WO2010147109A1 - Angiogenesis inducer comprising genetically modified gelatin and basic fibroblast growth factor - Google Patents

Angiogenesis inducer comprising genetically modified gelatin and basic fibroblast growth factor Download PDF

Info

Publication number
WO2010147109A1
WO2010147109A1 PCT/JP2010/060101 JP2010060101W WO2010147109A1 WO 2010147109 A1 WO2010147109 A1 WO 2010147109A1 JP 2010060101 W JP2010060101 W JP 2010060101W WO 2010147109 A1 WO2010147109 A1 WO 2010147109A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
angiogenesis
acid sequence
genetically modified
gly
Prior art date
Application number
PCT/JP2010/060101
Other languages
French (fr)
Japanese (ja)
Inventor
一隆 荻原
乃梨子 石川
章二 大屋
哲男 平等
健太郎 中村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2010147109A1 publication Critical patent/WO2010147109A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/50Fibroblast growth factor [FGF]
    • C07K14/503Fibroblast growth factor [FGF] basic FGF [bFGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to an angiogenesis inducer using genetically modified gelatin and basic fibroblast growth factor.
  • Angiogenesis mainly represents a phenomenon in which new blood vessels are formed from existing blood vessels.
  • angiogenesis there are angiogenesis related to angiogenesis in the embryonic period, endometrium and corpus luteum formation, wound healing and the like. Utilizing an angiogenic event for treatment is practiced as an angiogenic therapy.
  • the importance of angiogenesis has been clarified as a therapeutic method for wound healing, ischemic diseases, etc., and in treatments widely called regenerative medicine such as organ regeneration, cell transplantation, and natural healing effects. Because of the therapeutic effect of angiogenesis itself, or because angiogenesis enhances the therapeutic effect, therapeutic agents targeting angiogenesis have been developed.
  • bFGF basic fibroblast growth factor
  • bFGF vascular endothelial growth factor
  • the growth factor is expensive, and since the risk of canceration is expected because it actively induces blood vessels, the growth factor is pointed out. It is preferable that the effect is exerted in as little amount as possible, and therefore, it is required to apply bFGF to a site where angiogenesis is required efficiently.
  • Patent Document 3 discloses a bFGF preparation using a naturally-derived cross-linked gelatin gel such as pig or bovine, but gelatin itself is a carrier for containing bFGF and reduces the amount of bFGF used. It is not used.
  • gelatin is cross-linked, and bFGF is contained in the gelatin gel to regenerate blood vessels.
  • Patent Document 3 relies on bFGF only for angiogenesis, and gelatin is used only as a base material for sustained release. Therefore, there is a drawback that a large amount of bFGF is required for angiogenesis.
  • the present invention has been made to solve the problem of providing an angiogenesis-inducing agent that is safe for a living body and excellent in bioadhesiveness and that can reduce the amount of bFGF used.
  • the present inventors have induced vascular endothelial cells with bFGF by using genetically modified gelatin having high affinity with vascular endothelial cells, and the vascular endothelial cells with genetically modified gelatin. It was found that angiogenesis can be induced with a smaller amount of bFGF used by positively adhering to the present invention, and the present invention has been completed.
  • an angiogenesis-inducing agent comprising genetically modified gelatin having an amino acid sequence derived from a partial amino acid sequence of collagen and basic fibroblast growth factor as active ingredients.
  • the genetically modified gelatin has a repetition of a sequence represented by Gly-XY, which is characteristic of collagen (X and Y each independently represents one of amino acids) (a plurality of Gly-XY are the same)
  • the molecular weight is 2 KDa or more and 100 KDa or less.
  • the genetically modified gelatin has a repetition of a sequence represented by Gly-XY, which is characteristic of collagen (X and Y each independently represents one of amino acids) (a plurality of Gly-XY are the same)
  • the molecular weight is 10 KDa or more and 90 KDa or less.
  • the genetically modified gelatin has a repetition of a sequence represented by Gly-XY, which is characteristic of collagen (X and Y each independently represents one of amino acids) (a plurality of Gly-XYs are the same) Or may be different), including two or more cell adhesion signals per molecule.
  • the cell adhesion signal is an amino acid sequence represented by Arg-Gly-Asp.
  • the amino acid sequence of the recombinant gelatin does not include serine and threonine.
  • the amino acid sequence of the genetically modified gelatin does not include serine, threonine, asparagine, tyrosine, and cysteine.
  • the amino acid sequence of the recombinant gelatin does not include the amino acid sequence represented by Asp-Arg-Gly-Asp.
  • the genetically modified gelatin is Formula: A-[(Gly-XY) n ] m -B (In the formula, A represents an arbitrary amino acid or amino acid sequence, B represents an arbitrary amino acid or amino acid sequence, n Xs independently represent any of the amino acids, and n Ys each independently represent an amino acid. N represents an integer of 3 to 100, and m represents an integer of 2 to 10. Note that n Gly-XY may be the same or different.
  • the genetically modified gelatin is Formula: Gly-Ala-Pro-[(Gly-XY) 63 ] 3 -Gly (In the formula, 63 X's each independently represent any amino acid, and 63 Y's each independently represent any amino acid. The n Gly-XY may be the same or different. Good.) Indicated by Preferably, the genetically modified gelatin is (1) an amino acid sequence represented by SEQ ID NO: 1, or (2) an amino acid sequence having an angiogenic action having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 1. Have
  • the genetically modified gelatin is cross-linked.
  • crosslinking is performed with aldehydes, condensing agents, or enzymes.
  • the angiogenesis inducer of the present invention induces angiogenesis by accumulating at an angiogenesis site.
  • the angiogenesis further comprises administering a recombinant gelatin having an amino acid sequence derived from a partial amino acid sequence of collagen and a basic fibroblast growth factor to a subject in need of induction of angiogenesis.
  • a method of inducing is provided.
  • a recombinant gelatin having an amino acid sequence derived from a partial amino acid sequence of collagen and a basic fibroblast growth factor for the production of an angiogenesis inducer.
  • the angiogenesis-inducing agent of the present invention is characterized by containing genetically modified gelatin, it has no risk of canceration, is safe for the living body, and has excellent bioadhesiveness. Moreover, according to the angiogenesis inducer of the present invention, it is possible to reduce the amount of bFGF used.
  • FIG. 1 shows the results of measuring the amount of hemoglobin contained in blood in order to quantify the angiogenic effect.
  • FIG. 2 shows the results of the HUVEC cell adhesion test.
  • FIG. 3 shows the results of the HUVEC cell adhesion test.
  • FIG. 4 shows HUVEC cell photographs on plates coated with various proteins.
  • FIG. 5 shows a comparison of the area of one HUVEC cell on a plate coated with various proteins.
  • FIG. 6 shows inhibition of HUVEC cell adhesion by anti- ⁇ V antibody.
  • a genetically modified gelatin having an amino acid sequence derived from a partial amino acid sequence of collagen can be used, for example, those described in EP1014176A2, US6992172, WO2004-85473, WO2008 / 103041, etc. However, it is not limited to these.
  • Preferred as the genetically modified gelatin used in the present invention is the genetically modified gelatin of the following embodiment.
  • the genetically modified gelatin used in the present invention is excellent in biocompatibility due to the inherent performance of natural gelatin, and is not naturally derived.
  • the genetically modified gelatin used in the present invention is more uniform than natural ones and the sequence is determined, the strength and degradability can be precisely designed with less blur due to cross-linking described later. It is.
  • the molecular weight of the genetically modified gelatin used in the present invention is preferably from 2 to 100 KDa. More preferably, it is 2.5 to 95 KDa. More preferably, it is 5 to KDa. Most preferably, it is 10 KDa or more and 90 KDa or less.
  • the genetically modified gelatin used in the present invention preferably has a repeating sequence represented by Gly-XY characteristic of collagen.
  • the plurality of Gly-X-Ys may be the same or different.
  • Gly-XY Gly represents glycine
  • X and Y represent any amino acid (preferably any amino acid other than glycine).
  • the GXY sequence characteristic of collagen is a very specific partial structure in the amino acid composition and sequence of gelatin / collagen compared to other proteins. In this part, glycine accounts for about one third of the whole, and in the amino acid sequence, it is one in three repeats. Glycine is the simplest amino acid, has few constraints on the arrangement of molecular chains, and greatly contributes to the regeneration of the helix structure upon gelation.
  • the amino acids represented by X and Y are rich in imino acids (proline, oxyproline), and preferably account for 10% to 45% of the total.
  • 80% or more of the sequence, more preferably 95% or more, and most preferably 99% or more of the amino acids are GXY repeating structures.
  • General gelatin has 1: 1 polar amino acids, both charged and uncharged.
  • the polar amino acid specifically means cysteine, aspartic acid, glutamic acid, histidine, lysine, asparagine, glutamine, serine, threonine, tyrosine, arginine, and among these polar uncharged amino acids are cysteine, asparagine, glutamine, serine. , Threonine, tyrosine.
  • the proportion of polar amino acids is 10 to 40%, preferably 20 to 30%, of all the constituent amino acids.
  • the ratio of the uncharged amino acid in the polar amino acid is 5% or more and less than 20%, preferably less than 10%. Furthermore, it is preferable that any one amino acid among serine, threonine, asparagine, tyrosine and cysteine is not included in the sequence, preferably two or more amino acids.
  • the minimum amino acid sequence that acts as a cell adhesion signal in a polypeptide is known (for example, “Pathophysiology”, Vol. 9, No. 7 (1990), page 527, published by Nagai Publishing Co., Ltd.).
  • the genetically modified gelatin used in the present invention preferably has two or more of these cell adhesion signals in one molecule.
  • IKVAV sequence, LRE sequence, DGEA sequence, and HAV sequence are preferable, RGD sequence, YIGSR sequence, PDSGR sequence, LGTIPG sequence, IKVAV sequence, and HAV sequence, and particularly preferably RGD sequence.
  • RGD sequences an ERGD sequence is preferred.
  • the number of amino acids between RGDs is not uniform between 0 and 100, preferably between 25 and 60.
  • the content of the minimum amino acid sequence is preferably 3 to 50, more preferably 4 to 30, and particularly preferably 5 to 20 per protein molecule from the viewpoint of cell adhesion and proliferation. Most preferably, it is 12.
  • the ratio of the RGD motif to the total number of amino acids is preferably at least 0.4%.
  • each stretch of 350 amino acids has at least 1 stretch.
  • it contains two RGD motifs.
  • the ratio of RGD motif to the total number of amino acids is more preferably at least 0.6%, more preferably at least 0.8%, more preferably at least 1.0%, more preferably at least 1.2%. And most preferably at least 1.5%.
  • the number of RGD motifs in the genetically modified gelatin is preferably at least 4, more preferably 6, more preferably 8, more preferably 12 or more and 16 or less per 250 amino acids.
  • a ratio of 0.4% of the RGD motif corresponds to at least one RGD sequence per 250 amino acids. Since the number of RGD motifs is an integer, a gelatin of 251 amino acids must contain at least two RGD sequences to meet the 0.4% feature.
  • the recombinant gelatin of the present invention comprises at least 2 RGD sequences per 250 amino acids, more preferably comprises at least 3 RGD sequences per 250 amino acids, more preferably at least 4 per 250 amino acids. Contains one RGD sequence.
  • the genetically modified gelatin of the present invention it contains at least 4 RGD motifs, preferably 6, more preferably 8, more preferably 12 or more and 16 or less. Further, the genetically modified gelatin may be partially hydrolyzed.
  • the genetically modified gelatin used in the present invention preferably has a repeating structure of A-[(Gly-XY) n ] m -B.
  • m is preferably 2 to 10, and preferably 3 to 5.
  • n is preferably 3 to 100, more preferably 15 to 70, and most preferably 50 to 65.
  • the naturally occurring collagen referred to here may be any naturally occurring collagen, but is preferably type I, type II, type III, type IV, and type V. More preferred are type I, type II and type III.
  • the collagen origin is preferably human, cow, pig, mouse, rat. More preferably, it is a human.
  • the isoelectric point of the genetically modified gelatin used in the present invention is preferably 5 to 10, more preferably 6 to 10, and further preferably 7 to 9.5.
  • the genetically modified gelatin is not deaminated.
  • the genetically modified gelatin does not have procollagen and procollagen.
  • the genetically modified gelatin has no telopeptide.
  • the genetically modified gelatin is a substantially pure collagen material prepared with a nucleic acid encoding natural collagen.
  • the genetically modified gelatin used in the present invention (1) the amino acid sequence of SEQ ID NO: 1; or (2) 80% or more (more preferably 90% or more, most preferably 95% or more) of homology with the amino acid sequence of SEQ ID NO: 1, An amino acid sequence having an angiogenic effect; A genetically modified gelatin having
  • the genetically modified gelatin used in the present invention can be produced by a genetic recombination technique known to those skilled in the art, for example, according to the method described in EP1014176A2, US6992172, WO2004-85473, WO2008 / 103041, and the like. Specifically, a gene encoding the amino acid sequence of a predetermined recombinant gelatin is obtained, and this is incorporated into an expression vector to produce a recombinant expression vector, which is then introduced into a suitable host to produce a transformant. To do. By culturing the obtained transformant in an appropriate medium, genetically modified gelatin is produced.
  • the genetically modified gelatin used in the present invention is prepared by recovering the genetically modified gelatin produced from the culture. be able to.
  • the performance of the genetically modified gelatin alone is insufficient, it may be mixed with other materials or combined.
  • different types of genetically modified gelatin other biopolymers or synthetic polymers may be mixed.
  • the biopolymer include polysaccharides, polypeptides, proteins, nucleic acids, antibodies and the like. Preferred are polysaccharides, polypeptides, and proteins.
  • polysaccharides, polypeptides, and proteins include collagen, gelatin, albumin, fibroin, and casein. Furthermore, these may be partially chemically modified as necessary. For example, hyaluronic acid ethyl ester may be used.
  • polysaccharide examples include glycosaminoglycans represented by hyaluronic acid and heparin, chitin, and chitosan.
  • polyamino acids examples include poly- ⁇ -glutamic acid.
  • the genetically modified gelatin used in the present invention can be chemically modified depending on the application.
  • Chemical modifications include the introduction of low molecular weight compounds or various polymers (biopolymers (sugars, proteins), synthetic polymers, polyamides) into the carboxyl group or amino group of the side chain of genetically modified gelatin, Examples include cross-linking between gelatins.
