WO2010146316A1 - Générateur et système laser a sous cavités couplées - Google Patents

Générateur et système laser a sous cavités couplées Download PDF

Info

Publication number
WO2010146316A1
WO2010146316A1 PCT/FR2010/051216 FR2010051216W WO2010146316A1 WO 2010146316 A1 WO2010146316 A1 WO 2010146316A1 FR 2010051216 W FR2010051216 W FR 2010051216W WO 2010146316 A1 WO2010146316 A1 WO 2010146316A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
cavity
laser
cavities
laser system
Prior art date
Application number
PCT/FR2010/051216
Other languages
English (en)
Other versions
WO2010146316A9 (fr
Inventor
Vincent Couderc
Philippe Paul Leproux
Florent Doutre
Dominique Pagnoux
Original Assignee
Centre National De La Recherche Scientifique
Compagnie Industrielle Des Lasers Cilas (Cilas)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Compagnie Industrielle Des Lasers Cilas (Cilas) filed Critical Centre National De La Recherche Scientifique
Priority to US13/378,774 priority Critical patent/US8867576B2/en
Priority to EP10734262.8A priority patent/EP2443706B1/fr
Priority to DK10734262T priority patent/DK2443706T3/en
Publication of WO2010146316A1 publication Critical patent/WO2010146316A1/fr
Publication of WO2010146316A9 publication Critical patent/WO2010146316A9/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08013Resonator comprising a fibre, e.g. for modifying dispersion or repetition rate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/117Q-switching using intracavity acousto-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements

Definitions

  • the present invention relates to the field of laser sources producing pulses of sub-nanosecond duration.
  • It relates more particularly to a laser system comprising a cavity formed of at least two sub-cavities and optical pumping means of a first of these at least two sub-cavities. It also relates to a laser generator comprising at least two of these laser systems.
  • the state of the art in this field comprises laser sources capable of producing generally monochromatic or quasi-monochromatic radiation. Such sources use cavities operating in the passive trip mode, called "Q-SWITCH".
  • a passively triggered monolithic microlaser comprises a laser cavity formed of a gain medium and a saturable absorber. , arranged between two dielectric layers.
  • a pump beam illuminates the gain medium through a first dielectric layer, which causes an excitation of the ions and energy stored in the gain medium. Since the energy inside the gain medium increases and the intracavity intensity at the wavelength of the microlaser also increases, the absorbent becomes saturated, resulting in rapid extraction of a portion of the microlaser. stored energy in pulse form.
  • the absorbent After the emission of the pulse, the absorbent is no longer saturated for a certain period of time, before becoming it again and causing the emission a new impulse.
  • the frequency of recurrence of the pulses is thus determined by the physical properties of the saturable absorber and the gain medium.
  • a trigger laser and double cavity is proposed in US Patent 4,982,405, which describes a laser comprising a cavity formed of two resonant sub-cavities.
  • the first sub-cavity includes a gain medium and is illuminated by a pump beam.
  • the second sub-cavity includes a non-linear medium and is illuminated by a second incident laser beam. These two sub-cavities are adjacent and are coupled by the constitution of a partially reflecting mirror in common. The length of the optical path of the second sub-cavity is adjusted to influence the Q-factor of the first sub-cavity containing the gain medium.
  • This solution does not, however, generate a mono chromatic pulse emission lower than the nanosecond and which is both stable and without temporal jitter.
  • the object of the present invention is to overcome this technical problem, by arranging two of the sub-cavities so as to form a passive sub-cavity incorporating a passive trigger, insufficiently pumped to generate a light pulse, and a active sub-cavity incorporating an active trigger coupled to the passive sub-cavity to cause the triggering of the light pulse.
  • the approach of the solution consisted in seeking to combine the advantages of passive type triggers (short pulse generation) and active type triggers (low temporal jitter) in order to solve the problem of the temporal jitter.
  • microlasers producing pulses of subnanosecond duration.
  • the initially targeted application initially concerned the cellular diagnosis by flow cytometry, for which it is necessary to temporally synchronize a test laser pulse with a cell propagating in front of an analysis window.
  • Passive triggers of the saturable absorber type
  • their trigger time jitter is large.
  • Active triggers are cumbersome and, unlike passive triggers, generate longer pulses but have low temporal jitter.
  • One of the aims of the invention is therefore to simultaneously use these two systems while preserving their characteristics and their environment.
  • This implementation results in their integration into a very short cavity, which is currently impossible because of their size.
  • the use of two coupled cavities solves this problem. Nevertheless, the characteristics of the laser system must be such that the active cavity has the potential to trigger the passive cavity. The passive cavity then forms the short pulse without significant influence of the first cavity after triggering. For this, it is recommended to have a very short passive cavity and a very long active cavity so that at least one longitudinal mode of the active cavity can oscillate within the passive cavity.
  • the present invention relates to a laser system comprising a cavity formed of at least two sub-cavities and optical pumping means of a first of the at least two sub-cavities.
  • the optical pumping means are arranged so as not to reach the laser emission threshold of the first sub-cavity.
  • This first sub-cavity comprises means for generating a short pulse.
  • a second sub-cavity comprises external triggering means. These first and second sub-cavities are coupled so that the triggering of this second sub-cavity causes the start of the short pulse generated by this first sub-cavity.
  • the first and second sub-cavities act as modules coupled to each other in a predetermined manner in order to dissociate the formation of a high energy pulse by means of a microcavity and the amplification of this impulse.
  • These two modules being integrated within a single resonator, their cascading favors the generation sub-nano second laser pulses and high energy without temporal jitter compared to an external trigger signal.
  • the first sub-cavity is not optically pumped sufficiently to achieve alone the laser emission threshold of the cavity.
  • the second sub-cavity comprises, in turn, an external triggering means which makes it possible, by virtue of the coupling between the two sub-cavities, to cause the tripping of a short-duration light pulse.
  • This both active and passive triggering of the laser cavity makes it possible to reach recurrence frequencies between 0 and 150 kHz and to obtain sub-nanosecond pulse durations without time jitter.
  • the first sub-cavity comprises a gain medium, in order to amplify the light emitted by the pumping means of this sub-cavity, without however reaching the laser emission threshold of the cavity.
  • the means for generating a short pulse comprise a saturable absorber.
  • This type of element is indeed particularly suited to the accumulation of light energy for a given period of time, and then release it after a trigger to generate pulses of short duration.
  • the second sub-cavity (active) comprises a gain medium for amplifying the light signal from the first sub-cavity.
  • the external triggering means comprise an acousto-optic modulator.
  • the two sub-cavities of the system comprise at each of their ends a means of partial reflection of the light.
  • a variant Particularly advantageous is to use Bragg mirrors as partial reflection means.
  • the coupling of the two sub-cavities is effected by the provision of a partial reflection means common to said two sub-cavities.
  • the optical pumping means are arranged to be substantially close to the laser emission threshold of said first sub-cavity without reaching it.
  • the temporal jitter is in fact even lower than one is far from the threshold of emission and that one has the capacity to pass largely above this threshold with the action of the second active cavity.
  • the external triggering means are adapted to be controlled by a synchronization signal.
  • the laser system comprises frequency conversion means.
  • Such a system makes it possible to generate other frequencies than that fixed by the nature of the laser medium.
  • the frequency conversion means are in the form of a non-linear optical fiber.
  • the second sub-cavity has a greater longitudinal dimension than that of the first sub-cavity, and preferably much larger (for example by a factor of 10), which makes it possible to have at least one longitudinal mode oscillating in the second sub-cavity which is also capable of oscillating in the first sub-cavity.
  • the present invention also relates to a laser generator comprising at least two laser systems as described above.
  • the second sub-cavities of at least two laser systems have a partial reflection means in common, which allows to couple them.
  • the generator may comprise means for synchronizing the pumping means of at least two laser systems.
  • a first variant consists of arranging the synchronization means to temporally synchronize the light pulses from the corresponding pumping means, which increases the light power of the generator.
  • a second variant consists of arranging the synchronization means to temporally desynchronize the light pulses from the corresponding pumping means, which increases the frequency of recurrence of the generator.
  • the second sub-cavities of at least two laser systems have an external triggering means in common.
  • FIG. 1 a diagram showing a laser system according to a first embodiment of the invention.
  • FIG. 2 is a diagram showing a laser system according to a second embodiment of the invention
  • FIGS. 3A to 3C diagrams showing two variants of a laser generator according to a first embodiment of the invention.
  • FIGS. 4A and 4B diagrams showing two variants of a laser generator with non-linear crystal according to a second embodiment of the invention.
