. 단말에게는 DL CC #1, DL CC #2 및 UL CC #2가 할당된다.
UL CC #2에 링크된 DL CC #1로 SRS 설정이 전송될 수 있다.
이와 별개로 하나의 DL CC와 링크된 복수의 UL CC에 대해 독립적인 SRS 설정을 지원하기 위해, 하나의 DL CC에서 복수의 UL CC에 대한 셀 특정 SRS 설정 정보가 전송될 수 있다. 상기 셀 특정 SRS 설정 정보에는 UL CC를 구별하기 위한 식별자가 포함될 수 있다.
도 15은 케이스 9에서 SRS 설정을 나타낸다. 셀 특정 CC과 단말 특정 CC 모두 DL heavy로 할당된 예이다. 단말에게는 DL CC #1, UL CC #2 및 UL CC #3가 할당된다.
셀 특정 DL CC에 링크되는 UL CC의 수와 단말 특정 CC에 링크되는 UL CC의 수가 다를 수 있다. 따라서, 하나의 DL CC에 링크되는 복수의 n개 UL CC에 대해 독립적인 SRS 설정을 정의할 수 없다. 예를 들어, DL CC #0를 통해 정의되는 SRS 설정이 UL CC #1, #2, #3에서 모두 동일하게 사용되면, PAPR(Peak-to-Average Power Ratio) 관점에서 문제가 될 수 있다.
하나의 DL CC와 링크된 복수의 UL CC에 대한 독립적인 SRS 설정을 지원하기 위해, 하나의 DL CC를 통해 상기 링크된 복수의 UL CC 모두에 대한 SRS 설정이 전송될 수 있다. 상기 SRS 설정에는 각 UL CC를 구별하기 위한 식별자가 포함될 수 있다.
DL CC를 통해 전송되는 셀 특정 SRS 설정 정보가 모든 UL CC에 공통적으로 적용될 수 있다.
DL CC를 통해 전송되는 셀 특정 SRS 설정 정보는 링크된 UL CC에 대한 셀 특정 SRS 설정에 사용하고, 나머지 UL CC의 셀 특정 SRS 설정은 시그널링없이 미리 정의될 수 있다. 예를 들어, 나머지 UL CC의 셀 특정 SRS 설정은 DL CC를 통해 전송되는 셀 특정 SRS 설정 정보로부터 미리 정의된 오프셋을 가지는 것이다. 오프셋은 시간 오프셋, 주파수 오프셋, 순환 쉬프트 패턴 등을 포함할 수 있다. 또는, 나머지 UL CC에 특징적인 정보(예를 들어, UL CC 인덱스나 셀 ID)를 기반으로 셀 특정 SRS 설정이 미리 정의될 수 있다.
DL CC를 통해 전송되는 셀 특정 SRS 설정 정보는 링크된 UL CC에 대한 셀 특정 SRS 설정에 사용하고, 나머지 UL CC의 셀 특정 SRS 설정을 위해 오프셋이 추가적으로 전송될 수 있다. 오프셋은 상기 셀 특정 SRS 설정 정보에 포함되거나, 별도의 메시지를 통해 전송될 수 있다. 오프셋은 시간 오프셋, 주파수 오프셋, 순환 쉬프트 패턴 등을 포함할 수 있다.
모든 UL CC에 대한 단말 특정 SRS 설정은 하나의 DL CC를 통해 전송될 수 있다. 단말 특정 SRS 설정 정보내에는 단말 특정 SRS 설정 정보가 어느 UL CC에 대한 것인지를 가리키는 CC 지시자가 포함될 수 있다.
DL CC를 통해 전송되는 단말 특정 SRS 설정 정보가 모든 UL CC에 공통적으로 적용될 수 있다.
DL CC를 통해 전송되는 단말 특정 SRS 설정 정보는 링크된 UL CC에 대한 단말 특정 SRS 설정에 사용하고, 나머지 UL CC의 단말 특정 SRS 설정은 시그널링없이 미리 정의될 수 있다. 예를 들어, 나머지 UL CC의 단말 특정 SRS 설정은 DL CC를 통해 전송되는 단말 특정 SRS 설정 정보로부터 미리 정의된 오프셋을 가지는 것이다. 오프셋은 시간 오프셋, 주파수 오프셋, 순환 쉬프트 패턴 등을 포함할 수 있다. 또는, 나머지 UL CC에 특징적인 정보(예를 들어, UL CC 인덱스나 셀 ID)를 기반으로 단말 특정 SRS 설정이 미리 정의될 수 있다.
DL CC를 통해 전송되는 단말 특정 SRS 설정 정보는 링크된 UL CC에 대한 단말 특정 SRS 설정에 사용하고, 나머지 UL CC의 단말 특정 SRS 설정을 위해 오프셋이 추가적으로 전송될 수 있다. 오프셋은 상기 단말 특정 SRS 설정 정보에 포함되거나, 별도의 메시지를 통해 전송될 수 있다.
상기에서 각 케이스별로 문제점과 그 해결 방법들을 제안하고 있지만, 다중 반송파 시스템에서 SRS 설정을 위해, 각 방법은 독립적으로, 또는 그 조합으로 구현될 수 있다.
셀 특정 SRS 설정 정보를 전송하는 셀 특정 RRC 메시지는 모든 DL CC를 통해 전송될 수 있다. 각 DL CC에서 전송되는 셀 특정 SRS 설정 정보는 CC에 상관없이 동일할 수 있고, 또는 CC마다 다를 수 있다.
셀 내에서 DL/UL 링키지가 1:n인 경우(즉, UL heavy), 하나의 DL CC에서 복수의 UL CC에 대한 셀 특정 SRS 설정이 전송될 수 있다. 셀 특정 SRS 설정에는 UL CC를 식별하기 위한 식별자 또는 지시자가 포함될 수 있다.
단말 특정 SRS 설정 정보는 각 DL CC를 통해 전송될 수 있다.
단말 특정 SRS 설정 정보는 해당되는 UL CC에 링크된 DL CC를 통해 전송될 수 있다.
DL CC를 통해 전송되는 단말 특정 SRS 설정 정보는 SRS 설정이 적용되는 UL CC를 지시하는 지시자를 포함할 수 있다.
하나의 DL CC와 링크된 UL CC의 셀 특정 SRS 설정은 기존 방법과 동일하게 전송되고, 나머지 UL CC의 셀 특정 SRS 설정은 단말 특정 SRS 설정 정보에 포함될 수 있다. 또는, 하나의 DL CC로 전송되는 셀 특정 SRS 설정을 모든 UL CC에 적용할 수 있다.
셀 특정 설정 정보가 전송되는 DL CC에 링크된 UL CC 외의 나머지 UL CC의 셀 특정 SRS 설정은 미리 정의될 수 있다.
DL CC를 통해 전송되는 셀 SRS 설정 정보는 링크된 UL CC에 대한 셀 특정 SRS 설정에 사용하고, 나머지 UL CC의 셀 특정 SRS 설정을 위해 오프셋이 추가적으로 전송될 수 있다. 오프셋은 상기 셀 특정 SRS 설정 정보에 포함되거나, 별도의 메시지를 통해 전송될 수 있다. 오프셋은 시간 오프셋, 주파수 오프셋, 순환 쉬프트 패턴 등을 포함할 수 있다. 또는, 나머지 UL CC에 특징적인 정보(예를 들어, UL CC 인덱스나 셀 ID)를 기반으로 셀 특정 SRS 설정이 미리 정의될 수 있다.
하나의 DL CC와 링크된 UL CC의 단말 특정 SRS 설정은 기존 방법과 동일하게 전송되고, 나머지 UL CC의 단말 특정 SRS 설정은 단말 특정 SRS 설정 정보에 포함될 수 있다. 또는, 하나의 DL CC로 전송되는 단말 특정 SRS 설정을 모든 UL CC에 적용할 수 있다.
단말 특정 설정 정보가 전송되는 DL CC에 링크된 UL CC 외의 나머지 UL CC의 단말 특정 SRS 설정은 미리 정의될 수 있다.
DL CC를 통해 전송되는 단말 특정 SRS 설정 정보는 링크된 UL CC에 대한 단말 특정 SRS 설정에 사용하고, 나머지 UL CC의 단말 특정 SRS 설정을 위해 오프셋이 추가적으로 전송될 수 있다. 오프셋은 상기 단말 특정 SRS 설정 정보에 포함되거나, 별도의 메시지를 통해 전송될 수 있다. 오프셋은 시간 오프셋, 주파수 오프셋, 순환 쉬프트 패턴 등을 포함할 수 있다. 또는, 나머지 UL CC에 특징적인 정보(예를 들어, UL CC 인덱스나 셀 ID)를 기반으로 단말 특정 SRS 설정이 미리 정의될 수 있다.
단말은 SRS 설정이 수신되는 DL CC와 링크된 UL CC외의 나머지 CC에 대한 SRS 설정는 각 UL CC 인덱스를 기반으로 결정할 수 있다. 즉, 기존 셀 특정 SRS 설정 정보와 단말 특정 SRS 설정 정보에 포함되는 파라미터들은 UL CC 인덱스에 의존하도록 바꾸어 설정될 수 있다.
한편, SRS 전송 및 다양한 반송파 집성 상황에서의 동작을 고려할 때, 단말 특정 DL/UL 링키지는 셀 특정 DL/UL 링키지를 기본으로 구성하는 것이 동작의 복잡도와 시그널링 오버헤드를 줄일 수 있다. 예를 들어, 셀 특정 DL/UL 링키지가 다음과 같다. (DL CC #1 - UL CC #1), (DL CC #2 - UL CC #2), (DL CC #3 - UL CC #3), (DL CC #4 - UL CC #4). 이때, DL CC 2개와 UL CC 2개를 지원하는 단말이 단말 특정 DL/UL 링키지로 (DL CC #1 - UL CC #1), (DL CC #1 - UL CC #1)를 사용하면 시그널링 오버헤드를 줄일 수 있다. 하자지만, 단말 특정 DL/UL 링키지로 (DL CC #1 - UL CC #1), (DL CC #3 - UL CC #2)를 사용하면 불리하다. 이는 케이스 1에 해당됨에도 불구하고, DL CC #2를 통해 전송되는 UL CC #2를 위한 SRS 설정을 단말이 수신할 수 없는 문제점이 발생한다.
단말에게 초기에 설정된 단말 특정 CC 할당은 바뀔 수 있다. 이 관점에서도, 상술한 방법은 다음과 같이 다양한 방법으로 적용될 수 있다.
(1) 대칭적 설정이 DL heavy 설정으로 바뀐 경우 : UL CC를 하나만 사용하게 되는 것이므로 해당 UL CC와 링크된 DL CC에서 SRS 설정을 수신할 수 있다.
(2) 대칭적 설정이 UL heavy 설정으로 바뀐 경우 : 전술한 UL heavy에서 제안된 SRS 설정 방법이 적용될 수 있다.
(3) DL heavy 설정이 대칭적 설정으로 바뀐 경우 : UL CC와 링크된 DL CC에서 SRS 설정을 수신할 수 있다.
(4) DL heavy 설정이 UL heavy 설정으로 바뀐 경우 : 전술한 UL heavy에서 제안된 SRS 설정 방법이 적용될 수 있다.
(5) UL heavy 설정이 대칭적 설정으로 바뀐 경우 : UL CC와 링크된 DL CC에서 SRS 설정을 수신할 수 있다.
(6) UL heavy 설정이 DL heavy 설정으로 바뀐 경우 : UL CC와 링크된 DL CC에서 SRS 설정을 수신할 수 있다.
(7) 대칭적, UL heavy, UL heavy 설정은 유지되지만, CC 개수나 CC 주파수가 바뀌는 경우 : UL CC와 링크된 DL CC에서 SRS 설정을 수신할 수 있다.
제안되는 실시예들은 SRS 설정 이외에도 다른 상향링크 제어 채널, 상향링크 데이터 채널, 물리 신호 및/또는 상향링크 기준 신호의 설정을 위한 단말 특정 정보 및 셀 특정 정보의 전송에 전송될 수 있다. 예를 들어, PUCCH 포맷 1과 포맷 2에 관련된 PUCCH 구조, 순환 쉬프트, 자원 크기, 기본 시퀀의 선택, 자원 호핑(resource hopping) 등의 설정을 위해 제안되는 실시예들이 적용될 수 있다. 또는, DL CC 별로 셀 ID가 주어질 때, 셀 ID와 관련된 UL 스크램블 코드(scrambling code) 초기화, 순환 쉬프트, 기본 시퀀스 선택, 호핑 패턴 선택의 설정을 위해, 제안되는 실시예들이 적용될 수 있다.
도 16은 본 발명의 실시예가 구현되는 무선 장치들을 나타낸 블록도이다.
단말(1010)은 프로세서(processor, 1011), 메모리(memory, 1012) 및 RF부(Radio Frequency Unit, 1013)를 포함한다. 프로세서(1011)는 다중 반송파를 지원하고, 도 7 내지 15의 실시예에서 단말의 동작을 구현한다. 프로세서(1011)는 DL CC를 통해 사운딩 기준 신호를 수신되는 SRS 설정을 기반으로 처리한다. 메모리(1012)는 각 UL CC에 대한 SRS 설정을 저장한다. RF부(1013)은 SRS를 전송한다.
SRS 설정이 수신되는 DL CC는 단말에게 할당된 복수의 DL CC 중 적어도 어느 하나이거나, 또는 단말에게 할당된 복수의 DL CC를 통해 SRS 설정이 수신될 수 있다.
상기 SRS 설정은 복수의 UL CC에 대한 SRS 설정을 포함할 수 있다. SRS 설정은 상기 복수의 UL CC를 식별하는 식별자 또는 인덱스를 포함할 수 있다.
SRS 설정은 셀 특정 SRS 설정 정보와 단말 특정 SRS 설정 정보를 포함한다. 셀 특정 SRS 설정 정보는 'srs-BandwidthConfiguration', 'srs-SubframeConfiguration' 및 'ackNackSRS-SimultaneousTransmission' 중 적어도 어느 하나를 포함한다. 단말 특정 SRS 설정 정보는 'srs-Bandwidth', 'srs-HoppingBandwidth', 'frequencyDomainPosition', 'Duration', 'srs-ConfigurationIndex', 'transmissionComb' 및 'cyclicShift' 중 적어도 어느 하나를 포함한다.
DL CC와 UL CC는 서로 링크되어 있다. DL-UL 링키지 정보는 시스템 정보 및/또는 상위계층 시그널링을 통해 기지국이 단말에게 알려줄 수 있다. SRS는 상기 SRS 설정(제1 SRS 설정)이 수신되는 DL CC와 링크된 UL CC(제1 UL CC)를 통해 전송될 수 있다. 또한, 제2 SRS가 상기 DL CC와 링크되지 않은 UL CC(제2 UL CC)를 통해 전송될 수 있다.
제2 SRS를 위한 제2 SRS 설정은 미리 정의되거나, 제1 SRS 설정을 기반으로 획득될 수 있다. 제2 SRS 설정은 제1 SRS 설정으로부터 오프셋을 적용하여 획득될 수 있다. 상기 오프셋은 미리 정의되거나, 상기 제1 SRS 설정에 포함되거나, 별도의 메시지를 통해 주어질 수 있다.
기지국(1020)은 프로세서(1021), 메모리(1022) 및 RF부(1023)를 포함한다. 프로세서(1021)는 다중 반송파를 지원하고, 도 7 내지 15의 실시예에서 기지국의 동작을 구현한다. 프로세서(1021)는 사운딩 기준 신호를 위한 SRS 설정을 결정하고, DL CC를 통해 단말에게 알려준다. 또한, 수신된 SRS를 기반으로 UL 스케줄링을 수행한다. 메모리(1022)는 각 UL CC에 대한 SRS 설정을 저장한다. RF부(1013)은 SRS 설정을 전송하고, SRS를 수신한다.
기지국(1020)은 셀 특정 SRS 설정 정보를 전송하는 셀 특정 RRC 메시지는 모든 DL CC를 통해 전송할 수 있다. 각 DL CC에서 전송되는 셀 특정 SRS 설정 정보는 CC에 상관없이 동일할 수 있고, 또는 CC마다 다를 수 있다.
셀 내에서 DL/UL 링키지가 1:n인 경우(즉, UL heavy), 기지국(1020)은 하나의 DL CC에서 복수의 UL CC에 대한 셀 특정 SRS 설정을 전송할 수 있다. 셀 특정 SRS 설정에는 UL CC를 식별하기 위한 식별자 또는 지시자가 포함될 수 있다.
기지국(1020)은 단말 특정 SRS 설정 정보를 각 DL CC를 통해 전송할 수 있다.
기지국(1020)은 단말 특정 SRS 설정 정보를 해당되는 UL CC에 링크된 DL CC를 통해 전송할 수 있다.
DL CC를 통해 전송되는 단말 특정 SRS 설정 정보는 SRS 설정이 적용되는 UL CC를 지시하는 지시자를 포함할 수 있다.
하나의 DL CC와 링크된 UL CC의 셀 특정 SRS 설정은 기존 방법과 동일하게 전송되고, 나머지 UL CC의 셀 특정 SRS 설정은 단말 특정 SRS 설정 정보에 포함될 수 있다. 또는, 하나의 DL CC로 전송되는 셀 특정 SRS 설정을 모든 UL CC에 적용할 수 있다.
셀 특정 설정 정보가 전송되는 DL CC에 링크된 UL CC 외의 나머지 UL CC의 셀 특정 SRS 설정은 미리 정의될 수 있다.
DL CC를 통해 전송되는 셀 SRS 설정 정보는 링크된 UL CC에 대한 셀 특정 SRS 설정에 사용하고, 나머지 UL CC의 셀 특정 SRS 설정을 위해 오프셋이 추가적으로 전송될 수 있다. 오프셋은 상기 셀 특정 SRS 설정 정보에 포함되거나, 별도의 메시지를 통해 전송될 수 있다. 오프셋은 시간 오프셋, 주파수 오프셋, 순환 쉬프트 패턴 등을 포함할 수 있다. 또는, 나머지 UL CC에 특징적인 정보(예를 들어, UL CC 인덱스나 셀 ID)를 기반으로 셀 특정 SRS 설정이 미리 정의될 수 있다.
하나의 DL CC와 링크된 UL CC의 단말 특정 SRS 설정은 기존 방법과 동일하게 전송되고, 나머지 UL CC의 단말 특정 SRS 설정은 단말 특정 SRS 설정 정보에 포함될 수 있다. 또는, 하나의 DL CC로 전송되는 단말 특정 SRS 설정을 모든 UL CC에 적용할 수 있다.
단말 특정 설정 정보가 전송되는 DL CC에 링크된 UL CC 외의 나머지 UL CC의 단말 특정 SRS 설정은 미리 정의될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 실시예들은 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.
Claims (20)
- 다중 반송파 시스템에서 사운딩 기준 신호 전송 방법에 있어서,단말이 기지국으로부터 셀 특정 SRS(Sounding Reference Signal) 설정 및 단말 특정 SRS 설정를 포함하는 SRS 설정을 하향링크 반송파를 통해 수신하고, 및단말이 상기 하향링크 반송파와 링크된 상향링크 반송파를 통해 상기 SRS 설정을 기반으로 사운딩 기준 신호를 전송하는 것을 포함하는 사운딩 기준 신호 전송 방법.
- 제 1 항에 있어서, 상기 하향링크 반송파는 상기 단말에게 할당된 복수의 하향링크 반송파 중 하나인 사운딩 기준 신호 전송 방법.
- 제 1 항에 있어서, 상기 SRS 설정은 상기 단말에게 할당된 복수의 하향링크 반송파 모두를 통해 수신되는 사운딩 기준 신호 전송 방법.
- 제 1 항에 있어서, 상기 셀 특정 SRS 설정 정보는 상기 사운딩 기준 신호의 대역폭을 설정하는 파라미터 및 셀 내에서 상기 사운딩 기준 신호가 전송될 수 있는 서브프레임들의 집합을 나타내는 파라미터 중 적어도 어느 하나를 포함하는 사운딩 기준 신호 전송 방법.
- 제 1 항에 있어서, 상기 단말 특정 SRS 설정 정보는 상기 사운딩 기준 신호의 전송 대역을 나타내는 파라미터, 상기 사운딩 기준 신호의 주파수 영역에서 위치를 구하기 위한 파라미터 및 상기 사운딩 기준 신호의 순환시프트(cyclic shift)를 구하는데 사용되는 파라미터 중 적어도 어느 하나를 포함하는 사운딩 기준 신호 전송 방법.
- 제 1 항에 있어서, 상기 단말이 제2 상향링크 반송파를 통해 제2 사운딩 기준 신호를 전송하는 것을 더 포함하되, 상기 제2 상향링크 반송파는 상기 하향링크 반송파와 링크되지 않은 사운딩 기준 신호 전송 방법.
- 제 6 항에 있어서, 상기 제2 사운딩 기준 신호를 위한 제2 SRS 설정은 미리 정의되는 사운딩 기준 신호 전송 방법.
- 제 6 항에 있어서, 상기 제2 사운딩 기준 신호를 위한 제2 SRS 설정은 상기 SRS 설정을 기반으로 획득되는 사운딩 기준 신호 전송 방법.
- 제 8 항에 있어서, 상기 제2 사운딩 기준 신호를 위한 제2 SRS 설정은 상기 SRS 설정으로부터 오프셋을 적용하여 획득되는 사운딩 기준 신호 전송 방법.
- 제 9 항에 있어서, 상기 오프셋은 상기 SRS 설정에 포함되는 사운딩 기준 신호 전송 방법.
- 다중 반송파 시스템에서 사운딩 기준 신호를 전송하는 단말에 있어서,사운딩 기준 신호를 상향링크 반송파를 통해 전송하는 RF(Radio Frequency)부; 및상기 RF부와 연결되어, 상기 사운딩 기준 신호를 설정하는 프로세서를 포함하되,상기 사운딩 기준 신호를 설정하기 위한 SRS 설정은 하향링크 반송파를 통해 기지국으로부터 수신되고, 상기 SRS 설정은 셀 특정 SRS(Sounding Reference Signal) 설정 및 단말 특정 SRS 설정를 포함하고, 상기 상향링크 반송파는 상기 하향링크 반송파와 링크된 것을 특징으로 하는 단말.
- 제 11 항에 있어서, 상기 하향링크 반송파는 상기 단말에게 할당된 복수의 하향링크 반송파 중 하나인 단말.
- 제 11 항에 있어서, 상기 SRS 설정은 상기 단말에게 할당된 복수의 하향링크 반송파 모두를 통해 수신되는 단말.
- 제 1 항에 있어서, 상기 셀 특정 SRS 설정 정보는 상기 사운딩 기준 신호의 대역폭을 설정하는 파라미터 및 셀 내에서 상기 사운딩 기준 신호가 전송될 수 있는 서브프레임들의 집합을 나타내는 파라미터 중 적어도 어느 하나를 포함하는 단말.
- 제 1 항에 있어서, 상기 단말 특정 SRS 설정 정보는 상기 사운딩 기준 신호의 전송 대역을 나타내는 파라미터, 상기 사운딩 기준 신호의 주파수 영역에서 위치를 구하기 위한 파라미터 및 상기 사운딩 기준 신호의 순환시프트(cyclic shift)를 구하는데 사용되는 파라미터 중 적어도 어느 하나를 포함하는 단말.
- 제 1 항에 있어서, 상기 단말이 제2 상향링크 반송파를 통해 제2 사운딩 기준 신호를 전송하는 것을 더 포함하되, 상기 제2 상향링크 반송파는 상기 하향링크 반송파와 링크되지 않은 단말.
- 제 16 항에 있어서, 상기 제2 사운딩 기준 신호를 위한 제2 SRS 설정은 미리 정의되는 단말.
- 제 16 항에 있어서, 상기 제2 사운딩 기준 신호를 위한 제2 SRS 설정은 상기 SRS 설정을 기반으로 획득되는 단말.
- 제 18 항에 있어서, 상기 제2 사운딩 기준 신호를 위한 제2 SRS 설정은 상기 SRS 설정으로부터 오프셋을 적용하여 획득되는 단말.
- 제 19 항에 있어서, 상기 오프셋은 상기 SRS 설정에 포함되는 단말.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/378,961 US20120093119A1 (en) | 2009-06-18 | 2010-06-17 | Method and apparatus for transmitting sounding reference signal in wireless communication system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21839209P | 2009-06-18 | 2009-06-18 | |
US61/218,392 | 2009-06-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010147411A2 true WO2010147411A2 (ko) | 2010-12-23 |
WO2010147411A3 WO2010147411A3 (ko) | 2011-03-31 |
Family
ID=43356932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2010/003924 WO2010147411A2 (ko) | 2009-06-18 | 2010-06-17 | 무선 통신 시스템에서 사운딩 기준 신호 전송 방법 및 장치 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20120093119A1 (ko) |
WO (1) | WO2010147411A2 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013049962A1 (en) | 2011-10-08 | 2013-04-11 | Huawei Technologies Co., Ltd. | Sounding reference signal transmission |
WO2013187635A1 (en) * | 2012-06-11 | 2013-12-19 | Kt Corporation | Transmission of uplink sounding reference signal |
EP2664182A4 (en) * | 2011-01-12 | 2017-05-10 | Alcatel Lucent | Method of configuring an aperiodic sounding reference signal |
US9756616B2 (en) | 2012-06-11 | 2017-09-05 | Kt Corporation | Method for transmitting and receiving uplink sounding reference signal, and terminal for same |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101294815B1 (ko) * | 2009-05-15 | 2013-08-08 | 엘지전자 주식회사 | 무선 통신 시스템에서 사운딩 참조 신호 송신 방법 및 이를 위한 장치 |
CN102577523A (zh) | 2009-09-21 | 2012-07-11 | Lg电子株式会社 | 在无线通信系统中发送探测参考信号的方法和装置 |
EP2482591B1 (en) | 2009-09-21 | 2018-08-15 | LG Electronics Inc. | Method for transmitting a sounding reference signal in a wireless communication system, and apparatus for same |
KR20110040672A (ko) * | 2009-10-12 | 2011-04-20 | 주식회사 팬택 | 무선통신 시스템에서 제어정보 송수신방법 및 장치 |
US8873415B2 (en) | 2010-01-19 | 2014-10-28 | Lg Electronics Inc. | Method for transmitting sounding reference signal in wireless communication system and apparatus for same |
KR101752025B1 (ko) | 2010-04-30 | 2017-06-28 | 선 페이턴트 트러스트 | 단말 장치 및 참조 신호의 전력 제어 방법 |
TWI462622B (zh) * | 2010-06-18 | 2014-11-21 | Mediatek Inc | 載波聚合下之探測方法以及使用者設備 |
US8855053B2 (en) | 2010-06-18 | 2014-10-07 | Mediatek Inc. | Sounding mechanism and configuration under carrier aggregation |
EP3554031B1 (en) | 2010-08-16 | 2022-09-28 | Nokia Solutions and Networks Oy | Transmission of reference signals |
US8797966B2 (en) | 2011-09-23 | 2014-08-05 | Ofinno Technologies, Llc | Channel state information transmission |
US9900849B2 (en) | 2011-10-03 | 2018-02-20 | Qualcomm Incorporated | SRS optimization for coordinated multi-point transmission and reception |
US8885569B2 (en) | 2011-12-19 | 2014-11-11 | Ofinno Technologies, Llc | Beamforming signaling in a wireless network |
US9204434B2 (en) | 2012-03-19 | 2015-12-01 | Qualcomm Incorporated | Enhanced sounding reference signal (SRS) operation |
US9955463B2 (en) * | 2012-11-01 | 2018-04-24 | Blackberry Limited | Method and system for battery energy savings for carrier aggregation |
WO2014070181A1 (en) * | 2012-11-01 | 2014-05-08 | Research In Motion Limited | Method and system for battery energy savings for carrier aggregation |
JP6388584B2 (ja) * | 2013-07-05 | 2018-09-12 | シャープ株式会社 | 端末装置、基地局装置、集積回路、および通信方法 |
JP2019145867A (ja) * | 2016-07-05 | 2019-08-29 | シャープ株式会社 | 基地局装置、端末装置および通信方法 |
US10805140B2 (en) * | 2016-09-29 | 2020-10-13 | Lg Electronics Inc. | Method for transmitting and receiving sounding reference signal between terminal and base station in wireless communication system, and apparatus for supporting same |
US10999023B2 (en) * | 2018-07-16 | 2021-05-04 | Mediatek Singapore Pte. Ltd. | Method and apparatus for frequency domain resource allocation when frequency hopping is enabled in mobile communications |
US11973713B2 (en) * | 2019-02-08 | 2024-04-30 | Lg Electronics Inc. | Method for transmitting sounding reference signal in wireless communication system, and device therefor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080112115A (ko) * | 2007-06-19 | 2008-12-24 | 엘지전자 주식회사 | 사운딩 기준신호의 전송방법 |
KR20090014978A (ko) * | 2007-08-06 | 2009-02-11 | 미쓰비시덴키 가부시키가이샤 | 안테나 선택 방법 및 시스템 |
KR20090053599A (ko) * | 2007-11-23 | 2009-05-27 | 삼성전자주식회사 | 다중 입출력 안테나를 포함하는 시분할다중화무선통신시스템에서 상향 링크 데이터 전송을 위한 송신안테나 선택과 다중 입출력 채널 추정을 위한 데이터송/수신 장치 및 방법 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101615928B (zh) * | 2008-06-25 | 2016-05-18 | 三星电子株式会社 | Lte系统中传输srs信令的方法和装置 |
CN101651469B (zh) * | 2008-08-15 | 2013-07-24 | 三星电子株式会社 | 用于lte系统中发送上行监测参考符号的跳频方法 |
KR20130032906A (ko) * | 2009-03-17 | 2013-04-02 | 인터디지탈 패튼 홀딩스, 인크 | 사운딩 레퍼런스 신호(srs) 전송의 전력 제어를 위한 방법 및 장치 |
WO2010110568A2 (ko) * | 2009-03-22 | 2010-09-30 | 엘지전자 주식회사 | 복수 안테나를 이용한 채널 사운딩 방법 및 이를 위한 장치 |
US8938247B2 (en) * | 2009-04-23 | 2015-01-20 | Qualcomm Incorporated | Sounding reference signal for coordinated multi-point operation |
US8867414B2 (en) * | 2009-04-27 | 2014-10-21 | Qualcomm Incorporated | Method and apparatus for interaction of cell-specific and user-equipment-specific sounding reference signal periodicity and offset |
KR101119119B1 (ko) * | 2009-06-08 | 2012-03-16 | 엘지전자 주식회사 | 반송파 집성을 이용한 통신 방법 및 이를 위한 장치 |
-
2010
- 2010-06-17 WO PCT/KR2010/003924 patent/WO2010147411A2/ko active Application Filing
- 2010-06-17 US US13/378,961 patent/US20120093119A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080112115A (ko) * | 2007-06-19 | 2008-12-24 | 엘지전자 주식회사 | 사운딩 기준신호의 전송방법 |
KR20090014978A (ko) * | 2007-08-06 | 2009-02-11 | 미쓰비시덴키 가부시키가이샤 | 안테나 선택 방법 및 시스템 |
KR20090053599A (ko) * | 2007-11-23 | 2009-05-27 | 삼성전자주식회사 | 다중 입출력 안테나를 포함하는 시분할다중화무선통신시스템에서 상향 링크 데이터 전송을 위한 송신안테나 선택과 다중 입출력 채널 추정을 위한 데이터송/수신 장치 및 방법 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2664182A4 (en) * | 2011-01-12 | 2017-05-10 | Alcatel Lucent | Method of configuring an aperiodic sounding reference signal |
WO2013049962A1 (en) | 2011-10-08 | 2013-04-11 | Huawei Technologies Co., Ltd. | Sounding reference signal transmission |
EP2764749A1 (en) * | 2011-10-08 | 2014-08-13 | Huawei Technologies Co., Ltd. | Sounding reference signal transmission |
EP2764749A4 (en) * | 2011-10-08 | 2014-09-24 | Huawei Tech Co Ltd | SOUND REFERENCE SIGNAL TRANSMISSION |
US9277506B2 (en) | 2011-10-08 | 2016-03-01 | Huawei Technologies Co., Ltd. | Sounding reference signal transmission |
WO2013187635A1 (en) * | 2012-06-11 | 2013-12-19 | Kt Corporation | Transmission of uplink sounding reference signal |
US9756616B2 (en) | 2012-06-11 | 2017-09-05 | Kt Corporation | Method for transmitting and receiving uplink sounding reference signal, and terminal for same |
US10154497B2 (en) | 2012-06-11 | 2018-12-11 | Kt Corporation | Transmission of uplink sounding reference signal |
USRE49595E1 (en) | 2012-06-11 | 2023-08-01 | Kt Corporation | Transmission of uplink sounding reference signal |
Also Published As
Publication number | Publication date |
---|---|
WO2010147411A3 (ko) | 2011-03-31 |
US20120093119A1 (en) | 2012-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010147411A2 (ko) | 무선 통신 시스템에서 사운딩 기준 신호 전송 방법 및 장치 | |
WO2017131470A1 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 하향링크 신호를 수신하는 방법 및 이를 지원하는 장치 | |
WO2010131925A2 (ko) | 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법 | |
WO2018159999A1 (ko) | 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치 | |
WO2016163802A1 (ko) | 비면허 대역을 지원하는 무선접속시스템에서 cca를 수행하는 방법 및 이를 지원하는 장치 | |
WO2017135773A1 (ko) | 무선 통신 시스템에서 사운딩 참조 신호를 전송하는 방법 및 이를 지원하는 장치 | |
WO2013151395A1 (ko) | 하향링크 데이터 수신 방법 및 이를 이용한 무선기기 | |
WO2016085295A1 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 단말 간 직접 통신을 수행하는 방법 및 장치 | |
WO2010131926A2 (ko) | 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법 | |
WO2014185673A1 (ko) | 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치 | |
WO2010068069A2 (ko) | 다중 반송파 시스템에서 제어채널 검출방법 | |
WO2014137105A1 (ko) | Epdcch를 통한 제어 정보 수신 방법 | |
WO2011145823A2 (ko) | 다중 캐리어를 위한 캐리어 지시 필드의 구성 방법 및 장치 | |
WO2013151396A1 (ko) | 무선통신 시스템에서 반송파 집성 방법 및 장치 | |
WO2010093216A2 (ko) | 대역 확장성을 지원하는 셀룰러 무선통신시스템에서 보호대역이 구성된 하향링크 신호의 송수신 방법 및 장치. | |
WO2010131929A2 (ko) | 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법 | |
WO2010131927A2 (ko) | 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법 | |
WO2010039011A2 (ko) | 서브프레임의 무선자원 할당 방법 및 장치 | |
WO2017196055A2 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 사운딩 참조 신호를 전송하는 방법 및 이를 지원하는 장치 | |
WO2017126936A1 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치 | |
WO2019050165A1 (ko) | 통신 시스템에서 시스템 정보의 송수신 방법 | |
WO2013176511A1 (ko) | Harq ack/nack 전송 방법 및 이를 이용한 무선기기 | |
WO2019031927A1 (ko) | 무선 통신 시스템에서 사이드링크 전송과 관련된 그랜트를 전송하는 방법 및 이를 위한 장치 | |
WO2013147532A1 (ko) | 무선 통신 시스템에서 트래킹 참조 신호를 이용한 채널 측정 방법 및 이를 이용하는 장치 | |
WO2012086883A1 (ko) | 캐리어 접합 시스템에서, 컴포넌트 캐리어 할당 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10789738 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13378961 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10789738 Country of ref document: EP Kind code of ref document: A2 |