WO2010143746A1 - Temperature control unit and temperature control system for resin-coated sand - Google Patents

Temperature control unit and temperature control system for resin-coated sand Download PDF

Info

Publication number
WO2010143746A1
WO2010143746A1 PCT/JP2010/060253 JP2010060253W WO2010143746A1 WO 2010143746 A1 WO2010143746 A1 WO 2010143746A1 JP 2010060253 W JP2010060253 W JP 2010060253W WO 2010143746 A1 WO2010143746 A1 WO 2010143746A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
temperature control
heated
control unit
heater
Prior art date
Application number
PCT/JP2010/060253
Other languages
French (fr)
Japanese (ja)
Inventor
俊孝 小澤
光利 武部
栄二 山下
Original Assignee
株式会社大勢シェル
旭有機材工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大勢シェル, 旭有機材工業株式会社 filed Critical 株式会社大勢シェル
Priority to JP2011518599A priority Critical patent/JP5618998B2/en
Priority to CN201080025633.8A priority patent/CN102458714B/en
Publication of WO2010143746A1 publication Critical patent/WO2010143746A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C13/00Moulding machines for making moulds or cores of particular shapes
    • B22C13/08Moulding machines for making moulds or cores of particular shapes for shell moulds or shell cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/23Compacting by gas pressure or vacuum
    • B22C15/24Compacting by gas pressure or vacuum involving blowing devices in which the mould material is supplied in the form of loose particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C19/00Components or accessories for moulding machines
    • B22C19/04Controlling devices specially designed for moulding machines

Definitions

  • the present invention relates to a temperature control unit used for temperature control of a resin coated sand (RCS) for a shell mold.
  • the present invention also relates to a temperature control system including a temperature control unit of an RCS for a shell mold.
  • Patent Document 1 describes a shell casting sand preheating method and a preheating apparatus in which a shell mold RCS is preheated prior to shell mold making. Since the RCS preheating device for shell mold described in Patent Document 1 is configured by integrally fixing a plurality of components having large dimensions, it is large and requires a large installation space.
  • Patent Document 2 describes a shell mold machine including a coated sand preheating device.
  • This coated sand preheating device includes a shell mold RCS sand hopper, a blow head for supplying shell mold RCS to a mold, and a preheating device (dry hot air supply) installed between the sand hopper and the blow head.
  • Patent Document 3 describes a coated sand heating apparatus used in a shell mold molding method.
  • This coated sand heating apparatus has a double structure including an inner tank and an outer tank, and a plurality of bubbling nozzles are disposed on the mortar-shaped bottom of the inner tank, and a space between the inner tank and the outer tank. A plurality of air passages communicating with these bubbling nozzles are provided. Steam is supplied between the outer tank and the inner tank, and intermittent air (3 seconds at 5 second intervals) passing through the plurality of air passages is heated by heat exchange with the steam, and is supplied from the plurality of bubbling nozzles. By blowing out into the tank, the coated sand (RCS for shell mold) charged in the inner tank is caused to rise upward, fluidize, and warm. The heated coated sand is supplied to the mold from the lower discharge port of the inner tank.
  • RCS coated sand
  • JP 54-48632 A Japanese Utility Model Publication No. 51-116915 Japanese Patent Laid-Open No. 6-142837
  • the preheating device described in Patent Literature 2 and Patent Literature 3 is difficult to be installed later on a conventionally used shell mold molding device, and requires high cost for manufacturing.
  • the preheating device described in Patent Document 3 has a plurality of bubbling nozzles arranged at the bottom of the mortar shape of the inner tank.
  • the bubbling nozzle has a large diameter, the number of bubbling nozzles is limited, resulting in heating. Unevenness easily occurs.
  • An object of the present invention is to provide a small temperature control unit that can be easily and economically installed in a shell mold molding apparatus in a temperature control unit used for temperature control of a shell mold RCS.
  • Another object of the present invention is to provide a temperature control system in which a small temperature control unit is simply and economically installed in a sand hopper of a shell mold molding apparatus.
  • One aspect of the present invention is a resin-coated sand temperature control unit, which includes a housing in which a heated gas discharge hole is formed, and a gas heater accommodated in the housing.
  • the gas heater includes a heater pipe, A heating element housed in the heater pipe, a frame that is attached to the outside of the peripheral wall of the heater pipe and forms a gas passage therein, and a radiating fin disposed in the gas passage so as to contact the peripheral wall of the heater pipe The heat of the heater pipe heated by the heating element is transmitted to the heat radiating fin, the gas introduced into the gas passage is heated by the heat radiating fin, and is discharged from the gas passage to the inside of the housing as a heated gas.
  • the resin-coated sand is heated to an appropriate temperature by the heated gas by releasing the gas from the heated gas discharge hole of the housing. And which provides a resin-coated sand temperature control unit.
  • the resin-coated sand temperature control unit discharges a high-temperature heated gas heated by a gas heater accommodated in a housing from a heated gas discharge hole of the housing, and the resin-coated sand is discharged by the discharged high-temperature heated gas. Is heated to an appropriate temperature, so that it has a simple structure, can be manufactured at low cost, and can be easily downsized. In addition, the structure requires little maintenance.
  • the resin-coated sand temperature control unit does not require a special installation space and can be easily installed in addition to an existing sand hopper. Furthermore, since the gas flowing through the gas passage formed around the heater pipe of the gas heater is directly heated by the heat radiating fin to which the heat of the heater pipe heated by the heating element is transmitted, the thermal efficiency is high, In addition, it is easy to increase the gas flow rate by increasing the flow passage area of the gas passage as necessary. Therefore, the gas heater can quickly heat and discharge a large amount of gas. In addition, the temperature of the high-temperature heated gas discharged from the gas heater into the housing is suppressed due to the heat retaining effect due to heat radiation from the heater pipe and the gas passage.
  • the heating element can be composed of a carbon heater in which a strip-shaped carbonaceous heating element is enclosed in a protective tube. Further, the heater pipe has a rectangular cross section, and the heat radiating fins are attached to a pair of opposed peripheral walls of the heater pipe having a relatively large surface area. The flat main surface may be arranged so as to be parallel to the pair of peripheral walls.
  • the gas heater includes a gas supply pipe that supplies a gas before heating to the gas passage, an exhaust port that discharges the heated gas heated in the gas passage to the inside of the housing, and a baffle that is disposed opposite the exhaust port. And a plate. The baffle plate can flow the heated gas discharged from the exhaust port toward the gas supply pipe outside the gas heater.
  • Another aspect of the present invention is a resin-coated sand temperature control system comprising a sand hopper to which resin-coated sand is supplied, and the temperature control unit described above, the temperature control unit being disposed inside the sand hopper. And a resin-coated sand temperature control system that heats the resin-coated sand supplied to the sand hopper to an appropriate temperature by the heated gas released from the temperature control unit. Still another aspect of the present invention is a resin-coated sand temperature control system, which is a sand hopper to which resin-coated sand is supplied, and includes an outer conical member and an inner conical member that are spaced apart from each other through a space.
  • a sand hopper having a conical bottom and a plurality of heated gas ejection holes formed in an inner conical member, and a temperature control unit arranged inside the sand hopper and constituting a heating body, the temperature control unit and the inner side A temperature control unit that forms a fluid heating zone with the conical member, and a space between the temperature control unit and the space between the inner conical member and the outer conical member that is disposed through the inner conical member.
  • a heated gas discharge pipe extending to the inner cone-shaped member and the outer cone through the heated gas discharge pipe.
  • a resin-coated sand temperature control system is provided that is configured to be heated to an appropriate temperature by both a gas and a temperature control unit.
  • the cone-shaped bottom portion of the sand hopper has a double bottom structure composed of an outer cone-shaped member and an inner cone-shaped member, and the high-temperature heated gas heated by the temperature control unit is
  • the heated gas discharge pipe is discharged into the space between the outer cone-shaped member and the inner cone-shaped member of the sand hopper, and is heated from the plurality of heated gas ejection holes formed in the inner cone-shaped member to the fluid heating zone in the sand hopper. It comes to blow out.
  • the resin-coated sand supplied to the sand hopper is discharged through a fluidized heating zone between the temperature control unit constituting the heating body and the inner conical member.
  • the temperature adjustment unit can include a heat generating element and a heat exchanger that performs heat exchange between the gas supplied to the temperature adjusting unit and the heat generating element.
  • the temperature adjustment unit includes a housing in which a heated gas discharge hole is formed, and a gas heater accommodated in the housing.
  • the gas heater includes a heater pipe, a heating element accommodated in the heater pipe, A frame that is attached to the outside of the peripheral wall of the heater pipe and forms a gas passage therein, and a radiating fin disposed as a heat exchanger in the gas passage so as to contact the peripheral wall of the heater pipe, are heated by the heating element.
  • the heat of the heated heater pipe is transmitted to the radiating fin, the gas introduced into the gas passage is heated by the radiating fin, is discharged as a heated gas from the gas passage to the inside of the housing, and the heated gas is heated to the heated gas in the housing. It can be set as the structure discharged
  • the resin-coated sand temperature control unit according to one aspect of the present invention has a simple structure, can be manufactured at low cost, can be easily downsized, and does not require special installation space, and can be added to an existing sand hopper. It is easy to install. Therefore, a temperature control system can be easily and easily produced at low cost using an existing sand hopper.
  • the above-described resin-coated sand temperature control unit and the temperature control system according to another aspect of the present invention using the same can quickly heat a large flow rate gas by a gas heater and discharge a large amount of heated gas. Therefore, the resin coated sand can be efficiently heated.
  • the resin-coated sand temperature control system including the sand hopper having a double bottom structure
  • the resin-coated sand supplied to the sand hopper is heated by the heat of the temperature control unit itself constituting the heating body.
  • the resin-coated sand in the sand hopper can be easily heated to an appropriate temperature.
  • FIG. 1 is a longitudinal sectional view schematically showing an RCS temperature control system according to an embodiment of the present invention. It is a perspective view which shows roughly the housing of the temperature control unit which the temperature control system of FIG. 1 has.
  • FIG. 2 is a partially cutaway perspective view schematically showing a gas heater included in the temperature control system of FIG. 1. It is a cross-sectional view which shows schematically the heater pipe part of the gas heater of FIG.
  • FIG. 5 is a schematic cross-sectional view along the line VV of the gas heater of FIG. 3. It is a schematic perspective view which decomposes
  • FIG. 6 is a longitudinal sectional view schematically showing an RCS temperature control system according to still another embodiment of the present invention.
  • FIG. 10 is a longitudinal sectional view schematically showing a modification of the RCS temperature control system of FIG. 9.
  • the temperature control system 10 includes a sand hopper 12 to which RCS is supplied, and a temperature control unit 14 disposed inside the sand hopper 12.
  • the sand hopper 12 is covered with a heat insulating material, like a sand hopper used in a conventional shell mold molding apparatus (not shown), and has a conical bottom portion 16 that gradually decreases in diameter downward. .
  • the sand hopper 12 causes the RCS charged therein to flow toward the RCS discharge port 18 extending outward from the lowermost center of the conical bottom portion 16.
  • the RCS in the sand hopper 12 is discharged through the RCS discharge port 18 to the blow head (not shown) of the shell mold molding device at an appropriate timing by opening and closing the shutter 20 provided at the RCS discharge port 18.
  • the conical bottom portion 16 of the sand hopper 12 has a double bottom structure composed of an outer conical member 22 and an inner conical member 24 which are fixed to be separated from each other, and the outer conical member 22, the inner conical member 24, and the like. A space 23 is formed between the two.
  • the inner conical member 24 of the conical bottom 16 of the sand hopper 12 has a virtual horizontal plane (hereinafter referred to as a reference horizontal plane) orthogonal to the direction of gravity when the sand hopper 12 is installed with the RCS outlet 18 facing directly downward. It is designed to constitute an inclined surface that forms an angle greater than the angle of repose.
  • a large number of heated gas ejection holes 26 are formed in the inner conical member 24 at desired intervals, and the high-temperature covered member supplied to the space 23 between the outer conical member 22 and the inner conical member 24 is formed. The heated gas is blown out into the sand hopper 12 through the heated gas ejection hole 26.
  • the heated gas ejection hole 26 can be formed in the inner conical member 24 by, for example, machining or laser processing.
  • the inner conical member 24 is preferably provided with about 600 to 10000 heated gas ejection holes 26 so that a sufficient amount of heated gas can be blown into the sand hopper 12.
  • the shape of the heated gas ejection hole 26 is preferably a circular shape because it has a small ejection resistance (and hence pressure loss) and is easy to process, but is not limited thereto. Further, since the RCS in the sand hopper 12 easily enters the heated gas ejection holes 26 provided in the conical bottom portion 16 of the sand hopper 12, each heated gas ejection hole 26 has an RCS of the heated gas ejection hole 26.
  • the heated gas ejection hole 26 is made smaller, a load is applied while the heated gas passes through the heated gas ejection hole 26 and the flow rate is reduced. Therefore, in order to ensure a sufficient flow rate of the heated gas, It may be necessary to increase the number of heated gas ejection holes 26 or to use a compressor. Therefore, it is preferable to provide the heated gas ejection holes 26 having such a diameter that the RCS cannot pass through as many as the heated gas sufficient to heat the RCS can be blown into the sand hopper 12.
  • the temperature adjustment unit 14 constitutes a heating body that radiates heat into the sand hopper 12 from itself, and heats the gas supplied to the temperature adjustment unit 14, thereby forming the outer cone-shaped member 22 as a high-temperature heated gas. It discharges to the space 23 between the inner conical members 24.
  • the temperature control unit 14 is configured such that a space acting as a fluid heating zone 27 is formed between the outer surface of the temperature control unit 14 and the inner surface of the inner conical member 24 of the conical bottom 16 of the sand hopper 12. It is installed and fixed inside the sand hopper 12.
  • the temperature adjustment unit 14 includes a housing 28 and a gas heater 30 accommodated in the housing 28.
  • the upper end of the gas heater 30 is fixed to a lid member 32 attached to the upper opening of the housing 28 and is suspended in the housing 28.
  • the gas heater 30 heats the gas supplied through the gas supply pipe 34 at the upper end thereof by an internal heating element (described later), and forms a high-temperature gas to be heated from the exhaust port 36 at the lower end to the internal space of the housing 28.
  • an internal heating element described later
  • a cup-shaped baffle plate 38 is disposed around the exhaust port 36 of the gas heater 30.
  • the baffle plate 38 causes the heated gas discharged from the exhaust port 36 of the gas heater 30 to flow outside the gas heater 30 toward the upper side of the housing 28 (on the gas supply pipe 34 side).
  • the entire interior space 29 of the housing 28 can be distributed.
  • the shape of the housing 28 is not particularly limited, but the RCS smoothly flows down to the RCS discharge port 18 while sufficiently contacting both the housing 28 and the inner conical member 24 of the sand hopper 12 in the fluidized heating zone 27 described above.
  • the lower portion of the housing 28 facing the inner conical member 24 preferably has an inclined surface on the outer surface that forms an angle greater than or equal to the angle of the inclined surface of the inner conical member 24 with respect to the reference horizontal plane (as shown in the figure).
  • the angle of the inclined surface of the inner conical member 24 and the angle of the inclined surface of the housing 28 are substantially the same).
  • a substantially spindle shape (a shape in which both ends of the cylinder are pointed) is employed in which the longitudinal section of the housing 28 is a rhombus, an abacus bead, a parallelogram, a polygon (hexagon or octagon), etc. can do.
  • a substantially spindle shape having a rhombus or abacus longitudinal section is preferable, and in particular, an abacus bead shape (an abacus bead shape).
  • a substantially spindle shape having a longitudinal section) is preferred.
  • the material of the housing 28 is generally metal, particularly iron, from the viewpoints of cost and durability, but is not limited to this, and may be, for example, duralumin or aluminum. Further, for example, fiber reinforced plastic such as BMC (bulk molding compound) or SMC (sheet molding compound) may be used.
  • the angle of repose of RCS means an inclination angle measured according to JACT test method S-5 (casting sand fluidity test method).
  • a fluororesin process may be applied to the outer surface of the housing 28 in order to facilitate the flow down of the RCS.
  • a heated gas ejection hole (not shown) is provided in the inclined wall surface of the upper portion of the housing 28 to such an extent that it does not affect the heat treatment of the RCS in the fluidized heating zone 27, and has not yet been introduced into the sand hopper 12. You may make it perform preliminary heating (primary heating) with respect to RCS of heating.
  • the fin 40 may be provided.
  • the fins 40 are provided so as to extend radially to the central axis extending perpendicularly to the outer surface of the housing 28 and in the vertical direction of the housing 28 so as not to hinder the flow of the RCS in the sand hopper 12. It is preferable. However, the fins 40 may not be provided in the housing 28.
  • a heated gas discharge hole 42 is provided in the housing 28.
  • the heated gas discharge hole 42 is connected to a heated gas introduction hole 44 formed in the inner conical member 24 of the sand hopper 12 by a heated gas discharge pipe 48 that forms a heated gas passage 46.
  • a heated gas discharge pipe 48 that forms a heated gas passage 46.
  • the socket 50 is integrally extended from the housing 28 around the heated gas discharge hole 42, an internal thread is formed on the inner peripheral surface of the socket 50, and the outer peripheral surface on one end side of the heated gas discharge pipe 48.
  • a male screw is formed on the surface.
  • the heated gas discharge pipe 48 is connected to the housing 28 by being screwed to the socket 50 of the housing 28 at one end side thereof.
  • the other end side of the heated gas discharge pipe 48 is disposed through the heated gas introduction hole 44 formed in the inner conical member 24, and the inner peripheral surface of the heated gas introduction hole 44 and the heated gas are arranged.
  • a rubber packing 52 is inserted between the outer periphery of the discharge pipe 48.
  • the heated gas discharge pipe 48 is connected to the inner conical member 24 via the rubber packing 52 on the other end side.
  • the internal space 29 of the housing 28 and the space 23 between the outer conical member 22 and the inner conical member 24 can be communicated by any number of heated gas discharge pipes 48, that is, heated gas passages 46. .
  • the gas heater 30 includes a heater pipe 54, a heating element 56 housed in the heater pipe 54 as a heat source, a frame 58 attached to the outside of the heater pipe 54, and the length of the heater pipe 54.
  • a supply header 60 that covers one end in the direction, and a cover 62 that covers the heater pipe 54, the frame 58, and the entire supply header 60 are provided.
  • the cover 62 has a cylindrical portion 62a and a dome-shaped portion 62b attached to one end of the cylindrical portion 62a in the axial direction, and is fixed to the lid member 32 of the housing 28 in the vicinity of the dome-shaped portion 62b. Is done.
  • the cover 62 is indicated by a one-dot chain line, and the internal structure covered by the cover 62 is indicated by a solid line.
  • the heater pipe 54 is a cylindrical body having a rectangular cross section, and as its four peripheral walls, a pair of opposed walls 64 having a relatively large surface area and a pair of relatively narrow surface areas connecting the opposed walls 64. Connecting wall 66. As can be seen from FIG. 5, the distance between the pair of opposed walls 64 of the heater pipe 54 is determined so as to coincide with the outer diameter of the heater element 56, and the outer peripheral surface of the heater element 56 is opposed to the pair of heater pipes 54. It comes in contact with the inner surface of the wall 64.
  • One end in the longitudinal direction of the heater pipe 54 is a closed end 68, while the other end in the longitudinal direction is an open end 70, and an end cap 72 is attached to the open end 70.
  • the material of the heater pipe 54 is preferably a metal, particularly iron, but is not limited thereto, and may be, for example, duralumin or aluminum. Further, it is preferable that a heat-resistant infrared absorbing paint is applied to the inner surfaces of the walls 64 and 66 of the heater pipe 54 so as to efficiently absorb infrared rays.
  • a plurality (three in the figure) of heating elements 56 are accommodated in the heater pipe 54 as a heat source.
  • a rod-like carbon heater formed by enclosing a band-like carbonaceous heating element (filament) 56a in a protective tube 56b made of quartz glass is used as shown in FIG.
  • the carbonaceous heating element 56a has a flat belt-like shape having a width that matches the inner diameter of the protective tube 56b and a length that covers almost the entire length of the protective tube 56b.
  • the lead wire 56c connected to is drawn out from both longitudinal ends of the protective tube 56b (FIG. 4).
  • the heating element 56 is not limited to the illustrated carbon heater, and can be constituted by various rod-shaped electric heaters such as a cartridge type and a self-heating element type.
  • a three-phase AC power supply is used for the power supply circuit 31 for energizing the gas heater 30. In the illustrated embodiment, one heating element (carbon heater) 56 per phase is used, and as shown in FIG.
  • lead wires 56 c at one end of the three heating elements 56 are connected to each other by a star connection at a connection portion 74. Are connected.
  • the heating elements 56 are accommodated in the heater pipe 54 with the connecting portions 74 of the respective lead wires 56 c facing the closed end 68 side of the heater pipe 54, and the lead wire 56 c on the other end (power supply side) is connected to the end cap 72. It is pulled out from the provided hole.
  • the heating element 56 is a carbon heater, as shown in FIG. 5, the three carbon heaters have a flat main surface of each heating element 56a in a common horizontal plane parallel to the pair of opposing walls 64 of the heater pipe 54. The surfaces are oriented so that they exist and are arranged parallel to each other.
  • the heat of the flat belt-like heating element 56a is efficiently transmitted to the pair of opposing walls 64 of the heater pipe 54 having a relatively large surface area.
  • the orientation of the heating elements 56a of the three carbon heaters is not limited to the above.
  • the flat main surface of each heating element 56a is a pair of opposed heater pipes 54. You may arrange
  • FIG. A channel-shaped frame 58 having a U-shaped cross section is installed outside at least one peripheral wall 64, 66 of the heater pipe 54, and a space surrounded by the frame 58 and the peripheral wall of the heater pipe 54 forms a gas passage 76. .
  • a frame 58 is installed on the outside of each of the pair of opposing walls 64 having a relatively large surface area among the four peripheral walls of the heater pipe 54.
  • the frame 58 may be attached to all four peripheral walls 64 and 66 of the heater pipe 54, or may be attached to only one or three peripheral walls 64 and 66.
  • the width of the frame 58 substantially matches the lateral width of the heater pipe 54.
  • the length of the frame 58 is preferably substantially the same as the length of the heating element 56a of the heating element 56 of the heater pipe 54. In this case, as shown in FIG. Both ends of the long heater pipe 54 in the longitudinal direction protrude from both ends of the frame 58 in the longitudinal direction. As shown in FIG.
  • heat radiation fins 78 are arranged inside the gas passage 76 so as to contact the outer surface of the opposing wall 64 of the heater pipe 54.
  • the radiating fins 78 function as a heat exchanger that transmits heat of the heater pipe 54 heated by the heating element 56 and exchanges heat with the gas flowing in the gas passage 76.
  • corrugated fins are used as the radiation fins 78.
  • the radiating fins 78 made of corrugated fins have their crests or troughs along the gas flow direction (that is, the longitudinal direction of the heater pipe 54 and the frame 58) so as not to hinder the gas flow in the gas passage 76. It arrange
  • the radiating fins 78 are not limited to corrugated fins, and other various radiating fins may be used as long as they do not hinder the gas flow in the gas passage 76 and can radiate the heat of the heater pipe 54. be able to.
  • the supply header 60 is provided on one end in the longitudinal direction of the gas heater 30 so as to cover a part of the heater pipe 54 protruding from the frame 58, and a cover 62 (FIG. 3). ).
  • One end of the supply header 60 is connected to a gas supply pipe 34 that passes through the dome-shaped portion 62 b of the cover 62 and extends between the outside and the inside of the cover 62. As shown in FIG.
  • the gas supplied from the gas supply pipe 34 to the supply header 60 branches inside the supply header 60, and a pair formed between the pair of frames 58 and the pair of opposing walls 64.
  • the end cap 72 attached to the open end 70 of the heater pipe 54 is connected to the tip (gas supply pipe) so that the gas supplied to the supply header 60 flows smoothly into the pair of gas passages 76. It is preferable to make the shape thinner as it approaches (34 side).
  • the “gas” in the present application includes not only air but also a mixture of an inert gas such as nitrogen gas and air, the inert gas itself, and the like.
  • the temperature control unit 14 having the gas heater 30 described above is small and has excellent thermal efficiency.
  • the gas supplied from the gas source (not shown) to the gas heater 30 of the temperature control unit 14 through the gas supply pipe 34 is divided in the supply header 60 of the gas heater 30 and is supplied to each of the pair of gas passages 76. Inflow.
  • the heater pipe 54 is heated by the heat generating element 56 to which a voltage is applied, and transfers the heat of the opposing wall 64 to the radiation fins 78.
  • the gas in the gas passage 76 is heated by heat exchange with the radiating fins 78 while flowing through the gas passage 76, and is discharged from the exhaust port 36 of the gas heater 30 as a high-temperature heated gas.
  • the heated gas discharged from the exhaust port 30 of the gas heater 30 spreads over the entire internal space 29 of the housing 28 by the action of the baffle plate 38, etc., heats the housing 28, and heats the temperature control unit 14 itself. Make your body. Further, the heated gas in the housing 28 passes through the heated gas discharge pipe 48 connected to the heated gas discharge hole 42 of the housing 28, and then from the heated gas introduction hole 44 of the inner cone-shaped member 24 to the outer cone member. It is discharged into a space 23 formed between 22 and the inner conical member 24.
  • the heated gas discharged into the space 23 between the outer cone-shaped member 22 and the inner cone-shaped member 24 passes through a large number of heated gas ejection holes 26 of the inner cone-shaped member 24 to the fluidized heating zone 27 in the sand hopper 12. Blown out.
  • the RCS that flows toward the RCS discharge port 18 through the fluid heating zone 27 formed between the housing 28 of the temperature control unit 14 and the inner conical member 24 is a temperature control that is a heating element.
  • the RCS flowing through the fluid heating zone 27 is efficiently heated.
  • the RCS when the RCS is heated only by the temperature control unit 14 serving as a heating body, the RCS positioned closer to the outer wall of the sand hopper 12 than the temperature control unit 14 is radiated and cooled through the outer wall of the sand hopper 12. End up.
  • the RCS in the fluidized heating zone 27 is separated from the temperature control unit 14 by the heated gas blown out from the heated gas ejection hole 26 of the inner conical member 24 of the sand hopper 12. Since it is heated, the RCS can be heated to a more uniform temperature.
  • the heat of the housing 28 of the temperature control unit 14 that is a heating body can be efficiently transferred to the RCS that flows in the fluid heating zone 27. It is possible to heat the RCS in the fluidized heating zone 27 more efficiently.
  • the heated gas ejection hole 26 of the inner conical member 24 is formed to have a size that does not allow RCS to enter, and the heated gas is flowed from the heated gas ejection hole 26 into the fluidized heating zone 27. Therefore, the RCS in the fluidized heating zone 27 is less likely to clog the heated gas ejection hole 26.
  • the RCS heated to a predetermined temperature through the fluidized heating zone 27 opens and closes the shutter 20 provided at the RCS discharge port 18 to open a blow head (not shown) of the shell mold molding apparatus at an appropriate timing. ) And so on.
  • the heated gas escape hole 19 can be formed in the cylindrical wall which comprises the RCS discharge port 18 in the desired position inside the shutter 20 (FIG. 1).
  • the heated gas escape hole 19 acts so as to release the heated gas in the vicinity of the RCS discharge port 18 to the outside of the sand hopper 12 when the shutter 20 is closed. If the heated gas escape hole 19 is formed inside the shutter 20, the moment when the RCS that receives the internal pressure by the heated gas and fills the vicinity of the RCS outlet 18 while the shutter 20 is closed opens the shutter 20.
  • the temperature control system 10 further includes a temperature sensor 11 installed in at least one of the fluid heating zone 27 and the RCS outlet 18, and a temperature controller 13 connected to the power sensor 31 of the temperature sensor 11 and the gas heater 30. (Fig. 1). Further, in addition to or instead of the temperature sensor 11, the temperature sensor 15 can be installed in the temperature adjustment unit 14 (for example, the heater pipe 54 of the gas heater 30) which is a heating body (FIG. 4). The temperature controller 13 controls the operation of the heating element 56 of the gas heater 30 based on the RCS measured by the temperature sensors 11 and 15 and / or the temperature of the temperature adjustment unit 14 to adjust the temperature of the RCS to an appropriate temperature.
  • a temperature control method by the temperature controller 13 for example, (1) when the temperature of the RCS and / or the gas heater 30 measured by the temperature sensors 11 and 15 is lower than a predetermined target temperature range, an ON signal is sent to the power supply circuit 31. On the contrary, when the voltage is high, an ON signal is output to the power supply circuit 31. On / off control of the heating element 56, and (2) the temperature of the RCS and / or the gas heater 30 measured by the temperature sensors 11 and 15 And a proportional control of the voltage of the heating element 56 that outputs a required voltage signal to the power supply circuit 31 according to the difference between the predetermined temperature and the predetermined target temperature. In general, from the viewpoint of accuracy of temperature control and equipment cost, it is preferable to employ (1) on / off control.
  • the mortar-shaped outer conical member 22 is fixed to the outside of the conical bottom surface (inner conical member 24) of the existing sand hopper at a predetermined interval from the conical bottom surface to produce the sand hopper 12, and the sand hopper
  • the temperature control unit 14 is arranged inside the 12. Then, the temperature control unit 14 is positioned and fixed so that the fluid heating zone 27 is formed between the inner conical member 24 of the sand hopper 12 and the temperature control unit 14.
  • the outer conical member 22 and the inner side are aligned with the socket 50 extending from the heated gas discharge hole 42 of the housing 28 of the temperature control unit 14 by drilling or the like from the outer side of the outer conical member 22.
  • a through hole 80 (FIG.
  • the RCS temperature control system 10 of the illustrated embodiment can be manufactured using an existing sand hopper by a simple method. By the RCS temperature control system 10 and its temperature control method, the RCS is uniformly and efficiently heat-treated at an appropriate temperature of about 40 to 70 ° C., preferably about 50 to 65 ° C.
  • the temperature control unit 14 included in the RCS temperature control system 10 is a small one that can be easily and economically installed in the existing sand hopper of the shell mold molding apparatus. Cost can be reduced.
  • the RCS temperature control system 100 shown in FIG. 8 has the same configuration as the RCS temperature control system 10 described with reference to FIGS. 1 to 7 except for the configuration of the sand hopper. Accordingly, corresponding components are denoted by the same reference numerals, and description thereof is omitted.
  • the RCS temperature control system 100 includes a sand hopper 12 ′ to which an RSC (not shown) is supplied, and a temperature control unit 14 ′ disposed inside the sand hopper 12 ′. Is provided.
  • the RCS temperature control system 100 includes a temperature sensor (not shown) and a temperature controller (not shown) for adjusting the temperature of the RCS to an appropriate temperature, as with the RCS temperature control system 10 shown in FIG. Yes.
  • the sand hopper 12 ′ does not have a double bottom structure, and the heated gas is blown directly from the temperature control unit 14 ′ into the sand hopper 12 ′.
  • the sand hopper 12 ′ has a conical bottom portion 16 ′ having a single bottom structure similar to that of an existing sand hopper and gradually decreasing in diameter downward, and the RCS discharge port extends outward from the lowermost center of the conical bottom portion 16 ′. 18 extends.
  • No heated gas ejection hole is formed in the conical bottom portion 16 '.
  • the conical bottom 16 ′ of the sand hopper 12 ′ is relative to a virtual horizontal plane (hereinafter referred to as a reference horizontal plane) perpendicular to the direction of gravity when the sand hopper 12 ′ is installed with the RCS discharge port 18 facing directly below. It is designed to form an inclined surface that forms an angle greater than the angle of repose.
  • the temperature control unit 14 ' is installed inside the sand hopper 12' so that a space acting as a fluid heating zone 27 is formed between the conical bottom 16 'of the sand hopper 12' and the temperature control unit 14 '. Fixed.
  • the temperature adjustment unit 14 ' includes a housing 28' and a gas heater 30 accommodated in the housing 28 '.
  • the gas heater 30 has the same configuration as the gas heater 30 included in the temperature control unit 14 of the RCS temperature control system 10, and the upper end portion thereof is fixed to the lid member 32 attached to the upper opening of the housing 28 ′. And suspended in the housing 28 '.
  • the gas heater 30 heats the gas supplied through the gas supply pipe 34 at the upper end thereof to an appropriate temperature by the heating element 56 (FIG. 4), and forms a high-temperature heated gas from the exhaust port 36 at the lower end to the inside of the housing 28 ′. It is designed to be discharged into the space 29.
  • the shape of the housing 28 ′ is not particularly limited, but the RCS is formed on both the housing 28 ′ and the conical bottom 16 ′ of the sand hopper 12 ′ in the fluidized heating zone 27, similar to the housing 28 of the temperature control unit 14 shown in FIG.
  • the lower part of the housing 28 ′ facing the conical bottom 16 ′ is inclined with respect to the reference horizontal surface so that the conical bottom 16 ′ of the sand hopper 12 ′ is inclined so as to smoothly flow down to the RCS outlet 18 with sufficient contact.
  • the outer surface has a gradient surface that forms an angle greater than the angle of the surface.
  • the overall shape of the housing 28 ′ is, for example, a substantially spindle shape (a shape in which both ends of the cylinder are pointed) in which the longitudinal section of the housing 28 ′ is a rhombus, an abacus bead, a parallelogram, a polygon (hexagon or octagon), etc. Can be adopted. Among these, as shown in FIG. 8, an abacus bead shape is preferable.
  • the material of the housing 28 ′ is preferably metal, particularly iron, like the housing 28. Further, similarly to the temperature control unit 14 shown in FIG.
  • a plurality of fins 40 may be provided on the outer surface of 28 '.
  • the fluid heating zone 27 flows instead of the heated gas discharge hole 42 provided in the housing 28 of the temperature control unit 14 shown in FIG.
  • a large number of heated gas discharge holes 43 for supplying heated gas to the fluidized heating zone 27 to heat the RCS are provided at desired intervals.
  • the heated gas discharge hole 43 has the same configuration as the heated gas ejection hole 26 provided in the inner cone-shaped member 24 of the sand hopper 12 of the RCS temperature control system 10.
  • the housing 28 ′ is formed by machining or laser processing. It can form in the inclined wall surface of the lower side part.
  • the heated gas discharge hole 43 is formed at a right angle or an acute angle (a direction parallel to the longitudinal axis of the gas heater 30 in the drawing) with respect to the inclined wall surface of the lower portion of the housing 28.
  • the shape of the heated gas discharge hole 43 is preferably a circular shape because it has a small gas ejection resistance (and hence pressure loss) and is easy to process, but is not limited thereto.
  • the size of the heated gas discharge hole 43 is mainly determined in consideration of the flow state of the RCS, but preferably has a diameter of about 0.1 mm to 3.0 mm, and particularly has a diameter of 1.0 to 2.0 mm. preferable.
  • the temperature control unit 14 ′ having the gas heater 30 is small and has excellent thermal efficiency, like the temperature control unit 14 shown in FIG. 1. In the RCS temperature control system 100 shown in FIG.
  • the gas supplied from the gas source (not shown) to the gas heater 30 of the temperature control unit 14 ′ through the gas supply pipe 34 is transferred by the gas heater 30 by the mechanism described above. It is heated and discharged as a high-temperature heated gas from the exhaust port 36 of the gas heater 30.
  • the heated gas discharged from the exhaust port 36 of the gas heater 30 spreads over the entire internal space 29 of the housing 28 ′, and heats the housing 28 ′ to make the temperature control unit 14 ′ itself a heating body. It is blown into the sand hopper 12 ′ from a large number of heated gas discharge holes 43 of 28 ′.
  • the RCS that flows toward the RCS outlet 18 through the flow heating zone 27 formed between the housing 28 ′ of the temperature control unit 14 ′ and the conical bottom 16 ′ of the sand hopper 12 ′ is heated.
  • the housing 28 ′ of the temperature control unit 14 ′ which is a body, it is heated by the heated gas blown from the heated gas discharge hole 43.
  • the fins 40 are provided outside the housing 28 ′ of the temperature control unit 14 ′, the heat of the housing 28 ′ is efficiently transmitted to the RCS flowing through the fluid heating zone 27, and the fluid heating zone 27
  • the RCS can be more efficiently heated to an appropriate temperature.
  • the RCS temperature control system 100 does not heat the RCS flowing in the fluid heating zone 27 from both inside and outside like the RCS temperature control system 10 shown in FIG. Absent. However, the temperature control system 100 that preheats the RCS to a predetermined temperature can be manufactured simply by installing the temperature control unit 14 'in the existing sand hopper without processing the existing sand hopper. Therefore, the manufacturing cost of the RCS temperature control system 100 can be significantly reduced.
  • 9 and 10 illustrate an RCS temperature regulation system 102, 104 according to yet another embodiment of the present invention.
  • the RCS temperature control systems 102 and 104 shown in FIGS. 9 and 10 have the same configuration as the RCS temperature control system 10 described with reference to FIGS. 1 to 7 except for the configuration of the temperature control unit.
  • the RCS temperature control systems 102 and 104 are each a sand hopper 12 to which an RCS (not shown) is supplied, and a temperature control unit 84 disposed inside the sand hopper 12. , 86. Further, the RCS temperature control systems 102 and 104 are both a temperature sensor (not shown) and a temperature controller (not shown) for adjusting the temperature of the RCS to an appropriate temperature, similarly to the RCS temperature control system 10 shown in FIG. ).
  • the temperature adjustment units 84 and 86 include gas heaters 88 and 90 that use ingots 92 and 94 instead of the radiating fins 78 as heat exchangers. Prepare for each.
  • the RCS temperature control system 104 of FIG. 10 is configured such that the temperature control unit 86 does not have a housing and the gas heater 90 is exposed in the sand hopper 12.
  • the sand hoppers 12 of the RCS temperature control systems 102 and 104 have the same configuration as the sand hopper 12 of the RCS temperature control system 10.
  • the conical bottom portion 16 of the sand hopper 12 has a double bottom structure composed of the outer conical member 22 and the inner conical member 24 that are spaced apart from each other, and the outer conical member 22 and the inner conical member. A space 23 is formed between them 24.
  • the inner conical member 24 has a number of heated gas ejection holes 26 formed at desired intervals, and is supplied to the space 23 between the outer conical member 22 and the inner conical member 24. The heated gas is blown into the sand hopper 12 through the heated ejection holes 26.
  • the temperature control unit 84 constitutes a heating body that radiates heat into the sand hopper 12 from itself, and heats the gas supplied to the temperature control unit 84 to increase the temperature.
  • the gas to be heated is discharged into a space 23 between the outer conical member 22 and the inner conical member 24.
  • the temperature adjustment unit 84 is formed such that a space acting as the fluid heating zone 27 is formed between the outer surface of the temperature adjustment unit 84 and the inner surface of the inner conical member 24 of the conical bottom 16 of the sand hopper 12. It is installed and fixed inside the sand hopper 12. Similar to the temperature control unit 14 shown in FIG. 1, the temperature control unit 84 includes a housing 28 and a gas heater 88 accommodated in the housing 28.
  • the shape of the housing 28 is not particularly limited, but the slope in which the lower portion of the housing 28 facing the inner conical member 24 of the sand hopper 12 forms an angle greater than the angle of the inclined surface of the inner conical member 24 with respect to the reference horizontal plane. It is preferable to have a surface on the outer surface.
  • a substantially spindle shape (a shape in which both ends of the cylinder are pointed) is employed in which the longitudinal section of the housing 28 is a rhombus, an abacus bead, a parallelogram, a polygon (hexagon or octagon), etc. can do.
  • an abacus bead shape is preferable.
  • the material of the housing 28 is preferably metal, particularly iron.
  • the housing 28 has substantially the same configuration as the housing 28 of the temperature control unit 14 shown in FIG. That is, the housing 28 is provided with a heated gas discharge hole 42, and the heated gas discharge hole 42 is connected to a heated gas introduction hole 44 formed in the inner conical member 24 by a heated gas discharge pipe 48. It is connected. Further, on the outer surface of the housing 28, a plurality of fins 40 (see FIG. 5) for easily transferring the heat of the housing 28 heated by the high-temperature heated gas discharged from the gas heater 88 to the RCS in the sand hopper 12. 2) may be provided. The gas heater 88 is held between two fixing plates 96 inside the housing 28.
  • the fixing plate 96 is fixed to the housing 28 by an appropriate method such as fastening or welding using bolts and nuts, for example.
  • a gas supply pipe 34 for supplying gas from a gas source (not shown) to the gas heater 88 is fixed to the top of the housing 28 so as to extend into the housing 28.
  • the gas heater 88 is composed of an ingot 92 in which an arbitrary number of gas passages 99 extending from a gas introduction hole 97 connected to the gas supply pipe 34 to a plurality of exhaust ports 98 are formed.
  • a plurality of heat source accommodation holes are formed in the ingot 92, and a plurality of heating elements 56 are individually accommodated as heat sources in the heat source accommodation holes.
  • the heating element 56 has the same configuration as the heating element 56 of the gas heater 30 shown in FIG.
  • the temperature control unit 84 having the gas heater 88 is small and has excellent thermal efficiency, like the temperature control unit 14 shown in FIG.
  • the ingot 92 itself functions as a heat exchanger.
  • the gas supplied to the gas introduction hole 97 of the ingot 92 is heated by heat exchange with the ingot 92 heated by the heating element 56 while passing through the gas passage 99, and is exhausted from the ingot 92 as a high-temperature heated gas. 98 is discharged.
  • the heated gas discharged from the exhaust port 98 of the ingot 92 spreads over the entire internal space 29 of the housing 28, heats the housing 28, and makes the temperature control unit 84 itself a heating body. Further, the heated gas in the housing 28 passes through the heated gas discharge pipe 48 connected to the heated gas discharge hole 42 of the housing 28, and then from the heated gas introduction hole 44 of the inner cone-shaped member 24 to the outer cone member. It is discharged into a space 23 formed between 22 and the inner conical member 24. The heated gas discharged into the space 23 between the outer cone-shaped member 22 and the inner cone-shaped member 24 is blown into the sand hopper 12 through the numerous heated gas ejection holes 26 of the inner cone-shaped member 24.
  • the RCS that flows toward the RCS discharge port 18 through the fluid heating zone 27 formed between the housing 28 of the temperature control unit 84 and the inner cone-shaped member 24 is a temperature control that is a heating body.
  • the RCS temperature control system 102 as in the RCS temperature control system 10, the RCS flowing in the fluid heating zone 27 is efficiently heated to an appropriate temperature.
  • the temperature control unit 84 of the RCS temperature control system 102 is a small one that can be easily and economically installed in the existing sand hopper of the shell mold molding apparatus, so that the manufacturing cost of the RCS temperature control system 102 can be reduced. .
  • the temperature adjustment unit 84 of the RCS temperature adjustment system 102 does not release the heated gas directly from the housing 28 into the sand hopper 12 like the temperature adjustment unit 14 ′ of the RCS temperature adjustment system 100 described above. Therefore, unlike the RCS temperature control system 104 shown as a modification in FIG. 10, a temperature control unit 86 that does not have the housing 28 and has only the ingot 94 (that is, the gas heater 90) that contains the heating element 56 is employed. You can also.
  • the ingot 94 preferably has a substantially spindle-shaped shape having a rhombus-shaped or abacus-shaped longitudinal section.
  • the heated gas discharge pipe 48 is directly connected to the exhaust port 98 of the ingot 94, and connects the exhaust port (that is, the heated gas discharge hole) 98 and the heated gas introduction hole 44 of the inner conical member 24.
  • the gas passages 99 are formed directly in the ingots 92 and 94. Therefore, the gas passages 99 cannot be made too large, and the passage resistance may increase. Therefore, at the same gas supply pressure, the flow rate of the heated gas that can be supplied may be smaller than that of the gas heater 30 of the temperature adjustment unit 14 shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Drying Of Solid Materials (AREA)
  • Casting Devices For Molds (AREA)

Abstract

A temperature control unit (10) is provided with a housing (28) having heated gas discharge holes (26) formed therein, and a gas heater (30) housed in the housing (28). The gas heater (30) is provided with a heater pipe (54), a heating element (56) housed in the heater pipe (54), a frame (58) which is attached to the outside of the peripheral wall of the heater pipe (54) and which defines a gas passage (76) in the frame, and heat radiation fins (78) arranged in the gas passage (76). The heat of the heater pipe (54) heated by the heating element (56) is transmitted to the heat radiation fins (78) so that the gas flowing in the gas passage (76) is heated by the heat radiation fins (78) and is discharged into the housing (28). The high temperature heated gas discharged into the housing (28) is discharged from the heated gas discharge holes (26) to heat a resin-coated sand to an appropriate temperature.

Description

レジンコーテッドサンドの温度調節ユニット及び温度調節システムResin coated sand temperature control unit and temperature control system
 本発明は、シェル鋳型用のレジンコーテッドサンド(RCS)の温度調節のために使用される温度調節ユニットに関する。本発明はまた、シェル鋳型用RCSの温度調節ユニットを備えた温度調節システムに関する。 The present invention relates to a temperature control unit used for temperature control of a resin coated sand (RCS) for a shell mold. The present invention also relates to a temperature control system including a temperature control unit of an RCS for a shell mold.
 近年、シェル鋳型の造型技術において、鋳型の生産性、造型性及び品質(例えば、強度)のさらなる向上、並びに、冬季環境における造型及び品質に関するトラブルの解消に加えて、環境問題への施策(例えば省エネルギ)に応えた金型温度の低温化(したがって環境負荷の軽減)や、金型温度の低温化による金型の熱ひずみの軽減を達成するべく、シェル鋳型用RCSを予熱する手法が提案されている。例えば、特許文献1には、シェル鋳型の造型に先立ってシェル鋳型用RCSを予熱するようにしたシェル鋳物砂の予熱方法及び予熱装置が記載されている。
 特許文献1に記載されるシェル鋳型用RCSの予熱装置は、寸法の大きな複数の構成要素が一体に固定されて構成されているので、大型となり、大きな設置スペースを必要とする。このような大型のシェル鋳型用RCS予熱装置は、エネルギ消費が大きいので、省エネルギの観点で問題があり、また、設置が容易ではない。したがって、シェルモールド用造型装置(すなわちシェルモールドマシン)に対し、小さな設置スペースで容易に設置することができる予熱装置が所望されている。
 例えば特許文献2には、コーテッドサンド予熱装置を備えたシェルモールドマシンが記載されている。このコーテッドサンド予熱装置は、シェル鋳型用RCSのサンドホッパと、金型にシェル鋳型用RCSを供給するためのブローヘッドと、サンドホッパとブローヘッドとの間に設置される予熱装置(乾燥温風の供給が可能な装置)とを備えている。
 また、特許文献3には、シェルモールド造型方法において使用されるコーテッドサンド加温装置が記載されている。このコーテッドサンド加温装置は、内タンクと外タンクとを備えた2重構造を有し、内タンクのすり鉢状底部に複数のバブリングノズルを配置すると共に、内タンクと外タンクとの間の空間にそれらバブリングノズルに連通する複数のエア通路を設けて構成されている。外タンクと内タンクとの間には蒸気が供給され、複数のエア通路を通る間欠エア(5秒間隔で3秒間)を、蒸気との熱交換により加温して、複数のバブリングノズルから内タンクの中に吹き出させることにより、内タンクに投入されたコーテッドサンド(シェル鋳型用RCS)を上方へ舞い上がらせて流動化させて加温する。加温されたコーテッドサンドは、内タンクの下部排出口から金型に供給される。
In recent years, shell mold making technology has further improved mold productivity, moldability and quality (for example, strength), and solved problems related to molding and quality in the winter environment. Proposed methods to preheat RCS for shell molds in order to achieve a lower mold temperature (thus reducing environmental impact) in response to energy savings and a reduction in mold thermal strain due to a lower mold temperature. Has been. For example, Patent Document 1 describes a shell casting sand preheating method and a preheating apparatus in which a shell mold RCS is preheated prior to shell mold making.
Since the RCS preheating device for shell mold described in Patent Document 1 is configured by integrally fixing a plurality of components having large dimensions, it is large and requires a large installation space. Such a large RCS preheating device for a shell mold has a large energy consumption, so there is a problem in terms of energy saving, and installation is not easy. Therefore, a preheating device that can be easily installed in a small installation space is desired for a shell molding apparatus (ie, a shell mold machine).
For example, Patent Document 2 describes a shell mold machine including a coated sand preheating device. This coated sand preheating device includes a shell mold RCS sand hopper, a blow head for supplying shell mold RCS to a mold, and a preheating device (dry hot air supply) installed between the sand hopper and the blow head. Device).
Patent Document 3 describes a coated sand heating apparatus used in a shell mold molding method. This coated sand heating apparatus has a double structure including an inner tank and an outer tank, and a plurality of bubbling nozzles are disposed on the mortar-shaped bottom of the inner tank, and a space between the inner tank and the outer tank. A plurality of air passages communicating with these bubbling nozzles are provided. Steam is supplied between the outer tank and the inner tank, and intermittent air (3 seconds at 5 second intervals) passing through the plurality of air passages is heated by heat exchange with the steam, and is supplied from the plurality of bubbling nozzles. By blowing out into the tank, the coated sand (RCS for shell mold) charged in the inner tank is caused to rise upward, fluidize, and warm. The heated coated sand is supplied to the mold from the lower discharge port of the inner tank.
特開昭54−48632号公報JP 54-48632 A 実開昭51−116915号公報Japanese Utility Model Publication No. 51-116915 特開平6−142837号公報Japanese Patent Laid-Open No. 6-142837
 特許文献2や特許文献3に記載される予熱装置は、従来使用されていたシェルモールド用造型装置に後から追加して設置することが困難であり、また、製造に高いコストを要する。また、特許文献3に記載される予熱装置は、内タンクのすり鉢状底部に複数のバブリングノズルを配置しているが、バブリングノズルは直径が大きいので、バブリングノズルの個数が限られ、結果として加熱ムラが生じ易くなる。
 本発明の目的は、シェル鋳型用RCSの温度調節のために使用される温度調節ユニットにおいて、シェルモールド用造型装置に簡単かつ経済的に設置できる小型の温度調節ユニットを提供することにある。
 本発明の他の目的は、シェルモールド用造型装置のサンドホッパ内に小型の温度調節ユニットを簡単かつ経済的に設置した温度調節システムを提供することにある。
The preheating device described in Patent Literature 2 and Patent Literature 3 is difficult to be installed later on a conventionally used shell mold molding device, and requires high cost for manufacturing. In addition, the preheating device described in Patent Document 3 has a plurality of bubbling nozzles arranged at the bottom of the mortar shape of the inner tank. However, since the bubbling nozzle has a large diameter, the number of bubbling nozzles is limited, resulting in heating. Unevenness easily occurs.
An object of the present invention is to provide a small temperature control unit that can be easily and economically installed in a shell mold molding apparatus in a temperature control unit used for temperature control of a shell mold RCS.
Another object of the present invention is to provide a temperature control system in which a small temperature control unit is simply and economically installed in a sand hopper of a shell mold molding apparatus.
 本発明の一態様は、レジンコーテッドサンド温度調節ユニットであって、被加熱気体放出孔が形成されたハウジングと、ハウジングに収容された気体加熱器とを具備し、気体加熱器は、ヒータパイプと、ヒータパイプに収容された発熱素子と、ヒータパイプの周壁の外側に取り付けられて内部に気体通路を形成するフレームと、ヒータパイプの周壁に接触するように気体通路に配置された放熱フィンとを備え、発熱素子によって加熱されたヒータパイプの熱を放熱フィンに伝達し、気体通路に導入された気体を放熱フィンにより加熱して、被加熱気体として気体通路からハウジングの内部に排出し、被加熱気体をハウジングの被加熱気体放出孔から放出することで、被加熱気体によってレジンコーテッドサンドを適温に加熱するように構成されている、レジンコーテッドサンド温度調節ユニットを提供する。
 上記レジンコーテッドサンド温度調節ユニットは、ハウジングに収容された気体加熱器によって加熱された高温の被加熱気体をハウジングの被加熱気体放出孔から放出し、放出された高温の被加熱気体によってレジンコーテッドサンドを適温に加熱するので、簡単な構造であり、低コストで作製でき、小型化することも容易である。しかも、構造上、ほとんどメンテナンスを必要としない。また、上記レジンコーテッドサンド温度調節ユニットは、特別な設置スペースを必要とせず、既存のサンドホッパに追加して設置することが容易である。
 さらに、気体加熱器のヒータパイプの周囲に形成された気体通路を流れる気体が、発熱素子によって加熱されたヒータパイプの熱が伝達された放熱フィンにより直接的に加熱されるので、熱効率が高く、また、気体通路の流路面積を必要に応じて大きくして気体の流量を増加させることが容易である。したがって気体加熱器は、大流量の気体を迅速に加熱して排出することができる。その上、気体加熱器からハウジング内に排出される高温の被加熱気体は、ヒータパイプ及び気体通路からの放熱による保温効果で、ハウジング内での温度低下が抑制される。
 発熱素子は、帯状の炭素質発熱体を保護管に封入したカーボンヒータから構成できる。また、ヒータパイプが長方形断面を有し、放熱フィンが、相対的に広い表面積を有したヒータパイプの対向する一対の周壁に取り付けられており、帯状の炭素質発熱体は、炭素質発熱体の扁平な主表面がそれら一対の周壁と平行になるように配置されていてもよい。
 気体加熱器は、気体通路に加熱前の気体を供給する気体供給管と、気体通路で加熱された被加熱気体をハウジングの内部に排出する排気口と、排気口に対向して配置される邪魔板とをさらに備えることができる。邪魔板は、排気口から排出される被加熱気体を、気体加熱器の外側で気体供給管に向けて流動させることができる。
 本発明の他の態様は、レジンコーテッドサンド温度調節システムであって、レジンコーテッドサンドが供給されるサンドホッパと、上記した温度調節ユニットであって、サンドホッパの内部に配置される温度調節ユニットとを具備し、温度調節ユニットから放出される被加熱気体によって、サンドホッパに供給されたレジンコーテッドサンドを適温に加熱する、レジンコーテッドサンド温度調節システムを提供する。
 本発明のさらに他の態様は、レジンコーテッドサンド温度調節システムであって、レジンコーテッドサンドが供給されるサンドホッパであって、空間を介して互いに離間した外側円錐状部材と内側円錐状部材とを有する円錐状底部を備え、内側円錐状部材に複数の被加熱気体噴出孔が形成されてなるサンドホッパと、サンドホッパの内部に配置され、加熱体を構成する温度調節ユニットであって、温度調節ユニットと内側円錐状部材との間に流動加熱域を形成する温度調節ユニットと、内側円錐状部材を貫通して配置され、内側円錐状部材と外側円錐状部材との間の空間と温度調節ユニットとの間に延びる被加熱気体放出管とを具備し、温度調節ユニットにより加熱された被加熱気体を、被加熱気体放出管を通して内側円錐状部材と外側円錐状部材との間の空間に放出し、内側円錐状部材に形成した複数の被加熱気体噴出孔を通して流動加熱域に吹き出させ、サンドホッパに供給されて流動加熱域を流動するレジンコーテッドサンドを、被加熱気体と温度調節ユニットとの双方により適温に加熱するように構成されている、レジンコーテッドサンド温度調節システムを提供する。
 上記レジンコーテッドサンド温度調節システムでは、サンドホッパの円錐状底部が外側円錐状部材と内側円錐状部材とからなる二重底構造を有しており、温度調節ユニットによって加熱された高温の被加熱気体が、サンドホッパの外側円錐状部材と内側円錐状部材との間の空間に被加熱気体放出管を通して放出され、内側円錐状部材に形成された複数の被加熱気体噴出孔からサンドホッパ内の流動加熱域に吹き出すようになっている。一方、サンドホッパに供給されたレジンコーテッドサンドは、加熱体を構成する温度調節ユニットと内側円錐状部材との間の流動加熱域を通って排出される。したがって、流動加熱域を流動するレジンコーテッドサンドは、温度調節ユニット自体が放射する熱により加熱されると同時に、内側円錐状部材の複数の被加熱気体噴出孔から吹き出される高温の被加熱気体により加熱されるので、高い熱効率で、かつ全体に均一に加熱される。
 温度調節ユニットは、発熱素子と、温度調節ユニットに供給される気体と発熱素子との間で熱交換を行わせる熱交換器とを備えることができる。また、温度調節ユニットは、被加熱気体放出孔が形成されたハウジングと、ハウジングに収容された気体加熱器とを備え、気体加熱器は、ヒータパイプと、ヒータパイプに収容された発熱素子と、ヒータパイプの周壁の外側に取り付けられて内部に気体通路を形成するフレームと、ヒータパイプの周壁に接触するように気体通路に熱交換器として配置された放熱フィンとを備え、発熱素子によって加熱されたヒータパイプの熱を放熱フィンに伝達し、気体通路に導入された気体を放熱フィンにより加熱して、被加熱気体として気体通路からハウジングの内部に排出し、被加熱気体をハウジングの被加熱気体放出孔から被加熱気体放出管に放出する構成とすることができる。
One aspect of the present invention is a resin-coated sand temperature control unit, which includes a housing in which a heated gas discharge hole is formed, and a gas heater accommodated in the housing. The gas heater includes a heater pipe, A heating element housed in the heater pipe, a frame that is attached to the outside of the peripheral wall of the heater pipe and forms a gas passage therein, and a radiating fin disposed in the gas passage so as to contact the peripheral wall of the heater pipe The heat of the heater pipe heated by the heating element is transmitted to the heat radiating fin, the gas introduced into the gas passage is heated by the heat radiating fin, and is discharged from the gas passage to the inside of the housing as a heated gas. The resin-coated sand is heated to an appropriate temperature by the heated gas by releasing the gas from the heated gas discharge hole of the housing. And which provides a resin-coated sand temperature control unit.
The resin-coated sand temperature control unit discharges a high-temperature heated gas heated by a gas heater accommodated in a housing from a heated gas discharge hole of the housing, and the resin-coated sand is discharged by the discharged high-temperature heated gas. Is heated to an appropriate temperature, so that it has a simple structure, can be manufactured at low cost, and can be easily downsized. In addition, the structure requires little maintenance. In addition, the resin-coated sand temperature control unit does not require a special installation space and can be easily installed in addition to an existing sand hopper.
Furthermore, since the gas flowing through the gas passage formed around the heater pipe of the gas heater is directly heated by the heat radiating fin to which the heat of the heater pipe heated by the heating element is transmitted, the thermal efficiency is high, In addition, it is easy to increase the gas flow rate by increasing the flow passage area of the gas passage as necessary. Therefore, the gas heater can quickly heat and discharge a large amount of gas. In addition, the temperature of the high-temperature heated gas discharged from the gas heater into the housing is suppressed due to the heat retaining effect due to heat radiation from the heater pipe and the gas passage.
The heating element can be composed of a carbon heater in which a strip-shaped carbonaceous heating element is enclosed in a protective tube. Further, the heater pipe has a rectangular cross section, and the heat radiating fins are attached to a pair of opposed peripheral walls of the heater pipe having a relatively large surface area. The flat main surface may be arranged so as to be parallel to the pair of peripheral walls.
The gas heater includes a gas supply pipe that supplies a gas before heating to the gas passage, an exhaust port that discharges the heated gas heated in the gas passage to the inside of the housing, and a baffle that is disposed opposite the exhaust port. And a plate. The baffle plate can flow the heated gas discharged from the exhaust port toward the gas supply pipe outside the gas heater.
Another aspect of the present invention is a resin-coated sand temperature control system comprising a sand hopper to which resin-coated sand is supplied, and the temperature control unit described above, the temperature control unit being disposed inside the sand hopper. And a resin-coated sand temperature control system that heats the resin-coated sand supplied to the sand hopper to an appropriate temperature by the heated gas released from the temperature control unit.
Still another aspect of the present invention is a resin-coated sand temperature control system, which is a sand hopper to which resin-coated sand is supplied, and includes an outer conical member and an inner conical member that are spaced apart from each other through a space. A sand hopper having a conical bottom and a plurality of heated gas ejection holes formed in an inner conical member, and a temperature control unit arranged inside the sand hopper and constituting a heating body, the temperature control unit and the inner side A temperature control unit that forms a fluid heating zone with the conical member, and a space between the temperature control unit and the space between the inner conical member and the outer conical member that is disposed through the inner conical member. A heated gas discharge pipe extending to the inner cone-shaped member and the outer cone through the heated gas discharge pipe. The resin-coated sand that is discharged into the space between the members and blown into the fluidized heating zone through a plurality of heated gas ejection holes formed in the inner cone-shaped member and supplied to the sand hopper to flow through the fluidized heating region is heated. A resin-coated sand temperature control system is provided that is configured to be heated to an appropriate temperature by both a gas and a temperature control unit.
In the resin-coated sand temperature control system, the cone-shaped bottom portion of the sand hopper has a double bottom structure composed of an outer cone-shaped member and an inner cone-shaped member, and the high-temperature heated gas heated by the temperature control unit is The heated gas discharge pipe is discharged into the space between the outer cone-shaped member and the inner cone-shaped member of the sand hopper, and is heated from the plurality of heated gas ejection holes formed in the inner cone-shaped member to the fluid heating zone in the sand hopper. It comes to blow out. On the other hand, the resin-coated sand supplied to the sand hopper is discharged through a fluidized heating zone between the temperature control unit constituting the heating body and the inner conical member. Therefore, the resin-coated sand flowing in the fluidized heating zone is heated by the heat radiated by the temperature control unit itself, and at the same time, by the high-temperature heated gas blown out from the plurality of heated gas ejection holes of the inner conical member. Since it is heated, it is heated uniformly with high thermal efficiency.
The temperature adjustment unit can include a heat generating element and a heat exchanger that performs heat exchange between the gas supplied to the temperature adjusting unit and the heat generating element. The temperature adjustment unit includes a housing in which a heated gas discharge hole is formed, and a gas heater accommodated in the housing. The gas heater includes a heater pipe, a heating element accommodated in the heater pipe, A frame that is attached to the outside of the peripheral wall of the heater pipe and forms a gas passage therein, and a radiating fin disposed as a heat exchanger in the gas passage so as to contact the peripheral wall of the heater pipe, are heated by the heating element. The heat of the heated heater pipe is transmitted to the radiating fin, the gas introduced into the gas passage is heated by the radiating fin, is discharged as a heated gas from the gas passage to the inside of the housing, and the heated gas is heated to the heated gas in the housing. It can be set as the structure discharged | emitted from a discharge hole to a to-be-heated gas discharge tube.
 本発明の一態様によるレジンコーテッドサンド温度調節ユニットは、簡単な構造で、低コストで作製でき、小型化することも容易であり、また、特別な設置スペースを必要とせず、既存のサンドホッパに追加して設置することが容易である。したがって、既存のサンドホッパを用いて低コストで簡単かつ容易に温度調節システムを作製することができる。
 上記したレジンコーテッドサンド温度調節ユニット及びこれを使用した本発明の他の態様による温度調節システムは、気体加熱器により大流量の気体を迅速に加熱し、大量の被加熱気体を排出することができるので、レジンコーテッドサンドを効率よく加熱することができる。
 二重底構造のサンドホッパを備えた本発明のさらに他の態様によるレジンコーテッドサンド温度調節システムによれば、サンドホッパに供給されたレジンコーテッドサンドが、加熱体を構成する温度調節ユニット自体の熱により加熱されると同時に、内側円錐状部材に形成された複数の被加熱気体噴出孔から吹き出される高温の被加熱気体により加熱されるので、高い熱効率で、しかも均一に加熱される。したがって、サンドホッパ内のレジンコーテッドサンドを容易に適温に加熱することができる。
The resin-coated sand temperature control unit according to one aspect of the present invention has a simple structure, can be manufactured at low cost, can be easily downsized, and does not require special installation space, and can be added to an existing sand hopper. It is easy to install. Therefore, a temperature control system can be easily and easily produced at low cost using an existing sand hopper.
The above-described resin-coated sand temperature control unit and the temperature control system according to another aspect of the present invention using the same can quickly heat a large flow rate gas by a gas heater and discharge a large amount of heated gas. Therefore, the resin coated sand can be efficiently heated.
According to the resin-coated sand temperature control system according to still another aspect of the present invention including the sand hopper having a double bottom structure, the resin-coated sand supplied to the sand hopper is heated by the heat of the temperature control unit itself constituting the heating body. At the same time, since it is heated by the high-temperature heated gas blown out from the plurality of heated gas ejection holes formed in the inner conical member, it is heated uniformly with high thermal efficiency. Therefore, the resin-coated sand in the sand hopper can be easily heated to an appropriate temperature.
本発明の一実施形態によるRCS温度調節システムを概略で示す縦断面図である。1 is a longitudinal sectional view schematically showing an RCS temperature control system according to an embodiment of the present invention. 図1の温度調節システムが有する温度調節ユニットのハウジングを概略で示す斜視図である。It is a perspective view which shows roughly the housing of the temperature control unit which the temperature control system of FIG. 1 has. 図1の温度調節システムが有する気体加熱器を概略で示す一部切欠き斜視図である。FIG. 2 is a partially cutaway perspective view schematically showing a gas heater included in the temperature control system of FIG. 1. 図3の気体加熱器のヒータパイプ部分を概略で示す横断面図である。It is a cross-sectional view which shows schematically the heater pipe part of the gas heater of FIG. 図3の気体加熱器の線V−Vに沿った概略断面図である。FIG. 5 is a schematic cross-sectional view along the line VV of the gas heater of FIG. 3. 図3の気体加熱器を一部分解して示す概略斜視図である。It is a schematic perspective view which decomposes | disassembles and shows a part of gas heater of FIG. 図3の気体加熱器の気体供給管側端部を概略で示す縦断面図である。It is a longitudinal cross-sectional view which shows the gas supply pipe side edge part of the gas heater of FIG. 3 roughly. 本発明の他の実施形態によるRCS温度調節システムを概略で示す縦断面図である。It is a longitudinal cross-sectional view which shows roughly the RCS temperature control system by other embodiment of this invention. 本発明のさらに他の実施形態によるRCS温度調節システムを概略で示す縦断面図である。FIG. 6 is a longitudinal sectional view schematically showing an RCS temperature control system according to still another embodiment of the present invention. 図9のRCS温度調節システムの変形形態を概略で示す縦断面図である。FIG. 10 is a longitudinal sectional view schematically showing a modification of the RCS temperature control system of FIG. 9.
 以下、図面を参照して、本発明の実施形態を説明する。
 最初に、図1を参照して、本発明の一実施形態によるレジンコーテッドサンド(RCS)温度調節ユニット14を使用した本発明の一実施形態によるRCS温度調節システム10の全体構成を説明する。温度調節システム10は、RCSが供給されるサンドホッパ12と、サンドホッパ12の内部に配置される温度調節ユニット14とを備える。
 サンドホッパ12は、従来のシェルモールド用造型装置(図示せず)において使用されるサンドホッパと同様に、保温材で被覆されたものであり、下方に向かって徐々に縮径する円錐状底部16を有する。サンドホッパ12は、内部に投入されたRCSを、円錐状底部16の最下部中央から外方へ延びるRCS排出口18に向かって流動させる。サンドホッパ12内のRCSは、RCS排出口18に設けたシャッタ20を開閉することによって、適宜のタイミングで、シェルモールド用造型装置のブローヘッド(図示せず)などに、RCS排出口18を通して排出される。サンドホッパ12の円錐状底部16は、互いに離間して固定された外側円錐状部材22と内側円錐状部材24とからなる二重底構造を有し、外側円錐状部材22と内側円錐状部材24との間に空間23が形成されている。なお、サンドホッパ12の円錐状底部16の内側円錐状部材24は、RCS排出口18を真下に向けてサンドホッパ12を設置したときに、重力方向に直交する仮想水平面(以下、基準水平面と称する。)に対して安息角以上の角度をなす傾斜面を構成するように設計されている。
 内側円錐状部材24には、多数の被加熱気体噴出孔26が所望の間隔で形成されており、外側円錐状部材22と内側円錐状部材24との間の空間23に供給される高温の被加熱気体が、被加熱気体噴出孔26を通してサンドホッパ12の内部に吹き出されるようになっている。被加熱気体噴出孔26は、例えば、機械加工やレーザ加工によって内側円錐状部材24に形成することができる。サンドホッパ12内に十分な量の被加熱気体を吹き出せるように、内側円錐状部材24には、約600~10000個の被加熱気体噴出孔26を設けることが好ましい。また、被加熱気体噴出孔26の形状は、噴出抵抗(したがって圧力損失)が小さく且つ加工が容易であることから、円形が好ましいが、これに限定されるものではない。さらに、サンドホッパ12の円錐状底部16に設けられた被加熱気体噴出孔26にはサンドホッパ12内のRCSが侵入しやすいので、個々の被加熱気体噴出孔26は、RCSが被加熱気体噴出孔26を通り抜けたり被加熱気体噴出孔26に詰まったりしないように、約0.1mm~0.5mm程度の直径を有することが好ましい。他方、被加熱気体噴出孔26を小さくすると、被加熱気体が被加熱気体噴出孔26を通るのに負荷がかかって流量が少なくなるので、被加熱気体の十分な流量を確保するために、被加熱気体噴出孔26の数を増やしたりコンプレッサを使用したりすることが必要になる場合がある。したがって、RCSが通り抜けることができないような直径を有する被加熱気体噴出孔26を、RCSの加熱に十分な量の被加熱気体をサンドホッパ12内に吹き出すことができる個数だけ設けることが好ましい。
 温度調節ユニット14は、それ自体からサンドホッパ12内に熱を放射する加熱体を構成すると共に、温度調節ユニット14に供給される気体を加熱して、高温の被加熱気体として外側円錐状部材22と内側円錐状部材24との間の空間23に放出するようになっている。温度調節ユニット14は、温度調節ユニット14の外表面とサンドホッパ12の円錐状底部16の内側円錐状部材24の内表面との間に、流動加熱域27として作用する空間が形成されるように、サンドホッパ12の内部に設置されて固定される。温度調節ユニット14がこのように配置されることにより、サンドホッパ12内のRCSは、温度調節ユニット14と内側円錐状部材24との間の流動加熱域27を通ってRCS排出口18に向かって流動する。
 図示実施形態では、温度調節ユニット14は、ハウジング28と、ハウジング28に収容される気体加熱器30とを備える。気体加熱器30は、その上端部が、ハウジング28の上方開口部に取り付けられた蓋部材32に固定され、ハウジング28内に吊り下げられた状態になっている。気体加熱器30は、その上端の気体供給管34を通して供給された気体を、内部の発熱素子(後述する)によって加熱して、高温の被加熱気体として下端の排気口36からハウジング28の内部空間29に排出する。気体加熱器30の排気口36の周囲には、カップ形状の邪魔板38が配置される。邪魔板38は、気体加熱器30の排気口36から排出された被加熱気体を、気体加熱器30の外側でハウジング28の上方(気体供給管34側)に向けて流動させ、被加熱気体をハウジング28の内部空間29の全体に行き渡らせることができる。
 ハウジング28の形状は特に限定されないが、上述した流動加熱域27においてRCSがハウジング28とサンドホッパ12の内側円錐状部材24との双方に十分に接触しながらRCS排出口18まで円滑に流下するように、内側円錐状部材24に対向するハウジング28の下側部分が、基準水平面に対して内側円錐状部材24の傾斜面の角度以上の角度をなす勾配面を、外面に有することが好ましい(図示実施形態では、内側円錐状部材24の傾斜面の角度とハウジング28の勾配面の角度とは実質的に同一である。)。ハウジング28の全体形状としては、例えばハウジング28の縦断面がひし形、そろばん珠形、平行四辺形、多角形(6角形や8角形)などである略紡錘形(円柱の両端が尖った形状)を採用することができる。これらの中でも、製作の容易さ、流動加熱域27の容積の確保し易さなどの観点から、ひし形やそろばん珠形の縦断面を有した略紡錘形が好ましく、特にそろばん珠形状(そろばん珠形の縦断面を有した略紡錘形)が好ましい。また、ハウジング28の材質としては、コストや耐久性の観点から、一般に金属、特に鉄が好適であるが、これに限定されるものではなく、例えばジュラルミン、アルミニウムなどであってもよい。また、例えばBMC(バルクモールディングコンパウンド)やSMC(シートモールディングコンパウンド)などの繊維強化プラスチックであってもよい。なお、RCSの安息角とは、JACT試験法S−5(鋳物砂の流動度試験法)に準じて測定される傾斜角度を意味する。
 ハウジング28の外表面には、RCSを流下させ易くするために、フッ素樹脂加工を施してもよい。また、流動加熱域27におけるRCSの加熱処理に影響を及ぼさない程度に、ハウジング28の上側部分の傾斜壁面に被加熱気体噴出孔(図示せず)を設けて、サンドホッパ12に投入されたばかりの未加熱のRCSに対し、予備加熱(一次加熱)を行うようにしてもよい。
 気体加熱器30から排出された高温の被加熱気体によって加熱されたハウジング28の熱をサンドホッパ12内のRCSに伝達しやすくするために、図2に示すように、ハウジング28の外表面に複数のフィン40を設けてもよい。それらフィン40は、サンドホッパ12内のRCSの流動の妨げとならないように、ハウジング28の外表面に対して垂直に且つハウジング28の上下方向へ延びる中心軸線に対して放射状に延びるように、設けられることが好ましい。しかしながら、ハウジング28にフィン40を設けなくてもよい。
 ハウジング28には被加熱気体放出孔42が設けられている。被加熱気体放出孔42は、被加熱気体通路46を形成する被加熱気体放出管48によって、サンドホッパ12の内側円錐状部材24に形成された被加熱気体導入孔44と接続されている。被加熱気体通路46により、ハウジング28の内部空間29と、外側円錐状部材22と内側円錐状部材24との間に形成される空間23とが、互いに気体流通可能に連通される。詳細には、被加熱気体放出孔42の周囲にハウジング28から一体にソケット50が延長され、ソケット50の内周面に雌ねじが形成されると共に、被加熱気体放出管48の一端側の外周面に雄ねじが形成される。被加熱気体放出管48はその一端側で、ハウジング28のソケット50に螺着されることによって、ハウジング28に接続される。また、被加熱気体放出管48の他端側は、内側円錐状部材24に形成された被加熱気体導入孔44を貫通して配置され、被加熱気体導入孔44の内周面と被加熱気体放出管48の外周面との間にゴムパッキン52が挿入される。被加熱気体放出管48はその他端側で、ゴムパッキン52を介して内側円錐状部材24に接続される。
 ハウジング28の内部空間29と、外側円錐状部材22と内側円錐状部材24との間の空間23とは、任意の数の被加熱気体放出管48すなわち被加熱気体通路46によって連通させることができる。図示実施形態では、ハウジング28及び内側円錐状部材24に、それぞれ、周方向へ等間隔に三つの被加熱気体放出孔42及び被加熱気体導入孔44が形成され、対応する孔42、44の間が三つの被加熱気体放出管48によって個々に接続されている。すなわち、ハウジング28の内部空間29と、外側円錐状部材22と内側円錐状部材24との間の空間23とは、三つの被加熱気体通路46によって互いに気体流通可能に連通されている。
 次に、図3~図7を参照して、気体加熱器30を詳細に説明する。
 図3に示すように、気体加熱器30は、ヒータパイプ54と、熱源としてヒータパイプ54に収容された発熱素子56と、ヒータパイプ54の外側に取り付けられたフレーム58と、ヒータパイプ54の長手方向一端部を覆う供給ヘッダ60と、ヒータパイプ54、フレーム58及び供給ヘッダ60の全体を覆うカバー62とを備える。カバー62は、円筒状部分62aと、円筒状部分62aの軸線方向一端部に取り付けられたドーム状部分62bとを有し、ドーム状部分62bの近傍で、上述したハウジング28の蓋部材32に固定される。なお図3では、カバー62を一点鎖線で示し、カバー62に覆われる内部構造を実線で示している。
 ヒータパイプ54は、長方形断面を有する筒状体であり、その四つの周壁として、相対的に広い表面積の一対の対向壁64と、それら対向壁64の間を接続する相対的に狭い表面積の一対の接続壁66とを有する。ヒータパイプ54の一対の対向壁64の間隔は、図5から分かるように、発熱素子56の外径と一致するように定められており、発熱素子56の外周面がヒータパイプ54の一対の対向壁64の内面に接するようになっている。ヒータパイプ54の長手方向一端は閉鎖端68となっている一方、長手方向他端は開放端70となっていて、開放端70にエンドキャップ72が取り付けられている。ヒータパイプ54の材質としては、金属、とりわけ鉄が好適であるが、これに限定されるものではなく、例えばジュラルミン、アルミニウムなどであってもよい。また、ヒータパイプ54の各壁64、66の内面には、赤外線を効率よく吸収するように、耐熱性の赤外線吸収塗料が塗布されることが好ましい。
 ヒータパイプ54の内部には、図4に示すように、複数(図では三つ)の発熱素子56が熱源として収容されている。図示実施形態では、発熱素子56として、図5に示すように、帯状の炭素質発熱体(フィラメント)56aを石英ガラス製の保護管56bに封入してなる棒状のカーボンヒータが使用されている。炭素質発熱体56aは、図5に示すように、保護管56bの内径に合致する幅と保護管56bのほぼ全長にわたる長さとを有する扁平帯状のものであり、発熱体56aの長手方向両端部に接続されたリード線56cが保護管56bの長手方向両端から外部に引き出されている(図4)。なお、発熱素子56は、図示のカーボンヒータに限定されるものではなく、カートリッジ式や自己発熱体式などの種々の棒状電熱ヒータから構成できる。
 気体加熱器30に通電する電源回路31には、三相交流電源が使用される。図示実施形態では、一相当たり一本の発熱素子(カーボンヒータ)56を用いて、図4に示すように、三本の発熱素子56の一端のリード線56cを結線部74においてスター結線で互いに結合している。それら発熱素子56は、それぞれのリード線56cの結線部74をヒータパイプ54の閉鎖端68側に向けてヒータパイプ54に収容され、他端(電源側)のリード線56cが、エンドキャップ72に設けられた穴から外部に引き出される。
 発熱素子56がカーボンヒータである場合、三本のカーボンヒータは、図5に示すように、ヒータパイプ54の一対の対向壁64と平行な共通の水平面内にそれぞれの発熱体56aの扁平な主表面が存在するように方向付けされて、互いに平行に配置される。これにより、扁平帯状の発熱体56aの熱が、相対的に大きい表面積のヒータパイプ54の一対の対向壁64に効率よく伝達される。しかしながら、三本のカーボンヒータの発熱体56aの向きは上記に限定されるものではなく、例えば、三本のカーボンヒータは、それぞれの発熱体56aの扁平な主表面がヒータパイプ54の一対の対向壁64と直交する向きに配置されてもよい。
 ヒータパイプ54の少なくとも一つの周壁64、66の外側には、断面U字形のチャンネル状のフレーム58が設置され、フレーム58とヒータパイプ54の周壁とに取り囲まれた空間が気体通路76を形成する。図示実施形態では、ヒータパイプ54の四つの周壁のうち相対的に広い表面積を有する一対の対向壁64のそれぞれの外側に、フレーム58が設置されている。しかしながら、フレーム58は、ヒータパイプ54の四つの周壁64、66の全てに取り付けられてもよく、一つ又は三つの周壁64、66のみに取り付けられてもよい。フレーム58の幅は、ヒータパイプ54の横幅とほぼ一致していることが好ましい。また、フレーム58の長さは、ヒータパイプ54の発熱素子56の発熱体56aの長さと実質的に同じ長さであることが好ましく、この場合、図6に示すように、発熱素子56よりも長いヒータパイプ54の長手方向両端部分が、フレーム58の長手方向両端から突き出た形態となる。
 気体通路76の内部には、図5に示すように、ヒータパイプ54の対向壁64の外面に接触するように、放熱フィン78が配置されている。放熱フィン78は、発熱素子56によって加熱されたヒータパイプ54の熱を伝達して、気体通路76内を流れる気体と熱交換を行う熱交換器として機能する。図示実施形態では、放熱フィン78として、コルゲートフィンが使用されている。コルゲートフィンからなる放熱フィン78は、その山部又は谷部が、気体通路76の気体の流れを妨げないように、気体の流れ方向(すなわちヒータパイプ54及びフレーム58の長手方向)に沿うように配置されて、ヒータパイプ54の対向壁64の外面に接合されている。しかしながら、放熱フィン78は、コルゲートフィンに限定されるものではなく、気体通路76の気体の流れを妨げず且つヒータパイプ54の熱を放熱できるものであれば、他の様々な放熱フィンを使用することができる。
 供給ヘッダ60は、図6及び図7に示されるように、気体加熱器30の長手方向一端側で、フレーム58から突出するヒータパイプ54の一部分を覆うように設けられて、カバー62(図3)に固定される。供給ヘッダ60の一端には、カバー62のドーム状部分62bを貫通してカバー62の外部と内部との間に延びる気体供給管34が接続されている。気体供給管34から供給ヘッダ60に供給された気体は、図7に示すように、供給ヘッダ60の内部で分岐して、一対のフレーム58と一対の対向壁64との間に形成された一対の気体通路76に流入する。供給ヘッダ60に供給された気体が一対の気体通路76に円滑に分かれて流入するように、ヒータパイプ54の開放端70に取り付けられるエンドキャップ72を、図7に示すように先端(気体供給管34側)に近づくほど細くなる形状にすることが好ましい。なお、本願における「気体」とは、空気はもちろんのこと、窒素ガスなどの不活性ガスと空気との混合物、不活性ガス自体などを含むものとする。
 上記した気体加熱器30を有する温度調節ユニット14は、小型で且つ優れた熱効率を有するものである。
 次に、図1に示すRCS温度調節システム10の動作について説明する。
 気体源(図示せず)から気体供給管34を通して温度調節ユニット14の気体加熱器30に供給された気体は、気体加熱器30の供給ヘッダ60内で分かれて、一対の気体通路76の各々に流入する。ヒータパイプ54は、電圧を印加された発熱素子56によって加熱され、対向壁64の熱を放熱フィン78に伝達する。気体通路76内の気体は、気体通路76を流れる間に放熱フィン78との熱交換により加熱され、高温の被加熱気体として気体加熱器30の排気口36から排出される。気体加熱器30の排気口30から排出された被加熱気体は、邪魔板38などの作用により、ハウジング28の内部空間29の全体に行き渡り、ハウジング28を加熱して、温度調節ユニット14自体を加熱体にする。さらに、ハウジング28内の被加熱気体は、ハウジング28の被加熱気体放出孔42に接続された被加熱気体放出管48を通して、内側円錐状部材24の被加熱気体導入孔44から、外側円錐状部材22と内側円錐状部材24との間に形成された空間23に放出される。
 外側円錐状部材22と内側円錐状部材24との間の空間23に放出された被加熱気体は、内側円錐状部材24の多数の被加熱気体噴出孔26を通してサンドホッパ12内の流動加熱域27に吹き出される。サンドホッパ12内において、温度調節ユニット14のハウジング28と内側円錐状部材24との間に形成された流動加熱域27をRCS排出口18に向かって流動するRCSは、加熱体となっている温度調節ユニット14のハウジング28によって内側から加熱されると同時に、内側円錐状部材24の被加熱気体噴出孔26から吹き出される被加熱気体によって外側から加熱される。したがって、流動加熱域27を流動するRCSが効率的に加熱される。また、加熱体となっている温度調節ユニット14のみによってRCSを加熱する場合、温度調節ユニット14よりもサンドホッパ12の外壁に近接して位置するRCSは、サンドホッパ12の外壁を通して放熱して冷却されてしまう。これに対し、図示実施形態では、サンドホッパ12の内側円錐状部材24の被加熱気体噴出孔26から吹き出される被加熱気体によって、流動加熱域27内のRCSが温度調節ユニット14から離れた位置でも加熱されるので、RCSをより均一な温度に加熱することができる。
 さらに、温度調節ユニット14のハウジング28の外側にフィン40が取り付けられていれば、流動加熱域27を流動するRCSに加熱体である温度調節ユニット14のハウジング28の熱を効率的に伝達することができ、流動加熱域27のRCSを一層効率的に加熱することができる。
 なお、上述したように、内側円錐状部材24の被加熱気体噴出孔26はRCSが侵入しない程度の寸法に形成されており、また、被加熱気体噴出孔26から被加熱気体を流動加熱域27に吹き出しているので、流動加熱域27のRCSが被加熱気体噴出孔26に詰まりにくくなっている。
 流動加熱域27を通って所定の温度まで加熱されたRCSは、RCS排出口18に設けられたシャッタ20を開閉することにより、適宜のタイミングで、シェルモールド用造型装置のブローヘッド(図示せず)などに排出される。
 ここで、RCS排出口18を構成する筒状壁には、シャッタ20よりも内側の所望位置に、被加熱気体逃し孔19を形成することができる(図1)。被加熱気体逃し孔19は、シャッタ20が閉じているときに、RCS排出口18の近傍の被加熱気体をサンドホッパ12の外部に逃がすように作用する。シャッタ20よりも内側に被加熱気体逃し孔19を形成すれば、シャッタ20が閉じている間に被加熱気体によって内圧を受けてRCS排出口18付近に充満するRCSが、シャッタ20を開いた瞬間に内圧によってRCS排出口18から噴出することを防止できる。
 温度調節システム10はさらに、流動加熱域27及びRCS排出口18の少なくとも一方に設置される温度センサ11と、温度センサ11及び気体加熱器30の電源回路31に接続される温度コントローラ13とを備えている(図1)。また、温度センサ11に加えて、或いはその代わりに、加熱体である温度調節ユニット14(例えば気体加熱器30のヒータパイプ54)に温度センサ15を設置することもできる(図4)。
 温度コントローラ13は、温度センサ11、15が測定したRCS及び/又は温度調節ユニット14の温度に基づいて、気体加熱器30の発熱素子56の動作を制御し、RCSの温度を適温に調節する。温度コントローラ13による温度制御方法としては、例えば、(1)温度センサ11、15が測定したRCS及び/又は気体加熱器30の温度が予め定めた目標温度範囲より低いときには、電源回路31にオン信号を出力し、逆に高いときには、電源回路31にオフ信号を出力する、発熱素子56のオン/オフ制御や、(2)温度センサ11、15が測定したRCS及び/又は気体加熱器30の温度と予め定めた目標温度との差に応じて所要の電圧信号を電源回路31に出力する、発熱素子56の電圧の比例制御などを挙げることができる。一般的には、温度制御の精度及び設備コストの観点から、(1)オン/オフ制御を採用することが好ましい。これにより、RCSの加熱温度のバラツキを抑制することができる。
 次に、サンドホッパ12に類似した形状を有する既存のサンドホッパを用いて、図1に示すRCS温度調節システム10を作製する方法の一例を説明する。
 まず、既存のサンドホッパの円錐状底面を内側円錐状部材24とすべく、ドリル加工やレーザ加工などによって、既存のサンドホッパの円錐状底面に約600~10000個の被加熱気体噴出孔26を形成する。次に、既存のサンドホッパの円錐状底面(内側円錐状部材24)の外側に、円錐状底面から所定間隔をあけてすり鉢状の外側円錐状部材22を固定して、サンドホッパ12を作製し、サンドホッパ12の内部に温度調節ユニット14を配置する。そして温度調節ユニット14を、サンドホッパ12の内側円錐状部材24と温度調節ユニット14との間に流動加熱域27が形成されるように、位置決めして固定する。その状態で、外側円錐状部材22の外側からドリル加工などで、温度調節ユニット14のハウジング28の被加熱気体放出孔42から延びるソケット50と一直線上に並ぶ位置に、外側円錐状部材22及び内側円錐状部材24にそれぞれ貫通孔80(図1)及び被加熱気体導入孔44を形成する。そして、被加熱気体導入孔44と被加熱気体放出孔42との双方に、前述したようにして被加熱気体放出管48を接続し、次いで、外側円錐状部材22の貫通孔80を閉鎖プラグ82で閉鎖する。このように、温度調節ユニット14を用いれば、簡単な方法で、既存のサンドホッパを用いて図示実施形態のRCS温度調節システム10を作製することができる。
 上記のRCS温度調節システム10及びその温度制御方法によって、RCSは均一且つ効率的に、40~70℃程度、好ましくは50~65℃程度の適温に加熱処理される。このとき同時に、RCSの吸湿分の乾燥も行われるため、RCSが有する本来の流動性を回復し、重力による自由流動性が向上する。したがって、RCS温度調節システム10によって温度調節されたRCSを用いることで、シェル鋳型の造型性及び品質を改善でき、また環境温度の影響を受けることなく、シェル鋳型を高い生産性で安定的に造型することができる。また、造型時の金型温度を低下させて、金型の熱ひずみや環境負荷を軽減することができる。しかも上記したように、RCS温度調節システム10が有する温度調節ユニット14は、シェルモールド用造型装置の既存のサンドホッパに簡単かつ経済的に設置できる小型のものであるから、RCS温度調節システム10の製造コストを低減できる。
 図8は、本発明の他の実施形態によるRCS温度調節システム100を示す。図8に示すRCS温度調節システム100は、サンドホッパの構成を除いて、図1~図7を参照して説明したRCS温度調節システム10と同様の構成を有する。したがって、対応する構成要素には同じ参照符号を付してその説明を省略する。
 RCS温度調節システム100は、図1に示すRCS温度調節システム10と同様に、RSC(図示せず)が供給されるサンドホッパ12´と、サンドホッパ12´の内部に配置される温度調節ユニット14´とを備える。また、RCS温度調節システム100は、図1に示すRCS温度調節システム10と同様に、RCSの温度を適温に調節するための温度センサ(図示せず)及び温度コントローラ(図示せず)を備えている。
 サンドホッパ12´は、RCS温度調節システム10のサンドホッパ12と異なり、二重底構造を有さず、被加熱気体が温度調節ユニット14´から直接サンドホッパ12´内に吹き出されるようになっている。サンドホッパ12´は、既存のサンドホッパと同様の一重底構造の、下方に向かって徐々に縮径する円錐状底部16´を有し、円錐状底部16´の最下部中央から外方へRCS排出口18が延びている。円錐状底部16´には、被加熱気体噴出孔は形成されていない。なお、サンドホッパ12´の円錐状底部16´は、RCS排出口18を真下に向けてサンドホッパ12´を設置したときに、重力方向に直交する仮想水平面(以下、基準水平面と称する。)に対して安息角以上の角度をなす傾斜面を構成するように設計されている。
 温度調節ユニット14´は、サンドホッパ12´の円錐状底部16´と温度調節ユニット14´との間に流動加熱域27として作用する空間が形成されるように、サンドホッパ12´の内部に設置されて固定される。温度調節ユニット14´は、ハウジング28´と、ハウジング28´に収容される気体加熱器30とを備える。気体加熱器30は、RCS温度調節システム10の温度調節ユニット14が有する気体加熱器30と同じ構成を有し、その上端部が、ハウジング28´の上方開口部に取り付けられた蓋部材32に固定され、ハウジング28´内に吊り下げられた状態になっている。気体加熱器30は、その上端の気体供給管34を通して供給された気体を発熱素子56(図4)により適温に加熱して、高温の被加熱気体として下端の排気口36からハウジング28´の内部空間29に排出するようになっている。
 ハウジング28´の形状は特に限定されないが、図1に示す温度調節ユニット14のハウジング28と同様に、流動加熱域27においてRCSがハウジング28´とサンドホッパ12´の円錐状底部16´との双方に十分に接触しながらRCS排出口18まで円滑に流下するように、円錐状底部16´に対向するハウジング28´の下側部分が、基準水平面に対してサンドホッパ12´の円錐状底部16´の傾斜面の角度以上の角度をなす勾配面を、外面に有することが好ましい。ハウジング28´の全体形状としては、例えばハウジング28´の縦断面がひし形、そろばん珠形、平行四辺形、多角形(6角形や8角形)などである略紡錘形(円柱の両端が尖った形状)を採用することができる。これらの中でも、図8に示すように、そろばん珠形状が好ましい。また、ハウジング28´の材質は、ハウジング28と同様に、金属、特に鉄が好適である。また、図1に示す温度調節ユニット14と同様に、気体加熱器30から排出された高温の被加熱気体によって加熱されたハウジング28の熱をサンドホッパ12内のRCSに伝達しやすくするために、ハウジング28´の外表面に複数のフィン40を設けてもよい。
 温度調節ユニット14´のハウジング28´の下側部分の傾斜壁面には、図1に示す温度調節ユニット14のハウジング28に設けた被加熱気体放出孔42に代えて、流動加熱域27を流動するRCSを加熱するべく被加熱気体を流動加熱域27に供給するための多数の被加熱気体放出孔43が、所望の間隔で設けられている。被加熱気体放出孔43は、RCS温度調節システム10のサンドホッパ12の内側円錐状部材24に設けた被加熱気体噴出孔26と同様の構成を有し、例えば、機械加工やレーザ加工によってハウジング28´の下側部分の傾斜壁面に形成することができる。被加熱気体放出孔43は、ハウジング28の下側部分の傾斜壁面に対して直角又は鋭角(図で気体加熱器30の長手軸線に平行な方向)に穿孔される。これにより、被加熱気体の流速が低く、したがって圧力が小さく風量が少ない場合にも、RCSを効果的に撹拌して加熱できると共に、被加熱気体の放出を停止したときに、サンドホッパ12内のRCSが被加熱気体放出孔43に入り込み難くなる。被加熱気体放出孔43の形状は、気体の噴出抵抗(したがって圧力損失)が小さく且つ加工が容易であることから、円形が好ましいが、これに限定されるものではない。被加熱気体放出孔43の大きさは、主にRCSの流動状態を考慮して決定されるが、直径0.1mm~3.0mm程度が好ましく、特に直径1.0~2.0mmの範囲が好ましい。
 気体加熱器30を有する温度調節ユニット14´は、図1に示す温度調節ユニット14と同様に、小型で且つ優れた熱効率を有するものである。
 図8に示すRCS温度調節システム100では、気体源(図示せず)から気体供給管34を通して温度調節ユニット14´の気体加熱器30に供給された気体が、前述した仕組みで気体加熱器30によって加熱され、気体加熱器30の排気口36から高温の被加熱気体として排出される。気体加熱器30の排気口36から排出された被加熱気体は、ハウジング28´の内部空間29の全体に行き渡り、ハウジング28´を加熱して温度調節ユニット14´自体を加熱体にすると同時に、ハウジング28´の多数の被加熱気体放出孔43からサンドホッパ12´内に吹き出される。サンドホッパ12´内において、温度調節ユニット14´のハウジング28´とサンドホッパ12´の円錐状底部16´との間に形成された流動加熱域27をRCS排出口18に向かって流動するRCSは、加熱体となっている温度調節ユニット14´のハウジング28´によって加熱されると同時に、被加熱気体放出孔43から吹き出される被加熱気体によって加熱される。さらに、温度調節ユニット14´のハウジング28´の外側にフィン40が設けられていれば、ハウジング28´の熱が、流動加熱域27を流動するRCSに効率的に伝達され、流動加熱域27のRCSをさらに効率的に適温に加熱することができる。
 RCS温度調節システム100は、図1に示すRCS温度調節システム10のように流動加熱域27を流動するRCSを内外両側から加熱するものではないので、RCS温度調節システム10ほどには加熱効率が高くない。しかし、既存のサンドホッパを加工することなく、既存のサンドホッパ内に温度調節ユニット14´を設置するだけで、RCSを所定温度に予熱する温度調節システム100を作製できる。したがって、RCS温度調節システム100の製造コストを著しく低減できる。
 図9及び図10は、本発明のさらに他の実施形態によるRCS温度調節システム102、104を示す。図9及び図10に示すRCS温度調節システム102、104は、温度調節ユニットの構成を除いて、図1~図7を参照して説明したRCS温度調節システム10と同様の構成を有する。したがって、対応する構成要素には同じ参照符号を付してその説明を省略する。
 RCS温度調節システム102、104は、それぞれ、図1に示すRCS温度調節システム10と同様に、RCS(図示せず)が供給されるサンドホッパ12と、サンドホッパ12の内部に配置される温度調節ユニット84、86とを備える。また、RCS温度調節システム102、104はいずれも、図1に示すRCS温度調節システム10と同様に、RCSの温度を適温に調節するための温度センサ(図示せず)及び温度コントローラ(図示せず)を備えている。
 温度調節ユニット84、86は、RCS温度調節システム10の温度調節ユニット14の気体加熱器30に代えて、熱交換器として放熱フィン78ではなくインゴット92、94を使用する気体加熱器88、90をそれぞれに備えている。特に、図10のRCS温度調節システム104は、温度調節ユニット86がハウジングを有さず気体加熱器90をサンドホッパ12内に露出させて構成されている。
 RCS温度調節システム102、104のサンドホッパ12はいずれも、RCS温度調節システム10のサンドホッパ12と同じ構成を有する。つまり、サンドホッパ12の円錐状底部16は、互いに離間して配置された外側円錐状部材22と内側円錐状部材24とからなる二重底構造を有し、外側円錐状部材22と内側円錐状部材24との間に空間23が形成されている。また、内側円錐状部材24には、多数の被加熱気体噴出孔26が所望の間隔で形成されており、外側円錐状部材22と内側円錐状部材24との間の空間23に供給される高温の被加熱気体が、被加熱噴出孔26を通してサンドホッパ12の内部に吹き出されるようになっている。
 図9に示すRCS温度調節システム102の温度調節ユニット84は、それ自体からサンドホッパ12内に熱を放射する加熱体を構成すると共に、温度調節ユニット84に供給される気体を加熱して、高温の被加熱気体として外側円錐状部材22と内側円錐状部材24との間の空間23に放出するようになっている。温度調節ユニット84は、温度調節ユニット84の外表面とサンドホッパ12の円錐状底部16の内側円錐状部材24の内表面との間に、流動加熱域27として作用する空間が形成されるように、サンドホッパ12の内部に設置されて固定される。
 温度調節ユニット84は、図1に示す温度調節ユニット14と同様に、ハウジング28と、ハウジング28に収容される気体加熱器88とを備える。ハウジング28の形状は特に限定されないが、サンドホッパ12の内側円錐状部材24に対向するハウジング28の下側部分が、基準水平面に対して内側円錐状部材24の傾斜面の角度以上の角度をなす勾配面を、外面に有することが好ましい。ハウジング28の全体形状としては、例えばハウジング28の縦断面がひし形、そろばん珠形、平行四辺形、多角形(6角形や8角形)などである略紡錘形(円柱の両端が尖った形状)を採用することができる。これらの中でも、図9に示すように、そろばん珠形状が好ましい。また、ハウジング28の材質は、金属、特に鉄が好適である。
 ハウジング28は、図1に示す温度調節ユニット14のハウジング28と実質的に同じ構成を有する。すなわちハウジング28には、被加熱気体放出孔42が設けられており、被加熱気体放出孔42は、被加熱気体放出管48によって、内側円錐状部材24に形成された被加熱気体導入孔44に接続されている。また、ハウジング28の外表面には、気体加熱器88から排出された高温の被加熱気体によって加熱されたハウジング28の熱をサンドホッパ12内のRCSに伝達しやすくするための複数のフィン40(図2)を設けてもよい。
 気体加熱器88は、ハウジング28の内部において二つの固定板96の間に保持されており、固定板96は、例えばボルト及びナットを用いた締結や溶接などの適宜の方法で、ハウジング28に固定されている。また、ハウジング28の頂部には、気体源(図示せず)から気体加熱器88に気体を供給するための気体供給管34が、ハウジング28の内部に延びるように固定されている。
 気体加熱器88は、気体供給管34に接続される気体導入孔97から複数の排気口98に至る任意個数の気体通路99を内部に形成したインゴット92から構成される。インゴット92には複数の熱源収容孔が形成され、それら熱源収容孔に、複数の発熱素子56が熱源として個別に収容されている。発熱素子56は、図1に示す気体加熱器30の発熱素子56と同じ構成を有し、棒状のカーボンヒータ(図4)や、カートリッジ式や自己発熱体式などの種々の棒状電熱ヒータから構成できる。
 気体加熱器88を有する温度調節ユニット84は、図1に示す温度調節ユニット14と同様に、小型で且つ優れた熱効率を有するものである。
 インゴット92は、それ自体が熱交換器として機能する。インゴット92の気体導入孔97に供給された気体は、気体通路99を通る間に、発熱素子56によって加熱されたインゴット92との熱交換により加熱され、高温の被加熱気体としてインゴット92の排気口98から排出される。インゴット92の排気口98から排出された被加熱気体は、ハウジング28の内部空間29の全体に行き渡り、ハウジング28を加熱して、温度調節ユニット84自体を加熱体にする。さらに、ハウジング28内の被加熱気体は、ハウジング28の被加熱気体放出孔42に接続された被加熱気体放出管48を通して、内側円錐状部材24の被加熱気体導入孔44から、外側円錐状部材22と内側円錐状部材24との間に形成された空間23に放出される。
 外側円錐状部材22と内側円錐状部材24との間の空間23に放出された被加熱気体は、内側円錐状部材24の多数の被加熱気体噴出孔26を通してサンドホッパ12内に吹き出される。サンドホッパ12内において、温度調節ユニット84のハウジング28と内側円錐状部材24との間に形成された流動加熱域27をRCS排出口18に向かって流動するRCSは、加熱体となっている温度調節ユニット84のハウジング28によって内側から加熱されると同時に、内側円錐状部材24の被加熱気体噴出孔26から吹き出される被加熱気体によって外側から加熱される。したがって、RCS温度調節システム102では、RCS温度調節システム10と同様に、流動加熱域27を流動するRCSが効率的に適温に加熱される。しかも、RCS温度調節システム102が有する温度調節ユニット84は、シェルモールド用造型装置の既存のサンドホッパに簡単かつ経済的に設置できる小型のものであるから、RCS温度調節システム102の製造コストを低減できる。
 RCS温度調節システム102の温度調節ユニット84は、前述したRCS温度調節システム100の温度調節ユニット14´のように、ハウジング28からサンドホッパ12内に直接的に被加熱気体を放出するものではない。したがって、図10に変形形態として示すRCS温度調節システム104のように、ハウジング28を有さず、発熱素子56を収容したインゴット94(すなわち気体加熱器90)のみを有する温度調節ユニット86を採用することもできる。この構成では、インゴット94は、ハウジング28と同様に、ひし形やそろばん珠形の縦断面を有した略紡錘形の形状を有することが好ましい。また、被加熱気体放出管48は、インゴット94の排気口98に直接に接続され、排気口(すなわち被加熱気体放出孔)98と内側円錐状部材24の被加熱気体導入孔44とを接続する。
 RCS温度調節システム102、104では、インゴット92、94に直接に気体通路99を形成するので、気体通路99をあまり大きくすることができず、流路抵抗が大きくなる場合がある。したがって、同じ気体供給圧では、図1に示す温度調節ユニット14の気体加熱器30に比べて、供給できる被加熱気体の流量が小さくなる場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, an overall configuration of an RCS temperature control system 10 according to an embodiment of the present invention using a resin-coated sand (RCS) temperature control unit 14 according to an embodiment of the present invention will be described with reference to FIG. The temperature control system 10 includes a sand hopper 12 to which RCS is supplied, and a temperature control unit 14 disposed inside the sand hopper 12.
The sand hopper 12 is covered with a heat insulating material, like a sand hopper used in a conventional shell mold molding apparatus (not shown), and has a conical bottom portion 16 that gradually decreases in diameter downward. . The sand hopper 12 causes the RCS charged therein to flow toward the RCS discharge port 18 extending outward from the lowermost center of the conical bottom portion 16. The RCS in the sand hopper 12 is discharged through the RCS discharge port 18 to the blow head (not shown) of the shell mold molding device at an appropriate timing by opening and closing the shutter 20 provided at the RCS discharge port 18. The The conical bottom portion 16 of the sand hopper 12 has a double bottom structure composed of an outer conical member 22 and an inner conical member 24 which are fixed to be separated from each other, and the outer conical member 22, the inner conical member 24, and the like. A space 23 is formed between the two. Note that the inner conical member 24 of the conical bottom 16 of the sand hopper 12 has a virtual horizontal plane (hereinafter referred to as a reference horizontal plane) orthogonal to the direction of gravity when the sand hopper 12 is installed with the RCS outlet 18 facing directly downward. It is designed to constitute an inclined surface that forms an angle greater than the angle of repose.
A large number of heated gas ejection holes 26 are formed in the inner conical member 24 at desired intervals, and the high-temperature covered member supplied to the space 23 between the outer conical member 22 and the inner conical member 24 is formed. The heated gas is blown out into the sand hopper 12 through the heated gas ejection hole 26. The heated gas ejection hole 26 can be formed in the inner conical member 24 by, for example, machining or laser processing. The inner conical member 24 is preferably provided with about 600 to 10000 heated gas ejection holes 26 so that a sufficient amount of heated gas can be blown into the sand hopper 12. The shape of the heated gas ejection hole 26 is preferably a circular shape because it has a small ejection resistance (and hence pressure loss) and is easy to process, but is not limited thereto. Further, since the RCS in the sand hopper 12 easily enters the heated gas ejection holes 26 provided in the conical bottom portion 16 of the sand hopper 12, each heated gas ejection hole 26 has an RCS of the heated gas ejection hole 26. It is preferable to have a diameter of about 0.1 mm to 0.5 mm so as not to pass through or clog the heated gas ejection hole 26. On the other hand, if the heated gas ejection hole 26 is made smaller, a load is applied while the heated gas passes through the heated gas ejection hole 26 and the flow rate is reduced. Therefore, in order to ensure a sufficient flow rate of the heated gas, It may be necessary to increase the number of heated gas ejection holes 26 or to use a compressor. Therefore, it is preferable to provide the heated gas ejection holes 26 having such a diameter that the RCS cannot pass through as many as the heated gas sufficient to heat the RCS can be blown into the sand hopper 12.
The temperature adjustment unit 14 constitutes a heating body that radiates heat into the sand hopper 12 from itself, and heats the gas supplied to the temperature adjustment unit 14, thereby forming the outer cone-shaped member 22 as a high-temperature heated gas. It discharges to the space 23 between the inner conical members 24. The temperature control unit 14 is configured such that a space acting as a fluid heating zone 27 is formed between the outer surface of the temperature control unit 14 and the inner surface of the inner conical member 24 of the conical bottom 16 of the sand hopper 12. It is installed and fixed inside the sand hopper 12. By arranging the temperature control unit 14 in this way, the RCS in the sand hopper 12 flows toward the RCS discharge port 18 through the flow heating zone 27 between the temperature control unit 14 and the inner conical member 24. To do.
In the illustrated embodiment, the temperature adjustment unit 14 includes a housing 28 and a gas heater 30 accommodated in the housing 28. The upper end of the gas heater 30 is fixed to a lid member 32 attached to the upper opening of the housing 28 and is suspended in the housing 28. The gas heater 30 heats the gas supplied through the gas supply pipe 34 at the upper end thereof by an internal heating element (described later), and forms a high-temperature gas to be heated from the exhaust port 36 at the lower end to the internal space of the housing 28. To 29. A cup-shaped baffle plate 38 is disposed around the exhaust port 36 of the gas heater 30. The baffle plate 38 causes the heated gas discharged from the exhaust port 36 of the gas heater 30 to flow outside the gas heater 30 toward the upper side of the housing 28 (on the gas supply pipe 34 side). The entire interior space 29 of the housing 28 can be distributed.
The shape of the housing 28 is not particularly limited, but the RCS smoothly flows down to the RCS discharge port 18 while sufficiently contacting both the housing 28 and the inner conical member 24 of the sand hopper 12 in the fluidized heating zone 27 described above. The lower portion of the housing 28 facing the inner conical member 24 preferably has an inclined surface on the outer surface that forms an angle greater than or equal to the angle of the inclined surface of the inner conical member 24 with respect to the reference horizontal plane (as shown in the figure). In form, the angle of the inclined surface of the inner conical member 24 and the angle of the inclined surface of the housing 28 are substantially the same). As the overall shape of the housing 28, for example, a substantially spindle shape (a shape in which both ends of the cylinder are pointed) is employed in which the longitudinal section of the housing 28 is a rhombus, an abacus bead, a parallelogram, a polygon (hexagon or octagon), etc. can do. Among these, from the viewpoints of ease of manufacture and ease of securing the volume of the fluidized heating zone 27, a substantially spindle shape having a rhombus or abacus longitudinal section is preferable, and in particular, an abacus bead shape (an abacus bead shape). A substantially spindle shape having a longitudinal section) is preferred. The material of the housing 28 is generally metal, particularly iron, from the viewpoints of cost and durability, but is not limited to this, and may be, for example, duralumin or aluminum. Further, for example, fiber reinforced plastic such as BMC (bulk molding compound) or SMC (sheet molding compound) may be used. The angle of repose of RCS means an inclination angle measured according to JACT test method S-5 (casting sand fluidity test method).
A fluororesin process may be applied to the outer surface of the housing 28 in order to facilitate the flow down of the RCS. In addition, a heated gas ejection hole (not shown) is provided in the inclined wall surface of the upper portion of the housing 28 to such an extent that it does not affect the heat treatment of the RCS in the fluidized heating zone 27, and has not yet been introduced into the sand hopper 12. You may make it perform preliminary heating (primary heating) with respect to RCS of heating.
In order to make it easy to transfer the heat of the housing 28 heated by the high-temperature heated gas discharged from the gas heater 30 to the RCS in the sand hopper 12, a plurality of pieces are formed on the outer surface of the housing 28 as shown in FIG. The fin 40 may be provided. The fins 40 are provided so as to extend radially to the central axis extending perpendicularly to the outer surface of the housing 28 and in the vertical direction of the housing 28 so as not to hinder the flow of the RCS in the sand hopper 12. It is preferable. However, the fins 40 may not be provided in the housing 28.
A heated gas discharge hole 42 is provided in the housing 28. The heated gas discharge hole 42 is connected to a heated gas introduction hole 44 formed in the inner conical member 24 of the sand hopper 12 by a heated gas discharge pipe 48 that forms a heated gas passage 46. By the heated gas passage 46, the internal space 29 of the housing 28 and the space 23 formed between the outer conical member 22 and the inner conical member 24 are communicated with each other so that gas can flow. Specifically, the socket 50 is integrally extended from the housing 28 around the heated gas discharge hole 42, an internal thread is formed on the inner peripheral surface of the socket 50, and the outer peripheral surface on one end side of the heated gas discharge pipe 48. A male screw is formed on the surface. The heated gas discharge pipe 48 is connected to the housing 28 by being screwed to the socket 50 of the housing 28 at one end side thereof. Further, the other end side of the heated gas discharge pipe 48 is disposed through the heated gas introduction hole 44 formed in the inner conical member 24, and the inner peripheral surface of the heated gas introduction hole 44 and the heated gas are arranged. A rubber packing 52 is inserted between the outer periphery of the discharge pipe 48. The heated gas discharge pipe 48 is connected to the inner conical member 24 via the rubber packing 52 on the other end side.
The internal space 29 of the housing 28 and the space 23 between the outer conical member 22 and the inner conical member 24 can be communicated by any number of heated gas discharge pipes 48, that is, heated gas passages 46. . In the illustrated embodiment, three heated gas discharge holes 42 and heated gas introduction holes 44 are formed in the housing 28 and the inner conical member 24 at equal intervals in the circumferential direction, respectively, between the corresponding holes 42, 44. Are individually connected by three heated gas discharge pipes 48. That is, the internal space 29 of the housing 28 and the space 23 between the outer cone-shaped member 22 and the inner cone-shaped member 24 are communicated with each other by the three heated gas passages 46 so that gas can flow.
Next, the gas heater 30 will be described in detail with reference to FIGS.
As shown in FIG. 3, the gas heater 30 includes a heater pipe 54, a heating element 56 housed in the heater pipe 54 as a heat source, a frame 58 attached to the outside of the heater pipe 54, and the length of the heater pipe 54. A supply header 60 that covers one end in the direction, and a cover 62 that covers the heater pipe 54, the frame 58, and the entire supply header 60 are provided. The cover 62 has a cylindrical portion 62a and a dome-shaped portion 62b attached to one end of the cylindrical portion 62a in the axial direction, and is fixed to the lid member 32 of the housing 28 in the vicinity of the dome-shaped portion 62b. Is done. In FIG. 3, the cover 62 is indicated by a one-dot chain line, and the internal structure covered by the cover 62 is indicated by a solid line.
The heater pipe 54 is a cylindrical body having a rectangular cross section, and as its four peripheral walls, a pair of opposed walls 64 having a relatively large surface area and a pair of relatively narrow surface areas connecting the opposed walls 64. Connecting wall 66. As can be seen from FIG. 5, the distance between the pair of opposed walls 64 of the heater pipe 54 is determined so as to coincide with the outer diameter of the heater element 56, and the outer peripheral surface of the heater element 56 is opposed to the pair of heater pipes 54. It comes in contact with the inner surface of the wall 64. One end in the longitudinal direction of the heater pipe 54 is a closed end 68, while the other end in the longitudinal direction is an open end 70, and an end cap 72 is attached to the open end 70. The material of the heater pipe 54 is preferably a metal, particularly iron, but is not limited thereto, and may be, for example, duralumin or aluminum. Further, it is preferable that a heat-resistant infrared absorbing paint is applied to the inner surfaces of the walls 64 and 66 of the heater pipe 54 so as to efficiently absorb infrared rays.
As shown in FIG. 4, a plurality (three in the figure) of heating elements 56 are accommodated in the heater pipe 54 as a heat source. In the illustrated embodiment, as the heating element 56, as shown in FIG. 5, a rod-like carbon heater formed by enclosing a band-like carbonaceous heating element (filament) 56a in a protective tube 56b made of quartz glass is used. As shown in FIG. 5, the carbonaceous heating element 56a has a flat belt-like shape having a width that matches the inner diameter of the protective tube 56b and a length that covers almost the entire length of the protective tube 56b. The lead wire 56c connected to is drawn out from both longitudinal ends of the protective tube 56b (FIG. 4). The heating element 56 is not limited to the illustrated carbon heater, and can be constituted by various rod-shaped electric heaters such as a cartridge type and a self-heating element type.
A three-phase AC power supply is used for the power supply circuit 31 for energizing the gas heater 30. In the illustrated embodiment, one heating element (carbon heater) 56 per phase is used, and as shown in FIG. 4, lead wires 56 c at one end of the three heating elements 56 are connected to each other by a star connection at a connection portion 74. Are connected. The heating elements 56 are accommodated in the heater pipe 54 with the connecting portions 74 of the respective lead wires 56 c facing the closed end 68 side of the heater pipe 54, and the lead wire 56 c on the other end (power supply side) is connected to the end cap 72. It is pulled out from the provided hole.
When the heating element 56 is a carbon heater, as shown in FIG. 5, the three carbon heaters have a flat main surface of each heating element 56a in a common horizontal plane parallel to the pair of opposing walls 64 of the heater pipe 54. The surfaces are oriented so that they exist and are arranged parallel to each other. Thereby, the heat of the flat belt-like heating element 56a is efficiently transmitted to the pair of opposing walls 64 of the heater pipe 54 having a relatively large surface area. However, the orientation of the heating elements 56a of the three carbon heaters is not limited to the above. For example, in the three carbon heaters, the flat main surface of each heating element 56a is a pair of opposed heater pipes 54. You may arrange | position in the direction orthogonal to the wall 64. FIG.
A channel-shaped frame 58 having a U-shaped cross section is installed outside at least one peripheral wall 64, 66 of the heater pipe 54, and a space surrounded by the frame 58 and the peripheral wall of the heater pipe 54 forms a gas passage 76. . In the illustrated embodiment, a frame 58 is installed on the outside of each of the pair of opposing walls 64 having a relatively large surface area among the four peripheral walls of the heater pipe 54. However, the frame 58 may be attached to all four peripheral walls 64 and 66 of the heater pipe 54, or may be attached to only one or three peripheral walls 64 and 66. It is preferable that the width of the frame 58 substantially matches the lateral width of the heater pipe 54. The length of the frame 58 is preferably substantially the same as the length of the heating element 56a of the heating element 56 of the heater pipe 54. In this case, as shown in FIG. Both ends of the long heater pipe 54 in the longitudinal direction protrude from both ends of the frame 58 in the longitudinal direction.
As shown in FIG. 5, heat radiation fins 78 are arranged inside the gas passage 76 so as to contact the outer surface of the opposing wall 64 of the heater pipe 54. The radiating fins 78 function as a heat exchanger that transmits heat of the heater pipe 54 heated by the heating element 56 and exchanges heat with the gas flowing in the gas passage 76. In the illustrated embodiment, corrugated fins are used as the radiation fins 78. The radiating fins 78 made of corrugated fins have their crests or troughs along the gas flow direction (that is, the longitudinal direction of the heater pipe 54 and the frame 58) so as not to hinder the gas flow in the gas passage 76. It arrange | positions and is joined to the outer surface of the opposing wall 64 of the heater pipe 54. FIG. However, the radiating fins 78 are not limited to corrugated fins, and other various radiating fins may be used as long as they do not hinder the gas flow in the gas passage 76 and can radiate the heat of the heater pipe 54. be able to.
As shown in FIGS. 6 and 7, the supply header 60 is provided on one end in the longitudinal direction of the gas heater 30 so as to cover a part of the heater pipe 54 protruding from the frame 58, and a cover 62 (FIG. 3). ). One end of the supply header 60 is connected to a gas supply pipe 34 that passes through the dome-shaped portion 62 b of the cover 62 and extends between the outside and the inside of the cover 62. As shown in FIG. 7, the gas supplied from the gas supply pipe 34 to the supply header 60 branches inside the supply header 60, and a pair formed between the pair of frames 58 and the pair of opposing walls 64. Into the gas passage 76. As shown in FIG. 7, the end cap 72 attached to the open end 70 of the heater pipe 54 is connected to the tip (gas supply pipe) so that the gas supplied to the supply header 60 flows smoothly into the pair of gas passages 76. It is preferable to make the shape thinner as it approaches (34 side). The “gas” in the present application includes not only air but also a mixture of an inert gas such as nitrogen gas and air, the inert gas itself, and the like.
The temperature control unit 14 having the gas heater 30 described above is small and has excellent thermal efficiency.
Next, the operation of the RCS temperature control system 10 shown in FIG. 1 will be described.
The gas supplied from the gas source (not shown) to the gas heater 30 of the temperature control unit 14 through the gas supply pipe 34 is divided in the supply header 60 of the gas heater 30 and is supplied to each of the pair of gas passages 76. Inflow. The heater pipe 54 is heated by the heat generating element 56 to which a voltage is applied, and transfers the heat of the opposing wall 64 to the radiation fins 78. The gas in the gas passage 76 is heated by heat exchange with the radiating fins 78 while flowing through the gas passage 76, and is discharged from the exhaust port 36 of the gas heater 30 as a high-temperature heated gas. The heated gas discharged from the exhaust port 30 of the gas heater 30 spreads over the entire internal space 29 of the housing 28 by the action of the baffle plate 38, etc., heats the housing 28, and heats the temperature control unit 14 itself. Make your body. Further, the heated gas in the housing 28 passes through the heated gas discharge pipe 48 connected to the heated gas discharge hole 42 of the housing 28, and then from the heated gas introduction hole 44 of the inner cone-shaped member 24 to the outer cone member. It is discharged into a space 23 formed between 22 and the inner conical member 24.
The heated gas discharged into the space 23 between the outer cone-shaped member 22 and the inner cone-shaped member 24 passes through a large number of heated gas ejection holes 26 of the inner cone-shaped member 24 to the fluidized heating zone 27 in the sand hopper 12. Blown out. In the sand hopper 12, the RCS that flows toward the RCS discharge port 18 through the fluid heating zone 27 formed between the housing 28 of the temperature control unit 14 and the inner conical member 24 is a temperature control that is a heating element. At the same time as being heated from the inside by the housing 28 of the unit 14, it is heated from the outside by the heated gas blown from the heated gas ejection holes 26 of the inner conical member 24. Therefore, the RCS flowing through the fluid heating zone 27 is efficiently heated. Further, when the RCS is heated only by the temperature control unit 14 serving as a heating body, the RCS positioned closer to the outer wall of the sand hopper 12 than the temperature control unit 14 is radiated and cooled through the outer wall of the sand hopper 12. End up. On the other hand, in the illustrated embodiment, the RCS in the fluidized heating zone 27 is separated from the temperature control unit 14 by the heated gas blown out from the heated gas ejection hole 26 of the inner conical member 24 of the sand hopper 12. Since it is heated, the RCS can be heated to a more uniform temperature.
Furthermore, if the fins 40 are attached to the outside of the housing 28 of the temperature control unit 14, the heat of the housing 28 of the temperature control unit 14 that is a heating body can be efficiently transferred to the RCS that flows in the fluid heating zone 27. It is possible to heat the RCS in the fluidized heating zone 27 more efficiently.
As described above, the heated gas ejection hole 26 of the inner conical member 24 is formed to have a size that does not allow RCS to enter, and the heated gas is flowed from the heated gas ejection hole 26 into the fluidized heating zone 27. Therefore, the RCS in the fluidized heating zone 27 is less likely to clog the heated gas ejection hole 26.
The RCS heated to a predetermined temperature through the fluidized heating zone 27 opens and closes the shutter 20 provided at the RCS discharge port 18 to open a blow head (not shown) of the shell mold molding apparatus at an appropriate timing. ) And so on.
Here, the heated gas escape hole 19 can be formed in the cylindrical wall which comprises the RCS discharge port 18 in the desired position inside the shutter 20 (FIG. 1). The heated gas escape hole 19 acts so as to release the heated gas in the vicinity of the RCS discharge port 18 to the outside of the sand hopper 12 when the shutter 20 is closed. If the heated gas escape hole 19 is formed inside the shutter 20, the moment when the RCS that receives the internal pressure by the heated gas and fills the vicinity of the RCS outlet 18 while the shutter 20 is closed opens the shutter 20. It is possible to prevent ejection from the RCS discharge port 18 due to internal pressure.
The temperature control system 10 further includes a temperature sensor 11 installed in at least one of the fluid heating zone 27 and the RCS outlet 18, and a temperature controller 13 connected to the power sensor 31 of the temperature sensor 11 and the gas heater 30. (Fig. 1). Further, in addition to or instead of the temperature sensor 11, the temperature sensor 15 can be installed in the temperature adjustment unit 14 (for example, the heater pipe 54 of the gas heater 30) which is a heating body (FIG. 4).
The temperature controller 13 controls the operation of the heating element 56 of the gas heater 30 based on the RCS measured by the temperature sensors 11 and 15 and / or the temperature of the temperature adjustment unit 14 to adjust the temperature of the RCS to an appropriate temperature. As a temperature control method by the temperature controller 13, for example, (1) when the temperature of the RCS and / or the gas heater 30 measured by the temperature sensors 11 and 15 is lower than a predetermined target temperature range, an ON signal is sent to the power supply circuit 31. On the contrary, when the voltage is high, an ON signal is output to the power supply circuit 31. On / off control of the heating element 56, and (2) the temperature of the RCS and / or the gas heater 30 measured by the temperature sensors 11 and 15 And a proportional control of the voltage of the heating element 56 that outputs a required voltage signal to the power supply circuit 31 according to the difference between the predetermined temperature and the predetermined target temperature. In general, from the viewpoint of accuracy of temperature control and equipment cost, it is preferable to employ (1) on / off control. Thereby, the variation in the heating temperature of RCS can be suppressed.
Next, an example of a method for producing the RCS temperature control system 10 shown in FIG. 1 using an existing sand hopper having a shape similar to the sand hopper 12 will be described.
First, approximately 600 to 10,000 heated gas ejection holes 26 are formed on the conical bottom surface of the existing sand hopper by drilling or laser processing so that the conical bottom surface of the existing sand hopper becomes the inner conical member 24. . Next, the mortar-shaped outer conical member 22 is fixed to the outside of the conical bottom surface (inner conical member 24) of the existing sand hopper at a predetermined interval from the conical bottom surface to produce the sand hopper 12, and the sand hopper The temperature control unit 14 is arranged inside the 12. Then, the temperature control unit 14 is positioned and fixed so that the fluid heating zone 27 is formed between the inner conical member 24 of the sand hopper 12 and the temperature control unit 14. In this state, the outer conical member 22 and the inner side are aligned with the socket 50 extending from the heated gas discharge hole 42 of the housing 28 of the temperature control unit 14 by drilling or the like from the outer side of the outer conical member 22. A through hole 80 (FIG. 1) and a heated gas introduction hole 44 are formed in the conical member 24, respectively. Then, the heated gas discharge pipe 48 is connected to both the heated gas introduction hole 44 and the heated gas discharge hole 42 as described above, and then the through hole 80 of the outer conical member 22 is closed with the plug 82. Close with. Thus, if the temperature control unit 14 is used, the RCS temperature control system 10 of the illustrated embodiment can be manufactured using an existing sand hopper by a simple method.
By the RCS temperature control system 10 and its temperature control method, the RCS is uniformly and efficiently heat-treated at an appropriate temperature of about 40 to 70 ° C., preferably about 50 to 65 ° C. At the same time, since the moisture content of the RCS is also dried, the original fluidity of the RCS is restored, and the free fluidity due to gravity is improved. Therefore, by using the RCS temperature-controlled by the RCS temperature control system 10, the moldability and quality of the shell mold can be improved, and the shell mold can be stably molded with high productivity without being affected by the environmental temperature. can do. Moreover, the mold temperature at the time of molding can be reduced, and the thermal strain and environmental load of the mold can be reduced. Moreover, as described above, the temperature control unit 14 included in the RCS temperature control system 10 is a small one that can be easily and economically installed in the existing sand hopper of the shell mold molding apparatus. Cost can be reduced.
FIG. 8 illustrates an RCS temperature regulation system 100 according to another embodiment of the present invention. The RCS temperature control system 100 shown in FIG. 8 has the same configuration as the RCS temperature control system 10 described with reference to FIGS. 1 to 7 except for the configuration of the sand hopper. Accordingly, corresponding components are denoted by the same reference numerals, and description thereof is omitted.
Similarly to the RCS temperature control system 10 shown in FIG. 1, the RCS temperature control system 100 includes a sand hopper 12 ′ to which an RSC (not shown) is supplied, and a temperature control unit 14 ′ disposed inside the sand hopper 12 ′. Is provided. The RCS temperature control system 100 includes a temperature sensor (not shown) and a temperature controller (not shown) for adjusting the temperature of the RCS to an appropriate temperature, as with the RCS temperature control system 10 shown in FIG. Yes.
Unlike the sand hopper 12 of the RCS temperature control system 10, the sand hopper 12 ′ does not have a double bottom structure, and the heated gas is blown directly from the temperature control unit 14 ′ into the sand hopper 12 ′. The sand hopper 12 ′ has a conical bottom portion 16 ′ having a single bottom structure similar to that of an existing sand hopper and gradually decreasing in diameter downward, and the RCS discharge port extends outward from the lowermost center of the conical bottom portion 16 ′. 18 extends. No heated gas ejection hole is formed in the conical bottom portion 16 '. Note that the conical bottom 16 ′ of the sand hopper 12 ′ is relative to a virtual horizontal plane (hereinafter referred to as a reference horizontal plane) perpendicular to the direction of gravity when the sand hopper 12 ′ is installed with the RCS discharge port 18 facing directly below. It is designed to form an inclined surface that forms an angle greater than the angle of repose.
The temperature control unit 14 'is installed inside the sand hopper 12' so that a space acting as a fluid heating zone 27 is formed between the conical bottom 16 'of the sand hopper 12' and the temperature control unit 14 '. Fixed. The temperature adjustment unit 14 'includes a housing 28' and a gas heater 30 accommodated in the housing 28 '. The gas heater 30 has the same configuration as the gas heater 30 included in the temperature control unit 14 of the RCS temperature control system 10, and the upper end portion thereof is fixed to the lid member 32 attached to the upper opening of the housing 28 ′. And suspended in the housing 28 '. The gas heater 30 heats the gas supplied through the gas supply pipe 34 at the upper end thereof to an appropriate temperature by the heating element 56 (FIG. 4), and forms a high-temperature heated gas from the exhaust port 36 at the lower end to the inside of the housing 28 ′. It is designed to be discharged into the space 29.
The shape of the housing 28 ′ is not particularly limited, but the RCS is formed on both the housing 28 ′ and the conical bottom 16 ′ of the sand hopper 12 ′ in the fluidized heating zone 27, similar to the housing 28 of the temperature control unit 14 shown in FIG. The lower part of the housing 28 ′ facing the conical bottom 16 ′ is inclined with respect to the reference horizontal surface so that the conical bottom 16 ′ of the sand hopper 12 ′ is inclined so as to smoothly flow down to the RCS outlet 18 with sufficient contact. It is preferable that the outer surface has a gradient surface that forms an angle greater than the angle of the surface. The overall shape of the housing 28 ′ is, for example, a substantially spindle shape (a shape in which both ends of the cylinder are pointed) in which the longitudinal section of the housing 28 ′ is a rhombus, an abacus bead, a parallelogram, a polygon (hexagon or octagon), etc. Can be adopted. Among these, as shown in FIG. 8, an abacus bead shape is preferable. The material of the housing 28 ′ is preferably metal, particularly iron, like the housing 28. Further, similarly to the temperature control unit 14 shown in FIG. 1, in order to facilitate the transfer of the heat of the housing 28 heated by the high-temperature heated gas discharged from the gas heater 30 to the RCS in the sand hopper 12, A plurality of fins 40 may be provided on the outer surface of 28 '.
On the inclined wall surface of the lower portion of the housing 28 'of the temperature control unit 14', the fluid heating zone 27 flows instead of the heated gas discharge hole 42 provided in the housing 28 of the temperature control unit 14 shown in FIG. A large number of heated gas discharge holes 43 for supplying heated gas to the fluidized heating zone 27 to heat the RCS are provided at desired intervals. The heated gas discharge hole 43 has the same configuration as the heated gas ejection hole 26 provided in the inner cone-shaped member 24 of the sand hopper 12 of the RCS temperature control system 10. For example, the housing 28 ′ is formed by machining or laser processing. It can form in the inclined wall surface of the lower side part. The heated gas discharge hole 43 is formed at a right angle or an acute angle (a direction parallel to the longitudinal axis of the gas heater 30 in the drawing) with respect to the inclined wall surface of the lower portion of the housing 28. Thereby, even when the flow velocity of the heated gas is low and therefore the pressure is small and the air volume is small, the RCS can be effectively stirred and heated, and when the discharge of the heated gas is stopped, the RCS in the sand hopper 12 is stopped. Becomes difficult to enter the heated gas discharge hole 43. The shape of the heated gas discharge hole 43 is preferably a circular shape because it has a small gas ejection resistance (and hence pressure loss) and is easy to process, but is not limited thereto. The size of the heated gas discharge hole 43 is mainly determined in consideration of the flow state of the RCS, but preferably has a diameter of about 0.1 mm to 3.0 mm, and particularly has a diameter of 1.0 to 2.0 mm. preferable.
The temperature control unit 14 ′ having the gas heater 30 is small and has excellent thermal efficiency, like the temperature control unit 14 shown in FIG. 1.
In the RCS temperature control system 100 shown in FIG. 8, the gas supplied from the gas source (not shown) to the gas heater 30 of the temperature control unit 14 ′ through the gas supply pipe 34 is transferred by the gas heater 30 by the mechanism described above. It is heated and discharged as a high-temperature heated gas from the exhaust port 36 of the gas heater 30. The heated gas discharged from the exhaust port 36 of the gas heater 30 spreads over the entire internal space 29 of the housing 28 ′, and heats the housing 28 ′ to make the temperature control unit 14 ′ itself a heating body. It is blown into the sand hopper 12 ′ from a large number of heated gas discharge holes 43 of 28 ′. In the sand hopper 12 ′, the RCS that flows toward the RCS outlet 18 through the flow heating zone 27 formed between the housing 28 ′ of the temperature control unit 14 ′ and the conical bottom 16 ′ of the sand hopper 12 ′ is heated. At the same time as being heated by the housing 28 ′ of the temperature control unit 14 ′ which is a body, it is heated by the heated gas blown from the heated gas discharge hole 43. Further, if the fins 40 are provided outside the housing 28 ′ of the temperature control unit 14 ′, the heat of the housing 28 ′ is efficiently transmitted to the RCS flowing through the fluid heating zone 27, and the fluid heating zone 27 The RCS can be more efficiently heated to an appropriate temperature.
The RCS temperature control system 100 does not heat the RCS flowing in the fluid heating zone 27 from both inside and outside like the RCS temperature control system 10 shown in FIG. Absent. However, the temperature control system 100 that preheats the RCS to a predetermined temperature can be manufactured simply by installing the temperature control unit 14 'in the existing sand hopper without processing the existing sand hopper. Therefore, the manufacturing cost of the RCS temperature control system 100 can be significantly reduced.
9 and 10 illustrate an RCS temperature regulation system 102, 104 according to yet another embodiment of the present invention. The RCS temperature control systems 102 and 104 shown in FIGS. 9 and 10 have the same configuration as the RCS temperature control system 10 described with reference to FIGS. 1 to 7 except for the configuration of the temperature control unit. Accordingly, corresponding components are denoted by the same reference numerals, and description thereof is omitted.
As with the RCS temperature control system 10 shown in FIG. 1, the RCS temperature control systems 102 and 104 are each a sand hopper 12 to which an RCS (not shown) is supplied, and a temperature control unit 84 disposed inside the sand hopper 12. , 86. Further, the RCS temperature control systems 102 and 104 are both a temperature sensor (not shown) and a temperature controller (not shown) for adjusting the temperature of the RCS to an appropriate temperature, similarly to the RCS temperature control system 10 shown in FIG. ).
In place of the gas heater 30 of the temperature adjustment unit 14 of the RCS temperature adjustment system 10, the temperature adjustment units 84 and 86 include gas heaters 88 and 90 that use ingots 92 and 94 instead of the radiating fins 78 as heat exchangers. Prepare for each. In particular, the RCS temperature control system 104 of FIG. 10 is configured such that the temperature control unit 86 does not have a housing and the gas heater 90 is exposed in the sand hopper 12.
The sand hoppers 12 of the RCS temperature control systems 102 and 104 have the same configuration as the sand hopper 12 of the RCS temperature control system 10. That is, the conical bottom portion 16 of the sand hopper 12 has a double bottom structure composed of the outer conical member 22 and the inner conical member 24 that are spaced apart from each other, and the outer conical member 22 and the inner conical member. A space 23 is formed between them 24. The inner conical member 24 has a number of heated gas ejection holes 26 formed at desired intervals, and is supplied to the space 23 between the outer conical member 22 and the inner conical member 24. The heated gas is blown into the sand hopper 12 through the heated ejection holes 26.
The temperature control unit 84 of the RCS temperature control system 102 shown in FIG. 9 constitutes a heating body that radiates heat into the sand hopper 12 from itself, and heats the gas supplied to the temperature control unit 84 to increase the temperature. The gas to be heated is discharged into a space 23 between the outer conical member 22 and the inner conical member 24. The temperature adjustment unit 84 is formed such that a space acting as the fluid heating zone 27 is formed between the outer surface of the temperature adjustment unit 84 and the inner surface of the inner conical member 24 of the conical bottom 16 of the sand hopper 12. It is installed and fixed inside the sand hopper 12.
Similar to the temperature control unit 14 shown in FIG. 1, the temperature control unit 84 includes a housing 28 and a gas heater 88 accommodated in the housing 28. The shape of the housing 28 is not particularly limited, but the slope in which the lower portion of the housing 28 facing the inner conical member 24 of the sand hopper 12 forms an angle greater than the angle of the inclined surface of the inner conical member 24 with respect to the reference horizontal plane. It is preferable to have a surface on the outer surface. As the overall shape of the housing 28, for example, a substantially spindle shape (a shape in which both ends of the cylinder are pointed) is employed in which the longitudinal section of the housing 28 is a rhombus, an abacus bead, a parallelogram, a polygon (hexagon or octagon), etc. can do. Among these, as shown in FIG. 9, an abacus bead shape is preferable. The material of the housing 28 is preferably metal, particularly iron.
The housing 28 has substantially the same configuration as the housing 28 of the temperature control unit 14 shown in FIG. That is, the housing 28 is provided with a heated gas discharge hole 42, and the heated gas discharge hole 42 is connected to a heated gas introduction hole 44 formed in the inner conical member 24 by a heated gas discharge pipe 48. It is connected. Further, on the outer surface of the housing 28, a plurality of fins 40 (see FIG. 5) for easily transferring the heat of the housing 28 heated by the high-temperature heated gas discharged from the gas heater 88 to the RCS in the sand hopper 12. 2) may be provided.
The gas heater 88 is held between two fixing plates 96 inside the housing 28. The fixing plate 96 is fixed to the housing 28 by an appropriate method such as fastening or welding using bolts and nuts, for example. Has been. A gas supply pipe 34 for supplying gas from a gas source (not shown) to the gas heater 88 is fixed to the top of the housing 28 so as to extend into the housing 28.
The gas heater 88 is composed of an ingot 92 in which an arbitrary number of gas passages 99 extending from a gas introduction hole 97 connected to the gas supply pipe 34 to a plurality of exhaust ports 98 are formed. A plurality of heat source accommodation holes are formed in the ingot 92, and a plurality of heating elements 56 are individually accommodated as heat sources in the heat source accommodation holes. The heating element 56 has the same configuration as the heating element 56 of the gas heater 30 shown in FIG. 1, and can be composed of a rod-shaped carbon heater (FIG. 4), and various rod-shaped electric heaters such as a cartridge type and a self-heating element type. .
The temperature control unit 84 having the gas heater 88 is small and has excellent thermal efficiency, like the temperature control unit 14 shown in FIG.
The ingot 92 itself functions as a heat exchanger. The gas supplied to the gas introduction hole 97 of the ingot 92 is heated by heat exchange with the ingot 92 heated by the heating element 56 while passing through the gas passage 99, and is exhausted from the ingot 92 as a high-temperature heated gas. 98 is discharged. The heated gas discharged from the exhaust port 98 of the ingot 92 spreads over the entire internal space 29 of the housing 28, heats the housing 28, and makes the temperature control unit 84 itself a heating body. Further, the heated gas in the housing 28 passes through the heated gas discharge pipe 48 connected to the heated gas discharge hole 42 of the housing 28, and then from the heated gas introduction hole 44 of the inner cone-shaped member 24 to the outer cone member. It is discharged into a space 23 formed between 22 and the inner conical member 24.
The heated gas discharged into the space 23 between the outer cone-shaped member 22 and the inner cone-shaped member 24 is blown into the sand hopper 12 through the numerous heated gas ejection holes 26 of the inner cone-shaped member 24. In the sand hopper 12, the RCS that flows toward the RCS discharge port 18 through the fluid heating zone 27 formed between the housing 28 of the temperature control unit 84 and the inner cone-shaped member 24 is a temperature control that is a heating body. At the same time as being heated from the inside by the housing 28 of the unit 84, it is heated from the outside by the heated gas blown from the heated gas ejection holes 26 of the inner conical member 24. Therefore, in the RCS temperature control system 102, as in the RCS temperature control system 10, the RCS flowing in the fluid heating zone 27 is efficiently heated to an appropriate temperature. In addition, the temperature control unit 84 of the RCS temperature control system 102 is a small one that can be easily and economically installed in the existing sand hopper of the shell mold molding apparatus, so that the manufacturing cost of the RCS temperature control system 102 can be reduced. .
The temperature adjustment unit 84 of the RCS temperature adjustment system 102 does not release the heated gas directly from the housing 28 into the sand hopper 12 like the temperature adjustment unit 14 ′ of the RCS temperature adjustment system 100 described above. Therefore, unlike the RCS temperature control system 104 shown as a modification in FIG. 10, a temperature control unit 86 that does not have the housing 28 and has only the ingot 94 (that is, the gas heater 90) that contains the heating element 56 is employed. You can also. In this configuration, like the housing 28, the ingot 94 preferably has a substantially spindle-shaped shape having a rhombus-shaped or abacus-shaped longitudinal section. The heated gas discharge pipe 48 is directly connected to the exhaust port 98 of the ingot 94, and connects the exhaust port (that is, the heated gas discharge hole) 98 and the heated gas introduction hole 44 of the inner conical member 24. .
In the RCS temperature control systems 102 and 104, the gas passages 99 are formed directly in the ingots 92 and 94. Therefore, the gas passages 99 cannot be made too large, and the passage resistance may increase. Therefore, at the same gas supply pressure, the flow rate of the heated gas that can be supplied may be smaller than that of the gas heater 30 of the temperature adjustment unit 14 shown in FIG.
 10、100、102  温度調節システム
 12、12´  サンドホッパ
 14、14´、84、86  温度調節ユニット
 22  外側円錐状部材
 24  内側円錐状部材
 26  被加熱気体噴出孔
 28、28´  ハウジング
 30、88、90  気体加熱器
 36、98  排気口
 38  邪魔板
 42  被加熱気体放出孔
 48  被加熱気体放出管
 54  ヒータパイプ
 56  発熱素子
 58  フレーム
 76、99  気体通路
 78  放熱フィン
 92、94  インゴット
10, 100, 102 Temperature control system 12, 12 ' Sand hopper 14, 14', 84, 86 Temperature control unit 22 Outer conical member 24 Inner conical member 26 Heated gas ejection hole 28, 28 ' Housing 30, 88, 90 Gas heater 36, 98 Exhaust port 38 Baffle plate 42 Heated gas discharge hole 48 Heated gas discharge tube 54 Heater pipe 56 Heating element 58 Frame 76, 99 Gas passage 78 Heat radiation fin 92, 94 Ingot

Claims (8)

  1.  レジンコーテッドサンド温度調節ユニットであって、
     被加熱気体放出孔が形成されたハウジングと、
     前記ハウジングに収容された気体加熱器とを具備し、
     前記気体加熱器は、
     ヒータパイプと、
     前記ヒータパイプに収容された発熱素子と、
     前記ヒータパイプの周壁の外側に取り付けられて内部に気体通路を形成するフレームと、
     前記ヒータパイプの前記周壁に接触するように前記気体通路に配置された放熱フィンとを備え、
     前記発熱素子によって加熱された前記ヒータパイプの熱を前記放熱フィンに伝達し、前記気体通路に導入された気体を前記放熱フィンにより加熱して、被加熱気体として前記気体通路から前記ハウジングの内部に排出し、該被加熱気体を前記ハウジングの前記被加熱気体放出孔から放出することで、該被加熱気体によってレジンコーテッドサンドを適温に加熱するように構成されている、
    レジンコーテッドサンド温度調節ユニット。
    Resin coated sand temperature control unit,
    A housing in which heated gas discharge holes are formed;
    A gas heater housed in the housing,
    The gas heater is
    A heater pipe,
    A heating element housed in the heater pipe;
    A frame attached to the outside of the peripheral wall of the heater pipe and forming a gas passage therein;
    A heat dissipating fin disposed in the gas passage so as to contact the peripheral wall of the heater pipe;
    The heat of the heater pipe heated by the heat generating element is transmitted to the heat radiating fin, the gas introduced into the gas passage is heated by the heat radiating fin, and is heated from the gas passage to the inside of the housing. The resin-coated sand is heated to an appropriate temperature by the heated gas by discharging and discharging the heated gas from the heated gas discharge hole of the housing.
    Resin coated sand temperature control unit.
  2.  前記発熱素子は、帯状の炭素質発熱体を保護管に封入したカーボンヒータである、請求項1に記載のレジンコーテッドサンド温度調節ユニット。 The resin-coated sand temperature control unit according to claim 1, wherein the heating element is a carbon heater in which a belt-like carbonaceous heating element is enclosed in a protective tube.
  3.  前記ヒータパイプが長方形断面を有し、前記放熱フィンが、相対的に広い表面積を有した前記ヒータパイプの対向する一対の前記周壁に取り付けられており、前記帯状の炭素質発熱体は、該炭素質発熱体の扁平な主表面がそれら一対の周壁と平行になるように配置されている、請求項2に記載のレジンコーテッドサンド温度調節ユニット。 The heater pipe has a rectangular cross section, and the heat radiating fins are attached to a pair of opposed peripheral walls of the heater pipe having a relatively large surface area. The resin-coated sand temperature control unit according to claim 2, wherein the flat main surface of the quality heating element is arranged so as to be parallel to the pair of peripheral walls.
  4.  前記気体加熱器は、前記気体通路に加熱前の気体を供給する気体供給管と、前記気体通路で加熱された前記被加熱気体を前記ハウジシグの内部に排出する排気口と、該排気口に対向して配置される邪魔板とをさらに備え、該邪魔板は、該排気口から排出される前記被加熱気体を、前記気体加熱器の外側で該気体供給管に向けて流動させる、請求項1から請求項3の何れか一項に記載のレジンコーテッドサンド温度調節ユニット。 The gas heater includes a gas supply pipe that supplies a gas before heating to the gas passage, an exhaust port that discharges the heated gas heated in the gas passage to the inside of the housing sigma, and faces the exhaust port The baffle plate further comprises a baffle plate arranged to flow the heated gas discharged from the exhaust port toward the gas supply pipe outside the gas heater. The resin-coated sand temperature control unit according to claim 3.
  5.  レジンコーテッドサンド温度調節システムであって、
     レジンコーテッドサンドが供給されるサンドホッパと、
     請求項1から請求項4の何れか一項に記載の温度調節ユニットであって、前記サンドホッパの内部に配置される温度調節ユニットとを具備し、
     前記温度調節ユニットから放出される前記被加熱気体によって、前記サンドホッパに供給されたレジンコーテッドサンドを適温に加熱する、
    レジンコーテッドサンド温度調節システム。
    Resin coated sand temperature control system,
    A sand hopper supplied with resin-coated sand;
    A temperature control unit according to any one of claims 1 to 4, comprising a temperature control unit disposed inside the sand hopper,
    The resin-coated sand supplied to the sand hopper is heated to an appropriate temperature by the heated gas released from the temperature control unit.
    Resin coated sand temperature control system.
  6.  レジンコーテッドサンド温度調節システムであって、
     レジンコーテッドサンドが供給されるサンドホッパであって、空間を介して互いに離間した外側円錐状部材と内側円錐状部材とを有する円錐状底部を備え、該内側円錐状部材に複数の被加熱気体噴出孔が形成されてなるサンドホッパと、
     前記サンドホッパの内部に配置され、加熱体を構成する温度調節ユニットであって、該温度調節ユニットと前記内側円錐状部材との間に流動加熱域を形成する温度調節ユニットと、
     前記内側円錐状部材を貫通して配置され、前記内側円錐状部材と前記外側円錐状部材との間の前記空間と前記温度調節ユニットとの間に延びる被加熱気体放出管とを具備し、
     前記温度調節ユニットにより加熱された被加熱気体を、前記被加熱気体放出管を通して前記内側円錐状部材と前記外側円錐状部材との間の前記空間に放出し、前記内側円錐状部材に形成した前記複数の被加熱気体噴出孔を通して前記流動加熱域に吹き出させ、前記サンドホッパに供給されて前記流動加熱域を流動するレジンコーテッドサンドを、前記被加熱気体と前記温度調節ユニットとの双方により適温に加熱するように構成されている、
    レジンコーテッドサンド温度調節システム。
    Resin coated sand temperature control system,
    A sand hopper to which resin-coated sand is supplied, comprising a conical bottom portion having an outer conical member and an inner conical member spaced apart from each other through a space, and a plurality of heated gas ejection holes in the inner conical member A sand hopper formed with
    A temperature control unit that is disposed inside the sand hopper and constitutes a heating body, wherein the temperature control unit forms a fluid heating zone between the temperature control unit and the inner conical member;
    A heated gas discharge pipe disposed through the inner conical member and extending between the space between the inner conical member and the outer conical member and the temperature control unit;
    The heated gas heated by the temperature control unit is discharged into the space between the inner cone member and the outer cone member through the heated gas discharge pipe, and is formed in the inner cone member. The resin-coated sand that is blown to the fluidized heating zone through a plurality of heated gas ejection holes and supplied to the sand hopper and flows through the fluidized heating zone is heated to an appropriate temperature by both the heated gas and the temperature control unit. Is configured to
    Resin coated sand temperature control system.
  7.  前記温度調節ユニットは、発熱素子と、前記温度調節ユニットに供給される気体と前記発熱素子との間で熱交換を行わせる熱交換器とを備える、請求項6に記載のレジンコーテッドサンド温度調節システム。 The resin-coated sand temperature control according to claim 6, wherein the temperature control unit includes a heat generating element, and a heat exchanger that exchanges heat between the gas supplied to the temperature control unit and the heat generating element. system.
  8.  前記温度調節ユニットは、被加熱気体放出孔が形成されたハウジングと、該ハウジングに収容された気体加熱器とを備え、該気体加熱器は、ヒータパイプと、該ヒータパイプに収容された前記発熱素子と、該ヒータパイプの周壁の外側に取り付けられて内部に気体通路を形成するフレームと、該ヒータパイプの該周壁に接触するように該気体通路に前記熱交換器として配置された放熱フィンとを備え、前記発熱素子によって加熱された前記ヒータパイプの熱を前記放熱フィンに伝達し、前記気体通路に導入された前記気体を前記放熱フィンにより加熱して、被加熱気体として前記気体通路から前記ハウジングの内部に排出し、該被加熱気体を前記ハウジングの前記被加熱気体放出孔から前記被加熱気体放出管に放出する、請求項7に記載のレジンコーテッドサンド温度調節システム。 The temperature control unit includes a housing in which a heated gas discharge hole is formed, and a gas heater accommodated in the housing. The gas heater includes a heater pipe and the heat generation accommodated in the heater pipe. An element, a frame attached to the outside of the peripheral wall of the heater pipe to form a gas passage therein, and a heat dissipating fin disposed as the heat exchanger in the gas passage so as to contact the peripheral wall of the heater pipe; The heat of the heater pipe heated by the heat generating element is transmitted to the heat radiating fin, the gas introduced into the gas passage is heated by the heat radiating fin, and the gas passage is heated from the gas passage. The inside of a housing is discharged | emitted and this to-be-heated gas is discharge | released to the to-be-heated gas discharge pipe from the to-be-heated gas discharge hole of the said housing. Jin-coated sand temperature control system.
PCT/JP2010/060253 2009-06-10 2010-06-10 Temperature control unit and temperature control system for resin-coated sand WO2010143746A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011518599A JP5618998B2 (en) 2009-06-10 2010-06-10 Resin coated sand temperature control unit and temperature control system
CN201080025633.8A CN102458714B (en) 2009-06-10 2010-06-10 Temperature control unit and temperature control system for resin-coated sand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009139567 2009-06-10
JP2009-139567 2009-06-10

Publications (1)

Publication Number Publication Date
WO2010143746A1 true WO2010143746A1 (en) 2010-12-16

Family

ID=43308995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060253 WO2010143746A1 (en) 2009-06-10 2010-06-10 Temperature control unit and temperature control system for resin-coated sand

Country Status (3)

Country Link
JP (1) JP5618998B2 (en)
CN (1) CN102458714B (en)
WO (1) WO2010143746A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131910A (en) * 2016-01-26 2017-08-03 リグナイト株式会社 Casting mold manufacturing apparatus
JP2017131908A (en) * 2016-01-26 2017-08-03 株式会社大阪シェル Heater of casting sand
EP3214204A4 (en) * 2014-10-29 2018-06-13 Toshiba Mitsubishi-Electric Industrial Systems Corporation Gas jetting device
CN117564215A (en) * 2024-01-15 2024-02-20 济南二机床集团有限公司 Molding sand electric heating device and heating control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7197917B2 (en) * 2020-03-18 2022-12-28 パインパシフィック コーポレーション リミテッド Resin-coated sand preheating device
CN111889624A (en) * 2020-08-05 2020-11-06 浦江搏纳汽车零部件有限公司 Truck brake system steel backing casting equipment with oval double-sided structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527480A (en) * 1978-08-19 1980-02-27 Daiwa Seisakusho:Kk Feed hopper for molding sand
JPS59191540A (en) * 1983-04-14 1984-10-30 Naniwa Seisakusho:Kk Heater of molding sand for casting mold
JP2009002640A (en) * 2007-05-21 2009-01-08 Isao Denki Kk Gas heating equipment and warm air generator and superheated steam generating device using the gas heating equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2133384Y (en) * 1992-05-28 1993-05-19 东风汽车公司 Hot method resin seal membrane sand producing equipment
CN2684967Y (en) * 2004-01-07 2005-03-16 朱旭东 Sand heating device for casting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527480A (en) * 1978-08-19 1980-02-27 Daiwa Seisakusho:Kk Feed hopper for molding sand
JPS59191540A (en) * 1983-04-14 1984-10-30 Naniwa Seisakusho:Kk Heater of molding sand for casting mold
JP2009002640A (en) * 2007-05-21 2009-01-08 Isao Denki Kk Gas heating equipment and warm air generator and superheated steam generating device using the gas heating equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3214204A4 (en) * 2014-10-29 2018-06-13 Toshiba Mitsubishi-Electric Industrial Systems Corporation Gas jetting device
US11007497B2 (en) 2014-10-29 2021-05-18 Toshiba Mitsubishi-Electric Industrial Systems Corporation Gas jetting apparatus
JP2017131910A (en) * 2016-01-26 2017-08-03 リグナイト株式会社 Casting mold manufacturing apparatus
JP2017131908A (en) * 2016-01-26 2017-08-03 株式会社大阪シェル Heater of casting sand
CN117564215A (en) * 2024-01-15 2024-02-20 济南二机床集团有限公司 Molding sand electric heating device and heating control method
CN117564215B (en) * 2024-01-15 2024-04-05 济南二机床集团有限公司 Molding sand electric heating device and heating control method

Also Published As

Publication number Publication date
JPWO2010143746A1 (en) 2012-11-29
CN102458714B (en) 2014-02-26
JP5618998B2 (en) 2014-11-05
CN102458714A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5618998B2 (en) Resin coated sand temperature control unit and temperature control system
CN109341349B (en) Roasting furnace
CN202836968U (en) Engine high-temperature heat-flux/radiation environment device
ITVR20070140A1 (en) GRANULAR MATERIAL TREATMENT UNIT EQUIPPED WITH HEAT RECOVERY GROUP
CN107462059B (en) A kind of toughness solid particle drying device
CN207207139U (en) A kind of 3D printer shower nozzle of anti-clogging easy heat radiation
RU2290327C1 (en) Heater
JP5173387B2 (en) Resin coated sand temperature control unit and temperature control device
CN104048395A (en) Mixed-type heater
JP3892958B2 (en) Gas container heating device
US5509216A (en) Apparatus for drying particulate material
CN209570052U (en) A kind of energy storage equipment
ITMI951171A1 (en) FOREFRONT FOR MELT GLASS
TW201433747A (en) Method and apparatus to reduce thermal stress by regulation and control of lamp operating temperatures
CN114394731A (en) Cooling method and device for throat of electronic glass kiln
CN106288375A (en) A kind of hot-air blower
CN208296512U (en) A kind of Continuous disc drying machine
CN208684859U (en) A kind of circulating air feed cracking furnace bushing pipe
KR100963306B1 (en) An instrument which supply with hot wind
JP2019107658A (en) Casting machine mold preheater
CN207778555U (en) Electric fireplace with good heat dissipation effect
CN217656002U (en) Battery pack and box thereof
JP7190746B2 (en) Hotends, air heaters, units for 3D printers and 3D printers
CN211620560U (en) Cooling section structure of heat treatment kiln
JPH11265656A (en) Cooling device of electrodeless lamp

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025633.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011518599

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 9762/DELNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10786273

Country of ref document: EP

Kind code of ref document: A1