  • a laser system 1 according to a first embodiment of the invention comprises a cavity formed of two sub-cavities 2 and 3 coupled to one another. It may be disposed in this cavity a number of sub-cavities greater than 2 without departing from the scope of this patent.
  • the coupling between cavities is of the interferometric type in the sense that, as will be clear from reading the description which follows, the coupling plays on the same wavelength and may give rise to losses related to the superposition in phase or no different components of the laser radiation. Thus, the modification of a parameter of one of the cavities imposes a change in the other cavities.
  • the first sub-cavity 2 comprises a gain medium 20 and a passive saturable absorber 21. According to an implementation variant, these two elements 20 and 21 may be included in one and the same component.
  • the microchip 20 can be a 1,1% YAG microlaser and the saturable absorbent 21 of CR4 + (absorbent) abs 3 cm 1 .
  • This first sub-cavity 2 also comprises two Bragg mirrors 10 and 11, arranged at each end of the sub-cavity.
  • the second sub-cavity 3 comprises an external trigger 30 surrounded by two Bragg mirrors 11 and 12.
  • the coupling of the two sub-cavities 2 and 3 is effected by the common arrangement of the Bragg mirror 11, the latter being at one end of the first sub-cavity 2 and at the other end of the second sub-cavity. cavity 3.
  • the Bragg mirrors 10 and 12 - at the other two ends of the two sub-cavities - then constitute the two mirrors surrounding the main cavity.
  • the laser system 1 finally comprises an optical pumping means 4 of the first sub-cavity 2. It is disposed vis-à-vis this sub-cavity so as not to reach the threshold of laser emission of the cavity, while being substantially close.
  • the saturable absorber 21 of the first sub-cavity 2 can store the pumped light energy and release it only under the effect of the external trigger operated by the trigger 30 of the second sub-cavity 3, so as to reach the laser threshold of the cavity.
  • the operating frequency of the trigger 30 determines the transmission frequency of the light pulses from the laser system 1.
  • the duration of the optical pulse generated is determined by the length of the cavity 1 and the type of saturable absorber positioned at inside.
  • the active triggering of the second cavity, by the trigger 30, thus causes the passive triggering, by saturation of the saturable absorber 21, of the first sub-cavity.
  • the external trigger 30 may be for example: a modulator, for example of the MOA type (acousto -optic), EO (electro-optical), MOEMS (micro-opto-electro-mechanical), etc., - another laser, for example a short pulse microlaser, or a picosecond laser diode.
  • a modulator for example of the MOA type (acousto -optic), EO (electro-optical), MOEMS (micro-opto-electro-mechanical), etc.
  • - another laser for example a short pulse microlaser, or a picosecond laser diode.
  • a pump diode 4 having a maximum emission at a wavelength of 808 nanometers and an average power of 3 watts, it may for example be used a mirror 10 whose maximum reflection is 1064. nanometers and the minimum at 808 nanometers, a mirror 11 of reflection coefficient 87% and a mirror 12 of reflection coefficient 95%. A temporal jitter of the order of one hundred picoseconds can then be obtained.
  • the second sub-cavity 3 may also include a gain medium in order to amplify the light signal and thus obtain a higher light energy density.
  • the second sub-cavity has a longitudinal dimension larger than that of the first sub-cavity, and preferably much larger (for example by a factor greater than or equal to 10), which makes it possible to have at least one oscillating longitudinal mode in the second sub-cavity which is also capable of oscillating in the first sub-cavity.
  • the laser system here comprises two sub-cavities 1 and 2.
  • the coupling between the latter is no longer ensured by the arrangement of a mirror common to the two sub-cavities, but by the provision in the same axis of their mirrors 1 la and 1 Ib.
  • the system also comprises, in the second sub-cavity 3, a non-linear element 31, a polarizer 40, a deflection element 41 (optional, in order to return the beam to a light power meter) and a blade half wave 42.
  • the nonlinear element 31 allows to spread the spectrum of the oscillating central light pulse in the cavity, without affecting the formation of the pulse.
  • This element may consist of fibers or crystals. It makes it possible to provide a broad spectrum in the infrared or visible range while maintaining a pulse duration of a few hundred picoseconds.
  • This embodiment incorporating a second laser formed by the elements 1 Ib, 30 and 12 improves the tripping of the first cavity by more easily saturating its gain medium with the contribution of external optical energy. This makes it easier to control the temporal jitter of the first cavity.
  • the elements 40 and 42 together make a power controller for dosing the amount of energy sent to the cavity 1.
  • This broadband spectrum is generated in the amplifying cavity (that is to say the sub-cavity 3), therefore in a cavity external to the laser cavity (the sub-cavity 2).
  • the following examples relate to different embodiments of a laser generator according to the invention, that is to say formed of at least two laser systems according to the invention.
  • a laser generator comprises two laser systems 1a and 1b, adjacent to each other.
  • These two laser systems Ia and Ib respectively include: optical pumping means 4a and 4b, mirrors 10a, 1a and 10b, 1 Ib, gain media 20a and 20b, saturable absorbers 21a and 21b, external triggers 30a and 30b.
  • the last mirror 12 is common to the two laser systems 1a and 1b.
  • the gain media 20a and 20b, as well as the saturable absorbers 21a and 21b, have identical physical properties. In another implementation variant, their physical properties may be different.
  • Each of the two laser systems delivers pulses with a certain period of recurrence.
  • the durations of the pulses, as well as their periods of recurrence and their powers are identical.
  • the two output beams 50 and 51 are then superimposed.
  • Synchronization means 5 is connected to the two pumping means 4a and 4b, in order to synchronize the pump beams that are derived therefrom.
  • the synchronization means are arranged to temporally desynchronize the light pulses from the two corresponding pumping means (FIG. 3B): the light pulses 50 and 51 respectively from the systems 1a and 1b ) are then shifted by a duration corresponding, for example, to the half recurrence period of one of the two systems, and the frequency of recurrence of the generator is thus doubled, or the synchronization means is arranged to temporally synchronize the light pulses from the two corresponding pumping means (FIG. 3C): the light pulses 50 and 51 are then superimposed, and the power of the generator is doubled.
  • a laser generator comprises two laser systems 1a and 1b, adjacent to each other, and operating in parallel.
  • optical pumping means 4a and 4b, the mirrors 10a, 11a and 10b, 1b, the gain media 20a and 20b and the saturable absorbers 21a and 21b are identical to those of the embodiment illustrated by FIG. A. Both laser systems 1a and 1b have an external trigger 30 and a last mirror 12 in common.
  • a synchronization means 5 is also connected to the two pumping means 4a and 4b, in order to synchronize the pump beams that are derived therefrom.
  • a non-linear element 31 In the path of the output laser beam from the first laser system is disposed a non-linear element 31 as described in the embodiment illustrated in Figure 2. This element 31 allows to expand the spectrum of the laser beam output, in order to obtain an output beam 52 which is pulsed and has a wide spectral range. The output laser beam 53 from the second laser system Ib is not changed.
  • a laser generator comprises two laser systems, adjacent to each other, and operating in cascade.
  • the constituent elements of the two laser systems used are identical to those described in the previous embodiment with reference to FIG. 4A.
  • the two laser systems have an external trigger 30 and a last mirror 12 in common.
  • the other elements are located at 90 ° relative to each other, and on the same side of a semi-reflecting plate 45, each at 45 ° thereof.
  • a synchronization means 5 is also connected to the two pumping means 4a and 4b.
  • the external trigger 30, the non-linear element 31 and the common mirror 12 are located on the other side of the blade 45 at 45 ° thereof. Finally, a last part, at 90 ° of the elements 30, 31 and 12, and 45 ° of the blade 45, does not include any element.
  • various embodiments may be implemented depending on the intended application, for example laser sources with a broad spectral range for biophotonic experiments, spectroscopy applications, material characterization in terms of transparency or dispersion, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Laser Surgery Devices (AREA)

Abstract

La présente invention concerne un système laser comprenant une cavité (1) formée d'au moins deux sous-cavités (2, 3) ainsi que des moyens (4) de pompage optique d'une première (2) parmi lesdites au moins deux sous-cavités (2, 3). Dans ce système, les moyens (4) de pompage optique sont agencés de manière à ne pas atteindre le seuil d'émission laser de la première sous-cavité (2), cette première sous-cavité (2) comportant des moyens (21) de génération d'une impulsion courte, une seconde sous-cavité (3) comportant des moyens (30) de déclenchement externe. Les première et seconde sous-cavités (2, 3) sont couplées de sorte que le déclenchement de cette seconde sous-cavité (3) provoque le départ de l'impulsion courte générée par cette première sous-cavité (2). La présente invention concerne également un générateur laser comprenant au moins deux tels systèmes laser (1a, 1b), ainsi qu'un système d'émission lumineuse à large bande spectrale, comprenant un tel système laser et des moyens (31) de génération d'effets optiques non-linéaires insérés dans la seconde sous-cavité (3), et un générateur de lumière à large bande spectrale, comprenant un tel générateur laser dont au moins un système laser est muni de moyens (31) de génération d'effets optiques non-linéaires insérés dans sa seconde sous-cavité (3).

Description

GENERATEUR ET SYSTEME LASER A SOUS-CAVITES COUPLEES
DOMAINE TECHNIQUE DE L'INVENTION
[0001] La présente invention se rapporte au domaine des sources laser produisant des impulsions de durée sub-nanoseconde.
[0002] Elle concerne plus particulièrement un système laser comprenant une cavité formée d'au moins deux sous-cavités ainsi que des moyens de pompage optique d'une première parmi ces au moins deux sous-cavités. Elle se rapporte également à un générateur laser comprenant au moins deux de ces systèmes laser.
ETAT DE LA TECHNIQUE ANTERIEURE
[0003] L'état de la technique dans ce domaine comporte des sources laser aptes à produire des rayonnements généralement monochromatiques ou quasi-monochromatiques. De telles sources utilisent des cavités fonctionnant en régime de déclenchement passif, dénommé « Q- SWITCH ».
[0004] Un exemple d'une telle source laser est décrit dans le document de brevet US 2008/0247425 Al. Dans ce document, un microlaser monolithique déclenché passivement comporte une cavité laser formée d'un milieu à gain et d'un absorbant saturable, disposés entre deux couches diélectriques. Un faisceau de pompe éclaire le milieu à gain à travers une première couche diélectrique, ce qui provoque une excitation des ions et de l'énergie stockés dans le milieu à gain. Du fait que l'énergie à l'intérieur du milieu à gain augmente et que l'intensité intracavité à la longueur d'onde du microlaser augmente également, l'absorbant devient saturé, ce qui entraîne une extraction rapide d'une partie de l'énergie stockée sous forme impulsionnelle. Après l'émission de l'impulsion, l'absorbant n'est plus saturé pendant une certaine durée, avant de le devenir à nouveau et de provoquer l'émission d'une nouvelle impulsion. La fréquence de récurrence des impulsions est ainsi déterminée par les propriétés physiques de l'absorbant saturable et du milieu à gain.
[0005] Néanmoins, une telle source présente l'inconvénient de présenter une gigue temporelle non négligeable, typiquement de l'ordre de la microseconde.
[0006] Un laser à déclenchement et double cavité est proposé dans le document de brevet US 4,982,405, qui décrit un laser comprenant une cavité formée de deux sous-cavités résonantes. La première sous-cavité inclut un milieu à gain et est éclairée par un faisceau de pompe. La seconde sous-cavité inclut un milieu non-linéaire et est éclairée par un second faisceau laser incident. Ces deux sous-cavités sont adjacentes et sont couplées par la constitution d'un miroir partiellement réfléchissant en commun. La longueur du chemin optique de la seconde sous-cavité est ajustée de sorte à influencer le facteur Q de la première sous-cavité contenant le milieu à gain.
[0007] Cette solution ne permet cependant pas de générer une émission impulsionnelle mono chromatique inférieure à la nanoseconde et qui soit à la fois stable et sans gigue temporelle.
EXPOSE DE L'INVENTION
[0008] Le but de la présente invention est de remédier à ce problème technique, en disposant deux des sous-cavités de sorte à former une sous-cavité passive intégrant un déclencheur passif, pompée de façon insuffisante pour générer une impulsion lumineuse, et une sous-cavité active intégrant un déclencheur actif couplée à la sous-cavité passive afin de provoquer le déclenchement de l'impulsion lumineuse.
[0009] L'approche de la solution a consisté à chercher à combiner les avantages des déclencheurs de type passif (génération d'impulsions courtes) et des déclencheurs de type actif (faible gigue temporelle) afin de résoudre le problème de la gigue temporelle des microlasers produisant des impulsions de durée subnanoseconde. L'application initialement visée concernait initialement le diagnostic cellulaire par cytométrie de flux, pour laquelle il est nécessaire de synchroniser temporellement une impulsion laser de test avec une cellule se propageant devant une fenêtre d'analyse. [0010] Les déclencheurs passifs (de type absorbant saturable) ont la particularité d'engendrer des impulsions brèves lorsqu'ils sont introduits dans des cavités très courtes (cavité micro laser aux dimensions sub-centimétriques). Malheureusement, leur gigue temporelle au déclenchement est grande. Les déclencheurs actifs sont encombrants et, contrairement aux déclencheurs passifs, engendrent des impulsions plus longues mais possèdent une faible gigue temporelle.
[0011] L'un des buts de l'invention est donc d'utiliser simultanément ces deux systèmes tout en préservant leurs caractéristiques et leur environnement. Cette mise en œuvre se traduit par leur intégration dans une cavité très courte, ce qui est actuellement impossible du fait de leur encombrement.
[0012] L'utilisation de deux cavités couplées permet de résoudre ce problème. Néanmoins, les caractéristiques du système laser doivent être telles que la cavité active a la potentialité de déclencher la cavité passive. La cavité passive forme alors l'impulsion courte sans influence notable de la première cavité après déclenchement. Pour cela, il est recommandé d'avoir une cavité passive très courte et une cavité active très longue pour qu'au moins un mode longitudinal de la cavité active puisse osciller au sein de la cavité passive.
[0013] Pour atteindre ces buts, la présente invention a pour objet un système laser comprenant une cavité formée d'au moins deux sous-cavités ainsi que des moyens de pompage optique d'une première parmi les au moins deux sous-cavités. Dans ce système, les moyens de pompage optique sont agencés de manière à ne pas atteindre le seuil d'émission laser de la première sous-cavité. Cette première sous-cavité comporte des moyens de génération d'une impulsion courte. Une seconde sous-cavité comporte des moyens de déclenchement externe. Ces première et seconde sous-cavités sont couplées de sorte que le déclenchement de cette seconde sous-cavité provoque le départ de l'impulsion courte générée par cette première sous-cavité.
[0014] Les première et seconde sous-cavités jouent le rôle de modules couplés l'un à l'autre d'une façon prédéterminée afin de dissocier la formation d'une impulsion de forte énergie grâce à une microcavité et l'amplification de cette impulsion. Ces deux modules étant intégrés au sein d'un résonateur unique, leur mise en cascade favorise la génération d'impulsions laser sub-nano secondes et de forte énergie sans gigue temporelle par rapport à un signal de déclenchement externe.
[0015] Plus précisément, la première sous-cavité n'est pas pompée optiquement de façon suffisante pour atteindre à elle seule le seuil d'émission laser de la cavité. La seconde sous- cavité comporte quant à elle un moyen de déclenchement externe qui permet, du fait du couplage entre les deux sous-cavités, de provoquer le déclenchement d'une impulsion lumineuse de courte durée. Ce déclenchement à la fois actif et passif de la cavité laser permet d'atteindre des fréquences de récurrence entre 0 et 150 Khz et d'obtenir des durées d'impulsions sub-nanosecondes sans gigue temporelle.
[0016] Ainsi, par la combinaison d'un absorbant saturable - générant des impulsions courtes mais avec une gigue temporelle - et d'un déclenchement actif - générant des impulsions longues sans gigue temporelle -, il est rendu possible d'obtenir une source laser impulsionnelle apte à générer des impulsions courtes présentant une gigue temporelle négligeable.
[0017] De préférence, la première sous-cavité comporte un milieu à gain, afin d'amplifier la lumière émise par les moyens de pompage de cette sous-cavité, sans toutefois atteindre le seuil d'émission laser de la cavité.
[0018] De préférence, les moyens de génération d'une impulsion courte comprennent un absorbant saturable. Ce type d'élément est en effet particulièrement adapté à l'accumulation d'énergie lumineuse pendant une durée déterminée, pour ensuite la libérer suite à un déclenchement afin de générer des impulsions de courte durée.
[0019] II est également avantageux que la seconde sous-cavité (active) comporte un milieu à gain afin d'amplifier le signal lumineux issu de la première sous-cavité.
[0020] Selon un mode particulier de mise en œuvre de la seconde sous-cavité, les moyens de déclenchement externe comprennent un modulateur acousto -optique.
[0021] De préférence, les deux sous-cavités du système comportent à chacune de leurs extrémités un moyen de réflexion partielle de la lumière. A ce titre, une variante particulièrement avantageuse consiste à utiliser des miroirs de Bragg en guise de moyens de réflexion partielle.
[0022] Selon un mode de réalisation particulier, le couplage des deux sous-cavités s'opère par la disposition d'un moyen de réflexion partielle commun auxdites deux sous-cavités.
[0023] De préférence, les moyens de pompage optique sont agencés de manière à être sensiblement proche du seuil d'émission laser de ladite première sous-cavité sans l'atteindre. La gigue temporelle est en effet d'autant plus faible que l'on est loin du seuil d'émission et que l'on a la capacité à passer largement au dessus de ce seuil avec l'action de la seconde cavité active.
[0024] Aux fins de déclencher de manière synchronisée le départ d'une impulsion courte, les moyens de déclenchement externe sont aptes à être commandés par un signal de synchronisation.
[0025] Selon un mode particulier de réalisation, le système laser comprend des moyens de conversion de fréquence. Un tel système permet de générer d'autres fréquences que celle fixée par la nature du milieu laser.
[0026] Dans ce dernier cas, il peut être prévu que les moyens de conversion de fréquence se présentent sous la forme d'une fibre optique non-linéaire.
[0027] Selon un mode de réalisation avantageux, la seconde sous-cavité présente une dimension longitudinale plus grande que celle de la première sous-cavité, et préférentiellement beaucoup plus grande (par exemple d'un facteur 10), ce qui permet d'avoir au moins un mode longitudinal oscillant dans la seconde sous-cavité qui soit également capable d'osciller dans la première sous-cavité.
[0028] La présente invention concerne également un générateur laser comprenant au moins deux systèmes laser tels que décrits ci-dessus. [0029] Selon un mode de réalisation particulier, les secondes sous-cavités d'au moins deux systèmes laser présentent un moyen de réflexion partielle en commun, ce qui permet de coupler celles-ci.
[0030] Afin de synchroniser au moins deux systèmes laser entre eux, le générateur peut comporter un moyen de synchronisation des moyens de pompage d'au moins deux systèmes laser.
[0031] Dans ce cas, une première variante consiste à agencer le moyen de synchronisation pour synchroniser temporellement les impulsions lumineuses issues des moyens de pompage correspondant, ce qui permet d'augmenter la puissance lumineuse du générateur.
[0032] Une seconde variante consiste à agencer le moyen de synchronisation pour désynchroniser temporellement les impulsions lumineuses issues des moyens de pompage correspondant, ce qui permet d'augmenter la fréquence de récurrence du générateur.
[0033] Selon un mode particulier de réalisation, les deuxièmes sous-cavités d'au moins deux systèmes laser présentent un moyen de déclenchement externe en commun.
BREVE DESCRIPTION DES FIGURES
[0034] D'autres caractéristiques et avantages de l'invention ressortiront à la lecture de la description qui suit, en référence aux figures annexées, qui illustrent : la figure 1, un schéma représentant un système laser selon un premier mode de réalisation de l'invention, - la figure 2, un schéma représentant un système laser selon un second mode de réalisation de l'invention, les figures 3A à 3C, des schémas représentant deux variantes d'un générateur laser selon un premier mode de réalisation de l'invention, et les figures 4A et 4B, des schémas représentant deux variantes d'un générateur laser avec cristal non-linéaire selon un second mode de réalisation de l'invention.
[0035] Pour plus de clarté, les éléments identiques ou similaires sont repérés par des signes de référence identiques sur l'ensemble des figures. DESCRIPTION DETAILLEE D'UN MODE DE REALISATION
[0036] En référence à la figure 1 , un système laser 1 selon un premier mode de réalisation de l'invention comporte une cavité formée de deux sous-cavités 2 et 3 couplées l'une à l'autre. Il peut être disposé dans cette cavité un nombre de sous-cavités supérieur à 2 sans pour autant sortir du cadre du présent brevet.
Le couplage entre cavités est de type interférométrique dans le sens où, comme il apparaîtra clairement à la lecture de la description qui suit, le couplage joue sur la même longueur d'onde et peut donner lieu à des pertes liées à la superposition en phase ou non des différentes composantes du rayonnement laser. Ainsi, la modification d'un paramètre d'une des cavités impose un changement dans les autres cavités.
[0037] La première sous-cavité 2 comprend un milieu à gain 20 et un absorbant saturable passif 21. Selon une variante de mise en œuvre, ces deux éléments 20 et 21 peuvent être compris dans un seul et même composant. La micropuce 20 peut être un microlaser de type YAG 1,1% et l'absorbant saturable 21 du CR4 + (absorbant) abs 3 cm 1.
[0038] Cette première sous-cavité 2 comprend également deux miroirs de Bragg 10 et 11, disposés à chaque extrémité de la sous-cavité.
[0039] La seconde sous-cavité 3 comprend un déclencheur externe 30 entouré de deux miroirs de Bragg 11 et 12.
[0040] Le couplage des deux sous-cavités 2 et 3 s'opère par la disposition commune du miroir de Bragg 11, ce dernier étant à une extrémité de la première sous-cavité 2 et à l'autre extrémité de la seconde sous-cavité 3. Les miroirs de Bragg 10 et 12 - aux deux autres extrémités des deux sous-cavités - constituent alors les deux miroirs entourant la cavité principale.
[0041] Le système laser 1 selon ce mode de réalisation comporte enfin un moyen de pompage optique 4 de la première sous-cavité 2. Il est disposé vis-à-vis de cette sous-cavité de façon à ne pas atteindre le seuil d'émission laser de la cavité, tout en étant sensiblement proche. [0042] Par le couplage entre les deux sous-cavités, l'absorbant saturable 21 de la première sous-cavité 2 peut stocker l'énergie lumineuse de pompage et ne la libérer que sous l'effet du déclenchement externe opéré par le déclencheur 30 de la seconde sous-cavité 3, de sorte à atteindre le seuil laser de la cavité. On obtient ainsi la génération d'une impulsion lumineuse de courte durée et de forte énergie, commandée par un déclencheur externe à la sous-cavité pompée. La fréquence de fonctionnement du déclencheur 30 détermine alors la fréquence d'émission des impulsions lumineuses issues du système laser 1. La durée de l'impulsion optique engendrée est déterminée par la longueur de la cavité 1 et par le type d'absorbant saturable positionné à l'intérieur.
Le déclenchement actif de la seconde cavité, par le déclencheur 30, entraîne ainsi le déclenchement passif, par saturation de l'absorbant saturable 21, de la première sous-cavité.
[0043] Le déclencheur externe 30 peut être par exemple : un modulateur, par exemple de type MOA (acousto -optique), EO (électro-optique), MOEMS (micro-opto-électro-mécanique), etc., - un autre laser, par exemple un microlaser à impulsions courtes, ou une diode laser picoseconde.
[0044] Pour une diode de pompe 4 présentant un maximum d'émission à une longueur d'onde de 808 nanomètres et une puissance moyenne de 3 watts, il peut être par exemple utilisés un miroir 10 dont le maximum de réflexion se situe à 1064 nanomètres et le minimum à 808 nanomètres, un miroir 11 de coefficient de réflexion 87% et un miroir 12 de coefficient de réflexion 95%. Une gigue temporelle de l'ordre de la centaine de picosecondes peut alors être obtenue.
[0045] Selon une variante avantageuse, la seconde sous-cavité 3 peut également comporter un milieu à gain afin d'amplifier le signal lumineux et obtenir ainsi une plus forte densité d'énergie lumineuse.
[0046] Selon une autre variante avantageuse, plusieurs systèmes peuvent être mis en cascade avec le système laser selon l'invention, afin de réaliser une montée en puissance lumineuse. Selon un mode de réalisation avantageux, la seconde sous-cavité présente une dimension longitudinale plus grande que celle de la première sous-cavité, et préférentiellement beaucoup plus grande (par exemple d'un facteur supérieur ou égal à 10), ce qui permet d'avoir au moins un mode longitudinal oscillant dans la seconde sous-cavité qui soit également capable d'osciller dans la première sous-cavité.
[0047] On décrit maintenant un second mode de réalisation de l'invention, avec adjonction d'un milieu non- linéaire en vue de réaliser un système d'émission lumineuse à large bande spectrale, en référence à la figure 2.
[0048] Le système laser comprend ici deux sous-cavités 1 et 2. Le couplage entre ces dernières n'est plus assuré par la disposition d'un miroir commun aux deux sous-cavités, mais par la disposition dans un même axe de leurs miroirs 1 la et 1 Ib.
[0049] Le système comprend également, dans la seconde sous-cavité 3, un élément non- linéaire 31 , un polariseur 40, un élément de renvoi 41 (optionnel, afin de renvoyer le faisceau vers un mesureur de puissance lumineuse) et une lame demi-onde 42.
[0050] L'élément non-linéaire 31 permet d'étaler le spectre de l'impulsion lumineuse centrale oscillant dans la cavité, sans affecter la formation de l'impulsion. Cet élément peut être constitué de fibres ou de cristaux. Il permet de fournir un spectre large dans le domaine infrarouge ou visible tout en maintenant une durée d'impulsion de quelques centaines de picosecondes.
[0051] Ce mode de réalisation intégrant un second laser formé par les éléments 1 Ib, 30 et 12 permet d'améliorer le déclenchement de la première cavité en saturant plus facilement son milieu à gain avec l'apport d'énergie optique extérieure. Cela permet de contrôler plus facilement la gigue temporelle de la première cavité. Les éléments 40 et 42 réalisent ensemble un contrôleur de puissance permettant de doser la quantité d'énergie envoyée vers la cavité 1.
[0052] On peut ainsi réaliser un continuum intracavité en régime « Q-SWITCH » stable. Ce spectre large bande est généré dans la cavité amplificatrice (c'est-à-dire la sous-cavité 3), donc dans une cavité externe à la cavité laser (la sous-cavité 2). [0053] Les exemples qui suivent concernent différents modes de réalisation d'un générateur laser conforme à l'invention, c'est-à-dire formé d'au moins deux systèmes laser selon l'invention.
[0054] Selon le mode de réalisation illustré par la figure 3A, un générateur laser comprend deux systèmes laser la et Ib, adjacents l'un par rapport à l'autre.
[0055] Ces deux systèmes laser la et Ib comportent respectivement : des moyens de pompage optique 4a et 4b, des miroirs 10a, 1 la et 10b, 1 Ib, des milieux à gain 20a et 20b, - des absorbants saturables 21a et 21b, des déclencheurs externes 30a et 30b.
[0056] Le dernier miroir 12 est commun aux deux systèmes laser la et Ib. Les milieux à gain 20a et 20b, ainsi que les absorbants saturables 21a et 21b, présentent des propriétés physiques identiques. Dans une autre variante de mise en œuvre, leurs propriétés physiques peuvent être différentes.
[0057] Chacun des deux systèmes laser délivre des impulsions avec une certaine période de récurrence. Dans le cas où tous les éléments constitutifs des systèmes laser sont similaires de l'un à l'autre des systèmes, les durées des impulsions, ainsi que leurs périodes de récurrence et leurs puissances sont identiques.
[0058] Les deux faisceaux de sortie 50 et 51 , issus respectivement du premier et du deuxième système laser, sont ensuite superposés.
[0059] Un moyen de synchronisation 5 est relié aux deux moyens de pompage 4a et 4b, afin de synchroniser les faisceaux de pompe qui en sont issus. Différents types de synchronisation sont alors envisageables, en particulier : - les moyens de synchronisation sont agencés pour désynchroniser temporellement les impulsions lumineuses issues des deux moyens de pompage correspondant (figure 3B) : les impulsions lumineuses 50 et 51 (issues respectivement des systèmes la et Ib) sont alors décalées d'une durée correspondant, par exemple, à la demi-période de récurrence de l'un des deux systèmes, et la fréquence de récurrence du générateur est ainsi doublée, ou le moyen de synchronisation est agencé pour synchroniser temporellement les impulsions lumineuses issues des deux moyens de pompage correspondant (figure 3C) : les impulsions lumineuses 50 et 51 sont alors superposées, et la puissance du générateur ainsi est doublée.
[0060] D'autres variantes peuvent être mises en œuvre selon ce schéma, avec différents types de synchronisation et un nombre de systèmes laser synchronisés entre eux supérieur à deux.
[0061] Selon le mode de réalisation illustré par la figure 4A, un générateur laser comprend deux systèmes laser la et Ib, adjacents l'un par rapport à l'autre, et fonctionnant en parallèle.
[0062] Les moyens de pompage optique 4a et 4b, les miroirs 10a, l ia et 10b, 1 1b, les milieux à gain 20a et 20b et les absorbants saturables 21a et 21b sont identiques à ceux du mode de réalisation illustré par la figure 3 A. Les deux systèmes laser la et Ib présentent un déclencheur externe 30 et un dernier miroir 12 en commun. Un moyen de synchronisation 5 est également relié aux deux moyens de pompage 4a et 4b, afin de synchroniser les faisceaux de pompe qui en sont issus.
[0063] Sur le chemin du faisceau laser de sortie issu du premier système laser la est disposé un élément non-linéaire 31 comme décrit dans le mode de réalisation illustré par la figure 2. Cet élément 31 permet d'élargir le spectre du faisceau laser de sortie, afin d'obtenir un faisceau 52 de sortie qui soit impulsionnel et à large domaine spectral. Le faisceau laser de sortie 53 issu du second système laser Ib n'est quant à lui pas modifié.
[0064] On obtient ainsi deux faisceaux de sortie 52 et 53, dont l'un est à spectre large et l'autre quasi-monochromatique, ces deux faisceaux étant synchronisés l'un par rapport à l'autre, ce qui présentent des avantages pour des applications, par exemple, de détection de signatures spectrale de particules de type CARS (diffusion Raman anti-Stokes cohérente, soit en langue anglo-saxonne « Cohérent Anti-Stokes Raman Scattering »). [0065] Selon le mode de réalisation illustré par la figure 4B, un générateur laser comprend deux systèmes laser, adjacents l'un par rapport à l'autre, et fonctionnant en cascade.
[0066] Les éléments constitutifs des deux systèmes laser utilisés sont identiques à ceux décrits dans le mode de réalisation précédent en référence à la figure 4A. En particulier, les deux systèmes laser présentent un déclencheur externe 30 et un dernier miroir 12 en commun. Les autres éléments sont situés à 90° l'un par rapport à l'autre, et du même côté d'une lame semi-réfléchissante 45, chacun à 45° de celle-ci. Un moyen de synchronisation 5 est également relié aux deux moyens de pompage 4a et 4b.
[0067] Le déclencheur externe 30, l'élément non linéaire 31 et le miroir en commun 12 sont situés de l'autre côté de la lame 45, à 45° de celle-ci. Enfin, une dernière partie, à 90° des éléments 30, 31 et 12, et à 45° de la lame 45, ne comprend aucun élément.
[0068] De façon analogue au mode de réalisation de la figure 4A, on obtient ici deux faisceaux de sortie 54 et 55, dont l'un est à spectre large (54) et l'autre quasi- mono chromatique (55), ces deux faisceaux étant synchronisés l'un par rapport à l'autre. La différence avec le mode de réalisation de la figure 4A est que les systèmes laser sont mis ici en cascade, puisque les faisceaux lumineux se superposent au niveau de la lame 45, 50% de la lumière constituant le faisceau 55 et les 50% constituant le faisceau 54. Dans le précédent mode de réalisation, en parallèle, chaque faisceau était issu de l'un des deux systèmes laser.
[0069] Les modes de réalisation précédemment décrits de la présente invention sont donnés à titre d'exemples et ne sont nullement limitatifs. Il est entendu que l'homme du métier est à même de réaliser différentes variantes de l'invention sans pour autant sortir du cadre du brevet.
[0070] En particulier, différents modes de réalisation peuvent être mis en œuvre en fonction de l'application envisagée, par exemple des sources laser à large domaine spectral pour des expérimentations en biophotonique, des applications de spectroscopie, de caractérisation de matériaux en terme de transparence ou de dispersion, etc.

Claims

REVENDICATIONS
1 . Système laser comprenant une cavité (1) formée d'au moins deux sous-cavités (2,3) ainsi que des moyens (4) de pompage optique d'une première (2) parmi lesdites au moins deux sous-cavités (2,3), caractérisé en ce que lesdits moyens (4) de pompage optique sont agencés de manière à ne pas atteindre le seuil d'émission laser de la première sous-cavité (2), ladite première sous-cavité (2) comportant des moyens (21) de génération d'une impulsion courte, une seconde sous-cavité (3) comportant des moyens (30) de déclenchement externe, et en ce que lesdites première et seconde sous-cavités (2, 3) sont couplées de manière interférométrique, de sorte que le déclenchement actif de ladite seconde sous-cavité (3) provoque le départ de l'impulsion courte générée par ladite première sous-cavité (2).
2. Système laser selon la revendication 1, dans lequel les moyens (21) de génération d'une impulsion courte comprennent un absorbant saturable (21).
3. Système laser selon l'une des revendications 1 à 3, dans lequel la seconde sous-cavité (3) comporte un milieu à gain.
4. Système laser selon l'une des revendications précédentes, dans lequel les moyens (30) de déclenchement externe comprennent un modulateur acousto -optique (30).
5. Système laser selon l'une des revendications précédentes, dans lequel les deux sous- cavités (2,3) comportent à chacune de leurs extrémités un moyen (10, 11, 12) de réflexion partielle de la lumière.
6. Système laser selon la revendication précédente, dans lequel les moyens (10, 11, 12) de réflexion partielle sont des miroirs de Bragg.
7. Système laser selon l'une des revendications 6 ou 7, dans lequel le couplage des deux sous-cavités (2, 3) s'opère par la disposition d'un moyen (11) de réflexion partielle commun auxdites deux sous-cavités (2, 3).
8. Système laser selon l'une des revendications précédentes, dans lequel les moyens (4) de pompage optique sont agencés de manière à être sensiblement proche du seuil d'émission laser de ladite première sous-cavité (2) sans l'atteindre.
9. Système laser selon l'une des revendications précédentes, dans lequel les moyens (30) de déclenchement externe sont aptes à être commandés par un signal de synchronisation.
10. Système laser selon l'une des revendications précédentes, comprenant des moyens (31) de conversion de fréquence.
1 1 . Système laser selon la revendication précédente, dans lequel les moyens (31) de conversion de fréquence se présentent sous la forme d'une fibre optique non-linéaire (31).
12. Système laser selon l'une des revendications précédentes, dans lequel la seconde sous- cavité (3) présente une dimension longitudinale plus grande que celle de la première sous-cavité (2).
13. Générateur laser comprenant au moins deux systèmes laser (la, Ib) selon l'une des revendications précédentes.
14. Générateur laser selon la revendication précédente, dans lequel les secondes sous- cavités d'au moins deux systèmes laser (la, Ib) présentent un moyen (12) de réflexion partielle en commun.
15. Générateur laser selon la revendication 14 ou 15, comportant un moyen (5) de synchronisation des moyens (4a, 4b) de pompage d'au moins deux systèmes laser (la, Ib).
16. Générateur laser selon la revendication 16, dans lequel le moyen (5) de synchronisation est agencé pour synchroniser temporellement les impulsions lumineuses issues des moyens (4a, 4b) de pompage correspondant.
17. Générateur laser selon la revendication 1 6, dans lequel le moyen (5) de synchronisation est agencé pour désynchroniser temporellement les impulsions lumineuses issues des moyens (4a, 4b) de pompage correspondant.
18. Générateur laser selon l'une des revendications 14 à 18, dans lequel les secondes sous-cavités d'au moins deux systèmes laser (la, Ib) présentent un moyen (30) de déclenchement externe en commun.
PCT/FR2010/051216 2009-06-19 2010-06-17 Générateur et système laser a sous cavités couplées WO2010146316A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/378,774 US8867576B2 (en) 2009-06-19 2010-06-17 Generator and laser system comprising coupled sub-cavities
EP10734262.8A EP2443706B1 (fr) 2009-06-19 2010-06-17 Générateur et système laser a sous cavités couplées
DK10734262T DK2443706T3 (en) 2009-06-19 2010-06-17 Generator and the laser-coupled system comprising sub-cavities

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0902987 2009-06-19
FR0902987A FR2947108B1 (fr) 2009-06-19 2009-06-19 Generateur et systeme laser a sous-cavites couplees

Publications (2)

Publication Number Publication Date
WO2010146316A1 true WO2010146316A1 (fr) 2010-12-23
WO2010146316A9 WO2010146316A9 (fr) 2012-03-01

Family

ID=41800814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051216 WO2010146316A1 (fr) 2009-06-19 2010-06-17 Générateur et système laser a sous cavités couplées

Country Status (5)

Country Link
US (1) US8867576B2 (fr)
EP (1) EP2443706B1 (fr)
DK (1) DK2443706T3 (fr)
FR (1) FR2947108B1 (fr)
WO (1) WO2010146316A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3034578B1 (fr) 2015-03-30 2018-04-27 Horiba Abx Sas Procede et dispositif de declenchement de sources lumineuses impulsionnelles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982405A (en) 1989-09-07 1991-01-01 Massachusette Institute Of Technology Coupled-cavity Q-switched laser
EP0742613A1 (fr) * 1995-05-12 1996-11-13 Commissariat A L'energie Atomique Cavité microlaser et microlaser solide impulsionnel à déclenchement passif et à commande externe
US5828680A (en) * 1995-10-31 1998-10-27 Electronics And Telecommuications Research Institute Hybrid type passively and actively mode-locked laser scheme
US20080247425A1 (en) 2007-04-03 2008-10-09 David Welford Q-switched microlaser apparatus and method for use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019156A (en) * 1975-12-02 1977-04-19 The United States Of America As Represented By The United States Energy Research And Development Administration Active/passive mode-locked laser oscillator
JP2895204B2 (ja) * 1990-10-22 1999-05-24 パイオニア株式会社 光波長変換素子及びその製造方法
US5381431A (en) * 1993-08-13 1995-01-10 Massachusetts Institute Of Technology Picosecond Q-switched microlasers
FR2734092B1 (fr) * 1995-05-12 1997-06-06 Commissariat Energie Atomique Microlaser monolithique declenche et materiau non lineaire intracavite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982405A (en) 1989-09-07 1991-01-01 Massachusette Institute Of Technology Coupled-cavity Q-switched laser
EP0742613A1 (fr) * 1995-05-12 1996-11-13 Commissariat A L'energie Atomique Cavité microlaser et microlaser solide impulsionnel à déclenchement passif et à commande externe
US5828680A (en) * 1995-10-31 1998-10-27 Electronics And Telecommuications Research Institute Hybrid type passively and actively mode-locked laser scheme
US20080247425A1 (en) 2007-04-03 2008-10-09 David Welford Q-switched microlaser apparatus and method for use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HANSSON B ET AL: "Q-switched microchip laser with 65 ps timing jitter", ELECTRONICS LETTERS, IEE STEVENAGE, GB, vol. 36, no. 13, 22 June 2000 (2000-06-22), pages 1123 - 1124, XP006015384, ISSN: 0013-5194 *

Also Published As

Publication number Publication date
US8867576B2 (en) 2014-10-21
DK2443706T3 (en) 2015-03-30
FR2947108B1 (fr) 2011-12-02
FR2947108A1 (fr) 2010-12-24
WO2010146316A9 (fr) 2012-03-01
EP2443706A1 (fr) 2012-04-25
US20120170606A1 (en) 2012-07-05
EP2443706B1 (fr) 2014-12-24

Similar Documents

Publication Publication Date Title
EP3241259B1 (fr) Système et procédé de génération d'impulsions lumineuses ultrabrèves à forte densité spectrale de puissance et accordables en longueur d'onde
EP3488290B1 (fr) Système de génération d'impulsions lumineuses brèves ou ultra-brèves
EP3738180B1 (fr) Systeme laser et procede de generation d'impulsions laser de tres haute cadence
EP2929603B1 (fr) Système et procédé de génération d'une salve d'impulsions laser ultracourtes et de forte puissance
FR2885265A1 (fr) Dispositif laser declenche a fibre photonique
EP1125347B1 (fr) Filtres auto-adaptes pour l'affinement de l'emission laser
FR2648282A1 (fr) Laser mopa impulsionnel de puissance a structure mopa avec milieu non lineaire de transfert
EP2147487A2 (fr) Laser a puce pulse
EP2443706B1 (fr) Générateur et système laser a sous cavités couplées
WO2022248801A1 (fr) Oscillateur laser a impulsions ultra-courtes de type mamyshev et son dispositif de demarrage
FR3050289A1 (fr) Dispositif de generation d'un faisceau de photons de longueurs d'onde definissant un supercontinuum sensiblement continu
EP2021827A1 (fr) Source laser pour application lidar
EP3320586B1 (fr) Laser injecté et procédé de génération d'impulsions laser multimode longitudinal
EP2443705B1 (fr) Système d'émission d'une lumière polychromatique a sous-cavités couplées
EP3406006A1 (fr) Dispositif de génération d'un faisceau de photons polychromatique et d'énergie sensiblement constante
FR2937470A1 (fr) Systeme amplificateur optique pour laser impulsionnel a base d'un milieu a gain guidant et laser impulisionnel le comprenant
EP4291949A1 (fr) Système et procédé de génération d'impulsion lumineuse de durée sub-picoseconde, ajustable en durée et/ou en fréquence de répétition
FR3014604A1 (fr) Amplificateur a fibre optique double passage pour faisceau lumineux polarise
FR2691588A1 (fr) Source laser de puissance.
FR3014605A1 (fr) Amplificateur a fibre optique double passage multi-etage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10734262

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010734262

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13378774

Country of ref document: US