  • Examples of the introduction of the low molecular weight compound into the genetically modified gelatin include a carbodiimide-based condensing agent.
  • the crosslinking agent used in the present invention is not particularly limited as long as the present invention can be carried out, and may be a chemical crosslinking agent or an enzyme.
  • the chemical cross-linking agent include formaldehyde, glutaraldehyde, carbodiimide, cyanamide and the like. Preferred are formaldehyde and glutaraldehyde.
  • examples of cross-linking of genetically modified gelatin include light irradiation on gelatin into which a photoreactive group has been introduced, or light irradiation in the presence of a photosensitizer.
  • the photoreactive group include a cinnamyl group, a coumarin group, a dithiocarbamyl group, a xanthene dye, and camphorquinone.
  • the enzyme When performing cross-linking by an enzyme, the enzyme is not particularly limited as long as it has a cross-linking action between genetically modified gelatin chains.
  • trans-glutaminase and laccase most preferably trans-glutaminase is used for cross-linking. it can.
  • a specific example of a protein that is enzymatically cross-linked with transglutaminase is not particularly limited as long as it has a lysine residue and a glutamine residue.
  • the transglutaminase may be derived from a mammal or may be derived from a microorganism. Specifically, transglutaminase derived from a mammal that has been marketed as an Ajinomoto Co., Ltd.
  • Human-derived blood coagulation factors Factor XIIIa, Haematologic Technologies, Inc.
  • Factor XIIIa Haematologic Technologies, Inc.
  • guinea pig liver-derived transglutaminase goat-derived transglutaminase
  • rabbit-derived transglutaminase manufactured by Oriental Yeast Co., Ltd., Upstate USA Inc., Biodesign International, etc. Etc.
  • the cross-linking of genetically modified gelatin has two processes: a process of mixing a genetically modified gelatin solution and a cross-linking agent and a process of reacting these uniform solutions.
  • the mixing temperature when the genetically modified gelatin is treated with the crosslinking agent is not particularly limited as long as the solution can be uniformly stirred, but is preferably 0 ° C. to 40 ° C., more preferably 0 ° C. to 30 ° C. More preferably, it is 3 ° C to 25 ° C, more preferably 3 ° C to 15 ° C, still more preferably 3 ° C to 10 ° C, and particularly preferably 3 ° C to 7 ° C.
  • the reaction temperature is not particularly limited as long as the crosslinking proceeds, but is substantially 0 ° C. to 60 ° C., more preferably 0 ° C. to 40 ° C. in view of denaturation and degradation of the recombinant gelatin.
  • the temperature is preferably 3 ° C to 25 ° C, more preferably 3 ° C to 15 ° C, still more preferably 3 ° C to 10 ° C, and particularly preferably 3 ° C to 7 ° C.
  • basic fibroblast growth factor (bFGF) is used in combination with genetically modified gelatin.
  • bFGF basic fibroblast growth factor
  • the form of bFGF used in the present invention is not particularly limited, and may be naturally derived bFGF or genetically modified bFGF.
  • genetically modified bFGF for example, those commercially available as Trafermin (Fiblast) (Kaken Pharmaceutical Co., Ltd.) may be used.
  • a drug can be encapsulated as desired.
  • the drug is a physiologically active ingredient.
  • Specific examples include transdermal absorption agents, topical therapeutic agents, oral therapeutic agents, cosmetic ingredients, and supplement ingredients.
  • Specific examples of the drug include anti-inflammatory agents, antibacterial agents, antibiotic agents, immunosuppressive agents, antioxidant agents, anticancer agents, vitamins, nucleic acids, and antibodies. Particularly preferred are anti-inflammatory agents.
  • As the anti-inflammatory agent either steroidal or non-steroidal may be used.
  • anti-inflammatory agents include, for example, aspirin, acetaminophen, phenachicene, indomethacin, diclofenac sodium, piroxicam, fenoprofen calcium, ibuprofen, chlorpheniramine maleate, diflunisal, dexamethasone sodium phosphate, paclitaxel, docetaxel, 5 -Fluorouracil, topotensin, cisplatin, rapamycin, tacrolimus, cyclosporine.
  • vitamins both water-soluble and fat-soluble are used.
  • Specific examples of the vitamin include vitamin A, vitamin B group, vitamin C, vitamin D group, vitamin E, and vitamin K, for example.
  • Specific drugs have been listed above, but as long as the genetically modified gelatin used in the present invention is used, the present invention is not limited to the drugs listed above.
  • an angiogenesis is achieved by administering a genetically modified gelatin having an amino acid sequence derived from the above-described partial amino acid sequence of collagen to a subject (for example, a mammal such as a human) in need of angiogenesis induction. Can be induced.
  • the angiogenesis-inducing agent of the present invention can be appropriately determined in dosage, usage, and dosage form according to the intended use.
  • the angiogenesis-inducing agent of the present invention may be directly administered to a target site in a living body, or distilled water for injection, physiological saline for injection, pH 5-8 buffer (phosphate system, citric acid) It may be suspended in a liquid excipient such as an aqueous solvent such as a system and administered by injection, coating, or the like. Further, it may be applied after mixing with an appropriate excipient to form an ointment, gel or cream.
  • the administration form of the angiogenesis inducer of the present invention may be oral or parenteral (for example, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, etc.).
  • parenteral for example, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, etc.
  • direct injection into the heart muscle from the intraventricular lumen using a catheter, or catheter in the stenosis or occlusion part in the coronary artery It is also possible to release or apply them locally using.
  • Examples of the dosage form include orally administered drugs such as tablets, powders, capsules, granules, extracts and syrups, or injections (for example, intravenous injections, intramuscular injections, subcutaneous injections, intradermal injections). Etc.) and the like.
  • the form of the angiogenesis-inducing agent of the present invention is not particularly defined, and examples thereof include sponges, films, nonwoven fabrics, fibers (tubes), particles, meshes and the like.
  • the formulation of the angiogenesis-inducing agent of the present invention can be performed according to methods known to those skilled in the art.
  • the pharmaceutical carrier when the pharmaceutical carrier is a liquid, it can be dissolved or dispersed, and when the pharmaceutical carrier is a powder, it can be mixed or adsorbed.
  • pharmaceutically acceptable additives for example, preservatives, stabilizers, antioxidants, excipients, binders, disintegrants, wetting agents, lubricants, coloring agents, fragrances
  • Flavoring agents skin coats, suspending agents, emulsifiers, solubilizers, buffering agents, tonicity agents, plasticizers, surfactants or soothing agents, and the like.
  • the dose of the genetically modified gelatin is not particularly limited, but is, for example, 1 to 100 mg, preferably 1 to 50 mg per 1 cm 2 of the surface area of the organism to be administered.
  • the dose of bFGF is not particularly limited, and is, for example, 1 ⁇ g to 1 mg, preferably 1 ⁇ g to 100 ⁇ g, per 1 cm 2 of the surface area of the organism to be administered.
  • Examples of the target diseases of the angiogenesis-inducing agent of the present invention include ischemic diseases, cell / tissue regeneration therapy, cell transplantation treatment, diabetic skin ulcer, hearing loss, heart disease, acute coronary syndrome, acute myocardial infarction, unstable angina Disease, promotion of fracture healing, pseudo joint, bone union failure, nerve regeneration treatment, and the like.
  • CBE3 described below was prepared as a genetically modified gelatin (described in WO2008-103041).
  • the amino acid sequence of CBE3 does not include serine, threonine, asparagine, tyrosine and cysteine.
  • CBE3 has an ERGD sequence. Isoelectric point: 9.34
  • Amino acid sequence (SEQ ID NO: 1 in the sequence listing) (same as SEQ ID NO: 3 in WO2008 / 103041, except that X at the end is corrected to “P”)
  • GAP GAPGLQGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAAGLPGAPG
  • the resulting gel was quenched at ⁇ 50 ° C. and lyophilized at ⁇ 10 ° C. for 48 hours.
  • the water content of the gel was measured from the change in the weight of the crosslinked R-Gel before and after the swelling treatment with PBS for 24 hours at 4 ° C., and was 95.4%.
  • the obtained gel was cut out at 5 mg.
  • 50 ⁇ l of PBS containing 35 ⁇ g of bFGF was dropped, and left overnight at 4 ° C. to impregnate 35 ⁇ g of bFGF into the cross-linked R-Gel to prepare a bFGF-containing R-Gel preparation.
  • the 35 ⁇ g bFGF-containing crosslinked R-Gel preparation prepared above was implanted subcutaneously in the back of the mouse. Separately, as a control group, 50 ⁇ l of a PBS solution containing 35 ⁇ g of bFGF was subcutaneously administered. As another control group, 5 mg of bFGF-impregnated PI-5 gel (medgel) impregnated with 50 ⁇ l of 35 ⁇ g of bFGF in PBS was subcutaneously implanted. Three days after the administration, the skin of the mouse was peeled off, and the preparation embedding and the PBS solution administration site were observed.
  • the state of the tissue around the administration site was the same as in the untreated group, and no gross change was observed.
  • the bFGF-impregnated PI-5 gel-administered group almost no angiogenesis image was observed as in the untreated group.
  • the tissue around the preparation implantation site was also visually red, and an angiogenic effect that was clearly one of bFGF was confirmed.
  • the bFGF-impregnated PI-5 gel administration group has not been able to efficiently adhere vascular endothelial cells induced with bFGF.
  • vascular endothelial cells induced with bFGF can be positively adhered to exert an angiogenic effect.
  • the amount of hemoglobin contained in the blood was measured.
  • a hemoglobin B-Test Wako kit (Wako Pure Chemical Industries) was used for the measurement.
  • 5 mg of the above-prepared 35 ⁇ g bFGF-containing cross-linked R-Gel preparation was implanted subcutaneously in the back of the mouse.
  • 50 ⁇ l of PBS solution was subcutaneously administered.
  • 5 mg of bFGF-impregnated PI-5 gel (medgel) impregnated with 50 ⁇ l of 35 ⁇ g of bFGF in PBS was subcutaneously implanted.
  • the skin of the mouse was peeled off, and the surrounding tissue of 1.5 cm ⁇ 1.5 cm was taken out mainly from the site where the preparation was embedded and the PBS solution was administered, and placed in a tube.
  • the surrounding tissue was finely cut in a tube, and 300 ⁇ l of an extract (10 mM Tris, 1 mM EDTA, pH 7.8) was added.
  • the mixture was stirred overnight at 4 ° C. with a rotator, and then the supernatant was separated by centrifugation. Using the supernatant, the amount of hemoglobin was measured according to the protocol of the kit.
  • HUVEC was cultured using endothelial cell basic medium-2 (serum-free) (EBM TM- 2) and endothelial cell medium kit-2 (2% FBS) (EGM TM- 2 BulletKit TM ) (Takara Bio Inc.) .
  • EBM TM- 2 endothelial cell basic medium-2
  • EBM TM- 2 BulletKit TM endothelial cell medium kit-2
  • An EDTA-containing 0.25% trypsin solution was used at the time of passage and cell detachment.
  • HUVEC grown to a sufficient amount in a T-75 flask was peeled from the bottom of the flask, and the supernatant was removed by centrifugation. Thereafter, the cells were washed with endothelial cell culture medium-2 containing the above endothelial cell culture medium kit-2, and the supernatant was again removed by centrifugation.
  • 0.1% BSA was added to endothelial cell culture medium-2 without
  • Fibrogen pig skin-derived gelatin
  • PSK cow bone-derived gelatin
  • a plate coated with G1917P was prepared, and R-Gel was dissolved in PBS (phosphate buffer) at a concentration of 1 mg / mL to prepare an R-Gel solution.
  • Fibronectin was dissolved at a concentration of 1 mg / mL to prepare a fibronectin solution
  • Fibrogen was dissolved at a concentration of 1 mg / mL in PBS (phosphate buffer) to prepare a fibrogen solution.
  • PSK was dissolved at a concentration of 1 mg / mL to prepare a PSK solution.
  • G1917P was dissolved at a concentration of 1 mg / mL in PBS (phosphate buffer solution) to prepare a G1917P solution. Dilute with PBS and use for plate addition.
  • ⁇ Non-treated 96-well plate (IWAKI) was used for the plate.
  • a solution obtained by diluting the above lysate with PBS was added to a non-treated 96-well plate at 50 ⁇ L / well so that the protein concentration was 0.02, 0.1, 0.2, 2.0 ⁇ g / well. Thereafter, incubation was performed at 37 ° C. for 2 hours, and after removing the solution, 100 ⁇ L of PBS was added to all wells and washed to remove PBS (washing step). The washing step was performed 3 times. This resulted in coating plates with different coating proteins and coating concentrations.
  • DNA assay was used.
  • 100 ⁇ L of SDS solution (20 mg of SDS dissolved in 100 mL of 1 ⁇ SSC solution: 1 ⁇ SSC solution is 17.999 g NaCl and 8.823 g Na 3 Citrate 2 L ultrapure 2) and leave at 37 ° C. for 1 hour.
  • Transfer the total amount of each individual solution to a 96-well black plate (Non-treated) and add 100 ⁇ L of Hoechst solution (20 ⁇ L of Hoechst 33258 and 20 mL of 1 ⁇ SSC solution) to all wells.
  • the fluorescence intensity was measured with a reader.
  • the plate reader used was Gemini EM (Molecular Devices), and the fluorescence intensity was measured at an excitation wavelength of 355 nm and a measurement wavelength of 460 nm.
  • a calibration curve was prepared from a suspension of HUVEC cells with the number of cells adjusted.
  • FIG. 2 and FIG. 3 The results of the obtained cell adhesion test (DNA assay) are shown in FIG. 2 and FIG. As a result, R-Gel showed better cell adhesion to HUVEC than fibronectin, fibrogen, PSK and G1917P. Moreover, the state of cell adhesion on the R-Gel coating plate, cell adhesion on the Fibrogen coating plate, cell adhesion on the PSK coating plate, and cell adhesion on the G1917P coating plate is shown in FIG. In the R-Gel coated plate, it can be visually confirmed that the number of adherent cells is large. At the same time, from this photograph, the area of one individually attached cell was determined with the software ImageJ. The result is shown in FIG. This indicates that R-Gel has a significantly larger cell area than Fibrogen, PSK, and G1917P, so there is a stronger bond between R-Gel and HUVEC than the others. I found out.
  • the coating concentration was 0.2 ⁇ g / well, and the experiment was conducted using an R-Gel coating plate and a fibronectin coating plate.
  • the prepared HUVEC cells were incubated with a sufficient concentration of anti-human ⁇ V monoclonal antibody (MAB1980: CHEMICON) at 37 ° C for 30 minutes, and the same amount of PBS was added and incubated at 37 ° C for 30 minutes, respectively. It indicated as antibody-treated HUVEC and untreated HUVEC.
  • Cell seeding was performed by adding a solution prepared so that the antibody-treated HUVEC or untreated HUVEC was 1 million cells / mL to the plate at 100 ⁇ L / well.
  • the cell adhesion time was 1 hour at 37 ° C. as in (2) above. Quantification of the number of cells was also performed by DNA assay in the same manner as in (2) above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Genetics & Genomics (AREA)
  • Rheumatology (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Immunology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Disclosed is an angiogenesis inducer which is safe for living organisms, has excellent bioadhesive properties, and can reduce the quantity of bFGF to be used. The angiogenesis inducer comprises, as active ingredients, a genetically modified gelatin having an amino acid sequence derived from a partial amino acid sequence for collagen and a basic fibroblast growth factor.

Description

遺伝子組み換えゼラチン及び塩基性線維芽細胞増殖因子を含む血管新生誘導剤Angiogenesis inducer containing genetically modified gelatin and basic fibroblast growth factor
 本発明は、遺伝子組み換えゼラチン及び塩基性線維芽細胞増殖因子を用いた血管新生誘導剤に関する。 The present invention relates to an angiogenesis inducer using genetically modified gelatin and basic fibroblast growth factor.
 血管新生とは、主に、既存の血管から新しい血管を形成する現象のことを表している。正常な生理的血管新生として、胎生期における血管形成や、子宮内膜や黄体形成、創傷治癒等に関与する血管新生が存在する。血管新生のイベントを治療へ利用することが、血管新生療法等として実施されている。創傷治癒、虚血性疾患等の治療法として、又、臓器再生や細胞移植、自然治癒効果の増強など、広く再生医療といわれる治療においても、血管新生の重要性が明らかとなっている。血管新生そのものの治療効果を示す、あるいは血管新生が治療効果を増強するため、血管新生を標的とした治療薬が開発されている。 Angiogenesis mainly represents a phenomenon in which new blood vessels are formed from existing blood vessels. As normal physiological angiogenesis, there are angiogenesis related to angiogenesis in the embryonic period, endometrium and corpus luteum formation, wound healing and the like. Utilizing an angiogenic event for treatment is practiced as an angiogenic therapy. The importance of angiogenesis has been clarified as a therapeutic method for wound healing, ischemic diseases, etc., and in treatments widely called regenerative medicine such as organ regeneration, cell transplantation, and natural healing effects. Because of the therapeutic effect of angiogenesis itself, or because angiogenesis enhances the therapeutic effect, therapeutic agents targeting angiogenesis have been developed.
 このうち、広く利用されているものに塩基性線維芽細胞増殖因子(bFGF)がある。bFGFはウシ脳下垂体から線維芽細胞の増殖を強く刺激するタンパク質として見出され、その後研究が精力的に行われ、線維芽細胞だけでなく、血管内皮細胞、血管平滑筋細胞、角膜内皮細胞、骨芽細胞、軟骨細胞などの多種類の細胞に対する細胞増殖を刺激することが明らかになってきた。 Among these, basic fibroblast growth factor (bFGF) is widely used. bFGF was found as a protein that strongly stimulates the proliferation of fibroblasts from the bovine pituitary gland, and subsequent research has been vigorously conducted, and not only fibroblasts but also vascular endothelial cells, vascular smooth muscle cells, corneal endothelial cells It has been shown to stimulate cell proliferation on many types of cells such as osteoblasts and chondrocytes.
 しかし、bFGFを血管新生剤と用いる場合には、増殖因子は高価であり、また積極的に血管を誘導するためがん化の危険性が予想されるという欠点が指摘されているため、増殖因子はできるだけ少量で効果が発揮されることが好ましく、このため、bFGFを効率的に血管新生が必要な箇所に適用させることが求められている。 However, when bFGF is used as an angiogenic agent, the growth factor is expensive, and since the risk of canceration is expected because it actively induces blood vessels, the growth factor is pointed out. It is preferable that the effect is exerted in as little amount as possible, and therefore, it is required to apply bFGF to a site where angiogenesis is required efficiently.
 一方、ゼラチンをはじめとする生体高分子はこれまで広く医療材料として用いられている。近年の遺伝子工学手法の進歩により、大腸菌や酵母に遺伝子を導入することによるタンパク質の合成が行われている。該手法により、種々の遺伝子組み換えコラーゲン様タンパク質が合成(例えば特許文献1及び2)されており天然のゼラチンと比較して、非感染性には優れ、均一であり、配列が決定されているので強度、分解性を精密に設計することが可能であるなどの優位点を有するとされる。しかし、これまで提案されている遺伝子組み換えゼラチンの用途としては、天然ゼラチンの代替の域を超えるものではなく、当然ながら血管新生剤担体としての用途も知られていなかった。 On the other hand, biopolymers such as gelatin have been widely used as medical materials. Due to recent advances in genetic engineering techniques, protein synthesis has been carried out by introducing genes into E. coli and yeast. By this technique, various recombinant collagen-like proteins have been synthesized (for example, Patent Documents 1 and 2), which are superior in non-infectivity and uniform compared to natural gelatin, and have been sequenced. It is said that it has advantages such as being able to precisely design strength and decomposability. However, the use of genetically modified gelatin that has been proposed so far does not exceed the range of replacement of natural gelatin, and of course, its use as an angiogenic carrier has not been known.
 特許文献3においては、ブタやウシなどの天然由来の架橋ゼラチンゲルを利用したbFGF製剤を開示しているが、ゼラチン自身はbFGFを含包させるための担体であり、bFGFの使用量を減じるために使用されているわけではない。特許文献3においては、ゼラチンを架橋し、そのゼラチンゲルにbFGFを含有させて血管を新生させていた。しかし特許文献3では、血管新生をbFGFのみに頼っており、ゼラチンは単なる徐放用基材としてしか用いていないことから、血管新生のため多くのbFGFが必要となるという欠点があった。 Patent Document 3 discloses a bFGF preparation using a naturally-derived cross-linked gelatin gel such as pig or bovine, but gelatin itself is a carrier for containing bFGF and reduces the amount of bFGF used. It is not used. In Patent Document 3, gelatin is cross-linked, and bFGF is contained in the gelatin gel to regenerate blood vessels. However, Patent Document 3 relies on bFGF only for angiogenesis, and gelatin is used only as a base material for sustained release. Therefore, there is a drawback that a large amount of bFGF is required for angiogenesis.
米国特許6992172号明細書US Pat. No. 6,992,172 WO2008/103041号明細書WO2008 / 103041 specification WO1994/027630号明細書WO1994 / 027630 specification
 本発明は、生体にとって安全かつ生体付着性に優れており、さらにbFGFの使用量を減少することが可能な血管新生誘導剤を提供することを解決すべき課題とした。 The present invention has been made to solve the problem of providing an angiogenesis-inducing agent that is safe for a living body and excellent in bioadhesiveness and that can reduce the amount of bFGF used.
 本発明者らは上記課題を解決するために鋭意検討した結果、血管内皮細胞と親和性の高い遺伝子組み換えゼラチンを用いることにより、bFGFで血管内皮細胞を誘導し、遺伝子組み換えゼラチンでその血管内皮細胞を積極的に接着させることにより、より少ないbFGFの使用量において血管新生を誘導できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have induced vascular endothelial cells with bFGF by using genetically modified gelatin having high affinity with vascular endothelial cells, and the vascular endothelial cells with genetically modified gelatin. It was found that angiogenesis can be induced with a smaller amount of bFGF used by positively adhering to the present invention, and the present invention has been completed.
 即ち、本発明によれば、コラーゲンの部分アミノ酸配列に由来するアミノ酸配列を有する遺伝子組み換えゼラチン及び塩基性線維芽細胞増殖因子を有効成分として含む、血管新生誘導剤が提供される。
 好ましくは、遺伝子組み換えゼラチンは、コラーゲンに特徴的なGly-X-Yで示される配列(X及びYはそれぞれ独立にアミノ酸の何れかを示す)の繰り返しを有し(複数個のGly-X-Yはそれぞれ同一でも異なっていてもよい)、分子量が2 KDa以上100 KDa以下である。
 好ましくは、遺伝子組み換えゼラチンは、コラーゲンに特徴的なGly-X-Yで示される配列(X及びYはそれぞれ独立にアミノ酸の何れかを示す)の繰り返しを有し(複数個のGly-X-Yはそれぞれ同一でも異なっていてもよい)、分子量が10 KDa以上90 KDa以下である。
That is, according to the present invention, there is provided an angiogenesis-inducing agent comprising genetically modified gelatin having an amino acid sequence derived from a partial amino acid sequence of collagen and basic fibroblast growth factor as active ingredients.
Preferably, the genetically modified gelatin has a repetition of a sequence represented by Gly-XY, which is characteristic of collagen (X and Y each independently represents one of amino acids) (a plurality of Gly-XY are the same) However, the molecular weight is 2 KDa or more and 100 KDa or less.
Preferably, the genetically modified gelatin has a repetition of a sequence represented by Gly-XY, which is characteristic of collagen (X and Y each independently represents one of amino acids) (a plurality of Gly-XY are the same) However, the molecular weight is 10 KDa or more and 90 KDa or less.
 好ましくは、遺伝子組み換えゼラチンは、コラーゲンに特徴的なGly-X-Yで示される配列(X及びYはそれぞれ独立にアミノ酸の何れかを示す)の繰り返しを有し(複数個のGly-X-Yはそれぞれ同一でも異なっていてもよい)、細胞接着シグナルを一分子中に2配列以上含む。
 好ましくは、細胞接着シグナルはArg-Gly-Aspで示されるアミノ酸配列である。
Preferably, the genetically modified gelatin has a repetition of a sequence represented by Gly-XY, which is characteristic of collagen (X and Y each independently represents one of amino acids) (a plurality of Gly-XYs are the same) Or may be different), including two or more cell adhesion signals per molecule.
Preferably, the cell adhesion signal is an amino acid sequence represented by Arg-Gly-Asp.
 好ましくは、遺伝子組み換えゼラチンのアミノ酸配列は、セリン及びスレオニンを含まない。
 好ましくは、遺伝子組み換えゼラチンのアミノ酸配列は、セリン、スレオニン、アスパラギン、チロシン、及びシステインを含まない。
 好ましくは、遺伝子組み換えゼラチンのアミノ酸配列は、Asp-Arg-Gly-Aspで示されるアミノ酸配列を含まない。
Preferably, the amino acid sequence of the recombinant gelatin does not include serine and threonine.
Preferably, the amino acid sequence of the genetically modified gelatin does not include serine, threonine, asparagine, tyrosine, and cysteine.
Preferably, the amino acid sequence of the recombinant gelatin does not include the amino acid sequence represented by Asp-Arg-Gly-Asp.
 好ましくは、遺伝子組み換えゼラチンは、
式:A-[(Gly-X-Y)nm-B
(式中、Aは任意のアミノ酸又はアミノ酸配列を示し、Bは任意のアミノ酸又はアミノ酸配列を示し、n個のXはそれぞれ独立にアミノ酸の何れかを示し、n個のYはそれぞれ独立にアミノ酸の何れかを示し、nは3~100の整数を示し、mは2~10の整数を示す。なお、n個のGly-X-Yはそれぞれ同一でも異なっていてもよい。)で示される。
Preferably, the genetically modified gelatin is
Formula: A-[(Gly-XY) n ] m -B
(In the formula, A represents an arbitrary amino acid or amino acid sequence, B represents an arbitrary amino acid or amino acid sequence, n Xs independently represent any of the amino acids, and n Ys each independently represent an amino acid. N represents an integer of 3 to 100, and m represents an integer of 2 to 10. Note that n Gly-XY may be the same or different.
 好ましくは、遺伝子組み換えゼラチンは、
式:Gly-Ala-Pro-[(Gly-X-Y)633-Gly
(式中、63個のXはそれぞれ独立にアミノ酸の何れかを示し、63個のYはそれぞれ独立にアミノ酸の何れかを示す。なお、n個のGly-X-Yはそれぞれ同一でも異なっていてもよい。)
で示される。
 好ましくは、遺伝子組み換えゼラチンは、(1)配列番号1に記載のアミノ酸配列、又は(2)配列番号1に記載のアミノ酸配列と80%以上の相同性を有し、血管新生作用を有するアミノ酸配列を有する。
Preferably, the genetically modified gelatin is
Formula: Gly-Ala-Pro-[(Gly-XY) 63 ] 3 -Gly
(In the formula, 63 X's each independently represent any amino acid, and 63 Y's each independently represent any amino acid. The n Gly-XY may be the same or different. Good.)
Indicated by
Preferably, the genetically modified gelatin is (1) an amino acid sequence represented by SEQ ID NO: 1, or (2) an amino acid sequence having an angiogenic action having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 1. Have
 好ましくは、遺伝子組み換えゼラチンは架橋されている。
 好ましくは、架橋はアルデヒド類、縮合剤、又は酵素により施される。
 好ましくは、本発明の血管新生誘導剤は、血管新生部位に集積して血管新生を誘導する。
Preferably, the genetically modified gelatin is cross-linked.
Preferably, crosslinking is performed with aldehydes, condensing agents, or enzymes.
Preferably, the angiogenesis inducer of the present invention induces angiogenesis by accumulating at an angiogenesis site.
 本発明によればさらに、コラーゲンの部分アミノ酸配列に由来するアミノ酸配列を有する遺伝子組み換えゼラチン及び塩基性線維芽細胞増殖因子を、血管新生誘導を必要とする対象者に投与することを含む、血管新生を誘導する方法が提供される。 According to the present invention, the angiogenesis further comprises administering a recombinant gelatin having an amino acid sequence derived from a partial amino acid sequence of collagen and a basic fibroblast growth factor to a subject in need of induction of angiogenesis. A method of inducing is provided.
 本発明によればさらに、血管新生誘導剤の製造のための、コラーゲンの部分アミノ酸配列に由来するアミノ酸配列を有する遺伝子組み換えゼラチン及び塩基性線維芽細胞増殖因子の使用が提供される。 According to the present invention, there is further provided use of a recombinant gelatin having an amino acid sequence derived from a partial amino acid sequence of collagen and a basic fibroblast growth factor for the production of an angiogenesis inducer.
 本発明の血管新生誘導剤は、遺伝子組み換えゼラチンを含むことを特徴とするため、癌化の危険性などがなく、生体にとって安全であり、かつ生体付着性に優れている。また、本発明の血管新生誘導剤によれば、bFGFの使用量を減少することが可能である。 Since the angiogenesis-inducing agent of the present invention is characterized by containing genetically modified gelatin, it has no risk of canceration, is safe for the living body, and has excellent bioadhesiveness. Moreover, according to the angiogenesis inducer of the present invention, it is possible to reduce the amount of bFGF used.
図1は、血管新生効果を定量するために血中に含まれるヘモグロビン量を測定した結果を示す。FIG. 1 shows the results of measuring the amount of hemoglobin contained in blood in order to quantify the angiogenic effect. 図2は、HUVEC細胞接着性試験の結果を示す。FIG. 2 shows the results of the HUVEC cell adhesion test. 図3は、HUVEC細胞接着性試験の結果を示す。FIG. 3 shows the results of the HUVEC cell adhesion test. 図4は、各種蛋白質でコーティングしたプレート上のHUVEC細胞写真を示す。FIG. 4 shows HUVEC cell photographs on plates coated with various proteins. 図5は、各種蛋白質でコーティングしたプレート上のHUVEC細胞一つの面積比較を示す。FIG. 5 shows a comparison of the area of one HUVEC cell on a plate coated with various proteins. 図6は、抗αV抗体によるHUVEC細胞接着阻害を示す。FIG. 6 shows inhibition of HUVEC cell adhesion by anti-αV antibody.
 以下、本発明の実施の形態について詳細に説明する。
 本発明で用いる遺伝子組み換えゼラチンとしては、コラーゲンの部分アミノ酸配列に由来するアミノ酸配列を有する遺伝子組み換えゼラチンを用いることができ、例えばEP1014176A2、US6992172、WO2004-85473、WO2008/103041等に記載のものを用いることができるが、これらに限定されるものではない。本発明で用いる遺伝子組み換えゼラチンとして好ましいものは、以下の態様の遺伝子組み換えゼラチンである。
Hereinafter, embodiments of the present invention will be described in detail.
As the genetically modified gelatin used in the present invention, a genetically modified gelatin having an amino acid sequence derived from a partial amino acid sequence of collagen can be used, for example, those described in EP1014176A2, US6992172, WO2004-85473, WO2008 / 103041, etc. However, it is not limited to these. Preferred as the genetically modified gelatin used in the present invention is the genetically modified gelatin of the following embodiment.
 本発明で用いる遺伝子組み換えゼラチンは天然のゼラチン本来の性能から、生体適合性に優れ、且つ天然由来ではないことでBSEなどの懸念がなく、非感染性に優れている。また、本発明で用いる遺伝子組み換えゼラチンは天然のものに比して均一であり、配列が決定されているので、強度、分解性においても後述の架橋等によってブレを少なく精密に設計することが可能である。 The genetically modified gelatin used in the present invention is excellent in biocompatibility due to the inherent performance of natural gelatin, and is not naturally derived. In addition, since the genetically modified gelatin used in the present invention is more uniform than natural ones and the sequence is determined, the strength and degradability can be precisely designed with less blur due to cross-linking described later. It is.
 本発明で用いる遺伝子組み換えゼラチンの分子量は2 KDa以上100 KDa以下であることが好ましい。より好ましくは2.5 KDa以上95KDa以下である。より好ましくは5 KDa以上90 KDa以下である。最も好ましくは、10 KDa以上90KDa以下である。 The molecular weight of the genetically modified gelatin used in the present invention is preferably from 2 to 100 KDa. More preferably, it is 2.5 to 95 KDa. More preferably, it is 5 to KDa. Most preferably, it is 10 KDa or more and 90 KDa or less.
 本発明で用いる遺伝子組み換えゼラチンは、好ましくはコラーゲンに特徴的なGly-X-Yで示される配列の繰り返しを有する。ここで、複数個のGly-X-Yはそれぞれ同一でも異なっていてもよい。Gly-X-Yにおいて、Glyはグリシン、X及びYは、任意のアミノ酸(好ましくは、グリシン以外の任意のアミノ酸)を表す。コラーゲンに特徴的なGXY配列とは、ゼラチン・コラーゲンのアミノ酸組成および配列における、他のタンパク質と比較して非常に特異的な部分構造である。この部分においてはグリシンが全体の約3分の1を占め、アミノ酸配列では3個に1個の繰り返しとなっている。グリシンは最も簡単なアミノ酸であり、分子鎖の配置への束縛も少なく、ゲル化に際してのヘリックス構造の再生に大きく寄与している。X,Yであらわされるアミノ酸はイミノ酸(プロリン、オキシプロリン)が多く含まれ、全体の10%~45%を占めることが好ましい。好ましくはその配列の80%以上、更に好ましくは95%以上、最も好ましくは99%以上のアミノ酸がGXYの繰り返し構造であることが好ましい。 The genetically modified gelatin used in the present invention preferably has a repeating sequence represented by Gly-XY characteristic of collagen. Here, the plurality of Gly-X-Ys may be the same or different. In Gly-XY, Gly represents glycine, and X and Y represent any amino acid (preferably any amino acid other than glycine). The GXY sequence characteristic of collagen is a very specific partial structure in the amino acid composition and sequence of gelatin / collagen compared to other proteins. In this part, glycine accounts for about one third of the whole, and in the amino acid sequence, it is one in three repeats. Glycine is the simplest amino acid, has few constraints on the arrangement of molecular chains, and greatly contributes to the regeneration of the helix structure upon gelation. The amino acids represented by X and Y are rich in imino acids (proline, oxyproline), and preferably account for 10% to 45% of the total. Preferably, 80% or more of the sequence, more preferably 95% or more, and most preferably 99% or more of the amino acids are GXY repeating structures.
 一般的なゼラチンは極性アミノ酸のうち、電荷を持つものと無電荷のものが1:1で存在する。ここで、極性アミノ酸とは具体的にシステイン、アスパラギン酸、グルタミン酸、ヒスチジン、リジン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、アルギニンを指し、このうち極性無電荷アミノ酸とはシステイン、アスパラギン、グルタミン、セリン、スレオニン、チロシンを指す。本発明で用いる遺伝子組み換えゼラチンにおいては、構成する全アミノ酸のうち、極性アミノ酸の割合が10~40%であり、好ましくは20~30%である。且つ該極性アミノ酸中の無電荷アミノ酸の割合が5%以上20%未満、好ましくは10%未満であることが好ましい。さらに、セリン、スレオニン、アスパラギン、チロシン、システインのうちいずれか1アミノ酸、好ましくは2以上のアミノ酸を配列上に含まないことが好ましい。 General gelatin has 1: 1 polar amino acids, both charged and uncharged. Here, the polar amino acid specifically means cysteine, aspartic acid, glutamic acid, histidine, lysine, asparagine, glutamine, serine, threonine, tyrosine, arginine, and among these polar uncharged amino acids are cysteine, asparagine, glutamine, serine. , Threonine, tyrosine. In the genetically modified gelatin used in the present invention, the proportion of polar amino acids is 10 to 40%, preferably 20 to 30%, of all the constituent amino acids. And it is preferable that the ratio of the uncharged amino acid in the polar amino acid is 5% or more and less than 20%, preferably less than 10%. Furthermore, it is preferable that any one amino acid among serine, threonine, asparagine, tyrosine and cysteine is not included in the sequence, preferably two or more amino acids.
 一般にポリペプチドにおいて、細胞接着シグナルとして働く最小アミノ酸配列が知られている(例えば、株式会社永井出版発行「病態生理」Vol.9、No.7(1990年)527頁)。本発明で用いる遺伝子組み換えゼラチンは、これらの細胞接着シグナルを一分子中に2以上有することが好ましい。具体的な配列としては、接着する細胞の種類が多いという点で、アミノ酸一文字表記で現わされる、RGD配列、LDV配列、REDV配列、YIGSR配列、PDSGR配列、RYVVLPR配列、LGTIPG配列、RNIAEIIKDI配列、IKVAV配列、LRE配列、DGEA配列、及びHAV配列の配列が好ましく、さらに好ましくはRGD配列、YIGSR配列、PDSGR配列、LGTIPG配列、IKVAV配列及びHAV配列、特に好ましくはRGD配列である。RGD配列のうち、好ましくはERGD配列である。 Generally, the minimum amino acid sequence that acts as a cell adhesion signal in a polypeptide is known (for example, “Pathophysiology”, Vol. 9, No. 7 (1990), page 527, published by Nagai Publishing Co., Ltd.). The genetically modified gelatin used in the present invention preferably has two or more of these cell adhesion signals in one molecule. As specific sequences, RGD sequences, LDV sequences, REDV sequences, YIGSR sequences, PDSGR sequences, RYVVLPR sequences, LGITIPG sequences, RNIAEIIKDI sequences, which are expressed in one-letter amino acid notation in that there are many types of cells that adhere. , IKVAV sequence, LRE sequence, DGEA sequence, and HAV sequence are preferable, RGD sequence, YIGSR sequence, PDSGR sequence, LGTIPG sequence, IKVAV sequence, and HAV sequence, and particularly preferably RGD sequence. Of the RGD sequences, an ERGD sequence is preferred.
 本発明で用いる遺伝子組み換えゼラチンにおけるRGD配列の配置として、RGD間のアミノ酸数が0~100の間、好ましくは25~60の間で均一でないことが好ましい。 As the arrangement of RGD sequences in the genetically modified gelatin used in the present invention, it is preferable that the number of amino acids between RGDs is not uniform between 0 and 100, preferably between 25 and 60.
 この最小アミノ酸配列の含有量は、細胞接着・増殖性の観点から、タンパク質1分子中3~50個が好ましく、さらに好ましくは4~30個、特に好ましくは5~20個である。最も好ましくは12個である。 The content of the minimum amino acid sequence is preferably 3 to 50, more preferably 4 to 30, and particularly preferably 5 to 20 per protein molecule from the viewpoint of cell adhesion and proliferation. Most preferably, it is 12.
 本発明で用いる遺伝子組み換えゼラチンにおいて、アミノ酸総数に対するRGDモチーフの割合は少なくとも0.4%であることが好ましく、遺伝子組み換えゼラチンが350以上のアミノ酸を含む場合に、350のアミノ酸の各ストレッチが少なくとも1つのRGDモチーフを含むことが好ましい。アミノ酸総数に対するRGDモチーフの割合は、更に好ましくは少なくとも0.6%であり、更に好ましくは少なくとも0.8%であり、更に好ましくは少なくとも1.0%であり、更に好ましくは少なくとも1.2%であり、最も好ましくは少なくとも1.5%である。遺伝子組み換えゼラチン内のRGDモチーフの数は、250のアミノ酸あたり、好ましくは少なくとも4、更に好ましくは6、更に好ましくは8、更に好ましくは12以上16以下である。RGDモチーフの0.4%という割合は、250のアミノ酸あたり、少なくとも1つのRGD配列に対応する。RGDモチーフの数は整数であるので、0.4%の特徴を満たすには、251のアミノ酸からなるゼラチンは、少なくとも2つのRGD配列を含まなければならない。好ましくは、本発明の遺伝子組み換えゼラチンは、250のアミノ酸あたり、少なくとも2つのRGD配列を含み、より好ましくは250のアミノ酸あたり、少なくとも3つのRGD配列を含み、さらに好ましくは250のアミノ酸あたり、少なくとも4つのRGD配列を含む。本発明の遺伝子組み換えゼラチンのさらなる態様としては、少なくとも4つのRGDモチーフ、好ましくは6つ、より好ましくは8つ、さらに好ましくは12以上16以下のRGDモチーフを含む。
 また、遺伝子組み換えゼラチンは部分的に加水分解されていてもよい。
In the genetically modified gelatin used in the present invention, the ratio of the RGD motif to the total number of amino acids is preferably at least 0.4%. When the genetically modified gelatin contains 350 or more amino acids, each stretch of 350 amino acids has at least 1 stretch. Preferably it contains two RGD motifs. The ratio of RGD motif to the total number of amino acids is more preferably at least 0.6%, more preferably at least 0.8%, more preferably at least 1.0%, more preferably at least 1.2%. And most preferably at least 1.5%. The number of RGD motifs in the genetically modified gelatin is preferably at least 4, more preferably 6, more preferably 8, more preferably 12 or more and 16 or less per 250 amino acids. A ratio of 0.4% of the RGD motif corresponds to at least one RGD sequence per 250 amino acids. Since the number of RGD motifs is an integer, a gelatin of 251 amino acids must contain at least two RGD sequences to meet the 0.4% feature. Preferably, the recombinant gelatin of the present invention comprises at least 2 RGD sequences per 250 amino acids, more preferably comprises at least 3 RGD sequences per 250 amino acids, more preferably at least 4 per 250 amino acids. Contains one RGD sequence. As a further aspect of the genetically modified gelatin of the present invention, it contains at least 4 RGD motifs, preferably 6, more preferably 8, more preferably 12 or more and 16 or less.
Further, the genetically modified gelatin may be partially hydrolyzed.
 本発明で用いる遺伝子組み換えゼラチンは、A-[(Gly-X-Y)nm-Bの繰り返し構造を有することが好ましい。mとして好ましくは2~10、好ましくは3~5である。nは3~100が好ましく、15~70がさらに好ましく、50~65が最も好ましい。 The genetically modified gelatin used in the present invention preferably has a repeating structure of A-[(Gly-XY) n ] m -B. m is preferably 2 to 10, and preferably 3 to 5. n is preferably 3 to 100, more preferably 15 to 70, and most preferably 50 to 65.
 繰り返し単位には天然に存在するコラーゲンの配列単位を複数結合することが好ましい。ここで言う天然に存在するコラーゲンとは天然に存在するものであればいずれであっても構わないが、好ましくはI型、II型、III型、IV型、およびV型である。より好ましくは、I型、II型、III型である。別の形態によると、該コラーゲンの由来は好ましくは、ヒト、ウシ、ブタ、マウス、ラットである。より好ましくはヒトである。 It is preferable to bind a plurality of naturally occurring collagen sequence units to the repeating unit. The naturally occurring collagen referred to here may be any naturally occurring collagen, but is preferably type I, type II, type III, type IV, and type V. More preferred are type I, type II and type III. According to another form, the collagen origin is preferably human, cow, pig, mouse, rat. More preferably, it is a human.
 本発明で用いる遺伝子組み換えゼラチンの等電点は、好ましくは5~10であり、より好ましくは6~10であり、さらに好ましくは7~9.5である。 The isoelectric point of the genetically modified gelatin used in the present invention is preferably 5 to 10, more preferably 6 to 10, and further preferably 7 to 9.5.
 好ましくは、遺伝子組み換えゼラチンは脱アミン化されていない。
 好ましくは、遺伝子組み換えゼラチンはプロコラーゲンおよびプロコラーゲンを有さない。
 好ましくは、遺伝子組み換えゼラチンはテロペプタイドを有さない。
 好ましくは、遺伝子組み換えゼラチンは天然コラーゲンをコードする核酸により調製された実質的に純粋なコラーゲン用材料である。
Preferably, the genetically modified gelatin is not deaminated.
Preferably, the genetically modified gelatin does not have procollagen and procollagen.
Preferably, the genetically modified gelatin has no telopeptide.
Preferably, the genetically modified gelatin is a substantially pure collagen material prepared with a nucleic acid encoding natural collagen.
 本発明で用いる遺伝子組み換えゼラチンとして特に好ましくは、
(1)配列番号1に記載のアミノ酸配列;又は
(2)配列番号1に記載のアミノ酸配列と80%以上(さらに好ましくは90%以上、最も好ましくは95%以上)の相同性を有し、血管新生作用を有するアミノ酸配列;
を有する遺伝子組換えゼラチンである。
Particularly preferably as the genetically modified gelatin used in the present invention,
(1) the amino acid sequence of SEQ ID NO: 1; or (2) 80% or more (more preferably 90% or more, most preferably 95% or more) of homology with the amino acid sequence of SEQ ID NO: 1, An amino acid sequence having an angiogenic effect;
A genetically modified gelatin having
 本発明で用いる遺伝子組み換えゼラチンは、当業者に公知の遺伝子組み換え技術によって製造することができ、例えばEP1014176A2、US6992172、WO2004-85473、WO2008/103041等に記載の方法に準じて製造することができる。具体的には、所定の遺伝子組み換えゼラチンのアミノ酸配列をコードする遺伝子を取得し、これを発現ベクターに組み込んで、組み換え発現ベクターを作製し、これを適当な宿主に導入して形質転換体を作製する。得られた形質転換体を適当な培地で培養することにより、遺伝子組み換えゼラチンが産生されるので、培養物から産生された遺伝子組み換えゼラチンを回収することにより、本発明で用いる遺伝子組み換えゼラチンを調製することができる。 The genetically modified gelatin used in the present invention can be produced by a genetic recombination technique known to those skilled in the art, for example, according to the method described in EP1014176A2, US6992172, WO2004-85473, WO2008 / 103041, and the like. Specifically, a gene encoding the amino acid sequence of a predetermined recombinant gelatin is obtained, and this is incorporated into an expression vector to produce a recombinant expression vector, which is then introduced into a suitable host to produce a transformant. To do. By culturing the obtained transformant in an appropriate medium, genetically modified gelatin is produced. The genetically modified gelatin used in the present invention is prepared by recovering the genetically modified gelatin produced from the culture. be able to.
 遺伝子組み換えゼラチン単独では性能が不十分である場合は、他の材料と混合や複合化を行っても構わない。例えば、種類の異なる遺伝子組み換えゼラチンや他の生体高分子や合成高分子と混合しても構わない。生体高分子としては、多糖、ポリペプチド、タンパク質、核酸、抗体等があげられる。好ましくは、多糖、ポリペプチド、タンパク質である。多糖、ポリペプチド、タンパク質としては例えば、コラーゲン、ゼラチン、アルブミン、フィブロイン、カゼインが挙げられる。さらにこれらは必要に応じて部分的に化学修飾を施されていても構わない。例えば、ヒアルロン酸エチルエステルを用いてもよい。多糖としては、例えば、ヒアルロン酸やヘパリンに代表されるグリコサミノグリカン、キチン、キトサンが挙げられる。さらに、ポリアミノ酸の例としては、ポリーγ―グルタミン酸が挙げられる。 If the performance of the genetically modified gelatin alone is insufficient, it may be mixed with other materials or combined. For example, different types of genetically modified gelatin, other biopolymers or synthetic polymers may be mixed. Examples of the biopolymer include polysaccharides, polypeptides, proteins, nucleic acids, antibodies and the like. Preferred are polysaccharides, polypeptides, and proteins. Examples of polysaccharides, polypeptides, and proteins include collagen, gelatin, albumin, fibroin, and casein. Furthermore, these may be partially chemically modified as necessary. For example, hyaluronic acid ethyl ester may be used. Examples of the polysaccharide include glycosaminoglycans represented by hyaluronic acid and heparin, chitin, and chitosan. Furthermore, examples of polyamino acids include poly-γ-glutamic acid.
 本発明で用いる遺伝子組み換えゼラチンは用途に応じて、化学的に修飾することができる。化学的な修飾としては、遺伝子組み換えゼラチンの側鎖のカルボキシル基やアミノ基への低分子化合物あるいは各種高分子(生体高分子(糖、タンパク質)、合成高分子、ポリアミド)の導入や、遺伝子組み換えゼラチン間の架橋が挙げられる。該遺伝子組み換えゼラチンへの低分子化合物の導入としては、例えばカルボジイミド系の縮合剤が挙げられる。 The genetically modified gelatin used in the present invention can be chemically modified depending on the application. Chemical modifications include the introduction of low molecular weight compounds or various polymers (biopolymers (sugars, proteins), synthetic polymers, polyamides) into the carboxyl group or amino group of the side chain of genetically modified gelatin, Examples include cross-linking between gelatins. Examples of the introduction of the low molecular weight compound into the genetically modified gelatin include a carbodiimide-based condensing agent.
 本発明で用いる架橋剤は本発明を実施可能である限りは特に限定はなく、化学架橋剤でも酵素でもよい。化学架橋剤としては、例えば、ホルムアルデヒド、グルタルアルデヒド、カルボジイミド、シアナミドなどが挙げられる。好ましくは、ホルムアルデヒド、グルタルアルデヒドである。さらに、遺伝子組み換えゼラチンの架橋としては、光反応性基を導入したゼラチンへの光照射、あるいは光増感剤の存在化での光照射によるものが挙げられる。光反応性基としては、例えば、シンナミル基、クマリン基、ジチオカルバミル基、キサンテン色素、カンファキノンが挙げられる。 The crosslinking agent used in the present invention is not particularly limited as long as the present invention can be carried out, and may be a chemical crosslinking agent or an enzyme. Examples of the chemical cross-linking agent include formaldehyde, glutaraldehyde, carbodiimide, cyanamide and the like. Preferred are formaldehyde and glutaraldehyde. Furthermore, examples of cross-linking of genetically modified gelatin include light irradiation on gelatin into which a photoreactive group has been introduced, or light irradiation in the presence of a photosensitizer. Examples of the photoreactive group include a cinnamyl group, a coumarin group, a dithiocarbamyl group, a xanthene dye, and camphorquinone.
 酵素による架橋を行う場合、酵素としては、遺伝子組み換えゼラチン鎖間の架橋作用を有するものであれば特に限定されないが、好ましくはトランスグルタミナーゼおよびラッカーゼ、最も好ましくはトランスグルタミナーゼを用いて架橋を行うことができる。トランスグルタミナーゼで酵素架橋するタンパク質の具体例としては、リジン残基およびグルタミン残基を有するタンパク質であれば特に制限されない。トランスグルタミナーゼは、哺乳類由来のものであっても、微生物由来のものであってもよく、具体的には、味の素(株)製アクティバシリーズ、試薬として発売されている哺乳類由来のトランスグルタミナーゼ、例えば、オリエンタル酵母工業(株)製、Upstate USA Inc.製、Biodesign International製などのモルモット肝臓由来トランスグルタミナーゼ、ヤギ由来トランスグルタミナーゼ、ウサギ由来トランスグルタミナーゼなど、ヒト由来の血液凝固因子(Factor XIIIa、Haematologic Technologies, Inc.社)などが挙げられる。 When performing cross-linking by an enzyme, the enzyme is not particularly limited as long as it has a cross-linking action between genetically modified gelatin chains. Preferably, trans-glutaminase and laccase, most preferably trans-glutaminase is used for cross-linking. it can. A specific example of a protein that is enzymatically cross-linked with transglutaminase is not particularly limited as long as it has a lysine residue and a glutamine residue. The transglutaminase may be derived from a mammal or may be derived from a microorganism. Specifically, transglutaminase derived from a mammal that has been marketed as an Ajinomoto Co., Ltd. activa series, for example, Human-derived blood coagulation factors (Factor XIIIa, Haematologic Technologies, Inc.), including guinea pig liver-derived transglutaminase, goat-derived transglutaminase, and rabbit-derived transglutaminase manufactured by Oriental Yeast Co., Ltd., Upstate USA Inc., Biodesign International, etc. Etc.).
 遺伝子組み換えゼラチンの架橋には、遺伝子組み換えゼラチンの溶液と架橋剤を混合する過程とそれらの均一溶液の反応する過程の2つの過程を有する。 The cross-linking of genetically modified gelatin has two processes: a process of mixing a genetically modified gelatin solution and a cross-linking agent and a process of reacting these uniform solutions.
 本発明において遺伝子組み換えゼラチンを架橋剤で処理する際の混合温度は、溶液を均一に攪拌できる限り特に限定されないが、好ましくは0℃~40℃であり、より好ましくは0℃~30℃であり、より好ましくは3℃~25℃であり、より好ましくは3℃~15℃であり、さらに好ましくは3℃~10℃であり、特に好ましくは3℃~7℃である。 In the present invention, the mixing temperature when the genetically modified gelatin is treated with the crosslinking agent is not particularly limited as long as the solution can be uniformly stirred, but is preferably 0 ° C. to 40 ° C., more preferably 0 ° C. to 30 ° C. More preferably, it is 3 ° C to 25 ° C, more preferably 3 ° C to 15 ° C, still more preferably 3 ° C to 10 ° C, and particularly preferably 3 ° C to 7 ° C.
 遺伝子組み換えゼラチンと架橋剤を攪拌した後は温度を上昇させることができる。反応温度としては架橋が進行する限りは特に限定はないが、遺伝子組み換えゼラチンの変性や分解を考慮すると実質的には0℃~60℃であり、より好ましくは0℃~40℃であり、より好ましくは3℃~25℃であり、より好ましくは3℃から15℃であり、さらに好ましくは3℃~10℃であり、特に好ましくは3℃~7℃である。 After stirring the genetically modified gelatin and the crosslinking agent, the temperature can be raised. The reaction temperature is not particularly limited as long as the crosslinking proceeds, but is substantially 0 ° C. to 60 ° C., more preferably 0 ° C. to 40 ° C. in view of denaturation and degradation of the recombinant gelatin. The temperature is preferably 3 ° C to 25 ° C, more preferably 3 ° C to 15 ° C, still more preferably 3 ° C to 10 ° C, and particularly preferably 3 ° C to 7 ° C.
 本発明では、塩基性線維芽細胞増殖因子(bFGF)を、遺伝子組み換えゼラチンと組み合わせて使用する。本発明で用いるbFGFの形態は特に限定されず、天然由来のbFGFでもよいし、遺伝子組み換えbFGFでもよい。遺伝子組み換えbFGFとしては、例えばトラフェルミン(フィブラスト)(科研製薬株式会社)として市販されているものを使用してもよい。 In the present invention, basic fibroblast growth factor (bFGF) is used in combination with genetically modified gelatin. The form of bFGF used in the present invention is not particularly limited, and may be naturally derived bFGF or genetically modified bFGF. As the genetically modified bFGF, for example, those commercially available as Trafermin (Fiblast) (Kaken Pharmaceutical Co., Ltd.) may be used.
 本発明の血管新生誘導剤には、所望により、薬剤を封入することができる。薬剤は生理活性成分である。具体的には経皮吸収剤、局所治療剤、経口治療剤、化粧品成分、サプリメント成分が挙げられる。薬剤の具体例としては、抗炎症剤、抗菌剤、抗生剤、免疫抑制剤、抗酸化剤、抗癌剤、ビタミン、核酸、抗体が挙げられる。特に好ましくは抗炎症剤である。抗炎症剤としては、ステロイド系、非ステロイド系のいずれを用いても構わない。抗炎症剤の例としては、例えば、アスピリン、アセトアミノフェン、フェナチセン、インドメタシン、ジクロフェナクナトリウム、ピロキシカム、フェノプロフェンカルシウム、イブプロフェン、マレイン酸クロルフェニラミン、ジフルニサル、リン酸デキサメタゾンナトリウム、パクリタキセル、ドセタキセル、5-フルオロウラシル、トポテンシン、シスプラチン、ラパマイシン、タクロリムス、シクロスポリンが挙げられる。ビタミンとしては水溶性、脂溶性ともに用いられる。該ビタミンの具体例としては、例えば、ビタミンA、ビタミンB群、ビタミンC,ビタミンD群、ビタミンE、ビタミンKが挙げられる。以上、具体的な薬剤を列挙したが、本発明で用いる遺伝子組み換えゼラチンを使用する限りは、上記に挙げる薬剤に限定されることはない。 In the angiogenesis inducer of the present invention, a drug can be encapsulated as desired. The drug is a physiologically active ingredient. Specific examples include transdermal absorption agents, topical therapeutic agents, oral therapeutic agents, cosmetic ingredients, and supplement ingredients. Specific examples of the drug include anti-inflammatory agents, antibacterial agents, antibiotic agents, immunosuppressive agents, antioxidant agents, anticancer agents, vitamins, nucleic acids, and antibodies. Particularly preferred are anti-inflammatory agents. As the anti-inflammatory agent, either steroidal or non-steroidal may be used. Examples of anti-inflammatory agents include, for example, aspirin, acetaminophen, phenachicene, indomethacin, diclofenac sodium, piroxicam, fenoprofen calcium, ibuprofen, chlorpheniramine maleate, diflunisal, dexamethasone sodium phosphate, paclitaxel, docetaxel, 5 -Fluorouracil, topotensin, cisplatin, rapamycin, tacrolimus, cyclosporine. As vitamins, both water-soluble and fat-soluble are used. Specific examples of the vitamin include vitamin A, vitamin B group, vitamin C, vitamin D group, vitamin E, and vitamin K, for example. Specific drugs have been listed above, but as long as the genetically modified gelatin used in the present invention is used, the present invention is not limited to the drugs listed above.
 本発明においては、上記したコラーゲンの部分アミノ酸配列に由来するアミノ酸配列を有する遺伝子組み換えゼラチンを、血管新生誘導を必要とする対象者(例えば、ヒトなどの哺乳動物)に投与することによって、血管新生を誘導することができる。 In the present invention, an angiogenesis is achieved by administering a genetically modified gelatin having an amino acid sequence derived from the above-described partial amino acid sequence of collagen to a subject (for example, a mammal such as a human) in need of angiogenesis induction. Can be induced.
 本発明の血管新生誘導剤は、その使用目的に合わせて用量、用法、剤型を適宜決定することが可能である。例えば、本発明の血管新生誘導剤は、生体内の目的部位に直接投与してもよいし、あるいは注射用蒸留水、注射用生理食塩水、pH5~8の緩衝液(リン酸系、クエン酸系等)等の水性溶媒等の液状賦形剤に懸濁して、例えば注射、塗布等により投与してもよい。また、適当な賦形剤と混合し、軟膏状、ゲル状、クリーム状等にしてから塗布してもよい。即ち、本発明の血管新生誘導剤の投与形態は、経口でもよいし、非経口(例えば静脈内投与、筋肉内投与、皮下投与、皮内投与等)でもよい。また、冠動脈疾患・閉塞性末梢動脈硬化症、血管形成不全などの治療のためには、カテーテルを用いての心室内腔より心筋肉への直接注入や、冠状動脈内の狭窄又は閉塞部分にカテーテルを用いて局所的に放出又は塗布することも挙げられる。剤型としては、例えば錠剤、粉剤、カプセル剤、顆粒剤、エキス剤、シロップ剤等の経口投与剤、又は注射剤(例えば静脈内注射剤、筋肉内注射剤、皮下注射剤、皮内注射剤等)等の非経口投与剤を挙げることができる。例えば、局所的に投与する場合、本発明の血管新生誘導剤の形態は特に規定はないが、例えばスポンジ、フィルム、不織布、ファイバー(チューブ)、粒子、メッシュなどが挙げられる。 The angiogenesis-inducing agent of the present invention can be appropriately determined in dosage, usage, and dosage form according to the intended use. For example, the angiogenesis-inducing agent of the present invention may be directly administered to a target site in a living body, or distilled water for injection, physiological saline for injection, pH 5-8 buffer (phosphate system, citric acid) It may be suspended in a liquid excipient such as an aqueous solvent such as a system and administered by injection, coating, or the like. Further, it may be applied after mixing with an appropriate excipient to form an ointment, gel or cream. That is, the administration form of the angiogenesis inducer of the present invention may be oral or parenteral (for example, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, etc.). In addition, for the treatment of coronary artery disease, obstructive peripheral arteriosclerosis, angiogenesis failure, etc., direct injection into the heart muscle from the intraventricular lumen using a catheter, or catheter in the stenosis or occlusion part in the coronary artery It is also possible to release or apply them locally using. Examples of the dosage form include orally administered drugs such as tablets, powders, capsules, granules, extracts and syrups, or injections (for example, intravenous injections, intramuscular injections, subcutaneous injections, intradermal injections). Etc.) and the like. For example, when administered locally, the form of the angiogenesis-inducing agent of the present invention is not particularly defined, and examples thereof include sponges, films, nonwoven fabrics, fibers (tubes), particles, meshes and the like.
 本発明の血管新生誘導剤を製剤化は、当業者に公知の方法に従って行うことができる。例えば、製剤用担体が液体の場合は、溶解又は分散させ、また、製剤用担体が粉末の場合は、混合又は吸着させることができる。さらに必要に応じて、薬学的に許容される添加物(例えば、保存剤、安定化剤、抗酸化剤、賦形剤、結合剤、崩壊剤、湿潤剤、滑沢剤、着色剤、芳香剤、矯味剤、剤皮、懸濁化剤、乳化剤、溶解補助剤、緩衝剤、等張化剤、塑性剤、界面活性剤又は無痛化剤等)を含有させることもできる。 The formulation of the angiogenesis-inducing agent of the present invention can be performed according to methods known to those skilled in the art. For example, when the pharmaceutical carrier is a liquid, it can be dissolved or dispersed, and when the pharmaceutical carrier is a powder, it can be mixed or adsorbed. Further, if necessary, pharmaceutically acceptable additives (for example, preservatives, stabilizers, antioxidants, excipients, binders, disintegrants, wetting agents, lubricants, coloring agents, fragrances) , Flavoring agents, skin coats, suspending agents, emulsifiers, solubilizers, buffering agents, tonicity agents, plasticizers, surfactants or soothing agents, and the like.
 遺伝子組み換えゼラチンの投与量は、特に限定されないが、例えば、投与される生体の表面積1cm2当たり1~100mgであり、好ましくは1~50mgである。 The dose of the genetically modified gelatin is not particularly limited, but is, for example, 1 to 100 mg, preferably 1 to 50 mg per 1 cm 2 of the surface area of the organism to be administered.
 bFGFの投与量は、特に限定されないが、例えば、投与される生体の表面積1cm2当たり1μg~1mgであり、好ましくは1μg~100μgである。 The dose of bFGF is not particularly limited, and is, for example, 1 μg to 1 mg, preferably 1 μg to 100 μg, per 1 cm 2 of the surface area of the organism to be administered.
 本発明の血管新生誘導剤の対象疾患としては例えば、虚血性疾患、細胞・組織再生療法、細胞移植治療、糖尿病性皮膚潰瘍、難聴、心疾患、急性冠症候群、急性心筋梗塞、不安定狭心症、骨折治癒促進、擬関節、骨癒合不全、神経再生治療などが挙げられる。 Examples of the target diseases of the angiogenesis-inducing agent of the present invention include ischemic diseases, cell / tissue regeneration therapy, cell transplantation treatment, diabetic skin ulcer, hearing loss, heart disease, acute coronary syndrome, acute myocardial infarction, unstable angina Disease, promotion of fracture healing, pseudo joint, bone union failure, nerve regeneration treatment, and the like.
 以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。 The following examples further illustrate the present invention, but the present invention is not limited to the examples.
 遺伝子組み換えゼラチンとして以下記載のCBE3を用意した(WO2008-103041に記載)。
CBE3
分子量:51.6kD
構造: GAP[(GXY)63]3G
アミノ酸数:571個
RGD配列:12個
イミノ酸含量:33%
ほぼ100%のアミノ酸がGXYの繰り返し構造である。
CBE3のアミノ酸配列には、セリン、スレオニン、アスパラギン、チロシン及びシステインは含まれていない。
CBE3はERGD配列を有している。
等電点:9.34
CBE3 described below was prepared as a genetically modified gelatin (described in WO2008-103041).
CBE3
Molecular weight: 51.6kD
Structure: GAP [(GXY) 63] 3G
Number of amino acids: 571 RGD sequence: 12 Imino acid content: 33%
Almost 100% of amino acids are GXY repeating structures.
The amino acid sequence of CBE3 does not include serine, threonine, asparagine, tyrosine and cysteine.
CBE3 has an ERGD sequence.
Isoelectric point: 9.34
アミノ酸配列(配列表の配列番号1)(WO2008/103041号公報の配列番号3と同じ。但し末尾のXは「P」に修正)
GAP(GAPGLQGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPP)3G
Amino acid sequence (SEQ ID NO: 1 in the sequence listing) (same as SEQ ID NO: 3 in WO2008 / 103041, except that X at the end is corrected to “P”)
GAP (GAPGLQGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAAGLPGAPG
 以下の実施例では、特に断りのない限り、上記CBE3として表される遺伝子組み換えゼラチンをR-Gelと記載している。 In the following examples, unless otherwise specified, the genetically modified gelatin represented as CBE3 is described as R-Gel.
(1)マウスを用いた血管新生試験
 R-Gel水溶液(5.56%)2.43mlに、グルタルアルデヒド(和光純薬製)水溶液(1%)を0.27ml加えた後、3cm×3cm×4mmのシリコン鋳型に流し込み、室温で1時間、その後4℃で24時間保って、架橋反応を行った。反応終了後、鋳型からゲルをはずし、0.1Mグリシン水溶液30ml中で架橋反応を停止し、得られた架橋R-Gelを蒸留水で室温、1時間洗浄を3回行った。得られたゲルを-50℃で急冷させ、-10℃で48時間凍結乾燥させた。4℃で24時間にわたるPBSでの膨潤処理前後での架橋R-Gel重量の変化からゲルの含水率を測定したところ、95.4%であった。得られたゲルを5mgで切り出した。このゲルに35μgのbFGFを含むPBS50μlを滴下し、4℃で一昼夜放置することにより、bFGF35μgを架橋したR-Gel内に含浸させbFGF含有R-Gel製剤を調製した。
(1) Angiogenesis test using mice After adding 0.27 ml of glutaraldehyde (manufactured by Wako Pure Chemical Industries, Ltd.) aqueous solution (1%) to 2.43 ml of R-Gel aqueous solution (5.56%), 3cm x 3cm x 4mm Poured into a silicon mold and allowed to crosslink for 1 hour at room temperature and then at 24 ° C. for 24 hours. After completion of the reaction, the gel was removed from the template, the crosslinking reaction was stopped in 30 ml of 0.1 M glycine aqueous solution, and the obtained crosslinked R-Gel was washed with distilled water at room temperature for 1 hour for 3 hours. The resulting gel was quenched at −50 ° C. and lyophilized at −10 ° C. for 48 hours. The water content of the gel was measured from the change in the weight of the crosslinked R-Gel before and after the swelling treatment with PBS for 24 hours at 4 ° C., and was 95.4%. The obtained gel was cut out at 5 mg. To this gel, 50 μl of PBS containing 35 μg of bFGF was dropped, and left overnight at 4 ° C. to impregnate 35 μg of bFGF into the cross-linked R-Gel to prepare a bFGF-containing R-Gel preparation.
 上記で作製した35μgのbFGF含有架橋R-Gel製剤5mgをマウス背部皮下に埋入した。別に対照群として、35μgのbFGFを含むPBS溶液50μlを皮下投与した。さらに別の対照群として35μgのbFGFのPBS溶液50μlを含浸させたbFGF含浸PI-5ゲル(メドジェル)5mgの皮下埋入を行った。投与から3日後、マウスの皮膚を剥離し、製剤埋入およびPBS溶液投与部位をそれぞれ観察した。bFGF含有PBS溶液投与群では、投与部位周辺の組織の状態は未処理群と同じであり、肉眼的変化は認められなかった。bFGF含浸PI-5ゲル投与群の埋入部位も未処理群と同様、ほとんど血管新生像は認められなかった。しかしながら、bFGF含有架橋R-Gel製剤を埋入した場合には、製剤埋入部位周辺の組織は肉眼的にも赤く、明らかにbFGFのひとつである血管新生効果が確認された。 The 35 μg bFGF-containing crosslinked R-Gel preparation prepared above was implanted subcutaneously in the back of the mouse. Separately, as a control group, 50 μl of a PBS solution containing 35 μg of bFGF was subcutaneously administered. As another control group, 5 mg of bFGF-impregnated PI-5 gel (medgel) impregnated with 50 μl of 35 μg of bFGF in PBS was subcutaneously implanted. Three days after the administration, the skin of the mouse was peeled off, and the preparation embedding and the PBS solution administration site were observed. In the bFGF-containing PBS solution administration group, the state of the tissue around the administration site was the same as in the untreated group, and no gross change was observed. In the bFGF-impregnated PI-5 gel-administered group, almost no angiogenesis image was observed as in the untreated group. However, when a bFGF-containing cross-linked R-Gel preparation was embedded, the tissue around the preparation implantation site was also visually red, and an angiogenic effect that was clearly one of bFGF was confirmed.
 上記の結果から、bFGF含浸PI-5ゲル投与群ではbFGFで誘導した血管内皮細胞を効率的に接着させることができていない。これに対し、本発明のbFGF含有架橋R-Gel製剤を用いれば、bFGFで誘導した血管内皮細胞を積極的に接着させ、血管新生効果を出すことができる。 From the above results, the bFGF-impregnated PI-5 gel administration group has not been able to efficiently adhere vascular endothelial cells induced with bFGF. In contrast, when the bFGF-containing crosslinked R-Gel preparation of the present invention is used, vascular endothelial cells induced with bFGF can be positively adhered to exert an angiogenic effect.
 血管新生効果を定量するために、血中に含まれるヘモグロビン量を測定した。測定にはヘモグロビンB-テストワコーキット(和光純薬)を用いた。
 上記で作製した35μgのbFGF含有架橋R-Gel製剤5mgをマウス背部皮下に埋入した。別に対照群として、PBS溶液50μlを皮下投与した。さらに別の対照群として35μgのbFGFのPBS溶液50μlを含浸させたbFGF含浸PI-5ゲル(メドジェル)5mgの皮下埋入を行った。投与から2週間後、マウスの皮膚を剥離し、製剤埋入およびPBS溶液投与部位を中心に1.5cm×1.5cmの周辺組織を取り出し、チューブに入れた。チューブ内で周辺組織を細かく切断し、抽出液(10mM Tris, 1mM EDTA, pH7.8)300μlを加えた。4℃で一晩ローテーターにて攪拌し、その後遠心にて上清を分離した。その上清を用いて、キットのプロトコルに従いヘモグロビン量を測定した。
In order to quantify the angiogenic effect, the amount of hemoglobin contained in the blood was measured. A hemoglobin B-Test Wako kit (Wako Pure Chemical Industries) was used for the measurement.
5 mg of the above-prepared 35 μg bFGF-containing cross-linked R-Gel preparation was implanted subcutaneously in the back of the mouse. Separately, as a control group, 50 μl of PBS solution was subcutaneously administered. As another control group, 5 mg of bFGF-impregnated PI-5 gel (medgel) impregnated with 50 μl of 35 μg of bFGF in PBS was subcutaneously implanted. Two weeks after the administration, the skin of the mouse was peeled off, and the surrounding tissue of 1.5 cm × 1.5 cm was taken out mainly from the site where the preparation was embedded and the PBS solution was administered, and placed in a tube. The surrounding tissue was finely cut in a tube, and 300 μl of an extract (10 mM Tris, 1 mM EDTA, pH 7.8) was added. The mixture was stirred overnight at 4 ° C. with a rotator, and then the supernatant was separated by centrifugation. Using the supernatant, the amount of hemoglobin was measured according to the protocol of the kit.
 結果を図1に示す。その結果、bFGF含有架橋R-Gel製剤投与群は、PBS溶液投与群とbFGF含浸PI-5ゲル投与群と比較し、明らかにヘモグロビン量が増加していた。また、bFGF含有架橋R-Gel製剤投与群を各比較群に対してt検定を行った結果、p<0.01となり、有意差が示され、R-Gelによる血管新生効果が確認された。 The results are shown in FIG. As a result, the amount of hemoglobin in the bFGF-containing cross-linked R-Gel preparation administration group was clearly increased as compared with the PBS solution administration group and the bFGF-impregnated PI-5 gel administration group. In addition, as a result of t-testing the bFGF-containing cross-linked R-Gel preparation administration group with respect to each comparison group, p <0.01 was found, showing a significant difference, and confirming the angiogenic effect of R-Gel.
(2)細胞接着性試験(αVβ3インテグリンとの相互作用)
 R-Gelの新生血管集積メカニズムの詳細を得る為、R-Gelの血管内皮細胞への細胞接着性試験、及びαVβ3インテグリンとの相互作用を調べるための実験を行った。
 使用した血管内皮細胞としては、HUVEC(正常ヒト臍帯静脈内皮細胞:タカラバイオ社)を用いた。該細胞はその細胞表面に多数のαVβ3インテグリンを恒常的に発現していることが知られており、該細胞との細胞接着性を試験することは、新生血管で活性化される血管内皮細胞への結合性を明らかにするとともに、新生血管部位で高発現されることが報告されているαVβ3インテグリンへの結合性を明らかにすることにもなる。
(2) Cell adhesion test (interaction with αVβ3 integrin)
In order to obtain the details of R-Gel's mechanism of neovascularization, R-Gel's cell adhesion test to vascular endothelial cells and experiments to investigate the interaction with αVβ3 integrin were conducted.
As a vascular endothelial cell used, HUVEC (normal human umbilical vein endothelial cell: Takara Bio Inc.) was used. It is known that the cells constantly express a number of αVβ3 integrin on the cell surface, and testing cell adhesion to the cells leads to vascular endothelial cells activated in new blood vessels. And the binding ability to αVβ3 integrin, which is reported to be highly expressed at the neovascular site.
 HUVECの培養には、内皮細胞基本培地-2(無血清)(EBMTM-2)及び内皮細胞培地キット-2(2% FBS)(EGMTM-2 BulletKitTM)を用いた(タカラバイオ社)。継代時、及び細胞剥離時には、EDTA含有0.25%trypsin溶液を使用した。T-75フラスコにて十分量まで増殖させたHUVECをフラスコ底面から剥離し、遠心によって上清を除去した。その後、上記内皮細胞培地キット-2入りの内皮細胞基本培地-2で洗浄し、再度遠心によって上清を除去、内皮細胞培地キット-2を含まない内皮細胞基本培地-2に0.1%BSAを加えた溶液を添加・懸濁し、細胞計数盤にて生細胞の数をカウント、最終細胞濃度を50万cells/mLに調整した。 HUVEC was cultured using endothelial cell basic medium-2 (serum-free) (EBM TM- 2) and endothelial cell medium kit-2 (2% FBS) (EGM TM- 2 BulletKit TM ) (Takara Bio Inc.) . An EDTA-containing 0.25% trypsin solution was used at the time of passage and cell detachment. HUVEC grown to a sufficient amount in a T-75 flask was peeled from the bottom of the flask, and the supernatant was removed by centrifugation. Thereafter, the cells were washed with endothelial cell culture medium-2 containing the above endothelial cell culture medium kit-2, and the supernatant was again removed by centrifugation. 0.1% BSA was added to endothelial cell culture medium-2 without endothelial cell culture medium kit-2. The number of viable cells was counted using a cell counter, and the final cell concentration was adjusted to 500,000 cells / mL.
 一方、細胞接着性試験のため、各種蛋白質(R-Gel、フィブロネクチン、Fibrogen社製コラーゲン(以後Fibrogenと記載する)、豚皮由来ゼラチン(以後、PSKと記載する)、牛骨由来ゼラチン(以後、G1917Pと記載する)でコーティングしたプレートの準備を行った。PBS(リン酸緩衝液)に1mg/mL濃度でR-Gelを溶解させ、R-Gel溶解液を作製した。PBS(リン酸緩衝液)に1mg/mL濃度でフィブロネクチンを溶解させ、フィブロネクチン溶解液を作製した。PBS(リン酸緩衝液)に1mg/mL濃度でFibrogenを溶解させ、Fibrogen溶解液を作製した。PBS(リン酸緩衝液)に1mg/mL濃度でPSKを溶解させ、PSK溶解液を作製した。PBS(リン酸緩衝液)に1mg/mL濃度でG1917Pを溶解させ、G1917P溶解液を作製した。上記、溶解液は随時PBSで希釈しプレート添加に使用した。 On the other hand, for cell adhesion test, various proteins (R-Gel, fibronectin, collagen manufactured by Fibrogen (hereinafter referred to as Fibrogen), pig skin-derived gelatin (hereinafter referred to as PSK), cow bone-derived gelatin (hereinafter referred to as A plate coated with G1917P was prepared, and R-Gel was dissolved in PBS (phosphate buffer) at a concentration of 1 mg / mL to prepare an R-Gel solution. Fibronectin was dissolved at a concentration of 1 mg / mL to prepare a fibronectin solution, and Fibrogen was dissolved at a concentration of 1 mg / mL in PBS (phosphate buffer) to prepare a fibrogen solution. PSK was dissolved at a concentration of 1 mg / mL to prepare a PSK solution.G1917P was dissolved at a concentration of 1 mg / mL in PBS (phosphate buffer solution) to prepare a G1917P solution. Dilute with PBS and use for plate addition.
 プレートには、Non-treated 96穴プレート(IWAKI)を使用した。Non-treated 96穴プレートに蛋白質濃度が0.02, 0.1, 0.2, 2.0μg/wellとなるように、PBSで上記溶解液を希釈した溶液を50μL/wellで添加した。その後、37℃で2時間インキュベート、溶液を除去した後に全てのwellに100μLのPBSを添加・洗浄し、PBSを除去(洗浄工程)した。該洗浄工程を3回行った。 これによって、コーティング蛋白質及びコーティング濃度の異なるコーティングプレートを得た。 ¡Non-treated 96-well plate (IWAKI) was used for the plate. A solution obtained by diluting the above lysate with PBS was added to a non-treated 96-well plate at 50 μL / well so that the protein concentration was 0.02, 0.1, 0.2, 2.0 μg / well. Thereafter, incubation was performed at 37 ° C. for 2 hours, and after removing the solution, 100 μL of PBS was added to all wells and washed to remove PBS (washing step). The washing step was performed 3 times. This resulted in coating plates with different coating proteins and coating concentrations.
 本コーティングプレートに、上記で用意したHUVEC懸濁液(50万cells/mL)を100μLずつ播種した。37℃で1時間インキュベートした後、培地を吸引除去、100μLのPBSを添加して洗浄、PBSは吸引により除去した(PBS洗浄)。本PBS洗浄を3回行い、PBSを除去した状態のプレートを得た。 In this coating plate, 100 μL each of the HUVEC suspension (500,000 cells / mL) prepared above was seeded. After incubating at 37 ° C. for 1 hour, the medium was removed by aspiration, 100 μL of PBS was added for washing, and PBS was removed by aspiration (PBS washing). This PBS washing was performed 3 times to obtain a plate from which PBS was removed.
 得られたプレート上の細胞数定量には、DNA assayを使用した。得られたプレートのwellにそれぞれ100μLのSDS溶液(20mgのSDSを100mLの1×SSC溶液に溶解したもの:1×SSC溶液とは17.999gのNaClと8.823gのNa3Citrateを2Lの超純粋に溶解したものである)を加え、37℃で1時間静置する。 得られた個々の溶液全量をそれぞれ96穴ブラックプレート(Non-treated)へ移し、100μLのHoechst溶液(Hoechst 33258を20μLと1×SSC溶液20mLを混合したもの)を全てのwellに添加し、プレートリーダーにて蛍光強度を測定した。用いたプレートリーダーはGemini EM(モレキュラーデバイス社)、励起波長355nm、測定波長460nmで蛍光強度を測定した。検量線は、細胞数を調整したHUVEC細胞の懸濁液で作成した。 For assaying the number of cells on the obtained plate, DNA assay was used. In each well of the plate, 100 μL of SDS solution (20 mg of SDS dissolved in 100 mL of 1 × SSC solution: 1 × SSC solution is 17.999 g NaCl and 8.823 g Na 3 Citrate 2 L ultrapure 2) and leave at 37 ° C. for 1 hour. Transfer the total amount of each individual solution to a 96-well black plate (Non-treated) and add 100 μL of Hoechst solution (20 μL of Hoechst 33258 and 20 mL of 1 × SSC solution) to all wells. The fluorescence intensity was measured with a reader. The plate reader used was Gemini EM (Molecular Devices), and the fluorescence intensity was measured at an excitation wavelength of 355 nm and a measurement wavelength of 460 nm. A calibration curve was prepared from a suspension of HUVEC cells with the number of cells adjusted.
 得られた細胞接着性試験(DNA assay)の結果を図2及び図3に示した。これによって、R-Gelはフィブロネクチン、Fibrogen、PSK、G1917Pと比較してHUVECへの細胞接着が良いことを示した。又、R-Gelコーティングプレート上での細胞接着、Fibrogenコーティングプレート上での細胞接着、PSKコーティングプレート上での細胞接着、G1917Pコーティングプレート上での細胞接着の様子を図4に写真で示した。R-Gelでコーティングされたプレートでは、接着細胞数が多いことが視覚的にも確認出来る。同時に、本写真から、個々接着した細胞一つの面積をソフトウェアImageJで求めた。その結果を、図5に示す。これにより、R-GelはFibrogen、PSK、G1917Pと比較して、有意に細胞一つの面積が大きいことが示されたため、R-GelとHUVECの間には他の物よりも強い結合が生じていることが分かった。 The results of the obtained cell adhesion test (DNA assay) are shown in FIG. 2 and FIG. As a result, R-Gel showed better cell adhesion to HUVEC than fibronectin, fibrogen, PSK and G1917P. Moreover, the state of cell adhesion on the R-Gel coating plate, cell adhesion on the Fibrogen coating plate, cell adhesion on the PSK coating plate, and cell adhesion on the G1917P coating plate is shown in FIG. In the R-Gel coated plate, it can be visually confirmed that the number of adherent cells is large. At the same time, from this photograph, the area of one individually attached cell was determined with the software ImageJ. The result is shown in FIG. This indicates that R-Gel has a significantly larger cell area than Fibrogen, PSK, and G1917P, so there is a stronger bond between R-Gel and HUVEC than the others. I found out.
(3)HUVEC接着でαVβ3インテグリン阻害実験
 R-GelとHUVECの結合が、αVβ3インテグリンを介した結合であることを確認するため上記(2)で行ったR-Gelの細胞接着性試験について、αVβ3インテグリンを抗αV抗体によってブロックすることで、当該接着が抑制されるかの実験を行った。
(3) αVβ3 integrin inhibition experiment by HUVEC adhesion Regarding the cell adhesion test of R-Gel performed in (2) above to confirm that the binding of R-Gel and HUVEC is mediated by αVβ3 integrin, αVβ3 An experiment was conducted to determine whether the adhesion was suppressed by blocking the integrin with an anti-αV antibody.
 細胞接着実験の詳細は、上記(2)と同様にして行った。コーティング濃度は0.2μg/well、R-Gelコーティングプレートとフィブロネクチンコーティングプレートで実験を行った。調整したHUVEC細胞に対して、十分濃度の抗ヒトαVモノクローナル抗体(MAB1980:CHEMICON)と37℃で30分インキュベートしたものと、同量のPBSを添加し37℃で30分インキュベートしたもの、をそれぞれ抗体処理HUVEC、未処理HUVECと表記した。細胞播種は上記、抗体処理HUVECあるいは未処理HUVECが100万cells/mLとなるように調整した液を100μL/wellでプレートへ添加することで実施した。 細胞接着時間は上記(2)と同様に37℃で1時間とした。 細胞数の定量も上記(2)と同様にして、DNA assayで行った。 Details of the cell adhesion experiment were performed in the same manner as in (2) above. The coating concentration was 0.2 μg / well, and the experiment was conducted using an R-Gel coating plate and a fibronectin coating plate. The prepared HUVEC cells were incubated with a sufficient concentration of anti-human αV monoclonal antibody (MAB1980: CHEMICON) at 37 ° C for 30 minutes, and the same amount of PBS was added and incubated at 37 ° C for 30 minutes, respectively. It indicated as antibody-treated HUVEC and untreated HUVEC. Cell seeding was performed by adding a solution prepared so that the antibody-treated HUVEC or untreated HUVEC was 1 million cells / mL to the plate at 100 μL / well. The cell adhesion time was 1 hour at 37 ° C. as in (2) above. Quantification of the number of cells was also performed by DNA assay in the same manner as in (2) above.
 得られた結果を、図6に示した。これによって、抗ヒトαV抗体によって、R-Gel及びフィブロネクチンのHUVECへの細胞接着が有意に抑制されることが分かった。フィブロネクチンについては、HUVECへ対して、αVβ3インテグリンを介して結合することが知られており、本実施例において、R-Gelでもフィブロネクチンと同様にαVβ3インテグリンを介してHUVECへ結合することが示された。 The obtained results are shown in FIG. Thus, it was found that the cell adhesion of R-Gel and fibronectin to HUVEC was significantly suppressed by the anti-human αV antibody. Fibronectin is known to bind to HUVEC via αVβ3 integrin, and in this example, R-Gel was also shown to bind to HUVEC via αVβ3 integrin in the same manner as fibronectin. .
 これは、R-GelがαVβ3インテグリンと結合することを示しており、上記(2)と(3)の結果は、R-GelがαVβ3インテグリンと良い結合を示すこと、その結合が他のコラーゲン・ゼラチンよりも強いこと、及びR-Gelが血管内皮細胞へ良い結合を示すこと、その結合が他のコラーゲン・ゼラチンよりも強いことを示しており、新生血管への高い結合力・特異性を細胞・分子レベルで示した結果である。 This indicates that R-Gel binds to αVβ3 integrin, and the results of (2) and (3) above show that R-Gel shows good binding to αVβ3 integrin, and that the binding is not related to other collagens. It is stronger than gelatin, and R-Gel shows better binding to vascular endothelial cells, and its binding is stronger than other collagen and gelatin, and has high binding power and specificity to new blood vessels.・ Results shown at the molecular level.
 上記の実験より、遺伝子組み換えゼラチンが血管内皮細胞に対して良い結合を示し、かつbFGFとの組み合わせにより、天然のゼラチンで効果が発揮されない投与量でも血管新生が誘導することが示された。 From the above experiments, it was shown that genetically modified gelatin showed good binding to vascular endothelial cells, and that, in combination with bFGF, angiogenesis was induced even at a dose at which natural gelatin was not effective.

Claims (16)

  1. コラーゲンの部分アミノ酸配列に由来するアミノ酸配列を有する遺伝子組み換えゼラチン及び塩基性線維芽細胞増殖因子を有効成分として含む、血管新生誘導剤。 An angiogenesis-inducing agent comprising genetically modified gelatin having an amino acid sequence derived from a partial amino acid sequence of collagen and basic fibroblast growth factor as active ingredients.
  2. 遺伝子組み換えゼラチンが、コラーゲンに特徴的なGly-X-Yで示される配列(X及びYはそれぞれ独立にアミノ酸の何れかを示す)の繰り返しを有し(複数個のGly-X-Yはそれぞれ同一でも異なっていてもよい)、分子量が2 KDa以上100 KDa以下である、請求項1に記載の血管新生誘導剤。 The genetically modified gelatin has a repetition of the sequence represented by Gly-XY, which is characteristic of collagen (X and Y each independently represents one of amino acids) (a plurality of Gly-XY are the same or different from each other) The angiogenesis-inducing agent according to claim 1, wherein the molecular weight is 2 to 100 KDa.
  3. 遺伝子組み換えゼラチンが、コラーゲンに特徴的なGly-X-Yで示される配列(X及びYはそれぞれ独立にアミノ酸の何れかを示す)の繰り返しを有し(複数個のGly-X-Yはそれぞれ同一でも異なっていてもよい)、分子量が10 KDa以上90 KDa以下である、請求項1又は2に記載の血管新生誘導剤。 The genetically modified gelatin has a repetition of the sequence represented by Gly-XY, which is characteristic of collagen (X and Y each independently represents one of amino acids) (a plurality of Gly-XY are the same or different from each other) The angiogenesis-inducing agent according to claim 1 or 2, which has a molecular weight of 10 KDa or more and 90 KDa or less.
  4. 遺伝子組み換えゼラチンが、コラーゲンに特徴的なGly-X-Yで示される配列(X及びYはそれぞれ独立にアミノ酸の何れかを示す)の繰り返しを有し(複数個のGly-X-Yはそれぞれ同一でも異なっていてもよい)、細胞接着シグナルを一分子中に2配列以上含む、請求項1から3の何れかに記載の血管新生誘導剤。 The genetically modified gelatin has a repetition of the sequence represented by Gly-XY, which is characteristic of collagen (X and Y each independently represents one of amino acids) (a plurality of Gly-XY are the same or different from each other) The angiogenesis-inducing agent according to any one of claims 1 to 3, wherein two or more cell adhesion signals are contained in one molecule.
  5. 細胞接着シグナルがArg-Gly-Aspで示されるアミノ酸配列である、請求項4に記載の血管新生誘導剤。 The angiogenesis inducer according to claim 4, wherein the cell adhesion signal is an amino acid sequence represented by Arg-Gly-Asp.
  6. 遺伝子組み換えゼラチンのアミノ酸配列が、セリン及びスレオニンを含まない、請求項1から5の何れかに記載の血管新生誘導剤。 The angiogenesis inducer according to any one of claims 1 to 5, wherein the amino acid sequence of the recombinant gelatin does not contain serine and threonine.
  7. 遺伝子組み換えゼラチンのアミノ酸配列が、セリン、スレオニン、アスパラギン、チロシン、及びシステインを含まない、請求項1から6の何れかに記載の血管新生誘導剤。 The angiogenesis inducer according to any one of claims 1 to 6, wherein the amino acid sequence of the genetically modified gelatin does not contain serine, threonine, asparagine, tyrosine, and cysteine.
  8. 遺伝子組み換えゼラチンのアミノ酸配列が、Asp-Arg-Gly-Aspで示されるアミノ酸配列を含まない、請求項1から7の何れかに記載の血管新生誘導剤。 The angiogenesis inducer according to any one of claims 1 to 7, wherein the amino acid sequence of the recombinant gelatin does not include the amino acid sequence represented by Asp-Arg-Gly-Asp.
  9. 遺伝子組み換えゼラチンが、
    式:A-[(Gly-X-Y)nm-B
    (式中、Aは任意のアミノ酸又はアミノ酸配列を示し、Bは任意のアミノ酸又はアミノ酸配列を示し、n個のXはそれぞれ独立にアミノ酸の何れかを示し、n個のYはそれぞれ独立にアミノ酸の何れかを示し、nは3~100の整数を示し、mは2~10の整数を示す。なお、n個のGly-X-Yはそれぞれ同一でも異なっていてもよい。)で示される、請求項1から8の何れかに記載の血管新生誘導剤。
    Genetically modified gelatin
    Formula: A-[(Gly-XY) n ] m -B
    (In the formula, A represents an arbitrary amino acid or amino acid sequence, B represents an arbitrary amino acid or amino acid sequence, n Xs independently represent any of the amino acids, and n Ys each independently represent an amino acid. N represents an integer of 3 to 100, and m represents an integer of 2 to 10. Note that n Gly-XY may be the same or different. Item 9. The angiogenesis inducer according to any one of Items 1 to 8.
  10. 遺伝子組み換えゼラチンが、
    式:Gly-Ala-Pro-[(Gly-X-Y)633-Gly
    (式中、63個のXはそれぞれ独立にアミノ酸の何れかを示し、63個のYはそれぞれ独立にアミノ酸の何れかを示す。なお、n個のGly-X-Yはそれぞれ同一でも異なっていてもよい。)
    で示される、請求項1から9の何れかに記載の血管新生誘導剤。
    Genetically modified gelatin
    Formula: Gly-Ala-Pro-[(Gly-XY) 63 ] 3 -Gly
    (In the formula, 63 X's each independently represent any amino acid, and 63 Y's each independently represent any amino acid. The n Gly-XY may be the same or different. Good.)
    The angiogenesis inducer according to any one of claims 1 to 9, which is represented by:
  11. 遺伝子組み換えゼラチンが、(1)配列番号1に記載のアミノ酸配列、又は(2)配列番号1に記載のアミノ酸配列と80%以上の相同性を有し、血管新生作用を有するアミノ酸配列を有する、請求項1から10の何れかに記載の血管新生誘導剤。 The genetically modified gelatin has (1) the amino acid sequence described in SEQ ID NO: 1 or (2) the amino acid sequence described in SEQ ID NO: 1 has an amino acid sequence having an angiogenic action having 80% or more homology. The angiogenesis inducer according to any one of claims 1 to 10.
  12. 遺伝子組み換えゼラチンが架橋されている、請求項1から11の何れかに記載の血管新生誘導剤。 The angiogenesis inducer according to any one of claims 1 to 11, wherein the genetically modified gelatin is crosslinked.
  13. 架橋がアルデヒド類、縮合剤、又は酵素により施される、請求項12に記載の血管新生誘導剤。 The angiogenesis inducer according to claim 12, wherein the crosslinking is performed by aldehydes, a condensing agent, or an enzyme.
  14. 血管新生部位に集積して血管新生を誘導する、請求項1から13の何れかに記載の血管新生誘導剤。 The angiogenesis inducer according to any one of claims 1 to 13, which accumulates at an angiogenesis site and induces angiogenesis.
  15. コラーゲンの部分アミノ酸配列に由来するアミノ酸配列を有する遺伝子組み換えゼラチン及び塩基性線維芽細胞増殖因子を、血管新生誘導を必要とする対象者に投与することを含む、血管新生を誘導する方法。 A method of inducing angiogenesis, comprising administering a recombinant gelatin having an amino acid sequence derived from a partial amino acid sequence of collagen and a basic fibroblast growth factor to a subject in need of angiogenesis induction.
  16. 血管新生誘導剤の製造のための、コラーゲンの部分アミノ酸配列に由来するアミノ酸配列を有する遺伝子組み換えゼラチン及び塩基性線維芽細胞増殖因子の使用。 Use of a recombinant gelatin having an amino acid sequence derived from a partial amino acid sequence of collagen and a basic fibroblast growth factor for the production of an angiogenesis inducer.
PCT/JP2010/060101 2009-06-15 2010-06-15 Angiogenesis inducer comprising genetically modified gelatin and basic fibroblast growth factor WO2010147109A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009141778 2009-06-15
JP2009-141778 2009-06-15

Publications (1)

Publication Number Publication Date
WO2010147109A1 true WO2010147109A1 (en) 2010-12-23

Family

ID=43356427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060101 WO2010147109A1 (en) 2009-06-15 2010-06-15 Angiogenesis inducer comprising genetically modified gelatin and basic fibroblast growth factor

Country Status (1)

Country Link
WO (1) WO2010147109A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130071441A1 (en) * 2011-08-31 2013-03-21 Fujifilm Corporation Cell construct for cell transplantation and cell aggregate for cell transplantation
EP2578246A2 (en) 2011-09-29 2013-04-10 Fujifilm Corporation Scaffold for vascular endothelial cell migration
WO2013137268A1 (en) 2012-03-12 2013-09-19 富士フイルム株式会社 Method for producing tissue repair material
WO2014141877A1 (en) 2013-03-12 2014-09-18 富士フイルム株式会社 Tissue repair material
US10682842B2 (en) 2015-09-11 2020-06-16 Fujifilm Corporation Method for producing gelatin structure, and gelatin structure production system
WO2022202938A1 (en) 2021-03-26 2022-09-29 富士フイルム株式会社 Freeze-drying container
WO2022202633A1 (en) 2021-03-26 2022-09-29 富士フイルム株式会社 Powder supply device
WO2022202632A1 (en) 2021-03-24 2022-09-29 富士フイルム株式会社 Heat treatment device and method for manufacturing heat treatment object
WO2022210204A1 (en) 2021-03-31 2022-10-06 富士フイルム株式会社 Crushing method, polymer block manufacturing method, and crushing device
WO2023053710A1 (en) 2021-09-30 2023-04-06 富士フイルム株式会社 Tissue restorative material kit and tissue restoration method
WO2023188492A1 (en) 2022-03-30 2023-10-05 富士フイルム株式会社 Tissue restoration material and tissue restoration material production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014176A2 (en) * 1998-12-23 2000-06-28 Fuji Photo Film B.V. Silver halide emulsions containing recombinant gelatin-like proteins
WO2004085473A2 (en) * 2003-03-28 2004-10-07 Fuji Photo Film B.V. Rgd-enriched gelatine-like proteins with enhanced cell binding
US6992172B1 (en) * 1999-11-12 2006-01-31 Fibrogen, Inc. Recombinant gelatins
WO2008103041A1 (en) * 2007-02-21 2008-08-28 Fujifilm Manufacturing Europe B.V. Recombinant gelatins

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014176A2 (en) * 1998-12-23 2000-06-28 Fuji Photo Film B.V. Silver halide emulsions containing recombinant gelatin-like proteins
US6992172B1 (en) * 1999-11-12 2006-01-31 Fibrogen, Inc. Recombinant gelatins
WO2004085473A2 (en) * 2003-03-28 2004-10-07 Fuji Photo Film B.V. Rgd-enriched gelatine-like proteins with enhanced cell binding
WO2008103041A1 (en) * 2007-02-21 2008-08-28 Fujifilm Manufacturing Europe B.V. Recombinant gelatins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DREESMANN, L. ET AL.: "The pro-angiogenic characteristics of a cross-linked gelatin matrix", BIOMATERIALS, vol. 28, no. 36, December 2007 (2007-12-01), pages 5536 - 5543, XP022308852, DOI: doi:10.1016/j.biomaterials.2007.08.040 *
TABATA, Y. ET AL.: "Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities", BIOMATERIALS, vol. 20, no. 22, November 1999 (1999-11-01), pages 2169 - 2175, XP002984643, DOI: doi:10.1016/S0142-9612(99)00121-0 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9211266B2 (en) * 2011-08-31 2015-12-15 Fujifilm Corporation Cell construct for cell transplantation and cell aggregate for cell transplantation
US20130071441A1 (en) * 2011-08-31 2013-03-21 Fujifilm Corporation Cell construct for cell transplantation and cell aggregate for cell transplantation
US20150202344A1 (en) * 2011-08-31 2015-07-23 Fujifilm Corporation Cell construct for cell transplantation and cell aggregate for cell transplantation
EP2578246A2 (en) 2011-09-29 2013-04-10 Fujifilm Corporation Scaffold for vascular endothelial cell migration
EP2578246A3 (en) * 2011-09-29 2015-01-14 Fujifilm Corporation Scaffold for vascular endothelial cell migration
WO2013137268A1 (en) 2012-03-12 2013-09-19 富士フイルム株式会社 Method for producing tissue repair material
WO2014141877A1 (en) 2013-03-12 2014-09-18 富士フイルム株式会社 Tissue repair material
US10682842B2 (en) 2015-09-11 2020-06-16 Fujifilm Corporation Method for producing gelatin structure, and gelatin structure production system
WO2022202632A1 (en) 2021-03-24 2022-09-29 富士フイルム株式会社 Heat treatment device and method for manufacturing heat treatment object
WO2022202938A1 (en) 2021-03-26 2022-09-29 富士フイルム株式会社 Freeze-drying container
WO2022202633A1 (en) 2021-03-26 2022-09-29 富士フイルム株式会社 Powder supply device
WO2022210204A1 (en) 2021-03-31 2022-10-06 富士フイルム株式会社 Crushing method, polymer block manufacturing method, and crushing device
WO2023053710A1 (en) 2021-09-30 2023-04-06 富士フイルム株式会社 Tissue restorative material kit and tissue restoration method
WO2023188492A1 (en) 2022-03-30 2023-10-05 富士フイルム株式会社 Tissue restoration material and tissue restoration material production method

Similar Documents

Publication Publication Date Title
JP5752033B2 (en) Angiogenesis inducer containing genetically modified gelatin
WO2010147109A1 (en) Angiogenesis inducer comprising genetically modified gelatin and basic fibroblast growth factor
Ju et al. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration
Chattopadhyay et al. Collagen‐based biomaterials for wound healing
Kim et al. The enhancement of mature vessel formation and cardiac function in infarcted hearts using dual growth factor delivery with self-assembling peptides
CN102892776B (en) Novel peptide and use thereof
Nam et al. Synergistic effects of laminin-1 peptides, VEGF and FGF9 on salivary gland regeneration
JPH06506360A (en) Protein-induced morphogenesis
Chen et al. Structure, extraction, processing, and applications of collagen as an ideal component for biomaterials-a review
US20070287671A1 (en) Compositions and Methods for Promoting Myocardial and Peripheral Angiogenesis
Zamuner et al. Smart biomaterials: Surfaces functionalized with proteolytically stable osteoblast-adhesive peptides
JP5360738B2 (en) Peptide having cell growth promoting activity
JP5721140B2 (en) Targeting agent for neovascularization
EP0278781B1 (en) Peptides with laminin activity
WO2011013791A1 (en) Kidney-targeting drug delivery agent comprising genetically modified gelatin
JP5778692B2 (en) Disease inhibitor
Hao et al. A parathyroid hormone related supramolecular peptide for multi-functionalized osteoregeneration
Li et al. BMP-2 plasmid DNA-loaded chitosan films–A new strategy for bone engineering
TW200800253A (en) Therapeutic agent for use in regenerating dentin- dental pulp composite
Ye et al. Peptide and protein-based hydrogels
KR102171363B1 (en) Substance P Analog having Progenitor cell or Stem cell Recruiting Activity and Composition Comprising the Same
Zennifer et al. Nanofiber matrices of protein mimetic bioactive peptides for biomedical applications
KR101109163B1 (en) Biologically active peptide comprising tyrosyl-seryl-valine ysv
JP2005281186A (en) Wound healing agent, agent for amelioration, promotion of healing or prevention of injure or the like of tendon or ligament, functional food and medicine
JP6953537B2 (en) A peptide derived from fibronectin with improved biological activity and reduced susceptibility to neutrophil elastase degradation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP