WO2010146834A1 - Mobile communication system - Google Patents

Mobile communication system Download PDF

Info

Publication number
WO2010146834A1
WO2010146834A1 PCT/JP2010/003968 JP2010003968W WO2010146834A1 WO 2010146834 A1 WO2010146834 A1 WO 2010146834A1 JP 2010003968 W JP2010003968 W JP 2010003968W WO 2010146834 A1 WO2010146834 A1 WO 2010146834A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
base station
rrc
camp
carrier
Prior art date
Application number
PCT/JP2010/003968
Other languages
French (fr)
Japanese (ja)
Inventor
望月満
前田美保
三枝大我
岩根靖
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2010146834A1 publication Critical patent/WO2010146834A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present invention relates to a mobile communication system that performs wireless communication between a plurality of mobile terminals and a base station.
  • the W-CDMA Wideband Code Division Multiple Access
  • HS-DSCH High Speed-Downlink Shared Channel
  • HSDPA High Speed Down Link Link Packet Access
  • HSUPA High Speed Up Link Link Packet Access
  • LTE Long Term Evolution LTE
  • SAE Architecture Evolution
  • LTE Long Term Evolution
  • the access scheme, radio channel configuration, and protocol are completely different from those of the current W-CDMA (HSDPA / HSUPA).
  • W-CDMA uses code division multiple access (Code Division Multiple Access)
  • LTE has OFDM (Orthogonal Frequency Division Multiplexing) in the downlink direction
  • SC-FDMA Single in the uplink direction.
  • LTE is defined as an independent radio access network separate from the W-CDMA network because the communication system is configured using a new core network different from the W-CDMA core network (GPRS). Therefore, in order to distinguish from a W-CDMA communication system, in an LTE communication system, a base station (Base station) that communicates with a mobile terminal (UE: User Equipment) is an eNB (E-UTRAN NodeB), and a plurality of base stations A base station controller (Radio Network Controller) that exchanges control data and user data is referred to as EPC (Evolved Packet Core) (sometimes referred to as aGW: Access Gateway).
  • EPC Evolved Packet Core
  • a unicast service and an E-MBMS service (Evolved Multimedia Broadcast Multicast Service) are provided.
  • the E-MBMS service is a broadcast-type multimedia service and may be simply referred to as MBMS. Mass broadcast contents such as news, weather forecasts, and mobile broadcasts are transmitted to a plurality of mobile terminals. This is also called a point-to-multipoint service.
  • Non-Patent Document 1 describes the current decisions regarding the overall architecture of the LTE system in 3GPP.
  • the overall architecture (Chapter 4 of Non-Patent Document 1) will be described with reference to FIG.
  • FIG. 1 is an explanatory diagram illustrating a configuration of an LTE communication system.
  • a control protocol for example, RRC (Radio Resource Management)
  • a user plane for example, PDCP: Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical layer
  • the base station 102 performs scheduling (Scheduling) and transmission of a paging signal (also referred to as a paging message or paging message) notified from the MME 103 (Mobility Management Entity).
  • Base stations 102 are connected to each other via an X2 interface.
  • the base station 102 is connected to an EPC (Evolved Packet Core) via an S1 interface, more specifically, connected to an MME 103 (Mobility Management Entity) via an S1_MME interface, and connected to an S-GW 104 (Serving Gateway) via an S1_U interface.
  • EPC Evolved Packet Core
  • MME 103 Mobility Management Entity
  • S-GW 104 Serving Gateway
  • the MME 103 performs mobility control (Mobility control) in an idle state.
  • the MME 103 manages a tracking area list when the mobile terminal is in a standby state and an active state.
  • the S-GW 104 transmits / receives user data to / from one or a plurality of base stations 102.
  • the S-GW 104 becomes a local mobility anchor point at the time of handover between base stations.
  • P-GW PDN Gateway
  • the control protocol RRC between the mobile terminal 101 and the base station 102 performs broadcast, paging, RRC connection management (RRC connection management), and the like.
  • RRC_Idle and RRC_CONNECTED are RRC_Idle and RRC_CONNECTED as states of the base station and the mobile terminal in RRC.
  • PLMN Public Land Mobile Mobile Network
  • SI System information
  • the UE In RRC_CONNECTED, the UE has an RRC connection (connection), can transmit and receive data to and from the network, and performs handover (Handover, HO), neighbor cell measurement, and the like.
  • Non-Patent Document 1 (Chapter 5) describes the current decisions regarding the frame configuration in the LTE system in 3GPP. This will be described with reference to FIG.
  • FIG. 2 is an explanatory diagram showing a configuration of a radio frame used in the LTE communication system.
  • one radio frame (Radio frame) is 10 ms.
  • the radio frame is divided into 10 equally sized sub-frames.
  • the subframe is divided into two equally sized slots.
  • a downlink synchronization signal (Downlink Synchronization Signal: SS) is included in the first and sixth subframes for each radio frame.
  • SS Downlink Synchronization Signal
  • the synchronization signal includes a first synchronization signal (Primary Synchronization Signal: P-SS) and a second synchronization signal (Secondary Synchronization Signal: S-SS).
  • P-SS Primary Synchronization Signal
  • S-SS Secondary Synchronization Signal
  • Channels other than MBSFN (Multimedia (Broadcast multicast service Single Frequency Network) and channels other than MBSFN are performed on a subframe basis.
  • MBSFN subframe MBSFN subframe
  • Non-Patent Document 2 describes a signaling example at the time of MBSFN subframe allocation.
  • FIG. 3 is an explanatory diagram showing the configuration of the MBSFN frame.
  • an MBSFN subframe is allocated for each MBSFN frame (MBSFN frame).
  • a set of MBSFN frames (MBSFN frame Cluster) is scheduled.
  • a repetition period (Repetition Period) of a set of MBSFN frames is assigned.
  • Non-Patent Document 1 describes the current decisions regarding the channel configuration in the LTE system in 3GPP. It is assumed that the same channel configuration as a non-CSG cell is used in a CSG (Closed ⁇ Subscriber-Group cell) cell.
  • a physical channel (Non-Patent Document 1, Chapter 5) will be described with reference to FIG.
  • FIG. 4 is an explanatory diagram illustrating physical channels used in the LTE communication system.
  • a physical broadcast channel 401 PhysicalPhysBroadcast channel: PBCH
  • PBCH Physical PhysicalPhysBroadcast channel
  • the BCH transport block transport block
  • a physical control channel format indicator channel 402 (Physical Control indicator channel: PCFICH) is transmitted from the base station 102 to the mobile terminal 101. PCFICH notifies base station 102 to mobile terminal 101 about the number of OFDM symbols used for PDCCHs. PCFICH is transmitted for each subframe.
  • a physical downlink control channel 403 (Physical downlink control channel: PDCCH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. PDCCH includes resource allocation, HARQ information regarding DL-SCH (downlink shared channel which is one of the transport channels shown in FIG. 5), and PCH (paging which is one of the transport channels shown in FIG. 5). Channel).
  • the PDCCH carries an uplink scheduling grant (Uplink Scheduling Grant).
  • the PDCCH carries ACK / Nack that is a response signal for uplink transmission.
  • PDCCH is also called an L1 / L2 control signal.
  • a physical downlink shared channel 404 (Physical downlink shared channel: PDSCH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. PDSCH is mapped with DL-SCH (downlink shared channel) which is a transport channel and PCH which is a transport channel.
  • a physical multicast channel 405 (Physical multicast channel: PMCH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. PMCH is mapped with MCH (multicast channel) which is a transport channel.
  • a physical uplink control channel 406 (Physical Uplink control channel: PUCCH) is an uplink channel transmitted from the mobile terminal 101 to the base station 102.
  • the PUCCH carries ACK / Nack which is a response signal (response) to downlink transmission.
  • the PUCCH carries a CQI (Channel Quality Indicator) report.
  • CQI is quality information indicating the quality of received data or channel quality.
  • the PUCCH carries a scheduling request (Scheduling Request: SR).
  • a physical uplink shared channel 407 (Physical Uplink shared channel: PUSCH) is an uplink channel transmitted from the mobile terminal 101 to the base station 102.
  • a physical HARQ indicator channel 408 Physical Hybrid ARQ indicator: PHICH
  • the PHICH carries ACK / Nack that is a response to uplink transmission.
  • a physical random access channel 409 Physical random access channel: PRACH
  • PRACH Physical random access channel
  • a symbol known as a mobile communication system is inserted into the first, third and last OFDM symbols of each slot.
  • RSRP reference symbol received power
  • FIG. 5 is an explanatory diagram for explaining a transport channel used in an LTE communication system.
  • FIG. 5A shows mapping between the downlink transport channel and the downlink physical channel.
  • FIG. 5B shows mapping between the uplink transport channel and the uplink physical channel.
  • a broadcast channel (Broadcast channel: BCH) is broadcast to the entire base station (cell).
  • BCH is mapped to the physical broadcast channel (PBCH).
  • Retransmission control by HARQ Hybrid ARQ
  • DL-SCH Downlink Shared channel
  • Broadcasting to the entire base station (cell) is possible.
  • Quasi-static resource allocation is also called Persistent Scheduling.
  • DRX Discontinuous reception
  • the DL-SCH is mapped to the physical downlink shared channel (PDSCH).
  • a paging channel (Paging channel: PCH) supports DRX of the mobile terminal in order to enable low power consumption of the mobile terminal. Notification to the entire base station (cell) is required. It is mapped to a physical resource such as a physical downlink shared channel (PDSCH) that can be dynamically used for traffic, or a physical resource such as a physical downlink control channel (PDCCH) of another control channel.
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • Multicast channel is used for broadcasting to the entire base station (cell).
  • MCH multicast channel
  • MCH is mapped to PMCH.
  • HARQ Hybrid ARQ
  • UL-SCH Uplink Shared channel
  • PUSCH physical uplink shared channel
  • RACH Random access channel
  • FIG. 5B The random access channel (Random access channel: RACH) shown in FIG. 5B is limited to control information. There is a risk of collision.
  • the RACH is mapped to a physical random access channel (PRACH).
  • PRACH physical random access channel
  • HARQ is a technology for improving the communication quality of a transmission path by combining automatic retransmission (Automatic Repeat request) and error correction (Forward Error Correction).
  • error correction functions effectively by retransmission even for a transmission path in which communication quality changes.
  • further quality improvement can be obtained by combining the reception result of the initial transmission and the reception result of the retransmission upon retransmission.
  • “Ack” is transmitted from the reception side to the transmission side.
  • the transmitting side that has received “Ack” transmits the next data.
  • An example of the HARQ system is “Chase Combining”.
  • Chase combining is a method in which the same data sequence is transmitted for initial transmission and retransmission, and the gain is improved by combining the initial transmission data sequence and the retransmission data sequence in retransmission. The idea is that even if there is an error in the initial transmission data, it is partially accurate, and it is possible to transmit data with higher accuracy by combining the initial transmission data and the retransmission data of the correct part. Based on.
  • IR Intelligent Redundancy
  • IR is to increase redundancy. By transmitting parity bits in retransmission, the redundancy is increased in combination with the initial transmission, and the quality is improved by the error correction function.
  • FIG. 6 is an explanatory diagram illustrating logical channels used in the LTE communication system.
  • FIG. 6A shows mapping between the downlink logical channel and the downlink transport channel.
  • FIG. 6B shows mapping between the uplink logical channel and the uplink transport channel.
  • the broadcast control channel (Broadcast control channel: CHBCCH) is a downlink channel for broadcast system control information.
  • the BCCH that is a logical channel is mapped to a broadcast channel (BCH) that is a transport channel or a downlink shared channel (DL-SCH).
  • a paging control channel (Paging control channel: PCCH) is a downlink channel for transmitting a paging signal.
  • PCCH paging control channel
  • PCCH is used when the network does not know the cell location of the mobile terminal.
  • the PCCH that is a logical channel is mapped to a paging channel (PCH) that is a transport channel.
  • the shared control channel (Common control channel: CCCC) is a channel for transmission control information between the mobile terminal and the base station.
  • CCCH is used when the mobile terminal does not have an RRC connection with the network.
  • the CCCH is mapped to a downlink shared channel (DL-SCH) that is a transport channel.
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • the multicast control channel (Multicast control channel: MCCH) is a downlink channel for one-to-many transmission. This is a channel used for transmission of MBMS control information for one or several MTCHs from the network to the mobile terminal.
  • MCCH is a channel used only for a mobile terminal receiving MBMS.
  • MCCH is mapped to a downlink shared channel (DL-SCH) or multicast channel (MCH) which is a transport channel.
  • the dedicated control channel (Dedicated control channel: DCCH) is a channel that transmits dedicated control information between the mobile terminal and the network.
  • the DCCH is mapped to the uplink shared channel (UL-SCH) in the uplink, and is mapped to the downlink shared channel (DL-SCH) in the downlink.
  • the dedicated traffic channel (Dedicate Traffic channel: DTCH) is a channel for one-to-one communication to an individual mobile terminal for transmitting user information.
  • DTCH exists for both uplink and downlink.
  • the DTCH is mapped to the uplink shared channel (UL-SCH) in the uplink, and is mapped to the downlink shared channel (DL-SCH) in the downlink.
  • a multicast traffic channel (Multicast Traffic channel: MTCH) is a downlink channel for transmitting traffic data from a network to a mobile terminal.
  • MTCH is a channel used only for a mobile terminal that is receiving MBMS.
  • the MTCH is mapped to the downlink shared channel (DL-SCH) or multicast channel (MCH).
  • GCI is a global cell identity.
  • a CSG cell (Closed Subscriber Group cell) is introduced in LTE and UMTS (Universal Mobile Telecommunication System). CSG will be described below (Chapter 3.1 of Non-Patent Document 4).
  • a CSG (Closed Subscriber Group) is a cell in which an operator identifies an available subscriber (a cell for a specific subscriber). The identified subscriber is allowed to access one or more E-UTRAN cells of the Public Land Mobile Network (PLMN). One or more E-UTRAN cells to which the identified subscribers are allowed access are referred to as “CSG cell (s)”. However, PLMN has access restrictions.
  • a CSG cell is a part of a PLMN that broadcasts a unique CSG identity (CSG identity: CSG ID, CSG-ID). Members of the subscriber group who have been registered for use in advance and access the CSG cell using the CSG-ID as access permission information.
  • the CSG-ID is broadcast by the CSG cell or the cell. There are a plurality of CSG-IDs in a mobile communication system.
  • the CSG-ID is then used by the mobile terminal (UE) to facilitate access of CSG related members. It has been discussed at the 3GPP meeting that the CSG cell or information broadcast by the cell is set to a tracking area code (TAC) instead of a CSG-ID.
  • TAC tracking area code
  • the position tracking is to enable tracking of the position of the mobile terminal and calling (the mobile terminal receives a call) even in the standby state.
  • This area for tracking the location of the mobile terminal is called a tracking area.
  • the CSG white list is a list stored in a USIM (Universal Subscriber Identity Module) in which all CSG IDs of CSG cells to which a subscriber belongs are recorded.
  • the white list in the mobile terminal is given by the upper layer. Thereby, the base station of the CSG cell allocates radio resources to the mobile terminal.
  • Suitable cell will be described below (Non-Patent Document 4, Chapter 4.3).
  • a “suitable cell” is a cell that the UE camps on to receive normal service. Such a cell was provided by (1) the selected PLMN or registered PLMN, or part of a PLMN in the “Equivalent PLMN list”, (2) NAS (non-access stratum) The latest information must satisfy the following conditions: (a) The cell is not a barred cell. (B) The cell is not part of the “Prohibited LAs for roaming” list, but part of at least one tracking area (Tracking Area: TA).
  • the cell needs to satisfy the above (1), (c) the cell satisfies the cell selection evaluation criteria, (d) the cell is a system information (System Information: SI) as a CSG cell. ),
  • SI System Information
  • the CSG-ID is part of the UE's “CSG White List” (CSG White List) (included in the UE's CSG White List).
  • Non-Patent Document 4 An “acceptable cell” will be described below (Chapter 4.3 of Non-Patent Document 4). This is a cell where a UE camps on in order to receive a limited service (emergency call). Such a cell shall meet all the following requirements: That is, the minimum set of requirements for initiating an emergency call in an E-UTRAN network is shown below. (1) The cell is not a barred cell. (2) The cell satisfies the cell selection evaluation criteria.
  • Camping on a cell is a state in which the UE has completed cell selection / reselection processing and the UE has selected a cell for monitoring system information and paging information.
  • HNB Home-NodeB
  • Home-eNodeB Home-eNodeB
  • HeNB Home-eNodeB
  • HNB / HeNB is a base station for UTRAN / E-UTRAN, for example, home, corporate, and commercial access services.
  • Non-Patent Document 6 discloses three different modes of access to HeNB and HNB.
  • An open access mode Open access mode
  • a closed access mode Click access mode
  • a hybrid access mode Hybrid access mode
  • Each mode has the following characteristics.
  • the HeNB or HNB In the open access mode, the HeNB or HNB is operated as a normal cell of a normal operator.
  • the closed access mode the HeNB or HNB is operated as a CSG cell.
  • a non-CSG member is a CSG cell to which access is permitted at the same time.
  • the cell in the hybrid access mode is a cell that supports both the open access mode and the closed access mode.
  • the Long Term Evolution Advanced (LTE-A) system is considered to support a frequency bandwidth that is larger than the frequency bandwidth of the LTE system. This is to improve the communication speed.
  • the frequency bandwidth of the LTE-A system is 100 MHz or less.
  • the frequency usage situation in each region varies. Therefore, there may be a region where the frequency bandwidth cannot be continuously secured at 100 MHz.
  • compatible operation of LTE-compatible mobile terminals is considered in the LTE-A system. Accordingly, in the current 3GPP, it is considered to divide the frequency band (carrier) into units called component carriers (partial carriers). In the current 3GPP, LTE-compatible mobile terminals are operable on this component carrier. Further, it is considered that the communication speed improvement as the LTE-A system is realized by using an aggregate carrier created by aggregating (collecting) component carriers.
  • the component carrier may be abbreviated as CC and the carrier aggregation may be abbreviated as CA.
  • An object of the present invention is to provide a mobile communication system that can efficiently camp on a partial carrier included in an aggregate carrier while realizing an improvement in communication speed corresponding to the aggregate carrier.
  • the present invention relates to a mobile terminal corresponding to the partial carrier or a mobile terminal and a base station corresponding to the aggregate carrier using a plurality of partial carriers individually or using an aggregate carrier obtained by collecting the plurality of partial carriers.
  • the mobile terminal camps on any one of the partial carriers included in the aggregate carrier when the mobile terminal and the base station corresponding to the aggregate carrier perform radio communication using the aggregate carrier.
  • a mobile communication system for wireless communication, The mobile terminal camps on any one of the partial carriers included in the aggregate carrier when the mobile terminal and the base station corresponding to the aggregate carrier perform radio communication using the aggregate carrier.
  • the mobile terminal when a mobile terminal corresponding to an aggregate carrier and a base station perform radio communication using the aggregate carrier, the mobile terminal camps on any one partial carrier included in the aggregate carrier. It is possible to efficiently camp on the partial carriers included in the aggregate carrier while realizing the communication speed improvement corresponding to the aggregate carrier.
  • FIG. 2 is an explanatory diagram showing a configuration of a radio frame used in an LTE communication system. It is explanatory drawing which shows the structure of a MBSFN frame. It is explanatory drawing explaining the physical channel used with the communication system of a LTE system. It is explanatory drawing explaining the transport channel used with the communication system of a LTE system. It is explanatory drawing explaining the logical channel used with the communication system of a LTE system. It is a block diagram which shows the whole structure of the mobile communication system currently discussed by 3GPP.
  • FIG. 3 is a flowchart illustrating an outline of cell search performed by a mobile terminal in an LTE communication system. It is a conceptual diagram about the RRC_IDLE state and RRC_CONNECTED state when the base station is CA-compliant. It is a conceptual diagram in the case of camping on any one CC of CC which can transmit / receive data.
  • FIG. 7 is a block diagram showing the overall configuration of an LTE mobile communication system currently under discussion in 3GPP.
  • CSG Cell Subscriber Group
  • e-UTRAN Home-eNodeB Home-eNodeB
  • HNB UTRAN Home-NB
  • eNB eNodeB
  • NB UTRAN NodeB
  • GERAN BSS GERAN BSS
  • a mobile terminal (UE) 71 performs transmission / reception with the base station 72.
  • the base station 72 is classified into an eNB (non-CSG cell) 72-1 and a Home-eNB (CSG cell) 72-2.
  • the eNB 72-1 is connected to the MME 73 via the interface S1, and control information is communicated between the eNB and the MME.
  • a plurality of MMEs are connected to one eNB.
  • the Home-eNB 72-2 is connected to the MME 73 via the interface S1, and control information is communicated between the Home-eNB and the MME.
  • a plurality of Home-eNBs are connected to one MME.
  • a mobile terminal (UE) 71 performs transmission / reception with the base station 72.
  • the base station 72 is classified into an eNB (non-CSG cell) 72-1 and a Home-eNB (CSG cell) 72-2.
  • the eNB 72-1 is connected to the MME 73 via the interface S1, and control information is communicated between the eNB and the MME.
  • a plurality of MMEs are connected to one eNB.
  • the Home-eNB 72-2 is connected to the MME 73 via a HeNBGW (Home-eNB Gateway) 74.
  • HeNBGW Home-eNB Gateway
  • Home-eNB and HeGW are connected by an interface S1, and HeNBGW 74 and MME 73 are connected through an interface S1_flex.
  • One or a plurality of Home-eNBs 72-2 are connected to one HeNBGW 74, and information is communicated through S1.
  • the HeNBGW 74 is connected to one or a plurality of MMEs 73, and information is communicated through S1_flex.
  • a plurality of information belonging to the same CSG-ID can be obtained from the MME 73.
  • the Home-eNB 72-2 When transmitting to the Home-eNB 72-2, it is transmitted to the HeNBGW 74 once, and then transmitted to the plurality of Home-eNBs 7-2, thereby signaling efficiency more directly than the plurality of Home-eNBs 72-2 respectively. Can be enhanced.
  • the Home-eNB 72-2 communicates individual information with the MME 73
  • the Home-eNB 72-2 passes through the HeNBGW 74 but only passes (transmits) the information without processing.
  • MME 73 can communicate with each other as if they were directly connected.
  • FIG. 8 is a block diagram showing a configuration of a mobile terminal (terminal 71 in FIG. 7) according to the present invention. Transmission processing of the mobile terminal shown in FIG. 8 will be described. First, control data from the protocol processing unit 801 and user data from the application unit 802 are stored in the transmission data buffer unit 803. The data stored in the transmission data buffer unit 803 is transferred to the encoder unit 804 and subjected to encoding processing such as error correction. There may exist data that is directly output from the transmission data buffer unit 803 to the modulation unit 805 without being encoded. The data encoded by the encoder unit 804 is subjected to modulation processing by the modulation unit 805.
  • the modulated data is converted into a baseband signal, and then output to the frequency conversion unit 806 where it is converted into a radio transmission frequency. Thereafter, a transmission signal is transmitted from the antenna 807 to the base station 312.
  • the reception process of the mobile terminal 311 is executed as follows.
  • a radio signal from the base station 312 is received by the antenna 807.
  • the reception signal is converted from a radio reception frequency to a baseband signal by the frequency conversion unit 806, and demodulated by the demodulation unit 808.
  • the demodulated data is transferred to the decoder unit 809 and subjected to decoding processing such as error correction.
  • control data is passed to the protocol processing unit 801, and user data is passed to the application unit 802.
  • a series of processing of the mobile terminal is controlled by the control unit 810. Therefore, the control unit 810 is connected to each unit (801 to 809), which is omitted in the drawing.
  • FIG. 9 is a block diagram showing the configuration of the base station (base station 72 in FIG. 7) according to the present invention. A transmission process of the base station shown in FIG. 9 will be described.
  • the EPC communication unit 901 transmits and receives data between the base station 72 and EPC (MME73, HeNBGW74, etc.).
  • the other base station communication unit 902 transmits / receives data to / from other base stations.
  • the EPC communication unit 901 and the other base station communication unit 902 exchange information with the protocol processing unit 903, respectively. Control data from the protocol processing unit 903 and user data and control data from the EPC communication unit 901 and the other base station communication unit 902 are stored in the transmission data buffer unit 904.
  • Data stored in the transmission data buffer unit 904 is transferred to the encoder unit 905 and subjected to encoding processing such as error correction.
  • encoding processing such as error correction.
  • the encoded data is subjected to modulation processing by the modulation unit 906.
  • the modulated data is converted into a baseband signal, and then output to the frequency conversion unit 907 to be converted into a radio transmission frequency.
  • a transmission signal is transmitted from the antenna 908 to one or a plurality of mobile terminals 71.
  • the reception process of the base station 72 is executed as follows. Radio signals from one or a plurality of mobile terminals 311 are received by the antenna 908.
  • the received signal is converted from a radio reception frequency to a baseband signal by the frequency conversion unit 907, and demodulated by the demodulation unit 909.
  • the demodulated data is transferred to the decoder unit 910, and decoding processing such as error correction is performed.
  • the control data is passed to the protocol processing unit 903 or the EPC communication unit 901 and the other base station communication unit 902, and the user data is passed to the EPC communication unit 901 and the other base station communication unit 902.
  • a series of processing of the base station 72 is controlled by the control unit 911. Therefore, the control unit 911 is connected to each unit (901 to 910), which is omitted in the drawing.
  • FIG. 10 is a block diagram showing a configuration of MME (Mobility Management Entity) according to the present invention.
  • the PDN GW communication unit 1001 transmits and receives data between the MME 73 and the PDN GW.
  • the base station communication unit 1002 transmits and receives data between the MME 73 and the base station 72 using the S1 interface.
  • the data received from the PDN GW is user data
  • the user data is passed from the PDN GW communication unit 1001 to the base station communication unit 1002 via the user plane processing unit 1003 and transmitted to one or a plurality of base stations 72.
  • the data received from the base station 72 is user data
  • the user data is transferred from the base station communication unit 1002 to the PDN GW communication unit 1001 via the user plane processing unit 1003 and transmitted to the PDN GW.
  • the control data is passed from the PDN GW communication unit 1001 to the control plane control unit 1005.
  • the control data is transferred from the base station communication unit 1002 to the control plane control unit 1005.
  • the HeNBGW communication unit 1004 is provided when the HeNBGW 74 exists, and performs data transmission / reception through an interface (IF) between the MME 73 and the HeNBGW 74 depending on the information type.
  • the control data received from the HeNBGW communication unit 1004 is passed from the HeNBGW communication unit 1004 to the control plane control unit 1005.
  • the result of processing in the control plane control unit 1005 is transmitted to the PDN GW via the PDN GW communication unit 1001.
  • control plane control unit 1005 is transmitted to one or a plurality of base stations 72 via the S1 interface via the base station communication unit 1002, and to one or a plurality of HeNBGWs 74 via the HeNBGW communication unit 1004. Sent.
  • the control plane control unit 1005 includes a NAS security unit 1005-1, an SAE bearer control unit 1005-2, an idle state mobility management unit 1005-3, and the like, and performs overall processing for the control plane.
  • the NAS security unit 1005-1 performs security of a NAS (Non-Access Stratum) message.
  • the SAE bearer control unit 1005-2 manages the bearer of SAE (System Architecture Evolution).
  • the idle state mobility management unit 1005-3 performs mobility management in a standby state (LTE-IDLE state, also simply referred to as idle), generation and control of a paging signal in the standby state, and one or more mobile terminals 71 being served thereby Tracking area (TA) addition, deletion, update, search, tracking area list (TA List) management and so on.
  • TA Tracking area
  • the MME initiates the paging protocol by transmitting a paging message to a cell belonging to a tracking area (tracking area: tracking TA) where the UE is registered.
  • the idle state mobility management unit 1005-3 may perform CSG management, CSG-ID management, and white list management of the Home-eNB 72-2 connected to the MME.
  • CSG-ID the relationship between the mobile terminal corresponding to the CSG-ID and the CSG cell is managed (added, deleted, updated, searched). For example, it may be a relationship between one or a plurality of mobile terminals registered for user access with a certain CSG-ID and a CSG cell belonging to the CSG-ID.
  • the relationship between a mobile terminal and a CSG-ID is managed (added, deleted, updated, searched). For example, one or a plurality of CSG-IDs registered by a certain mobile terminal as a user may be stored in the white list.
  • CSG-related management may be performed in other parts of the MME 73, tracking by the idle state mobility management unit 1005-3 instead of the CSG-ID currently being discussed at the 3GPP meeting A method using an area code (Tracking Area Code) can be performed efficiently.
  • a series of processing of the MME 313 is controlled by the control unit 1006. Therefore, although not shown in the drawing, the control unit 1006 is connected to each unit (1001 to 1005).
  • FIG. 11 is a block diagram showing a configuration of the HeNBGW according to the present invention.
  • the EPC communication unit 1101 transmits and receives data between the HeNBGW 74 and the MME 73 using the S1_flex interface.
  • the base station communication unit 1102 transmits and receives data between the HeNBGW 74 and the Home-eNB 72-2 using the S1 interface.
  • the location processing unit 1103 performs processing for transmitting registration information and the like to a plurality of Home-eNBs among data from the MME 73 passed via the EPC communication unit 1101.
  • the data processed by the location processing unit 1103 is passed to the base station communication unit 1102 and transmitted to one or more Home-eNBs 72-2 via the S1 interface.
  • Data that does not require processing in the location processing unit 1103 and is simply passed (transmitted) is passed from the EPC communication unit 1101 to the base station communication unit 1102 and sent to one or more Home-eNBs 72-2 via the S1 interface. Sent.
  • a series of processing of the HeNBGW 74 is controlled by the control unit 1104. Therefore, although not shown in the drawing, the control unit 1104 is connected to each unit (1101 to 1103).
  • FIG. 12 is a flowchart illustrating an outline from a cell search to a standby operation performed by a mobile terminal (UE) in an LTE communication system.
  • UE mobile terminal
  • FIG. 12 is a flowchart illustrating an outline from a cell search to a standby operation performed by a mobile terminal (UE) in an LTE communication system.
  • P-SS first synchronization signal
  • S-SS second synchronization signal
  • Synchronize In combination with P-SS and S-SS, a synchronization code (SS) is assigned a synchronization code corresponding to a PCI (Physical Cell Identity) allocated for each cell.
  • PCI Physical Cell Identity
  • a reference signal RS Reference (Reference (Signal) transmitted from the base station for each cell is detected, and the received power is measured.
  • the reference signal RS uses a code corresponding to PCI one-to-one, and can be separated from other cells by correlating with the code. By deriving the RS code of the cell from the PCI specified in ST1201, it becomes possible to detect the RS and measure the RS received power.
  • a cell having the best RS reception quality (for example, a cell having the highest RS reception power, that is, the best cell) is selected from one or more cells detected up to ST1202.
  • PBCH of the best cell is received, and BCCH which is broadcast information is obtained.
  • MIB Master Information Block
  • the MIB information includes, for example, DL (downlink) system bandwidth (also called transmission bandwidth setting (transmission bandwidth configuration: dl-bandwidth)), the number of transmission antennas, SFN (System frame number), and the like.
  • SIB1 System Information Block 1 in the broadcast information BCCH is obtained.
  • SIB1 includes information about access to the cell, information about cell selection, and scheduling information of other SIBs (SIBk; integer of k ⁇ 2).
  • SIB1 includes TAC (Tracking Area Code).
  • the mobile terminal compares the TAC received in ST1205 with the TAC already held by the mobile terminal. If the result of the comparison is the same, a standby operation is started in the cell.
  • the mobile terminal requests a change of TA to perform TAU (TrackingTrackArea Update) to the core network (Core Network, EPC) (including MME) through the cell.
  • the core network updates the TA based on the identification number (UE-ID or the like) of the mobile terminal sent from the mobile terminal together with the TAU request signal.
  • the core network transmits a TAU acceptance signal to the mobile terminal.
  • the mobile terminal rewrites (updates) the TAC (or TAC list) held by the mobile terminal with the TAC of the cell. Thereafter, the mobile terminal enters a standby operation in the cell.
  • CSG Cell Subscriber Group
  • access is permitted only to one or a plurality of mobile terminals registered in the CSG cell.
  • One or a plurality of mobile terminals registered with the CSG cell constitute one CSG.
  • a CSG configured in this way is given a unique identification number called CSG-ID.
  • a single CSG may have a plurality of CSG cells. If a mobile terminal registers in one of the CSG cells, it can access other CSG cells to which the CSG cell belongs.
  • Home-eNB in LTE and Home-NB in UMTS may be used as a CSG cell.
  • the mobile terminal registered in the CSG cell has a white list.
  • the white list is stored in the SIM / USIM.
  • the white list carries CSG information of the CSG cell registered by the mobile terminal.
  • CSG-ID, TAI (Tracking Area Identity), TAC, etc. can be considered as the CSG information. If CSG-ID and TAC are associated with each other, either one is sufficient.
  • GCI may be used as long as CSG-ID and TAC are associated with GCI (Global Cell Identity).
  • a mobile terminal that does not have a white list (including a case where the white list is empty in the present invention) cannot access a CSG cell, and only accesses a non-CSG cell. Can not.
  • a mobile terminal having a white list can access both a CSG cell of a registered CSG-ID and a non-CSG cell.
  • PCI split Physical Cell Identity
  • PCI split Physical Cell Identity
  • Non-patent Document 5 Non-patent Document 5
  • PCI split information is reported from the base station to the mobile terminals being served by the system information.
  • a basic operation of a mobile terminal using PCI split is disclosed.
  • a mobile terminal that does not have PCI split information needs to perform a cell search using all PCIs (for example, using all 504 codes).
  • a mobile terminal having PCI split information can perform a cell search using the PCI split information.
  • LTE-A Long Term Evolution Advanced
  • the LTE-A system supports a frequency bandwidth larger than the frequency bandwidth (transmission bandwidth) of the LTE system.
  • LTE-A compatible mobile terminals receive one or more component carriers (CC) simultaneously.
  • CC component carriers
  • a mobile terminal supporting LTE-A has the capability to perform carrier aggregation on reception and transmission on a plurality of component carriers, or only reception or only transmission.
  • an LTE-compatible mobile terminal can receive and transmit only on a single component carrier.
  • An LTE compatible mobile terminal can also be referred to as a 3GPP Release 8 compatible mobile terminal. That is, it is considered that LTE-compatible mobile terminals can operate on the LTE-A system and can be compatible.
  • Non-Patent Document 8 describes a system information notification method in the LTE-A system. Further, a single carrier anchor (Multi carrier anchor) and a multicarrier anchor (Multi carrier anchor) in a base station supporting carrier aggregation are disclosed.
  • the single carrier anchor reception and transmission of LTE-compatible mobile terminals are possible.
  • information indicating the carrier of the multicarrier anchor is notified.
  • the current 3GPP (Release 8) system information System information: SI is reported.
  • Non-Patent Document 10 one or a plurality of components capable of transmitting / receiving data to / from a UE in an RRC connection state (RRC_CONNECTED state, also simply referred to as RRC_CONNECTED) in a carrier aggregation compatible base station (may be a cell) It has been proposed that the carrier set be a candy date component carrier set (Candidate Component Carrier Set).
  • one upstream frequency band and a different downstream frequency band operate in pairs.
  • the upstream frequency band and the downstream frequency band are referred to as a paired band.
  • one uplink CC and one different downlink CC operate in a pair in a carrier aggregation compatible base station.
  • the uplink CC and the downlink CC are hereinafter referred to as a paired band.
  • one upstream frequency band and a plurality of different downstream frequency bands operate in pairs. That is, a plurality of downstream frequency bands are paired with respect to one upstream frequency band.
  • a plurality of downlink CCs operate in pairs with respect to one uplink CC. That is, a plurality of downlink CCs become a pair band for one uplink CC.
  • the UE and the base station (cell) shift from the RRC_CONNECTED state (connection state) to the RRC_IDLE state (standby state).
  • the UE moves out of the RRC_CONNECTED state and moves to the RRC_IDLE state, conventionally, the UE attempts to camp on the last cell that was in the RRC_CONNECTED state.
  • the base station (cell) is a carrier aggregation-compatible base station (cell) and the UE is transmitting and receiving data using one or more CCs in the RRC_CONNECTED state
  • the RRC_CONNECTED state is not used.
  • shifting to the RRC_IDLE state it is unclear which component carrier of which base station (cell) should try camp-on by applying the conventional method.
  • FIG. 13 shows a conceptual diagram of the RRC_IDLE state and the RRC_CONNECTED state when the base station (cell) is a base station (cell) that supports carrier aggregation.
  • (A) is an RRC_IDLE state
  • (b) is an RRC_CONNECTED state.
  • Reference numerals 1301 to 1303 denote cells, and a cell 1303 corresponds to carrier aggregation.
  • Reference numerals 1304 to 1310 denote CCs on which the cell 1303 performs carrier aggregation, which are CC # 1 to CC # 7 in order.
  • the horizontal axis indicates the frequency.
  • the DL frequency and the UL frequency are different, but for simplicity, the DL frequency and the UL frequency are described on the same axis.
  • the number of the downlink component carrier (downlink CC, DL ⁇ CC) and the number of the uplink component carrier (uplink CC, UL CC) corresponding to each DL CC are the same, Both are shown as CC # n (n is a positive integer).
  • the numbers may be different between the downlink CC and the corresponding uplink CC, and the numbers may be the same or the arrangement order on the frequency axis may be different.
  • the downlink CC and the corresponding uplink CC are collectively referred to as CC.
  • the UE camps on the downlink CC, for simplicity, it is described here that the camp is on the CC. It means to camp on the downlink CC of the CC.
  • the 1311 is a UE.
  • the UE that has selected the cell 1303 after cell selection / reselection is camping on CC # 3 (1306) in the RRC_IDLE state, for example.
  • the UE that has performed RRC connection with the base station (cell) enters the RRC_CONNECTED state, and transmits and receives data to and from the core network.
  • the base station (cell) is a base station (cell) that supports carrier aggregation, the UE transmits and receives data to and from the core network via the base station (cell) on one or a plurality of CCs.
  • One or a plurality of CCs that transmit and receive data may be dynamically changed according to the communication quality (for example, CQI, RSRP, etc.) of each CC. This is because by performing data transmission / reception with a CC having good communication quality, throughput can be improved and high-speed communication becomes possible.
  • the communication quality for example, CQI, RSRP, etc.
  • the UE When the UE transmits / receives data to / from one or a plurality of CCs in the RRC_CONNECTED state as described above with the base station (cell) corresponding to the aggregation, the UE may move away from the RRC_CONNECTED state and shift to RRC_IDLE.
  • the aggregation-capable base station (cell) When moving from RRC_CONNECTED state to RRC_IDLE, the aggregation-capable base station (cell) supports multiple CCs, so the UE attempts to camp on the same base station (cell) as before Even in this case, the base station (cell) can be specified, but it becomes unclear which CC of the base station (cell) should camp on.
  • FIG. 23 shows a flowchart example of CC search within one cell.
  • each CC in the base station (cell) is synchronized to detect PCI. This step can be omitted if the base station (cell) is synchronized and the PCI is known.
  • RS detection and RS reception power of each CC are performed, and the best CC is selected as the best CC in ST2303.
  • PBCH transmitted by the CC is received and MIB is received.
  • ST2305 DL-SCH transmitted in the CC is received and SIB1 is received.
  • camp-on is performed on the CC of the base station (cell), and system information and paging information are monitored.
  • the method disclosed here is used.
  • it is possible to specify which CC should be camp-on, and communication between the UE, the base station (cell), and the network can be enabled.
  • the best CC must be searched for all CCs in one base station (cell) to perform CC selection / reselection processing, and the control delay time increases.
  • Another possible method is to change the camp-on cell. In this case, too, the UE must perform a cell search and perform a cell selection / reselection process, which increases the control delay time, There arises a problem that power consumption increases.
  • the UE camps on one of the CCs that can transmit and receive data of the last base station (cell) that was in RRC_CONNECTED. Try to try.
  • FIG. 14 shows a conceptual diagram when camping on any one of the CCs capable of transmitting and receiving data.
  • (A) is an RRC_CONNECTED state
  • (b) is an RRC_IDLE state.
  • the same reference numerals as those in FIG. 13 denote the same or corresponding parts, and the description of the same reference numerals will be omitted.
  • the UE in the RRC_CONNECTED state has a plurality of CCs, CC # 2 (1305), CC # 4 (1307), CC # 6 (1309).
  • CC # 2 (1305)
  • CC # 4 (1305)
  • CC # 6 CC # 6
  • the UE can transmit / receive data of the last base station (cell) (1303) that was at the time of RRC_CONNECTED. Try to camp on any one of the CCs.
  • camp-on is attempted at CC # 2 (1305).
  • a CC capable of transmitting and receiving data between a UE and a base station (cell) in the RRC_CONNECTED state is considered to be a CC with good communication quality. Communication quality that enables at least data transmission and reception is obtained. Therefore, by trying to camp on any one of the CCs that can send and receive data, it is possible to camp on the CC of the cell when moving to RRC_IDLE away from the RRC_CONNECTED state. become. By making it possible to camp on reliably, it is not necessary to perform cell search, cell selection / reselection processing, or search of all CCs, CC selection / reselection processing that occurs when camp-on is not possible. Therefore, the control delay time can be reduced, and further, the power consumption of the UE can be reduced.
  • FIG. 19 shows a sequence example at the time of state transition between RRC_IDLE and RRC_CONNECTED.
  • the UE in the RRC_IDLE state searches for a cell and / or CC (downlink CC) in ST1901, and camps on one CC (downlink CC) of one cell in ST1902.
  • the UE that camps on a certain CC uses the CC (uplink CC (uplink CC corresponding to the downlink CC (uplink CC corresponding to the downlink CC)) to send an RRC connection request to a base station (cell) (eNB ).
  • the base station (cell) that has received the RRC connection request transmits an RRC connection setup to the UE using the CC (downlink CC) in ST1904.
  • the UE that has received the RRC connection setup transmits an RRC connection setup completion to the base station (cell) using the CC (uplink CC) in ST1905.
  • the establishment of the RRC connection is successful and the state transits to the RRC_CONNECTED state.
  • data transmission / reception is performed between the UE, the base station (cell), and the core network (CN) in the RRC_CONNECTED state.
  • addition / deletion / replacement of CCs that can transmit and receive data is performed in order to perform carrier aggregation using CCs with good communication quality in the RRC_CONNECTED state.
  • the CC to be added / deleted / replaced is a downlink CC and / or an uplink CC.
  • addition / deletion / replacement may be performed with a pair of uplink CCs (pair bands) corresponding to the downlink CCs. This makes it possible to reduce the amount of signaling information required between the UE, the base station (cell), and the core network.
  • the CC to be added / deleted / replaced is set by the base station (cell).
  • the setting may be set by the core network.
  • the addition / deletion / replacement information of the set CC may be notified to the base station (cell).
  • a base station (cell) that sets a CC to be added / deleted / replaced adds / deletes / replaces a CC.
  • the base station (cell) notifies the UE of CC addition / deletion / replacement information in ST1907.
  • the UE can recognize the CC that can be transmitted and received at the time of RRC_CONNECTED using the information.
  • UE By receiving scheduling information of CCs that can be transmitted and received (downlink CC), UE enables data transmission / reception with a base station (cell) in CC after addition / deletion / replacement of CC in ST1908, and the base station in ST1909 Data can be transmitted / received to / from the core network via a station (cell).
  • the method disclosed in the present embodiment is executed.
  • the UE tries to camp on any one of the CCs capable of transmitting and receiving data of the last base station (cell) that was at the time of RRC_CONNECTED.
  • the UE can reliably camp on the selected CC of the selected cell in ST1912. Therefore, since it is not necessary to perform cell search, cell selection / reselection processing, or search of all CCs and CC selection / reselection processing that occur when camp-on cannot be performed, control delay time can be reduced. In addition, the power consumption of the UE can be reduced.
  • FIG. 24 shows a specific example of a flowchart regarding a method of determining a cell and CC for attempting camp-on according to the present invention.
  • the UE receives parameters used for each CC reselection.
  • the method for notifying the UE of these parameters is individually notified to the UE from the base station (cell) together with (or included in the information of the message) the RRC connection release message of ST1910 shown in FIG.
  • the UE may be notified individually from the base station (cell) or the core network at the time of RRC_CONNECTED. For example, notification may be made in ST1909.
  • the CC that can transmit and receive data during RRC_CONNECTED is dynamically changed for each UE, it is possible to transmit and receive parameters used for each CC reselection in the CC after the change.
  • parameters used for CC reselection of necessary CCs can be dynamically notified to individual UEs. Therefore, when shifting to RRC_IDLE, optimal parameters as a system can be notified to UEs. It becomes possible.
  • the base station (cell) when the base station (cell) camps on in ST1902, it may be included in the system information and broadcast from the base station (cell).
  • the base station (cell) may be a parameter used for each CC reselection of all CCs to which it corresponds. This allows the UE to execute ST1911 using the parameter received at the RRC_IDLE even if the parameter is not received by RRC_CONNECTED.
  • a parameter used for cell reselection of a base station (cell) to which the CC belongs may be used.
  • a threshold value for determining whether or not to perform CC reselection there are S_intrasearch, Q_Hyst, Q_offset, T_reselection, S_nonintrasearch, cellReselectionPriority, and the like. Further, only S_intrasearch may be used. In this case, the same parameters may be used in common for all CCs, and each parameter may be as follows.
  • S_intrasearch is a threshold for measurement at the same frequency.
  • Q_Hyst is the hysteresis value based on the ranking criteria.
  • Q_offset is the offset value between two cells.
  • T_reselection is the cell reselection timer value.
  • S_nonintrasearch is a threshold for measurement at different frequencies and different systems.
  • CellReselectionPriority is the absolute priority of the carrier frequency.
  • the above parameters may be provided for each CC.
  • a value can be set for each CC.
  • an identifier of each CC may be provided and notified together with the parameter.
  • the parameter is set to a value for the CC indicated by the identifier of the CC notified together. By doing so, the value for each CC can be set also in this method.
  • the UE selects the last cell that was in RRC_CONNECTED.
  • the UE determines whether there is a CC that has not yet attempted camp-on in this procedure (ST1911) among CCs that can transmit and receive the data of the cell. If there is a CC that has not attempted camp-on, the UE selects one of the CCs that has not attempted camp-on in ST2404, and attempts to camp-on the selected CC in ST2405.
  • the UE measures the reception level (RSRP or the like) of the CC attempting to camp on.
  • the UE determines whether or not to reselect CC.
  • determining whether or not to perform CC reselection when the measured reception level of the CC is larger than the parameter (S_intrasearch), it is determined that CC reselection is not further performed. If it is determined that CC reselection is not performed, the UE moves to ST2407 and camps on the selected CC. If the reception level of the CC measured in ST2406 is equal to or less than the parameter (S_intrasearch), it is determined that CC reselection is performed, and the UE moves to ST2403 and tries to camp on again in this procedure (ST1911). It is determined whether or not there is a CC that is not present.
  • the process proceeds to ST2404 and the above-described processing is performed.
  • the mobile terminal makes a transition to ST 2408 and performs a process of searching for another cell or / and CC and reselecting another cell or / and CC.
  • the other cell or / and CC search and the other cell or / and CC reselection process may use the method disclosed in FIG.
  • the UE After the search and reselection process of another cell or / and CC in ST2408, the UE camps on the selected cell or / and CC in ST2409.
  • ST2407 and ST2409 correspond to ST1912 shown in FIG.
  • the UE attempts to camp on any one of the CCs capable of transmitting and receiving data of the last base station (cell) at the time of RRC_CONNECTED. By doing so, the possibility of camping on the CC increases. This is because the reception level of the CC is likely to be larger than the reselection threshold (S_intrasearch) in the determination process of ST2406.
  • a CC capable of transmitting / receiving data between the UE and the base station (cell) in the RRC_CONNECTED state is considered to be a CC having a good communication quality, so that at least a communication quality capable of transmitting / receiving data is obtained. Because.
  • the mobile station may move to another cell or / and CC search and another cell or / and CC reselection process in ST2408. Is even lower. Therefore, cell search, cell selection / reselection processing, or search of all CCs that occurs when camp-on cannot be ensured by ensuring camp-on to the selected cell and CC when moving from RRC_CONNECTED state to RRC_IDLE Since it is not necessary to perform the CC selection / reselection process, the control delay time can be reduced, and further, the power consumption of the UE can be reduced.
  • a CC capable of transmitting and receiving data for example, a CC in a candy component carrier set shown in Non-Patent Document 10 may be used. Similar effects can be obtained.
  • the camp-on is attempted to any one of the CCs capable of transmitting and receiving data, but the UE actually transmits and receives data when leaving RRC_CONNECTED. You may make it try camping on any one of CC.
  • the UE can recognize the communication quality of each CC immediately before moving to RRC_IDLE.
  • RRC_CONNECTED When leaving RRC_CONNECTED and moving to RRC_IDLE, it becomes possible to camp on more reliably. Therefore, a further reduction effect of the control delay time and a further reduction effect of the power consumption of the UE can be obtained.
  • Non-Patent Document 10 a scheduling component carrier shown in Non-Patent Document 10 may be used. Similar effects can be obtained.
  • the CC that can transmit and receive data or the CC that actually transmits and receives data depends on the load status of the base station (cell) and the radio wave propagation environment of each CC depending on the network or base station (cell). It can be set accordingly. For this reason, it becomes possible to perform load distribution among CCs in consideration of the communication quality of each CC, and it is possible to improve the throughput of the entire base station (cell).
  • the CC capable of transmitting / receiving data or the CC that actually transmits / receives data may be set for each individual UE. By doing so, it becomes possible to set the CC according to the radio wave propagation environment between the base station (cell) and the individual UE, and thus there is an effect that good reception quality can be obtained for each UE.
  • Any one CC described above may be a CC having PBCH.
  • the UE when the UE leaves RRC_CONNECTED, shifts to RRC_IDLE and camps on the CC, the UE can receive broadcast information newly transmitted by the PBCH.
  • the network or the base station (cell) may notify the UE of an instruction to shift to RRC_IDLE and newly receive the broadcast information. . Since the UE can receive new broadcast information, it is possible to eliminate a communication abnormality due to a mismatch in cell configuration, and to supply a stable communication system.
  • Any one CC described above may be a CC having an SS.
  • the UE leaves RRC_CONNECTED, shifts to RRC_IDLE, and camps on the CC, it becomes possible to newly synchronize.
  • the CC is a CC that is not actually scheduled among CCs that can transmit and receive data, or when the CC performs a DRX operation at the time of RRC_CONNECTED, the UE
  • the period in which data is not received is long, it is possible to prevent the UE from receiving a long period of data when RRC_IDLE transitions and becoming out of synchronization. Therefore, it is possible to supply a stable communication system.
  • Any one of the CCs described above may be a CC that is always measured or monitored during RRC_CONNECTED.
  • the UE will be in a state where it can monitor the CC when leaving RRC_CONNECTED. For this reason, even when shifting to RRC_IDLE and attempting to camp on the cell, it is possible to camp on reliably. Therefore, the effect of reducing the control delay time and the effect of reducing the power consumption of the UE are obtained.
  • the CC that is always measured or monitored at the time of RRC_CONNECTED may be, for example, an anchor carrier shown in Non-Patent Document 10. Similar effects can be obtained.
  • the CC having the best recent reception quality at the time of leaving RRC_CONNECTED may be used. By doing so, it is possible to camp on the CC having the best reception quality, and the possibility of being unable to camp on is the lowest. For this reason, it becomes more effective in the reduction of control delay time and the reduction of the power consumption of UE.
  • the reception quality of each CC may be measured when leaving RRC_CONNECTED. This makes it possible to determine the CC that is optimal for the UE to camp on when leaving RRC_CONNECTED. Therefore, it is most effective in reducing the control delay time and the power consumption of the UE.
  • a CC to be measured when leaving RRC_CONNECTED it may be a CC that can transmit and receive data instead of all the CCs of the cell that was last in RRC_CONNECTED, or a CC that is actually transmitting and receiving data. By doing so, it is not necessary to measure all CCs, and it is possible to reduce the power consumption of the UE.
  • the base station (cell) or core network may notify the UE of the CC for measuring the reception quality.
  • a notification method a method for notifying the UE of parameters used for each CC reselection can be applied.
  • the base station (cell) or the core network determines the CC for measuring the reception quality in consideration of the connection load status of each CC, the capability of the UE, the communication quality between the UE and each CC, and the like. Thereby, the throughput of the entire base station (cell) and the entire system can be improved.
  • the UE uses the same frequency band as the CC that can transmit and receive data at the time of RRC_CONNECTED of the last base station (cell) that was at the time of RRC_CONNECTED. Try to camp on any one of the CCs to which it belongs.
  • FIG. 15 shows a conceptual diagram when camping on any one of the CCs belonging to the same frequency band.
  • (A) is an RRC_CONNECTED state
  • (b) is an RRC_IDLE state.
  • the same reference numerals as those in FIG. 13 indicate the same or corresponding parts, and the description of the same reference numerals is omitted.
  • CC # 1 (1304) and CC # 2 (1305) belong to frequency band I
  • CC # 3 (1306) belongs to frequency band II
  • CC # 4 (1307) belongs to frequency band III
  • CC # 5 (1308), CC # 6 (1309), and CC # 7 (1310) belong to the frequency band IV.
  • the frequency band here indicates a set of CCs having common physical characteristics or radio characteristics.
  • the UE in the RRC_CONNECTED state has a plurality of CCs, CC # 2 (1305), CC # 4 (1307), CC # 6 (1309).
  • CC # 2 (1305)
  • CC # 4 (1305)
  • CC # 6 CC # 6
  • the UE can transmit and receive data of the last base station (cell) (1303) that was in RRC_CONNECTED. And try to camp on any one of the CCs belonging to the same frequency band.
  • a camp-on is tried to CC # 5 (1308).
  • CC # 6 (1309) is one of CCs that can transmit and receive data in the RRC_CONNECTED state.
  • This CC # 6 (1309) belongs to the frequency band IV.
  • CCs belonging to the frequency band IV include CC # 5 (1308) and CC # 7 (1310). Therefore, the UE attempts to camp on CC # 5 (1308).
  • the sequence at the time of state transition between RRC_IDLE and RRC_CONNECTED may be the same as in FIG.
  • the determination method of the cell and CC to attempt camp-on is based on whether or not there is a CC that does not attempt camp-on among CCs belonging to the same frequency band as the CC capable of transmitting and receiving data in ST2403 of FIG. It is sufficient to change so that it is judged by.
  • a CC capable of transmitting and receiving data between a UE and a base station (cell) in the RRC_CONNECTED state is considered to be a CC with good communication quality. Communication quality that enables at least data transmission and reception is obtained.
  • the cell of the cell is changed when moving from the RRC_CONNECTED state to the RRC_IDLE. It will be possible to camp on the CC. Thereby, it is possible to obtain the same effect as in the first embodiment.
  • the UE selects any one of the CCs capable of transmitting and receiving data of the last base station (cell) that was in RRC_CONNECTED. This is because the CC can be selected according to the communication status of the UE (for example, the communication quality of each CC (downlink CC and / or uplink CC)).
  • a method in which a base station (cell) or a core network selects and notifies the UE is disclosed.
  • the method for notifying which CC to select can be applied to the method for notifying the UE of the parameters used for each CC reselection disclosed in the first embodiment.
  • the CC may be notified along with the parameter.
  • FIG. 20 shows a sequence diagram in the case where the base station (cell) notifies the UE of a cell and / or CC for which camp-on is attempted.
  • the same reference numerals as those in FIG. 19 denote the same or corresponding parts, and the description of the same reference numerals is omitted.
  • the UE notifies the UE from the base station (cell) in the state of RRC_CONNECTED.
  • the base station (cell) determines the communication status with the UE and determines the cell and CC to try to camp on when moving to RRC_IDLE.
  • the CC information is notified.
  • Information that can identify the cell and the CC such as cell identifier (PCI, cell-ID), CC identifier (CC number, carrier frequency, CC carrier UARFCN (UTRA Absolute) Radio Frequency Channel Number) etc.
  • CC information information on only downlink CCs may be used instead of information on downlink CCs and uplink CCs that are pair bands.
  • information on the corresponding uplink CC may be obtained from the downlink CC after camping on the downlink CC. For example, it may be reported as system information in the downlink CC.
  • the control signal with respect to individual UE can be reduced, and the effect of effective utilization of radio resources can be obtained.
  • the cell information may be omitted, and it may be determined in advance as the last cell at the time of RRC_CONNECTED. Thereby, the control signal with respect to individual UE can be reduced, and the effect of effective utilization of radio resources can be obtained.
  • a base station (cell) or a core network determines a cell and a CC in which the UE attempts to camp on, determine the connection load status of each CC, UE capability, communication quality between the UE and each CC, and the like. .
  • a UE and a cell to be camped on are determined from the outside such as a base station (cell) or a core network. Therefore, it is possible to improve the communication quality and the throughput of the entire cell and the entire system.
  • the UE may use any one of CCs that can camp on at the time of RRC_IDLE of the last base station (cell) that was at the time of RRC_CONNECTED. Try to camp on CC.
  • FIG. 16 shows a conceptual diagram when camping on any one of CCs that can be camp-on at the time of RRC_IDLE.
  • (A) is an RRC_CONNECTED state
  • (b) is an RRC_IDLE state.
  • the same reference numerals as those in FIG. 13 indicate the same or corresponding parts, and the description of the same reference numerals will be omitted.
  • CC # 1 (1304), CC # 3 (1306), CC # 4 (1307), and CC # 6 (1309) are CCs that can be camp-on at the time of RRC_IDLE.
  • a CC that can be camp-on at the time of RRC_IDLE is a CC that is not CC (for example, barred) where camp-on is prohibited at the time of RRC_IDLE.
  • the UE in the RRC_CONNECTED state has a plurality of CCs, CC # 2 (1305), CC # 4 (1307), CC # 6 (1309).
  • CC # 2 (1305)
  • CC # 4 (1305)
  • CC # 6 CC # 6
  • (b) Data transmission / reception above.
  • the UE moves away from the RRC_CONNECTED state and moves to RRC_IDLE
  • the UE is able to camp on at the time of RRC_IDLE of the last base station (cell) (1303) that was at the time of RRC_CONNECTED. Try to camp on one of the CCs.
  • camp-on is attempted at CC # 3 (1306).
  • the sequence at the time of state transition between RRC_IDLE and RRC_CONNECTED may be the same as in FIG.
  • the determination method of cells and CCs that attempt camp-on is changed from ST2403 in FIG. 24 to determine whether there is a CC that does not attempt camp-on among CCs that can be camp-on at the time of RRC_IDLE. It ’s fine.
  • CC information that can be camp-on at the time of RRC_IDLE may be determined in advance. By doing so, special signaling is not required for the notification of the information, so that the signaling load can be reduced.
  • the UE may be individually notified on the CC that is transmitting and receiving data at the time of RRC_CONNECTED, or may be notified through the CC that is transmitting and receiving data at the time of RRC_CONNECTED or other CCs.
  • a notification method a method of notifying the UE from the base station (cell) on a message or header of RRC signaling or MAC signaling, a method of notifying the UE from the base station (cell) on system information, and PDCCH There is a method of reporting from the base station (cell) to the UE.
  • the CC information that can be camp-on is notified before or together with the RRC_CONNECTION_RELEASE message from the base station to the UE.
  • the method for notifying CC information that can be camp-on at the time of RRC_IDLE the method for notifying the UE of parameters used for each CC reselection disclosed in the first embodiment can be applied. Further, it may be notified together with the parameter.
  • the base station When notifying by broadcast information, before notifying an RRC_CONNECTION_RELEASE message from the base station to the UE, the base station notifies the UE of correction information of the broadcast information, and the UE receives the corrected broadcast information. May be.
  • the CC that can camp on at the time of RRC_IDLE is a CC that is not a CC that is camp-on prohibited at the time of RRC_IDLE (for example, a barred CC), but among the CCs among them, the first cell selection / reselection As a result of measuring the received power by the UE at the time of CC selection / reselection, it may be a CC that has exceeded the threshold for CC reselection.
  • the UE prefferably stores the CC.
  • Specific examples of the CC information to be stored include the identifier of the CC.
  • the present invention is not limited thereto, and may be information necessary for reselection of the CC. This eliminates the need to report CC information that can be camp-on from the base station (cell) to the UE at the time of RRC_IDLE, thereby reducing the signaling load.
  • the order of the CC may be stored together with information such as the identifier of the CC.
  • the order of the CCs may be assigned, for example, from the higher one based on the measurement result of the received power, and camp-on may be attempted from the CC having a higher order. As a result, it is possible to camp on the CC having the highest received power, and the possibility that camp-on is impossible becomes the lowest. For this reason, it becomes more effective in the reduction of control delay time and the reduction of the power consumption of UE.
  • the base station (cell) it is not necessary for the base station (cell) to perform cell selection / reselection processing for all CCs to be subjected to carrier aggregation, or all the CCs are selected. It is no longer necessary to perform the measurement. Therefore, the control delay time can be reduced, and further, the power consumption of the UE can be reduced.
  • camp-on may be attempted to the CC when camp-on is performed to the last base station (cell) that was at the time of RRC_CONNECTED.
  • the camp-on of the cell to the CC will have a track record. Accordingly, since the camp-on can be reliably performed in this way, it is not necessary to perform the cell selection / reselection process or the CC selection / reselection process that occurs when the camp-on cannot be performed. Therefore, the control delay time can be reduced, and further, the power consumption of the UE can be reduced.
  • the UE may receive and store information broadcast from the CC of the cell when camping on the CC of the cell. It may be stored in the protocol control unit (801), application unit (802), control unit (810), etc. of the UE shown in FIG. Alternatively, it may be stored in the SIM.
  • Information received by the base station (cell) for the UE to receive and store includes system information, cell identifier (PCI, cell-ID), CC identifier, CC carrier frequency, CC carrier UARFCN (UTRANAbsolute Radio Frequency) (Channel Number) etc.
  • the UE By storing these pieces of information, the UE does not need to receive these pieces of information when performing camp-on at the time of transition to RRC_IDLE, and further to operate after camp-on. In addition, it is possible to reduce the control delay time in the UE, and it is also possible to reduce the power consumption of the UE.
  • the UE may select one of the plurality of CCs, or the reception quality (reception of the plurality of CCs) The UE may select the CC having the best reception quality.
  • the base station (cell) camping on at the time of RRC_IDLE and the last base station (cell) at the time of RRC_CONNECTED may be different.
  • the UE if the UE has experience of camping on the last base station (cell) that was at the time of RRC_CONNECTED, the UE attempts to camp on the CC at the time of camping and receives when camping on the cell.
  • the stored cell and the CC-related information may be used.
  • the information may be received after newly camping on, or the base station before HO at the time of RRC_CONNECTED (Cell) or the base station (cell) after HO may receive the information, or the UE issues a notification request for the information to the base station (cell) after HO during RRC_CONNECTED, and the base station accordingly
  • a station (cell) may notify the UE.
  • the notification method the above-described method can be used.
  • camp-on may be attempted to a CC that monitors paging information or system information as one of the CCs that can be camp-on at the time of RRC_IDLE.
  • a CC that monitors paging information or system information at the time of RRC_IDLE is referred to as an anchor carrier at the time of RRC_IDLE.
  • the system information is reported from the anchor carrier at the time of RRC_IDLE, the system information is not obtained after camp-on, and the process of reselecting / selecting another CC is not entered. Accordingly, it is possible to reduce the control delay time and the power consumption of the UE.
  • the anchor carrier may be a multicarrier anchor or a single carrier anchor.
  • the anchor carrier at the time of RRC_IDLE and the anchor carrier at the time of RRC_CONNECTED described in the first embodiment may be the same. In this way, since the same CC is monitored at both RRC_IDLE and RRC_CONNECTED, the state transition between RRC_IDLE and RRC_CONNECTED can be executed on the same CC first.
  • a base station may configure a subset with CCs that can be camp-on at the time of RRC_IDLE among CCs to be subjected to carrier aggregation, and the UE may attempt to camp on any one CC in the subset.
  • the control delay time can be reduced, and further, the power consumption of the UE can be reduced.
  • a synchronization signal (Synchronization ⁇ Signal, SS) or PBCH is transmitted from the CC included in the subset. good. By doing so, the UE can select / reselect the CC. In addition, it is not necessary to notify the mobile terminal from the base station which CC of the cell is included in the subset, and the effect of effective use of radio resources can be obtained.
  • SS Synchronization ⁇ Signal
  • information on the subset may be notified from all CCs.
  • the UE can select / reselect a certain CC and receive the broadcast information from the CC to obtain the subset information.
  • the UE re-selects a CC that can be camp-on based on CC information that can be camp-on at the time of RRC_IDLE included in the received subset information, and camps on.
  • the UE can select / reselect CCs included in the subset.
  • the effect that a flexible mobile communication system can be constructed can be obtained.
  • a subset is composed of CCs that can be camp-on at the time of RRC_IDLE among CCs that are subject to carrier aggregation by the base station (cell). May be.
  • the CCs belonging to the same frequency band are considered to have almost the same radio wave propagation environment because the frequencies are close to each other. Therefore, the reception quality in CCs belonging to the same frequency band is considered to be almost the same. Therefore, by providing one representative CC in the frequency band that can be camp-on at the time of RRC_IDLE, the base station (cell) selects / selects only some CCs instead of all CCs that are subject to carrier aggregation. Reselection processing or measurement can be performed.
  • the UE since one CC is provided for each frequency band, a subset composed of the CCs has radio wave propagation characteristics of all frequency bands, so the UE is in the RRC_IDLE state. Sometimes the cell can maintain various radio wave propagation characteristics, and the UE can select a better cell or CC at the time of cell selection / reselection, which can improve the communication quality. It becomes.
  • a subset may be configured by providing one or more CCs that can be camp-on at the time of RRC_IDLE in the frequency band, and the above-described effects can be obtained.
  • a subset by providing CCs that can be camp-on at the time of RRC_IDLE one by one in the frequency band, it is possible to configure a subset having the radio wave propagation characteristics of all frequency bands with the minimum number of CCs. It is possible to have the effect of improving the communication quality while obtaining the effect of reducing the control delay and power consumption by minimizing the number of CCs at the time of reselection.
  • Embodiment 2 The UE in the RRC_IDLE state executes an RA (Random Access) procedure with the base station (cell) in order to shift to the RRC_CONNECTED state first when it becomes necessary to transmit / receive data to / from the network.
  • the RA procedure is used to connect a random access channel.
  • Fig. 17 shows the sequence diagram of RA procedure.
  • the UE in the RRC_IDLE state transmits information (identifier) for identifying its own UE to the random access preamble to the base station (cell) (eNB) and transmits it (1701).
  • This random access preamble is also called a message (Msg) 1.
  • the eNB that has received Msg1 sends a random access response including the UE identification information and uplink radio resource scheduling information (uplink grant, UL grant) on the PDCCH to which the random access identifier (RA-RNTI) is applied. Transmit (1702).
  • This signal is also called Msg2.
  • the UE that has detected Msg2 by receiving a downlink signal from the eNB and detecting (also referred to as blind detection) using a random access identifier (RA-RNTI) on the PDCCH, It is determined whether or not it is addressed to the own UE by the information for UE identification.
  • RA-RNTI random access identifier
  • the UE transmits a message according to the uplink scheduling information received by Msg2 (1703). This signal is also called Msg3. At this time, the UE also transmits its own UE identifier (C-RNTI) or contention resolution identification information (identifier).
  • C-RNTI own UE identifier
  • identifier contention resolution identification information
  • the eNB that has received Msg3 transmits information including identification information for contention resolution and uplink radio resource scheduling information (uplink grant, UL grant) on the PDCCH to which the UE identifier (C-RNTI) is applied. Transmit (1704). This signal is also called Msg4.
  • the UE receives the downlink signal from the eNB, and performs detection (also called blind detection) using its own identifier (C-RNTI) on the PDCCH, thereby recognizing that it is Msg4 addressed to itself. , Receive uplink scheduling information addressed to the own UE included in Msg4, and transmit uplink data according to the scheduling.
  • detection also called blind detection
  • C-RNTI own identifier
  • This transmission / reception from Msg1 to Msg4 is called an RA procedure.
  • the UE may transmit an RRC CONNECTION REQUEST message to the eNB.
  • the eNB that has received the message may transmit an RRC CONNECTION SETUP message to the UE in the Msg4.
  • the UE that has received the message transmits an RRC CONNECTION SETUP COMPLETE message to the eNB according to the uplink scheduling information received in Msg4, and shifts to the RRC_CONNECTED state.
  • the UE can transition from the RRC_IDLE state to the RRC_CONNECTED state. However, there are cases in which failure occurs during the RA procedure.
  • the UE If it fails in the middle of the RA procedure, it is determined that RLF (Radio Link Failure) has been detected, and the UE stores the carrier frequency and cell parameters of the previously detected cell in order to search for a cell to camp on again. Then, a cell is searched from the stored information by the carrier frequency and cell parameter to select a cell. As a result, when a cell to be camp-on is not found yet, a cell is searched with all possible carrier frequencies of the system, and initial cell selection is executed.
  • RLF Radio Link Failure
  • the UE in the RRC_IDLE state is camping on one CC of the base station (cell) corresponding to the aggregation, starts the RA procedure with the base station (cell) using the CC, and in the middle of the RA procedure Think about the failure.
  • the base station (cell) has a plurality of CCs and is likely to be able to camp on other CCs, but is stored in the UE. If a different cell is searched and selected, a situation occurs in which it is impossible to camp on another CC in the same base station (cell). Further, in this case, the UE must perform a cell search to perform cell selection / reselection processing, which causes a problem that the control delay time increases and the power consumption of the UE increases.
  • a new and effective method is required in determining the cell and downlink CC in which the UE camps on.
  • the UE is any one of CCs except for the CC that failed the RA procedure of the base station (cell) that was camping on when the RA procedure was started.
  • the UE is any one of CCs except for the CC that failed the RA procedure of the base station (cell) that was camping on when the RA procedure was started.
  • the CC that failed the RA procedure Try to camp on.
  • the UE can camp on any one of the CCs except the CC that failed the RA procedure. The case of trying to turn on will be described.
  • FIG. 21 shows a conceptual diagram when camping on any one of the CCs excluding the CC that failed the RA procedure.
  • (A) shows a CC that is camping on at the start of the RA procedure in the RRC_IDLE state
  • the same reference numerals as those in FIG. 13 denote the same or corresponding parts, and the description of the same reference numerals will be omitted.
  • the base station (cell) (1303) supports carrier aggregation, and the UE (1311) that has selected the cell 1303 is camping on CC # 3 (1306) in the RRC_IDLE state.
  • the UE starts the RA procedure.
  • CC # 1 (1304), CC # 3 (1306), CC # 4 (1307), and CC # 6 (1309) are CCs that can camp on at the time of RRC_IDLE.
  • the UE camps on any one of the CCs that can camp on at the time of RRC_IDLE, excluding the CC that failed the RA procedure. Try.
  • CC # 1 (1304)
  • CC # 3 (1304)
  • CC # 4 (113)
  • CC # 6 (1139)
  • CC # 3 (1306) that failed during the RA procedure
  • CC # 4 (1307).
  • FIG. 25 shows a sequence example when the RA procedure fails.
  • the UE in the RRC_IDLE state performs a cell or / and CC (downlink CC) search in ST2501, and camps on one CC (downlink CC) of one cell in ST2502.
  • a UE that camps on a certain CC performs an RA procedure with a base station (cell) (eNB) using the CC (a downlink CC and an uplink CC as a pair band) in ST2503.
  • eNB base station
  • Msg1 to Msg4 shown in FIG. 17 is performed.
  • the UE that has executed the RA procedure determines whether the RA procedure has succeeded or failed.
  • an RRC connection has been established between the UE and the eNB, and therefore enters the state of RRC_CONNECTED. Since the RRC connection is established, in ST2505, the UE can transmit and receive data between the base station (cell) and the core network.
  • the process proceeds to ST2506, and a process of determining a cell and CC that attempt to camp on again is performed.
  • the UE performs camp-on again in ST2502 on the cell and CC selected by the determination process.
  • the base station (cell) that was camping on at the start of the RA procedure may try to camp on any one of the CCs that can camp on at the RRC_IDLE except the CC that failed the RA procedure. To do. It is possible to camp on the selected CC of the cell selected in ST2506 when the RA procedure fails. Therefore, since it is not necessary to perform cell search, cell selection / reselection processing, or search of all CCs and CC selection / reselection processing that occur when camp-on cannot be performed, control delay time can be reduced. In addition, the power consumption of the UE can be reduced.
  • FIG. 26 shows a specific example of a flowchart of a method for determining a cell and CC for attempting camp-on according to the present invention.
  • the UE receives parameters used for each CC reselection. These parameters may be included in the system information of the CC camped on in ST2502 shown in FIG. 25 and notified from the base station (cell) to the UE.
  • the base station (cell) may be a parameter used for each CC reselection of all CCs to which it corresponds.
  • the UE can execute the processing of ST2506.
  • parameters used for each CC reselection can be the same as the parameters used for each CC reselection disclosed in the first embodiment. For example, it is a threshold value of received power for determining whether or not to reselect CC. Since the parameters have been described in the first embodiment, description thereof is omitted here. Moreover, you may provide separately the parameter used for each CC reselection used in Embodiment 1, and the parameter used for each CC reselection used in this Embodiment. This makes it possible to set the parameter according to the situation (from RRC_CONNECTED to RRC_IDLE, RA procedure failure, etc.), and flexible UE access control can be performed. For this reason, it is possible to improve the throughput of the system.
  • the UE selects the cell that was present when the RA procedure was started.
  • CCs that can be camp-on at the time of RRC_IDLE of the cell CCs that have not yet attempted camp-on in this procedure (ST2506) exist except for CCs that failed the RA procedure. It is determined whether or not. If there is a CC that has not attempted camp-on, in ST 2604, the UE selects one of the CCs that has not attempted camp-on, and in ST 2605, attempts to camp on the selected CC. In ST2605 (or ST2606 may be used), the UE measures the reception level (RSRP or the like) of the CC that attempted to camp on.
  • RSRP reception level
  • the UE determines whether or not to reselect CC. Further, as a specific example of determining whether or not to perform CC reselection, when the measured reception level of the CC is larger than the parameter (S_intrasearch), it is determined that CC reselection is not further performed. If it is determined that CC reselection is not performed, the UE moves to ST2607 and camps on the selected CC. When the reception level of the CC measured in ST2606 is equal to or less than the parameter (S_intrasearch), it is determined that CC reselection is performed, and the UE moves to ST2603 and tries to camp on again in this procedure (ST2506).
  • S_intrasearch the parameter
  • the process proceeds to ST2604 and the above-described processing is performed. If there is no CC that has not attempted to camp on, the mobile terminal makes a transition to ST2608 and performs a process of searching for another cell or / and CC and reselecting another cell or / and CC.
  • the other cell or / and CC search and the other cell or / and CC reselection process may use the method disclosed in FIG. After a search and reselection process of another cell or / and CC in ST2608, the UE camps on the selected cell or / and CC in ST2609.
  • ST2607 and ST2609 correspond to ST2502 shown in FIG.
  • the UE excludes CCs that have failed in the RA procedure from among the CCs that can camp on at the RRC_IDLE of the base station (cell) that has executed the RA procedure. Try to camp on any one of the CCs.
  • the possibility of camping on the CC increases. This is because the reception level of the CC is likely to be higher than the reselection threshold (S_intrasearch) in the determination process of ST2606.
  • CCs used by the same base station (cell) are often operated so that the area coverage in each CC is substantially the same.
  • the UE can avoid a failure caused by some factor in the downlink CC and / or the uplink CC by excluding the CC that failed the RA procedure as a CC that attempts to camp on after failing the RA procedure. That is, it is possible to prevent a failure during the RA procedure from occurring when the RA procedure is performed again with a newly camp-on CC. Therefore, the delay time of the transition control to the RRC_CONNECTED state is reduced, the power consumption of the UE is reduced, the contention of the RA procedure with another UE is reduced, the signaling capacity as a system is reduced, and the interference to other cells and other UEs Can be suppressed.
  • the UE can select any one of the CCs except the CC that failed the RA procedure from among the CCs that can camp on at the RRC_IDLE of the base station (cell) that was camping on at the start of the RA procedure.
  • the CC By trying to camp on the CC, it is possible to camp on reliably, so the carrier frequency and cell parameters of the previously detected cell are stored, and the carry frequency is determined from the stored information.
  • a process of searching for a cell by cell parameters and performing cell selection is not required. For this reason, the control delay time can be reduced, and further, the power consumption of the UE can be reduced.
  • the downlink CC number (#n) and the uplink CC number (#n) corresponding to the CC number (#n) are the same.
  • the present invention is not limited to this, and the downlink CC number, Corresponding uplink CC numbers (which are pair bands) may be different, and the method disclosed in this embodiment can be applied.
  • Any one CC described above may be a CC having PBCH.
  • the UE when the UE camps on the CC, the UE can receive broadcast information newly transmitted by the PBCH.
  • the broadcast information is changed due to a change in the cell configuration or the like, since the UE can receive new broadcast information, it is possible to eliminate a communication abnormality due to a mismatch in the cell configuration, etc. It becomes possible to supply.
  • Any one CC described above may be a CC having an SS.
  • the UE can newly re-synchronize when it camps on the CC. Thereby, it becomes possible to camp on the CC reliably even when the period during which the UE has not received data is long due to the DRX operation.
  • the UE attempts to camp on any one of the CCs belonging to the same frequency band as the CC at the start of the RA procedure among the CCs excluding the CC at the time of the RA procedure failure. You may do it.
  • CCs belonging to the same frequency band In CCs belonging to the same frequency band, the radio wave propagation environment is considered to be almost the same because the frequencies are close to each other. Therefore, the reception quality in CCs belonging to the same frequency band is considered to be almost the same. Also, the area coverage of CCs belonging to the same frequency band is considered to be almost the same.
  • a base station (cell) disclosed in the first modification 3 configures a subset with CCs that can be camp-on at the time of RRC_IDLE among CCs targeted for carrier aggregation, and the UE You may make it try camping on any one of the CCs.
  • a subset is composed of CCs that can be camp-on at the time of RRC_IDLE among CCs to be subjected to carrier aggregation by the base station (cell).
  • a subset may be configured by providing one CC in each frequency band.
  • Msg1 to Msg4 are performed on one downlink CC and one uplink CC corresponding to it (pair band) in the RA procedure.
  • Msg1 and Msg3 are performed on the uplink CC # 3 corresponding to the downlink CC # 3
  • Msg2 and Msg4 are performed on the downlink CC # 3.
  • the downlink CC number and the corresponding uplink CC number may be different.
  • the RA procedure in the aggregation-compatible base station (cell) may be performed on a plurality of uplink CCs and a plurality of downlink CCs instead of being performed only on one downlink CC and uplink CC.
  • Msg1 is transmitted by UL CC # 3 corresponding to downlink CC # 3 where the UE is camping on.
  • the eNB that has received Msg1 transmits Msg2 using downlink CC # 3.
  • the scheduling information for Msg3 put on Msg2 is transmitted including information indicating that uplink CC # 4 is allocated.
  • the UE that has received Msg2 transmits Msg3 using uplink CC # 4 based on the scheduling information.
  • the eNB that has received Msg3 transmits Msg4 using downlink CC # 4.
  • the RA procedure may be performed on a plurality of uplink CCs and a plurality of downlink CCs.
  • the eNB can perform flexible control in consideration of the radio wave propagation environment of each CC and the load status of each CC, and can improve the throughput of the RA procedure and thus the throughput of the entire cell.
  • the base station may use a pair band with the uplink CC used for transmission of Msg1 transmitted from the mobile terminal before the message for transmission of Msg2.
  • the base station may use a pair band with the uplink CC used for transmission of Msg1 transmitted from the mobile terminal before the message for transmission of Msg2.
  • the CC that camps on when the RA procedure fails is disclosed in this embodiment, and the UE can camp on at the time of RRC_IDLE of the base station (cell) that was camping on at the start of the RA procedure.
  • a method of trying to camp on any one of the CCs excluding the CC that failed the RA procedure among the CCs can be applied.
  • CCs for which the RA procedure has failed one or a plurality of downlink CCs used until the RA procedure fails and one or a plurality of uplink CCs used until the RA procedure fails (downlink CCs corresponding to a pair band) And these CCs may be used.
  • the UE that failed to receive Msg4 and failed in the RA procedure is a CC excluding downlink CC # 3 and downlink CC # 4 corresponding to uplink CC # 4, and camp-on at RRC_IDLE. Try camp-on on any one of the possible CCs (CC # 1 or CC # 6).
  • the base station can perform flexible CC scheduling control, and further, can reduce control delay time and power consumption of the UE.
  • the UE can select any one of the CCs that can camp on at the time of RRC_IDLE of the base station (cell) that was camped on at the start of the RA procedure, except the CC that failed the RA procedure.
  • the RA procedure may not be excluded from CCs that have failed. That is, the UE may try to camp on any one of the CCs that can camp on at the time of RRC_IDLE of the base station (cell) that was camping on at the start of the RA procedure.
  • UE performs RA procedure after camping on a certain downlink CC. That is, it can be said that the reception quality of the downlink CC is good. Therefore, it is considered that failure in the RA procedure occurs mainly in the upstream. Then, UE is good also as a method of trying camp-on to any one CC among CC which can be camp-on at the time of RRC_IDLE of the base station (cell) which was camping on at the time of RA procedure start. By doing so, the UE can camp on the CC even if the CC that attempted to camp on was the CC that was camping on when the RA procedure failed.
  • the radio wave propagation situation of the uplink CC changes, and when performing the RA procedure, it is considered that the radio wave propagation environment of the uplink CC becomes favorable and the RA procedure may be successful.
  • the camp-on when the RA procedure fails it becomes possible to reduce the control delay time at the time of the camp-on and the power consumption of the UE. Then, it becomes possible to perform subsequent RA procedures.
  • Msg1 or / And Msg3 may be performed in the uplink CC different from the uplink CC used for Msg1 and / or Msg3 when the RA procedure fails.
  • Msg1 or / And Msg3 may be performed in the uplink CC different from the uplink CC used for the failed Msg1 and / or Msg3 is used.
  • the radio wave propagation environment in communication is improved, and the possibility that the RA procedure can be reliably executed can be increased.
  • the method disclosed in the second embodiment may be used as any one of the CCs that can be camp-on at the time of RRC_IDLE.
  • camp-on may be attempted for the anchor carrier disclosed in the first modification 3 of the first embodiment. Since the system information is reported from the anchor carrier, the system information is not obtained after the camp-on, and the process of reselecting / selecting another CC is not entered. Accordingly, it is possible to reduce the control delay time and the power consumption of the UE.
  • Embodiment 3 In 3GPP, an operation in which a downlink CC and an uplink CC are asymmetric when a carrier aggregation is performed in a base station (cell) that supports carrier aggregation is being studied. In such a case, it is considered that the UE that camps on one of the plurality of downlink CCs executes the RA procedure on the corresponding one uplink CC.
  • FIG. 18 shows an example of downlink CC / uplink CC asymmetric operation at the time of carrier aggregation.
  • Reference numeral 1801 denotes a cell that supports carrier aggregation.
  • downlink CC and uplink CC are shown separately.
  • Reference numerals 1802 to 1808 denote downlink CCs that perform carrier aggregation, and are sequentially referred to as CC # 1 to CC # 7.
  • the horizontal axis indicates the downstream frequency.
  • Reference numerals 1809 to 1812 denote uplink CCs for performing carrier aggregation, which are sequentially designated CC # A to CC # D.
  • the horizontal axis indicates the uplink frequency.
  • Reference numeral 1813 denotes a UE.
  • the uplink CC corresponding to downlink CC # 1 and downlink CC # 2 is uplink CC #A
  • the uplink CC corresponding to downlink CC # 3 is uplink CC #B
  • the uplink CC corresponding to downlink CC # 4 is uplink
  • An uplink CC corresponding to CC #C and corresponding to downlink CC # 5, downlink CC # 6, and downlink CC # 7 is uplink CC #D.
  • Downlink CC # 1, downlink CC # 2 and uplink CC # A corresponding to them are asymmetrical.
  • downlink CC # 5, downlink CC # 6, downlink CC # 7, and uplink CC # D corresponding to them are asymmetrical operations.
  • one uplink CC corresponds to one or a plurality of downlink CCs (becomes a pair band).
  • the uplink signaling Msg1 and Msg3 correspond to the downlink CC with respect to one or a plurality of downlink CCs.
  • one uplink CC that performs it is transmitted from the UE to the eNB using radio resources.
  • the UE camping on the downlink CC # 1 transmits Msg1 and Msg3 using the radio resource (RB # 1 (1814)) of the uplink CC # A.
  • the UE camping on the downlink CC # 2 transmits Msg1 and Msg3 using the radio resource (RB # 2 (1815)) of the uplink CC #A.
  • Msg1 and Msg3 are multiplexed for each UE on the uplink CC # A.
  • Msg2 and Msg4 are transmitted from the eNB to the UE on the downlink CC # 1 for the UE camping on the downlink CC # 1 and on the downlink CC # 2 for the UE camping on the downlink CC # 2, respectively.
  • the In transmission of Msg1 and Msg3, time division multiplexing, frequency division multiplexing, code division multiplexing, and the like are conceivable as multiplexing methods for each UE on the uplink CC # A.
  • a new effective method is required for determining a cell where the UE camps on when the RA procedure fails.
  • the method disclosed in the second embodiment may be applied.
  • the UE is a CC that excludes CCs that failed the RA procedure from among CCs that can be camped on at the RRC_IDLE of the base station (cell) that was camping on at the start of the RA procedure. Try to camp on any one of the CCs.
  • the UE (1813) camps on the downlink CC # 2 (1803).
  • Downlink CC # 1 (1802), downlink CC # 2 (1803) and the corresponding uplink CC # A (1809) are asymmetrical operations.
  • the UE executes the RA procedure, in the radio resource (RB # 2 (1815)) of the uplink CC # A (1809) corresponding to the downlink CC # 2 (1803) that is camping on, the UE is a base station (cell ) Msg1 is transmitted.
  • Msg2 to Msg4 are communicated between the UE (1813) and the base station (cell) (1801) by the downlink CC # 2 (1803) and the corresponding uplink CC # A (1815). If the UE receives Msg4, the RA procedure is successful. However, if the RA procedure (Msg1 to Mag4) fails in the middle of the RA procedure, the UE can download a downlink CC (for example, downlink CC) that can be camp-on at the time of RRC_IDLE of the base station (cell) (1801) that was camping on at the start of the RA procedure.
  • a downlink CC for example, downlink CC
  • downlink CC # 1 (1802) to downlink CC # 7 (1808) attempts to camp on any one of the downlink CCs except the downlink CC # 2 (1803) that failed the RA procedure.
  • downlink CC # 1 (1802) and downlink CC # 3 (1804) to downlink CC # 7 (1808) correspond.
  • the UE attempts to camp on downlink CC # 1 (1802). Since the CC is in the same cell as the base station (cell) (1801) selected when executing the RA procedure, it is determined that the UE is likely to camp on CC # 1 (1802). Therefore, the UE camps on the downlink CC # 1 (1802) when the RA procedure fails.
  • the UE uses Msg1 as a base station (cell) (cell) (in radio resources (RB # 1 (1814)) of uplink CC # A (1809) corresponding to downlink CC # 1 (1802). 1801). Since the UE has failed the RA procedure in uplink CC # A (1809), there is a high possibility that this transmission will also fail. Furthermore, even if the base station (cell) has successfully received Msg1, the UE also receives Msg3 after receiving Mag2 in the uplink CC # A (1809) corresponding to downlink CC # 1 (1802). ) Must be sent to. Since the RA procedure has failed in the uplink CC # A (1809), there is a high possibility that this transmission will also fail. Thus, the possibility of failure in the middle of another RA procedure becomes higher.
  • the UE that has failed the RA procedure again must search for a CC to camp on again according to the method disclosed in the second embodiment. Since camping on CC # 1 (1802) has been performed once, when the RA procedure fails again, there is a case where camping on CC # 2 (1803) is attempted again. In such a case, when performing another RA procedure, the uplink CC # A (1809) is used. Therefore, there is a high possibility that this RA procedure also fails. Further, when the number of downlink CCs corresponding to the uplink CCs becomes large, the possibility that the failure of the RA procedure is repeated increases.
  • the UE has failed in the RA procedure among the CCs that can be camp-on at the time of RRC_IDLE of the base station (cell) that was camp-on at the start of the RA procedure. Camp-on is attempted to any one of the CCs excluding the downlink CC corresponding to the CC.
  • FIG. 22 shows a conceptual diagram of a CC that camps on when an RA procedure fails in downlink CC / uplink CC asymmetric operation.
  • the same reference numerals as those in FIG. 18 indicate the same or corresponding parts, and the description of the same reference numerals will be omitted.
  • the UE (1813) camps on the downlink CC # 2 (1803).
  • the UE transmits Msg1 to the base station (cell), and Msg2 to Msg4 Communication is performed between the UE and the base station (cell) by downlink CC # 2 (1803) and uplink CC # A (1809) corresponding thereto.
  • the RA procedure Msg1 to Mag4 fails in the middle of the procedure, as shown in FIG.
  • the UE can download a downlink CC that can be camp-on at the time of RRC_IDLE of the base station (cell) (1801) that has been camp-on at the start of the RA procedure.
  • downlink CCs # 1 (1802) to downlink CCs # 7 (1808) for example, corresponding to downlink CC # 2 (1803) that failed in the RA procedure, and uplink CC #A (1809)
  • the camp-on is attempted on any one of the downlink CCs other than the CCs excluding the downlink CC # 1 (1802) here.
  • downlink CC # 3 (1804) to downlink CC # 7 (1808) correspond.
  • the UE Since it is a CC in the same cell as the base station (cell) (1801) selected when executing the RA procedure, there is a high possibility that the UE can camp on CC # 3 (1804). Therefore, the UE can reliably execute camp-on when the RA procedure fails.
  • the delay time of the transition control to the RRC_CONNECTED state is reduced, the power consumption of the UE is reduced, the contention of the RA procedure with another UE is reduced, the signaling capacity as a system is reduced, and the interference to other cells and other UEs Can be suppressed.
  • the RA procedure execution permission limit time is set by a timer or the like, when the RA procedure is repeated for a long time and the timer is exceeded, communication between the UE and the base station (cell) and the network becomes impossible. However, this situation can be avoided. Therefore, the throughput of the base station or the entire system can be improved.
  • the sequence example when the RA procedure fails may be the same as in FIG.
  • the determination method of the cell and CC to attempt camp on is as follows.
  • ST2603 in FIG. 26 is a downlink CC excluding the downlink CC corresponding to the uplink CC that can camp on at the time of RRC_IDLE and the RA procedure failed.
  • a change may be made so as to determine whether there is a downlink CC that has not attempted camp-on.
  • the CCs of ST2601, ST2604 to ST2609 may be changed to downlink CCs.
  • the UE needs information on which downlink CC corresponds to the uplink CC that failed the RA procedure.
  • Information about which downlink CC corresponds to the uplink CC may be reported from the base station (cell) to the UE as system information.
  • the UE may receive the system information broadcasted on the downlink CC that first camps on the base station (cell).
  • the method disclosed in the second embodiment may be used as any one of the CCs that can be camp-on at the time of RRC_IDLE.
  • camp-on may be attempted for the anchor carrier disclosed in the first modification 3 of the first embodiment. Since the system information is reported from the anchor carrier, the system information is not obtained after the camp-on, and the process of reselecting / selecting another CC is not entered. Accordingly, it is possible to reduce the control delay time and the power consumption of the UE.
  • a subset is composed of CCs that can be camp-on at the time of RRC_IDLE among CCs to be subjected to carrier aggregation by the base station (cell). It was shown that a subset may be configured by providing one for each frequency band.
  • a subset may be configured by providing one CC that can be camp-on from one or a plurality of downlink CCs corresponding to the uplink CC of the base station (cell).
  • a cell attempting to camp on can be selected from the downlink CC in the subset, so that it is possible to reduce the control delay time and the power consumption of the UE.
  • the UE receives the downlink CC information corresponding to the uplink CC at the time of RA procedure failure (paired band) by the broadcast information of the downlink CC of the base station (cell) that first camps on the UE. It was decided.
  • the UE stores uplink CC information at the time of RA procedure execution, and when the RA procedure fails, once selects one of the downlink CCs that can be camp-on at the time of RRC_IDLE, and then selects the downlink CC.
  • To receive corresponding uplink CC information If the uplink CC information is the same as the stored uplink CC information at the time of RA procedure failure, another downlink CC is selected and the corresponding uplink CC information is obtained by receiving the downlink CC broadcast information again. . If the uplink CC information is different from the stored uplink CC information at the time of RA procedure failure, camp on is performed on the downlink CC.
  • the effect of reducing the amount of information broadcast from each CC can be obtained.
  • the base station (cell) that was camping on at the time of executing the RA procedure may be configured to try camping on another cell.
  • the base station (cell) that was camping on when performing the RA procedure is linked to all the same uplink CCs that can be camped on at the time of RRC_IDLE, try to camp on another cell. It ’s good if you keep it.
  • the case of asymmetric operation in which one uplink CC corresponds to one or a plurality of downlink CCs (becomes a pair band) has been described.
  • the method disclosed in the present embodiment is not limited to this, and can also be applied to the case of asymmetric operation in which one or a plurality of uplink CCs correspond to one downlink CC (becomes a pair band).
  • the RA procedure fails, the uplink CC and the pair band that have failed the RA procedure, Try to camp on the downstream CC. This makes it possible to ensure camp-on.
  • the UE performs the RA procedure after camping on a certain downlink CC. That is, it can be said that the reception quality of the downlink CC is good. Therefore, the failure in the RA procedure is considered to occur mainly in the upstream.
  • the RA procedure is executed again, the RA procedure is executed on any one of the CCs on the uplink CC that has not failed the RA procedure among the uplink CCs paired with the camp-on downlink CC. Just keep it. As a result, it is possible to avoid the occurrence of repeated RA procedure failures, and to obtain the same effect as in the present embodiment.
  • the present invention is not limited to this, as long as message transmission / reception is performed using the downlink CC and the uplink CC.
  • the methods disclosed in Embodiment 2 and Embodiment 3 can be applied.
  • the CC that the UE camps on at the time of RRC_IDLE is one, but the UE may camp on a plurality of CCs simultaneously.
  • a plurality of CCs may be used instead of any one CC.
  • the present invention can be applied and the same effect can be obtained.
  • the RA procedure when transitioning to RRC_CONNECTED is performed on any one of the multiple CCs on which the UE is camping on. good. Since the UE can select a CC with good reception quality, it is possible to reduce failures during the RA procedure.
  • the LTE system E-UTRAN
  • LTE advanced LTE-Advanced
  • W-CDMA W-CDMA system

Abstract

In the provided mobile communication system, a base station uses a plurality of partial carriers individually, or uses an aggregate carrier that aggregates a plurality of partial carriers, to communicate wirelessly with a partial-carrier-compliant mobile terminal or an aggregate-carrier-compliant mobile terminal. In particular, when the base station uses an aggregate carrier to wirelessly communicate with an aggregate-carrier-compliant mobile terminal, the mobile terminal camps on one of the partial carriers included in the aggregate carrier. This allows communication speed to be increased via support of aggregate carriers, while at the same time allowing efficient camping on partial carriers included in aggregate carriers.

Description

移動体通信システムMobile communication system
 本発明は、複数の移動端末と基地局との間で無線通信を実施する移動体通信システムに関するものである。 The present invention relates to a mobile communication system that performs wireless communication between a plurality of mobile terminals and a base station.
 第3世代と呼ばれる通信方式のうち、W-CDMA(Wideband Code division Multiple Access)方式が2001年から日本で商用サービスが開始されている。また、下りリンク(個別データチャネル、個別制御チャネル)にパケット伝送用のチャネル(HS-DSCH: High Speed-Downlink Shared Channel)を追加することにより、下りリンクを用いたデータ送信の更なる高速化を実現するHSDPA(High Speed Down Link Packet Access)のサービスが開始されている。さらに、上り方向のデータ送信をさらに高速化するためHSUPA(High Speed Up Link Packet Access)方式についてもサービスが開始されている。W-CDMAは、移動体通信システムの規格化団体である3GPP(3rd Generation Partnership Project)により定められた通信方式であり、リリース8版の規格書がとりまとめられている。 Among the communication systems called third generation, the W-CDMA (Wideband Code Division Multiple Access) system has been commercialized in Japan since 2001. Also, by adding a packet transmission channel (HS-DSCH: High Speed-Downlink Shared Channel) to the downlink (individual data channel, individual control channel), data transmission using the downlink is further accelerated. Realized HSDPA (High Speed Down Link Link Packet Access) services have been started. Furthermore, in order to further increase the speed of data transmission in the uplink direction, a service has also been started for the HSUPA (High Speed Up Link Link Packet Access) system. W-CDMA is a communication system defined by 3GPP (3rd Generation Partnership Project), which is a standardization organization for mobile communication systems, and standardized release 8 editions are compiled.
 また、3GPPにおいて、W-CDMAとは別の通信方式として、無線区間については「ロングタームエボリューション」(Long Term Evolution LTE)、コアネットワーク(単にネットワークとも称する)を含めたシステム全体構成については「システムアーキテクチャエボリューション」(System Architecture Evolution SAE)と称される新たな通信方式が検討されている。LTEでは、アクセス方式、無線のチャネル構成やプロトコルが、現在のW-CDMA(HSDPA/HSUPA)とは全く異なるものになる。たとえば、アクセス方式は、W-CDMAが符号分割多元接続(Code Division Multiple Access)を用いているのに対して、LTEは下り方向はOFDM(Orthogonal Frequency Division Multiplexing )、上り方向はSC-FDMA(Single Career Frequency Division Multiple Access)を用いる。また、帯域幅は、W-CDMAが5MHzであるのに対し、LTEでは1.4/3/5/10/15/20MHzの中で基地局ごとに選択可能となっている。また、LTEでは、W-CDMAのように回線交換を含まず、パケット通信方式のみになる。 In 3GPP, as a communication method different from W-CDMA, “Long Term Evolution” (Long Term Evolution LTE) is used for the radio section, and the entire system configuration including the core network (also simply referred to as network) is “System”. A new communication method called “Architecture Evolution (SAE)” is being studied. In LTE, the access scheme, radio channel configuration, and protocol are completely different from those of the current W-CDMA (HSDPA / HSUPA). For example, W-CDMA uses code division multiple access (Code Division Multiple Access), whereas LTE has OFDM (Orthogonal Frequency Division Multiplexing) in the downlink direction and SC-FDMA (Single in the uplink direction). Career Frequency Division Multiple Access). The bandwidth is selectable for each base station within 1.4 / 3/5/10/15/20 MHz in LTE, whereas W-CDMA is 5 MHz. Also, LTE does not include circuit switching as in W-CDMA, and only packet communication is used.
 LTEはW-CDMAのコアネットワーク(GPRS)とは異なる新たなコアネットワークを用いて通信システムが構成されるため、W-CDMA網とは別の独立した無線アクセス網として定義される。したがって、W-CDMAの通信システムと区別するため、LTEの通信システムでは、移動端末(UE: User Equipment)と通信を行う基地局(Base station)はeNB(E-UTRAN NodeB)、複数の基地局と制御データやユーザデータのやり取りを行う基地局制御装置(Radio Network Controller)はEPC(Evolved Packet Core)(aGW:Access Gatewayと称されることもある)と称される。このLTEの通信システムでは、ユニキャスト(Unicast)サービスとE-MBMSサービス(Evolved Multimedia Broadcast Multicast Service)が提供される。E-MBMSサービスとは、放送型マルチメディアサービスであり、単にMBMSと称される場合もある。複数の移動端末に対してニュースや天気予報や、モバイル放送など大容量放送コンテンツが送信される。これを1対多(Point to Multipoint)サービスともいう。 LTE is defined as an independent radio access network separate from the W-CDMA network because the communication system is configured using a new core network different from the W-CDMA core network (GPRS). Therefore, in order to distinguish from a W-CDMA communication system, in an LTE communication system, a base station (Base station) that communicates with a mobile terminal (UE: User Equipment) is an eNB (E-UTRAN NodeB), and a plurality of base stations A base station controller (Radio Network Controller) that exchanges control data and user data is referred to as EPC (Evolved Packet Core) (sometimes referred to as aGW: Access Gateway). In the LTE communication system, a unicast service and an E-MBMS service (Evolved Multimedia Broadcast Multicast Service) are provided. The E-MBMS service is a broadcast-type multimedia service and may be simply referred to as MBMS. Mass broadcast contents such as news, weather forecasts, and mobile broadcasts are transmitted to a plurality of mobile terminals. This is also called a point-to-multipoint service.
 3GPPでの、LTEシステムにおける全体的なアーキテクチャ(Architecture)に関する現在の決定事項が、非特許文献1に記載されている。全体的なアーキテクチャ(非特許文献1 4章)について図1を用いて説明する。図1は、LTE方式の通信システムの構成を示す説明図である。図1において、移動端末101に対する制御プロトコル(例えばRRC(Radio Resource Management))とユーザプレイン(例えばPDCP: Packet Data Convergence Protocol、RLC: Radio Link Control、MAC: Medium Access Control、PHY: Physical layer)が基地局102で終端するなら、E-UTRAN(Evolved Universal Terrestrial Radio Access)は1つあるいは複数の基地局102によって構成される。
基地局102は、MME103(Mobility Management Entity)から通知されるページング信号(Paging Signaling、ページングメッセージ(paging messages)とも称される)のスケジューリング(Scheduling)及び送信を行う。基地局102はX2インタフェースにより、お互いに接続される。また基地局102は、S1インタフェースによりEPC(Evolved Packet Core)に接続される、より明確にはS1_MMEインタフェースによりMME103(Mobility Management Entity)に接続され、S1_UインタフェースによりS-GW104(Serving Gateway)に接続される。MME103は、複数あるいは単数の基地局102へのページング信号の分配を行う。また、MME103は待受け状態(Idle State)のモビリティ制御(Mobility control)を行う。MME103は移動端末が待ち受け状態及び、アクティブ状態(Active State)の際に、トラッキングエリア(Tracking Area)リストの管理を行う。S-GW104はひとつまたは複数の基地局102とユーザデータの送受信を行う。S-GW104は基地局間のハンドオーバの際、ローカルな移動性のアンカーポイント(Mobility Anchor Point)となる。更にP-GW(PDN Gateway)が存在し、ユーザ毎のパケットフィルタリングやUE-IDアドレスの割当などを行う。
Non-Patent Document 1 describes the current decisions regarding the overall architecture of the LTE system in 3GPP. The overall architecture (Chapter 4 of Non-Patent Document 1) will be described with reference to FIG. FIG. 1 is an explanatory diagram illustrating a configuration of an LTE communication system. In FIG. 1, a control protocol (for example, RRC (Radio Resource Management)) and a user plane (for example, PDCP: Packet Data Convergence Protocol, RLC: Radio Link Control, MAC: Medium Access Control, PHY: Physical layer) for the mobile terminal 101 are based. If terminated at station 102, Evolved Universal Terrestrial Radio Access (E-UTRAN) is composed of one or more base stations 102.
The base station 102 performs scheduling (Scheduling) and transmission of a paging signal (also referred to as a paging message or paging message) notified from the MME 103 (Mobility Management Entity). Base stations 102 are connected to each other via an X2 interface. The base station 102 is connected to an EPC (Evolved Packet Core) via an S1 interface, more specifically, connected to an MME 103 (Mobility Management Entity) via an S1_MME interface, and connected to an S-GW 104 (Serving Gateway) via an S1_U interface. The The MME 103 distributes the paging signal to a plurality or a single base station 102. Further, the MME 103 performs mobility control (Mobility control) in an idle state. The MME 103 manages a tracking area list when the mobile terminal is in a standby state and an active state. The S-GW 104 transmits / receives user data to / from one or a plurality of base stations 102. The S-GW 104 becomes a local mobility anchor point at the time of handover between base stations. Further, there is a P-GW (PDN Gateway), which performs packet filtering and UE-ID address allocation for each user.
 移動端末101と基地局102間の制御プロトコルRRCは、報知(Broadcast)、ページング(paging)、RRC接続マネージメント(RRC connection management)などを行う。 The control protocol RRC between the mobile terminal 101 and the base station 102 performs broadcast, paging, RRC connection management (RRC connection management), and the like.
 RRCにおける基地局と移動端末の状態として、RRC_Idle、RRC_CONNECTEDがある。 There are RRC_Idle and RRC_CONNECTED as states of the base station and the mobile terminal in RRC.
 RRC_IDLEでは、PLMN(Public Land Mobile Network)選択、システム情報(System information、SI)の報知、ページング(paging)、セル再選択(cell re-selection)モビリティ等が行われる。 In RRC_IDLE, PLMN (Public Land Mobile Mobile Network) selection, system information (System information, SI) notification, paging, cell re-selection mobility, and the like are performed.
 RRC_CONNECTEDでは、UEはRRC接続(connection)を有し、ネットワークとのデータの送受信を行うことができ、また、ハンドオーバ(Handover、HO)、隣接セル(Neighbour cell)のメジャメント等が行われる。 In RRC_CONNECTED, the UE has an RRC connection (connection), can transmit and receive data to and from the network, and performs handover (Handover, HO), neighbor cell measurement, and the like.
 3GPPでの、LTEシステムにおけるフレーム構成に関する現在の決定事項が、非特許文献1(5章)に記載されている。図2を用いて説明する。図2はLTE方式の通信システムで使用される無線フレームの構成を示す説明図である。図2において、1つの無線フレーム(Radio frame)は10msである。無線フレームは10個の等しい大きさのサブフレーム(Sub-frame)に分割される。サブフレームは、2個の等しい大きさのスロット(slot)に分割される。無線フレーム毎に1番目と6番目のサブフレームに下り同期信号(Downlink Synchronization Signal: SS)が含まれる。同期信号には第一同期信号(Primary Synchronization Signal: P-SS)と第二同期信号(Secondary Synchronization Signal: S-SS)がある。サブフレーム単位にてMBSFN(Multimedia Broadcast multicast service Single Frequency Network)用とMBSFN以外のチャネルの多重が行われる。以降、MBSFN送信用のサブフレームをMBSFNサブフレーム(MBSFN sub-frame)と称する。非特許文献2に、MBSFNサブフレームの割り当て時のシグナリング例が記載されている。図3は、MBSFNフレームの構成を示す説明図である。図3において、MBSFNフレーム(MBSFN frame)毎にMBSFNサブフレームが割り当てられる。MBSFNフレームの集合(MBSFN frame Cluster)がスケジュールされる。MBSFNフレームの集合の繰り返し周期(Repetition Period)が割り当てられる。 Non-Patent Document 1 (Chapter 5) describes the current decisions regarding the frame configuration in the LTE system in 3GPP. This will be described with reference to FIG. FIG. 2 is an explanatory diagram showing a configuration of a radio frame used in the LTE communication system. In FIG. 2, one radio frame (Radio frame) is 10 ms. The radio frame is divided into 10 equally sized sub-frames. The subframe is divided into two equally sized slots. A downlink synchronization signal (Downlink Synchronization Signal: SS) is included in the first and sixth subframes for each radio frame. The synchronization signal includes a first synchronization signal (Primary Synchronization Signal: P-SS) and a second synchronization signal (Secondary Synchronization Signal: S-SS). Channels other than MBSFN (Multimedia (Broadcast multicast service Single Frequency Network) and channels other than MBSFN are performed on a subframe basis. Hereinafter, a subframe for MBSFN transmission is referred to as an MBSFN subframe (MBSFN sub-frame). Non-Patent Document 2 describes a signaling example at the time of MBSFN subframe allocation. FIG. 3 is an explanatory diagram showing the configuration of the MBSFN frame. In FIG. 3, an MBSFN subframe is allocated for each MBSFN frame (MBSFN frame). A set of MBSFN frames (MBSFN frame Cluster) is scheduled. A repetition period (Repetition Period) of a set of MBSFN frames is assigned.
 3GPPでの、LTEシステムにおけるチャネル構成に関する現在の決定事項が、非特許文献1に記載されている。CSG(Closed Subscriber Group cell)セルにおいてもnon-CSGセルと同じチャネル構成が用いられると想定されている。物理チャネル(Physical channel)について(非特許文献1 5章)図4を用いて説明する。図4は、LTE方式の通信システムで使用される物理チャネルを説明する説明図である。図4において、物理報知チャネル401(Physical Broadcast channel: PBCH)は基地局102から移動端末101へ送信される下りチャネルである。BCHトランスポートブロック(transport block)は40ms間隔中の4個のサブフレームにマッピングされる。40msタイミングの明白なシグナリングはない。物理制御チャネルフォーマットインジケータチャネル402(Physical Control format indicator channel: PCFICH)は基地局102から移動端末101へ送信される。PCFICHは、PDCCHsのために用いるOFDMシンボルの数について基地局102から移動端末101へ通知する。PCFICHはサブフレーム毎に送信される。物理下り制御チャネル403(Physical downlink control channel: PDCCH)は基地局102から移動端末101へ送信される下りチャネルである。PDCCHは、リソース割り当て(allocation)、DL-SCH(図5に示されるトランスポートチャネルの1つである下り共有チャネル)に関するHARQ情報、PCH(図5に示されるトランスポートチャネルの1つであるページングチャネル)を通知する。PDCCHは、上りスケジューリンググラント(Uplink Scheduling Grant)を運ぶ。PDCCHは、上り送信に対する応答信号であるACK/Nackを運ぶ。PDCCHはL1/L2制御信号とも呼ばれる。物理下り共有チャネル404(Physical downlink shared channel: PDSCH)は、基地局102から移動端末101へ送信される下りチャネルである。PDSCHはトランスポートチャネルであるDL-SCH(下り共有チャネル)やトランスポートチャネルであるPCHがマッピングされている。物理マルチキャストチャネル405(Physical multicast channel: PMCH)は基地局102から移動端末101へ送信される下りチャネルである。PMCHはトランスポートチャネルであるMCH(マルチキャストチャネル)がマッピングされている。 Non-Patent Document 1 describes the current decisions regarding the channel configuration in the LTE system in 3GPP. It is assumed that the same channel configuration as a non-CSG cell is used in a CSG (Closed 構成 Subscriber-Group cell) cell. A physical channel (Non-Patent Document 1, Chapter 5) will be described with reference to FIG. FIG. 4 is an explanatory diagram illustrating physical channels used in the LTE communication system. In FIG. 4, a physical broadcast channel 401 (PhysicalPhysBroadcast channel: PBCH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. The BCH transport block (transport block) is mapped to four subframes in a 40 ms interval. There is no obvious signaling of 40ms timing. A physical control channel format indicator channel 402 (Physical Control indicator channel: PCFICH) is transmitted from the base station 102 to the mobile terminal 101. PCFICH notifies base station 102 to mobile terminal 101 about the number of OFDM symbols used for PDCCHs. PCFICH is transmitted for each subframe. A physical downlink control channel 403 (Physical downlink control channel: PDCCH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. PDCCH includes resource allocation, HARQ information regarding DL-SCH (downlink shared channel which is one of the transport channels shown in FIG. 5), and PCH (paging which is one of the transport channels shown in FIG. 5). Channel). The PDCCH carries an uplink scheduling grant (Uplink Scheduling Grant). The PDCCH carries ACK / Nack that is a response signal for uplink transmission. PDCCH is also called an L1 / L2 control signal. A physical downlink shared channel 404 (Physical downlink shared channel: PDSCH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. PDSCH is mapped with DL-SCH (downlink shared channel) which is a transport channel and PCH which is a transport channel. A physical multicast channel 405 (Physical multicast channel: PMCH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. PMCH is mapped with MCH (multicast channel) which is a transport channel.
 物理上り制御チャネル406(Physical Uplink control channel: PUCCH)は移動端末101から基地局102へ送信される上りチャネルである。PUCCHは下り送信に対する応答信号(response)であるACK/Nackを運ぶ。PUCCHはCQI(Channel Quality indicator)レポートを運ぶ。CQIとは受信したデータの品質、もしくは通信路品質を示す品質情報である。またPUCCHは、スケジューリングリクエスト(Scheduling Request: SR)を運ぶ。物理上り共有チャネル407(Physical Uplink shared channel: PUSCH)は移動端末101から基地局102へ送信される上りチャネルである。PUSCHはUL-SCH(図5に示されるトランスポートチャネルの1つである上り共有チャネル)がマッピングされている。物理HARQインジケータチャネル408(Physical Hybrid ARQ indicator channel: PHICH)は基地局102から移動端末101へ送信される下りチャネルである。PHICHは上り送信に対する応答であるACK/Nackを運ぶ。物理ランダムアクセスチャネル409(Physical random access channel: PRACH)は移動端末101から基地局102へ送信される上りチャネルである。PRACHはランダムアクセスプリアンブル(random access preamble)を運ぶ。 A physical uplink control channel 406 (Physical Uplink control channel: PUCCH) is an uplink channel transmitted from the mobile terminal 101 to the base station 102. The PUCCH carries ACK / Nack which is a response signal (response) to downlink transmission. The PUCCH carries a CQI (Channel Quality Indicator) report. CQI is quality information indicating the quality of received data or channel quality. The PUCCH carries a scheduling request (Scheduling Request: SR). A physical uplink shared channel 407 (Physical Uplink shared channel: PUSCH) is an uplink channel transmitted from the mobile terminal 101 to the base station 102. PUSCH is mapped with UL-SCH (uplink shared channel which is one of the transport channels shown in FIG. 5). A physical HARQ indicator channel 408 (Physical Hybrid ARQ indicator: PHICH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. The PHICH carries ACK / Nack that is a response to uplink transmission. A physical random access channel 409 (Physical random access channel: PRACH) is an uplink channel transmitted from the mobile terminal 101 to the base station 102. The PRACH carries a random access preamble.
 下りリファレンスシグナル(Reference signal)は、移動体通信システムとして既知のシンボルが、毎スロットの最初、3番目、最後のOFDMシンボルに挿入される。移動端末の物理レイヤの測定として、リファレンスシンボルの受信電力(Reference symbol received power:RSRP)がある。 As a downlink reference signal (Reference signal), a symbol known as a mobile communication system is inserted into the first, third and last OFDM symbols of each slot. As a measurement of the physical layer of the mobile terminal, there is a reference symbol received power (RSRP).
 トランスポートチャネル(Transport channel)について(非特許文献1 5章)図5を用いて説明する。図5は、LTE方式の通信システムで使用されるトランスポートチャネルを説明する説明図である。図5Aには下りトランスポートチャネルと下り物理チャネル間のマッピングを示す。図5Bには上りトランスポートチャネルと上り物理チャネル間のマッピングを示す。下りトランスポートチャネルについて報知チャネル(Broadcast channel: BCH)はその基地局(セル)全体に報知される。BCHは物理報知チャネル(PBCH)にマッピングされる。下り共有チャネル(Downlink Shared channel: DL-SCH)には、HARQ(Hybrid ARQ)による再送制御が適用される。基地局(セル)全体への報知が可能である。ダイナミックあるいは準静的(Semi-static)なリソース割り当てをサポートする。準静的なリソース割り当ては,パーシステントスケジューリング(Persistent Scheduling)とも言われる。移動端末の低消費電力化のために移動端末のDRX(Discontinuous reception)をサポートする。DL-SCHは物理下り共有チャネル(PDSCH)へマッピングされる。ページングチャネル(Paging channel: PCH)は移動端末の低消費電力を可能とするために移動端末のDRXをサポートする。基地局(セル)全体への報知が要求される。動的にトラフィックに利用できる物理下り共有チャネル(PDSCH)のような物理リソース、あるいは他の制御チャネルの物理下り制御チャネル(PDCCH)のような物理リソースへマッピングされる。マルチキャストチャネル(Multicast channel: MCH)は基地局(セル)全体への報知に使用される。マルチセル送信におけるMBMSサービス(MTCHとMCCH)のSFN合成をサポートする。準静的なリソース割り当てをサポートする。MCHはPMCHへマッピングされる。 The transport channel will be described with reference to FIG. 5 (Chapter 5 of Non-Patent Document 1). FIG. 5 is an explanatory diagram for explaining a transport channel used in an LTE communication system. FIG. 5A shows mapping between the downlink transport channel and the downlink physical channel. FIG. 5B shows mapping between the uplink transport channel and the uplink physical channel. As for the downlink transport channel, a broadcast channel (Broadcast channel: BCH) is broadcast to the entire base station (cell). BCH is mapped to the physical broadcast channel (PBCH). Retransmission control by HARQ (Hybrid ARQ) is applied to the downlink shared channel (Downlink Shared channel: DL-SCH). Broadcasting to the entire base station (cell) is possible. Supports dynamic or semi-static resource allocation. Quasi-static resource allocation is also called Persistent Scheduling. In order to reduce the power consumption of the mobile terminal, DRX (Discontinuous reception) of the mobile terminal is supported. The DL-SCH is mapped to the physical downlink shared channel (PDSCH). A paging channel (Paging channel: PCH) supports DRX of the mobile terminal in order to enable low power consumption of the mobile terminal. Notification to the entire base station (cell) is required. It is mapped to a physical resource such as a physical downlink shared channel (PDSCH) that can be dynamically used for traffic, or a physical resource such as a physical downlink control channel (PDCCH) of another control channel. A multicast channel (Multicast channel: MCH) is used for broadcasting to the entire base station (cell). Supports SFN combining of MBMS services (MTCH and MCCH) in multi-cell transmission. Supports quasi-static resource allocation. MCH is mapped to PMCH.
 上り共有チャネル(Uplink Shared channel: UL-SCH)にはHARQ(Hybrid ARQ)による再送制御が適用される。ダイナミックあるいは準静的(Semi-static)なリソース割り当てをサポートする。UL-SCHは物理上り共有チャネル(PUSCH)へマッピングされる。図5Bに示されるランダムアクセスチャネル(Random access channel: RACH)は制御情報に限られている。衝突のリスクがある。RACHは物理ランダムアクセスチャネル(PRACH)へマッピングされる。HARQについて説明する。 Retransmission control by HARQ (Hybrid ARQ) is applied to the uplink shared channel (Uplink Shared channel: UL-SCH). Supports dynamic or semi-static resource allocation. The UL-SCH is mapped to the physical uplink shared channel (PUSCH). The random access channel (Random access channel: RACH) shown in FIG. 5B is limited to control information. There is a risk of collision. The RACH is mapped to a physical random access channel (PRACH). HARQ will be described.
 HARQとは自動再送(Automatic Repeat reQuest)と誤り訂正(Forward Error Correction)との組み合わせにより伝送路の通信品質を向上させる技術である。通信品質が変化する伝送路に対しても再送により誤り訂正が有効に機能するという利点がある。特に再送にあたって初送の受信結果と再送の受信結果の合成をすることで更なる品質向上を得ることも可能である。再送の方法の一例を説明する。受信側にて受信データが正しくデコード出来なかった場合(CRC Cyclic Redundancy Check エラーが発生した場合(CRC=NG))、受信側から送信側へ「Nack」を送信する。「Nack」を受信した送信側はデータを再送する。受信側にて受信データが正しくデコードできた場合(CRCエラーが発生しない場合(CRC=OK))、受信側から送信側へ「Ack」を送信する。「Ack」を受信した送信側は次のデータを送信する。HARQ方式の一例として「チェースコンバイニング」(Chase Combining)がある。チェースコンバイニングとは初送と再送に同じデータ系列を送信するもので、再送において初送のデータ系列と再送のデータ系列の合成を行うことで利得を向上させる方式である。これは初送データに誤りがあったとしても部分的に正確なものも含まれており、正確な部分の初送データと再送データとを合成することでより高精度にデータを送信できるという考え方に基づいている。また、HARQ方式の別の例としてIR(Incremental Redundancy)がある。IRとは冗長度を増加させるものであり、再送においてパリティビットを送信することで初送と組み合わせて冗長度を増加させ、誤り訂正機能により品質を向上させるものである。 HARQ is a technology for improving the communication quality of a transmission path by combining automatic retransmission (Automatic Repeat request) and error correction (Forward Error Correction). There is also an advantage that error correction functions effectively by retransmission even for a transmission path in which communication quality changes. In particular, further quality improvement can be obtained by combining the reception result of the initial transmission and the reception result of the retransmission upon retransmission. An example of the retransmission method will be described. If the reception data cannot be decoded correctly on the reception side (CRC Cyclic Redundancy Check error has occurred (CRC = NG)), "Nack" is transmitted from the reception side to the transmission side. The transmission side that has received “Nack” retransmits the data. When the reception data can be correctly decoded on the reception side (when no CRC error occurs (CRC = OK)), “Ack” is transmitted from the reception side to the transmission side. The transmitting side that has received “Ack” transmits the next data. An example of the HARQ system is “Chase Combining”. Chase combining is a method in which the same data sequence is transmitted for initial transmission and retransmission, and the gain is improved by combining the initial transmission data sequence and the retransmission data sequence in retransmission. The idea is that even if there is an error in the initial transmission data, it is partially accurate, and it is possible to transmit data with higher accuracy by combining the initial transmission data and the retransmission data of the correct part. Based on. Another example of the HARQ scheme is IR (Incremental Redundancy). IR is to increase redundancy. By transmitting parity bits in retransmission, the redundancy is increased in combination with the initial transmission, and the quality is improved by the error correction function.
 論理チャネル(Logical channel)について(非特許文献1 6章)図6を用いて説明する。図6は、LTE方式の通信システムで使用される論理チャネルを説明する説明図である。図6Aには下りロジカルチャネルと下りトランスポートチャネル間のマッピングを示す。図6Bには上りロジカルチャネルと上りトランスポートチャネル間のマッピングを示す。報知制御チャネル(Broadcast control channel: BCCH)は報知システム制御情報のための下りチャネルである。論理チャネルであるBCCHはトランスポートチャネルである報知チャネル(BCH)、あるいは下り共有チャネル(DL-SCH)へマッピングされる。ページング制御チャネル(Paging control channel: PCCH)はページング信号を送信するための下りチャネルである。PCCHは移動端末のセルロケーションをネットワークが知らない場合に用いられる。論理チャネルであるPCCHはトランスポートチャネルであるページングチャネル(PCH)へマッピングされる。共有制御チャネル(Common control channel: CCCH)は移動端末と基地局間の送信制御情報のためのチャネルである。CCCHは移動端末がネットワークとの間でRRC接続(connection)を持っていない場合に用いられる。下り方法では、CCCHはトランスポートチャネルである下り共有チャネル(DL-SCH)へマッピングされる。上り方向では、CCCHはトランスポートチャネルである上り共有チャネル(UL-SCH)へマッピングされる。 A logical channel (Chapter 6 of Non-Patent Document 1) will be described with reference to FIG. FIG. 6 is an explanatory diagram illustrating logical channels used in the LTE communication system. FIG. 6A shows mapping between the downlink logical channel and the downlink transport channel. FIG. 6B shows mapping between the uplink logical channel and the uplink transport channel. The broadcast control channel (Broadcast control channel: CHBCCH) is a downlink channel for broadcast system control information. The BCCH that is a logical channel is mapped to a broadcast channel (BCH) that is a transport channel or a downlink shared channel (DL-SCH). A paging control channel (Paging control channel: PCCH) is a downlink channel for transmitting a paging signal. PCCH is used when the network does not know the cell location of the mobile terminal. The PCCH that is a logical channel is mapped to a paging channel (PCH) that is a transport channel. The shared control channel (Common control channel: CCCC) is a channel for transmission control information between the mobile terminal and the base station. CCCH is used when the mobile terminal does not have an RRC connection with the network. In the downlink method, the CCCH is mapped to a downlink shared channel (DL-SCH) that is a transport channel. In the uplink direction, the CCCH is mapped to an uplink shared channel (UL-SCH) that is a transport channel.
 マルチキャスト制御チャネル(Multicast control channel: MCCH)は1対多の送信のための下りチャネルである。ネットワークから移動端末への1つあるいはいくつかのMTCH用のMBMS制御情報の送信のために用いられるチャネルである。MCCHはMBMS受信中の移動端末のみに用いられるチャネルである。MCCHはトランスポートチャネルである下り共有チャネル(DL-SCH)あるいはマルチキャストチャネル(MCH)へマッピングされる。個別制御チャネル(Dedicated control channel: DCCH)は移動端末とネットワーク間の個別制御情報を送信するチャネルである。DCCHは上りでは上り共有チャネル(UL-SCH)へマッピングされ、下りでは下り共有チャネル(DL-SCH)にマッピングされる。個別トラフィックチャネル(Dedicate Traffic channel: DTCH)はユーザ情報の送信のための個別移動端末への1対1通信のチャネルである。DTCHは上り・下りともに存在する。DTCHは上りでは上り共有チャネル(UL-SCH)へマッピングされ、下りでは下り共有チャネル(DL-SCH)へマッピングされる。マルチキャストトラフィックチャネル(Multicast Traffic channel: MTCH)はネットワークから移動端末へのトラフィックデータ送信のための下りチャネルである。MTCHはMBMS受信中の移動端末のみに用いられるチャネルである。MTCHは下り共有チャネル(DL-SCH)あるいはマルチキャストチャネル(MCH)へマッピングされる。 The multicast control channel (Multicast control channel: MCCH) is a downlink channel for one-to-many transmission. This is a channel used for transmission of MBMS control information for one or several MTCHs from the network to the mobile terminal. MCCH is a channel used only for a mobile terminal receiving MBMS. MCCH is mapped to a downlink shared channel (DL-SCH) or multicast channel (MCH) which is a transport channel. The dedicated control channel (Dedicated control channel: DCCH) is a channel that transmits dedicated control information between the mobile terminal and the network. The DCCH is mapped to the uplink shared channel (UL-SCH) in the uplink, and is mapped to the downlink shared channel (DL-SCH) in the downlink. The dedicated traffic channel (Dedicate Traffic channel: DTCH) is a channel for one-to-one communication to an individual mobile terminal for transmitting user information. DTCH exists for both uplink and downlink. The DTCH is mapped to the uplink shared channel (UL-SCH) in the uplink, and is mapped to the downlink shared channel (DL-SCH) in the downlink. A multicast traffic channel (Multicast Traffic channel: MTCH) is a downlink channel for transmitting traffic data from a network to a mobile terminal. MTCH is a channel used only for a mobile terminal that is receiving MBMS. The MTCH is mapped to the downlink shared channel (DL-SCH) or multicast channel (MCH).
 GCIとは、グローバルセル識別子(Global Cell Identity)のことである。LTE及びUMTS(Universal Mobile Telecommunication System)においてCSGセル(Closed Subscriber Group cell)が導入される。CSGについて以下説明する(非特許文献4 3.1章)。CSG(Closed Subscriber Group)とは、利用可能な加入者をオペレータが特定しているセルである(特定加入者用セル)。特定された加入者は、PLMN(Public Land Mobile Network)のひとつ以上のE-UTRANセルにアクセスすることが許可される。特定された加入者がアクセスを許可されている1つ以上のE-UTRANセルを“CSG cell(s)”とよぶ。ただし、PLMNにはアクセス制限がある。CSGセルとは、固有のCSGアイデンティティ(CSG identity: CSG ID,CSG-ID)を報知するPLMNの一部である。あらかじめ利用登録し、許可された加入者グループのメンバーは、アクセス許可情報であるところのCSG-IDを用いてCSGセルにアクセスする。
CSG-IDはCSGセルかセルによって報知される。移動体通信システムにCSG-IDは複数存在する。そして、CSG-IDは、CSG関連のメンバーのアクセスを容易にするために移動端末(UE)によって使用される。CSGセルあるいはセルによって報知される情報をCSG-IDの代わりにトラッキングエリアコード(Tracking Area Code TAC)にすることが3GPP会合において議論されている。移動端末の位置追跡は、1つ以上のセルからなる区域を単位に行われる。位置追跡は、待受け状態であっても移動端末の位置を追跡し、呼び出す(移動端末が着呼する)ことを可能にするためである。この移動端末の位置追跡のための区域をトラッキングエリアとよぶ。CSGホワイトリスト(CSG White List)とは、加入者が属するCSGセルのすべてのCSG IDが記録されている、USIM(Universal Subscriber Identity Module)に格納されたリストである。移動端末内のホワイトリストは上位レイヤによって与えられる。これによりCSGセルの基地局は移動端末に無線リソースの割り当てを行う。
GCI is a global cell identity. A CSG cell (Closed Subscriber Group cell) is introduced in LTE and UMTS (Universal Mobile Telecommunication System). CSG will be described below (Chapter 3.1 of Non-Patent Document 4). A CSG (Closed Subscriber Group) is a cell in which an operator identifies an available subscriber (a cell for a specific subscriber). The identified subscriber is allowed to access one or more E-UTRAN cells of the Public Land Mobile Network (PLMN). One or more E-UTRAN cells to which the identified subscribers are allowed access are referred to as “CSG cell (s)”. However, PLMN has access restrictions. A CSG cell is a part of a PLMN that broadcasts a unique CSG identity (CSG identity: CSG ID, CSG-ID). Members of the subscriber group who have been registered for use in advance and access the CSG cell using the CSG-ID as access permission information.
The CSG-ID is broadcast by the CSG cell or the cell. There are a plurality of CSG-IDs in a mobile communication system. The CSG-ID is then used by the mobile terminal (UE) to facilitate access of CSG related members. It has been discussed at the 3GPP meeting that the CSG cell or information broadcast by the cell is set to a tracking area code (TAC) instead of a CSG-ID. The location tracking of a mobile terminal is performed in units of areas composed of one or more cells. The position tracking is to enable tracking of the position of the mobile terminal and calling (the mobile terminal receives a call) even in the standby state. This area for tracking the location of the mobile terminal is called a tracking area. The CSG white list is a list stored in a USIM (Universal Subscriber Identity Module) in which all CSG IDs of CSG cells to which a subscriber belongs are recorded. The white list in the mobile terminal is given by the upper layer. Thereby, the base station of the CSG cell allocates radio resources to the mobile terminal.
 「適切なセル」(Suitable cell)について以下説明する(非特許文献4 4.3章)。「適切なセル」(Suitable cell)とは、UEが通常(normal)サービスを受けるためにキャンプオン(Camp ON)するセルである。そのようなセルは、(1)セルは選択されたPLMNか登録されたPLMN、または「Equivalent PLMNリスト」のPLMNの一部であること、(2)NAS(non-access stratum)によって提供された最新情報にてさらに以下の条件を満たすこと、(a)そのセルが禁じられた(barred)セルでないこと。(b)そのセルが“ローミングのための禁止されたLAs”リストの一部ではなく、少なくとも1つのトラッキングエリア(Tracking Area:TA)の一部であること。その場合、そのセルは上記(1)を満たす必要がある、(c)そのセルが、セル選択評価基準を満たしていること、(d)そのセルが、CSGセルとしてシステム情報(System Information: SI)によって特定されたセルに関しては、CSG-IDはUEの「CSGホワイトリスト」(CSG WhiteList)の一部であること(UEのCSG WhiteList中に含まれること)。 “Suitable cell” will be described below (Non-Patent Document 4, Chapter 4.3). A “suitable cell” is a cell that the UE camps on to receive normal service. Such a cell was provided by (1) the selected PLMN or registered PLMN, or part of a PLMN in the “Equivalent PLMN list”, (2) NAS (non-access stratum) The latest information must satisfy the following conditions: (a) The cell is not a barred cell. (B) The cell is not part of the “Prohibited LAs for roaming” list, but part of at least one tracking area (Tracking Area: TA). In that case, the cell needs to satisfy the above (1), (c) the cell satisfies the cell selection evaluation criteria, (d) the cell is a system information (System Information: SI) as a CSG cell. ), The CSG-ID is part of the UE's “CSG White List” (CSG White List) (included in the UE's CSG White List).
 「アクセプタブルセル」(Acceptable cell)について以下説明する(非特許文献4 4.3章)これは、UEが限られたサービス(緊急通報)を受けるためにキャンプオンするセルである。そのようなセルは以下のすべての要件を充足するものとする。つまり、E-UTRANネットワークで緊急通報を開始するための最小のセットの要件を以下に示す。(1)そのセルが禁じられた(barred)セルでないこと。(2)そのセルが、セル選択評価基準を満たしていること。
セルにキャンプオン(camp on)するとは、UEがセル選択/再選択(cell selection/reselection)処理を完了し、UEがシステム情報とページング情報をモニタするセルを選択した状態である。
An “acceptable cell” will be described below (Chapter 4.3 of Non-Patent Document 4). This is a cell where a UE camps on in order to receive a limited service (emergency call). Such a cell shall meet all the following requirements: That is, the minimum set of requirements for initiating an emergency call in an E-UTRAN network is shown below. (1) The cell is not a barred cell. (2) The cell satisfies the cell selection evaluation criteria.
Camping on a cell is a state in which the UE has completed cell selection / reselection processing and the UE has selected a cell for monitoring system information and paging information.
 3GPPにおいて、Home-NodeB(Home-NB、HNB)、Home-eNodeB(Home-eNB、HeNB)と称される基地局が検討されている。HNB/HeNBはUTRAN/E-UTRANにおける、例えば家庭、法人、商業用のアクセスサービス向けの基地局である。非特許文献6にHeNB及びHNBへのアクセスの3つの異なるモードが開示されている。オープンアクセスモード(Open access mode)とクローズドアクセスモード(Closed access mode)とハイブリッドアクセスモード(Hybrid access mode)である。各々のモードは以下のような特徴を有する。オープンアクセスモードでは、HeNBやHNBは通常のオペレータのノーマルセルとして操作される。クローズドアクセスモードでは、HeNBやHNBがCSGセルとして操作される。これはCSGメンバーのみアクセス可能なCSGセルである。ハイブリッドアクセスモードでは、非CSGメンバーも同時にアクセス許可されているCSGセルである。ハイブリッドアクセスモードのセルは、言い換えれば、オープンアクセスモードとクローズドアクセスモードの両方をサポートするセルである。 In 3GPP, base stations called Home-NodeB (Home-NB, HNB) and Home-eNodeB (Home-eNB, HeNB) are being studied. HNB / HeNB is a base station for UTRAN / E-UTRAN, for example, home, corporate, and commercial access services. Non-Patent Document 6 discloses three different modes of access to HeNB and HNB. An open access mode (Open access mode), a closed access mode (Closed access mode), and a hybrid access mode (Hybrid access mode). Each mode has the following characteristics. In the open access mode, the HeNB or HNB is operated as a normal cell of a normal operator. In the closed access mode, the HeNB or HNB is operated as a CSG cell. This is a CSG cell accessible only to CSG members. In the hybrid access mode, a non-CSG member is a CSG cell to which access is permitted at the same time. In other words, the cell in the hybrid access mode is a cell that supports both the open access mode and the closed access mode.
 ロングタームエボリューション アドヴァンスド(Long Term Evolution Advanced:LTE-A)システムでは、LTEシステムの周波数帯域幅より大きい周波数帯域幅をサポートすることが考えられている。通信速度向上のためである。現在の3GPPではLTE-Aシステムの周波数帯域幅は100MHz以下となることが議論されている。 The Long Term Evolution Advanced (LTE-A) system is considered to support a frequency bandwidth that is larger than the frequency bandwidth of the LTE system. This is to improve the communication speed. In the current 3GPP, it is discussed that the frequency bandwidth of the LTE-A system is 100 MHz or less.
 各地域の周波数利用状況は様々である。よって周波数帯域幅を連続して100MHz確保出来ない地域も考えられる。また、LTE-AシステムにおいてLTE対応移動端末の互換動作が考えられている。これにともない、現在の3GPPでは周波数帯域(キャリア)をコンポーネントキャリア(部分キャリア)と呼ばれる単位に分けることが考えられている。現在の3GPPでは、本コンポーネントキャリア上においてLTE対応移動端末は動作可能とする方向である。また、LTE-Aシステムとしての通信速度向上は、コンポーネントキャリアをアグリゲーションして(集めて)作成した集合キャリアを使用することにより実現しようと考えられている。これ以降、コンポーネントキャリアをCCと、キャリアアグリゲーションをCAと略記することがある。 The frequency usage situation in each region varies. Therefore, there may be a region where the frequency bandwidth cannot be continuously secured at 100 MHz. Also, compatible operation of LTE-compatible mobile terminals is considered in the LTE-A system. Accordingly, in the current 3GPP, it is considered to divide the frequency band (carrier) into units called component carriers (partial carriers). In the current 3GPP, LTE-compatible mobile terminals are operable on this component carrier. Further, it is considered that the communication speed improvement as the LTE-A system is realized by using an aggregate carrier created by aggregating (collecting) component carriers. Hereinafter, the component carrier may be abbreviated as CC and the carrier aggregation may be abbreviated as CA.
 本発明の目的は、集合キャリアに対応させて通信速度向上を実現しつつ、集合キャリアに含まれる部分キャリアに効率的にキャンプオンできる移動体通信システムを提供することである。 An object of the present invention is to provide a mobile communication system that can efficiently camp on a partial carrier included in an aggregate carrier while realizing an improvement in communication speed corresponding to the aggregate carrier.
 本発明は、複数の部分キャリアを個別に使用するか又は前記複数の部分キャリアを集めた集合キャリアを使用して、前記部分キャリアに対応した移動端末又は前記集合キャリアに対応した移動端末と基地局とが無線通信する移動体通信システムであって、
 前記集合キャリアを使用して前記集合キャリアに対応した移動端末と基地局とが無線通信する場合、前記移動端末は前記集合キャリアに含まれるいずれか一つの部分キャリアにキャンプオンすることを特徴とする移動体通信システムである。
The present invention relates to a mobile terminal corresponding to the partial carrier or a mobile terminal and a base station corresponding to the aggregate carrier using a plurality of partial carriers individually or using an aggregate carrier obtained by collecting the plurality of partial carriers. Is a mobile communication system for wireless communication,
The mobile terminal camps on any one of the partial carriers included in the aggregate carrier when the mobile terminal and the base station corresponding to the aggregate carrier perform radio communication using the aggregate carrier. A mobile communication system.
 本発明によれば、集合キャリアを使用して集合キャリアに対応した移動端末と基地局とが無線通信する場合に、移動端末は集合キャリアに含まれるいずれか一つの部分キャリアにキャンプオンするので、集合キャリアに対応させて通信速度向上を実現しつつ、集合キャリアに含まれる部分キャリアに効率的にキャンプオンすることができる。 According to the present invention, when a mobile terminal corresponding to an aggregate carrier and a base station perform radio communication using the aggregate carrier, the mobile terminal camps on any one partial carrier included in the aggregate carrier. It is possible to efficiently camp on the partial carriers included in the aggregate carrier while realizing the communication speed improvement corresponding to the aggregate carrier.
LTE方式の通信システムの構成を示す説明図である。LTE方式の通信システムの構成を示す説明図である。It is explanatory drawing which shows the structure of the communication system of a LTE system. It is explanatory drawing which shows the structure of the communication system of a LTE system. LTE方式の通信システムで使用される無線フレームの構成を示す説明図である。FIG. 2 is an explanatory diagram showing a configuration of a radio frame used in an LTE communication system. MBSFNフレームの構成を示す説明図である。It is explanatory drawing which shows the structure of a MBSFN frame. LTE方式の通信システムで使用される物理チャネルを説明する説明図である。It is explanatory drawing explaining the physical channel used with the communication system of a LTE system. LTE方式の通信システムで使用されるトランスポートチャネルを説明する説明図である。It is explanatory drawing explaining the transport channel used with the communication system of a LTE system. LTE方式の通信システムで使用される論理チャネルを説明する説明図である。It is explanatory drawing explaining the logical channel used with the communication system of a LTE system. 現在3GPPで議論されている移動体通信システムの全体的な構成を示すブロック図である。It is a block diagram which shows the whole structure of the mobile communication system currently discussed by 3GPP. 本発明に係る移動端末311の構成を示すブロック図である。It is a block diagram which shows the structure of the mobile terminal 311 which concerns on this invention. 本発明に係る基地局312の構成を示すブロック図である。It is a block diagram which shows the structure of the base station 312 which concerns on this invention. 本発明に係るMMEの構成を示すブロック図である。It is a block diagram which shows the structure of MME which concerns on this invention. 本発明に係るHeNBGWの構成を示すブロック図である。It is a block diagram which shows the structure of HeNBGW which concerns on this invention. LTE方式の通信システムにおいて移動端末が行うセルサーチの概略を示すフローチャートである。3 is a flowchart illustrating an outline of cell search performed by a mobile terminal in an LTE communication system. 基地局がCA対応である場合のRRC_IDLE状態とRRC_CONNECTED状態についての概念図である。It is a conceptual diagram about the RRC_IDLE state and RRC_CONNECTED state when the base station is CA-compliant. データの送受信の可能なCCのうちのいずれか一つのCCにキャンプオンする場合の概念図である。It is a conceptual diagram in the case of camping on any one CC of CC which can transmit / receive data. 同じ周波数バンドに属するCCのなかのいずれか一つのCCにキャンプオンする場合の概念図である。It is a conceptual diagram in the case of camping on any one CC among CCs belonging to the same frequency band. RRC_IDLE時にキャンプオン可能なCCのうちのいずれか一つのCCにキャンプオンする場合の概念図である。It is a conceptual diagram in the case of camping on any one CC among CC which can camp on at the time of RRC_IDLE. RAプロシージャのシーケンス図である。It is a sequence diagram of RA procedure. CA時の下りCC/上りCC非対称運用について説明する説明図である。It is explanatory drawing explaining the downlink CC / uplink CC asymmetric operation at the time of CA. RRC_IDLEとRRC_CONNECTED間の状態遷移時のシーケンス図である。It is a sequence diagram at the time of state transition between RRC_IDLE and RRC_CONNECTED. 基地局がキャンプオンを試みるセルかつ/またはCCをUEに通知する場合のシーケンス図である。It is a sequence diagram in case a base station notifies UE which is going to camp on and / or CC. RAプロシージャ失敗のCCを除いたCCのうちのいずれか一つのCCにキャンプオンする場合の概念図である。It is a conceptual diagram in the case of camping on any one CC of CC except the CC of RA procedure failure. 下りCC/上りCC非対称運用におけるRAプロシージャ失敗の際にキャンプオンするCCの概念図である。It is a conceptual diagram of CC which camps on at the time of RA procedure failure in downlink CC / uplink CC asymmetric operation. ひとつのセル内でのCCサーチのフローチャートである。It is a flowchart of CC search in one cell. 本発明に係る、キャンプオンを試みるセルおよびCCの決定方法についてのフローチャートである。It is a flowchart about the determination method of the cell and CC which try camp on based on this invention. RAプロシージャ失敗の際のシーケンス図である。It is a sequence diagram at the time of RA procedure failure. 本発明に係る、キャンプオンを試みるセルおよびCCの決定方法についてのフローチャートである。It is a flowchart about the determination method of the cell and CC which try camp on based on this invention.
 実施の形態1.
 図7は、現在3GPPにおいて議論されているLTE方式の移動体通信システムの全体的な構成を示すブロック図である。現在3GPPにおいては、CSG(Closed Subscriber Group)セル(e-UTRANのHome-eNodeB(Home-eNB,HeNB),UTRANのHome-NB(HNB))とnon-CSGセル(e-UTRANのeNodeB(eNB)、UTRANのNodeB(NB)、GERANのBSS)とを含めたシステムの全体的な構成が検討されており、e-UTRANについては、図7の(a)や(b)のような構成が提案されている(非特許文献1、非特許文献3)。図7(a)について説明する。移動端末(UE)71は基地局72と送受信を行う。基地局72はeNB(non-CSGセル)72-1と、Home-eNB(CSGセル)72-2とに分類される。
eNB72-1はMME73とインタフェースS1により接続され、eNBとMMEとの間で制御情報が通信される。ひとつのeNBに対して複数のMMEが接続される。Home-eNB72-2はMME73とインタフェースS1により接続され、Home-eNBとMMEとの間で制御情報が通信される。ひとつのMMEに対して複数のHome-eNBが接続される。
Embodiment 1 FIG.
FIG. 7 is a block diagram showing the overall configuration of an LTE mobile communication system currently under discussion in 3GPP. Currently, in 3GPP, CSG (Closed Subscriber Group) cells (e-UTRAN Home-eNodeB (Home-eNB, HeNB), UTRAN Home-NB (HNB)) and non-CSG cells (e-UTRAN eNodeB (eNB) ), UTRAN NodeB (NB), GERAN BSS) and other systems are being studied. For e-UTRAN, configurations such as (a) and (b) in FIG. It has been proposed (Non-Patent Document 1, Non-Patent Document 3). FIG. 7A will be described. A mobile terminal (UE) 71 performs transmission / reception with the base station 72. The base station 72 is classified into an eNB (non-CSG cell) 72-1 and a Home-eNB (CSG cell) 72-2.
The eNB 72-1 is connected to the MME 73 via the interface S1, and control information is communicated between the eNB and the MME. A plurality of MMEs are connected to one eNB. The Home-eNB 72-2 is connected to the MME 73 via the interface S1, and control information is communicated between the Home-eNB and the MME. A plurality of Home-eNBs are connected to one MME.
 次に、図7(b)について説明する。移動端末(UE)71は基地局72と送受信を行う。基地局72はeNB(non-CSGセル)72-1と、Home-eNB(CSGセル)72-2とに分類される。図7(a)と同じように、eNB72-1はMME73とインタフェースS1により接続され、eNBとMMEとの間で制御情報が通信される。ひとつのeNBに対して複数のMMEが接続される。一方、Home-eNB72-2はHeNBGW(Home-eNB GateWay)74を介してMME73と接続される。Home-eNBとHeGWはインタフェースS1により接続され、HeNBGW74とMME73はインタフェースS1_flexを介して接続される。ひとつまたは複数のHome-eNB72-2がひとつのHeNBGW74と接続され、S1を通して情報が通信される。HeNBGW74はひとつまたは複数のMME73と接続され、S1_flexを通して情報が通信される。 Next, FIG. 7B will be described. A mobile terminal (UE) 71 performs transmission / reception with the base station 72. The base station 72 is classified into an eNB (non-CSG cell) 72-1 and a Home-eNB (CSG cell) 72-2. As in FIG. 7A, the eNB 72-1 is connected to the MME 73 via the interface S1, and control information is communicated between the eNB and the MME. A plurality of MMEs are connected to one eNB. On the other hand, the Home-eNB 72-2 is connected to the MME 73 via a HeNBGW (Home-eNB Gateway) 74. Home-eNB and HeGW are connected by an interface S1, and HeNBGW 74 and MME 73 are connected through an interface S1_flex. One or a plurality of Home-eNBs 72-2 are connected to one HeNBGW 74, and information is communicated through S1. The HeNBGW 74 is connected to one or a plurality of MMEs 73, and information is communicated through S1_flex.
 図7(b)の構成を用いて、ひとつのHeNBGW74を、同じCSG-IDに属するHome-eNBと接続することによって、例えばレジストレーション情報など、同じ情報をMME73から同じCSG-IDに属する複数のHome-eNB72-2に送信する場合、一旦HeNBGW74へ送信し、そこから複数のHome-eNB72-2へ送信することで、複数のHome-eNB72-2に対してそれぞれ直接に送信するよりもシグナリング効率を高められる。一方、各Home-eNB72-2がそれぞれ個別の情報をMME73と通信する場合は、HeNBGW74を介すがそこで情報を加工することなく通過(透過)させるだけにしておくことで、Home-eNB72-2とMME73があたかも直接接続されているように通信することも可能となる。 By connecting one HeNBGW 74 to a Home-eNB belonging to the same CSG-ID using the configuration of FIG. 7B, a plurality of information belonging to the same CSG-ID, such as registration information, can be obtained from the MME 73. When transmitting to the Home-eNB 72-2, it is transmitted to the HeNBGW 74 once, and then transmitted to the plurality of Home-eNBs 7-2, thereby signaling efficiency more directly than the plurality of Home-eNBs 72-2 respectively. Can be enhanced. On the other hand, when each Home-eNB 72-2 communicates individual information with the MME 73, the Home-eNB 72-2 passes through the HeNBGW 74 but only passes (transmits) the information without processing. And MME 73 can communicate with each other as if they were directly connected.
 図8は、本発明に係る移動端末(図7の端末71)の構成を示すブロック図である。図8に示す移動端末の送信処理を説明する。まず、プロトコル処理部801からの制御データ、アプリケーション部802からのユーザデータが送信データバッファ部803へ保存される。送信データバッファ部803に保存されたデータはエンコーダー部804へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに送信データバッファ部803から変調部805へ直接出力されるデータが存在しても良い。エンコーダー部804でエンコード処理されたデータは変調部805にて変調処理が行われる。変調されたデータはベースバンド信号に変換された後、周波数変換部806へ出力され、無線送信周波数に変換される。その後、アンテナ807から基地局312に送信信号が送信される。また、移動端末311の受信処理は以下のとおり実行される。基地局312からの無線信号がアンテナ807により受信される。受信信号は、周波数変換部806にて無線受信周波数からベースバンド信号に変換され、復調部808において復調処理が行われる。復調後のデータはデコーダー部809へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータのうち、制御データはプロトコル処理部801へ渡され、ユーザデータはアプリケーション部802へ渡される。移動端末の一連の処理は制御部810によって制御される。よって制御部810は、図面では省略しているが、各部(801~809)と接続している。 FIG. 8 is a block diagram showing a configuration of a mobile terminal (terminal 71 in FIG. 7) according to the present invention. Transmission processing of the mobile terminal shown in FIG. 8 will be described. First, control data from the protocol processing unit 801 and user data from the application unit 802 are stored in the transmission data buffer unit 803. The data stored in the transmission data buffer unit 803 is transferred to the encoder unit 804 and subjected to encoding processing such as error correction. There may exist data that is directly output from the transmission data buffer unit 803 to the modulation unit 805 without being encoded. The data encoded by the encoder unit 804 is subjected to modulation processing by the modulation unit 805. The modulated data is converted into a baseband signal, and then output to the frequency conversion unit 806 where it is converted into a radio transmission frequency. Thereafter, a transmission signal is transmitted from the antenna 807 to the base station 312. In addition, the reception process of the mobile terminal 311 is executed as follows. A radio signal from the base station 312 is received by the antenna 807. The reception signal is converted from a radio reception frequency to a baseband signal by the frequency conversion unit 806, and demodulated by the demodulation unit 808. The demodulated data is transferred to the decoder unit 809 and subjected to decoding processing such as error correction. Of the decoded data, control data is passed to the protocol processing unit 801, and user data is passed to the application unit 802. A series of processing of the mobile terminal is controlled by the control unit 810. Therefore, the control unit 810 is connected to each unit (801 to 809), which is omitted in the drawing.
 図9は、本発明に係る基地局(図7の基地局72)の構成を示すブロック図である。図9に示す基地局の送信処理を説明する。EPC通信部901は、基地局72とEPC(MME73,HeNBGW74など)間のデータの送受信を行う。他基地局通信部902は、他の基地局との間のデータの送受信を行う。EPC通信部901、他基地局通信部902はそれぞれプロトコル処理部903と情報の受け渡しを行う。プロトコル処理部903からの制御データ、またEPC通信部901と他基地局通信部902からのユーザデータ及び制御データが送信データバッファ部904へ保存される。送信データバッファ部904に保存されたデータはエンコーダー部905へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに送信データバッファ部904から変調部906へ直接出力されるデータが存在しても良い。エンコードされたデータは変調部906にて変調処理が行われる。変調されたデータはベースバンド信号に変換された後、周波数変換部907へ出力され、無線送信周波数に変換される。その後、アンテナ908より一つもしくは複数の移動端末71に対して送信信号が送信される。また、基地局72の受信処理は以下のとおり実行される。ひとつもしくは複数の移動端末311からの無線信号がアンテナ908により受信される。受信信号は周波数変換部907にて無線受信周波数からベースバンド信号に変換され、復調部909で復調処理が行われる。復調されたデータはデコーダー部910へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータのうち、制御データはプロトコル処理部903あるいはEPC通信部901、他基地局通信部902へ渡され、ユーザデータはEPC通信部901、他基地局通信部902へ渡される。基地局72の一連の処理は制御部911によって制御される。よって制御部911は図面では省略しているが各部(901~910)と接続している。 FIG. 9 is a block diagram showing the configuration of the base station (base station 72 in FIG. 7) according to the present invention. A transmission process of the base station shown in FIG. 9 will be described. The EPC communication unit 901 transmits and receives data between the base station 72 and EPC (MME73, HeNBGW74, etc.). The other base station communication unit 902 transmits / receives data to / from other base stations. The EPC communication unit 901 and the other base station communication unit 902 exchange information with the protocol processing unit 903, respectively. Control data from the protocol processing unit 903 and user data and control data from the EPC communication unit 901 and the other base station communication unit 902 are stored in the transmission data buffer unit 904. Data stored in the transmission data buffer unit 904 is transferred to the encoder unit 905 and subjected to encoding processing such as error correction. There may exist data that is directly output from the transmission data buffer unit 904 to the modulation unit 906 without being encoded. The encoded data is subjected to modulation processing by the modulation unit 906. The modulated data is converted into a baseband signal, and then output to the frequency conversion unit 907 to be converted into a radio transmission frequency. Thereafter, a transmission signal is transmitted from the antenna 908 to one or a plurality of mobile terminals 71. Further, the reception process of the base station 72 is executed as follows. Radio signals from one or a plurality of mobile terminals 311 are received by the antenna 908. The received signal is converted from a radio reception frequency to a baseband signal by the frequency conversion unit 907, and demodulated by the demodulation unit 909. The demodulated data is transferred to the decoder unit 910, and decoding processing such as error correction is performed. Of the decoded data, the control data is passed to the protocol processing unit 903 or the EPC communication unit 901 and the other base station communication unit 902, and the user data is passed to the EPC communication unit 901 and the other base station communication unit 902. A series of processing of the base station 72 is controlled by the control unit 911. Therefore, the control unit 911 is connected to each unit (901 to 910), which is omitted in the drawing.
 図10は、本発明に係るMME(Mobility Management Entity)の構成を示すブロック図である。PDN GW通信部1001はMME73とPDN GW間のデータの送受信を行う。基地局通信部1002はMME73と基地局72間をS1インタフェースによるデータの送受信を行う。PDN GWから受信したデータがユーザデータであった場合、ユーザデータはPDN GW通信部1001からユーザプレイン処理部1003経由で基地局通信部1002に渡され、1つあるいは複数の基地局72へ送信される。基地局72から受信したデータがユーザデータであった場合、ユーザデータは基地局通信部1002からユーザプレイン処理部1003経由でPDN GW通信部1001に渡され、PDN GWへ送信される。 FIG. 10 is a block diagram showing a configuration of MME (Mobility Management Entity) according to the present invention. The PDN GW communication unit 1001 transmits and receives data between the MME 73 and the PDN GW. The base station communication unit 1002 transmits and receives data between the MME 73 and the base station 72 using the S1 interface. When the data received from the PDN GW is user data, the user data is passed from the PDN GW communication unit 1001 to the base station communication unit 1002 via the user plane processing unit 1003 and transmitted to one or a plurality of base stations 72. The When the data received from the base station 72 is user data, the user data is transferred from the base station communication unit 1002 to the PDN GW communication unit 1001 via the user plane processing unit 1003 and transmitted to the PDN GW.
 PDN GWから受信したデータが制御データであった場合、制御データはPDN GW通信部1001から制御プレイン制御部1005へ渡される。基地局72から受信したデータが制御データであった場合、制御データは基地局通信部1002から制御プレイン制御部1005へ渡される。HeNBGW通信部1004は、HeNBGW74が存在する場合に設けられ、情報種別によって、MME73とHeNBGW74間のインタフェース(IF)によるデータの送受信を行う。HeNBGW通信部1004から受信した制御データはHeNBGW通信部1004から制御プレイン制御部1005へ渡される。制御プレイン制御部1005での処理の結果は、PDN GW通信部1001経由でPDN GWへ送信される。また、制御プレイン制御部1005で処理された結果は、基地局通信部1002経由でS1インタフェースにより1つあるいは複数の基地局72へ送信され、またHeNBGW通信部1004経由で1つあるいは複数のHeNBGW74へ送信される。 When the data received from the PDN GW is control data, the control data is passed from the PDN GW communication unit 1001 to the control plane control unit 1005. When the data received from the base station 72 is control data, the control data is transferred from the base station communication unit 1002 to the control plane control unit 1005. The HeNBGW communication unit 1004 is provided when the HeNBGW 74 exists, and performs data transmission / reception through an interface (IF) between the MME 73 and the HeNBGW 74 depending on the information type. The control data received from the HeNBGW communication unit 1004 is passed from the HeNBGW communication unit 1004 to the control plane control unit 1005. The result of processing in the control plane control unit 1005 is transmitted to the PDN GW via the PDN GW communication unit 1001. Further, the result processed by the control plane control unit 1005 is transmitted to one or a plurality of base stations 72 via the S1 interface via the base station communication unit 1002, and to one or a plurality of HeNBGWs 74 via the HeNBGW communication unit 1004. Sent.
 制御プレイン制御部1005には、NASセキュリティ部1005-1、SAEベアラコントロール部1005-2、アイドルステート(Idle State)モビリティ管理部1005―3などが含まれ、制御プレインに対する処理全般を行う。NASセキュリティ部1005―1はNAS(Non-Access Stratum)メッセージのセキュリティなどを行う。SAEベアラコントロール部1005―2はSAE(System Architecture Evolution)のベアラの管理などを行う。アイドルステートモビリティ管理部1005―3は、待受け(LTE‐IDLE状態、単にアイドルとも称される)状態のモビリティ管理、待受け状態時のページング信号の生成及び制御、傘下の1つあるいは複数の移動端末71のトラッキングエリア(TA)の追加、削除、更新、検索、トラッキングエリアリスト(TA List)管理などを行う。MMEはUEが登録されている(registered)追跡領域(トラッキングエリア:tracking Area: TA)に属するセルへページングメッセージを送信することで、ページングプロトコルに着手する。MMEに接続されるHome-eNB72-2のCSGの管理やCSG-IDの管理、そしてホワイトリスト管理を、アイドルステートモビリティ管理部1005―3で行っても良い。CSG-IDの管理では、CSG-IDに対応する移動端末とCSGセルの関係が管理(追加、削除、更新、検索)される。例えば、あるCSG-IDにユーザアクセス登録された一つまたは複数の移動端末と該CSG-IDに属するCSGセルの関係であっても良い。ホワイトリスト管理では、移動端末とCSG-IDの関係が管理(追加、削除、更新、検索)される。例えば、ホワイトリストには、ある移動端末がユーザ登録した一つまたは複数のCSG-IDが記憶されても良い。これらのCSGに関する管理はMME73の中の他の部分で行われても良いが、アイドルステートモビリティ管理部1005―3で行うことで、現在3GPP会合で議論されている、CSG-IDの代わりにトラッキングエリアコード(Tracking Area Code)を用いる方法が効率よく行える。MME313の一連の処理は制御部1006によって制御される。よって制御部1006は図面では省略しているが各部(1001~1005)と接続している。 The control plane control unit 1005 includes a NAS security unit 1005-1, an SAE bearer control unit 1005-2, an idle state mobility management unit 1005-3, and the like, and performs overall processing for the control plane. The NAS security unit 1005-1 performs security of a NAS (Non-Access Stratum) message. The SAE bearer control unit 1005-2 manages the bearer of SAE (System Architecture Evolution). The idle state mobility management unit 1005-3 performs mobility management in a standby state (LTE-IDLE state, also simply referred to as idle), generation and control of a paging signal in the standby state, and one or more mobile terminals 71 being served thereby Tracking area (TA) addition, deletion, update, search, tracking area list (TA List) management and so on. The MME initiates the paging protocol by transmitting a paging message to a cell belonging to a tracking area (tracking area: tracking TA) where the UE is registered. The idle state mobility management unit 1005-3 may perform CSG management, CSG-ID management, and white list management of the Home-eNB 72-2 connected to the MME. In the management of CSG-ID, the relationship between the mobile terminal corresponding to the CSG-ID and the CSG cell is managed (added, deleted, updated, searched). For example, it may be a relationship between one or a plurality of mobile terminals registered for user access with a certain CSG-ID and a CSG cell belonging to the CSG-ID. In white list management, the relationship between a mobile terminal and a CSG-ID is managed (added, deleted, updated, searched). For example, one or a plurality of CSG-IDs registered by a certain mobile terminal as a user may be stored in the white list. Although these CSG-related management may be performed in other parts of the MME 73, tracking by the idle state mobility management unit 1005-3 instead of the CSG-ID currently being discussed at the 3GPP meeting A method using an area code (Tracking Area Code) can be performed efficiently. A series of processing of the MME 313 is controlled by the control unit 1006. Therefore, although not shown in the drawing, the control unit 1006 is connected to each unit (1001 to 1005).
 図11は、本発明に係るHeNBGWの構成を示すブロック図である。EPC通信部1101はHeNBGW74とMME73間をS1_flexインタフェースによるデータの送受信を行う。基地局通信部1102はHeNBGW74とHome-eNB72-2間をS1インタフェースによるデータの送受信を行う。ロケーション処理部1103は、EPC通信部1101経由で渡されたMME73からのデータのうちレジストレーション情報など、複数のHome-eNBに送信する処理を行う。ロケーション処理部1103で処理されたデータは、基地局通信部1102に渡され、ひとつまたは複数のHome-eNB72-2にS1インタフェースを介して送信される。ロケーション処理部1103での処理を必要とせず通過(透過)させるだけのデータは、EPC通信部1101から基地局通信部1102に渡され、ひとつまたは複数のHome-eNB72-2にS1インタフェースを介して送信される。HeNBGW74の一連の処理は制御部1104によって制御される。よって制御部1104は図面では省略しているが各部(1101~1103)と接続している。 FIG. 11 is a block diagram showing a configuration of the HeNBGW according to the present invention. The EPC communication unit 1101 transmits and receives data between the HeNBGW 74 and the MME 73 using the S1_flex interface. The base station communication unit 1102 transmits and receives data between the HeNBGW 74 and the Home-eNB 72-2 using the S1 interface. The location processing unit 1103 performs processing for transmitting registration information and the like to a plurality of Home-eNBs among data from the MME 73 passed via the EPC communication unit 1101. The data processed by the location processing unit 1103 is passed to the base station communication unit 1102 and transmitted to one or more Home-eNBs 72-2 via the S1 interface. Data that does not require processing in the location processing unit 1103 and is simply passed (transmitted) is passed from the EPC communication unit 1101 to the base station communication unit 1102 and sent to one or more Home-eNBs 72-2 via the S1 interface. Sent. A series of processing of the HeNBGW 74 is controlled by the control unit 1104. Therefore, although not shown in the drawing, the control unit 1104 is connected to each unit (1101 to 1103).
 次に移動体通信システムにおける一般的なセルサーチ方法の一例を示す。図12は、LTE方式の通信システムにおいて移動端末(UE)が行うセルサーチから待ち受け動作までの概略を示すフローチャートである。移動端末にてセルサーチが開始されると、ステップST1201で周辺の基地局から送信される第一同期信号(P-SS)、第二同期信号(S-SS)を用いてスロットタイミング、フレームタイミングの同期をとる。P-SSとS-SSあわせて、同期信号(SS)にはセル毎に割り当てられたPCI(Physical Cell Identity)に1対1対応するシンクロナイゼーションコードが割り当てられている。PCIの数は現在504通りが検討されており、この504通りのPCIを用いて同期をとるとともに、同期がとれたセルのPCIを検出(特定)する。次に同期がとれたセルに対して、ステップST1202で、基地局からセル毎に送信される参照信号RS(Reference Signal)を検出し受信電力の測定を行う。参照信号RSにはPCIと1対1に対応したコードが用いられており、そのコードで相関をとることによって他セルと分離できる。ST1201で特定したPCIから該セルのRS用のコードを導出することによって、RSを検出し、RS受信電力を測定することが可能となる。次にST1203で、ST1202までで検出されたひとつ以上のセルの中から、RSの受信品質が最も良いセル(例えば、RSの受信電力が最も高いセル、つまりベストセル)を選択する。次にST1204でベストセルのPBCHを受信して、報知情報であるBCCHを得る。PBCH上のBCCHには、セル構成情報が含まれるMIB(Master Information Block)がのる。MIBの情報としては、例えば、DL(ダウンリンク)システム帯域幅(送信帯域幅設定(transmission bandwidth configuration:dl-bandwidth)とも呼ばれる)、送信アンテナ数、SFN(System Frame Number)などがある。 Next, an example of a general cell search method in a mobile communication system is shown. FIG. 12 is a flowchart illustrating an outline from a cell search to a standby operation performed by a mobile terminal (UE) in an LTE communication system. When cell search is started in the mobile terminal, slot timing and frame timing using the first synchronization signal (P-SS) and the second synchronization signal (S-SS) transmitted from the neighboring base stations in step ST1201. Synchronize. In combination with P-SS and S-SS, a synchronization code (SS) is assigned a synchronization code corresponding to a PCI (Physical Cell Identity) allocated for each cell. Currently, 504 PCIs are being studied, and the 504 PCIs are used for synchronization, and the PCI of the synchronized cell is detected (specified). Next, for a synchronized cell, in step ST1202, a reference signal RS (Reference (Signal) transmitted from the base station for each cell is detected, and the received power is measured. The reference signal RS uses a code corresponding to PCI one-to-one, and can be separated from other cells by correlating with the code. By deriving the RS code of the cell from the PCI specified in ST1201, it becomes possible to detect the RS and measure the RS received power. Next, in ST1203, a cell having the best RS reception quality (for example, a cell having the highest RS reception power, that is, the best cell) is selected from one or more cells detected up to ST1202. Next, in ST 1204, PBCH of the best cell is received, and BCCH which is broadcast information is obtained. MIB (Master Information Block) including cell configuration information is carried on BCCH on PBCH. The MIB information includes, for example, DL (downlink) system bandwidth (also called transmission bandwidth setting (transmission bandwidth configuration: dl-bandwidth)), the number of transmission antennas, SFN (System frame number), and the like.
 次に1205で、MIBのセル構成情報をもとに該セルのDL-SCHを受信して、報知情報BCCHの中のSIB(System Information Block)1を得る。SIB1には該セルへのアクセスに関する情報や、セルセレクションに関する情報、他のSIB(SIBk;k≧2の整数)のスケジューリング情報が含まれる。また、SIB1にはTAC(Tracking Area Code)が含まれる。次にST1206で、移動端末は、ST1205で受信したTACと、移動端末が既に保有しているTACと比較する。比較した結果、同じならば、該セルで待ち受け動作に入る。比較して異なる場合は、移動端末は該セルを通してコアネットワーク(Core Network, EPC)(MMEなどが含まれる)へ、TAU(Tracking Area Update)を行うためTAの変更を要求する。コアネットワークは、TAU要求信号とともに移動端末から送られてくる該移動端末の識別番号(UE-IDなど)をもとに、TAの更新を行う。コアネットワークはTAの更新後、移動端末にTAU受領信号を送信する。移動端末は該セルのTACで、移動端末が保有するTAC(あるいはTACリスト)を書き換える(更新する)。その後移動端末は該セルで待ち受け動作に入る。 Next, at 1205, the DL-SCH of the cell is received based on the MIB cell configuration information, and SIB (System Information Block) 1 in the broadcast information BCCH is obtained. SIB1 includes information about access to the cell, information about cell selection, and scheduling information of other SIBs (SIBk; integer of k ≧ 2). SIB1 includes TAC (Tracking Area Code). Next, in ST1206, the mobile terminal compares the TAC received in ST1205 with the TAC already held by the mobile terminal. If the result of the comparison is the same, a standby operation is started in the cell. If they are different from each other, the mobile terminal requests a change of TA to perform TAU (TrackingTrackArea Update) to the core network (Core Network, EPC) (including MME) through the cell. The core network updates the TA based on the identification number (UE-ID or the like) of the mobile terminal sent from the mobile terminal together with the TAU request signal. After updating the TA, the core network transmits a TAU acceptance signal to the mobile terminal. The mobile terminal rewrites (updates) the TAC (or TAC list) held by the mobile terminal with the TAC of the cell. Thereafter, the mobile terminal enters a standby operation in the cell.
 LTEやUMTS(Universal Mobile Telecommunication System)においては、CSG(Closed Subscriber Group)セルの導入が検討されている。前述したように、CSGセルに登録したひとつまたは複数の移動端末のみにアクセスが許される。CSGセルと登録されたひとつまたは複数の移動端末がひとつのCSGを構成する。このように構成されたCSGにはCSG-IDと呼ばれる固有の識別番号が付される。なお、ひとつのCSGには複数のCSGセルがあっても良い。移動端末はどれかひとつのCSGセルに登録すればそのCSGセルが属するCSGの他のCSGセルにはアクセス可能となる。また、LTEでのHome-eNBやUMTSでのHome-NBがCSGセルとして使われることがある。CSGセルに登録した移動端末は、ホワイトリストを有する。具体的にはホワイトリストはSIM/USIMに記憶される。ホワイトリストには、移動端末が登録したCSGセルのCSG情報がのる。CSG情報として具体的には、CSG-ID、TAI(Tracking Area Identity)、TACなどが考えられる。CSG-IDとTACが対応づけられていれば、どちらか一方で良い。また、CSG-IDやTACとGCI(Global Cell Identity)が対応付けられていればGCIでもよい。以上から、ホワイトリストを有しない(本発明においては、ホワイトリストが空(empty)の場合も含める)移動端末は、CSGセルにアクセスすることは不可能であり、non-CSGセルのみにしかアクセスできない。一方、ホワイトリストを有する移動端末は、登録したCSG-IDのCSGセルにも、non-CSGセルにもアクセスすることが可能となる。 In LTE and UMTS (Universal Mobile Telecommunication System), introduction of CSG (Closed Subscriber Group) cells is being studied. As described above, access is permitted only to one or a plurality of mobile terminals registered in the CSG cell. One or a plurality of mobile terminals registered with the CSG cell constitute one CSG. A CSG configured in this way is given a unique identification number called CSG-ID. A single CSG may have a plurality of CSG cells. If a mobile terminal registers in one of the CSG cells, it can access other CSG cells to which the CSG cell belongs. In addition, Home-eNB in LTE and Home-NB in UMTS may be used as a CSG cell. The mobile terminal registered in the CSG cell has a white list. Specifically, the white list is stored in the SIM / USIM. The white list carries CSG information of the CSG cell registered by the mobile terminal. Specifically, CSG-ID, TAI (Tracking Area Identity), TAC, etc. can be considered as the CSG information. If CSG-ID and TAC are associated with each other, either one is sufficient. Further, GCI may be used as long as CSG-ID and TAC are associated with GCI (Global Cell Identity). From the above, a mobile terminal that does not have a white list (including a case where the white list is empty in the present invention) cannot access a CSG cell, and only accesses a non-CSG cell. Can not. On the other hand, a mobile terminal having a white list can access both a CSG cell of a registered CSG-ID and a non-CSG cell.
 3GPPでは、全PCI(Physical Cell Identity)を、CSGセル用とnon-CSGセル用とに分割(PCIスプリットと称する)することが議論されている(非特許文献5)。またPCIスプリット情報は、システム情報にて基地局から傘下の移動端末に対して報知されることが議論されている。PCIスプリットを用いた移動端末の基本動作を開示する。PCIスプリット情報を有しない移動端末は、全PCIを用いて(例えば504コード全てを用いて)セルサーチを行う必要がある。対してPCIスプリット情報を有する移動端末は、当該PCIスプリット情報を用いてセルサーチを行うことが可能である。 3GPP discusses dividing all PCI (Physical Cell Identity) into CSG cells and non-CSG cells (referred to as PCI split) (Non-patent Document 5). Further, it is discussed that the PCI split information is reported from the base station to the mobile terminals being served by the system information. A basic operation of a mobile terminal using PCI split is disclosed. A mobile terminal that does not have PCI split information needs to perform a cell search using all PCIs (for example, using all 504 codes). On the other hand, a mobile terminal having PCI split information can perform a cell search using the PCI split information.
 非特許文献7及び非特許文献8に開示されているとおり、3GPPでは、リリース10として「ロングタームエボリューション アドヴァンスド」(Long Term Evolution Advanced:LTE-A)の規格策定が進められている。 As disclosed in Non-Patent Document 7 and Non-Patent Document 8, 3GPP is proceeding with the formulation of “Long Term Evolution Advanced” (LTE-A) as Release 10.
 LTE-AシステムではLTEシステムの周波数帯域幅(transmission bandwidths)より大きい周波数帯域幅をサポートすることが考えられている。 It is considered that the LTE-A system supports a frequency bandwidth larger than the frequency bandwidth (transmission bandwidth) of the LTE system.
 そのため、LTE-A対応の移動端末は、同時に1つあるいは複数のコンポーネントキャリア(component carrier:CC)を受信することが考えられている。 Therefore, it is considered that LTE-A compatible mobile terminals receive one or more component carriers (CC) simultaneously.
 LTE-A対応の移動端末は、同時に複数のコンポーネントキャリア上の受信と送信、あるいは受信のみ、あるいは送信のみをキャリアアグリゲーション(carrier aggregation)するための能力(capability)を持つことが考えられている。 It is considered that a mobile terminal supporting LTE-A has the capability to perform carrier aggregation on reception and transmission on a plurality of component carriers, or only reception or only transmission.
 コンポーネントキャリアの構造が現在の3GPP(リリース8)仕様に従えば、LTE対応の移動端末は、単独のコンポーネントキャリア上のみで、受信と送信が可能となる。
LTE対応の移動端末は、3GPPリリース8対応の移動端末とも言い換えることができる。つまり、LTE対応の移動端末がLTE-Aシステム上で動作可能とする、互換可能とすることが考えられている。
If the component carrier structure conforms to the current 3GPP (Release 8) specification, an LTE-compatible mobile terminal can receive and transmit only on a single component carrier.
An LTE compatible mobile terminal can also be referred to as a 3GPP Release 8 compatible mobile terminal. That is, it is considered that LTE-compatible mobile terminals can operate on the LTE-A system and can be compatible.
 非特許文献8にLTE-Aシステムにおけるシステム情報の報知方法が記載されている。また、キャリアアグリゲーション対応の基地局における、シングルキャリアアンカー(Single carrier anchor)とマルチキャリアアンカー(Multi carrier anchor)について開示されている。 Non-Patent Document 8 describes a system information notification method in the LTE-A system. Further, a single carrier anchor (Multi carrier anchor) and a multicarrier anchor (Multi carrier anchor) in a base station supporting carrier aggregation are disclosed.
 シングルキャリアアンカーにおいて、LTE対応の移動端末の受信と送信が可能である。シングルキャリアアンカーにおいて、マルチキャリアアンカーのキャリアを示す情報が通知される。シングルキャリアアンカーにおいては、現在の3GPP(リリース8)のシステム情報(System information:SI)が報知される。 In the single carrier anchor, reception and transmission of LTE-compatible mobile terminals are possible. In the single carrier anchor, information indicating the carrier of the multicarrier anchor is notified. In the single carrier anchor, the current 3GPP (Release 8) system information (System information: SI) is reported.
 一方、マルチキャリアアンカーにおいても、LTE対応の移動端末の受信と送信が可能である。マルチキャリアアンカーにおいても、現在の3GPP(リリース8)のシステム情報(System information:SI)が報知される。マルチキャリアアンカーにおいて、マルチキャリアのシステム情報が報知される。 On the other hand, even in a multicarrier anchor, reception and transmission of an LTE compatible mobile terminal is possible. Also in the multi-carrier anchor, the current 3GPP (Release 8) system information (System information: SI) is broadcast. In the multi-carrier anchor, multi-carrier system information is broadcast.
 また非特許文献10に、キャリアアグリゲーション対応の基地局(セルであっても良い)において、RRC接続状態(RRC_CONNECTED state、単にRRC_CONNECTEDとも称する)でUEとのデータ送受信が可能な一つまたは複数のコンポーネントキャリアのセットを、キャンディデートコンポーネントキャリアセット(Candidate Component Carrier Set)とすることが提案されている。 In Non-Patent Document 10, one or a plurality of components capable of transmitting / receiving data to / from a UE in an RRC connection state (RRC_CONNECTED state, also simply referred to as RRC_CONNECTED) in a carrier aggregation compatible base station (may be a cell) It has been proposed that the carrier set be a candy date component carrier set (Candidate Component Carrier Set).
 また、実際のデータ送受信が行われている一つまたは複数のコンポーネントキャリアを、スケジューリングコンポーネントキャリア(Scheduling Component Carrier)とすることも提案されている。
 UTRA、LTE、LTE-Aなどのシステムでは、上り、下りともに、いくつかの連続した周波数からなる周波数帯域で動作するように設計されている。これら各々の周波数帯域を、以下、周波数バンドと称する。
It has also been proposed to use one or more component carriers on which actual data transmission / reception is performed as a scheduling component carrier.
Systems such as UTRA, LTE, and LTE-A are designed to operate in a frequency band composed of several continuous frequencies, both upstream and downstream. Each of these frequency bands is hereinafter referred to as a frequency band.
 UTRA、LTE、LTE-AのFDDシステムにおいては、一つの上り周波数バンドと、それと異なる一つの下り周波数バンドが対になって動作する。この上り周波数バンドと下り周波数バンドを、以下、ペアバンド(paired band)と称する。 In UTRA, LTE, and LTE-A FDD systems, one upstream frequency band and a different downstream frequency band operate in pairs. Hereinafter, the upstream frequency band and the downstream frequency band are referred to as a paired band.
 また、LTE-AのFDDシステムにおいては、キャリアアグリゲーション対応の基地局において、一つの上りCCと、それと異なる一つの下りCCが対になって動作する。この上りCCと下りCCも同様に、以下、ペアバンド(paired band)と称する。 Also, in the LTE-A FDD system, one uplink CC and one different downlink CC operate in a pair in a carrier aggregation compatible base station. Similarly, the uplink CC and the downlink CC are hereinafter referred to as a paired band.
 LTE-AのFDDシステムにおいては、ひとつの上り周波数バンドと、それと異なる複数の下り周波数バンドが対になって動作することが検討されている。つまり、一つの上り周波数バンドに対して複数の下り周波数バンドがペアバンドとなる。また、キャリアアグリゲーション対応の基地局において、ひとつの上りCCに対して、複数の下りCCが対になって動作することが検討されている。つまり、一つの上りCCに対して複数の下りCCがペアバンドとなる。これらの運用のことを非対称(asymmetric)な運用と称する。 In the LTE-A FDD system, it is considered that one upstream frequency band and a plurality of different downstream frequency bands operate in pairs. That is, a plurality of downstream frequency bands are paired with respect to one upstream frequency band. In addition, in a base station supporting carrier aggregation, it is considered that a plurality of downlink CCs operate in pairs with respect to one uplink CC. That is, a plurality of downlink CCs become a pair band for one uplink CC. These operations are referred to as asymmetric operations.
 UEが基地局(セル)を通してネットワークとのデータ送受信を終了した場合など、UEと基地局(セル)はRRC_CONNECTED状態(接続状態)からRRC_IDLE状態(待受状態)へ移行する。このように、RRC_CONNECTED状態からはなれてRRC_IDLE状態へ移行する場合、従来は、UEはRRC_CONNECTED時にいた最後のセル上にキャンプオンを試みる。 When the UE ends data transmission / reception with the network through the base station (cell), the UE and the base station (cell) shift from the RRC_CONNECTED state (connection state) to the RRC_IDLE state (standby state). Thus, when the UE moves out of the RRC_CONNECTED state and moves to the RRC_IDLE state, conventionally, the UE attempts to camp on the last cell that was in the RRC_CONNECTED state.
 しかし、基地局(セル)がキャリアアグリゲーション対応の基地局(セル)であり、UEがRRC_CONNECTED状態でひとつまたは複数のCCを用いてデータの送受信が行われているような場合、RRC_CONNECTED状態からはなれてRRC_IDLE状態へ移行する際に、従来の方法の適用では、どの基地局(セル)のどのコンポーネントキャリアにキャンプオンを試みたら良いかが不明となる。 However, when the base station (cell) is a carrier aggregation-compatible base station (cell) and the UE is transmitting and receiving data using one or more CCs in the RRC_CONNECTED state, the RRC_CONNECTED state is not used. When shifting to the RRC_IDLE state, it is unclear which component carrier of which base station (cell) should try camp-on by applying the conventional method.
 図13に、基地局(セル)がキャリアアグリゲーション対応の基地局(セル)である場合のRRC_IDLE状態とRRC_CONNECTED状態についての概念図を示す。(a)はRRC_IDLE状態、(b)はRRC_CONNECTED状態である。1301から1303はセルで、1303のセルはキャリアアグリゲーション対応である。1304から1310はセル1303がキャリアアグリゲーションを行うCCであり、順にCC#1からCC#7とする。横軸は周波数を示す。FDDにおいては、DLの周波数とULの周波数は異なるが、簡単化のため、DLの周波数とULの周波数を同じ軸上に記載している。同じく簡単化のため、下りのコンポーネントキャリア(下りCC、DL CC)の番号と、各DL CCに対応する(ペアバンドとなる)上りのコンポーネントキャリア(上りCC、UL CC)の番号を同じとし、いずれもCC#n(nは正の整数)として図で示している。これに限らず下りCCとそれに対応する上りCCとで番号が異なっていてもよいし、番号は同じでも、周波数軸上の配置の順番が異なっていても構わない。 FIG. 13 shows a conceptual diagram of the RRC_IDLE state and the RRC_CONNECTED state when the base station (cell) is a base station (cell) that supports carrier aggregation. (A) is an RRC_IDLE state, and (b) is an RRC_CONNECTED state. Reference numerals 1301 to 1303 denote cells, and a cell 1303 corresponds to carrier aggregation. Reference numerals 1304 to 1310 denote CCs on which the cell 1303 performs carrier aggregation, which are CC # 1 to CC # 7 in order. The horizontal axis indicates the frequency. In FDD, the DL frequency and the UL frequency are different, but for simplicity, the DL frequency and the UL frequency are described on the same axis. Similarly, for simplification, the number of the downlink component carrier (downlink CC, DL 、 CC) and the number of the uplink component carrier (uplink CC, UL CC) corresponding to each DL CC are the same, Both are shown as CC # n (n is a positive integer). Not limited to this, the numbers may be different between the downlink CC and the corresponding uplink CC, and the numbers may be the same or the arrangement order on the frequency axis may be different.
 なお、本明細書では、特に断らない限り、下りCCとそれに対応する(ペアバンドである)上りCCのことをあわせてCCと称する。また、UEがキャンプオンするのは下りCC上であるが、簡単のため、ここではCCにキャンプオンすると記載する。該CCの下りCCにキャンプオンすることを意味する。 In the present specification, unless otherwise specified, the downlink CC and the corresponding uplink CC (which is a pair band) are collectively referred to as CC. In addition, although the UE camps on the downlink CC, for simplicity, it is described here that the camp is on the CC. It means to camp on the downlink CC of the CC.
 1311はUEである。セル選択/再選択後セル1303を選択したUEは、RRC_IDLE状態で例えばCC#3(1306)にキャンプオンしている。基地局(セル)とRRC接続を行ったUEは、RRC_CONNECTED状態に入り、コアネットワークとの間でデータの送受信を行う。このとき、基地局(セル)がキャリアアグリゲーション対応の基地局(セル)であるので、UEは一つまたは複数のCC上で基地局(セル)を介してコアネットワークとデータの送受信を行う。 1311 is a UE. The UE that has selected the cell 1303 after cell selection / reselection is camping on CC # 3 (1306) in the RRC_IDLE state, for example. The UE that has performed RRC connection with the base station (cell) enters the RRC_CONNECTED state, and transmits and receives data to and from the core network. At this time, since the base station (cell) is a base station (cell) that supports carrier aggregation, the UE transmits and receives data to and from the core network via the base station (cell) on one or a plurality of CCs.
 データの送受信を行う一つまたは複数のCCは、各CCの通信品質(例えばCQI,RSRPなど)に応じてダイナミックに変更されることも考えられる。通信品質の良いCCでデータの送受信を行うことによって、スループットの向上が図れ、高速通信が可能になるためである。 One or a plurality of CCs that transmit and receive data may be dynamically changed according to the communication quality (for example, CQI, RSRP, etc.) of each CC. This is because by performing data transmission / reception with a CC having good communication quality, throughput can be improved and high-speed communication becomes possible.
 図13の(b)では、CC#2(1305)、CC#4(1307)、CC#6(1309)上でデータの送受信を行っている。このように、RRC_CONNECTEDに入る前のRRC_IDLE時にキャンプオンしていたCC(CC#3)と、RRC_CONNECTED時にデータの送受信を行うCCとが異なるような場合が生じることが考えられる。 In FIG. 13B, data is transmitted and received on CC # 2 (1305), CC # 4 (1307), and CC # 6 (1309). In this way, it is conceivable that the CC (CC # 3) that was camping on at the time of RRC_IDLE before entering RRC_CONNECTED may differ from the CC that performs data transmission / reception at the time of RRC_CONNECTED.
 UEがアグリゲーション対応の基地局(セル)と、上述のようにRRC_CONNECTED状態で一つまたは複数のCC上でデータの送受信を行った後などに、RRC_CONNECTED状態から離れてRRC_IDLEへ移行する場合が生じる。 When the UE transmits / receives data to / from one or a plurality of CCs in the RRC_CONNECTED state as described above with the base station (cell) corresponding to the aggregation, the UE may move away from the RRC_CONNECTED state and shift to RRC_IDLE.
 RRC_CONNECTED状態から離れてRRC_IDLEへ移行する場合、アグリゲーション対応の基地局(セル)は複数のCCに対応しているため、UEは、もし従来のように同じ基地局(セル)にキャンプオンを試みるようにした場合でも、基地局(セル)は特定できるが、該基地局(セル)のどのCCにキャンプオンしたら良いのか不明になってしまう。 When moving from RRC_CONNECTED state to RRC_IDLE, the aggregation-capable base station (cell) supports multiple CCs, so the UE attempts to camp on the same base station (cell) as before Even in this case, the base station (cell) can be specified, but it becomes unclear which CC of the base station (cell) should camp on.
 このような状況で、該基地局(セル)のCCのいずれかにキャンプオンする方法として、該基地局(セル)内の全CCをサーチしてベストCCを選択しキャンプオンする方法が考えられる。図23に、ひとつのセル内でのCCサーチのフローチャート例を示す。図に示すように、ST2301で基地局(セル)内の各CCについて、同期をとり、PCIを検出する。このステップは、該基地局(セル)と同期がとれており、PCIがわかっている場合は省略可能である。ST2302で各CCのRS検出、RS受信電力の測定を行い、ST2303で最も良いCCをベストCCとして選択する。ST2304では、該CCで送信されるPBCHを受信し、MIBを受信する。ST2305では、該CCで送信されるDL-SCHを受信してSIB1を受信し、ST2306で該基地局(セル)の該CC上にキャンプオンしてシステム情報とページング情報をモニタする。 In such a situation, as a method of camping on any CC of the base station (cell), a method of searching all CCs in the base station (cell), selecting the best CC, and camping on can be considered. . FIG. 23 shows a flowchart example of CC search within one cell. As shown in the drawing, in ST2301, each CC in the base station (cell) is synchronized to detect PCI. This step can be omitted if the base station (cell) is synchronized and the PCI is known. In ST2302, RS detection and RS reception power of each CC are performed, and the best CC is selected as the best CC in ST2303. In ST2304, PBCH transmitted by the CC is received and MIB is received. In ST2305, DL-SCH transmitted in the CC is received and SIB1 is received. In ST2306, camp-on is performed on the CC of the base station (cell), and system information and paging information are monitored.
 キャリアアグリゲーションに対応している一つの基地局(セル)内でのCCの選択/再選択方法を前記のようにして、RRC_CONNECTED状態から離れてRRC_IDLEへ移行する場合に、ここで開示した方法を用いることで、該基地局(セル)のCCのいずれかにキャンプオンすることが可能となる。これにより、どのCCにキャンプオンしたら良いのか特定できることになり、UEと基地局(セル)、ネットワーク間での通信を可能にすることができる。 When the CC selection / reselection method in one base station (cell) that supports carrier aggregation is shifted from RRC_CONNECTED state to RRC_IDLE as described above, the method disclosed here is used. Thus, it is possible to camp on one of the CCs of the base station (cell). As a result, it is possible to specify which CC should be camp-on, and communication between the UE, the base station (cell), and the network can be enabled.
 しかし、ここで開示した方法では、一つの基地局(セル)内の全てのCCをターゲットにベストCCのサーチを行いCCの選択/再選択処理を行わねばならず、制御遅延時間が増大し、UEの消費電力が増大する、という問題が生じてしまう。別の方法として、キャンプオンするセルを変更することも考えられるが、この場合も、UEはセルサーチを行いセル選択/再選択の処理を行なわねばならず、制御遅延時間が増大し、UEの消費電力が増大する、という問題が生じてしまう。 However, in the method disclosed here, the best CC must be searched for all CCs in one base station (cell) to perform CC selection / reselection processing, and the control delay time increases. The problem that the power consumption of UE increases will arise. Another possible method is to change the camp-on cell. In this case, too, the UE must perform a cell search and perform a cell selection / reselection process, which increases the control delay time, There arises a problem that power consumption increases.
 従って、キャリアアグリゲーション対応の基地局(セル)において、RRC_CONNECTED状態から離れてRRC_IDLE状態へ移行する際に、UEがキャンプオンするセルおよびCCの決定において、新たな効果的な方法が要求される。 Therefore, when the base station (cell) corresponding to carrier aggregation moves away from the RRC_CONNECTED state and shifts to the RRC_IDLE state, a new effective method is required in determining the cell and CC in which the UE camps on.
 上記のような課題を解決するため、本実施の形態では、UEは、RRC_CONNECTED時にいた最後の基地局(セル)の、データの送受信の可能なCCのうちのいずれか一つのCCにキャンプオンを試みるようにする。 In order to solve the above-described problem, in this embodiment, the UE camps on one of the CCs that can transmit and receive data of the last base station (cell) that was in RRC_CONNECTED. Try to try.
 図14に、データの送受信の可能なCCのうちのいずれか一つのCCにキャンプオンする場合の概念図を示す。(a)はRRC_CONNECTED状態、(b)はRRC_IDLE状態である。図14において、図13と同じ参照符号のものは、同一または相当するものを示すので、同じ参照符号の箇所の説明は省略する。 FIG. 14 shows a conceptual diagram when camping on any one of the CCs capable of transmitting and receiving data. (A) is an RRC_CONNECTED state, and (b) is an RRC_IDLE state. In FIG. 14, the same reference numerals as those in FIG. 13 denote the same or corresponding parts, and the description of the same reference numerals will be omitted.
 (a)で示すように、基地局(セル)(1303)はキャリアアグリゲーション対応なので、RRC_CONNECTED状態においてUEは複数のCC、CC#2(1305)、CC#4(1307)、CC#6(1309)上でデータの送受信を行っている。このような状況で、RRC_CONNECTED状態から離れてRRC_IDLEへ移行する場合、(b)で示すように、UEは、RRC_CONNECTED時にいた最後の基地局(セル)(1303)の、データの送受信の可能なCCのうちのいずれか一つのCCにキャンプオンを試みるようにする。ここではCC#2(1305)にキャンプオンを試みる。 As shown in (a), since the base station (cell) (1303) supports carrier aggregation, the UE in the RRC_CONNECTED state has a plurality of CCs, CC # 2 (1305), CC # 4 (1307), CC # 6 (1309). ) Data transmission / reception above. In such a situation, when moving away from the RRC_CONNECTED state and moving to RRC_IDLE, as shown in (b), the UE can transmit / receive data of the last base station (cell) (1303) that was at the time of RRC_CONNECTED. Try to camp on any one of the CCs. Here, camp-on is attempted at CC # 2 (1305).
 RRC_CONNECTED状態においてUEと基地局(セル)間でデータの送受信が可能なCCは、通信品質の良いCCとなると考えられる。少なくともデータの送受信が可能となる通信品質が得られている。従って、データの送受信が可能なCCのうちのいずれか一つのCCにキャンプオンを試みるようにすることで、RRC_CONNECTED状態から離れてRRC_IDLEへ移行する際に該セルの該CCに確実にキャンプオン可能になる。確実にキャンプオン可能とすることで、キャンプオンできなかった場合に生じるセルサーチ、セル選択/再選択処理、または全てのCCのサーチ、CCの選択/再選択処理を行わずに済むことになるため、制御遅延時間の削減が可能となり、さらには、UEの消費電力の削減も可能となる。 A CC capable of transmitting and receiving data between a UE and a base station (cell) in the RRC_CONNECTED state is considered to be a CC with good communication quality. Communication quality that enables at least data transmission and reception is obtained. Therefore, by trying to camp on any one of the CCs that can send and receive data, it is possible to camp on the CC of the cell when moving to RRC_IDLE away from the RRC_CONNECTED state. become. By making it possible to camp on reliably, it is not necessary to perform cell search, cell selection / reselection processing, or search of all CCs, CC selection / reselection processing that occurs when camp-on is not possible. Therefore, the control delay time can be reduced, and further, the power consumption of the UE can be reduced.
 キャリアアグリゲーション対応の基地局(セル)におけるRRC_IDLEとRRC_CONNECTED間の状態遷移の具体的な動作については3GPPにおいてまだ検討されておらず明確になっていない。従って、ここでは、RRC_IDLEとRRC_CONNECTED間の状態遷移を可能にする具体的な動作を開示する。 The specific operation of the state transition between RRC_IDLE and RRC_CONNECTED in the base station (cell) that supports carrier aggregation has not yet been examined and clarified in 3GPP. Accordingly, here, a specific operation that enables a state transition between RRC_IDLE and RRC_CONNECTED is disclosed.
 図19に、RRC_IDLEとRRC_CONNECTED間の状態遷移時のシーケンス例を示す。 FIG. 19 shows a sequence example at the time of state transition between RRC_IDLE and RRC_CONNECTED.
 図について説明する。RRC_IDLE状態のUEはST1901でセルまたは/かつCC(下りCC)のサーチを行い、ST1902である一つのセルの一つのCC(下りCC)上にキャンプオンする。ある一つのCC上にキャンプオンしたUEは、ST1903で該CC(上りCC(該下りCCに対応する(ペアバンドとなる)上りCC))を用いてRRC接続要求を基地局(セル)(eNB)に送信する。RRC接続要求を受信した基地局(セル)は、ST1904で該CC(下りCC)を用いてRRC接続セットアップをUEに送信する。RRC接続セットアップを受信したUEは、ST1905で該CC(上りCC)を用いてRRC接続セットアップ完了を基地局(セル)に対して送信する。これにより、RRC接続の設立成功となり、RRC_CONNECTED状態に遷移する。ST1906で、RRC_CONNECTED状態において、UEと基地局(セル)、コアネットワーク(CN)間でデータの送受信を行う。 The figure will be explained. The UE in the RRC_IDLE state searches for a cell and / or CC (downlink CC) in ST1901, and camps on one CC (downlink CC) of one cell in ST1902. In Step ST1903, the UE that camps on a certain CC uses the CC (uplink CC (uplink CC corresponding to the downlink CC (uplink CC corresponding to the downlink CC)) to send an RRC connection request to a base station (cell) (eNB ). The base station (cell) that has received the RRC connection request transmits an RRC connection setup to the UE using the CC (downlink CC) in ST1904. The UE that has received the RRC connection setup transmits an RRC connection setup completion to the base station (cell) using the CC (uplink CC) in ST1905. As a result, the establishment of the RRC connection is successful and the state transits to the RRC_CONNECTED state. In ST1906, data transmission / reception is performed between the UE, the base station (cell), and the core network (CN) in the RRC_CONNECTED state.
 アグリゲーション対応の基地局(セル)では、RRC_CONNECTED状態において、通信品質の良いCCを用いてキャリアアグリゲーションが行われるようにするため、データの送受信が可能なCCの追加/削除/入替えが行われる。追加/削除/入替えが行われるCCとして下りCCまたは/かつ上りCCが対象となる。 In the base station (cell) that supports aggregation, addition / deletion / replacement of CCs that can transmit and receive data is performed in order to perform carrier aggregation using CCs with good communication quality in the RRC_CONNECTED state. The CC to be added / deleted / replaced is a downlink CC and / or an uplink CC.
 なお、この際に、下りCCと対応する(ペアバンドとなる)上りCCを一対として追加/削除/入替えを行うようにしても良い。こうすることで、UE、基地局(セル)、コアネットワーク間で必要となるシグナリングの情報量を削減することが可能となる。 At this time, addition / deletion / replacement may be performed with a pair of uplink CCs (pair bands) corresponding to the downlink CCs. This makes it possible to reduce the amount of signaling information required between the UE, the base station (cell), and the core network.
 この追加/削除/入替えを行うCCは基地局(セル)によって設定される。該設定は、コアネットワークによって設定されても良い。この場合、設定したCCの追加/削除/入替え情報を基地局(セル)に通知するようにすれば良い。追加/削除/入替えが行われるCCを設定した基地局(セル)は、CCの追加/削除/入替えを行う。この際に、基地局は(セル)はST1907においてCCの追加/削除/入替え情報をUEに通知する。UEは該情報を用いて、RRC_CONNECTED時に送受信可能となるCCを認識することが可能となる。UEは該送受信可能なCC(下りCC)のスケジューリング情報を受信することによって、ST1908でCCの追加/削除/入替え後のCCにおいて基地局(セル)とのデータ送受信を可能とし、ST1909で該基地局(セル)を介してコアネットワークとのデータの送受信を可能とする。 The CC to be added / deleted / replaced is set by the base station (cell). The setting may be set by the core network. In this case, the addition / deletion / replacement information of the set CC may be notified to the base station (cell). A base station (cell) that sets a CC to be added / deleted / replaced adds / deletes / replaces a CC. At this time, the base station (cell) notifies the UE of CC addition / deletion / replacement information in ST1907. The UE can recognize the CC that can be transmitted and received at the time of RRC_CONNECTED using the information. By receiving scheduling information of CCs that can be transmitted and received (downlink CC), UE enables data transmission / reception with a base station (cell) in CC after addition / deletion / replacement of CC in ST1908, and the base station in ST1909 Data can be transmitted / received to / from the core network via a station (cell).
 次に、RRC_CONNECTEDからRRC_IDLEへの状態遷移について説明する。UEとコアネットワーク間でのデータ送受信が終了し、UEと基地局(セル)間でRRC_CONNECTED状態の必要がなくなった場合など、ST1910で基地局(セル)はUEに対して、RRC接続開放を送信する。これを受信したUEは、ST1911でRRC_CONNECTED状態から離れてRRC_IDLEへ移行するプロシージャを実行する。該プロシージャを実行したUEは、CONNECTED状態から離れてRRC_IDLEへ移行し、ST1912で、ひとつのセルのひとつのCCにキャンプオンする。 Next, state transition from RRC_CONNECTED to RRC_IDLE will be described. When the data transmission / reception between the UE and the core network is completed and the RRC_CONNECTED state is no longer necessary between the UE and the base station (cell), the base station (cell) transmits an RRC connection release to the UE in ST1910. To do. UE which received this performs the procedure which leaves | separates from RRC_CONNECTED state and transfers to RRC_IDLE in ST1911. The UE that has executed the procedure leaves the CONNECTED state, moves to RRC_IDLE, and camps on one CC of one cell in ST1912.
 ST1911において、本実施の形態において開示した方法を実行する。UEは、RRC_CONNECTED時にいた最後の基地局(セル)の、データの送受信の可能なCCのうちのいずれか一つのCCにキャンプオンを試みるようにする。こうすることで、UEは、RRC_CONNECTED状態から離れてRRC_IDLEへ移行した際に、ST1912で、選択したセルの選択したCCに確実にキャンプオンできる。従って、キャンプオンできなかった場合に生じるセルサーチ、セル選択/再選択処理、または全てのCCのサーチ、CCの選択/再選択処理を行わずに済むことになるため、制御遅延時間の削減が可能となり、さらには、UEの消費電力の削減も可能となる。 In ST1911, the method disclosed in the present embodiment is executed. The UE tries to camp on any one of the CCs capable of transmitting and receiving data of the last base station (cell) that was at the time of RRC_CONNECTED. By so doing, when leaving the RRC_CONNECTED state and moving to RRC_IDLE, the UE can reliably camp on the selected CC of the selected cell in ST1912. Therefore, since it is not necessary to perform cell search, cell selection / reselection processing, or search of all CCs and CC selection / reselection processing that occur when camp-on cannot be performed, control delay time can be reduced. In addition, the power consumption of the UE can be reduced.
 図24に、本発明に係る、キャンプオンを試みるセルおよびCCの決定方法についてのフローチャートの具体例を示す。 FIG. 24 shows a specific example of a flowchart regarding a method of determining a cell and CC for attempting camp-on according to the present invention.
 ST2401でUEは、各CC再選択に用いるパラメータを受信する。これらのパラメータのUEへの通知方法は、図19に示すST1910のRRC接続開放メッセージとともに(あるいは該メッセージの情報に含ませて)基地局(セル)より個別にUEに通知される。これに限らず、RRC_CONNECTED時に基地局(セル)またはコアネットワークからUEに対して個別に通知されても良い。例えば、ST1909で通知されても良い。これにより、RRC_CONNECTED時にデータ送受信可能となるCCが、動的に、UE個別に変更になったとしても、変更後のCCにおける各CC再選択に用いるパラメータの送受信が可能となる。また、この通知方法においては、必要なCCのCC再選択に用いるパラメータを動的に個別のUEに対して通知できるので、RRC_IDLEへ移行する際にシステムとして最適なパラメータをUEに通知することが可能となる。 In ST2401, the UE receives parameters used for each CC reselection. The method for notifying the UE of these parameters is individually notified to the UE from the base station (cell) together with (or included in the information of the message) the RRC connection release message of ST1910 shown in FIG. Not limited to this, the UE may be notified individually from the base station (cell) or the core network at the time of RRC_CONNECTED. For example, notification may be made in ST1909. As a result, even if the CC that can transmit and receive data during RRC_CONNECTED is dynamically changed for each UE, it is possible to transmit and receive parameters used for each CC reselection in the CC after the change. In addition, in this notification method, parameters used for CC reselection of necessary CCs can be dynamically notified to individual UEs. Therefore, when shifting to RRC_IDLE, optimal parameters as a system can be notified to UEs. It becomes possible.
 また、別の通知方法として、該基地局(セル)にST1902でキャンプオンした際に、システム情報に含めて、該基地局(セル)から報知されるようにしても良い。この場合、該基地局(セル)が対応する全CCの各CC再選択に用いるパラメータとすると良い。これにより、UEは、例えRRC_CONNECTEDで該パラメータの受信がなかったとしても、RRC_IDLE時に受信した該パラメータを用いて、ST1911を実行することが可能となる。 As another notification method, when the base station (cell) camps on in ST1902, it may be included in the system information and broadcast from the base station (cell). In this case, the base station (cell) may be a parameter used for each CC reselection of all CCs to which it corresponds. This allows the UE to execute ST1911 using the parameter received at the RRC_IDLE even if the parameter is not received by RRC_CONNECTED.
 各CC再選択に用いるパラメータの具体例として、該CCが属する基地局(セル)のセル再選択に用いるパラメータとしても良い。例えば、CC再選択を行うか否かの閾値などである。具体的には、S_intrasearch、Q_Hyst、Q_offset、T_reselection、S_nonintrasearch、cellReselectionPriorityなどがある。また、S_intrasearchのみであっても良い。この場合、全CC共通に同じパラメータを用い、各パラメータを以下のようにしても良い。 As a specific example of a parameter used for each CC reselection, a parameter used for cell reselection of a base station (cell) to which the CC belongs may be used. For example, a threshold value for determining whether or not to perform CC reselection. Specifically, there are S_intrasearch, Q_Hyst, Q_offset, T_reselection, S_nonintrasearch, cellReselectionPriority, and the like. Further, only S_intrasearch may be used. In this case, the same parameters may be used in common for all CCs, and each parameter may be as follows.
 S_intrasearchは同周波数における測定のための閾値である。 S_intrasearch is a threshold for measurement at the same frequency.
 Q_Hystはランキング基準におけるヒステリシス値である。 Q_Hyst is the hysteresis value based on the ranking criteria.
 Q_offsetは二つのセル間のオフセット値である。 Q_offset is the offset value between two cells.
 T_reselectionはセル再選択タイマ値である。 T_reselection is the cell reselection timer value.
 S_nonintrasearchは異周波数と異システムにおける測定のための閾値である。 S_nonintrasearch is a threshold for measurement at different frequencies and different systems.
 CellReselectionPriorityはキャリア周波数の絶対優先度である。 CellReselectionPriority is the absolute priority of the carrier frequency.
 こうすることで、基地局(セル)またはコアネットワークからUEに通知しなければならない情報量、シグナリング容量を削減することが可能となる。 This makes it possible to reduce the amount of information and signaling capacity that must be notified to the UE from the base station (cell) or core network.
 別の方法として、CC毎に上記のパラメータを設けても良い。CC毎に値が設定可能となる。 Alternatively, the above parameters may be provided for each CC. A value can be set for each CC.
 また別の方法として、各CCの識別子を設けて該パラメータとともに通知するようにしても良い。該パラメータには、一緒に通知するCCの識別子で示したCCについての値を入れるようにする。こうすることで、本方法においてもCC毎の値が設定可能となる。 As another method, an identifier of each CC may be provided and notified together with the parameter. The parameter is set to a value for the CC indicated by the identifier of the CC notified together. By doing so, the value for each CC can be set also in this method.
 ST2402で、UEは、RRC_CONNECTED時にいた最後のセルを選択する。ST2403でUEは、該セルのデータの送受信可能なCCのうちで、本プロシージャ(ST1911)においてまだキャンプオンを試みていないCCが存在するか否かを判定する。キャンプオンを試みていないCCが存在する場合、ST2404でUEはキャンプオンを試みていないCCのうちのいずれか一つのCCを選択し、ST2405で該選択したCCにキャンプオンを試みる。ST2405(あるいはST2406でも良い)で、UEは、キャンプオンを試みたCCの受信レベル(RSRPなど)を測定する。ST2406においてUEはさらにCCの再選択を行うか否か判断する。さらにCCの再選択を行うか否かの判断の具体例としては、測定した該CCの受信レベルがパラメータ(S_intrasearch)より大きい場合はさらにCC再選択を行わないと判断する。さらにCC再選択を行わないと判断した場合、UEはST2407へ移行して、該選択したCCへキャンプオンする。ST2406で測定した該CCの受信レベルがパラメータ(S_intrasearch)以下の場合、さらにCCの再選択を行うと判断し、UEは、ST2403へ移行して、再度本プロシージャ(ST1911)においてまだキャンプオンを試みていないCCが存在するか否か判断する。キャンプオンを試みていないCCが存在する場合はST2404へ移行して前述の処理を行う。キャンプオンを試みていないCCが存在しない場合は、ST2408へ移行して、他のセルまたは/かつCCのサーチおよび他のセルまたは/かつCCの再選択の処理を行う。該他のセルまたは/かつCCのサーチおよび他のセルまたは/かつCCの再選択の処理は、図23で開示した方法を用いれば良い。ST2408での他のセルまたは/かつCCのサーチ、再選択処理後、ST2409でUEは選択したセルまたは/かつCCへキャンプオンする。ST2407、ST2409は、図19に示すST1912に相当する。 In ST2402, the UE selects the last cell that was in RRC_CONNECTED. In ST2403, the UE determines whether there is a CC that has not yet attempted camp-on in this procedure (ST1911) among CCs that can transmit and receive the data of the cell. If there is a CC that has not attempted camp-on, the UE selects one of the CCs that has not attempted camp-on in ST2404, and attempts to camp-on the selected CC in ST2405. In ST 2405 (or ST 2406 may be used), the UE measures the reception level (RSRP or the like) of the CC attempting to camp on. In ST2406, the UE determines whether or not to reselect CC. Further, as a specific example of determining whether or not to perform CC reselection, when the measured reception level of the CC is larger than the parameter (S_intrasearch), it is determined that CC reselection is not further performed. If it is determined that CC reselection is not performed, the UE moves to ST2407 and camps on the selected CC. If the reception level of the CC measured in ST2406 is equal to or less than the parameter (S_intrasearch), it is determined that CC reselection is performed, and the UE moves to ST2403 and tries to camp on again in this procedure (ST1911). It is determined whether or not there is a CC that is not present. If there is a CC that has not attempted camp-on, the process proceeds to ST2404 and the above-described processing is performed. When there is no CC that has not attempted camp-on, the mobile terminal makes a transition to ST 2408 and performs a process of searching for another cell or / and CC and reselecting another cell or / and CC. The other cell or / and CC search and the other cell or / and CC reselection process may use the method disclosed in FIG. After the search and reselection process of another cell or / and CC in ST2408, the UE camps on the selected cell or / and CC in ST2409. ST2407 and ST2409 correspond to ST1912 shown in FIG.
 本実施の形態で開示したように、ST2402からST2405において、UEは、RRC_CONNECTED時にいた最後の基地局(セル)の、データの送受信の可能なCCのうちのいずれか一つのCCにキャンプオンを試みるようにすることで、該CCにキャンプオンする可能性が高くなる。これは、ST2406の判断処理において該CCの受信レベルは、再選択の閾値(S_intrasearch)よりも大きくなる可能性が高いためである。前述したように、RRC_CONNECTED状態においてUEと基地局(セル)間でデータの送受信が可能なCCは、通信品質の良いCCとなると考えられるため、少なくともデータの送受信が可能となる通信品質が得られているからである。 As disclosed in the present embodiment, in ST2402 to ST2405, the UE attempts to camp on any one of the CCs capable of transmitting and receiving data of the last base station (cell) at the time of RRC_CONNECTED. By doing so, the possibility of camping on the CC increases. This is because the reception level of the CC is likely to be larger than the reselection threshold (S_intrasearch) in the determination process of ST2406. As described above, a CC capable of transmitting / receiving data between the UE and the base station (cell) in the RRC_CONNECTED state is considered to be a CC having a good communication quality, so that at least a communication quality capable of transmitting / receiving data is obtained. Because.
 従って、ST2406で再度CCの再選択処理に移行する可能性は低く、さらには、ST2408で他のセルまたは/かつCCのサーチおよび他のセルまたは/かつCCの再選択の処理へ移行する可能性はさらに低くなる。従って、RRC_CONNECTED状態から離れてRRC_IDLEへ移行する際に選択したセルおよびCCへのキャンプオンを確実にし、キャンプオンできなかった場合に生じるセルサーチ、セル選択/再選択処理、または全てのCCのサーチ、CCの選択/再選択処理を行わずに済むことになるため、制御遅延時間の削減が可能となり、さらには、UEの消費電力の削減も可能となる。 Therefore, it is unlikely that the mobile station again shifts to the CC reselection process in ST2406, and further, the mobile station may move to another cell or / and CC search and another cell or / and CC reselection process in ST2408. Is even lower. Therefore, cell search, cell selection / reselection processing, or search of all CCs that occurs when camp-on cannot be ensured by ensuring camp-on to the selected cell and CC when moving from RRC_CONNECTED state to RRC_IDLE Since it is not necessary to perform the CC selection / reselection process, the control delay time can be reduced, and further, the power consumption of the UE can be reduced.
 データの送受信の可能なCCとして、例えば、非特許文献10に示されるキャンディデートコンポーネントキャリアセット内のCCとしても良い。同様の効果が得られる。 As a CC capable of transmitting and receiving data, for example, a CC in a candy component carrier set shown in Non-Patent Document 10 may be used. Similar effects can be obtained.
 上述した方法では、データの送受信の可能なCCのうちのいずれか一つのCCにキャンプオンを試みるようにしたが、UEは、RRC_CONNECTEDを離れる際に実際にデータの送受信を行っていたCCのうちのいずれか一つのCCにキャンプオンを試みるようにしても良い。 In the above-described method, the camp-on is attempted to any one of the CCs capable of transmitting and receiving data, but the UE actually transmits and receives data when leaving RRC_CONNECTED. You may make it try camping on any one of CC.
 こうすると、UEは、RRC_IDLEへ移行する直前の各CCの通信品質を認識できることになる。RRC_CONNECTEDを離れてRRC_IDLEへ移行する際に、さらに確実にキャンプオンすることが可能となる。従って、制御遅延時間のさらなる削減効果、UEの消費電力のさらなる削減効果が得られることになる。 In this way, the UE can recognize the communication quality of each CC immediately before moving to RRC_IDLE. When leaving RRC_CONNECTED and moving to RRC_IDLE, it becomes possible to camp on more reliably. Therefore, a further reduction effect of the control delay time and a further reduction effect of the power consumption of the UE can be obtained.
 データの送受信を行っていたCCとして、例えば、非特許文献10に示されるスケジューリングコンポーネントキャリアとしても良い。同様の効果が得られる。 As a CC that has been transmitting and receiving data, for example, a scheduling component carrier shown in Non-Patent Document 10 may be used. Similar effects can be obtained.
 なお、上述の、データの送受信の可能なCC、または、実際にデータの送受信を行うCCは、ネットワークまたは基地局(セル)によって、基地局(セル)の負荷状況や各CCの電波伝搬環境に応じて設定されることが可能となる。このため、各CCの通信品質を考慮しながらCC間での負荷分散が行えるようになり、基地局(セル)全体としてのスループットの向上を図ることが可能となる。 The CC that can transmit and receive data or the CC that actually transmits and receives data depends on the load status of the base station (cell) and the radio wave propagation environment of each CC depending on the network or base station (cell). It can be set accordingly. For this reason, it becomes possible to perform load distribution among CCs in consideration of the communication quality of each CC, and it is possible to improve the throughput of the entire base station (cell).
 また、上述の、データの送受信の可能なCC、または、実際にデータの送受信を行うCCは、個別のUE毎に設定されても良い。こうすることで、基地局(セル)と個別のUE間の電波伝搬環境に応じてCCを設定することが可能となるため、個々のUEに対して良好な受信品質が得られる効果がある。 Also, the CC capable of transmitting / receiving data or the CC that actually transmits / receives data may be set for each individual UE. By doing so, it becomes possible to set the CC according to the radio wave propagation environment between the base station (cell) and the individual UE, and thus there is an effect that good reception quality can be obtained for each UE.
 上述したいずれか一つのCCとして、PBCHを有するCCとしても良い。こうすることで、UEは、RRC_CONNECTEDを離れRRC_IDLE移行して該CCにキャンプオンした際に、新たにPBCHによって送信される報知情報を受信可能とすることができる。セルの構成などの変更により該報知情報が変更されるような場合に、ネットワークまたは基地局(セル)はUEにRRC_IDLEへの移行指示を通知し該報知情報を新たに受信させるようにしても良い。UEは新たな報知情報を受信できるためセルの構成のミスマッチ等による通信異常を無くすことが可能となり、安定した通信システムを供給することが可能となる。 Any one CC described above may be a CC having PBCH. In this way, when the UE leaves RRC_CONNECTED, shifts to RRC_IDLE and camps on the CC, the UE can receive broadcast information newly transmitted by the PBCH. When the broadcast information is changed due to a change in cell configuration or the like, the network or the base station (cell) may notify the UE of an instruction to shift to RRC_IDLE and newly receive the broadcast information. . Since the UE can receive new broadcast information, it is possible to eliminate a communication abnormality due to a mismatch in cell configuration, and to supply a stable communication system.
 上述したいずれか一つのCCとして、SSを有するCCとしても良い。こうすることで、UEは、RRC_CONNECTEDを離れRRC_IDLE移行して該CCにキャンプオンした際に、新たに同期を取り直すことが可能となる。これにより、例えば、該CCが、データの送受信の可能なCCのうちで実際にスケジューリングされていないCCであった場合や、または、該CCがRRC_CONNECTED時にDRX動作を行なっていた場合など、UEがデータを受信していない期間が長い場合に、RRC_IDLE移行した際にさらにUEがデータを受信していない期間が長くなり同期がはずれてしまうようなことを防ぐことが可能となる。従って、安定した通信システムを供給することが可能となる。 Any one CC described above may be a CC having an SS. In this way, when the UE leaves RRC_CONNECTED, shifts to RRC_IDLE, and camps on the CC, it becomes possible to newly synchronize. Thereby, for example, when the CC is a CC that is not actually scheduled among CCs that can transmit and receive data, or when the CC performs a DRX operation at the time of RRC_CONNECTED, the UE When the period in which data is not received is long, it is possible to prevent the UE from receiving a long period of data when RRC_IDLE transitions and becoming out of synchronization. Therefore, it is possible to supply a stable communication system.
 上述したいずれか一つのCCとして、RRC_CONNECTED時に必ずメジャメントまたはモニタするCCとしても良い。UEは、RRC_CONNECTEDを離れる際に該CCをモニタすることが可能な状態にいることになる。このため、RRC_IDLEへ移行して該セルにキャンプオンを試みる場合も、確実にキャンプオン可能となる。従って、制御遅延時間の削減効果、UEの消費電力の削減効果が得られことになる。 Any one of the CCs described above may be a CC that is always measured or monitored during RRC_CONNECTED. The UE will be in a state where it can monitor the CC when leaving RRC_CONNECTED. For this reason, even when shifting to RRC_IDLE and attempting to camp on the cell, it is possible to camp on reliably. Therefore, the effect of reducing the control delay time and the effect of reducing the power consumption of the UE are obtained.
 RRC_CONNECTED時に必ずメジャメントまたはモニタするCCとして、例えば、非特許文献10に示されるアンカーキャリアとしても良い。同様の効果が得られる。 The CC that is always measured or monitored at the time of RRC_CONNECTED may be, for example, an anchor carrier shown in Non-Patent Document 10. Similar effects can be obtained.
 上述したいずれか一つのCCとして、RRC_CONNECTEDを離れる時点で最近の受信品質が最も良いCCとしても良い。こうすることで、受信品質の最も良いCCにキャンプオンすることが可能となり、キャンプオン不可能となる可能性が最も低くなる。このため、制御遅延時間の削減、UEの消費電力の削減においてさらに効果的になる。 As any one of the CCs described above, the CC having the best recent reception quality at the time of leaving RRC_CONNECTED may be used. By doing so, it is possible to camp on the CC having the best reception quality, and the possibility of being unable to camp on is the lowest. For this reason, it becomes more effective in the reduction of control delay time and the reduction of the power consumption of UE.
 RRC_CONNECTEDを離れる際に、各CCの受信品質を測定するようにしても良い。こうすることで、RRC_CONNECTEDを離れる時点で、UEがキャンプオンするのに最適となるCCを判断することが可能となる。従って、制御遅延時間の削減、UEの消費電力の削減において最も効果的になる。 The reception quality of each CC may be measured when leaving RRC_CONNECTED. This makes it possible to determine the CC that is optimal for the UE to camp on when leaving RRC_CONNECTED. Therefore, it is most effective in reducing the control delay time and the power consumption of the UE.
 RRC_CONNECTEDを離れる際に測定するCCとして、最後にRRC_CONNECTEDにいたセルの全てのCCでなく、データの送受信可能なCCとしても良いし、実際にデータを送受信しているCCとしても良い。こうすることで、全てのCCのメジャメントを行う必要が無くなるため、UEの消費電力の削減を図ることが可能である。 As a CC to be measured when leaving RRC_CONNECTED, it may be a CC that can transmit and receive data instead of all the CCs of the cell that was last in RRC_CONNECTED, or a CC that is actually transmitting and receiving data. By doing so, it is not necessary to measure all CCs, and it is possible to reduce the power consumption of the UE.
 受信品質を測定するCCを基地局(セル)あるいはコアネットワークがUEに通知するようにしても良い。通知する方法としては、各CC再選択に用いるパラメータのUEへの通知方法を適用できる。基地局(セル)またはコアネットワークが、受信品質を測定するCCを、各CCの接続負荷状況、UEのケーパビリティ、UEと各CCとの通信品質等を考慮して決める。これにより、基地局(セル)全体、システム全体のスループットの向上を図ることができる。 The base station (cell) or core network may notify the UE of the CC for measuring the reception quality. As a notification method, a method for notifying the UE of parameters used for each CC reselection can be applied. The base station (cell) or the core network determines the CC for measuring the reception quality in consideration of the connection load status of each CC, the capability of the UE, the communication quality between the UE and each CC, and the like. Thereby, the throughput of the entire base station (cell) and the entire system can be improved.
 実施の形態1変形例1. 
 本変形例では、実施の形態1で述べた課題を解決する別の方法として、UEは、RRC_CONNECTED時にいた最後の基地局(セル)の、RRC_CONNECTED時にデータの送受信の可能なCCと同じ周波数バンドに属するCCのなかのいずれか一つのCCにキャンプオンを試みるようにする。
First Embodiment Modification 1
In this modified example, as another method for solving the problem described in the first embodiment, the UE uses the same frequency band as the CC that can transmit and receive data at the time of RRC_CONNECTED of the last base station (cell) that was at the time of RRC_CONNECTED. Try to camp on any one of the CCs to which it belongs.
 図15に、同じ周波数バンドに属するCCのなかのいずれか一つのCCにキャンプオンする場合の概念図を示す。(a)はRRC_CONNECTED状態、(b)はRRC_IDLE状態である。図15において、図13と同じ参照符号のものは、同一または相当するものを示すので、同じ参照符号の箇所の説明は省略する。 FIG. 15 shows a conceptual diagram when camping on any one of the CCs belonging to the same frequency band. (A) is an RRC_CONNECTED state, and (b) is an RRC_IDLE state. In FIG. 15, the same reference numerals as those in FIG. 13 indicate the same or corresponding parts, and the description of the same reference numerals is omitted.
 図15において、CC#1(1304)とCC#2(1305)は周波数バンドIに属し、CC#3(1306)は周波数バンドIIに属し、CC#4(1307)は周波数バンドIIIに属し、CC#5(1308)とCC#6(1309)とCC#7(1310)は周波数バンドIVに属する。ここでいう周波数バンドは、物理特性または無線特性が共通するCCの集合を示す。 In FIG. 15, CC # 1 (1304) and CC # 2 (1305) belong to frequency band I, CC # 3 (1306) belongs to frequency band II, CC # 4 (1307) belongs to frequency band III, CC # 5 (1308), CC # 6 (1309), and CC # 7 (1310) belong to the frequency band IV. The frequency band here indicates a set of CCs having common physical characteristics or radio characteristics.
 (a)で示すように、基地局(セル)(1303)はキャリアアグリゲーション対応なので、RRC_CONNECTED状態においてUEは複数のCC、CC#2(1305)、CC#4(1307)、CC#6(1309)上でデータの送受信を行っている。このような状況で、RRC_CONNECTED状態から離れてRRC_IDLEへ移行する場合、(b)で示すように、UEは、RRC_CONNECTED時にいた最後の基地局(セル)(1303)の、データの送受信の可能なCCと同じ周波数バンドに属するCCのうちのいずれか一つのCCにキャンプオンを試みるようにする。ここではCC#5(1308)にキャンプオンを試みる。(a)で示すように、RRC_CONNECTED状態においてデータの送受信の可能なCCの一つにCC#6(1309)がある。このCC#6(1309)は周波数バンドIVに属する。同じく周波数バンドIVに属するCCとして、CC#5(1308)、CC#7(1310)がある。従ってUEはこのうちのCC#5(1308)にキャンプオンを試みるようにする。 As shown in (a), since the base station (cell) (1303) supports carrier aggregation, the UE in the RRC_CONNECTED state has a plurality of CCs, CC # 2 (1305), CC # 4 (1307), CC # 6 (1309). ) Data transmission / reception above. In such a situation, when moving away from the RRC_CONNECTED state and moving to RRC_IDLE, as shown in (b), the UE can transmit and receive data of the last base station (cell) (1303) that was in RRC_CONNECTED. And try to camp on any one of the CCs belonging to the same frequency band. Here, a camp-on is tried to CC # 5 (1308). As shown in (a), CC # 6 (1309) is one of CCs that can transmit and receive data in the RRC_CONNECTED state. This CC # 6 (1309) belongs to the frequency band IV. Similarly, CCs belonging to the frequency band IV include CC # 5 (1308) and CC # 7 (1310). Therefore, the UE attempts to camp on CC # 5 (1308).
 RRC_IDLEとRRC_CONNECTED間の状態遷移時のシーケンスは、図19と同じで良い。また、キャンプオンを試みるセルおよびCCの決定方法は、図24のST2403を、データの送受信の可能なCCと同じ周波数バンドに属するCCのうちでキャンプオンを試みていないCCは存在するか否かで判断するように変更すれば良い。 The sequence at the time of state transition between RRC_IDLE and RRC_CONNECTED may be the same as in FIG. In addition, the determination method of the cell and CC to attempt camp-on is based on whether or not there is a CC that does not attempt camp-on among CCs belonging to the same frequency band as the CC capable of transmitting and receiving data in ST2403 of FIG. It is sufficient to change so that it is judged by.
 RRC_CONNECTED状態においてUEと基地局(セル)間でデータの送受信が可能なCCは、通信品質の良いCCとなると考えられる。少なくともデータの送受信が可能となる通信品質が得られている。 A CC capable of transmitting and receiving data between a UE and a base station (cell) in the RRC_CONNECTED state is considered to be a CC with good communication quality. Communication quality that enables at least data transmission and reception is obtained.
 一方、同じ周波数バンドに属するCCにおいては、周波数が近接しているため電波伝搬環境は殆ど同じと考えられる。従って、同じ周波数バンドに属するCCにおける受信品質は殆ど同じと考えられる。 On the other hand, in CCs belonging to the same frequency band, the radio wave propagation environment is considered to be almost the same because the frequencies are close to each other. Therefore, the reception quality in CCs belonging to the same frequency band is considered to be almost the same.
 従って、データの送受信が可能なCCと同じ周波数バンドに属するCCのなかのいずれか一つのCCにキャンプオンを試みるようにすることで、RRC_CONNECTED状態から離れてRRC_IDLEへ移行する際に該セルの該CCに確実にキャンプオン可能になる。これにより、実施の形態1と同様の効果を得ることが可能となる。 Therefore, by trying to camp on any one of the CCs belonging to the same frequency band as the CC capable of transmitting and receiving data, the cell of the cell is changed when moving from the RRC_CONNECTED state to the RRC_IDLE. It will be possible to camp on the CC. Thereby, it is possible to obtain the same effect as in the first embodiment.
 さらに、キャンプオンを試みる対象となるCC数が増えることにより、UEにおいて柔軟な制御が可能となる。 Furthermore, flexible control is possible in the UE by increasing the number of CCs to which camp-on is attempted.
 さらに、基地局(セル)内のCC間での負荷分散が可能となる、という効果が得られる。 Furthermore, an effect that load distribution among CCs in the base station (cell) becomes possible is obtained.
 実施の形態1変形例2.
 実施の形態1では、UEは、RRC_CONNECTED時にいた最後の基地局(セル)の、データの送受信の可能なCCのうちのいずれか一つのCCの選択はUEが行うようにしていた。こうすることによって、UEの通信状況(例えば各CC(下りCCかつ/または上りCC)の通信品質)に応じてCCを選択することが可能となるからである。
First Modification Example 2
In the first embodiment, the UE selects any one of the CCs capable of transmitting and receiving data of the last base station (cell) that was in RRC_CONNECTED. This is because the CC can be selected according to the communication status of the UE (for example, the communication quality of each CC (downlink CC and / or uplink CC)).
 本変形例では、別の方法として、基地局(セル)あるいはコアネットワークが選択して、UEに通知するようにする方法を開示する。この場合、どのCCを選択するかの通知方法は、実施の形態1で開示した、各CC再選択に用いるパラメータのUEへの通知方法を適用できる。また、該パラメータとともに、どのCCを選択するかを通知するようにしておいても良い。 In this modification, as another method, a method in which a base station (cell) or a core network selects and notifies the UE is disclosed. In this case, the method for notifying which CC to select can be applied to the method for notifying the UE of the parameters used for each CC reselection disclosed in the first embodiment. In addition, the CC may be notified along with the parameter.
 一例として、図20に、基地局(セル)がキャンプオンを試みるセルかつ/またはCCをUEに通知する場合のシーケンス図を示す。図20において、図19と同じ参照符号のものは、同一または相当するものを示すので、同じ参照符号の箇所の説明は省略する。UEがRRC_CONNECTEDの状態において、基地局(セル)からUEに通知する場合である。基地局(セル)はRRC接続開放メッセージをUEに通知する以前に、該UEとの通信状況を判断してRRC_IDLEへ移行する際にキャンプオンを試みるセルとCCを決定し、ST2001で該セルと該CCの情報を通知する。該セルと該CCの情報として、該セルと該CCを特定できる情報、例えば、セルの識別子(PCI、cell-ID)、CCの識別子(CCナンバ、キャリア周波数、CCのキャリアのUARFCN(UTRA Absolute Radio Frequency Channel Number)など)などとすれば良い。 As an example, FIG. 20 shows a sequence diagram in the case where the base station (cell) notifies the UE of a cell and / or CC for which camp-on is attempted. In FIG. 20, the same reference numerals as those in FIG. 19 denote the same or corresponding parts, and the description of the same reference numerals is omitted. This is a case where the UE notifies the UE from the base station (cell) in the state of RRC_CONNECTED. Before notifying the UE of the RRC connection release message, the base station (cell) determines the communication status with the UE and determines the cell and CC to try to camp on when moving to RRC_IDLE. The CC information is notified. Information that can identify the cell and the CC, such as cell identifier (PCI, cell-ID), CC identifier (CC number, carrier frequency, CC carrier UARFCN (UTRA Absolute) Radio Frequency Channel Number) etc.
 CCの情報として、ペアバンドである下りCCと上りCCの情報ではなく、下りCCのみの情報であっても良い。この場合、下りCCにキャンプオン後に該下りCCから対応する上りCCの情報を得るようにしておけば良い。例えば、該下りCCにおいてシステム情報として報知するようにしておけば良い。これにより、個別のUEに対する制御信号を削減可能となり、無線リソースの有効活用という効果を得ることが出来る。 As CC information, information on only downlink CCs may be used instead of information on downlink CCs and uplink CCs that are pair bands. In this case, information on the corresponding uplink CC may be obtained from the downlink CC after camping on the downlink CC. For example, it may be reported as system information in the downlink CC. Thereby, the control signal with respect to individual UE can be reduced, and the effect of effective utilization of radio resources can be obtained.
 セルの情報は無くてもよく、RRC_CONNECTED時にいた最後のセル、とあらかじめ決めておけば良い。これにより、個別のUEに対する制御信号を削減可能となり、無線リソースの有効活用という効果を得ることが出来る。 The cell information may be omitted, and it may be determined in advance as the last cell at the time of RRC_CONNECTED. Thereby, the control signal with respect to individual UE can be reduced, and the effect of effective utilization of radio resources can be obtained.
 基地局(セル)またはコアネットワークが、UEがキャンプオンを試みるセルとCCを決定する際、各CCの接続負荷状況、UEのケーパビリティ、UEと各CCとの通信品質等を考慮して決める。 When a base station (cell) or a core network determines a cell and a CC in which the UE attempts to camp on, determine the connection load status of each CC, UE capability, communication quality between the UE and each CC, and the like. .
 本変形例で開示した方法とすることで、実施の形態1で述べた効果に加えて、基地局(セル)あるいはコアネットワーク等の外部から、UEがキャンプオンを試みるセルとCCを決定することができるので、セル全体、システム全体として通信品質の向上、スループットの向上を図れる、という効果が得られる。 By adopting the method disclosed in the present modification, in addition to the effects described in the first embodiment, a UE and a cell to be camped on are determined from the outside such as a base station (cell) or a core network. Therefore, it is possible to improve the communication quality and the throughput of the entire cell and the entire system.
 実施の形態1変形例3.
 本変形例では、実施の形態1で述べた課題を解決する別の方法として、UEは、RRC_CONNECTED時にいた最後の基地局(セル)の、RRC_IDLE時にキャンプオン可能なCCのうちのいずれか一つのCCにキャンプオンを試みるようにする。
Modification 1 of Embodiment 1
In the present modification, as another method for solving the problem described in the first embodiment, the UE may use any one of CCs that can camp on at the time of RRC_IDLE of the last base station (cell) that was at the time of RRC_CONNECTED. Try to camp on CC.
 図16に、RRC_IDLE時にキャンプオン可能なCCのうちのいずれか一つのCCにキャンプオンする場合の概念図を示す。(a)はRRC_CONNECTED状態、(b)はRRC_IDLE状態である。図16において、図13と同じ参照符号のものは、同一または相当するものを示すので、同じ参照符号の箇所の説明は省略する。 FIG. 16 shows a conceptual diagram when camping on any one of CCs that can be camp-on at the time of RRC_IDLE. (A) is an RRC_CONNECTED state, and (b) is an RRC_IDLE state. In FIG. 16, the same reference numerals as those in FIG. 13 indicate the same or corresponding parts, and the description of the same reference numerals will be omitted.
 (b)において、CC#1(1304)、CC#3(1306)、CC#4(1307)、CC#6(1309)は、RRC_IDLE時にキャンプオン可能なCCとする。 (B), CC # 1 (1304), CC # 3 (1306), CC # 4 (1307), and CC # 6 (1309) are CCs that can be camp-on at the time of RRC_IDLE.
 本発明において、RRC_IDLE時にキャンプオン可能なCCとは、RRC_IDLE時にキャンプオンが禁じられた(例えば、barredされた)CCでないCCとする。 In the present invention, a CC that can be camp-on at the time of RRC_IDLE is a CC that is not CC (for example, barred) where camp-on is prohibited at the time of RRC_IDLE.
 (a)で示すように、基地局(セル)(1303)はキャリアアグリゲーション対応なので、RRC_CONNECTED状態においてUEは複数のCC、CC#2(1305)、CC#4(1307)、CC#6(1309)上でデータの送受信を行っている。このような状況で、RRC_CONNECTED状態から離れてRRC_IDLEへ移行する場合、(b)で示すように、UEは、RRC_CONNECTED時にいた最後の基地局(セル)(1303)のRRC_IDLE時にキャンプオン可能なCCのうちのいずれか一つのCCにキャンプオンを試みるようにする。ここではCC#3(1306)にキャンプオンを試みる。 As shown in (a), since the base station (cell) (1303) supports carrier aggregation, the UE in the RRC_CONNECTED state has a plurality of CCs, CC # 2 (1305), CC # 4 (1307), CC # 6 (1309). ) Data transmission / reception above. In this situation, when the UE moves away from the RRC_CONNECTED state and moves to RRC_IDLE, as shown in (b), the UE is able to camp on at the time of RRC_IDLE of the last base station (cell) (1303) that was at the time of RRC_CONNECTED. Try to camp on one of the CCs. Here, camp-on is attempted at CC # 3 (1306).
 RRC_IDLEとRRC_CONNECTED間の状態遷移時のシーケンスは、図19と同じで良い。また、キャンプオンを試みるセルおよびCCの決定方法は、図24のST2403を、RRC_IDLE時にキャンプオン可能なCCのうちでキャンプオンを試みていないCCは存在するか否かで判断するように変更すれば良い。 The sequence at the time of state transition between RRC_IDLE and RRC_CONNECTED may be the same as in FIG. In addition, the determination method of cells and CCs that attempt camp-on is changed from ST2403 in FIG. 24 to determine whether there is a CC that does not attempt camp-on among CCs that can be camp-on at the time of RRC_IDLE. It ’s fine.
 RRC_IDLE時にキャンプオン可能なCC情報は、あらかじめ決められていても良い。こうすることで、該情報の通知に特別なシグナリングは不要になるため、シグナリング負荷の低減がはかれる。 CC information that can be camp-on at the time of RRC_IDLE may be determined in advance. By doing so, special signaling is not required for the notification of the information, so that the signaling load can be reduced.
 この他にも、RRC_CONNECTED時にデータの送受信を行っているCC上でUEに個別に通知されても良いし、または、RRC_CONNECTED時にデータの送受信を行っているCCまたはその他のCCを通して報知されても良い。通知方法としては、RRCシグナリングやMACシグナリングのメッセージやヘッダにのせて基地局(セル)からUEへ通知する方法、システム情報にのせて基地局(セル)からUEへ報知する方法、PDCCHにのせて基地局(セル)からUEへ報知する方法などがある。 In addition, the UE may be individually notified on the CC that is transmitting and receiving data at the time of RRC_CONNECTED, or may be notified through the CC that is transmitting and receiving data at the time of RRC_CONNECTED or other CCs. . As a notification method, a method of notifying the UE from the base station (cell) on a message or header of RRC signaling or MAC signaling, a method of notifying the UE from the base station (cell) on system information, and PDCCH There is a method of reporting from the base station (cell) to the UE.
 該キャンプオン可能なCC情報は、基地局からUEへRRC_CONNECTION_RELEASEメッセージを通知するよりも前に、あるいはそれと一緒に通知しておく。RRC_IDLE時にキャンプオン可能なCC情報の通知方法は、実施の形態1で開示した、各CC再選択に用いるパラメータのUEへの通知方法を適用できる。また、該パラメータとともに通知するようにしておいても良い。 The CC information that can be camp-on is notified before or together with the RRC_CONNECTION_RELEASE message from the base station to the UE. As a method for notifying CC information that can be camp-on at the time of RRC_IDLE, the method for notifying the UE of parameters used for each CC reselection disclosed in the first embodiment can be applied. Further, it may be notified together with the parameter.
 報知情報により報知する場合は、基地局からUEへRRC_CONNECTION_RELEASEメッセージを通知する前に、基地局は、報知情報の修正情報をUEに通知し、UEは修正された報知情報を受信しておくようにしても良い。 When notifying by broadcast information, before notifying an RRC_CONNECTION_RELEASE message from the base station to the UE, the base station notifies the UE of correction information of the broadcast information, and the UE receives the corrected broadcast information. May be.
 以上のような方法とすることで、準静的(semi-static)、または、動的(dynamic)にRRC_IDLE時にキャンプオン可能なCCを変更することが可能となり、該CCを基地局からUEへ通知または報知することが可能となる。 By adopting the method as described above, it is possible to change the CC that can be camp-on at the time of RRC_IDLE from semi-static or dynamic, and this CC is transferred from the base station to the UE. Notification or notification can be performed.
 本発明において、RRC_IDLE時にキャンプオン可能なCCとは、RRC_IDLE時にキャンプオンが禁じられた(例えば、barredされた)CCでないCCとしたが、そのなかのCCのうち、最初のセル選択/再選択およびCC選択/再選択時にUEが受信電力を測定した結果、CC再選択の閾値を超えていたCCとしても良い。 In the present invention, the CC that can camp on at the time of RRC_IDLE is a CC that is not a CC that is camp-on prohibited at the time of RRC_IDLE (for example, a barred CC), but among the CCs among them, the first cell selection / reselection As a result of measuring the received power by the UE at the time of CC selection / reselection, it may be a CC that has exceeded the threshold for CC reselection.
 該CCをUEが記憶するようにしておけば良い。記憶する該CCの情報の具体例としては、該CCの識別子などがある。また、それに限らず、該CCの再選択に必要となる情報としても良い。これにより、基地局(セル)からUEに、RRC_IDLE時にキャンプオン可能なCC情報を通知する必要がなくなるため、シグナリング負荷の低減がはかれる。 It suffices for the UE to store the CC. Specific examples of the CC information to be stored include the identifier of the CC. Further, the present invention is not limited thereto, and may be information necessary for reselection of the CC. This eliminates the need to report CC information that can be camp-on from the base station (cell) to the UE at the time of RRC_IDLE, thereby reducing the signaling load.
 また、該CCの識別子などの情報とともに該CCの順位を記憶するようにしても良い。該CCの順位は、受信電力の測定結果をもとに例えば高い方からつけておくようにして、順位の高いCCからキャンプオンを試みるようにしても良い。これにより、受信電力の最も高いCCにキャンプオンすることが可能となり、キャンプオン不可能となる可能性が最も低くなる。このため、制御遅延時間の削減、UEの消費電力の削減においてさらに効果的になる。 Also, the order of the CC may be stored together with information such as the identifier of the CC. The order of the CCs may be assigned, for example, from the higher one based on the measurement result of the received power, and camp-on may be attempted from the CC having a higher order. As a result, it is possible to camp on the CC having the highest received power, and the possibility that camp-on is impossible becomes the lowest. For this reason, it becomes more effective in the reduction of control delay time and the reduction of the power consumption of UE.
 以上のように、本変形例で開示した方法とすることで、基地局(セル)がキャリアアグリゲーション対象とする全てのCCについてセル選択/再選択処理を行う必要が無くなり、あるいは、該全てのCCのメジャメントを行う必要がなくなる。従って、制御遅延時間の削減が可能となり、さらには、UEの消費電力の削減も可能となる。 As described above, with the method disclosed in this modification, it is not necessary for the base station (cell) to perform cell selection / reselection processing for all CCs to be subjected to carrier aggregation, or all the CCs are selected. It is no longer necessary to perform the measurement. Therefore, the control delay time can be reduced, and further, the power consumption of the UE can be reduced.
 また、上述の、RRC_IDLE時にキャンプオン可能なCCのうちのいずれか一つのCCとして、RRC_CONNECTED時にいた最後の基地局(セル)にキャンプオンした際のCCにキャンプオンを試みるようにしても良い。該セルの該CCへのキャンプオンは実績があることになる。従って、こうすることで、確実にキャンプオン可能とすることができるため、キャンプオンできなかった場合に生じるセルの選択/再選択処理、またはCCの選択/再選択処理を行わずに済むことになるため、制御遅延時間の削減が可能となり、さらには、UEの消費電力の削減も可能となる。 Also, as one of the CCs that can be camp-on at the time of RRC_IDLE, camp-on may be attempted to the CC when camp-on is performed to the last base station (cell) that was at the time of RRC_CONNECTED. The camp-on of the cell to the CC will have a track record. Accordingly, since the camp-on can be reliably performed in this way, it is not necessary to perform the cell selection / reselection process or the CC selection / reselection process that occurs when the camp-on cannot be performed. Therefore, the control delay time can be reduced, and further, the power consumption of the UE can be reduced.
 UEは、該セルの該CCから報知される情報を、該セルの該CCにキャンプオンしていた際に受信し、記憶しておくようにすると良い。図8に示す、UEの、プロトコル制御部(801)またはアプリケーション部(802)または制御部(810)などに記憶しておくようにすれば良い。あるいは、SIMに記憶するようにしておいても良い。 The UE may receive and store information broadcast from the CC of the cell when camping on the CC of the cell. It may be stored in the protocol control unit (801), application unit (802), control unit (810), etc. of the UE shown in FIG. Alternatively, it may be stored in the SIM.
 UEが受信し記憶するため、基地局(セル)が報知する情報として、システム情報、セル識別子(PCI、cell-ID)、CC識別子、CCのキャリア周波数、CCのキャリアのUARFCN(UTRA Absolute Radio Frequency Channel Number)などとしておくと良い。 Information received by the base station (cell) for the UE to receive and store includes system information, cell identifier (PCI, cell-ID), CC identifier, CC carrier frequency, CC carrier UARFCN (UTRANAbsolute Radio Frequency) (Channel Number) etc.
 これらの情報を記憶しておくことで、UEはRRC_IDLE移行時のキャンプオンの際や、さらにはキャンプオン後の動作をするために、これらの情報を受信する必要が無くなるため、こういった処理における制御遅延時間の削減も可能となり、さらには、UEの消費電力も削減可能となる。 By storing these pieces of information, the UE does not need to receive these pieces of information when performing camp-on at the time of transition to RRC_IDLE, and further to operate after camp-on. In addition, it is possible to reduce the control delay time in the UE, and it is also possible to reduce the power consumption of the UE.
 なお、該セルにキャンプオンしたCCが複数存在する場合は、該複数のCCのうちいずれか一つのCCをUEが選択するようにしても良いし、また、該複数のCCの受信品質(受信電力でも良い)の順位を記憶しておき、最も受信品質の良いCCをUEが選択するようにしても良い。 In addition, when there are a plurality of CCs that are camped on in the cell, the UE may select one of the plurality of CCs, or the reception quality (reception of the plurality of CCs) The UE may select the CC having the best reception quality.
 RRC_CONNECTED状態での移動、すなわちハンドオーバ(HO)などにより、RRC_IDLE時にキャンプオンした基地局(セル)とRRC_CONNECTED時にいた最後の基地局(セル)とが異なる場合がある。このような場合、UEが、RRC_CONNECTED時にいた最後の基地局(セル)にキャンプオンした経験が有る場合は、キャンプオンした際のCCにキャンプオンを試みて、該セルにキャンプオンした際に受信して記憶した該セルや該CC関連の情報を使用すれば良い。一方、UEが、RRC_CONNECTED時にいた最後の基地局(セル)にキャンプオンした経験が無い場合は、新たにキャンプオンした後に該情報を受信するようにしても良いし、RRC_CONNECTED時にHO前の基地局(セル)またはHO後の基地局(セル)から該情報を受信しても良いし、RRC_CONNECTED時にHO後の基地局(セル)に対してUEが該情報の通知要求を出し、それに応じて基地局(セル)がUEに通知するようにしても良い。通知方法としては、前述の方法が使用できる。 Due to movement in the RRC_CONNECTED state, that is, handover (HO) or the like, the base station (cell) camping on at the time of RRC_IDLE and the last base station (cell) at the time of RRC_CONNECTED may be different. In such a case, if the UE has experience of camping on the last base station (cell) that was at the time of RRC_CONNECTED, the UE attempts to camp on the CC at the time of camping and receives when camping on the cell. Thus, the stored cell and the CC-related information may be used. On the other hand, if the UE has no experience of camping on the last base station (cell) at the time of RRC_CONNECTED, the information may be received after newly camping on, or the base station before HO at the time of RRC_CONNECTED (Cell) or the base station (cell) after HO may receive the information, or the UE issues a notification request for the information to the base station (cell) after HO during RRC_CONNECTED, and the base station accordingly A station (cell) may notify the UE. As the notification method, the above-described method can be used.
 また、上述の、RRC_IDLE時にキャンプオン可能なCCのうちのいずれか一つのCCとして、ページング情報またはシステム情報をモニタするCCにキャンプオンを試みるようにしても良い。RRC_IDLE時にページング情報またはシステム情報をモニタするCCをRRC_IDLE時のアンカーキャリアと称する。 Also, camp-on may be attempted to a CC that monitors paging information or system information as one of the CCs that can be camp-on at the time of RRC_IDLE. A CC that monitors paging information or system information at the time of RRC_IDLE is referred to as an anchor carrier at the time of RRC_IDLE.
 RRC_IDLE時のアンカーキャリアからはシステム情報が報知されるため、キャンプオン後、システム情報を得られずに他のCCを再選択/選択する処理に入ってしまうことは無くなる。従って、制御遅延時間の削減、UEの消費電力の削減が可能となる。 Since the system information is reported from the anchor carrier at the time of RRC_IDLE, the system information is not obtained after camp-on, and the process of reselecting / selecting another CC is not entered. Accordingly, it is possible to reduce the control delay time and the power consumption of the UE.
 アンカーキャリアは、マルキャリアアンカーまたはシングルキャリアアンカーであっても良い。 The anchor carrier may be a multicarrier anchor or a single carrier anchor.
 RRC_IDLE時のアンカーキャリアと実施の形態1で述べたRRC_CONNECTED時のアンカーキャリアを同じとしておくと良い。こうすると、RRC_IDLE時、RRC_CONNECTED時ともに同じCCをモニタすることになるので、RRC_IDLEとRRC_CONNECTED間の状態遷移をまずは同じCC上で実行することが可能となる。従って、RRC_IDLEとRRC_CONNECTEDにおける通信品質は保たれるため、RRC_IDLEで該CCにキャンプオンできていればRRC_CONNECTED移行時も該CCで通信可能となり、逆に、RRC_CONNECTEDで該CCと通信可能であれば、RRC_IDLE移行時に該CCにキャンプオン可能となる。よって、状態遷移を確実に実行できる、という効果が得られる。 The anchor carrier at the time of RRC_IDLE and the anchor carrier at the time of RRC_CONNECTED described in the first embodiment may be the same. In this way, since the same CC is monitored at both RRC_IDLE and RRC_CONNECTED, the state transition between RRC_IDLE and RRC_CONNECTED can be executed on the same CC first. Therefore, since the communication quality in RRC_IDLE and RRC_CONNECTED is maintained, if it is possible to camp on the CC with RRC_IDLE, it is possible to communicate with the CC even when transitioning to RRC_CONNECTED, and conversely, if communication with the CC is possible with RRC_CONNECTED, Camping can be performed on the CC at the time of transition to RRC_IDLE. Therefore, the effect that state transition can be executed reliably is obtained.
 また、基地局(セル)がキャリアアグリゲーション対象とするCCのうちRRC_IDLE時にキャンプオン可能なCCでサブセットを構成し、UEは該サブセット内のいずれかひとつのCCにキャンプオンを試みるようにしても良い。 In addition, a base station (cell) may configure a subset with CCs that can be camp-on at the time of RRC_IDLE among CCs to be subjected to carrier aggregation, and the UE may attempt to camp on any one CC in the subset. .
 こうすることで、同様に、基地局(セル)がキャリアアグリゲーション対象とする全てのCCについて選択/再選択処理を行う必要が無くなり、あるいは、該全てのCCのメジャメントを行う必要がなくなる。従って、制御遅延時間の削減が可能となり、さらには、UEの消費電力の削減も可能となる。 In this way, similarly, it is not necessary for the base station (cell) to perform selection / reselection processing for all CCs to be subjected to carrier aggregation, or it is not necessary to perform measurement for all the CCs. Therefore, the control delay time can be reduced, and further, the power consumption of the UE can be reduced.
 UEが、該セルのどのCCが該サブセット内に含まれているかを認識するため、該サブセット内に含まれるCCからは、同期信号(Synchronization Signal、SS)またはPBCHを送信するようにしておくと良い。こうすることで、UEは該CCを選択/再選択可能となる。また、該セルのどのCCが該サブセット内に含まれるかを基地局から移動端末へ通知する必要がなくなり、無線リソースの有効活用という効果を得ることが出来る。 In order for the UE to recognize which CC of the cell is included in the subset, a synchronization signal (Synchronization 信号 Signal, SS) or PBCH is transmitted from the CC included in the subset. good. By doing so, the UE can select / reselect the CC. In addition, it is not necessary to notify the mobile terminal from the base station which CC of the cell is included in the subset, and the effect of effective use of radio resources can be obtained.
 他の方法として、全てのCCから該サブセットに関する情報(例えば該サブセットに含まれるCC情報など)を報知するようにしておけば良い。こうすることで、UEは、ある一つのCCを選択/再選択し、該CCから報知情報を受信することで該サブセット情報を得ることが可能となる。UEは受信した該サブセット情報に含まれるRRC_IDLE時にキャンプオン可能なCC情報にもとづいて、キャンプオン可能なCCへ再選択を行い、キャンプオンする。これにより、UEは該サブセット内に含まれるCCを選択/再選択可能となる。また、柔軟な移動体通信システムが構築可能という効果を得ることが出来る。 As another method, information on the subset (for example, CC information included in the subset) may be notified from all CCs. By doing so, the UE can select / reselect a certain CC and receive the broadcast information from the CC to obtain the subset information. The UE re-selects a CC that can be camp-on based on CC information that can be camp-on at the time of RRC_IDLE included in the received subset information, and camps on. As a result, the UE can select / reselect CCs included in the subset. Moreover, the effect that a flexible mobile communication system can be constructed can be obtained.
 上述では、基地局(セル)がキャリアアグリゲーション対象とするCCのうちRRC_IDLE時にキャンプオン可能なCCでサブセットを構成したが、該キャンプオン可能なCCを周波数バンドに一つずつ設けてサブセットを構成しても良い。 In the above description, a subset is composed of CCs that can be camp-on at the time of RRC_IDLE among CCs that are subject to carrier aggregation by the base station (cell). May be.
 本実施の形態の変形例2で述べたように、同じ周波数バンドに属するCCにおいては、周波数が近接しているため電波伝搬環境は殆ど同じと考えられる。従って、同じ周波数バンドに属するCCにおける受信品質は殆ど同じと考えられる。このことから、RRC_IDLE時にキャンプオン可能なCCを周波数バンドで一つ代表として設けておくことで、基地局(セル)がキャリアアグリゲーション対象とする全てのCCでなく、一部のCCのみについて選択/再選択処理、あるいは、メジャメントを行えば良くなる。 As described in the second modification of the present embodiment, the CCs belonging to the same frequency band are considered to have almost the same radio wave propagation environment because the frequencies are close to each other. Therefore, the reception quality in CCs belonging to the same frequency band is considered to be almost the same. Therefore, by providing one representative CC in the frequency band that can be camp-on at the time of RRC_IDLE, the base station (cell) selects / selects only some CCs instead of all CCs that are subject to carrier aggregation. Reselection processing or measurement can be performed.
 また、該CCは、周波数バンド毎に一つずつ設けられているため、それらのCCから構成されるサブセットは、全ての周波数バンドの電波伝搬特性を有することになるため、UEがRRC_IDLE状態にいる時にも該セルは多様な電波伝搬特性を有することを維持でき、UEがセル選択/再選択の際により良いセルまたはCCを選択することが可能となり、通信品質の向上という効果を得ることが可能となる。 In addition, since one CC is provided for each frequency band, a subset composed of the CCs has radio wave propagation characteristics of all frequency bands, so the UE is in the RRC_IDLE state. Sometimes the cell can maintain various radio wave propagation characteristics, and the UE can select a better cell or CC at the time of cell selection / reselection, which can improve the communication quality. It becomes.
 RRC_IDLE時にキャンプオン可能なCCを周波数バンドで一つ以上設けてサブセットを構成しても良く上述の効果が得られる。RRC_IDLE時にキャンプオン可能なCCを周波数バンドで一つずつ設けてサブセットを構成することで、最小のCC数で全ての周波数バンドの電波伝播特性を有したサブセットを構成できるため、UEがセル選択/再選択の際にメジャメントする際のCC数を最小にして制御遅延の削減や消費電力の削減効果を得つつ、通信品質の向上という効果をあわせもつことが可能となる。 A subset may be configured by providing one or more CCs that can be camp-on at the time of RRC_IDLE in the frequency band, and the above-described effects can be obtained. By configuring a subset by providing CCs that can be camp-on at the time of RRC_IDLE one by one in the frequency band, it is possible to configure a subset having the radio wave propagation characteristics of all frequency bands with the minimum number of CCs. It is possible to have the effect of improving the communication quality while obtaining the effect of reducing the control delay and power consumption by minimizing the number of CCs at the time of reselection.
 実施の形態2.
 RRC_IDLE状態のUEは、ネットワークとのデータの送受信の必要が生じた場合などに、まずRRC_CONNECTED状態に移行するため、基地局(セル)との間でRA(Random Access)プロシージャを実行する。RAプロシージャは、ランダムアクセスチャネルを接続するために用いられる。
Embodiment 2. FIG.
The UE in the RRC_IDLE state executes an RA (Random Access) procedure with the base station (cell) in order to shift to the RRC_CONNECTED state first when it becomes necessary to transmit / receive data to / from the network. The RA procedure is used to connect a random access channel.
 図17にRAプロシージャのシーケンス図を示す。 Fig. 17 shows the sequence diagram of RA procedure.
 RRC_IDLE状態にいるUEは、基地局(セル)(eNB)に対してランダムアクセスプリアンブルに自UE識別用の情報(識別子)をつけて送信する(1701)。このランダムアクセスプリアンブルはメッセージ(Msg)1とも呼ばれる。 The UE in the RRC_IDLE state transmits information (identifier) for identifying its own UE to the random access preamble to the base station (cell) (eNB) and transmits it (1701). This random access preamble is also called a message (Msg) 1.
 Msg1を受信したeNBは、該UE識別用の情報と上りの無線リソーススケジューリング情報(上りグラント、UL grant)を含むランダムアクセスレスポンスを、ランダムアクセス用の識別子(RA-RNTI)をかけたPDCCHにて送信する(1702)。この信号はMsg2とも呼ばれる。 The eNB that has received Msg1 sends a random access response including the UE identification information and uplink radio resource scheduling information (uplink grant, UL grant) on the PDCCH to which the random access identifier (RA-RNTI) is applied. Transmit (1702). This signal is also called Msg2.
 eNBからの下り信号を受信し、PDCCH上のランダムアクセス用の識別子(RA-RNTI)を用いて検出(ブラインド検出とも呼ばれる)を行うことでMsg2を検出したUEは、該ランダムアクセスレスポンス内の該UE識別用の情報で自UE宛かどうかを判断する。 The UE that has detected Msg2 by receiving a downlink signal from the eNB and detecting (also referred to as blind detection) using a random access identifier (RA-RNTI) on the PDCCH, It is determined whether or not it is addressed to the own UE by the information for UE identification.
 自UEのUE識別用の情報が含まれていたら、UEはMsg2で受信した上りスケジューリング情報に従って、メッセージを送信する(1703)。この信号はMsg3とも呼ばれる。この際に、UEは、自UEの識別子(C-RNTI)またはコンテンションリゾリューション用の識別情報(識別子)も送信する。 If the information for UE identification of the own UE is included, the UE transmits a message according to the uplink scheduling information received by Msg2 (1703). This signal is also called Msg3. At this time, the UE also transmits its own UE identifier (C-RNTI) or contention resolution identification information (identifier).
 Msg3を受信したeNBは、コンテンションリゾリューション用の識別情報と上りの無線リソーススケジューリング情報(上りグラント、UL grant)を含む情報を、該UEの識別子(C-RNTI)をかけたPDCCHにて送信する(1704)。この信号はMsg4とも呼ばれる。 The eNB that has received Msg3 transmits information including identification information for contention resolution and uplink radio resource scheduling information (uplink grant, UL grant) on the PDCCH to which the UE identifier (C-RNTI) is applied. Transmit (1704). This signal is also called Msg4.
 UEは、eNBからの下り信号を受信し、PDCCH上の自UEの識別子(C-RNTI)を用いて検出(ブラインド検出とも呼ばれる)を行うことで、自UE宛のMsg4であることを認識し、Msg4に含まれる自UE宛の上りスケジューリング情報を受信して、該スケジューリングに従って上りデータを送信可能とする。 The UE receives the downlink signal from the eNB, and performs detection (also called blind detection) using its own identifier (C-RNTI) on the PDCCH, thereby recognizing that it is Msg4 addressed to itself. , Receive uplink scheduling information addressed to the own UE included in Msg4, and transmit uplink data according to the scheduling.
 このMsg1からMsg4までの送受信がRAプロシージャと呼ばれる。 This transmission / reception from Msg1 to Msg4 is called an RA procedure.
 また、該Msg3において、UEはeNBに対してRRC CONNECTION REQUESTメッセージを送信しても良い。 Further, in the Msg3, the UE may transmit an RRC CONNECTION REQUEST message to the eNB.
 該メッセージを受信したeNBは、UEに対して、該Msg4においてRRC CONNECION SETUPメッセージを送信しても良い。 The eNB that has received the message may transmit an RRC CONNECTION SETUP message to the UE in the Msg4.
 該メッセージを受信したUEは、同じくMsg4において受信した上りスケジューリング情報に従って、RRC CONNECTIONSETUP COMPLETEメッセージをeNBに対して送信し、RRC_CONNECTED状態に移行する。 The UE that has received the message transmits an RRC CONNECTION SETUP COMPLETE message to the eNB according to the uplink scheduling information received in Msg4, and shifts to the RRC_CONNECTED state.
 RAプロシージャが成功した場合、UEは、RRC_IDLE状態からRRC_CONNECTED状態に移行できる。しかし、RAプロシージャの途中で失敗する場合が存在する。 If the RA procedure is successful, the UE can transition from the RRC_IDLE state to the RRC_CONNECTED state. However, there are cases in which failure occurs during the RA procedure.
 RAプロシージャの途中で失敗した場合、従来、RLF(Radio Link Failure)を検出したと判断し、UEは再度キャンプオンするセルを探すため、以前に検出したセルのキャリア周波数とセルパラメータを記憶しておいて、該記憶情報からそのキャリア周波数とセルパラメータでセルをサーチしてセル選択を行う。これによりまだキャンプオンするセルが見つからない場合は、システムとして可能な全てのキャリア周波数でセルをサーチして初期セル選択を実行する。 If it fails in the middle of the RA procedure, it is determined that RLF (Radio Link Failure) has been detected, and the UE stores the carrier frequency and cell parameters of the previously detected cell in order to search for a cell to camp on again. Then, a cell is searched from the stored information by the carrier frequency and cell parameter to select a cell. As a result, when a cell to be camp-on is not found yet, a cell is searched with all possible carrier frequencies of the system, and initial cell selection is executed.
 しかし、RRC_IDLE状態のUEがアグリゲーション対応の基地局(セル)の一つのCCにキャンプオンしており、該CCを用いて該基地局(セル)とRAプロシージャを開始し、該RAプロシージャの途中で失敗した場合について考える。 However, the UE in the RRC_IDLE state is camping on one CC of the base station (cell) corresponding to the aggregation, starts the RA procedure with the base station (cell) using the CC, and in the middle of the RA procedure Think about the failure.
 このような場合に、従来の方法を適用すると、該基地局(セル)は複数のCCを有しており他のCCにキャンプオンできる可能性が高いにもかかわらず、UE内に記憶されている異なるセルをサーチ、セル選択してしまい、同じ基地局(セル)内の他のCCにキャンプオンしなおすことができなくなるという状況が生じてしまう。また、この場合、UEはセルサーチを行いセル選択/再選択の処理を行なわねばならず、制御遅延時間が増大し、UEの消費電力が増大する、という問題が生じてしまう。 In such a case, when the conventional method is applied, the base station (cell) has a plurality of CCs and is likely to be able to camp on other CCs, but is stored in the UE. If a different cell is searched and selected, a situation occurs in which it is impossible to camp on another CC in the same base station (cell). Further, in this case, the UE must perform a cell search to perform cell selection / reselection processing, which causes a problem that the control delay time increases and the power consumption of the UE increases.
 従って、キャリアアグリゲーション対応の基地局(セル)において、RAプロシージャ失敗時に、UEがキャンプオンするセルと下りCCの決定において、新たな効果的な方法が要求される。 Therefore, in a base station (cell) that supports carrier aggregation, when an RA procedure fails, a new and effective method is required in determining the cell and downlink CC in which the UE camps on.
 上記のような課題を解決するため、本実施の形態では、UEは、RAプロシージャ開始時にキャンプオンしていた基地局(セル)のRAプロシージャを失敗したCCを除いたCCのうちのいずれか一つのCCに、または、RAプロシージャ開始時にキャンプオンしていた基地局(セル)のRRC_IDLE時にキャンプオン可能なCCのうち、RAプロシージャを失敗したCCを除いたCCのうちのいずれか一つのCCに、キャンプオンを試みるようにする。 In order to solve the above-described problem, in the present embodiment, the UE is any one of CCs except for the CC that failed the RA procedure of the base station (cell) that was camping on when the RA procedure was started. To one CC among CCs that can camp on at the time of RRC_IDLE of the base station (cell) that was camping on at the start of the RA procedure, except the CC that failed the RA procedure Try to camp on.
 以下、UEがRAプロシージャ開始時にキャンプオンしていた基地局(セル)のRRC_IDLE時にキャンプオン可能なCCのうち、RAプロシージャを失敗したCCを除いたCCのうちのいずれか一つのCCに、キャンプオンを試みるようにする場合について説明する。 Hereinafter, among the CCs that can be camp-on at the time of RRC_IDLE of the base station (cell) in which the UE is camping on when the RA procedure is started, the UE can camp on any one of the CCs except the CC that failed the RA procedure. The case of trying to turn on will be described.
 図21に、RAプロシージャ失敗のCCを除いたCCのうちのいずれか一つのCCにキャンプオンする場合の概念図を示す。(a)はRRC_IDLE状態でRAプロシージャ開始時にキャンプオンしているCCについて、(b)はRRC_IDLE状態でRAプロシージャ失敗後にキャンプオンするCCについて示している。図21において、図13と同じ参照符号のものは、同一または相当するものを示すので、同じ参照符号の箇所の説明は省略する。 FIG. 21 shows a conceptual diagram when camping on any one of the CCs excluding the CC that failed the RA procedure. (A) shows a CC that is camping on at the start of the RA procedure in the RRC_IDLE state, and (b) shows a CC that camps on after the RA procedure fails in the RRC_IDLE state. In FIG. 21, the same reference numerals as those in FIG. 13 denote the same or corresponding parts, and the description of the same reference numerals will be omitted.
 (a)で示すように、基地局(セル)(1303)はキャリアアグリゲーション対応で、セル1303を選択したUE(1311)は、RRC_IDLE状態でCC#3(1306)にキャンプオンしている。該CC#3(1306)上で、UEはRAプロシージャを開始する。ここでは、説明を簡単にするため、下りCC#n(n=1から7)に対応する上りCCをCC#nとする。従って、RAプロシージャは下りCC#3とそれに対応する上りCC#3上で行われる。また、(b)に示すように、CC#1(1304)、CC#3(1306)、CC#4(1307)、CC#6(1309)はRRC_IDLE時にキャンプオン可能なCCとする。 As shown in (a), the base station (cell) (1303) supports carrier aggregation, and the UE (1311) that has selected the cell 1303 is camping on CC # 3 (1306) in the RRC_IDLE state. On the CC # 3 (1306), the UE starts the RA procedure. Here, in order to simplify the description, an uplink CC corresponding to downlink CC #n (n = 1 to 7) is assumed to be CC #n. Therefore, the RA procedure is performed on the downlink CC # 3 and the corresponding uplink CC # 3. Also, as shown in (b), CC # 1 (1304), CC # 3 (1306), CC # 4 (1307), and CC # 6 (1309) are CCs that can camp on at the time of RRC_IDLE.
 RAプロシージャ途中で失敗した場合、(b)で示すように、UEは、RRC_IDLE時にキャンプオン可能なCCのうち、RAプロシージャを失敗したCCを除いたCCのうち、いずれか一つのCCにキャンプオンを試みる。ここでは、RRC_IDLE時にキャンプオン可能なCC#1(1304)、CC#3(1306)、CC#4(1307)、CC#6(1309)のうち、RAプロシージャ途中で失敗したCC#3(1306)を除いたCC、例えば、CC#4(1307)にキャンプオンを試みる。 If the failure occurs during the RA procedure, as shown in (b), the UE camps on any one of the CCs that can camp on at the time of RRC_IDLE, excluding the CC that failed the RA procedure. Try. Here, among CC # 1 (1304), CC # 3 (1306), CC # 4 (1307), and CC # 6 (1309) that can camp on at the time of RRC_IDLE, CC # 3 (1306) that failed during the RA procedure ), Except for CC # 4 (1307).
 キャリアアグリゲーション対応の基地局(セル)におけるRAプロシージャ失敗の場合の具体的な動作については3GPPにおいてまだ検討されておらず明確になっていない。ここでは、RAプロシージャ失敗の際の具体的な動作を開示する。 The specific operation in the case of RA procedure failure in a base station (cell) that supports carrier aggregation has not yet been studied in 3GPP and is not clear. Here, a specific operation when the RA procedure fails is disclosed.
 図25に、RAプロシージャ失敗の際のシーケンス例を示す。 FIG. 25 shows a sequence example when the RA procedure fails.
 図について説明する。RRC_IDLE状態のUEはST2501でセルまたは/かつCC(下りCC)のサーチを行い、ST2502である一つのセルの一つのCC(下りCC)上にキャンプオンする。ある一つのCC上にキャンプオンしたUEは、ST2503で該CC(ペアバンドとなる下りCCと上りCC)を用いて、基地局(セル)(eNB)との間でRAプロシージャを行う。具体的には、図17に示すMsg1からMsg4の送受信を行う。RAプロシージャを実行したUEは、ST2504で該RAプロシージャが成功したか失敗したかを判断する。成功した場合は、UEとeNBとの間でRRC接続が設立されたため、RRC_CONNECTEDの状態に入る。RRC接続が設立されたため、ST2505で、UEは基地局(セル)、コアネットワーク間とデータの送受信が可能となる。 The figure will be explained. The UE in the RRC_IDLE state performs a cell or / and CC (downlink CC) search in ST2501, and camps on one CC (downlink CC) of one cell in ST2502. A UE that camps on a certain CC performs an RA procedure with a base station (cell) (eNB) using the CC (a downlink CC and an uplink CC as a pair band) in ST2503. Specifically, transmission / reception of Msg1 to Msg4 shown in FIG. 17 is performed. In ST2504, the UE that has executed the RA procedure determines whether the RA procedure has succeeded or failed. If successful, an RRC connection has been established between the UE and the eNB, and therefore enters the state of RRC_CONNECTED. Since the RRC connection is established, in ST2505, the UE can transmit and receive data between the base station (cell) and the core network.
 一方、ST2504で該RAプロシージャに失敗したと判断した場合は、RLF(Radio Link Failure)を検出したと判断し、ST2506に移行して、再度キャンプオンを試みるセルとCCの決定処理を行う。UEは、該決定処理によって選択したセルとCC上にST2502で再度キャンプオンを行う。 On the other hand, if it is determined in ST2504 that the RA procedure has failed, it is determined that RLF (Radio Link Failure) has been detected, the process proceeds to ST2506, and a process of determining a cell and CC that attempt to camp on again is performed. The UE performs camp-on again in ST2502 on the cell and CC selected by the determination process.
 ST2506において、本実施の形態において開示した方法を実行する。RAプロシージャ開始時にキャンプオンしていた基地局(セル)のRRC_IDLE時にキャンプオン可能なCCのうち、RAプロシージャを失敗したCCを除いたCCのうち、いずれか一つのCCにキャンプオンを試みるようにする。RAプロシージャ失敗時にST2506で選択したセルの選択したCCに確実にキャンプオンできる。従って、キャンプオンできなかった場合に生じるセルサーチ、セル選択/再選択処理、または全てのCCのサーチ、CCの選択/再選択処理を行わずに済むことになるため、制御遅延時間の削減が可能となり、さらには、UEの消費電力の削減も可能となる。 In ST2506, the method disclosed in the present embodiment is executed. The base station (cell) that was camping on at the start of the RA procedure may try to camp on any one of the CCs that can camp on at the RRC_IDLE except the CC that failed the RA procedure. To do. It is possible to camp on the selected CC of the cell selected in ST2506 when the RA procedure fails. Therefore, since it is not necessary to perform cell search, cell selection / reselection processing, or search of all CCs and CC selection / reselection processing that occur when camp-on cannot be performed, control delay time can be reduced. In addition, the power consumption of the UE can be reduced.
 図26に、本発明に係る、キャンプオンを試みるセルおよびCCの決定方法についてのフローチャートの具体例を示す。 FIG. 26 shows a specific example of a flowchart of a method for determining a cell and CC for attempting camp-on according to the present invention.
 ST2601でUEは、各CC再選択に用いるパラメータを受信する。これらのパラメータは、図25に示すST2502でキャンプオンしたCCのシステム情報に含めて、基地局(セル)からUEへ報知するようにしておけば良い。該基地局(セル)が対応する全CCの各CC再選択に用いるパラメータとすると良い。これによりUEはST2506の処理を実行することが可能となる。 In ST2601, the UE receives parameters used for each CC reselection. These parameters may be included in the system information of the CC camped on in ST2502 shown in FIG. 25 and notified from the base station (cell) to the UE. The base station (cell) may be a parameter used for each CC reselection of all CCs to which it corresponds. As a result, the UE can execute the processing of ST2506.
 各CC再選択に用いるパラメータの具体例としては、実施の形態1で開示した各CC再選択に用いるパラメータと同じとできる。例えば、CCの再選択を行うか否か判断するための受信電力の閾値などである。該パラメータについては実施の形態1で説明したので、ここでは説明を省略する。また、実施の形態1で使用する各CC再選択に用いるパラメータと本実施の形態で使用する各CC再選択に用いるパラメータを別に設けても良い。これにより、状況(RRC_CONNECTEDからRRC_IDLEへの移行か、RAプロシージャの失敗か、など)に応じて該パラメータを設定することが可能となり、柔軟なUEのアクセス制御を行うことができる。このため、システムとしてのスループットを向上させることが可能となる。 Specific examples of parameters used for each CC reselection can be the same as the parameters used for each CC reselection disclosed in the first embodiment. For example, it is a threshold value of received power for determining whether or not to reselect CC. Since the parameters have been described in the first embodiment, description thereof is omitted here. Moreover, you may provide separately the parameter used for each CC reselection used in Embodiment 1, and the parameter used for each CC reselection used in this Embodiment. This makes it possible to set the parameter according to the situation (from RRC_CONNECTED to RRC_IDLE, RA procedure failure, etc.), and flexible UE access control can be performed. For this reason, it is possible to improve the throughput of the system.
 ST2602で、UEは、RAプロシージャ開始時にいたセルを選択する。ST2603でUEは、該セルのRRC_IDLE時キャンプオン可能なCCのうちで、RAプロシージャを失敗したCCを除いたCCのうちで、本プロシージャ(ST2506)においてまだキャンプオンを試みていないCCが存在するか否かを判定する。キャンプオンを試みていないCCが存在する場合、ST2604でUEはキャンプオンを試みていないCCのうちのいずれか一つのCCを選択し、ST2605で該選択したCCにキャンプオンを試みる。ST2605(あるいはST2606でも良い)で、UEは、キャンプオンを試みたCCの受信レベル(RSRPなど)を測定する。ST2606においてUEはさらにCCの再選択を行うか否か判断する。さらにCCの再選択を行うか否かの判断の具体例としては、測定した該CCの受信レベルがパラメータ(S_intrasearch)より大きい場合はさらにCC再選択を行わないと判断する。さらにCC再選択を行わないと判断した場合、UEはST2607へ移行して、該選択したCCへキャンプオンする。ST2606で測定した該CCの受信レベルがパラメータ(S_intrasearch)以下の場合、さらにCCの再選択を行うと判断し、UEは、ST2603へ移行して、再度本プロシージャ(ST2506)においてまだキャンプオンを試みていないCCが存在するか否か判断する。キャンプオンを試みていないCCが存在する場合はST2604へ移行して前述の処理を行う。キャンプオンを試みていないCCが存在しない場合は、ST2608へ移行して、他のセルまたは/かつCCのサーチおよび他のセルまたは/かつCCの再選択の処理を行う。該他のセルまたは/かつCCのサーチおよび他のセルまたは/かつCCの再選択の処理は、図23で開示した方法を用いれば良い。ST2608での他のセルまたは/かつCCのサーチ、再選択処理後、ST2609でUEは選択したセルまたは/かつCCへキャンプオンする。ST2607、ST2609は、図25に示すST2502に相当する。 In ST2602, the UE selects the cell that was present when the RA procedure was started. In ST2603, among the CCs that can be camp-on at the time of RRC_IDLE of the cell, CCs that have not yet attempted camp-on in this procedure (ST2506) exist except for CCs that failed the RA procedure. It is determined whether or not. If there is a CC that has not attempted camp-on, in ST 2604, the UE selects one of the CCs that has not attempted camp-on, and in ST 2605, attempts to camp on the selected CC. In ST2605 (or ST2606 may be used), the UE measures the reception level (RSRP or the like) of the CC that attempted to camp on. In ST2606, the UE determines whether or not to reselect CC. Further, as a specific example of determining whether or not to perform CC reselection, when the measured reception level of the CC is larger than the parameter (S_intrasearch), it is determined that CC reselection is not further performed. If it is determined that CC reselection is not performed, the UE moves to ST2607 and camps on the selected CC. When the reception level of the CC measured in ST2606 is equal to or less than the parameter (S_intrasearch), it is determined that CC reselection is performed, and the UE moves to ST2603 and tries to camp on again in this procedure (ST2506). It is determined whether or not there is a CC that is not present. If there is a CC that has not attempted camp-on, the process proceeds to ST2604 and the above-described processing is performed. If there is no CC that has not attempted to camp on, the mobile terminal makes a transition to ST2608 and performs a process of searching for another cell or / and CC and reselecting another cell or / and CC. The other cell or / and CC search and the other cell or / and CC reselection process may use the method disclosed in FIG. After a search and reselection process of another cell or / and CC in ST2608, the UE camps on the selected cell or / and CC in ST2609. ST2607 and ST2609 correspond to ST2502 shown in FIG.
 本実施の形態で開示したように、ST2602からST2605において、UEは、RAプロシージャを実行した基地局(セル)の、RRC_IDLE時キャンプオン可能なCCのうちで、RAプロシージャを失敗したCCを除いたCCのうちの、いずれか一つのCCにキャンプオンを試みるようにする。キャンプオンを試みるセルを、RAプロシージャを実行した基地局(セル)の、RRC_IDLE時キャンプオン可能なCCのうちから選択することで、該CCにキャンプオンする可能性が高くなる。これは、ST2606の判断処理において該CCの受信レベルは、再選択の閾値(S_intrasearch)よりも大きくなる可能性が高いためである。これは、同一の基地局(セル)によって使用されるCCは、各CCにおけるエリアカバレッジがほぼ同じになるよう運用される場合が多いと考えられるためである。また、他のアグリゲーション対応セルが隣接するような場合にも、CC毎のエリアカバレッジをほぼ同じにすることで、あるCCだけ不感地帯が生じるようなことが無いように運用される場合が多いと考えられるためである。従って、RRC_IDLE時にある基地局(セル)の一つのCCにキャンプオンできたUEは、該基地局(セル)の他のCCにもキャンプオンできる可能性が高くなる。 As disclosed in the present embodiment, in ST2602 to ST2605, the UE excludes CCs that have failed in the RA procedure from among the CCs that can camp on at the RRC_IDLE of the base station (cell) that has executed the RA procedure. Try to camp on any one of the CCs. By selecting a cell attempting camp-on from CCs that can camp on at the time of RRC_IDLE of the base station (cell) that has executed the RA procedure, the possibility of camping on the CC increases. This is because the reception level of the CC is likely to be higher than the reselection threshold (S_intrasearch) in the determination process of ST2606. This is because it is considered that CCs used by the same base station (cell) are often operated so that the area coverage in each CC is substantially the same. In addition, even when other aggregation-compatible cells are adjacent, by making the area coverage for each CC almost the same, there are many cases where it is operated so that a dead zone does not occur only for a certain CC. This is because it is considered. Accordingly, a UE that can camp on one CC of a base station (cell) at the time of RRC_IDLE is more likely to camp on another CC of the base station (cell).
 従って、ST2606で再度CCの再選択処理に移行する可能性は低く、さらには、ST2608で他のセルまたは/かつCCのサーチおよび他のセルまたは/かつCCの再選択の処理へ移行する可能性はさらに低くなる。従って、RRC_CONNECTED状態から離れてRRC_IDLEへ移行する際に選択したセルおよびCCへのキャンプオンを確実にし、キャンプオンできなかった場合に生じるセルサーチ、セル選択/再選択処理、または全てのCCのサーチ、CCの選択/再選択処理を行わずに済むことになるため、制御遅延時間の削減が可能となり、さらには、UEの消費電力の削減も可能となる。 Therefore, it is unlikely to shift to the CC reselection process again in ST2606, and further to ST2608 to shift to another cell or / and CC search and another cell or / and CC reselection process. Is even lower. Therefore, cell search, cell selection / reselection processing, or search of all CCs that occurs when camp-on cannot be ensured by ensuring camp-on to the selected cell and CC when moving from RRC_CONNECTED state to RRC_IDLE Since it is not necessary to perform the CC selection / reselection process, the control delay time can be reduced, and further, the power consumption of the UE can be reduced.
 さらに、UEは、RAプロシージャを失敗後にキャンプオンを試みるCCとして、RAプロシージャを失敗したCCを除くことで、下りCCまたは/かつ上りCCにおいて何らかの要因で生じた失敗を繰り返さないようにできる。つまり、新たにキャンプオンしたCCで、再度RAプロシージャを行う場合にRAプロシージャ途中での失敗が生じないようにすることができる。従って、RRC_CONNECTED状態への移行制御の遅延時間の削減、UEの消費電力の削減、他UEとのRAプロシージャのコンテンションの削減、システムとしてのシグナリング容量の削減、他のセルや他UEへの干渉の抑制などが可能となる。 Furthermore, the UE can avoid a failure caused by some factor in the downlink CC and / or the uplink CC by excluding the CC that failed the RA procedure as a CC that attempts to camp on after failing the RA procedure. That is, it is possible to prevent a failure during the RA procedure from occurring when the RA procedure is performed again with a newly camp-on CC. Therefore, the delay time of the transition control to the RRC_CONNECTED state is reduced, the power consumption of the UE is reduced, the contention of the RA procedure with another UE is reduced, the signaling capacity as a system is reduced, and the interference to other cells and other UEs Can be suppressed.
 以上のように、UEは、RAプロシージャ開始時にキャンプオンしていた基地局(セル)のRRC_IDLE時にキャンプオン可能なCCのうち、RAプロシージャを失敗したCCを除いたCCのうち、いずれか一つのCCにキャンプオンを試みるようにすることで、確実にキャンプオン可能とすることができるため、以前に検出したセルのキャリア周波数とセルパラメータを記憶しておいて、該記憶情報からそのキャリ周波数とセルパラメータでセルをサーチしてセル選択を行う処理が不要になる。このため、制御遅延時間の削減が可能となり、さらには、UEの消費電力の削減も可能となる。 As described above, the UE can select any one of the CCs except the CC that failed the RA procedure from among the CCs that can camp on at the RRC_IDLE of the base station (cell) that was camping on at the start of the RA procedure. By trying to camp on the CC, it is possible to camp on reliably, so the carrier frequency and cell parameters of the previously detected cell are stored, and the carry frequency is determined from the stored information. A process of searching for a cell by cell parameters and performing cell selection is not required. For this reason, the control delay time can be reduced, and further, the power consumption of the UE can be reduced.
 なお、UEがRAプロシージャ開始時にキャンプオンしていた基地局(セル)のRAプロシージャを失敗したCCを除いたCCのうちのいずれか一つのCCにキャンプオンを試みるようにした場合でも、上述の、RAプロシージャを失敗後にキャンプオンを試みるCCとして、RAプロシージャを失敗したCCを除くことの効果を得ることができる。 Even when the UE attempts to camp on any one of the CCs except the CC that failed the RA procedure of the base station (cell) that was camping on at the start of the RA procedure, the above-mentioned As a CC that attempts to camp on after failing the RA procedure, the effect of removing the CC that failed the RA procedure can be obtained.
 なお、上述の説明においては、下りCC番号(#n)と、それと対応する(ペアバンドとなる)上りCC番号(#n)を同じとしたが、これに限らず、下りCC番号と、それと対応する(ペアバンドとなる)上りCC番号が異なっていても良く、本実施の形態で開示した方法が適用できる。 In the above description, the downlink CC number (#n) and the uplink CC number (#n) corresponding to the CC number (#n) are the same. However, the present invention is not limited to this, and the downlink CC number, Corresponding uplink CC numbers (which are pair bands) may be different, and the method disclosed in this embodiment can be applied.
 上述したいずれか一つのCCとして、PBCHを有するCCとしても良い。こうすることで、UEは、該CCにキャンプオンした際に、新たにPBCHによって送信される報知情報を受信可能とすることができる。セルの構成などの変更により該報知情報が変更されるような場合に、UEは新たな報知情報を受信できるためセルの構成のミスマッチ等による通信異常を無くすことが可能となり、安定した通信システムを供給することが可能となる。 Any one CC described above may be a CC having PBCH. In this way, when the UE camps on the CC, the UE can receive broadcast information newly transmitted by the PBCH. When the broadcast information is changed due to a change in the cell configuration or the like, since the UE can receive new broadcast information, it is possible to eliminate a communication abnormality due to a mismatch in the cell configuration, etc. It becomes possible to supply.
 上述したいずれか一つのCCとして、SSを有するCCとしても良い。こうすることで、UEは、該CCにキャンプオンした際に、新たに同期を取り直すことが可能となる。これにより、DRX動作により、UEがデータを受信していない期間が長い場合にも確実に該CCにキャンプオンムをすることが可能となる。 Any one CC described above may be a CC having an SS. By doing so, the UE can newly re-synchronize when it camps on the CC. Thereby, it becomes possible to camp on the CC reliably even when the period during which the UE has not received data is long due to the DRX operation.
 また、別の方法として、UEは、RAプロシージャ失敗時のCCを除いたCCのうち、RAプロシージャ開始時のCCと同じ周波数バンドに属するCCのなかで、いずれか一つのCCにキャンプオンを試みるようにしても良い。 As another method, the UE attempts to camp on any one of the CCs belonging to the same frequency band as the CC at the start of the RA procedure among the CCs excluding the CC at the time of the RA procedure failure. You may do it.
 同じ周波数バンドに属するCCにおいては、周波数が近接しているため電波伝搬環境は殆ど同じと考えられる。従って、同じ周波数バンドに属するCCにおける受信品質は殆ど同じと考えられる。また、同じ周波数バンドに属するCCのエリアカバレッジも殆ど同じと考えられる。 In CCs belonging to the same frequency band, the radio wave propagation environment is considered to be almost the same because the frequencies are close to each other. Therefore, the reception quality in CCs belonging to the same frequency band is considered to be almost the same. Also, the area coverage of CCs belonging to the same frequency band is considered to be almost the same.
 従って、UEがキャンプオンしていたCCと同じ周波数バンドに属する別のCCにキャンプオンを試みるようにすることで、確実にキャンプオン可能にすることができる。このため、制御遅延時間の削減が可能となり、さらには、UEの消費電力の削減も可能となる。また、例え周波数バンド毎にエリアカバレッジが異なったとしても、本方法を適用することで、RAプロシージャ失敗時に確実にキャンプオンを可能にすることができる。 Therefore, it is possible to reliably camp on by trying to camp on another CC belonging to the same frequency band as the CC where the UE was camping on. For this reason, the control delay time can be reduced, and further, the power consumption of the UE can be reduced. Moreover, even if the area coverage differs for each frequency band, by applying this method, it is possible to reliably camp on when the RA procedure fails.
 また、別の方法として、実施の形態1変形例3で開示した、基地局(セル)がキャリアアグリゲーション対象とするCCのうちRRC_IDLE時にキャンプオン可能なCCでサブセットを構成し、UEは該サブセット内のいずれかひとつのCCにキャンプオンを試みるようにしても良い。 As another method, a base station (cell) disclosed in the first modification 3 configures a subset with CCs that can be camp-on at the time of RRC_IDLE among CCs targeted for carrier aggregation, and the UE You may make it try camping on any one of the CCs.
 こうすることで、上述の効果に加え、さらに実施の形態1変形例3で記載の効果を得ることが可能となる。 By doing so, in addition to the above-described effects, it is possible to obtain the effects described in the third modification of the first embodiment.
 また同様に、実施の形態1変形例3で開示したように、基地局(セル)がキャリアアグリゲーション対象とするCCのうちRRC_IDLE時にキャンプオン可能なCCでサブセットを構成したが、該キャンプオン可能なCCを周波数バンドに一つずつ設けてサブセットを構成しても良い。 Similarly, as disclosed in the first modification 3 of the first embodiment, a subset is composed of CCs that can be camp-on at the time of RRC_IDLE among CCs to be subjected to carrier aggregation by the base station (cell). A subset may be configured by providing one CC in each frequency band.
 こうすることで、上述の効果に加え、さらに実施の形態1変形例3で記載の効果を得ることが可能となる。 By doing so, in addition to the above-described effects, it is possible to obtain the effects described in the third modification of the first embodiment.
 上述の例では、RAプロシージャにおいて、Msg1からMsg4が、ある一つの下りCCと、それと対応する(ペアバンドとなる)一つの上りCC上で行なわれることを示した。例えば、図21において、キャンプオンしている下りCCがCC#3の場合、Msg1とMsg3は下りCC#3と対応する上りCC#3で行われ、Msg2とMsg4は下りCC#3で行われる。また、下りCC番号と、それと対応する上りCC番号が異なっていても良いことも述べた。 In the above example, it has been shown that Msg1 to Msg4 are performed on one downlink CC and one uplink CC corresponding to it (pair band) in the RA procedure. For example, in FIG. 21, when the downlink CC that is camping on is CC # 3, Msg1 and Msg3 are performed on the uplink CC # 3 corresponding to the downlink CC # 3, and Msg2 and Msg4 are performed on the downlink CC # 3. . Also, it has been described that the downlink CC number and the corresponding uplink CC number may be different.
 しかし、アグリゲーション対応の基地局(セル)におけるRAプロシージャにおいては、一つの下りCCと上りCC上のみで行なわれずに、複数の上りCCと複数の下りCC上で行われるようにしても良い。 However, the RA procedure in the aggregation-compatible base station (cell) may be performed on a plurality of uplink CCs and a plurality of downlink CCs instead of being performed only on one downlink CC and uplink CC.
 例えば、Msg1はUEがキャンプオンしている下りCC#3に対応したUL CC#3で送信する。Msg1を受信したeNBはMsg2を下りCC#3で送信する。ここで、Msg2にのせるMsg3のためのスケジューリング情報に、上りCC#4を割当てる旨の情報を含めて送信する。Msg2を受信したUEは該スケジューリング情報にもとづいて、Msg3を上りCC#4で送信する。Msg3を受信したeNBはMsg4を下りCC#4で送信する。このように、RAプロシージャにおいて、複数の上りCCと複数の下りCC上で行われるようにしても良い。eNBは各CCの電波伝搬環境や各CCの負荷状況などを考慮して柔軟な制御を行え、RAプロシージャのスループットを、しいてはセル全体のスループットを向上させることが可能となる。 For example, Msg1 is transmitted by UL CC # 3 corresponding to downlink CC # 3 where the UE is camping on. The eNB that has received Msg1 transmits Msg2 using downlink CC # 3. Here, the scheduling information for Msg3 put on Msg2 is transmitted including information indicating that uplink CC # 4 is allocated. The UE that has received Msg2 transmits Msg3 using uplink CC # 4 based on the scheduling information. The eNB that has received Msg3 transmits Msg4 using downlink CC # 4. In this way, the RA procedure may be performed on a plurality of uplink CCs and a plurality of downlink CCs. The eNB can perform flexible control in consideration of the radio wave propagation environment of each CC and the load status of each CC, and can improve the throughput of the RA procedure and thus the throughput of the entire cell.
 また、基地局がMsg2の送信に、該メッセージ前に移動端末から送信されるMsg1の送信に用いられた上りCCとのペアバンドを用いるようにしても良い。これにより、新たな制御信号なしに、移動端末にてMsg2が送信されるCCを判断可能となり、無線リソースの有効活用という効果を得ることができる。また、移動端末がMsg2の受信のために、複数のCCをブラインド検出する必要がなくなるので、移動端末の低消費電力化という効果を得ることが出来る。基地局がMsg4の送信に、該メッセージ前に移動端末から送信されるMsg3の送信に用いられた上りCCとのペアバンドを用いても良く、同様の効果を得ることができる。 Further, the base station may use a pair band with the uplink CC used for transmission of Msg1 transmitted from the mobile terminal before the message for transmission of Msg2. As a result, it is possible to determine the CC to which Msg2 is transmitted in the mobile terminal without a new control signal, and the effect of effective utilization of radio resources can be obtained. In addition, since it is not necessary for the mobile terminal to blindly detect a plurality of CCs in order to receive Msg2, it is possible to obtain an effect of reducing the power consumption of the mobile terminal. The base station may use a pair band with the uplink CC used for transmission of Msg3 transmitted from the mobile terminal before the message for transmission of Msg4, and the same effect can be obtained.
 このような場合においても、RAプロシージャ失敗の際にキャンプオンするCCを、本実施の形態で開示した、UEは、RAプロシージャ開始時にキャンプオンしていた基地局(セル)のRRC_IDLE時にキャンプオン可能なCCのうち、RAプロシージャを失敗したCCを除いたCCのうち、いずれか一つのCCにキャンプオンを試みるようにする方法を適用できる。RAプロシージャを失敗したCCとして、RAプロシージャ失敗までに使用した一つまたは複数の下りCC、および、RAプロシージャ失敗までに使用した一つまたは複数の上りCCに対応する(ペアバンドとなる)下りCCとし、これらのCCとすれば良い。 Even in such a case, the CC that camps on when the RA procedure fails is disclosed in this embodiment, and the UE can camp on at the time of RRC_IDLE of the base station (cell) that was camping on at the start of the RA procedure. A method of trying to camp on any one of the CCs excluding the CC that failed the RA procedure among the CCs can be applied. As CCs for which the RA procedure has failed, one or a plurality of downlink CCs used until the RA procedure fails and one or a plurality of uplink CCs used until the RA procedure fails (downlink CCs corresponding to a pair band) And these CCs may be used.
 例えば上記の例について示すと、Msg4を受信できずRAプロシージャ失敗となったUEは、下りCC#3と、上りCC#4に対応した下りCC#4とを除いたCCで、RRC_IDLE時にキャンプオン可能なCCのうちのいずれか一つの下りCC(CC#1またはCC#6)上にキャンプオンを試みる。 For example, in the above example, the UE that failed to receive Msg4 and failed in the RA procedure is a CC excluding downlink CC # 3 and downlink CC # 4 corresponding to uplink CC # 4, and camp-on at RRC_IDLE. Try camp-on on any one of the possible CCs (CC # 1 or CC # 6).
 こうすることで、UEはRAプロシージャ失敗時に、確実に該セルの他のCCにキャンプオン可能となり、キャンプオン後にRAプロシージャが行われた場合も該RAプロシージャを確実に実行可能にすることができる。このため、基地局(セル)は柔軟なCCのスケジューリング制御を可能としつつ、さらには、制御遅延時間の削減、UEの消費電力の削減も可能となる。 This ensures that the UE can camp on other CCs in the cell when the RA procedure fails, and that the RA procedure can be reliably executed even if the RA procedure is performed after camp-on. . For this reason, the base station (cell) can perform flexible CC scheduling control, and further, can reduce control delay time and power consumption of the UE.
 実施の形態2変形例1.
 実施の形態2では、UEは、RAプロシージャ開始時にキャンプオンしていた基地局(セル)のRRC_IDLE時にキャンプオン可能なCCのうち、RAプロシージャを失敗したCCを除いたCCのうち、いずれか一つのCCにキャンプオンを試みるようにする方法を開示したが、RAプロシージャを失敗したCCを除かないようにしても良い。つまり、UEは、RAプロシージャ開始時にキャンプオンしていた基地局(セル)のRRC_IDLE時にキャンプオン可能なCCのうち、いずれか一つのCCにキャンプオンを試みるようにする方法としても良い。
Modification 2 of Embodiment 2
In the second embodiment, the UE can select any one of the CCs that can camp on at the time of RRC_IDLE of the base station (cell) that was camped on at the start of the RA procedure, except the CC that failed the RA procedure. Although a method of trying to camp on two CCs has been disclosed, the RA procedure may not be excluded from CCs that have failed. That is, the UE may try to camp on any one of the CCs that can camp on at the time of RRC_IDLE of the base station (cell) that was camping on at the start of the RA procedure.
 UEはある下りCCにキャンプオンした後にRAプロシージャを行う。つまり、該下りCCの受信品質は良好であるといえる。従って、RAプロシージャにおいての失敗は主に上りにおいて生じると考えられる。そこで、UEは、RAプロシージャ開始時にキャンプオンしていた基地局(セル)のRRC_IDLE時にキャンプオン可能なCCのうち、いずれか一つのCCにキャンプオンを試みるようにする方法としても良い。こうすることで、UEは、例えキャンプオンを試みた該一つのCCがRAプロシージャを失敗した際にキャンプオンしていたCCだとしても、該CCへのキャンプオンは可能となる。よって、この後、上りCCの電波伝搬状況が変わり、RAプロシージャを行う時には上りCCの電波伝搬環境が良好になり、RAプロシージャが成功する場合が生じると考えられる。このように、まずは、RAプロシージャ失敗の際にキャンプオンを確実にすることで、キャンプオンの際の制御遅延時間の削減、UEの消費電力の削減も可能となる。そして、その後のRAプロシージャを行えるようにしておくことが可能となる。 UE performs RA procedure after camping on a certain downlink CC. That is, it can be said that the reception quality of the downlink CC is good. Therefore, it is considered that failure in the RA procedure occurs mainly in the upstream. Then, UE is good also as a method of trying camp-on to any one CC among CC which can be camp-on at the time of RRC_IDLE of the base station (cell) which was camping on at the time of RA procedure start. By doing so, the UE can camp on the CC even if the CC that attempted to camp on was the CC that was camping on when the RA procedure failed. Therefore, after this, the radio wave propagation situation of the uplink CC changes, and when performing the RA procedure, it is considered that the radio wave propagation environment of the uplink CC becomes favorable and the RA procedure may be successful. Thus, first of all, by ensuring the camp-on when the RA procedure fails, it becomes possible to reduce the control delay time at the time of the camp-on and the power consumption of the UE. Then, it becomes possible to perform subsequent RA procedures.
 さらに、RAプロシージャ失敗の際のキャンプオン後のRAプロシージャを確実に実行できる可能性を高めるため、RAプロシージャ失敗の際に、Msg1または/かつMsg3に使用した上りCCと異なる上りCCで、Msg1または/かつMsg3を行うようにすれば良い。こうすることで、例えRAプロシージャ失敗の際、キャンプオン後ただちにRAプロシージャを再度行うことになったとしても、失敗したMsg1または/かつMsg3に使用した上りCCと異なる上りCCを用いることで、上り通信における電波伝搬環境が良好になり、RAプロシージャを確実に実行できる可能性を高めることができる。従って、ここで開示した方法を用いることで、キャンプオンの際の制御遅延時間の削減、UEの消費電力の削減を可能にするとともに、その後のRAプロシージャを確実に実行可能とすることができため、RRC_CONNECTED状態への移行制御の遅延の抑制、UEの消費電力の削減、他UEとのRAプロシージャのコンテンションの削減、システムとしてのシグナリング容量の削減、他のセルや他UEへの干渉の抑制などが可能となる。 Furthermore, in order to increase the possibility that the RA procedure after camp-on when the RA procedure fails can be executed reliably, in the uplink CC different from the uplink CC used for Msg1 and / or Msg3 when the RA procedure fails, Msg1 or / And Msg3 may be performed. In this way, even if the RA procedure fails, even if the RA procedure is performed again immediately after camp-on, the uplink CC different from the uplink CC used for the failed Msg1 and / or Msg3 is used. The radio wave propagation environment in communication is improved, and the possibility that the RA procedure can be reliably executed can be increased. Therefore, by using the method disclosed herein, it is possible to reduce the control delay time at the time of camp-on, reduce the power consumption of the UE, and to ensure that the subsequent RA procedure can be executed. , RRC_CONNECTED state transition control delay suppression, UE power consumption reduction, RA procedure contention reduction with other UEs, signaling capacity reduction as a system, interference with other cells and other UEs It becomes possible.
 また、上述の、RRC_IDLE時にキャンプオン可能なCCのうちのいずれか一つのCCとして、実施の形態2で開示した方法としても良い。 Also, the method disclosed in the second embodiment may be used as any one of the CCs that can be camp-on at the time of RRC_IDLE.
 また、別の方法として、実施の形態1変形例3で開示した、アンカーキャリアにキャンプオンを試みるようにしても良い。アンカーキャリアからはシステム情報が報知されるため、キャンプオン後、システム情報を得られずに他のCCを再選択/選択する処理に入ってしまうことは無くなる。従って、制御遅延時間の削減、UEの消費電力の削減が可能となる。 Further, as another method, camp-on may be attempted for the anchor carrier disclosed in the first modification 3 of the first embodiment. Since the system information is reported from the anchor carrier, the system information is not obtained after the camp-on, and the process of reselecting / selecting another CC is not entered. Accordingly, it is possible to reduce the control delay time and the power consumption of the UE.
 こうすることで、本変形例の効果に加え、さらに実施の形態2や実施の形態1変形例3で記載の効果を得ることが可能となる。 In this way, in addition to the effects of the present modification, the effects described in the second embodiment and the first modification 3 can be obtained.
 なお、本変形例では、過去にキャンプオン可能であったCCにキャンプオンすることで、前述した効果と同様の効果を得ることができる。 In this modification, the same effect as described above can be obtained by camping on a CC that can be camping on in the past.
 実施の形態3.
 3GPPにおいて、キャリアアグリゲーション対応の基地局(セル)において、キャリアアグリゲーションする際に下りCCと上りCCとが非対称となる運用が検討されている。このような場合、該複数の下りCCのいずれかにキャンプオンしたUEは、対応する該一つの上りCCでRAプロシージャを実行することが検討されている。
Embodiment 3 FIG.
In 3GPP, an operation in which a downlink CC and an uplink CC are asymmetric when a carrier aggregation is performed in a base station (cell) that supports carrier aggregation is being studied. In such a case, it is considered that the UE that camps on one of the plurality of downlink CCs executes the RA procedure on the corresponding one uplink CC.
 図18に、キャリアアグリゲーション時の下りCC/上りCC非対称運用例について示す。1801はキャリアアグリゲーション対応のセルである。ここでは図13と異なり、下りCCと上りCCを別々に示している。1802から1808はキャリアアグリゲーションを行う下りCCであり、順にCC#1からCC#7とする。横軸は下り周波数を示す。1809から1812はキャリアアグリゲーションを行う上りCCであり、順にCC#AからCC#Dとする。横軸は上り周波数を示す。1813はUEである。 FIG. 18 shows an example of downlink CC / uplink CC asymmetric operation at the time of carrier aggregation. Reference numeral 1801 denotes a cell that supports carrier aggregation. Here, unlike FIG. 13, downlink CC and uplink CC are shown separately. Reference numerals 1802 to 1808 denote downlink CCs that perform carrier aggregation, and are sequentially referred to as CC # 1 to CC # 7. The horizontal axis indicates the downstream frequency. Reference numerals 1809 to 1812 denote uplink CCs for performing carrier aggregation, which are sequentially designated CC # A to CC # D. The horizontal axis indicates the uplink frequency. Reference numeral 1813 denotes a UE.
 下りCC#1と下りCC#2に対応する上りCCは上りCC#Aであり、下りCC#3に対応する上りCCは上りCC#Bであり、下りCC#4に対応する上りCCは上りCC#Cであり、下りCC#5と下りCC#6と下りCC#7に対応する上りCCは上りCC#Dである。下りCC#1、下りCC#2とそれらに対応する上りCC#Aは非対称運用である。同様に、下りCC#5、下りCC#6、下りCC#7とそれらに対応する上りCC#Dは非対称運用である。このように、非対称運用においては一つまたは複数の下りCCに、一つの上りCCが対応する(ペアバンドとなる)。 The uplink CC corresponding to downlink CC # 1 and downlink CC # 2 is uplink CC #A, the uplink CC corresponding to downlink CC # 3 is uplink CC #B, and the uplink CC corresponding to downlink CC # 4 is uplink An uplink CC corresponding to CC #C and corresponding to downlink CC # 5, downlink CC # 6, and downlink CC # 7 is uplink CC #D. Downlink CC # 1, downlink CC # 2 and uplink CC # A corresponding to them are asymmetrical. Similarly, downlink CC # 5, downlink CC # 6, downlink CC # 7, and uplink CC # D corresponding to them are asymmetrical operations. Thus, in asymmetric operation, one uplink CC corresponds to one or a plurality of downlink CCs (becomes a pair band).
 非対称運用においてRAプロシージャを実行する場合、図17で示したシグナリングが行われることになるが、上りのシグナリングであるMsg1とMsg3は、一つまたは複数の下りCCに対して、それら下りCCと対応する(ペアバンドとなる)一つの上りCCにおいて、無線リソースを用いて、UEからeNBへ送信される。 When the RA procedure is executed in the asymmetric operation, the signaling shown in FIG. 17 is performed. The uplink signaling Msg1 and Msg3 correspond to the downlink CC with respect to one or a plurality of downlink CCs. In one uplink CC that performs (pair band), it is transmitted from the UE to the eNB using radio resources.
 例えば、下りCC#1にキャンプオンしているUEは、上りCC#Aの無線リソース(RB#1(1814))で、Msg1、Msg3を送信する。下りCC#2にキャンプオンしているUEは、上りCC#Aの無線リソース(RB#2(1815))で、Msg1、Msg3を送信する。上りCC#A上でMsg1、Msg3はUE毎に多重される。 For example, the UE camping on the downlink CC # 1 transmits Msg1 and Msg3 using the radio resource (RB # 1 (1814)) of the uplink CC # A. The UE camping on the downlink CC # 2 transmits Msg1 and Msg3 using the radio resource (RB # 2 (1815)) of the uplink CC #A. Msg1 and Msg3 are multiplexed for each UE on the uplink CC # A.
 Msg2、Msg4は、下りCC#1にキャンプオンしているUEには下りCC#1で、下りCC#2にキャンプオンしているUEには下りCC#2で、それぞれeNBからUEに送信される。Msg1、Msg3の送信において、上りCC#A上でのUE毎の多重方法として、時間分割多重、周波数分割多重、符号分割多重などが考えられる。 Msg2 and Msg4 are transmitted from the eNB to the UE on the downlink CC # 1 for the UE camping on the downlink CC # 1 and on the downlink CC # 2 for the UE camping on the downlink CC # 2, respectively. The In transmission of Msg1 and Msg3, time division multiplexing, frequency division multiplexing, code division multiplexing, and the like are conceivable as multiplexing methods for each UE on the uplink CC # A.
 このように、非対称運用において、RAプロシージャが行われ、途中で失敗した場合、従来の方法の適用では実施の形態2で記載した課題が生じてしまう。 As described above, in the asymmetric operation, when the RA procedure is performed and fails in the middle, application of the conventional method causes the problem described in the second embodiment.
 従って、キャリアアグリゲーション対応の基地局(セル)において、RAプロシージャ失敗時に、UEがキャンプオンするセルの決定において、新たな効果的な方法が要求される。 Therefore, in a base station (cell) that supports carrier aggregation, a new effective method is required for determining a cell where the UE camps on when the RA procedure fails.
 これらの課題を解決するため、実施の形態2で開示した方法を適用しても良い。 In order to solve these problems, the method disclosed in the second embodiment may be applied.
 しかし、非対称運用において、RAプロシージャが行われ、途中で失敗した場合にキャンプオンする下りCCの決定方法として、実施の形態2で開示した方法を適用した場合も以下のような問題を生じる。 However, in the asymmetric operation, when the method disclosed in the second embodiment is applied as a method of determining a downlink CC to camp on when an RA procedure is performed and fails in the middle, the following problem occurs.
 例えば、実施の形態2で開示した方法として、UEは、RAプロシージャ開始時にキャンプオンしていた基地局(セル)のRRC_IDLE時にキャンプオン可能なCCのうち、RAプロシージャを失敗したCCを除いたCCのうち、いずれか一つのCCにキャンプオンを試みるようにする。 For example, as a method disclosed in the second embodiment, the UE is a CC that excludes CCs that failed the RA procedure from among CCs that can be camped on at the RRC_IDLE of the base station (cell) that was camping on at the start of the RA procedure. Try to camp on any one of the CCs.
 例えば、図18に示すように、UE(1813)が下りCC#2(1803)にキャンプオンしたとする。下りCC#1(1802)、下りCC#2(1803)とそれらに対応する上りCC#A(1809)は非対称運用である。UEがRAプロシージャを実行する場合、キャンプオンしている下りCC#2(1803)に対応した上りCC#A(1809)の無線リソース(RB#2(1815))において、UEは基地局(セル)に対してMsg1を送信する。その後、Msg2からMsg4が各々下りCC#2(1803)とそれに対応する上りCC#A(1815)によってUE(1813)と基地局(セル)(1801)間で通信される。Msg4をUEが受信した場合、RAプロシージャは成功となる。しかし、RAプロシージャ(Msg1~Mag4)の途中で失敗した場合、UEは、RAプロシージャ開始時にキャンプオンしていた基地局(セル)(1801)のRRC_IDLE時にキャンプオン可能な下りCC(例えば、下りCC#1(1802)から下りCC#7(1808)とする)のうち、RAプロシージャを失敗した下りCC#2(1803)を除いた下りCCのうち、いずれか一つの下りCCにキャンプオンを試みるようにする。ここでは、下りCC#1(1802)と下りCC#3(1804)から下りCC#7(1808)が相当する。この際に、UEは下りCC#1(1802)にキャンプオンを試みるとする。RAプロシージャを実行する際に選択していた基地局(セル)(1801)と同じセル内のCCなので、UEがCC#1(1802)にキャンプオンできる可能性は高いと判断される。よって、UEはRAプロシージャ失敗時に下りCC#1(1802)にキャンプオンすることになる。 For example, as shown in FIG. 18, it is assumed that the UE (1813) camps on the downlink CC # 2 (1803). Downlink CC # 1 (1802), downlink CC # 2 (1803) and the corresponding uplink CC # A (1809) are asymmetrical operations. When the UE executes the RA procedure, in the radio resource (RB # 2 (1815)) of the uplink CC # A (1809) corresponding to the downlink CC # 2 (1803) that is camping on, the UE is a base station (cell ) Msg1 is transmitted. Thereafter, Msg2 to Msg4 are communicated between the UE (1813) and the base station (cell) (1801) by the downlink CC # 2 (1803) and the corresponding uplink CC # A (1815). If the UE receives Msg4, the RA procedure is successful. However, if the RA procedure (Msg1 to Mag4) fails in the middle of the RA procedure, the UE can download a downlink CC (for example, downlink CC) that can be camp-on at the time of RRC_IDLE of the base station (cell) (1801) that was camping on at the start of the RA procedure. # 1 (1802) to downlink CC # 7 (1808)), and attempts to camp on any one of the downlink CCs except the downlink CC # 2 (1803) that failed the RA procedure. Like that. Here, downlink CC # 1 (1802) and downlink CC # 3 (1804) to downlink CC # 7 (1808) correspond. At this time, it is assumed that the UE attempts to camp on downlink CC # 1 (1802). Since the CC is in the same cell as the base station (cell) (1801) selected when executing the RA procedure, it is determined that the UE is likely to camp on CC # 1 (1802). Therefore, the UE camps on the downlink CC # 1 (1802) when the RA procedure fails.
 しかしこの場合、再度のRAプロシージャが失敗する可能性はより高くなってしまう。例えば、再度RAプロシージャを実行する際、UEは、Msg1を下りCC#1(1802)に対応する上りCC#A(1809)の無線リソース(RB#1(1814))で基地局(セル)(1801)に送信しなければならない。UEは、上りCC#A(1809)にてRAプロシージャに失敗しているため、この送信も失敗に終わる可能性が高い。さらに、例え基地局(セル)がMsg1を受信成功したとしても、UEは、Mag2を受信した後のMsg3も下りCC#1(1802)に対応する上りCC#A(1809)で基地局(セル)に送信しなければならない。上りCC#A(1809)にてRAプロシージャに失敗しているため、この送信も失敗に終わる可能性が高い。このように、再度のRAプロシージャの途中で失敗する可能性はより高くなってしまう。 However, in this case, there is a higher possibility that another RA procedure will fail. For example, when the RA procedure is executed again, the UE uses Msg1 as a base station (cell) (cell) (in radio resources (RB # 1 (1814)) of uplink CC # A (1809) corresponding to downlink CC # 1 (1802). 1801). Since the UE has failed the RA procedure in uplink CC # A (1809), there is a high possibility that this transmission will also fail. Furthermore, even if the base station (cell) has successfully received Msg1, the UE also receives Msg3 after receiving Mag2 in the uplink CC # A (1809) corresponding to downlink CC # 1 (1802). ) Must be sent to. Since the RA procedure has failed in the uplink CC # A (1809), there is a high possibility that this transmission will also fail. Thus, the possibility of failure in the middle of another RA procedure becomes higher.
 再度RAプロシージャに失敗したUEは、実施の形態2で開示した方法に従ってさらにもう一度キャンプオンするCCを探さなくてはならない。一旦、CC#1(1802)にキャンプオンを行ってしまっているため、再度のRAプロシージャ失敗時、下りCC#2(1803)にもう一度キャンプオンを試みる場合が生じる。このような場合、また再度のRAプロシージャを行う場合、上りCC#A(1809)を用いることになる。従って、このRAプロシージャも失敗する可能性が高くなる。また、上りCCに対応する下りCCの数が多大になったときも、RAプロシージャの失敗を繰り返す可能性が高くなる。 The UE that has failed the RA procedure again must search for a CC to camp on again according to the method disclosed in the second embodiment. Since camping on CC # 1 (1802) has been performed once, when the RA procedure fails again, there is a case where camping on CC # 2 (1803) is attempted again. In such a case, when performing another RA procedure, the uplink CC # A (1809) is used. Therefore, there is a high possibility that this RA procedure also fails. Further, when the number of downlink CCs corresponding to the uplink CCs becomes large, the possibility that the failure of the RA procedure is repeated increases.
 このように、実施の形態2で開示した方法を適用しただけでは、RAプロシージャ失敗を繰り返す状況が発生してしまう。これにより、UEと基地局(セル)、ネットワーク間においてデータ通信を開始するまでに多大な時間がかかり、場合によっては、通信が不可能になってしまう。また、UEは何度もRAプロシージャを繰り返さねばならないため、消費電力の増大を招くことになる。 As described above, simply applying the method disclosed in the second embodiment may cause a situation where the RA procedure fails repeatedly. As a result, it takes a long time to start data communication between the UE, the base station (cell), and the network, and in some cases, communication becomes impossible. In addition, since the UE has to repeat the RA procedure many times, the power consumption increases.
 従ってRAプロシージャ失敗時にキャンプオンするセルとCCの決定において、新たな効果的な方法が要求される。 Therefore, a new and effective method is required in determining the cell and CC to camp on when the RA procedure fails.
 上記のような課題を解決するため、本実施の形態では、UEは、RAプロシージャ開始時にキャンプオンしていた基地局(セル)のRRC_IDLE時にキャンプオン可能なCCのうち、RAプロシージャを失敗した上りCCに対応する下りCCを除いたCCのうち、いずれか一つのCCにキャンプオンを試みるようにする。 In order to solve the above-described problems, in this embodiment, the UE has failed in the RA procedure among the CCs that can be camp-on at the time of RRC_IDLE of the base station (cell) that was camp-on at the start of the RA procedure. Camp-on is attempted to any one of the CCs excluding the downlink CC corresponding to the CC.
 図22に、下りCC/上りCC非対称運用におけるRAプロシージャ失敗の際にキャンプオンするCCの概念図を示す。図22において、図18と同じ参照符号のものは、同一または相当するものを示すので、同じ参照符号の箇所の説明は省略する。 FIG. 22 shows a conceptual diagram of a CC that camps on when an RA procedure fails in downlink CC / uplink CC asymmetric operation. In FIG. 22, the same reference numerals as those in FIG. 18 indicate the same or corresponding parts, and the description of the same reference numerals will be omitted.
 例えば、図18に示したように、UE(1813)が下りCC#2(1803)にキャンプオンしたとする。UEがRAプロシージャを実行し、キャンプオンしている下りCC#2(1803)に対応した上りCC#A(1809)においてUEは基地局(セル)に対してMsg1を送信し、Msg2からMsg4が各々下りCC#2(1803)とそれに対応する上りCC#A(1809)によってUEと基地局(セル)間で通信される。RAプロシージャ(Msg1~Mag4)の途中で失敗した場合、図22に示すように、UEは、RAプロシージャ開始時にキャンプオンしていた基地局(セル)(1801)のRRC_IDLE時にキャンプオン可能な下りCC(例えば、下りCC#1(1802)から下りCC#7(1808)とする)のうち、RAプロシージャを失敗した下りCC#2(1803)と、さらに、上りCC#A(1809)と対応する他の下りCC、ここでは下りCC#1(1802)とを除いたCCのうち、いずれか一つの下りCCにキャンプオンを試みるようにする。ここでは、下りCC#3(1804)から下りCC#7(1808)が相当する。ここでは例えば、UEは下りCC#3(1804)にキャンプオンを試みるとする。 For example, as shown in FIG. 18, it is assumed that the UE (1813) camps on the downlink CC # 2 (1803). In the uplink CC # A (1809) corresponding to the downlink CC # 2 (1803) in which the UE executes the RA procedure, the UE transmits Msg1 to the base station (cell), and Msg2 to Msg4 Communication is performed between the UE and the base station (cell) by downlink CC # 2 (1803) and uplink CC # A (1809) corresponding thereto. When the RA procedure (Msg1 to Mag4) fails in the middle of the procedure, as shown in FIG. 22, the UE can download a downlink CC that can be camp-on at the time of RRC_IDLE of the base station (cell) (1801) that has been camp-on at the start of the RA procedure. Among downlink CCs # 1 (1802) to downlink CCs # 7 (1808), for example, corresponding to downlink CC # 2 (1803) that failed in the RA procedure, and uplink CC #A (1809) The camp-on is attempted on any one of the downlink CCs other than the CCs excluding the downlink CC # 1 (1802) here. Here, downlink CC # 3 (1804) to downlink CC # 7 (1808) correspond. Here, for example, it is assumed that the UE attempts to camp on downlink CC # 3 (1804).
 RAプロシージャを実行する際に選択していた基地局(セル)(1801)と同じセル内のCCなので、UEがCC#3(1804)にキャンプオンできる可能性は高い。よって、UEはRAプロシージャ失敗時のキャンプオンを確実に実行することができる。 Since it is a CC in the same cell as the base station (cell) (1801) selected when executing the RA procedure, there is a high possibility that the UE can camp on CC # 3 (1804). Therefore, the UE can reliably execute camp-on when the RA procedure fails.
 また、下りCC#3(1804)にキャンプオンしたUEが再度のRAプロシージャを実行する場合も、先にRAプロシージャの失敗時に使用した上りCC#A(1809)とは異なる上りCC、ここでは上りCC#B(1810)で再度のRAプロシージャを行うことになるため、RAプロシージャ途中の失敗は無くなる。上りCC#Aと上りCC#Bのキャリア周波数が異なるため、電波伝搬環境が異なることが考えられるからである。これにより、RAプロシージャの失敗が繰り返されることを回避可能となる。従って、RRC_CONNECTED状態への移行制御の遅延時間の削減、UEの消費電力の削減、他UEとのRAプロシージャのコンテンションの削減、システムとしてのシグナリング容量の削減、他のセルや他UEへの干渉の抑制などが可能となる。また、タイマなどによりRAプロシージャ実行許可制限時間が設けられている場合など、RAプロシージャを長時間繰返して該タイマを越えた場合など、UEと基地局(セル)、ネットワーク間で通信が不可能になる状況が生じるが、これを回避することも可能となる。従って、基地局またはシステム全体としてのスループットを向上させることが可能となる。 Also, when the UE camp-on to the downlink CC # 3 (1804) executes the RA procedure again, the uplink CC different from the uplink CC #A (1809) used at the time of the failure of the RA procedure earlier, here the uplink CC Since the RA procedure is performed again at CC # B (1810), there is no failure during the RA procedure. This is because the uplink CC # A and the uplink CC # B have different carrier frequencies, so that the radio wave propagation environment may be different. Thereby, it is possible to avoid the failure of the RA procedure. Therefore, the delay time of the transition control to the RRC_CONNECTED state is reduced, the power consumption of the UE is reduced, the contention of the RA procedure with another UE is reduced, the signaling capacity as a system is reduced, and the interference to other cells and other UEs Can be suppressed. Also, when the RA procedure execution permission limit time is set by a timer or the like, when the RA procedure is repeated for a long time and the timer is exceeded, communication between the UE and the base station (cell) and the network becomes impossible. However, this situation can be avoided. Therefore, the throughput of the base station or the entire system can be improved.
 RAプロシージャ失敗の際のシーケンス例は、図25と同じで良い。また、キャンプオンを試みるセルおよびCCの決定方法は、図26のST2603を、RRC_IDLE時にキャンプオン可能な下りCCであって、かつRAプロシージャを失敗した上りCCに対応する下りCCを除いた下りCCのうち、キャンプオンを試みていない下りCCは存在するか否かで判断するように変更すれば良い。さらに明確に言うならば、ST2601、ST2604からST2609のCCを下りCCに変更すれば良い。 The sequence example when the RA procedure fails may be the same as in FIG. In addition, the determination method of the cell and CC to attempt camp on is as follows. ST2603 in FIG. 26 is a downlink CC excluding the downlink CC corresponding to the uplink CC that can camp on at the time of RRC_IDLE and the RA procedure failed. Of these, a change may be made so as to determine whether there is a downlink CC that has not attempted camp-on. More specifically, the CCs of ST2601, ST2604 to ST2609 may be changed to downlink CCs.
 UEは、ST2603において、RAプロシージャを失敗した上りCCにどの下りCCが対応しているかの情報を必要とする。該上りCCにどの下りCCが対応しているかの情報(下りCC/上りCCのペアバンド情報)を、システム情報として基地局(セル)からUEに報知するようにすれば良い。図25のST2501後のST2502で、UEは、該基地局(セル)に最初にキャンプオンした下りCC上で報知される該システム情報を受信するようにすれば良い。 In ST2603, the UE needs information on which downlink CC corresponds to the uplink CC that failed the RA procedure. Information about which downlink CC corresponds to the uplink CC (downlink CC / uplink CC pair band information) may be reported from the base station (cell) to the UE as system information. In ST2502 after ST2501 in FIG. 25, the UE may receive the system information broadcasted on the downlink CC that first camps on the base station (cell).
 また、上述の、RRC_IDLE時にキャンプオン可能なCCのうちのいずれか一つのCCとして、実施の形態2で開示した方法としても良い。 Also, the method disclosed in the second embodiment may be used as any one of the CCs that can be camp-on at the time of RRC_IDLE.
 また、別の方法として、実施の形態1変形例3で開示した、アンカーキャリアにキャンプオンを試みるようにしても良い。アンカーキャリアからはシステム情報が報知されるため、キャンプオン後、システム情報を得られずに他のCCを再選択/選択する処理に入ってしまうことは無くなる。従って、制御遅延時間の削減、UEの消費電力の削減が可能となる。 Further, as another method, camp-on may be attempted for the anchor carrier disclosed in the first modification 3 of the first embodiment. Since the system information is reported from the anchor carrier, the system information is not obtained after the camp-on, and the process of reselecting / selecting another CC is not entered. Accordingly, it is possible to reduce the control delay time and the power consumption of the UE.
 こうすることで、本実施の形態の効果に加え、さらに実施の形態2や実施の形態1変形例3で記載の効果を得ることが可能となる。 By doing so, in addition to the effects of the present embodiment, it is possible to obtain the effects described in the second embodiment and the first modification 3 of the first embodiment.
 前述の、実施の形態2で開示した方法の一つとして、基地局(セル)がキャリアアグリゲーション対象とするCCのうちRRC_IDLE時にキャンプオン可能なCCでサブセットを構成したが、該キャンプオン可能なCCを周波数バンドに一つずつ設けてサブセットを構成しても良いことを示した。 As one of the methods disclosed in the second embodiment described above, a subset is composed of CCs that can be camp-on at the time of RRC_IDLE among CCs to be subjected to carrier aggregation by the base station (cell). It was shown that a subset may be configured by providing one for each frequency band.
 別の方法として、該キャンプオン可能なCCを、該基地局(セル)の上りCCと対応する一つまたは複数の下りCCから一つずつ設けて、サブセットを構成しても良い。 As another method, a subset may be configured by providing one CC that can be camp-on from one or a plurality of downlink CCs corresponding to the uplink CC of the base station (cell).
 RAプロシージャ失敗時、該サブセット内の他の下りCCにキャンプオンを試みるようにする。 When the RA procedure fails, try to camp on other downlink CCs in the subset.
 このように、RAプロシージャ失敗時に、該サブセット内の下りCCからキャンプオンを試みるセルを選択可能となるので、制御遅延時間の削減、UEの消費電力の削減が可能となる。 As described above, when the RA procedure fails, a cell attempting to camp on can be selected from the downlink CC in the subset, so that it is possible to reduce the control delay time and the power consumption of the UE.
 前述した方法では、RAプロシージャ失敗時の上りCCと対応する(ペアバンドとなる)下りCCの情報を、UEは、最初にキャンプオンした該基地局(セル)の下りCCの報知情報により受信することとした。 In the above-described method, the UE receives the downlink CC information corresponding to the uplink CC at the time of RA procedure failure (paired band) by the broadcast information of the downlink CC of the base station (cell) that first camps on the UE. It was decided.
 別の方法として、UEはRAプロシージャ実行時の上りCC情報を記憶しておき、該RAプロシージャ失敗時に、一旦、RRC_IDLE時にキャンプオン可能な下りCCのうちいずれか一つを選択し、該下りCCの報知情報を受信して対応する上りCC情報を得る。該上りCC情報が、記憶したRAプロシージャ失敗時の上りCC情報と同じであれば他の下りCCを選択し、再度該下りCCの報知情報を受信して対応する上りCC情報を得るようにする。該上りCC情報が、記憶したRAプロシージャ失敗時の上りCC情報と異なっていれば該下りCCにキャンプオンする。 As another method, the UE stores uplink CC information at the time of RA procedure execution, and when the RA procedure fails, once selects one of the downlink CCs that can be camp-on at the time of RRC_IDLE, and then selects the downlink CC. To receive corresponding uplink CC information. If the uplink CC information is the same as the stored uplink CC information at the time of RA procedure failure, another downlink CC is selected and the corresponding uplink CC information is obtained by receiving the downlink CC broadcast information again. . If the uplink CC information is different from the stored uplink CC information at the time of RA procedure failure, camp on is performed on the downlink CC.
 こうすることで、本実施の形態の効果に加え、各CCから報知する情報量を少なくする効果が得られる。 By doing so, in addition to the effect of the present embodiment, the effect of reducing the amount of information broadcast from each CC can be obtained.
 また、もし、RAプロシージャ実行時にキャンプオンしていた基地局(セル)が、RRC_IDLE時のキャンプオン可能な下りCCが一つの場合は、他のセルにキャンプオンを試みるようにしておけば良い。 Also, if the base station (cell) that was camping on at the time of executing the RA procedure has one downlink CC that can be camping on at the time of RRC_IDLE, it may be configured to try camping on another cell.
 また、もし、RAプロシージャ実行時にキャンプオンしていた基地局(セル)が、RRC_IDLE時にキャンプオン可能な下りCCがすべて同じ上りCCとリンクしている場合は、他のセルにキャンプオンを試みるようにしておけば良い。 Also, if the base station (cell) that was camping on when performing the RA procedure is linked to all the same uplink CCs that can be camped on at the time of RRC_IDLE, try to camp on another cell. It ’s good if you keep it.
 こうすることによって、例え、RAプロシージャ失敗時に他にキャンプオン可能な下りCCが無い場合、または再度のRAプロシージャ失敗の可能性が高い上りCCしかない場合にも、他の基地局(セル)でキャンプオン可能にすることができ、再度のRAプロシージャを実行できる可能性を高めることができる。 By doing this, even if there is no other downlink CC that can be camp-on when the RA procedure fails, or there is only an uplink CC that is highly likely to fail again, another base station (cell) Camping can be enabled, and the possibility of performing another RA procedure can be increased.
 本実施の形態では、一つまたは複数の下りCCに、一つの上りCCが対応する(ペアバンドとなる)非対称運用の場合について説明した。本実施の形態で開示した方法は、これに限らず、一つの下りCCに一つまたは複数の上りCCが対応する(ペアバンドとなる)非対称運用の場合についても適用できる。一つの下りCCとペアバンドとなる一つまた複数の上りCCにおいて、RAプロシージャを失敗していない上りCCが存在する場合には、RAプロシージャ失敗時、RAプロシージャを失敗した上りCCとペアバンドとなる下りCCにキャンプオンを試みるようにする。これにより、キャンプオンを確実にすることは可能となる。UEはある下りCCにキャンプオンした後にRAプロシージャを行う。つまり、該下りCCの受信品質は良好であるといえる。従って、RAプロシージャにおいての失敗は主に上りにおいて生じると考えられるからである。
In the present embodiment, the case of asymmetric operation in which one uplink CC corresponds to one or a plurality of downlink CCs (becomes a pair band) has been described. The method disclosed in the present embodiment is not limited to this, and can also be applied to the case of asymmetric operation in which one or a plurality of uplink CCs correspond to one downlink CC (becomes a pair band). When there is an uplink CC that has not failed the RA procedure in one or a plurality of uplink CCs that are pair-band with one downlink CC, when the RA procedure fails, the uplink CC and the pair band that have failed the RA procedure, Try to camp on the downstream CC. This makes it possible to ensure camp-on. The UE performs the RA procedure after camping on a certain downlink CC. That is, it can be said that the reception quality of the downlink CC is good. Therefore, the failure in the RA procedure is considered to occur mainly in the upstream.
 再度RAプロシージャを実行する際に、該キャンプオンした下りCCとペアバンドとなる上りCCのうちで、RAプロシージャを失敗していない上りCC上のいずれか一つのCCでRAプロシージャを実行するようにしておけば良い。これによりRAプロシージャ失敗が繰り返し発生することを回避でき、本実施の形態と同様の効果を得ることが可能となる。 When the RA procedure is executed again, the RA procedure is executed on any one of the CCs on the uplink CC that has not failed the RA procedure among the uplink CCs paired with the camp-on downlink CC. Just keep it. As a result, it is possible to avoid the occurrence of repeated RA procedure failures, and to obtain the same effect as in the present embodiment.
 実施の形態2および実施の形態3では、RAプロシージャとして、Msg1からMsg4を実行する場合について述べたが、これに限らず、下りCCと上りCCを用いてメッセージの送受信が実行されていれば良く、実施の形態2および実施の形態3で開示した方法が適用できる。 In the second embodiment and the third embodiment, the case where Msg1 to Msg4 are executed as the RA procedure has been described. However, the present invention is not limited to this, as long as message transmission / reception is performed using the downlink CC and the uplink CC. The methods disclosed in Embodiment 2 and Embodiment 3 can be applied.
 本発明において、実施の形態1、実施の形態1の変形例1、実施の形態1の変形例2、実施の形態1の変形例3、実施の形態2、実施の形態2の変形例1、実施の形態3を個別に記載したが、これらは組合せて用いても良い。 In the present invention, the first embodiment, the first modification of the first embodiment, the second modification of the first embodiment, the third modification of the first embodiment, the second embodiment, the first modification of the second embodiment, Although Embodiment 3 has been described individually, these may be used in combination.
 本発明において、RRC_IDLE時にUEがキャンプオンするCCは一つとしたが、UEが複数のCCに同時にキャンプオンをするようにしても良い。いずれか一つのCC、ではなく、複数のCC、とすれば良い。この場合にも、本発明を適用することは可能であり、同様の効果を得ることが可能となる。 In the present invention, the CC that the UE camps on at the time of RRC_IDLE is one, but the UE may camp on a plurality of CCs simultaneously. A plurality of CCs may be used instead of any one CC. Also in this case, the present invention can be applied and the same effect can be obtained.
 なお、RRC_IDLE時にUEが複数のCCに同時にキャンプオンしている場合、RRC_CONNECTEDに移行する際のRAプロシージャはUEがキャンプオンしている該複数のCCのいずれか一つのCCで行うようにすれば良い。UEは受信品質が良好なCCを選択できるため、RAプロシージャの途中での失敗を削減することが可能となる。 If the UE is camping on multiple CCs at the time of RRC_IDLE, the RA procedure when transitioning to RRC_CONNECTED is performed on any one of the multiple CCs on which the UE is camping on. good. Since the UE can select a CC with good reception quality, it is possible to reduce failures during the RA procedure.
 本発明については、LTEシステム(E-UTRAN)、LTEアドバンスド(LTE-Advanced)システムを中心に記載したが、W-CDMAシステム(UTRAN、UMTS)についても適用可能である。 In the present invention, the LTE system (E-UTRAN) and the LTE advanced (LTE-Advanced) system are mainly described, but the present invention can also be applied to a W-CDMA system (UTRAN, UMTS).

Claims (11)

  1. 複数の部分キャリアを個別に使用するか又は前記複数の部分キャリアを集めた集合キャリアを使用して、前記部分キャリアに対応した移動端末又は前記集合キャリアに対応した移動端末と基地局とが無線通信する移動体通信システムであって、
     前記集合キャリアを使用して前記集合キャリアに対応した移動端末と基地局とが無線通信する場合、前記移動端末は前記集合キャリアに含まれるいずれか一つの部分キャリアにキャンプオンすることを特徴とする移動体通信システム。
    Wireless communication between a mobile terminal corresponding to the partial carrier or a mobile terminal corresponding to the aggregated carrier and a base station using a plurality of partial carriers individually or using an aggregate carrier obtained by collecting the plurality of partial carriers A mobile communication system
    The mobile terminal camps on any one of the partial carriers included in the aggregate carrier when the mobile terminal and the base station corresponding to the aggregate carrier perform radio communication using the aggregate carrier. Mobile communication system.
  2. 前記移動端末と前記基地局との間の無線通信が接続状態から待受状態に遷移する際に、前記移動端末は前記集合キャリアに含まれるいずれか一つの部分キャリアにキャンプオンすることを特徴とする請求項1記載の移動体通信システム。 When the wireless communication between the mobile terminal and the base station transitions from a connected state to a standby state, the mobile terminal camps on any one of the partial carriers included in the aggregated carrier. The mobile communication system according to claim 1.
  3. 前記移動端末は物理特性が共通する部分キャリアの集合に含まれるいずれか一つの部分キャリアにキャンプオンすることを特徴とする請求項1記載の移動体通信システム。 The mobile communication system according to claim 1, wherein the mobile terminal camps on any one of the partial carriers included in a set of partial carriers having common physical characteristics.
  4. 前記移動端末は外部から指定された一つの部分キャリアにキャンプオンすることを特徴とする請求項1記載の移動体通信システム。 The mobile communication system according to claim 1, wherein the mobile terminal camps on one partial carrier designated from outside.
  5. 前記移動端末は前回の待受状態時にキャンプオン可能であった部分キャリアにキャンプオンすることを特徴とする請求項2記載の移動体通信システム。 The mobile communication system according to claim 2, wherein the mobile terminal camps on a partial carrier that was camp-onable in a previous standby state.
  6. 前記基地局が送信したシステム情報を移動端末が監視するときの監視対象となる部分キャリアを接続状態と待受状態とで共通にすることを特徴とする請求項1記載の移動体通信システム。 2. The mobile communication system according to claim 1, wherein a partial carrier to be monitored when the mobile terminal monitors the system information transmitted by the base station is common in the connected state and the standby state.
  7. ランダムアクセスチャネルの接続に失敗した際に、前記移動端末は前記集合キャリアに含まれるいずれか一つの部分キャリアにキャンプオンすることを特徴とする請求項1記載の移動体通信システム。 The mobile communication system according to claim 1, wherein, when connection of a random access channel fails, the mobile terminal camps on any one of the partial carriers included in the aggregate carrier.
  8. 前記移動端末は前記集合キャリアに含まれ接続に失敗した部分キャリアを除く一つの部分キャリアにキャンプオンすることを特徴とする請求項7記載の移動体通信システム。 8. The mobile communication system according to claim 7, wherein the mobile terminal camps on one partial carrier excluding the partial carrier that is included in the aggregated carrier and failed to be connected.
  9. 前記移動端末は前回の待受状態時にキャンプオン可能であった部分キャリアにキャンプオンすることを特徴とする請求項7記載の移動体通信システム。 8. The mobile communication system according to claim 7, wherein the mobile terminal camps on a partial carrier that was camp-onable in a previous standby state.
  10. 前記移動端末は過去にキャンプオン可能であった部分キャリアにキャンプオンすることを特徴とする請求項1記載の移動体通信システム。 The mobile communication system according to claim 1, wherein the mobile terminal camps on a partial carrier that can be camped on in the past.
  11. 無線通信の上り方向または下り方向のうち一方の通信方向において一つの部分キャリアを使用し、これに対応した他方の通信方向において二以上の部分キャリアを使用する上下非対称通信を行う場合、一方の通信方向においてランダムアクセスチャネルの接続に失敗し、他方の通信方向において一つの部分キャリアにキャンプオンする際に、キャンプオンすべき当該一つの部分キャリアは、一方の通信方向において接続に失敗した部分キャリアに対応した他方の通信方向における二以上の部分キャリアを除いたものから選択されたものであることを特徴とする請求項1記載の移動体通信システム。 When performing up / down asymmetric communication using one partial carrier in one communication direction in the uplink or downlink direction of wireless communication and using two or more partial carriers in the other communication direction corresponding to this, one communication When a random access channel connection fails in one direction and camps on one partial carrier in the other communication direction, the one partial carrier to be camped on is a partial carrier that fails to connect in one communication direction. 2. The mobile communication system according to claim 1, wherein the mobile communication system is selected from ones excluding two or more partial carriers in the other corresponding communication direction.
PCT/JP2010/003968 2009-06-19 2010-06-15 Mobile communication system WO2010146834A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-146294 2009-06-19
JP2009146294A JP2012165034A (en) 2009-06-19 2009-06-19 Mobile communication system

Publications (1)

Publication Number Publication Date
WO2010146834A1 true WO2010146834A1 (en) 2010-12-23

Family

ID=43356166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003968 WO2010146834A1 (en) 2009-06-19 2010-06-15 Mobile communication system

Country Status (2)

Country Link
JP (1) JP2012165034A (en)
WO (1) WO2010146834A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132921A1 (en) * 2013-02-28 2014-09-04 株式会社Nttドコモ Wireless base station
WO2015174328A1 (en) * 2014-05-15 2015-11-19 株式会社Nttドコモ Radio base station, user equipment, and radio communication method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5823939B2 (en) * 2012-09-13 2015-11-25 株式会社Nttドコモ Mobile communication system, radio base station and mobile station
JP2016001930A (en) * 2015-10-08 2016-01-07 株式会社Nttドコモ Mobile communication system, radio base station and mobile station

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEC: "Higher Layer Functions to Support Carrier Aggregation", 3GPP R2-093287, 3GPP, 4 May 2009 (2009-05-04) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132921A1 (en) * 2013-02-28 2014-09-04 株式会社Nttドコモ Wireless base station
WO2015174328A1 (en) * 2014-05-15 2015-11-19 株式会社Nttドコモ Radio base station, user equipment, and radio communication method

Also Published As

Publication number Publication date
JP2012165034A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP7378539B2 (en) Mobile communication systems, base stations and mobile terminals
US11528700B2 (en) User equipment and radio communication system
US11337181B2 (en) Communication terminal device
JP6366763B2 (en) Communication system, communication terminal device, and primary cell
JP2020048228A (en) Mobile communication system and base station
WO2010146834A1 (en) Mobile communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP