WO2010143646A1 - Fiber structure - Google Patents

Fiber structure Download PDF

Info

Publication number
WO2010143646A1
WO2010143646A1 PCT/JP2010/059745 JP2010059745W WO2010143646A1 WO 2010143646 A1 WO2010143646 A1 WO 2010143646A1 JP 2010059745 W JP2010059745 W JP 2010059745W WO 2010143646 A1 WO2010143646 A1 WO 2010143646A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber structure
acid
group
amino acid
structure according
Prior art date
Application number
PCT/JP2010/059745
Other languages
French (fr)
Japanese (ja)
Other versions
WO2010143646A8 (en
Inventor
浩作 大川
賢 大橋
学 北澤
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2010143646A1 publication Critical patent/WO2010143646A1/en
Publication of WO2010143646A8 publication Critical patent/WO2010143646A8/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/68Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyaminoacids or polypeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning

Definitions

  • the present invention relates to a specific fiber structure, a manufacturing method thereof, and a medical material containing the obtained fiber structure.
  • a fiber structure such as a sponge body, a honeycomb body, or a nonwoven fabric in which fibers are layered is known, and as a fiber among these, a conventionally known fiber diameter is used.
  • a fiber diameter is used as a fiber among these.
  • microfibers micrometer order fibers
  • nanofibers thinner nanometer order fibers (nanofibers) are being developed and put to practical use. Since nanofibers have a remarkably large specific surface area compared to conventional microfibers, they are advantageous in that a more porous fiber structure can be produced.
  • nanofibers have an average fiber diameter of several tens to several hundreds of nanometers, and have a fiber diameter comparable to that of an extracellular matrix in vivo, so that they can be easily decomposed in vivo. For this reason, a fiber structure in which nanofibers are integrated is being studied for application as a medical material that is desired to disappear quickly after tissue and cells are repaired and regenerated in vivo.
  • Nanofibers can be formed by a method called electrospinning (electrospinning). After the polymer compound is dissolved in a solvent to form a solution, the polymer compound solution is discharged while applying a high voltage to form nanofibers, which are then accumulated on the substrate (collector). This is a method for obtaining a fiber structure in which fibers are accumulated.
  • Patent Document 1 discloses a method of electrospinning polysaccharides such as chitosan, chondroitin sulfate, and pectin.
  • Patent Document 2 discloses a method of electrospinning after dissolving chitosan in water to which a solubilizing agent such as an organic acid is added. Although the obtained fiber diameter is controlled, since water is volatilized in the stage of forming the fiber, the discharge speed cannot be increased sufficiently.
  • Patent Document 3 discloses a method in which chitosan or cellulose is dissolved in an organic acid solvent, a volatile organic solvent is mixed therein, and then electrospinning is performed. However, since the dissolution of chitosan or cellulose in the solution is not complete, a satisfactory fiber structure has not been obtained.
  • Non-Patent Document 1 discloses that when poly- ⁇ -benzyl-L-glutamic acid is dissolved in an organic solvent having low polarity, the fiber diameter is controlled by suppressing the interaction between molecules by reducing the concentration thereof. A method for obtaining a fibrous structure is disclosed. However, if the solution concentration is too low, fiber formation becomes difficult, and the fiber diameter has not been reduced to a satisfactory fineness.
  • Patent Document 4 discloses an adhesion preventing material composed of a fiber structure of biodegradable and absorbable polymer, and specifically uses polylactic acid.
  • polylactic acid lacks flexibility, its compatibility with soft tissues is poor, and it has also been suggested that it causes an inflammatory response to the living body, and a sufficiently safe biodegradable material has not yet been obtained.
  • the problem to be solved by the present invention is a medical material that is safe for the living body, has high biocompatibility, and has a high effect of suppressing adhesion of cells and tissues (the medical material is particularly useful as a scaffold material). ) To provide a fiber structure that can be used.
  • the present invention is as follows.
  • [1] A fiber structure containing a polyamino acid as a main component and having an average fiber diameter of 50 nm or more and less than 500 nm.
  • [2] The fiber structure according to [1], wherein the amino acid is one or more selected from the group consisting of glycine, alanine, valine, leucine, isoleucine, phenylalanine and proline.
  • [4] The fiber structure according to any one of [1] to [3], wherein the polyamino acid is composed of one amino acid.
  • the protective group is one or more selected from the group consisting of a methyl group, a benzyloxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, and a trifluoroacetyl group, 12].
  • a method for producing a fiber structure comprising the following steps; Step 1) Step of dissolving a polyamino acid in a solvent to form a solution, Step 2) A step of continuously discharging the solution put in the syringe from a nozzle attached to the tip of the syringe, Step 3) A step of applying a high voltage between the nozzle and the collector with a high voltage generator in the discharge, Step 4) changing the discharged solution into a fiber shape between the nozzle and the collector, Step 5) A step of collecting the fiber on a collector.
  • the polyamino acid solution concentration in step 1 is 1 to 20% by weight
  • the polyamino acid solution discharge speed in step 2 is 1 to 20 ml / hour, and is applied between the nozzle and collector in step 3.
  • the solvent in Step 1 is trifluoroacetic acid, acetic acid, dichloromethane, chloroform, 1,2-dichloroethane, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,2- [14] or [15], wherein the production method is one or more selected from the group consisting of trifluoroethanol, N, N-dimethylformamide and water.
  • a medical material comprising the fiber structure according to any one of [1] to [13].
  • the medical material according to [17] which is an adhesion preventing material.
  • the fiber structure of the present invention has a nanometer-order fiber diameter that is uniformly controlled and is therefore excellent in degradability in vivo, and the material used as the main component is composed of amino acids widely present in the living body. Therefore, it is safe for the living body.
  • the fiber structure of the present invention is excellent in flexibility in addition to biodegradability because the fibers are not bound to each other, and is highly compatible with living bodies. Furthermore, since the fiber structure of the present invention has low adhesion to cells derived from living tissue, it can be used as a medical material having a high effect of suppressing adhesion of cells and tissues.
  • the medical material is particularly used as a scaffold material. Useful.
  • FIG. 3 is a photograph of a surface of a fiber structure composed of poly-L-alanine obtained by the operation of Production Example 1 taken with a scanning electron microscope (SEM).
  • the polyamino acid used in the present invention is composed of an amino acid or a derivative thereof, and is usually prepared using a neutral amino acid, an acidic amino acid, a basic amino acid, an aromatic amino acid, etc.
  • Nonpolar neutral amino acids and polar neutral amino acids are used.
  • the polyamino acid one composed of one or more amino acids can be used, but in the present invention, a polyamino acid composed of one or two amino acids is preferable.
  • the amino acid residue used contains an asymmetric carbon atom, either an optically active substance or a racemic substance may be used.
  • the amino acid or derivative thereof is not particularly limited as long as it forms a polymer that can constitute the fiber structure of the present invention.
  • Amino acid residues with a small number of carbon atoms in the amino acid side chain are likely to form a dense molecular packing structure, and can be expected to give fibers with a small fiber diameter, so that glycine, sarcosine, alanine, N-methylalanine, ⁇ -alanine, ⁇ -aminobutyric acid, valine, norvaline, leucine, isoleucine, norleucine, cysteine, glutamine, asparagine, aspartic acid, aspartic acid- ⁇ -methyl ester, lysine, proline, hydroxyproline, serine, O-acetyl-serine Threonine is preferable, and glycine, alanine, valine, leucine, isoleucine, proline, glutamine, and lysine are more preferable. These may be used alone or in combination of two or more.
  • phenylglycine Phenylalanine, aspartic acid- ⁇ -benzyl ester, N ⁇ -benzyloxycarbonyl-lysine, N ⁇ -benzyloxycarbonyl-ornithine, histidine, N (Im) -methyl-histidine, O-benzyl-serine, O-benzyl-threonine, tryptophan N (In) -methyl-tryptophan, tyrosine, O-benzyl-tyrosine, O-methyl-tyrosine, O-acetyl-tyrosine, phenylalanine, aspartic acid- ⁇ -benzyl ester, N ⁇ -benzyloxycarbonyl-lysine, Tryptophan, Chiro Syn and O-acetyl-ty
  • amino acids exemplified above can be used as appropriate, but when the polyamino acid contained in the fiber structure is composed of one kind of amino acid, such amino acids are glycine, alanine, valine, leucine. , Isoleucine, phenylalanine, proline, aspartic acid- ⁇ -benzyl ester, N ⁇ -benzyloxycarbonyl-lysine, tryptophan, O-acetyl-tyrosine are preferred, glycine, alanine, valine, leucine, isoleucine, phenylalanine, proline are more preferred, Alanine, valine and leucine are even more preferred, and alanine is most preferred.
  • the polyamino acid when the polyamino acid is composed of two kinds of amino acids, it is a combination of an acidic amino acid or basic amino acid and a nonpolar neutral amino acid, or a combination of an acidic amino acid or basic amino acid and an aromatic amino acid. Is preferred.
  • glutamic acid is preferable as the acidic amino acid
  • lysine is preferable as the basic amino acid.
  • a nonpolar neutral amino acid alanine, valine, leucine, and isoleucine are preferable, and as an aromatic amino acid, phenylalanine is preferable.
  • the polyamino acid used in the present invention may have a structure in which a salt is coordinated to a part or all of the polar groups in the structure.
  • the ratio of the salt to the polar group is such that, when a fiber structure composed of a polyamino acid is produced by an electrospinning method, for example, the solubility of the polyamino acid in a solvent and / or the average fiber diameter of the resulting fiber structure is It is determined from the viewpoint of being optimal.
  • the salt examples include alkali metal salts such as sodium and potassium; alkaline earth metal salts such as magnesium and calcium; inorganic bases such as ammonia; monoethanolamine, diethanolamine, triethanolamine, 2-amino-2-methyl-1 Organic amine salts such as propanol, 2-amino-2-methyl-1,3-propanediol, lysine, ornithine, arginine; inorganic acid salts such as hydrochloride, sulfate, carbonate, phosphate; acetate, Examples thereof include organic acid salts such as tartrate, citrate, p-toluenesulfonate, glycolate, malate, lactate, fatty acid salt, acidic amino acid salt and pyroglutamate. These may be used alone or in combination of two or more.
  • the method for preparing the polyamino acid used in the present invention is not particularly limited as long as it is a method in which an amino acid or a derivative thereof is prepared into a polymerized structure.
  • N-carboxy- ⁇ -amino acid anhydride or N-carboxy- An example is a method in which an ⁇ -amino acid derivative anhydride is dissolved or suspended in an organic solvent or water, and a polymerization initiator is added thereto if necessary.
  • organic solvent examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, diethyl ether, diisopropyl ether, petroleum ether, 1,4-dioxane, benzene, toluene, xylene, hexane, cyclohexane, ethyl acetate, butyl acetate.
  • Trifluoroacetic acid Trifluoroacetic acid, acetic acid, formic acid, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, trichloroethane, trichloroethylene, trifluoroethane, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,2-trifluoroethanol, hexafluoroacetone, methanol, ethanol, 1-propanol, 2-propanol, formamide, N, N-dimethylformamide, N, N-dimethyl Acetamide, N- methylpyrrolidone, dimethyl sulfoxide, pyridine, acetonitrile, may be mentioned trimethylamine, triethylamine, tributylamine and the like. These may be used alone or in combination of two or more.
  • polymerization initiator examples include ethylenediamine, propylenediamine, hexamethylenediamine, 1,4-cyclohexanediamine, 1,2-cyclohexanediamine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, and toluene-2.
  • Primary amines such as methylamine, ethylamine and 1-propylamine; Alcohol amines such as methanolamine, ethanolamine and diethanolamine; Dimethylamine and diethylamine Secondary amines such as dipropylamine; primary tertiary diamines such as N, N-dimethylethylenediamine and N, N-dimethyl-1,3-propanediamine; trimethylamine and triethylamine Tertiary amines such as tributylamine; amino group-containing polymers such as polyether diamine and polyester diamine; primary alcohols such as methanol and ethanol; secondary alcohols such as isopropanol; ethylene glycol, propylene glycol, 1,4-butanediol, hexa Examples include glycols such as methylene glycol; hydroxyl group-containing polymers such as polyether diol and polyester diol; thiols. These may be used alone or in combination of two or more.
  • N-carboxy- ⁇ -amino acids (including derivatives) anhydrides corresponding to various amino acids are mixed appropriately and dissolved or suspended in an organic solvent.
  • a polymerization initiator can be added to this to form a copolymer.
  • the mixing ratio of amino acids is, for example, 95: 5 to 5:95, preferably 90:10 to 10:90, more preferably 70:30 to 30:70 in terms of molar ratio for two types of amino acids. it can.
  • the mixing ratio can be calculated based on the molar ratio of the N-carboxy- ⁇ -amino acid anhydride to be used.
  • N-carboxy- ⁇ -aliphatic amino acid anhydride which is different from any of the N-carboxy- ⁇ -aliphatic amino acid anhydride and the N-carboxy- ⁇ -aromatic amino acid anhydride, By mixing and / or polymerizing with an N-carboxy- ⁇ -aromatic amino acid anhydride to form a copolymer, the solubility in an organic solvent can be increased.
  • N-carboxy- ⁇ -amino acid anhydrides include aspartic acid- ⁇ -methyl ester, aspartic acid- ⁇ -benzyl ester, glutamic acid- ⁇ -methyl ester, N ⁇ -benzyloxycarbonyl-lysine, N ⁇ -benzyloxycarbonyl- N-carboxy- ⁇ -amino acid (including derivatives) anhydrides corresponding to ornithine, O-benzyl-serine or O-benzyl-threonine are preferred, corresponding to glutamic acid- ⁇ -methyl ester or N ⁇ -benzyloxycarbonyl-lysine N-carboxy- ⁇ -amino acid anhydride is more preferred. These may be used alone or in combination of two or more.
  • a method for preparing the polyamino acid used in the present invention includes ⁇ -polyglutamic acid using a microorganism. Examples thereof include a method for preparing ( ⁇ -PGA) and a method for preparing ⁇ -polylysine using a microorganism.
  • a protecting group can be bonded to the side chain of an amino acid residue serving as a structural unit.
  • the protecting group refers to an atomic group used for the purpose of protecting a highly reactive characteristic group in the side chain of an amino acid so as not to react with other compounds.
  • the protecting group may be bonded during the preparation of the polyamino acid as described above, or may be bonded after the preparation. Further, the protecting group may be bonded to the side chains of all amino acid residues constituting the polyamino acid, or may be bonded only to the side chains of some amino acid residues.
  • it is preferable that a protective group is bonded to the polyamino acid because the adhesion suppressing effect of living tissue or cells in the fiber structure can be enhanced.
  • the protecting group is not particularly limited as long as it can convert a highly reactive characteristic group in the side chain of an amino acid residue into an inactive functional group.
  • amino-protecting groups include substituted benzyloxycarbonyl groups such as benzyloxycarbonyl group and p-methoxybenzyloxycarbonyl group; tert-butoxycarbonyl group, p-biphenylisopropyloxycarbonyl group, 9-fluorenylmethyl Urethane-type protecting groups such as oxycarbonyl group; acyl-type protecting groups such as formyl group, phthaloyl group, trifluoroacetyl group, p-toluenesulfonyl group, o-nitrophenylsulfenyl group; trityl group, benzyl group, 2-benzoyl Examples thereof include alkyl-type protecting groups such as -1-methylvinyl group; and arylidene-type protecting groups such as 2-hydroxyaryliden
  • Examples of the protecting group for the carboxyl group include substituted benzyl esters such as methyl group, ethyl group, benzyl group, tert-butyl group, and p-nitrobenzyl group; phenacyl group; trichloroethyl group; cyclohexyl group and the like.
  • Protected in the form of Examples of protecting groups for guanidino groups include nitro groups, p-toluenesulfonyl groups, benzyloxycarbonyl groups, and the like.
  • Examples of the protecting group for the imidazolyl group include a benzyl group, a benzyloxycarbonyl group, a p-toluenesulfonyl group, a trityl group, a diphenylmethyl group, a dinitrofluorobenzene group, and a tert-butoxycarbonyl group.
  • Examples of the protecting group for the carbamide group include a xanthyl group, a bis-2,4-dimethoxybenzyl group, and a 4,4'-dimethoxybenzhydryl group.
  • Examples of the protective group for the hydroxy group include ether-type protective groups such as a benzyl group, a substituted benzyl group, and a tert-butyl group; and acyl-type protective groups such as an acetyl group, a trifluoroacetyl group, and a benzyloxycarbonyl group.
  • Examples of the protecting group for the mercapto group include substituted benzyl groups such as a benzyl group and a p-methoxybenzyl group; a trityl group; a benzhydryl group; an acetamidomethyl group; and a carbomethoxysulfenyl group.
  • Examples of the protecting group for the indolyl group include a formyl group.
  • a methyl group, a benzyloxycarbonyl group, a 9-fluorenylmethylcarbonyl group, and a trifluoroacetyl group are preferable.
  • the polyamino acid used in the present invention can be further chemically modified after being prepared as described above.
  • poly- ⁇ -methyl-glutamic acid it can be converted to a polyamino acid having a structure in which part or all of the methyl ester group is saponified by allowing alkali to act on this, or reactive.
  • a polyamino acid having a structure in which a nucleophilic functional group such as an amino compound is reacted to convert part or all of the methyl ester group into an amide group can be obtained.
  • polyglutamic acid a polyamino acid having a structure in which an alkylamine is reacted with this to convert a part or all of the carboxyl group into an alkylamide group can be obtained.
  • the weight average molecular weight of the polyamino acid in the present invention is not particularly limited, but is usually 1,000 or more. In the present invention, it is preferably 10,000 or more, more preferably 100,000 or more, from the viewpoint of increasing the degree of entanglement between polymers in the solution and improving the productivity of the nanofiber.
  • the polyamino acid used in the present invention may have a structure in which a compound other than an amino acid or a derivative thereof is polymerized in addition to the amino acid or a derivative thereof.
  • a compound other than an amino acid or a derivative thereof is polymerized in addition to the amino acid or a derivative thereof.
  • N-carboxy- ⁇ -amino acid anhydride and urethane examples thereof include a copolymer obtained by polymerizing a prepolymer.
  • the fiber structure of the present invention containing the polyamino acid is composed of nanofibers having an average fiber diameter (diameter) of 5 nm or more and less than 1,500 nm, preferably 10 nm or more and less than 1,000 nm, more preferably 50 nm or more and less than 500 nm.
  • the average fiber diameter of the fiber structure can be measured using a method known to those skilled in the art. Specifically, from a photograph of the surface of the fiber structure taken at random with a scanning electron microscope, 10 positions are arbitrarily selected, the fiber diameter is measured, and the average value is obtained as the average fiber diameter. be able to. For the photograph of the fiber structure, a photograph taken at a magnification of 500 to 200,000 times can be used. In the present invention, more specifically, the average fiber diameter of the fiber structure can be measured according to Examples described later.
  • the fiber structure refers to a structure formed of one or a plurality of fibers, and examples of the form thereof include a filament, a stable, a filament yarn, a spun yarn, a woven fabric, a knitted fabric, Nonwoven fabric, paper, sheet-like material, tube, mesh, thread-like material and the like can be mentioned.
  • a preferred form of the fiber structure in the present invention is a nonwoven fabric.
  • the fiber structure of the present invention is manufactured by electrospinning using an electrospinning apparatus.
  • the electrospinning apparatus include a nanofiber electrospinning unit (NEU) manufactured by Kato Tech Co., Ltd., which includes a syringe, a nozzle (needle), a syringe pump, a high voltage generator, and a collector.
  • NEU nanofiber electrospinning unit
  • the manufacturing method of the fiber structure containing the polyamino acid of the present invention comprises the following steps. Step 1) Step of dissolving a polyamino acid in a solvent to form a solution, Step 2) A step of continuously discharging the solution put in the syringe from a nozzle attached to the tip of the syringe, Step 3) A step of applying a high voltage between the nozzle and the collector with a high voltage generator in the discharge, Step 4) changing the discharged solution into a fiber shape between the nozzle and the collector, Step 5) A step of collecting the fiber on a collector.
  • the concentration of the polyamino acid in the solution in Step 1 is appropriately set depending on the type of polyamino acid to be used, the type of solvent for dissolving the polyamino acid, etc., but is generally 0.1 to 60% by weight, preferably 1 It can be made -45 wt%, more preferably 1-20 wt%. If the polyamino acid concentration is higher than the above range, the viscosity of the solution tends to increase and the spinnability tends to be poor. If the concentration is lower than the above range, it takes a long time to produce the fiber structure. When two or more polyamino acids are used, a solution in which various polyamino acids are appropriately mixed and dissolved may be prepared.
  • the mixing ratio of the polyamino acids can be, for example, 95: 5 to 5:95, preferably 90:10 to 10:90 as a weight ratio in the case of two kinds of polyamino acids.
  • the solvent for dissolving the polyamino acid used in the present invention in Step 1 is not particularly limited as long as it is a solvent that dissolves the polyamino acid and is easily removed by evaporation or the like at the stage of forming the fiber.
  • trifluoroacetic acid, acetic acid, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, trichloroethane, trichloroethylene, trifluoroethane, 1,1,1,1 3,3,3-hexafluoro-2-propanol, 2,2,2-trifluoroethanol, N, N-dimethylformamide, water are preferred, trifluoroacetic acid, acetic acid, dichloromethane, chloroform, 1,2-dichloroethane, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,2-trifluoroethanol, N, N-dimethylformamide, and water are more preferable. These may be used alone or in combination of two or more.
  • solubilizing agents include alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as magnesium salts and calcium salts, inorganic bases such as ammonia, monoethanolamine, diethanolamine, and triethanolamine.
  • Organic amines such as 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1,3-propanediol, lysine, ornithine and arginine, inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, tartaric acid And organic acids such as citric acid, p-toluenesulfonic acid, glycolic acid, malic acid, lactic acid, fatty acid, acidic amino acid, pyroglutamic acid. These may be used alone or in combination of two or more.
  • the rate at which the polyamino acid solution is discharged in step 2 is appropriately set according to the viscosity of the solution to be discharged, the scale of the electrospinning apparatus, etc., but is generally 0.1 to 60 ml / hour, preferably 1 to 20 ml / hour. It can be.
  • the discharge speed is made faster than the above range, the discharged solution tends to reach the collector in the form of droplets and cause fusion of fibers and the like.
  • the discharge speed is slower than the above range, it takes a long time to produce the fiber structure.
  • the number of nozzles from which the solution is discharged may be one or two or more. Therefore, the discharge of the solution may be performed at one or two or more locations.
  • the discharge of the nozzle in the step 2 is blocked by the adhesion of the fibers formed in the step 4, the precipitation of solids from the discharged solution in the step 2, etc., it is appropriate. By discharging while removing these deposits, precipitates, etc., by the method, it is possible to prevent the discharge of the solution from being hindered.
  • the voltage applied between the nozzle and the collector in step 3 is appropriately set depending on the viscosity of the solution to be discharged, the scale of the electrospinning apparatus, etc., but is generally 5 to 50 kV, preferably 11 to 45 kV. it can.
  • the voltage can be 11 kV or more, preferably 13 kV or more, more preferably 15 kV or more, further preferably 17 kV or more, particularly preferably 19 kV or more, and the voltage can be 45 kV or less, preferably 40 kV or less, More preferably, it can be 35 kV or less, more preferably 30 kV or less, and particularly preferably 25 kV or less. If the applied voltage is higher than the above range, there is a risk of discharge between the nozzle and the collector. On the other hand, when the applied voltage is lower than the above range, the fiber diameter is not reduced and the spinnability tends to be poor.
  • the interval between the nozzle and the collector in step 4 is appropriately set depending on the scale of the electrospinning apparatus, but can be generally 5 to 50 cm, preferably 10 to 40 cm.
  • the interval can be 10 cm or more, preferably 12 cm or more, more preferably 14 cm or more, still more preferably 16 cm or more, and particularly preferably 18 cm or more, and the interval can be 40 cm or less, preferably 35 cm or less, More preferably, it is 30 cm or less, More preferably, it is 25 cm or less, Most preferably, it can be 20 cm or less.
  • the interval is longer than the above range, the formed fiber does not reach the collector and adheres to the portion between the nozzle and the collector. If the interval is shorter than the above range, the discharged solution tends to reach the collector in the form of droplets and cause fusion of fibers.
  • the fiber structure formed on the collector in step 5 can be subjected to operations such as neutralization and drying as necessary.
  • an organic acid is used as a solvent or a solubilizing agent for dissolving the polyamino acid used in the present invention
  • an alkaline aqueous solution immersed in an alkaline aqueous solution such as sodium hydroxide, potassium hydroxide, or sodium bicarbonate is used.
  • the organic acid remaining in the fiber structure can be neutralized by a method such as spraying or leaving it in ammonia saturated vapor.
  • the polyamino acid used in the present invention is dissolved in a solvent having low volatility, it remains in the fiber structure by a method such as heating, blowing dry air, or leaving it under vacuum or reduced pressure. Solvent to be removed.
  • the thickness of the fiber structure formed on the collector in step 5 is arbitrary depending on the application. For example, it is about 1 to 30 ⁇ m when used as a scaffold for tissue or cells, and 50 when used as artificial skin. About 100 ⁇ m.
  • the temperature and humidity at which the electrospinning in Steps 1 to 5 is performed are appropriately set depending on the type of the solvent that dissolves the polyamino acid used in the present invention, but generally 5 to 30 ° C. and relative humidity 10 to 80. % Adjusted.
  • the nozzle used in steps 1 to 5 may have any shape and size as long as it can discharge a solution in step 2 and can serve as an electrode when a high voltage is applied in step 3.
  • an injection needle can be mentioned.
  • the diameter of the injection needle used for electrospinning including the steps 1 to 5 is generally 0.01 to 2.0 mm, preferably 0.1 to 1.5 mm.
  • the diameter of the injection needle is larger than the above range, the discharged solution tends to reach the collector in the form of droplets.
  • the diameter is smaller than the above range, the amount of discharge per hour is small, so that it takes a lot of time to manufacture the fiber structure.
  • the collector used in steps 1 to 5 may have any shape and size as long as it comprises a metal having good conductivity such as copper, aluminum, or stainless steel and can serve as an electrode when a high voltage is applied in step 3. .
  • a membrane-like, tubular, or hollow fiber structure can be obtained by using a collector as a cylindrical rotating body.
  • a material that does not impair the function of the collector electrode such as aluminum foil, spunbond nonwoven fabric, gauze, micro-nanofiber sheet, etc., is laid on the collector.
  • the fiber structure of the present invention may be formed on these.
  • the fiber structure of the present invention is characterized by containing a polyamino acid as a main component.
  • the main component means a main component contained as a raw material of the fiber structure, and the content thereof is usually 80% by weight or more, preferably 90% by weight with respect to the total weight of the fiber structure. As mentioned above, More preferably, it is 95 weight% or more.
  • the fiber structure containing the polyamino acid of the present invention can further contain a polymer compound other than the polyamino acid in addition to the polyamino acid.
  • a polymer compound include polyvinyl chloride, polyacrylonitrile, polylactic acid, polyglycolic acid, polylactic acid-glycolic acid copolymer, polycaprolactone, polybutylene succinate, polyethylene succinate, polystyrene, polycarbonate, Polyhexamethylene carbonate, polyarylate, polyvinyl isocyanate, polybutyl isocyanate, polymethyl methacrylate, polyethyl methacrylate, polypropyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, polyethylene terephthalate, polytrimethylene terephthalate , Polyethylene naphthalate, polyparaphenylene terephthalamide, polyparaphenylene terephthal Luamide-3
  • polylactic acid, polyglycolic acid, polylactic acid-glycolic acid copolymer are preferable from the viewpoint of maintaining or improving the strength or / and shape of the fiber structure containing a polyamino acid.
  • Polycaprolactone carboxymethylcellulose, oxidized regenerated cellulose, hyaluronic acid, sodium hyaluronate, polyvinyl alcohol, collagen, atelocollagen, gelatin, laminin, fibronectin, sericin, chitin, chitosan, cellulose, more preferably polylactic acid Polyglycolic acid, polylactic acid-glycolic acid copolymer, carboxymethyl cellulose, oxidized regenerated cellulose, sodium hyaluronate, polyvinyl alcohol, collagen, and gelatin can be used. These may be used alone or in combination of two or more.
  • the ratio of the polymer compound to the polyamino acid is appropriately set depending on the function of the fiber structure to be obtained, and can be generally 1 to 80% by weight, preferably 5 to 50% by weight.
  • the ratio with respect to the polyamino acid is higher than the upper limit range, the function of the fiber structure based on the polyamino acid tends to be impaired, and when the ratio with respect to the polyamino acid is lower than the lower limit range, the effect of containing the polymer compound is obtained. It becomes difficult to be recognized.
  • the polymer compound may be electrospun in a state of being mixed with a polyamino acid to form a fiber structure, or may be combined after electrospinning separately from the polyamino acid to form a fiber structure.
  • the fiber structure of the present invention can be widely used for medical materials. Specifically, it can be used for medical materials such as scaffolds for regenerative medicine, surgical sutures, wound dressings, artificial blood vessels, and drug-supporting substrates.
  • medical materials such as scaffolds for regenerative medicine, surgical sutures, wound dressings, artificial blood vessels, and drug-supporting substrates.
  • the fiber structure of the present invention is used in various applications such as a cell-supporting substrate in a cell culture apparatus, a supporting substrate such as a living organism in a bioreactor, various filters, a catalyst-supporting substrate, a clothing substrate, and a cosmetic substrate. Can also be used.
  • the scaffold or scaffold is a biological tissue culture substrate in the field of regenerative medicine, and refers to a molded body that functions as a biological material for the purpose of defect, repair, regeneration, and treatment of biological tissue,
  • a three-dimensional cell culture substrate, a cell aggregate (spheroid) formation substrate, an adhesion prevention material, and the like are included in this.
  • the fiber structure of the present invention has a fiber diameter comparable to that of an extracellular matrix in vivo, it can be easily decomposed in vivo. Therefore, the fibrous structure is suitable for a scaffold material that is desired to disappear quickly after a living tissue or cell is repaired and regenerated in a living body.
  • the fiber structure of the present invention is particularly suitable as a scaffold material that is required to have an effect of suppressing the adhesion of cells and living tissues, and is useful as, for example, a cell aggregate formation base (spheroid) formation material or an adhesion prevention material.
  • a cell aggregate formation base spheroid
  • it can be used for wound dressings, hemostatic materials, etc. due to such effects, as well as artificial organs (artificial blood vessels, artificial lungs, artificial kidneys, artificial hearts) that need to avoid thrombus formation, or medical devices (catheters, It is also useful as a surface covering material for cannulas, artificial dialyzers, dialysis membranes, injection needles, syringes, blood storage containers, shunts, blood circuits).
  • the fiber structure of the present invention is formed into a shape and structure corresponding to a part of a living tissue, and the defect, repair, regeneration, etc. of living tissue such as skin, blood vessel, nerve, bone, cartilage, esophagus, valve, other organs, It can be used directly or indirectly for treatment.
  • various agents such as an anti-inflammatory agent, an antiallergic agent, an antitumor agent, vitamins, can also be contained in a fiber structure or its fiber.
  • Fiber structure of poly-L-alanine / ⁇ -methyl-L-glutamic acid copolymer (9/1) N-carboxy-L-alanine anhydride and N-carboxy- ⁇ -methyl-
  • a poly-L-alanine / ⁇ -methyl-L-glutamic acid copolymer was prepared by adding L-glutamic anhydride in a molar ratio of 9: 1 to a total of 1.4% by weight and stirring for 2 to 3 days. (9/1) was obtained.
  • Fiber structures of various polyamino acid copolymers In the same manner as in Production Example 8, two types of N-carboxy-L-amino acid anhydrides were added to the polymerization solvent, and polymerization was started as necessary. The agent was added and stirred for 2 to 3 days to obtain various polyamino acid copolymers. Each was carried out under the materials and conditions shown in Table 1. Various polyamino acid copolymers were made into solutions using the solvents shown in Table 1, and fiber structures composed of various polyamino acid copolymers were obtained from these solutions by the same method as in Production Example 1.
  • Poly- ⁇ -methyl / (polyethylene glycol) -L-glutamic acid copolymer fiber structure Polyethylene glycol methyl ether (Sigma-Aldrich) was added to poly- ⁇ -methyl-L-glutamic acid obtained in Production Example 23. , Average molecular weight 350) and p-toluenesulfonic acid monohydrate are added in an amount of 2 equivalents and 0.2 equivalents relative to the number of moles of N-carboxy- ⁇ -methyl-L-glutamic anhydride and reacted at 75 ° C. A - ⁇ -methyl / (polyethylene glycol) -L-glutamic acid copolymer was obtained.
  • the weight average molecular weight measured by the method described in Measurement 1 was 1.4 ⁇ 10 6 . This was dissolved in 2,2,2-trifluoroethanol to obtain a 10% by weight poly- ⁇ -methyl / (polyethylene glycol) -L-glutamic acid copolymer solution. From this solution, a fiber structure comprising a poly- ⁇ -methyl / (polyethylene glycol) -L-glutamic acid copolymer was obtained in the same manner as in Production Example 1.
  • Poly-L-alanine / L-lysine copolymer fiber structure Poly-L-alanine / ⁇ -benzyloxycarbonyl-L-lysine copolymer (9/1) obtained in Production Example 16 Trifluoroacetic acid (Tokyo Chemical Industry Co., Ltd.) and thioanisole (Tokyo Chemical Industry Co., Ltd.) were added at 270 equivalents and 5 equivalents, respectively, with respect to the number of moles of N-carboxy- ⁇ -benzyloxycarbonyl-L-lysine anhydride. To obtain a poly-L-alanine / L-lysine copolymer.
  • Fiber structure of poly-L-alanine-poly-L-lysine mixture Poly-L-alanine and poly-L-lysine hydrobromide obtained in Production Example 1 (Sigma Aldrich, weight average molecular weight) 300,000) in a ratio of 9: 1 by weight in a dichloromethane-trifluoroacetic acid-N, N-dimethylformamide mixed solvent (50: 50: 12.5 (v / v)).
  • An L-alanine-L-lysine mixture solution was obtained. From this solution, a fiber structure comprising a poly-L-alanine-L-lysine mixture was obtained in the same manner as in Production Example 1.
  • Fiber structure of poly-L-alanine-poly- ⁇ -benzyloxycarbonyl-L-lysine mixture (6/4) Poly-L-alanine obtained in Production Example 1 and obtained in Production Example 5 Poly- ⁇ -benzyloxycarbonyl-L-lysine was dissolved in a dichloromethane-trifluoroacetic acid mixed solvent (50:50 (v / v)) at a molar ratio of 6: 4 in terms of monomer, and 5.3 wt. % Poly-L-alanine-poly- ⁇ -benzyloxycarbonyl-L-lysine mixture (6/4) solution. From this solution, a fiber structure comprising a poly-L-alanine-poly- ⁇ -benzyloxycarbonyl-L-lysine mixture (6/4) was obtained in the same manner as in Production Example 1.
  • the obtained photograph was placed horizontally and divided into 10 equal area sections by dividing the horizontal direction and the vertical direction into 5 equal parts and 2 equal parts, respectively.
  • the fibers in focus at the center of each section or the fibers closest to the center were selected and their diameters were measured, and the average value of them was obtained to obtain the average fiber diameter.
  • the evaluation criteria are as follows. A: Average fiber diameter is less than 150 nm B: Average fiber diameter is 150 nm or more and less than 500 nm ⁇ : Average fiber diameter is 500 nm or more and less than 1 ⁇ m X: Average fiber diameter is 1 ⁇ m or more
  • Human bone marrow mesenchymal stem cells (Lonza, Human Mesenchymal Stem Cell) or mesenchymal stem cell medium (Lonza, MSCGM), or inactivated fetal bovine serum (Invitrogen, GIBCO FBS) and penicillin-streptomycin (Sigma- Aldrich Co.) laden Dulbecco's modified Eagle's medium (Invitrogen Corp., was suspended in GIBCO DMEM), was seeded by 20,000Cell / well, 5% CO 2/37 °C conditions incubator (Thermo Scientific, Inc., former incubator ) For 3 days.
  • GIBCO FBS inactivated fetal bovine serum
  • penicillin-streptomycin Sigma- Aldrich Co.
  • the evaluation criteria are as follows. A: The amount of intracellular DNA is less than 15% of that of the comparison control. ⁇ : The amount of intracellular DNA is 15% or more and less than 30% of that of the comparison control. Less than 50% ⁇ : The amount of intracellular DNA is 50% or more of that of the control
  • the evaluation criteria are as follows. A: Absorbance is less than 15% relative to that of the comparison control. O: Absorbance is not less than 15% and less than 30% relative to that of the comparison control. More than 50% of that of the control
  • Evaluations 5 and 6 are all general-purpose methods for measuring the number of cells from the viewpoint of ease of operation, measurement accuracy, and the like.
  • poly-L-valine was produced in the same manner as in Production Example 22 except that the voltage applied to the poly-L-valine / L-phenylalanine (1/1) solution shown in Production Example 22 was changed to 10 kV. An attempt was made to produce a fiber structure composed of / L-phenylalanine (1/1). Further, the voltage applied to the poly-L-valine / L-phenylalanine (1/1) solution shown in Production Example 22 was changed to 19 to 20 kV, and the distance between the nozzle containing the solution and the collector was changed to 5 cm. Except for this, an attempt was made to produce a fiber structure composed of poly-L-valine / L-phenylalanine (1/1) by the same method as in Production Example 22.
  • the surface of the obtained fiber structure was visually evaluated. Specifically, the number of visible granular materials was measured.
  • the evaluation criteria for the granular materials are as follows, and the results are shown in Table 4. ⁇ : The number of granular materials is 0 per 1 cm square ⁇ : The number of granular materials is 1 or more and 9 or less per 1 cm square ⁇ : The number of granular materials is 10 or more and 49 or less per 1 cm square ⁇ : Number of granular materials 50 or more per 1 cm square-: Impossible to measure
  • fibers that can be used for medical materials (particularly scaffold materials) that are safe for the living body, high in biocompatibility, and highly effective in suppressing adhesion of cells and tissues, It is significant that we can now provide medical materials or scaffolds.

Abstract

Disclosed is a fiber structure which is safe for living organisms, has high biocompatibility, and can be used in a medical material (particularly a scaffold material) having a high effect of inhibiting the adhesion of cells or tissues. The fiber structure comprises a specific polyamic acid as the main component.

Description

繊維構造体Fiber structure
 本発明は、特定の繊維構造体、さらにその製造方法、そして得られた繊維構造体を含有する医療用材料、に関する。 The present invention relates to a specific fiber structure, a manufacturing method thereof, and a medical material containing the obtained fiber structure.
 近年、損傷し、欠損した生体組織の再生を目指して、組織や細胞の足場(scaffold)として機能する構造体の研究開発が、再生医療の一環として進められている。足場として機能する構造体としては、スポンジ体、ハニカム体、あるいは繊維を重層した不織布等の繊維構造体などが知られているが、これらのうちの繊維としては、従来から知られている繊維径がマイクロメートル(μm)オーダーの繊維(マイクロファイバー)のほか、さらに細いナノメートル(nm)オーダーの繊維(ナノファイバー)の開発・実用化が進められている。ナノファイバーは、従来のマイクロファイバーと比較して格段に大きな比表面積を有するため、より多孔質の繊維構造体を作製できる点で有利である。また、ナノファイバーは数十~数百nmの平均繊維径を有し、in vivoにおける細胞外マトリクスと同程度の繊維径であることから、生体内において容易に分解することが可能である。そのため、ナノファイバーが集積した繊維構造体は、生体内において組織や細胞が修復、再生された後には速やかに消失することが望まれる医療用材料としての応用展開が検討されているものである。 In recent years, research and development of structures that function as scaffolds for tissues and cells have been promoted as part of regenerative medicine with the aim of regenerating damaged and deficient biological tissues. As a structure that functions as a scaffold, a fiber structure such as a sponge body, a honeycomb body, or a nonwoven fabric in which fibers are layered is known, and as a fiber among these, a conventionally known fiber diameter is used. In addition to micrometer (μm) order fibers (microfibers), thinner nanometer (nm) order fibers (nanofibers) are being developed and put to practical use. Since nanofibers have a remarkably large specific surface area compared to conventional microfibers, they are advantageous in that a more porous fiber structure can be produced. In addition, nanofibers have an average fiber diameter of several tens to several hundreds of nanometers, and have a fiber diameter comparable to that of an extracellular matrix in vivo, so that they can be easily decomposed in vivo. For this reason, a fiber structure in which nanofibers are integrated is being studied for application as a medical material that is desired to disappear quickly after tissue and cells are repaired and regenerated in vivo.
 ナノファイバーは、電界紡糸法(エレクトロスピニング法)と呼ばれる方法により形成させることができる。高分子化合物を溶媒に溶解して溶液とした後、高電圧を印加しながら高分子化合物溶液を吐出することで、ナノファイバーを形成させ、これを基板(コレクター)上に累積させることで、ナノファイバーが集積した繊維構造体を得る方法である。    Nanofibers can be formed by a method called electrospinning (electrospinning). After the polymer compound is dissolved in a solvent to form a solution, the polymer compound solution is discharged while applying a high voltage to form nanofibers, which are then accumulated on the substrate (collector). This is a method for obtaining a fiber structure in which fibers are accumulated. *
 電界紡糸法による繊維構造体の製造において、吐出した高分子溶液の一部が繊維化せずに液滴の状態でコレクターに集積すると、コレクター上に集積したナノファイバーどうしが結着することとなる。このような液滴状態での集積は、吐出速度を遅くすることで回避することができるが、この場合、溶液の吐出に多大な時間を要することとなる。あるいは、高分子化合物を溶解する溶媒を揮発性の高い溶媒に代えることにより、液滴状態での集積を回避することも可能であるが、高分子化合物を溶解する溶媒の種類は、通常、一部に限られているため、容易ではない。従って、液滴状態での集積を引き起こさないことと、多大な時間を要することなく繊維構造体を製造することを両立することは困難な場合が多い。 In the production of a fiber structure by electrospinning, if a part of the discharged polymer solution is not formed into fibers but is collected in the form of droplets, the nanofibers accumulated on the collector are bound together. . Such accumulation in the droplet state can be avoided by slowing the discharge speed. In this case, however, it takes a long time to discharge the solution. Alternatively, accumulation in a droplet state can be avoided by replacing the solvent that dissolves the polymer compound with a highly volatile solvent. However, the type of solvent that dissolves the polymer compound is usually one. Because it is limited to the part, it is not easy. Therefore, it is often difficult to achieve both the absence of accumulation in the droplet state and the production of the fiber structure without requiring much time.
 組織や細胞の足場をはじめとする医療用材料は、生分解性あるいは生体適合性を合わせもつことが望ましく、このような観点から、コラーゲン、ゼラチン、セルロース、キチン、キトサン、ポリ乳酸等の電界紡糸法による繊維構造体の製造例が多数開示されている。しかしながら、繊維径が制御されていて、かつ、繊維どうしの結着が見られないような繊維構造体を得ることと、多大な時間を要することなく繊維構造体を製造することは、本発明者らの知る限り両立されてはいない。例えば、特許文献1には、キトサン、コンドロイチン硫酸、ペクチン等の多糖類を電界紡糸する方法が開示されている。しかしながら、1cm四方の極めて面積の小さなコレクター上での製造にもかかわらず、得られた繊維構造体は繊維径の幅が大きく不均一である。特許文献2には、有機酸のような溶解補助剤を添加した水にキトサンを溶解させた後、電界紡糸する方法が開示されている。得られた繊維径は制御されているものの、繊維を形成する段階において水を揮発させるために、吐出速度を十分に上げることができない。特許文献3には、キトサンあるいはセルロースを有機酸溶媒に溶解し、これに揮発性有機溶媒を混和させた後、電界紡糸する方法が開示されている。しかしながら、キトサンあるいはセルロースの溶液への溶解が完全ではないために、満足のいく繊維構造体は得られていなかった。 It is desirable that medical materials such as tissue and cell scaffolds have both biodegradability and biocompatibility. From this viewpoint, electrospinning of collagen, gelatin, cellulose, chitin, chitosan, polylactic acid, etc. Many examples of manufacturing fiber structures by the method are disclosed. However, it is the inventor of the present invention to obtain a fiber structure in which the fiber diameter is controlled and the fibers are not bound to each other, and to produce the fiber structure without requiring much time. As far as we know, they are not compatible. For example, Patent Document 1 discloses a method of electrospinning polysaccharides such as chitosan, chondroitin sulfate, and pectin. However, despite the production on a collector with a very small area of 1 cm square, the resulting fiber structure has a wide and uneven fiber diameter. Patent Document 2 discloses a method of electrospinning after dissolving chitosan in water to which a solubilizing agent such as an organic acid is added. Although the obtained fiber diameter is controlled, since water is volatilized in the stage of forming the fiber, the discharge speed cannot be increased sufficiently. Patent Document 3 discloses a method in which chitosan or cellulose is dissolved in an organic acid solvent, a volatile organic solvent is mixed therein, and then electrospinning is performed. However, since the dissolution of chitosan or cellulose in the solution is not complete, a satisfactory fiber structure has not been obtained.
 非特許文献1には、ポリ-γ-ベンジル-L-グルタミン酸を極性が低い有機溶媒に溶解させる際にその濃度を低くして分子どうしの相互作用を抑制することで、繊維径が制御された繊維構造体を得る方法が開示されている。しかしながら、溶液濃度を低くしすぎると繊維の形成が困難となることに加え、繊維径を満足のいく細さにまで小さくするには至っていなかった。 Non-Patent Document 1 discloses that when poly-γ-benzyl-L-glutamic acid is dissolved in an organic solvent having low polarity, the fiber diameter is controlled by suppressing the interaction between molecules by reducing the concentration thereof. A method for obtaining a fibrous structure is disclosed. However, if the solution concentration is too low, fiber formation becomes difficult, and the fiber diameter has not been reduced to a satisfactory fineness.
 特許文献4には、生体内分解吸収性ポリマーの繊維構造体からなる癒着防止材が開示されており、具体的にはポリ乳酸が使用されている。しかしながら、ポリ乳酸は柔軟性に欠けるため軟組織に対する適合性に乏しく、また生体に対して炎症反応を引き起こすことも示唆されており、十分に安全な生分解性材料は未だ得られていない。 Patent Document 4 discloses an adhesion preventing material composed of a fiber structure of biodegradable and absorbable polymer, and specifically uses polylactic acid. However, since polylactic acid lacks flexibility, its compatibility with soft tissues is poor, and it has also been suggested that it causes an inflammatory response to the living body, and a sufficiently safe biodegradable material has not yet been obtained.
特開2005-290610号公報JP 2005-290610 A 特開2008-163520号公報JP 2008-163520 A 特開2008-308780号公報JP 2008-308780 A 国際公開第2004/089433号パンフレットInternational Publication No. 2004/088943 Pamphlet
 本発明が解決しようとする課題は、生体にとって安全であり、かつ生体適合性が高く、細胞や組織の接着抑制効果の高い医療用材料(該医療用材料は、特に足場材料として有用である。)に使用しうる繊維構造体を提供することにある。 The problem to be solved by the present invention is a medical material that is safe for the living body, has high biocompatibility, and has a high effect of suppressing adhesion of cells and tissues (the medical material is particularly useful as a scaffold material). ) To provide a fiber structure that can be used.
 本発明者らは、鋭意検討の結果、特定のポリアミノ酸を主成分として繊維構造体に含有させることにより、上記課題が達成されることを見出し、本発明を完成した。 As a result of intensive studies, the present inventors have found that the above problems can be achieved by incorporating a specific polyamino acid as a main component into a fiber structure, and have completed the present invention.
 すなわち、本発明は、以下の通りである。
〔1〕ポリアミノ酸を主成分として含有し、且つ平均繊維径が50nm以上500nm未満であることを特徴とする、繊維構造体。
〔2〕アミノ酸が、グリシン、アラニン、バリン、ロイシン、イソロイシン、フェニルアラニン及びプロリンからなる群より選ばれる1種又は2種以上であることを特徴とする、〔1〕に記載の繊維構造体。
〔3〕アミノ酸が、アラニンであることを特徴とする、〔1〕又は〔2〕に記載の繊維構造体。
〔4〕ポリアミノ酸が、1種のアミノ酸より構成されることを特徴とする、〔1〕~〔3〕の何れかに記載の繊維構造体。
〔5〕ポリアミノ酸が、2種のアミノ酸より構成されることを特徴とする、〔1〕に記載の繊維構造体。
〔6〕2種のアミノ酸が、酸性アミノ酸又は塩基性アミノ酸と非極性の中性アミノ酸との組み合わせであることを特徴とする、〔5〕に記載の繊維構造体。
〔7〕2種のアミノ酸が、酸性アミノ酸又は塩基性アミノ酸と芳香族アミノ酸との組み合わせであることを特徴とする、〔5〕に記載の繊維構造体。
〔8〕酸性アミノ酸がグルタミン酸であることを特徴とする、〔6〕又は〔7〕に記載の繊維構造体。
〔9〕塩基性アミノ酸がリジンであることを特徴とする、〔6〕又は〔7〕に記載の繊維構造体。
〔10〕非極性の中性アミノ酸が、アラニン、バリン、ロイシンまたはイソロイシンから選ばれることを特徴とする、〔6〕に記載の繊維構造体。
〔11〕芳香族アミノ酸がフェニルアラニンであることを特徴とする、〔7〕に記載の繊維構造体。
〔12〕ポリアミノ酸を構成するアミノ酸の側鎖に保護基が結合していることを特徴とする、〔1〕~〔11〕の何れかに記載の繊維構造体。
〔13〕保護基が、メチル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基及びトリフルオロアセチル基からなる群より選ばれる1種又は2種以上であることを特徴とする、〔12〕に記載の繊維構造体。
〔14〕下記工程を含有することを特徴とする、繊維構造体の製造方法;
工程1)ポリアミノ酸を溶媒に溶解して溶液とする工程、
工程2)シリンジ内に入れた前記溶液をシリンジの先に取り付けたノズルから連続的に吐出する工程、
工程3)前記吐出において高電圧発生装置でノズルとコレクターの間に高電圧を印加する工程、
工程4)ノズルとコレクターの間で前記吐出溶液を繊維の形状に変える工程、
工程5)当該繊維をコレクター上に捕集する工程。
〔15〕工程1におけるポリアミノ酸の溶液濃度が1~20重量%であり、工程2におけるポリアミノ酸の溶液の吐出速度が1~20ml/時であり、工程3におけるノズルとコレクターの間に印加する電圧が11~45kVであり、工程4におけるノズルとコレクターの間隔が10~40cmであることを特徴とする、〔14〕に記載の製造方法。
〔16〕工程1における溶媒が、トリフルオロ酢酸、酢酸、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,2-トリフルオロエタノール、N,N-ジメチルホルムアミド及び水からなる群より選ばれる1種または2種以上であることを特徴とする、〔14〕又は〔15〕に記載の製造方法。
〔17〕〔1〕~〔13〕の何れかに記載の繊維構造体を含有することを特徴とする、医療用材料。
〔18〕癒着防止材である、〔17〕に記載の医療用材料。
That is, the present invention is as follows.
[1] A fiber structure containing a polyamino acid as a main component and having an average fiber diameter of 50 nm or more and less than 500 nm.
[2] The fiber structure according to [1], wherein the amino acid is one or more selected from the group consisting of glycine, alanine, valine, leucine, isoleucine, phenylalanine and proline.
[3] The fiber structure according to [1] or [2], wherein the amino acid is alanine.
[4] The fiber structure according to any one of [1] to [3], wherein the polyamino acid is composed of one amino acid.
[5] The fiber structure according to [1], wherein the polyamino acid is composed of two kinds of amino acids.
[6] The fiber structure according to [5], wherein the two amino acids are a combination of an acidic amino acid or a basic amino acid and a nonpolar neutral amino acid.
[7] The fiber structure according to [5], wherein the two amino acids are an acidic amino acid or a combination of a basic amino acid and an aromatic amino acid.
[8] The fiber structure according to [6] or [7], wherein the acidic amino acid is glutamic acid.
[9] The fiber structure according to [6] or [7], wherein the basic amino acid is lysine.
[10] The fiber structure according to [6], wherein the nonpolar neutral amino acid is selected from alanine, valine, leucine or isoleucine.
[11] The fiber structure according to [7], wherein the aromatic amino acid is phenylalanine.
[12] The fiber structure according to any one of [1] to [11], wherein a protecting group is bonded to a side chain of an amino acid constituting the polyamino acid.
[13] The protective group is one or more selected from the group consisting of a methyl group, a benzyloxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, and a trifluoroacetyl group, 12].
[14] A method for producing a fiber structure, comprising the following steps;
Step 1) Step of dissolving a polyamino acid in a solvent to form a solution,
Step 2) A step of continuously discharging the solution put in the syringe from a nozzle attached to the tip of the syringe,
Step 3) A step of applying a high voltage between the nozzle and the collector with a high voltage generator in the discharge,
Step 4) changing the discharged solution into a fiber shape between the nozzle and the collector,
Step 5) A step of collecting the fiber on a collector.
[15] The polyamino acid solution concentration in step 1 is 1 to 20% by weight, the polyamino acid solution discharge speed in step 2 is 1 to 20 ml / hour, and is applied between the nozzle and collector in step 3. [14] The method according to [14], wherein the voltage is 11 to 45 kV, and the distance between the nozzle and the collector in step 4 is 10 to 40 cm.
[16] The solvent in Step 1 is trifluoroacetic acid, acetic acid, dichloromethane, chloroform, 1,2-dichloroethane, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,2- [14] or [15], wherein the production method is one or more selected from the group consisting of trifluoroethanol, N, N-dimethylformamide and water.
[17] A medical material comprising the fiber structure according to any one of [1] to [13].
[18] The medical material according to [17], which is an adhesion preventing material.
 本発明の繊維構造体は、均一に制御されたナノメートルオーダーの繊維径を有することから生体内での分解性に優れており、また主成分として用いる材料は生体内に広く存在するアミノ酸で構成されているため生体にとって安全である。また本発明の繊維構造体は、その繊維どうしが結着していないことから生分解性に加えて柔軟性も優れており、生体への適合性が高い。さらに本発明の繊維構造体は、生体組織由来の細胞に対する接着性が低いため、細胞や組織の接着抑制効果の高い医療用材料に使用することができ、該医療用材料は、特に足場材料として有用である。 The fiber structure of the present invention has a nanometer-order fiber diameter that is uniformly controlled and is therefore excellent in degradability in vivo, and the material used as the main component is composed of amino acids widely present in the living body. Therefore, it is safe for the living body. The fiber structure of the present invention is excellent in flexibility in addition to biodegradability because the fibers are not bound to each other, and is highly compatible with living bodies. Furthermore, since the fiber structure of the present invention has low adhesion to cells derived from living tissue, it can be used as a medical material having a high effect of suppressing adhesion of cells and tissues. The medical material is particularly used as a scaffold material. Useful.
製造例1の操作で得られたポリ-L-アラニンからなる繊維構造体の表面を走査型電子顕微鏡(SEM)で撮影した写真図である。FIG. 3 is a photograph of a surface of a fiber structure composed of poly-L-alanine obtained by the operation of Production Example 1 taken with a scanning electron microscope (SEM).
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 本発明に使用されるポリアミノ酸は、アミノ酸又はその誘導体で構成されたものであり、通常、中性アミノ酸、酸性アミノ酸、塩基性アミノ酸、芳香族アミノ酸等を用いて調製され、中性アミノ酸としては、非極性の中性アミノ酸及び極性の中性アミノ酸が用いられる。ポリアミノ酸は、1種又は2種以上のアミノ酸で構成されたものを用いることができるが、本発明では1種又は2種のアミノ酸で構成されたポリアミノ酸が好ましい。使用されるアミノ酸残基に不斉炭素原子が存在する場合は、光学活性体またはラセミ体のいずれでも良い。 The polyamino acid used in the present invention is composed of an amino acid or a derivative thereof, and is usually prepared using a neutral amino acid, an acidic amino acid, a basic amino acid, an aromatic amino acid, etc. Nonpolar neutral amino acids and polar neutral amino acids are used. As the polyamino acid, one composed of one or more amino acids can be used, but in the present invention, a polyamino acid composed of one or two amino acids is preferable. When the amino acid residue used contains an asymmetric carbon atom, either an optically active substance or a racemic substance may be used.
 上記のアミノ酸又はその誘導体としては、本発明の繊維構造体を構成し得る重合体を形成しさえすれば特に制限されないが、具体的には、グリシン;サルコシン;アラニン;N-メチルアラニン;β-アラニン;γ-アミノ酪酸;バリン;ノルバリン;ロイシン;イソロイシン;ノルロイシン;フェニルグリシン;フェニルアラニン;メチオニン;システイン;S-ベンジル-システイン等のシステイン誘導体;シスチン;グルタミン;アスパラギン;グルタミン酸;グルタミン酸-γ-メチルエステル、グルタミン酸-α-メチルエステル、グルタミン酸-γ-エチルエステル、グルタミン酸-α-エチルエステル、グルタミン酸-γ-ベンジルエステル、グルタミン酸-α-ベンジルエステル等のグルタミン酸誘導体;アスパラギン酸;アスパラギン酸-β-メチルエステル、アスパラギン酸-α-メチルエステル、アスパラギン酸-β-エチルエステル、アスパラギン酸-α-エチルエステル、アスパラギン酸-β-ベンジルエステル、アスパラギン酸-α-ベンジルエステル等のアスパラギン酸誘導体;リジン;Nε-ベンジルオキシカルボニル-リジン、Nα-ベンジルオキシカルボニル-リジン等のリジン誘導体;オルニチン;Nδ-ベンジルオキシカルボニル-オルニチン、Nα-ベンジルオキシカルボニル-オルニチン等のオルニチン誘導体;アルギニン;Nω-メチル-アルギニン、Nω-ニトロ-アルギニン等のアルギニン誘導体;ヒスチジン;N(Im)-メチル-ヒスチジン等のヒスチジン誘導体;プロリン;ヒドロキシプロリン、O-ベンジルヒドロキシプロリン等のプロリン誘導体;セリン;O-ベンジル-セリン、O-アセチル-セリン等のセリン誘導体;スレオニン;O-ベンジル-スレオニン、O-アセチル-スレオニン等のスレオニン誘導体;トリプトファン;N(In)-メチル-トリプトファン等のトリプトファン誘導体;チロシン;O-ベンジル-チロシン、O-メチル-チロシン等のチロシン誘導体;ドーパ等を挙げることができる。 The amino acid or derivative thereof is not particularly limited as long as it forms a polymer that can constitute the fiber structure of the present invention. Specifically, glycine; sarcosine; alanine; N-methylalanine; β- Alanine; gamma-aminobutyric acid; valine; norvaline; leucine; isoleucine; norleucine; phenylglycine; phenylalanine; methionine; cysteine; cysteine derivatives such as S-benzyl-cysteine; cystine; glutamine; asparagine; glutamic acid; Glutamic acid-α-methyl ester, glutamic acid-γ-ethyl ester, glutamic acid-α-ethyl ester, glutamic acid-γ-benzyl ester, glutamic acid-α-benzyl ester, etc .; aspartic acid; Asparagine such as aspartic acid-β-methyl ester, aspartic acid-α-methyl ester, aspartic acid-β-ethyl ester, aspartic acid-α-ethyl ester, aspartic acid-β-benzyl ester, aspartic acid-α-benzyl ester Acid derivatives; lysine; lysine derivatives such as Nε-benzyloxycarbonyl-lysine and Nα-benzyloxycarbonyl-lysine; ornithine; ornithine derivatives such as Nδ-benzyloxycarbonyl-ornithine and Nα-benzyloxycarbonyl-ornithine; arginine; Nω Arginine derivatives such as methyl-arginine and Nω-nitro-arginine; histidine; histidine derivatives such as N (Im) -methyl-histidine; proline; hydroxyproline, O-benzylhydroxyproline and the like Serine; serine derivatives such as O-benzyl-serine and O-acetyl-serine; threonine; threonine derivatives such as O-benzyl-threonine and O-acetyl-threonine; tryptophan; N (In) -methyl-tryptophan and the like Tryptophan derivatives of tyrosine; tyrosine; tyrosine derivatives such as O-benzyl-tyrosine, O-methyl-tyrosine; dopa and the like.
 アミノ酸側鎖の炭素原子数が少ないアミノ酸残基は、密な分子充填構造を形成しやすく、繊維径の小さな繊維を与えることが期待できるという観点から、グリシン、サルコシン、アラニン、N-メチルアラニン、β-アラニン、γ-アミノ酪酸、バリン、ノルバリン、ロイシン、イソロイシン、ノルロイシン、システイン、グルタミン、アスパラギン、アスパラギン酸、アスパラギン酸-β-メチルエステル、リジン、プロリン、ヒドロキシプロリン、セリン、O-アセチル-セリン、スレオニンが好ましく、グリシン、アラニン、バリン、ロイシン、イソロイシン、プロリン、グルタミン、リジンがより好ましい。これらは、1種単独又は2種以上の組み合わせの何れであっても良い。 Amino acid residues with a small number of carbon atoms in the amino acid side chain are likely to form a dense molecular packing structure, and can be expected to give fibers with a small fiber diameter, so that glycine, sarcosine, alanine, N-methylalanine, β-alanine, γ-aminobutyric acid, valine, norvaline, leucine, isoleucine, norleucine, cysteine, glutamine, asparagine, aspartic acid, aspartic acid-β-methyl ester, lysine, proline, hydroxyproline, serine, O-acetyl-serine Threonine is preferable, and glycine, alanine, valine, leucine, isoleucine, proline, glutamine, and lysine are more preferable. These may be used alone or in combination of two or more.
 また、アミノ酸側鎖に芳香族環を有するアミノ酸残基は、芳香族環どうしで密な相互作用を形成しやすく、繊維径の小さな繊維構造体を与えることが期待できるという観点から、フェニルグリシン、フェニルアラニン、アスパラギン酸-β-ベンジルエステル、Nε-ベンジルオキシカルボニル-リジン、Nδ-ベンジルオキシカルボニル-オルニチン、ヒスチジン、N(Im)-メチル-ヒスチジン、O-ベンジル-セリン、O-ベンジル-スレオニン、トリプトファン、N(In)-メチル-トリプトファン、チロシン、O-ベンジル-チロシン、O-メチル-チロシン、O-アセチル-チロシンが好ましく、フェニルアラニン、アスパラギン酸-β-ベンジルエステル、Nε-ベンジルオキシカルボニル-リジン、トリプトファン、チロシン、O-アセチル-チロシンがより好ましい。これらは、1種単独又は2種以上の組み合わせの何れであっても良い。 In addition, from the viewpoint that an amino acid residue having an aromatic ring in the amino acid side chain is likely to form a close interaction between aromatic rings and a fiber structure having a small fiber diameter can be expected, phenylglycine, Phenylalanine, aspartic acid-β-benzyl ester, Nε-benzyloxycarbonyl-lysine, Nδ-benzyloxycarbonyl-ornithine, histidine, N (Im) -methyl-histidine, O-benzyl-serine, O-benzyl-threonine, tryptophan N (In) -methyl-tryptophan, tyrosine, O-benzyl-tyrosine, O-methyl-tyrosine, O-acetyl-tyrosine, phenylalanine, aspartic acid-β-benzyl ester, Nε-benzyloxycarbonyl-lysine, Tryptophan, Chiro Syn and O-acetyl-tyrosine are more preferred. These may be used alone or in combination of two or more.
 本発明においては、上記に例示したアミノ酸を適宜用いることができるが、繊維構造体に含有されるポリアミノ酸が1種のアミノ酸から構成される場合は、かかるアミノ酸は、グリシン、アラニン、バリン、ロイシン、イソロイシン、フェニルアラニン、プロリン、アスパラギン酸-β-ベンジルエステル、Nε-ベンジルオキシカルボニル-リジン、トリプトファン、O-アセチル-チロシンが好ましく、グリシン、アラニン、バリン、ロイシン、イソロイシン、フェニルアラニン、プロリンがより好ましく、アラニン、バリン、ロイシンがさらにより好ましく、アラニンが最も好ましい。また、ポリアミノ酸が2種のアミノ酸から構成される場合は、酸性アミノ酸又は塩基性アミノ酸と非極性の中性アミノ酸との組み合わせ、あるいは酸性アミノ酸又は塩基性アミノ酸と芳香族アミノ酸との組み合わせであることが好ましい。このとき、酸性アミノ酸としてはグルタミン酸が好ましく、塩基性アミノ酸としてはリジンが好ましい。また、非極性の中性アミノ酸としては、アラニン、バリン、ロイシン、イソロイシンが好ましく、芳香族アミノ酸としてはフェニルアラニンが好ましい。 In the present invention, the amino acids exemplified above can be used as appropriate, but when the polyamino acid contained in the fiber structure is composed of one kind of amino acid, such amino acids are glycine, alanine, valine, leucine. , Isoleucine, phenylalanine, proline, aspartic acid-β-benzyl ester, Nε-benzyloxycarbonyl-lysine, tryptophan, O-acetyl-tyrosine are preferred, glycine, alanine, valine, leucine, isoleucine, phenylalanine, proline are more preferred, Alanine, valine and leucine are even more preferred, and alanine is most preferred. In addition, when the polyamino acid is composed of two kinds of amino acids, it is a combination of an acidic amino acid or basic amino acid and a nonpolar neutral amino acid, or a combination of an acidic amino acid or basic amino acid and an aromatic amino acid. Is preferred. At this time, glutamic acid is preferable as the acidic amino acid, and lysine is preferable as the basic amino acid. Moreover, as a nonpolar neutral amino acid, alanine, valine, leucine, and isoleucine are preferable, and as an aromatic amino acid, phenylalanine is preferable.
 本発明に使用されるポリアミノ酸は、その構造中の一部又は全ての極性を有する基に塩が配位した構造であっても良い。極性を有する基に対する塩の割合は、ポリアミノ酸からなる繊維構造体を電界紡糸法により製造する際に、例えば、ポリアミノ酸の溶媒への溶解性及び/又は得られる繊維構造体の平均繊維径が最適となる観点から決定される。塩としては、例えばナトリウム、カリウム等のアルカリ金属塩;マグネシウム、カルシウム等のアルカリ土類金属塩;アンモニア等の無機塩基;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2-アミノ-2-メチル-1-プロパノール、2-アミノ-2-メチル-1,3-プロパンジオール、リジン、オルニチン、アルギニン等の有機アミン塩;塩酸塩、硫酸塩、炭酸塩、リン酸塩等の無機酸塩;酢酸塩、酒石酸塩、クエン酸塩、p-トルエンスルホン酸塩、グリコール酸塩、リンゴ酸塩、乳酸塩、脂肪酸塩、酸性アミノ酸塩、ピログルタミン酸塩等の有機酸塩を挙げることができる。これらは、1種単独又は2種以上の組み合わせの何れであっても良い。 The polyamino acid used in the present invention may have a structure in which a salt is coordinated to a part or all of the polar groups in the structure. The ratio of the salt to the polar group is such that, when a fiber structure composed of a polyamino acid is produced by an electrospinning method, for example, the solubility of the polyamino acid in a solvent and / or the average fiber diameter of the resulting fiber structure is It is determined from the viewpoint of being optimal. Examples of the salt include alkali metal salts such as sodium and potassium; alkaline earth metal salts such as magnesium and calcium; inorganic bases such as ammonia; monoethanolamine, diethanolamine, triethanolamine, 2-amino-2-methyl-1 Organic amine salts such as propanol, 2-amino-2-methyl-1,3-propanediol, lysine, ornithine, arginine; inorganic acid salts such as hydrochloride, sulfate, carbonate, phosphate; acetate, Examples thereof include organic acid salts such as tartrate, citrate, p-toluenesulfonate, glycolate, malate, lactate, fatty acid salt, acidic amino acid salt and pyroglutamate. These may be used alone or in combination of two or more.
 本発明に使用されるポリアミノ酸の調製法は、アミノ酸又はその誘導体が重合した構造に調製される方法であれば特に制限されないが、例えば、N-カルボキシ-α-アミノ酸無水物又はN-カルボキシ-α-アミノ酸誘導体無水物を有機溶媒又は水に溶解又は懸濁させ、必要に応じてこれに重合開始剤を加える方法を挙げることができる。 The method for preparing the polyamino acid used in the present invention is not particularly limited as long as it is a method in which an amino acid or a derivative thereof is prepared into a polymerized structure. For example, N-carboxy-α-amino acid anhydride or N-carboxy- An example is a method in which an α-amino acid derivative anhydride is dissolved or suspended in an organic solvent or water, and a polymerization initiator is added thereto if necessary.
 前記有機溶媒の例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、石油エーテル、1,4-ジオキサン、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、酢酸エチル、酢酸ブチル、トリフルオロ酢酸、酢酸、ギ酸、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、トリクロロエタン、トリクロロエチレン、トリフルオロエタン、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,2-トリフルオロエタノール、ヘキサフルオロアセトン、メタノール、エタノール、1-プロパノール、2-プロパノール、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド、ピリジン、アセトニトリル、トリメチルアミン、トリエチルアミン、トリブチルアミン等を挙げることができる。これらは、1種単独又は2種以上の組み合わせの何れであっても良い。 Examples of the organic solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, diethyl ether, diisopropyl ether, petroleum ether, 1,4-dioxane, benzene, toluene, xylene, hexane, cyclohexane, ethyl acetate, butyl acetate. , Trifluoroacetic acid, acetic acid, formic acid, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, trichloroethane, trichloroethylene, trifluoroethane, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,2-trifluoroethanol, hexafluoroacetone, methanol, ethanol, 1-propanol, 2-propanol, formamide, N, N-dimethylformamide, N, N-dimethyl Acetamide, N- methylpyrrolidone, dimethyl sulfoxide, pyridine, acetonitrile, may be mentioned trimethylamine, triethylamine, tributylamine and the like. These may be used alone or in combination of two or more.
 前記重合開始剤の例としては、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、1,4-シクロヘキサンジアミン、1,2-シクロヘキサンジアミン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、トルエン-2,4-ジアミン、4,4’-ジフェニルメタンジアミン、イソホロンジアミン等の一級ジアミン;メチルアミン、エチルアミン、1-プロピルアミン等の一級モノアミン;メタノールアミン、エタノールアミン、ジエタノールアミン等のアルコールアミン;ジメチルアミン、ジエチルアミン、ジプロピルアミン等の二級アミン;N,N-ジメチルエチレンジアミン、N,N-ジメチル-1,3-プロパンジアミン等の一級三級ジアミン;トリメチルアミン、トリエチルアミン、トリブチルアミン等の三級アミン;ポリエーテルジアミン、ポリエステルジアミン等のアミノ基含有ポリマー;メタノール、エタノール等の一級アルコール;イソプロパノール等の二級アルコール;エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ヘキサメチレングリコール等のグリコール類;ポリエーテルジオール、ポリエステルジオール等の水酸基含有ポリマー;チオール類等を挙げることができる。これらは、1種単独又は2種以上の組み合わせの何れであっても良い。 Examples of the polymerization initiator include ethylenediamine, propylenediamine, hexamethylenediamine, 1,4-cyclohexanediamine, 1,2-cyclohexanediamine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, and toluene-2. Primary amines such as methylamine, ethylamine and 1-propylamine; Alcohol amines such as methanolamine, ethanolamine and diethanolamine; Dimethylamine and diethylamine Secondary amines such as dipropylamine; primary tertiary diamines such as N, N-dimethylethylenediamine and N, N-dimethyl-1,3-propanediamine; trimethylamine and triethylamine Tertiary amines such as tributylamine; amino group-containing polymers such as polyether diamine and polyester diamine; primary alcohols such as methanol and ethanol; secondary alcohols such as isopropanol; ethylene glycol, propylene glycol, 1,4-butanediol, hexa Examples include glycols such as methylene glycol; hydroxyl group-containing polymers such as polyether diol and polyester diol; thiols. These may be used alone or in combination of two or more.
 2種以上のアミノ酸を用いてポリアミノ酸を調製する場合は、各種アミノ酸に対応するN-カルボキシ-α-アミノ酸(誘導体を含む)無水物を適宜混合して有機溶媒に溶解又は懸濁させ、必要に応じてこれに重合開始剤を加えて、コポリマーを形成させることができる。アミノ酸の混合比は、例えば2種のアミノ酸であれば、モル比として95:5~5:95、好ましくは90:10~10:90、より好ましくは70:30~30:70とすることができる。なお、当該混合比は、用いるN-カルボキシ-α-アミノ酸無水物のモル比に基づいて算出することができる。 When preparing polyamino acids using two or more amino acids, N-carboxy-α-amino acids (including derivatives) anhydrides corresponding to various amino acids are mixed appropriately and dissolved or suspended in an organic solvent. Depending on this, a polymerization initiator can be added to this to form a copolymer. The mixing ratio of amino acids is, for example, 95: 5 to 5:95, preferably 90:10 to 10:90, more preferably 70:30 to 30:70 in terms of molar ratio for two types of amino acids. it can. The mixing ratio can be calculated based on the molar ratio of the N-carboxy-α-amino acid anhydride to be used.
 N-カルボキシ-α-脂肪族アミノ酸無水物及びN-カルボキシ-α-芳香族アミノ酸無水物の何れとも異なるN-カルボキシ-α-アミノ酸無水物を、N-カルボキシ-α-脂肪族アミノ酸無水物もしくはN-カルボキシ-α-芳香族アミノ酸無水物と混合及び/又は重合してコポリマーを形成させることで、有機溶媒への溶解性を高くすることができる。かかるN-カルボキシ-α-アミノ酸無水物としては、アスパラギン酸-β-メチルエステル、アスパラギン酸-β-ベンジルエステル、グルタミン酸-γ-メチルエステル、Nε-ベンジルオキシカルボニル-リジン、Nδ-ベンジルオキシカルボニル-オルニチン、O-ベンジル-セリン又はO-ベンジル-スレオニンに対応するN-カルボキシ-α-アミノ酸(誘導体を含む)無水物が好ましく、グルタミン酸-γ-メチルエステル又はNε-ベンジルオキシカルボニル-リジンに対応するN-カルボキシ-α-アミノ酸無水物がより好ましい。これらは、1種単独又は2種以上の組み合わせの何れであっても良い。 An N-carboxy-α-aliphatic amino acid anhydride which is different from any of the N-carboxy-α-aliphatic amino acid anhydride and the N-carboxy-α-aromatic amino acid anhydride, By mixing and / or polymerizing with an N-carboxy-α-aromatic amino acid anhydride to form a copolymer, the solubility in an organic solvent can be increased. Such N-carboxy-α-amino acid anhydrides include aspartic acid-β-methyl ester, aspartic acid-β-benzyl ester, glutamic acid-γ-methyl ester, Nε-benzyloxycarbonyl-lysine, Nδ-benzyloxycarbonyl- N-carboxy-α-amino acid (including derivatives) anhydrides corresponding to ornithine, O-benzyl-serine or O-benzyl-threonine are preferred, corresponding to glutamic acid-γ-methyl ester or Nε-benzyloxycarbonyl-lysine N-carboxy-α-amino acid anhydride is more preferred. These may be used alone or in combination of two or more.
 本発明に使用されるポリアミノ酸の調製法は、上述のN-カルボキシ-α-アミノ酸無水物又はN-カルボキシ-α-アミノ酸誘導体無水物を用いる方法の他に、微生物を使ってγ-ポリグルタミン酸(γ-PGA)を調製する方法、微生物を使ってε-ポリリジンを調製する方法等を挙げることができる。 In addition to the method using the above-mentioned N-carboxy-α-amino acid anhydride or N-carboxy-α-amino acid derivative anhydride, a method for preparing the polyamino acid used in the present invention includes γ-polyglutamic acid using a microorganism. Examples thereof include a method for preparing (γ-PGA) and a method for preparing ε-polylysine using a microorganism.
 本発明に使用されるポリアミノ酸は、構成単位となるアミノ酸残基の側鎖に保護基を結合させることができる。本明細書において、保護基とは、アミノ酸の側鎖における反応性の高い特性基を、他の化合物と反応しないように保護する目的で用いられる原子団のことをいう。保護基は、上記のようなポリアミノ酸の調製時に結合させていてもよく、または調製した後に結合させてもよい。また、保護基は、ポリアミノ酸を構成する全てのアミノ酸残基の側鎖に結合していてもよく、あるいは一部のアミノ酸残基の側鎖のみに結合していてもよい。本発明においては、繊維構造体における生体組織又は細胞の接着抑制効果を高めることができるため、ポリアミノ酸に保護基が結合されていることが好ましい。 In the polyamino acid used in the present invention, a protecting group can be bonded to the side chain of an amino acid residue serving as a structural unit. In the present specification, the protecting group refers to an atomic group used for the purpose of protecting a highly reactive characteristic group in the side chain of an amino acid so as not to react with other compounds. The protecting group may be bonded during the preparation of the polyamino acid as described above, or may be bonded after the preparation. Further, the protecting group may be bonded to the side chains of all amino acid residues constituting the polyamino acid, or may be bonded only to the side chains of some amino acid residues. In the present invention, it is preferable that a protective group is bonded to the polyamino acid because the adhesion suppressing effect of living tissue or cells in the fiber structure can be enhanced.
 保護基としては、アミノ酸残基の側鎖における反応性の高い特性基を不活性な官能基に変換し得るものであれば特に限定されない。例えば、アミノ基の保護基としては、ベンジルオキシカルボニル基、p-メトキシベンジルオキシカルボニル基等の置換ベンジルオキシカルボニル基;tert-ブトキシカルボニル基、p-ビフェニルイソプロピルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基等のウレタン型保護基;ホルミル基、フタロイル基、トリフルオロアセチル基、p-トルエンスルホニル基、o-ニトロフェニルスルフェニル基等のアシル型保護基;トリチル基、ベンジル基、2-ベンゾイル-1-メチルビニル基等のアルキル型保護基;2-ヒドロキシアリリデン基等のアリリデン型保護基が挙げられる。カルボキシル基の保護基としては、メチル基、エチル基、ベンジル基、tert-ブチル基、p-ニトロベンジル基等の置換ベンジルエステル;フェナシル基;トリクロロエチル基;シクロヘキシル基等が挙げられ、主にエステルの形で保護される。グアニジノ基の保護基としては、ニトロ基、p-トルエンスルホニル基、ベンジルオキシカルボニル基等が挙げられる。イミダゾリル基の保護基としては、ベンジル基、ベンジルオキシカルボニル基、p-トルエンスルホニル基、トリチル基、ジフェニルメチル基、ジニトロフルオロベンゼン基、tert-ブトキシカルボニル基等が挙げられる。カルバミド基の保護基としては、キサンチル基、ビス-2,4-ジメトキシベンジル基、4,4’-ジメトキシベンズヒドリル基等が挙げられる。ヒドロキシ基の保護基としては、ベンジル基、置換ベンジル基、tert-ブチル基等のエーテル系の保護基;アセチル基、トリフルオロアセチル基、ベンジルオキシカルボニル基等のアシル系の保護基が挙げられる。メルカプト基の保護基としては、ベンジル基、p-メトキシベンジル基等の置換ベンジル基;トリチル基;ベンズヒドリル基;アセタミドメチル基;カルボメトキシスルフェニル基等が挙げられる。インドリル基の保護基としては、ホルミル基等が挙げられる。本発明では、これらの保護基の中でも、メチル基、ベンジルオキシカルボニル基、9-フルオレニルメチルカルボニル基、トリフルオロアセチル基が好ましい。 The protecting group is not particularly limited as long as it can convert a highly reactive characteristic group in the side chain of an amino acid residue into an inactive functional group. For example, amino-protecting groups include substituted benzyloxycarbonyl groups such as benzyloxycarbonyl group and p-methoxybenzyloxycarbonyl group; tert-butoxycarbonyl group, p-biphenylisopropyloxycarbonyl group, 9-fluorenylmethyl Urethane-type protecting groups such as oxycarbonyl group; acyl-type protecting groups such as formyl group, phthaloyl group, trifluoroacetyl group, p-toluenesulfonyl group, o-nitrophenylsulfenyl group; trityl group, benzyl group, 2-benzoyl Examples thereof include alkyl-type protecting groups such as -1-methylvinyl group; and arylidene-type protecting groups such as 2-hydroxyarylidene group. Examples of the protecting group for the carboxyl group include substituted benzyl esters such as methyl group, ethyl group, benzyl group, tert-butyl group, and p-nitrobenzyl group; phenacyl group; trichloroethyl group; cyclohexyl group and the like. Protected in the form of Examples of protecting groups for guanidino groups include nitro groups, p-toluenesulfonyl groups, benzyloxycarbonyl groups, and the like. Examples of the protecting group for the imidazolyl group include a benzyl group, a benzyloxycarbonyl group, a p-toluenesulfonyl group, a trityl group, a diphenylmethyl group, a dinitrofluorobenzene group, and a tert-butoxycarbonyl group. Examples of the protecting group for the carbamide group include a xanthyl group, a bis-2,4-dimethoxybenzyl group, and a 4,4'-dimethoxybenzhydryl group. Examples of the protective group for the hydroxy group include ether-type protective groups such as a benzyl group, a substituted benzyl group, and a tert-butyl group; and acyl-type protective groups such as an acetyl group, a trifluoroacetyl group, and a benzyloxycarbonyl group. Examples of the protecting group for the mercapto group include substituted benzyl groups such as a benzyl group and a p-methoxybenzyl group; a trityl group; a benzhydryl group; an acetamidomethyl group; and a carbomethoxysulfenyl group. Examples of the protecting group for the indolyl group include a formyl group. In the present invention, among these protecting groups, a methyl group, a benzyloxycarbonyl group, a 9-fluorenylmethylcarbonyl group, and a trifluoroacetyl group are preferable.
 本発明に使用されるポリアミノ酸は、上記のようにして調製した後、さらに、化学修飾を施すこともできる。例えば、ポリ-γ-メチル-グルタミン酸の場合であれば、これにアルカリを作用させてメチルエステル基の一部又は全てがケン化された構造を有するポリアミノ酸とすることができ、または、反応性の高い置換基をエステル交換により導入させてメチルエステル基の一部又は全てをエステル交換した構造を有するポリアミノ酸とすることができる。あるいは、アミノ化合物等の求核性官能基を反応させてメチルエステル基の一部又は全てをアミド基に変換した構造を有するポリアミノ酸とすることができる。また、ポリグルタミン酸の場合であれば、これにアルキルアミンを反応させてカルボキシル基の一部又は全てをアルキルアミド基に変換した構造を有するポリアミノ酸とすることができる。 The polyamino acid used in the present invention can be further chemically modified after being prepared as described above. For example, in the case of poly-γ-methyl-glutamic acid, it can be converted to a polyamino acid having a structure in which part or all of the methyl ester group is saponified by allowing alkali to act on this, or reactive. Can be made into a polyamino acid having a structure in which a part or all of the methyl ester group is transesterified by introducing a high substituent group by transesterification. Alternatively, a polyamino acid having a structure in which a nucleophilic functional group such as an amino compound is reacted to convert part or all of the methyl ester group into an amide group can be obtained. In the case of polyglutamic acid, a polyamino acid having a structure in which an alkylamine is reacted with this to convert a part or all of the carboxyl group into an alkylamide group can be obtained.
 本発明におけるポリアミノ酸の重量平均分子量は、特に限定されないが、通常1,000以上である。本発明では、溶液中におけるポリマー同士の絡み合いの程度を高めてナノファイバーの製造性を向上させるという観点から、好ましくは10,000以上であり、より好ましくは100,000以上である。 The weight average molecular weight of the polyamino acid in the present invention is not particularly limited, but is usually 1,000 or more. In the present invention, it is preferably 10,000 or more, more preferably 100,000 or more, from the viewpoint of increasing the degree of entanglement between polymers in the solution and improving the productivity of the nanofiber.
 本発明に使用されるポリアミノ酸は、アミノ酸又はその誘導体に加えて、さらに、アミノ酸又はその誘導体以外の化合物が重合した構造であっても良く、例えば、N-カルボキシ-α-アミノ酸無水物とウレタンプレポリマーとを重合して得られる共重合体等を挙げることができる。 The polyamino acid used in the present invention may have a structure in which a compound other than an amino acid or a derivative thereof is polymerized in addition to the amino acid or a derivative thereof. For example, N-carboxy-α-amino acid anhydride and urethane Examples thereof include a copolymer obtained by polymerizing a prepolymer.
 上記ポリアミノ酸を含有する本発明の繊維構造体は、平均繊維径(直径)が5nm以上1,500nm未満、好ましくは10nm以上1,000nm未満、より好ましくは50nm以上500nm未満のナノファイバーから構成される。繊維構造体の平均繊維径は、当業者に公知の方法を用いて測定することができる。具体的には、繊維構造体の表面を走査型電子顕微鏡で無作為に撮影した写真から、任意に10箇所を選択して繊維の直径を測定し、その平均値を求めて平均繊維径とすることができる。繊維構造体の写真は、500~200,000倍の倍率で拡大して撮影したものを用いることができる。本発明においては、より具体的には、後述の実施例に従って繊維構造体の平均繊維径を測定することができる。 The fiber structure of the present invention containing the polyamino acid is composed of nanofibers having an average fiber diameter (diameter) of 5 nm or more and less than 1,500 nm, preferably 10 nm or more and less than 1,000 nm, more preferably 50 nm or more and less than 500 nm. The The average fiber diameter of the fiber structure can be measured using a method known to those skilled in the art. Specifically, from a photograph of the surface of the fiber structure taken at random with a scanning electron microscope, 10 positions are arbitrarily selected, the fiber diameter is measured, and the average value is obtained as the average fiber diameter. be able to. For the photograph of the fiber structure, a photograph taken at a magnification of 500 to 200,000 times can be used. In the present invention, more specifically, the average fiber diameter of the fiber structure can be measured according to Examples described later.
 本明細書において、繊維構造体とは、単数又は複数の繊維により形成された構造体をいい、その形態としては、例えば、フィラメント、ステーブル、フィラメントヤーン、スパンヤーン(紡績糸)、織物、編物、不織布、紙、シート状物、チューブ、メッシュ、糸状物等が挙げられる。本発明において好ましい繊維構造体の形態は、不織布である。 In this specification, the fiber structure refers to a structure formed of one or a plurality of fibers, and examples of the form thereof include a filament, a stable, a filament yarn, a spun yarn, a woven fabric, a knitted fabric, Nonwoven fabric, paper, sheet-like material, tube, mesh, thread-like material and the like can be mentioned. A preferred form of the fiber structure in the present invention is a nonwoven fabric.
 本発明の繊維構造体は、電界紡糸装置を用いて電界紡糸することによって製造される。電界紡糸装置は、例えば、カトーテック社ナノファイバーエレクトロスピニングユニット(NEU)を挙げることができ、シリンジ、ノズル(ニードル)、シリンジポンプ、高電圧発生装置、コレクターを備えている。 The fiber structure of the present invention is manufactured by electrospinning using an electrospinning apparatus. Examples of the electrospinning apparatus include a nanofiber electrospinning unit (NEU) manufactured by Kato Tech Co., Ltd., which includes a syringe, a nozzle (needle), a syringe pump, a high voltage generator, and a collector.
 本発明のポリアミノ酸を含有する繊維構造体の製造方法は、以下の工程を含有することを特徴とする。
工程1)ポリアミノ酸を溶媒に溶解して溶液とする工程、
工程2)シリンジ内に入れた前記溶液をシリンジの先に取り付けたノズルから連続的に吐出する工程、
工程3)前記吐出において高電圧発生装置でノズルとコレクターの間に高電圧を印加する工程、
工程4)ノズルとコレクターの間で前記吐出溶液を繊維の形状に変える工程、
工程5)当該繊維をコレクター上に捕集する工程。
The manufacturing method of the fiber structure containing the polyamino acid of the present invention comprises the following steps.
Step 1) Step of dissolving a polyamino acid in a solvent to form a solution,
Step 2) A step of continuously discharging the solution put in the syringe from a nozzle attached to the tip of the syringe,
Step 3) A step of applying a high voltage between the nozzle and the collector with a high voltage generator in the discharge,
Step 4) changing the discharged solution into a fiber shape between the nozzle and the collector,
Step 5) A step of collecting the fiber on a collector.
 工程1における溶液中のポリアミノ酸の濃度は、使用するポリアミノ酸の種類、ポリアミノ酸を溶解する溶媒の種類等により適宜に設定されるが、一般には、0.1~60重量%、好ましくは1~45重量%、より好ましくは1~20重量%とすることができる。ポリアミノ酸の濃度を上記範囲より高くすると溶液の粘度が高くなり紡糸性が不良となる傾向がある。また、該濃度を上記範囲より低くすると、繊維構造体の製造に多大な時間を要することになる。2種以上のポリアミノ酸を用いる場合は、各種ポリアミノ酸を適宜混合して溶解させた溶液を調製すればよい。ポリアミノ酸の混合比は、例えば2種のポリアミノ酸であれば、重量比として95:5~5:95、好ましくは90:10~10:90とすることができる。 The concentration of the polyamino acid in the solution in Step 1 is appropriately set depending on the type of polyamino acid to be used, the type of solvent for dissolving the polyamino acid, etc., but is generally 0.1 to 60% by weight, preferably 1 It can be made -45 wt%, more preferably 1-20 wt%. If the polyamino acid concentration is higher than the above range, the viscosity of the solution tends to increase and the spinnability tends to be poor. If the concentration is lower than the above range, it takes a long time to produce the fiber structure. When two or more polyamino acids are used, a solution in which various polyamino acids are appropriately mixed and dissolved may be prepared. The mixing ratio of the polyamino acids can be, for example, 95: 5 to 5:95, preferably 90:10 to 10:90 as a weight ratio in the case of two kinds of polyamino acids.
 工程1における本発明に使用されるポリアミノ酸を溶解する溶媒としては、ポリアミノ酸を溶解し、かつ、繊維を形成する段階で蒸発等により除かれやすい溶媒であれば特に制限されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メタノール、エタノール、2-プロパノール、テトラヒドロフラン、ジエチルエーテル、石油エーテル、1,4-ジオキサン、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、酢酸エチル、酢酸ブチル、トリフルオロ酢酸、酢酸、ギ酸、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン、トリクロロエチレン、トリフルオロエタン、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,2-トリフルオロエタノール、ヘキサフルオロアセトン、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ピリジン、アセトニトリル、水等が挙げられる。 The solvent for dissolving the polyamino acid used in the present invention in Step 1 is not particularly limited as long as it is a solvent that dissolves the polyamino acid and is easily removed by evaporation or the like at the stage of forming the fiber. , Methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methanol, ethanol, 2-propanol, tetrahydrofuran, diethyl ether, petroleum ether, 1,4-dioxane, benzene, toluene, xylene, hexane, cyclohexane, ethyl acetate, butyl acetate, trifluoroacetic acid Acetic acid, formic acid, dichloromethane, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, trichloroethylene, trifluoroethane, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,2-to Trifluoroethanol, hexafluoroacetone, formamide, N, N- dimethylformamide, N, N- dimethylacetamide, N- methylpyrrolidone, pyridine, acetonitrile, water and the like.
 得られる繊維構造体の平均繊維径を制御できるという観点から、トリフルオロ酢酸、酢酸、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、トリクロロエタン、トリクロロエチレン、トリフルオロエタン、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,2-トリフルオロエタノール、N,N-ジメチルホルムアミド、水が好ましく、トリフルオロ酢酸、酢酸、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,2-トリフルオロエタノール、N,N-ジメチルホルムアミド、水がより好ましい。これらは、1種単独又は2種以上の組み合わせの何れであっても良い。 From the viewpoint of controlling the average fiber diameter of the resulting fiber structure, trifluoroacetic acid, acetic acid, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, trichloroethane, trichloroethylene, trifluoroethane, 1,1,1,1 3,3,3-hexafluoro-2-propanol, 2,2,2-trifluoroethanol, N, N-dimethylformamide, water are preferred, trifluoroacetic acid, acetic acid, dichloromethane, chloroform, 1,2-dichloroethane, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,2-trifluoroethanol, N, N-dimethylformamide, and water are more preferable. These may be used alone or in combination of two or more.
 工程1におけるポリアミノ酸の溶解については、必要に応じて、加温、超音波装置の使用、溶解補助剤の添加等の方法を用いることができる。溶解補助剤としては、具体的には、ナトリウム塩、カリウム塩等のアルカリ金属塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩、アンモニア等の無機塩基、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2-アミノ-2-メチル-1-プロパノール、2-アミノ-2-メチル-1,3-プロパンジオール、リジン、オルニチン、アルギニン等の有機アミン、塩酸、硫酸、リン酸等の無機酸、酒石酸、クエン酸、p-トルエンスルホン酸、グリコール酸、リンゴ酸、乳酸、脂肪酸、酸性アミノ酸、ピログルタミン酸等の有機酸を挙げることができる。これらは、1種単独又は2種以上の組み合わせの何れであっても良い。 For dissolution of the polyamino acid in Step 1, methods such as heating, use of an ultrasonic device, addition of a solubilizing agent, etc. can be used as necessary. Specific examples of solubilizing agents include alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as magnesium salts and calcium salts, inorganic bases such as ammonia, monoethanolamine, diethanolamine, and triethanolamine. Organic amines such as 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1,3-propanediol, lysine, ornithine and arginine, inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, tartaric acid And organic acids such as citric acid, p-toluenesulfonic acid, glycolic acid, malic acid, lactic acid, fatty acid, acidic amino acid, pyroglutamic acid. These may be used alone or in combination of two or more.
 工程2におけるポリアミノ酸溶液を吐出する速度は、吐出する溶液の粘度、電界紡糸装置のスケール等により適宜に設定されるが、一般には、0.1~60ml/時、好ましくは1~20ml/時とすることができる。吐出する速度を上記範囲より速くすると、吐出した溶液が液滴状態のままコレクター上に到達して、繊維どうしの融合等を引き起こす傾向がある。また、吐出する速度を上記範囲より遅くすると、繊維構造体の製造に多大な時間を要することになる。 The rate at which the polyamino acid solution is discharged in step 2 is appropriately set according to the viscosity of the solution to be discharged, the scale of the electrospinning apparatus, etc., but is generally 0.1 to 60 ml / hour, preferably 1 to 20 ml / hour. It can be. When the discharge speed is made faster than the above range, the discharged solution tends to reach the collector in the form of droplets and cause fusion of fibers and the like. Moreover, if the discharge speed is slower than the above range, it takes a long time to produce the fiber structure.
 工程2において溶液が吐出されるノズルは1個又は2個以上の何れでも良く、従って、溶液の吐出は1箇所又は2箇所以上の何れで行われても良い。また、工程4において形成された繊維の付着、工程2における吐出溶液からの固形物の析出等により、ノズルの吐出口が塞がれて工程2における溶液の吐出が妨げられる場合には、適当な方法により、これら付着物、析出物等を除きながら吐出を行うことで、溶液の吐出が妨げられることを回避することができる。 In step 2, the number of nozzles from which the solution is discharged may be one or two or more. Therefore, the discharge of the solution may be performed at one or two or more locations. In addition, if the discharge of the nozzle in the step 2 is blocked by the adhesion of the fibers formed in the step 4, the precipitation of solids from the discharged solution in the step 2, etc., it is appropriate. By discharging while removing these deposits, precipitates, etc., by the method, it is possible to prevent the discharge of the solution from being hindered.
 工程3におけるノズルとコレクターの間に印加する電圧は、吐出する溶液の粘度、電界紡糸装置のスケール等により適宜に設定されるが、一般には、5~50kV、好ましくは11~45kVとすることができる。本発明では、該電圧を11kV以上、好ましくは13kV以上、より好ましくは15kV以上、さらに好ましくは17kV以上、特に好ましくは19kV以上とすることができ、また該電圧を45kV以下、好ましくは40kV以下、より好ましくは35kV以下、さらに好ましくは30kV以下、特に好ましくは25kV以下とすることができる。印加する電圧を上記範囲より高くすると、ノズルとコレクターの間で放電する危険性がある。また、印加する電圧を上記範囲より低くすると、繊維径が小さくならない上に紡糸性が不良となる傾向がある。 The voltage applied between the nozzle and the collector in step 3 is appropriately set depending on the viscosity of the solution to be discharged, the scale of the electrospinning apparatus, etc., but is generally 5 to 50 kV, preferably 11 to 45 kV. it can. In the present invention, the voltage can be 11 kV or more, preferably 13 kV or more, more preferably 15 kV or more, further preferably 17 kV or more, particularly preferably 19 kV or more, and the voltage can be 45 kV or less, preferably 40 kV or less, More preferably, it can be 35 kV or less, more preferably 30 kV or less, and particularly preferably 25 kV or less. If the applied voltage is higher than the above range, there is a risk of discharge between the nozzle and the collector. On the other hand, when the applied voltage is lower than the above range, the fiber diameter is not reduced and the spinnability tends to be poor.
 工程4におけるノズルとコレクターの間隔は、電界紡糸装置のスケール等により適宜に設定されるが、一般には、5~50cm、好ましくは10~40cmとすることができる。本発明では、該間隔を10cm以上、好ましくは12cm以上、より好ましくは14cm以上、さらに好ましくは16cm以上、特に好ましくは18cm以上とすることができ、また該間隔を40cm以下、好ましくは35cm以下、より好ましくは30cm以下、さらに好ましくは25cm以下、特に好ましくは20cm以下とすることができる。該間隔を上記範囲より長くすると、形成された繊維がコレクターに届かずに、ノズルとコレクターの間の部位に付着してしまうことになる。また、該間隔を上記範囲より短くすると、吐出した溶液が液滴状態のままコレクター上に到達して、繊維どうしの融合等を引き起こす傾向がある。 The interval between the nozzle and the collector in step 4 is appropriately set depending on the scale of the electrospinning apparatus, but can be generally 5 to 50 cm, preferably 10 to 40 cm. In the present invention, the interval can be 10 cm or more, preferably 12 cm or more, more preferably 14 cm or more, still more preferably 16 cm or more, and particularly preferably 18 cm or more, and the interval can be 40 cm or less, preferably 35 cm or less, More preferably, it is 30 cm or less, More preferably, it is 25 cm or less, Most preferably, it can be 20 cm or less. When the interval is longer than the above range, the formed fiber does not reach the collector and adheres to the portion between the nozzle and the collector. If the interval is shorter than the above range, the discharged solution tends to reach the collector in the form of droplets and cause fusion of fibers.
 工程5によりコレクター上に形成された繊維構造体は、必要に応じて、中和、乾燥等の操作を行うことができる。例えば、本発明に使用されるポリアミノ酸を溶解する溶媒あるいは溶解補助剤に有機酸を用いた場合には、水酸化ナトリウム、水酸化カリウム、重炭酸ナトリウム等のアルカリ水溶液に浸漬する、アルカリ水溶液を噴霧する、あるいはアンモニア飽和蒸気中に放置する等の方法により、繊維構造体中に残存する有機酸を中和することができる。また、本発明に使用されるポリアミノ酸を揮発性が低い溶媒に溶解した場合には、加温する、乾燥空気を吹き付ける、真空もしくは減圧下に放置する等の方法により、繊維構造体中に残存する溶媒を除くことができる。 The fiber structure formed on the collector in step 5 can be subjected to operations such as neutralization and drying as necessary. For example, when an organic acid is used as a solvent or a solubilizing agent for dissolving the polyamino acid used in the present invention, an alkaline aqueous solution immersed in an alkaline aqueous solution such as sodium hydroxide, potassium hydroxide, or sodium bicarbonate is used. The organic acid remaining in the fiber structure can be neutralized by a method such as spraying or leaving it in ammonia saturated vapor. Further, when the polyamino acid used in the present invention is dissolved in a solvent having low volatility, it remains in the fiber structure by a method such as heating, blowing dry air, or leaving it under vacuum or reduced pressure. Solvent to be removed.
 工程5によりコレクター上に形成された繊維構造体の厚みは、用途に応じ任意であるが、例えば、組織や細胞の足場材として使用する場合は1~30μm程度、人工皮膚として使用する場合は50~100μm程度である。 The thickness of the fiber structure formed on the collector in step 5 is arbitrary depending on the application. For example, it is about 1 to 30 μm when used as a scaffold for tissue or cells, and 50 when used as artificial skin. About 100 μm.
 工程1~5における電界紡糸を行う温度ならびに湿度は、本発明に使用されるポリアミノ酸を溶解する溶媒の種類等により適宜に設定されるが、一般には、5~30℃、相対湿度10~80%に調整される。 The temperature and humidity at which the electrospinning in Steps 1 to 5 is performed are appropriately set depending on the type of the solvent that dissolves the polyamino acid used in the present invention, but generally 5 to 30 ° C. and relative humidity 10 to 80. % Adjusted.
 工程1~5において使用されるノズルは、工程2において溶液を吐出することができ、かつ、工程3において高電圧を印加する際に電極となり得るものであれば如何なる形状、大きさでも良いが、例えば、注射針を挙げることができる。工程1~5を含有する電界紡糸に用いられる注射針の径は、一般には、0.01~2.0mm、好ましくは0.1~1.5mmとすることができる。注射針の径を上記範囲より大きくすると、吐出した溶液が液滴状態のままコレクター上に到達する傾向が高くなる。また、径を上記範囲より小さくすると、時間あたりの吐出量が少ないために繊維構造体の製造に多大な時間を要することになる。 The nozzle used in steps 1 to 5 may have any shape and size as long as it can discharge a solution in step 2 and can serve as an electrode when a high voltage is applied in step 3. For example, an injection needle can be mentioned. The diameter of the injection needle used for electrospinning including the steps 1 to 5 is generally 0.01 to 2.0 mm, preferably 0.1 to 1.5 mm. When the diameter of the injection needle is larger than the above range, the discharged solution tends to reach the collector in the form of droplets. On the other hand, if the diameter is smaller than the above range, the amount of discharge per hour is small, so that it takes a lot of time to manufacture the fiber structure.
 工程1~5において使用されるコレクターは、銅、アルミニウムあるいはステンレス鋼など導電性の良い金属を備え、工程3において高電圧を印加する際に電極となり得るものであれば如何なる形状、大きさでも良い。例えば、コレクターを円筒状の回転体とすることで、膜状、管状、あるいは、中空状の繊維構造体を得ることができる。さらに、本発明の繊維構造体をコレクターから容易に取り外すため、コレクターの電極としての機能を損なわないもの、例えば、アルミホイル、スパンボンド不織布、ガーゼ、マイクロナノファイバーシート等を、コレクター上に敷いて、これらの上に本発明の繊維構造体を形成させても良い。 The collector used in steps 1 to 5 may have any shape and size as long as it comprises a metal having good conductivity such as copper, aluminum, or stainless steel and can serve as an electrode when a high voltage is applied in step 3. . For example, a membrane-like, tubular, or hollow fiber structure can be obtained by using a collector as a cylindrical rotating body. Furthermore, in order to easily remove the fiber structure of the present invention from the collector, a material that does not impair the function of the collector electrode, such as aluminum foil, spunbond nonwoven fabric, gauze, micro-nanofiber sheet, etc., is laid on the collector. The fiber structure of the present invention may be formed on these.
 本発明の繊維構造体は、ポリアミノ酸を主成分として含有することを特徴とする。本明細書において、主成分とは、繊維構造体の原料として含まれる主な成分をいい、その含有量は、通常、繊維構造体の全重量に対して80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上である。 The fiber structure of the present invention is characterized by containing a polyamino acid as a main component. In the present specification, the main component means a main component contained as a raw material of the fiber structure, and the content thereof is usually 80% by weight or more, preferably 90% by weight with respect to the total weight of the fiber structure. As mentioned above, More preferably, it is 95 weight% or more.
 本発明のポリアミノ酸を含有する繊維構造体には、ポリアミノ酸に加えて、さらに、ポリアミノ酸以外の高分子化合物を含有することができる。このような高分子化合物としては、例えば、ポリ塩化ビニル、ポリアクリロニトリル、ポリ乳酸、ポリグリコール酸、ポリ乳酸-グリコール酸共重合体、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリスチレン、ポリカーボネート、ポリヘキサメチレンカーボネート、ポリアリレート、ポリビニルイソシアネート、ポリブチルイソシアネート、ポリメチルメタクリレート、ポリエチルメタクリレート、ポリプロピルメタクリレート、ポリブチルメタクリレート、ポリメチルアクリレート、ポリエチルアクリレート、ポリブチルアクリレート、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリパラフェニレンテレフタルアミド、ポリパラフェニレンテレフタルアミド-3,4’-オキシジフェニレンテレフタルアミド共重合体、ポリメタフェニレンイソフタルアミド、セルロースジアセテート、セルローストリアセテート、メチルセルロース、プロピルセルロース、ベンジルセルロース、カルボキシセルロース、カルボキシメチルセルロース、酸化再生セルロース、ヒアルロン酸、ヒアルロン酸ナトリウム、フィブロイン、天然ゴム、ポリビニルアルコール、ポリビニルアセテート、ポリビニルメチルエーテル、ポリビニルエチルエーテル、ポリビニルプロピルエーテル、ポリビニルブチルエーテル、ポリビニリデンクロリド、ポリ-N-ビニルピロリドン、ポリ-N-ビニルカルバゾル、ポリ-N-ビニルピリジン、ポリビニルメチルケトン、ポリビニルイソプロペニルケトン、ポリエチレンオキシド、ポリプロピレンオキシド、ポリシクロペンテンオキシド、ポリスチレンサルホン、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612等の合成高分子化合物ならびにこれらの共重合体;コラーゲン、アテロコラーゲン、ゼラチン、ラミニン、フィブロネクチン、セリシン等の蛋白質類;キチン、キトサン、セルロース等の多糖類等を挙げることができる。これらは、1種単独又は2種以上の組み合わせの何れであっても良い。 The fiber structure containing the polyamino acid of the present invention can further contain a polymer compound other than the polyamino acid in addition to the polyamino acid. Examples of such a polymer compound include polyvinyl chloride, polyacrylonitrile, polylactic acid, polyglycolic acid, polylactic acid-glycolic acid copolymer, polycaprolactone, polybutylene succinate, polyethylene succinate, polystyrene, polycarbonate, Polyhexamethylene carbonate, polyarylate, polyvinyl isocyanate, polybutyl isocyanate, polymethyl methacrylate, polyethyl methacrylate, polypropyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, polyethylene terephthalate, polytrimethylene terephthalate , Polyethylene naphthalate, polyparaphenylene terephthalamide, polyparaphenylene terephthal Luamide-3,4'-oxydiphenylene terephthalamide copolymer, polymetaphenylene isophthalamide, cellulose diacetate, cellulose triacetate, methylcellulose, propylcellulose, benzylcellulose, carboxycellulose, carboxymethylcellulose, oxidized regenerated cellulose, hyaluronic acid, Sodium hyaluronate, fibroin, natural rubber, polyvinyl alcohol, polyvinyl acetate, polyvinyl methyl ether, polyvinyl ethyl ether, polyvinyl propyl ether, polyvinyl butyl ether, polyvinylidene chloride, poly-N-vinyl pyrrolidone, poly-N-vinyl carbazole, poly -N-vinyl pyridine, polyvinyl methyl ketone, polyvinyl isopropenyl ketone, polyethylene Synthetic polymer compounds such as xoxide, polypropylene oxide, polycyclopentene oxide, polystyrene sulfone, nylon 6, nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, and copolymers thereof; collagen, atelocollagen, gelatin, laminin And proteins such as fibronectin and sericin; polysaccharides such as chitin, chitosan and cellulose. These may be used alone or in combination of two or more.
 上記に例示した高分子化合物のうち、ポリアミノ酸を含有する繊維構造体の強度又は/及び形状を保持あるいは向上させる観点から、好ましくは、ポリ乳酸、ポリグリコール酸、ポリ乳酸-グリコール酸共重合体、ポリカプロラクトン、カルボキシメチルセルロース、酸化再生セルロース、ヒアルロン酸、ヒアルロン酸ナトリウム、ポリビニルアルコール、コラーゲン、アテロコラーゲン、ゼラチン、ラミニン、フィブロネクチン、セリシン、キチン、キトサン、セルロースを用いることができ、より好ましくは、ポリ乳酸、ポリグリコール酸、ポリ乳酸-グリコール酸共重合体、カルボキシメチルセルロース、酸化再生セルロース、ヒアルロン酸ナトリウム、ポリビニルアルコール、コラーゲン、ゼラチンを用いることができる。これらは、1種単独又は2種以上の組み合わせの何れであっても良い。 Of the polymer compounds exemplified above, polylactic acid, polyglycolic acid, polylactic acid-glycolic acid copolymer are preferable from the viewpoint of maintaining or improving the strength or / and shape of the fiber structure containing a polyamino acid. , Polycaprolactone, carboxymethylcellulose, oxidized regenerated cellulose, hyaluronic acid, sodium hyaluronate, polyvinyl alcohol, collagen, atelocollagen, gelatin, laminin, fibronectin, sericin, chitin, chitosan, cellulose, more preferably polylactic acid Polyglycolic acid, polylactic acid-glycolic acid copolymer, carboxymethyl cellulose, oxidized regenerated cellulose, sodium hyaluronate, polyvinyl alcohol, collagen, and gelatin can be used. These may be used alone or in combination of two or more.
 前記高分子化合物のポリアミノ酸に対する割合は、得られる繊維構造体の機能等により適宜設定されるが、一般には、1~80重量%、好ましくは5~50重量%とすることができる。ポリアミノ酸に対する割合を上限範囲よりも高くすると、ポリアミノ酸に基づく繊維構造体の機能が損なわれる傾向にあり、また、ポリアミノ酸に対する割合を下限範囲よりも低くすると、高分子化合物を含有した効果が認められにくくなる。 The ratio of the polymer compound to the polyamino acid is appropriately set depending on the function of the fiber structure to be obtained, and can be generally 1 to 80% by weight, preferably 5 to 50% by weight. When the ratio with respect to the polyamino acid is higher than the upper limit range, the function of the fiber structure based on the polyamino acid tends to be impaired, and when the ratio with respect to the polyamino acid is lower than the lower limit range, the effect of containing the polymer compound is obtained. It becomes difficult to be recognized.
 前記高分子化合物は、ポリアミノ酸と混ぜ合わせた状態で電界紡糸を行い繊維構造体化しても良く、あるいは、ポリアミノ酸と別々に電界紡糸を行い繊維構造体化した後に両者を合わせても良い。 The polymer compound may be electrospun in a state of being mixed with a polyamino acid to form a fiber structure, or may be combined after electrospinning separately from the polyamino acid to form a fiber structure.
 本発明の繊維構造体は、医療用材料に広く使用することができる。具体的には、再生医療用の足場、手術用縫合糸、創傷被覆材、人工血管、薬物担持基材等の医療用材料に使用することができる。その他、本発明の繊維構造体は細胞培養装置における細胞担持基材、バイオリアクターにおける生物体等の担持基材、各種フィルター、触媒担持基材、衣料用基材、化粧品用基材など、各種用途にも用いることができる。 The fiber structure of the present invention can be widely used for medical materials. Specifically, it can be used for medical materials such as scaffolds for regenerative medicine, surgical sutures, wound dressings, artificial blood vessels, and drug-supporting substrates. In addition, the fiber structure of the present invention is used in various applications such as a cell-supporting substrate in a cell culture apparatus, a supporting substrate such as a living organism in a bioreactor, various filters, a catalyst-supporting substrate, a clothing substrate, and a cosmetic substrate. Can also be used.
 本明細書において、足場又は足場材とは、再生医療分野における生体組織培養の基材であって、生体組織の欠損、修復、再生、治療を目的とした生体材料として機能する成形体をいい、例えば、三次元細胞培養基材、細胞凝集塊(スフェロイド)形成基材、癒着防止材等がこれに包含される。 In the present specification, the scaffold or scaffold is a biological tissue culture substrate in the field of regenerative medicine, and refers to a molded body that functions as a biological material for the purpose of defect, repair, regeneration, and treatment of biological tissue, For example, a three-dimensional cell culture substrate, a cell aggregate (spheroid) formation substrate, an adhesion prevention material, and the like are included in this.
 本発明の繊維構造体は、in vivoにおける細胞外マトリクスと同程度の繊維径を有していることから、生体内において容易に分解することが可能である。そのため、該繊維構造体は、生体内において生体組織や細胞が修復、再生された後には速やかに消失することが望まれる足場材に好適である。 Since the fiber structure of the present invention has a fiber diameter comparable to that of an extracellular matrix in vivo, it can be easily decomposed in vivo. Therefore, the fibrous structure is suitable for a scaffold material that is desired to disappear quickly after a living tissue or cell is repaired and regenerated in a living body.
 また、本発明の繊維構造体は、細胞や生体組織の接着抑制効果が要求される足場材に特に好適であり、例えば細胞凝集塊(スフェロイド)形成基材又は癒着防止材として有用である。また、かかる効果により創傷被覆材、止血用材料等にも用いることができるほか、血栓形成回避を必要とする人工臓器(人工血管、人工肺、人工腎臓、人工心臓)又は医療用器具(カテーテル、カニューレ、人工透析器、透析膜、注射針、注射筒、血液貯蔵用容器、シャント、血液回路)の表面被覆材等にも有用である。 Further, the fiber structure of the present invention is particularly suitable as a scaffold material that is required to have an effect of suppressing the adhesion of cells and living tissues, and is useful as, for example, a cell aggregate formation base (spheroid) formation material or an adhesion prevention material. In addition, it can be used for wound dressings, hemostatic materials, etc. due to such effects, as well as artificial organs (artificial blood vessels, artificial lungs, artificial kidneys, artificial hearts) that need to avoid thrombus formation, or medical devices (catheters, It is also useful as a surface covering material for cannulas, artificial dialyzers, dialysis membranes, injection needles, syringes, blood storage containers, shunts, blood circuits).
 本発明の繊維構造体は、生体組織の部位に対応した形状、構造に成形して、皮膚、血管、神経、骨、軟骨、食道、弁、その他臓器などの生体組織の欠損、修復、再生、治療のために直接的又は間接的に使用することができる。また、繊維構造体又はその繊維中に、抗炎症剤、抗アレルギー剤、抗腫瘍剤、ビタミン類等の種々の薬剤を含有させることもできる。 The fiber structure of the present invention is formed into a shape and structure corresponding to a part of a living tissue, and the defect, repair, regeneration, etc. of living tissue such as skin, blood vessel, nerve, bone, cartilage, esophagus, valve, other organs, It can be used directly or indirectly for treatment. Moreover, various agents, such as an anti-inflammatory agent, an antiallergic agent, an antitumor agent, vitamins, can also be contained in a fiber structure or its fiber.
 以下に、実施例を挙げてさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
〔製造例1〕 ポリ-L-アラニン繊維構造体
 ベンゼンにN-カルボキシ-L-アラニン無水物を1.4重量%入れて2~3日間撹拌を行い、ポリ-L-アラニンを得た。これをジクロロメタン-トリフルオロ酢酸混合溶媒(50:50(v/v))に溶かして、4重量%のポリ-L-アラニン溶液とした。この溶液を、直径940μmのノズル(ニードル)をつないだシリンジ(テルモ社)に入れ、ノズルとコレクターとの間隔を10~15cmとして、その間に20~38kVの電圧を印加しながら、溶液を吐出させて、コレクター上にポリ-L-アラニンからなる繊維構造体を得た。得られたポリ-L-アラニンからなる繊維構造体表面の走査型電子顕微鏡(SEM)写真を図1に示す。
[Production Example 1] Poly-L-alanine fiber structure 1.4% by weight of N-carboxy-L-alanine anhydride was added to benzene and stirred for 2 to 3 days to obtain poly-L-alanine. This was dissolved in a dichloromethane-trifluoroacetic acid mixed solvent (50:50 (v / v)) to obtain a 4% by weight poly-L-alanine solution. This solution is put into a syringe (Terumo) connected with a nozzle (needle) having a diameter of 940 μm, the distance between the nozzle and the collector is set to 10 to 15 cm, and a voltage of 20 to 38 kV is applied between them to discharge the solution. Thus, a fiber structure composed of poly-L-alanine was obtained on the collector. A scanning electron microscope (SEM) photograph of the surface of the obtained fiber structure composed of poly-L-alanine is shown in FIG.
〔製造例2〕 ポリ-L-ロイシン繊維構造体
 1,2-ジクロロエタンにN-カルボキシ-L-ロイシン無水物を11.1重量%入れた後、重合開始剤としてN,N-ジメチル-1,3-プロパンジアミンを加えた。2~3日間撹拌を行い、ポリ-L-ロイシンを得た。これをジクロロメタン-トリフルオロ酢酸混合溶媒(30:70(v/v))に溶かして、4重量%のポリ-L-ロイシン溶液とした。この溶液から、製造例1と同様の方法により、ポリ-L-ロイシンからなる繊維構造体を得た。
[Production Example 2] Poly-L-leucine fiber structure After adding 11.1 wt% of N-carboxy-L-leucine anhydride to 1,2-dichloroethane, N, N-dimethyl-1, 3-Propanediamine was added. The mixture was stirred for 2 to 3 days to obtain poly-L-leucine. This was dissolved in a dichloromethane-trifluoroacetic acid mixed solvent (30:70 (v / v)) to obtain a 4% by weight poly-L-leucine solution. From this solution, a fiber structure composed of poly-L-leucine was obtained in the same manner as in Production Example 1.
〔製造例3~7〕 各種ポリアミノ酸繊維構造体
 製造例1もしくは2と同様の方法により、重合溶媒に各種N-カルボキシ-L-アミノ酸無水物を入れ、必要に応じて重合開始剤を加え、2~3日間撹拌を行い、各種ポリアミノ酸を得た。使用した重合溶媒及び重合開始剤は表1に示すとおりである。各種ポリアミノ酸を、表1に記載の溶媒を用いて溶液化し、これらの溶液から、製造例1と同様の方法により、各種ポリアミノ酸からなる繊維構造体を得た。
[Production Examples 3 to 7] Various polyamino acid fiber structures In the same manner as in Production Example 1 or 2, various N-carboxy-L-amino acid anhydrides were added to the polymerization solvent, and a polymerization initiator was added as necessary. The mixture was stirred for 2 to 3 days to obtain various polyamino acids. The polymerization solvent and polymerization initiator used are as shown in Table 1. Various polyamino acids were made into solutions using the solvents shown in Table 1, and fiber structures composed of various polyamino acids were obtained from these solutions by the same method as in Production Example 1.
〔製造例8〕 ポリ-L-アラニン/γ-メチル-L-グルタミン酸共重合体(9/1)の繊維構造体
 ベンゼンにN-カルボキシ-L-アラニン無水物ならびにN-カルボキシ-γ-メチル-L-グルタミン酸無水物をモル比で9:1、合計で1.4重量%となるように入れて2~3日間撹拌を行い、ポリ-L-アラニン/γ-メチル-L-グルタミン酸共重合体(9/1)を得た。これをジクロロメタン-トリフルオロ酢酸混合溶媒(50:50(v/v))に溶かして、8重量%のポリ-L-アラニン/γ-メチル-L-グルタミン酸共重合体(9/1)溶液とした。この溶液から、製造例1と同様の方法により、ポリ-L-アラニン/γ-メチル-L-グルタミン酸共重合体(9/1)からなる繊維構造体を得た。
[Production Example 8] Fiber structure of poly-L-alanine / γ-methyl-L-glutamic acid copolymer (9/1) N-carboxy-L-alanine anhydride and N-carboxy-γ-methyl- A poly-L-alanine / γ-methyl-L-glutamic acid copolymer was prepared by adding L-glutamic anhydride in a molar ratio of 9: 1 to a total of 1.4% by weight and stirring for 2 to 3 days. (9/1) was obtained. This was dissolved in a dichloromethane-trifluoroacetic acid mixed solvent (50:50 (v / v)), and an 8% by weight poly-L-alanine / γ-methyl-L-glutamic acid copolymer (9/1) solution was obtained. did. From this solution, a fiber structure comprising a poly-L-alanine / γ-methyl-L-glutamic acid copolymer (9/1) was obtained in the same manner as in Production Example 1.
〔製造例9~22〕 各種ポリアミノ酸共重合体の繊維構造体
 製造例8と同様の方法により、重合溶媒に2種類のN-カルボキシ-L-アミノ酸無水物を入れ、必要に応じて重合開始剤を加え、2~3日間撹拌を行い、各種ポリアミノ酸共重合体を得た。それぞれ表1に示した材料及び条件で行った。各種ポリアミノ酸共重合体を、表1に記載の溶媒を用いて溶液化し、これらの溶液から、製造例1と同様の方法により、各種ポリアミノ酸共重合体からなる繊維構造体を得た。
[Production Examples 9 to 22] Fiber structures of various polyamino acid copolymers In the same manner as in Production Example 8, two types of N-carboxy-L-amino acid anhydrides were added to the polymerization solvent, and polymerization was started as necessary. The agent was added and stirred for 2 to 3 days to obtain various polyamino acid copolymers. Each was carried out under the materials and conditions shown in Table 1. Various polyamino acid copolymers were made into solutions using the solvents shown in Table 1, and fiber structures composed of various polyamino acid copolymers were obtained from these solutions by the same method as in Production Example 1.
〔製造例23〕 ポリ-L-グルタミン/γ-メチル-L-グルタミン酸共重合体の繊維構造体
 1,2-ジクロロエタンにN-カルボキシ-γ-メチル-L-グルタミン酸無水物を16.6重量%入れた後、重合開始剤としてN,N-ジメチル-1,3-プロパンジアミンを加えた。2~3日間撹拌を行い、ポリ-γ-メチル-L-グルタミン酸を得た。これに2,2,2-トリクロロ-1-エタノール(東京化成工業社)ならびにp-トルエンスルホン酸1水和物(東京化成工業社)をN-カルボキシ-γ-メチル-L-グルタミン酸無水物のモル数に対し、それぞれ4当量ならびに0.8当量加え、80℃で反応させてポリ-γ-メチル/(2,2,2-トリクロロエチル)-L-グルタミン酸共重合体を得た。これをテトラヒドロフラン中でN-カルボキシ-γ-メチル-L-グルタミン酸無水物のモルに対し大過剰量となるアンモニアを作用させてポリ-L-グルタミン/γ-メチル-L-グルタミン酸を得た。これをジクロロメタン-トリフルオロ酢酸混合溶媒(1:3(v/v))に溶かして、14~15重量%のポリ-L-グルタミン/γ-メチル-L-グルタミン酸共重合体溶液とした。この溶液から、製造例1と同様の方法により、ポリ-L-グルタミン/γ-メチル-L-グルタミン酸共重合体からなる繊維構造体を得た。
[Production Example 23] Fiber structure of poly-L-glutamine / γ-methyl-L-glutamic acid copolymer 1,6.6% by weight of 1,2-dichloroethane with N-carboxy-γ-methyl-L-glutamic anhydride After the addition, N, N-dimethyl-1,3-propanediamine was added as a polymerization initiator. The mixture was stirred for 2 to 3 days to obtain poly-γ-methyl-L-glutamic acid. 2,2,2-trichloro-1-ethanol (Tokyo Kasei Kogyo) and p-toluenesulfonic acid monohydrate (Tokyo Kasei Kogyo) were added to N-carboxy-γ-methyl-L-glutamic anhydride. 4 equivalents and 0.8 equivalents were added to the number of moles, respectively, and reacted at 80 ° C. to obtain a poly-γ-methyl / (2,2,2-trichloroethyl) -L-glutamic acid copolymer. A large excess of ammonia was allowed to act on the moles of N-carboxy-γ-methyl-L-glutamic anhydride in tetrahydrofuran to obtain poly-L-glutamine / γ-methyl-L-glutamic acid. This was dissolved in a dichloromethane-trifluoroacetic acid mixed solvent (1: 3 (v / v)) to obtain a 14 to 15 wt% poly-L-glutamine / γ-methyl-L-glutamic acid copolymer solution. From this solution, a fiber structure comprising a poly-L-glutamine / γ-methyl-L-glutamic acid copolymer was obtained in the same manner as in Production Example 1.
〔製造例24〕 ポリ-γ-メチル/(ポリエチレングリコール)-L-グルタミン酸共重合体の繊維構造体
 製造例23で得たポリ-γ-メチル-L-グルタミン酸にポリエチレングリコールメチルエーテル(シグマアルドリッチ社、平均分子量350)ならびにp-トルエンスルホン酸1水和物をN-カルボキシ-γ-メチル-L-グルタミン酸無水物のモル数に対し2当量ならびに0.2当量加え、75℃で反応させてポリ-γ-メチル/(ポリエチレングリコール)-L-グルタミン酸共重合体を得た。測定1記載の方法により重量平均分子量を測定したところ1.4×106であった。これを2,2,2-トリフルオロエタノールに溶かして、10重量%のポリ-γ-メチル/(ポリエチレングリコール)-L-グルタミン酸共重合体溶液とした。この溶液から、製造例1と同様の方法により、ポリ-γ-メチル/(ポリエチレングリコール)-L-グルタミン酸共重合体からなる繊維構造体を得た。
[Production Example 24] Poly-γ-methyl / (polyethylene glycol) -L-glutamic acid copolymer fiber structure Polyethylene glycol methyl ether (Sigma-Aldrich) was added to poly-γ-methyl-L-glutamic acid obtained in Production Example 23. , Average molecular weight 350) and p-toluenesulfonic acid monohydrate are added in an amount of 2 equivalents and 0.2 equivalents relative to the number of moles of N-carboxy-γ-methyl-L-glutamic anhydride and reacted at 75 ° C. A -γ-methyl / (polyethylene glycol) -L-glutamic acid copolymer was obtained. The weight average molecular weight measured by the method described in Measurement 1 was 1.4 × 10 6 . This was dissolved in 2,2,2-trifluoroethanol to obtain a 10% by weight poly-γ-methyl / (polyethylene glycol) -L-glutamic acid copolymer solution. From this solution, a fiber structure comprising a poly-γ-methyl / (polyethylene glycol) -L-glutamic acid copolymer was obtained in the same manner as in Production Example 1.
〔製造例25〕 ポリ-L-アラニン/L-リジン共重合体の繊維構造体
 製造例16で得たポリ-L-アラニン/ε-ベンジルオキシカルボニル-L-リジン共重合体(9/1)にトリフルオロ酢酸(東京化成工業社)ならびにチオアニソール(東京化成工業社)をN-カルボキシ-ε-ベンジルオキシカルボニル-L-リジン無水物のモル数に対し、それぞれ270当量ならびに5当量加え、室温で反応させてポリ-L-アラニン/L-リジン共重合体を得た。これをジクロロメタン-トリフルオロ酢酸混合溶媒(50:70(v/v))に溶かして、4.4重量%のポリ-L-アラニン/L-リジン共重合体溶液とした。この溶液から、製造例1と同様の方法により、ポリ-L-アラニン/L-リジン共重合体からなる繊維構造体を得た。
[Production Example 25] Poly-L-alanine / L-lysine copolymer fiber structure Poly-L-alanine / ε-benzyloxycarbonyl-L-lysine copolymer (9/1) obtained in Production Example 16 Trifluoroacetic acid (Tokyo Chemical Industry Co., Ltd.) and thioanisole (Tokyo Chemical Industry Co., Ltd.) were added at 270 equivalents and 5 equivalents, respectively, with respect to the number of moles of N-carboxy-ε-benzyloxycarbonyl-L-lysine anhydride. To obtain a poly-L-alanine / L-lysine copolymer. This was dissolved in a dichloromethane-trifluoroacetic acid mixed solvent (50:70 (v / v)) to obtain a 4.4% by weight poly-L-alanine / L-lysine copolymer solution. From this solution, a fiber structure comprising a poly-L-alanine / L-lysine copolymer was obtained in the same manner as in Production Example 1.
〔製造例26〕 ポリ-L-アラニン-ポリ-L-リジン混合体の繊維構造体
 製造例1で得たポリ-L-アラニンならびにポリ-L-リジンハイドロブロマイド(シグマアルドリッチ社、重量平均分子量>300,000)を重量比9:1の割合で、ジクロロメタン-トリフルオロ酢酸-N,N-ジメチルホルムアミド混合溶媒(50:50:12.5(v/v))に溶かして、4重量%のポリ-L-アラニン-L-リジン混合体溶液とした。この溶液から、製造例1と同様の方法により、ポリ-L-アラニン-L-リジン混合体からなる繊維構造体を得た。
[Production Example 26] Fiber structure of poly-L-alanine-poly-L-lysine mixture Poly-L-alanine and poly-L-lysine hydrobromide obtained in Production Example 1 (Sigma Aldrich, weight average molecular weight) 300,000) in a ratio of 9: 1 by weight in a dichloromethane-trifluoroacetic acid-N, N-dimethylformamide mixed solvent (50: 50: 12.5 (v / v)). An L-alanine-L-lysine mixture solution was obtained. From this solution, a fiber structure comprising a poly-L-alanine-L-lysine mixture was obtained in the same manner as in Production Example 1.
〔製造例27〕 ポリ-L-アラニン-ポリ-ε-ベンジルオキシカルボニル-L-リジン混合体(9/1)の繊維構造体
 製造例1で得たポリ-L-アラニンならびに製造例5で得たポリ-ε-ベンジルオキシカルボニル-L-リジンをモノマー換算したモル比9:1の割合で、ジクロロメタン-トリフルオロ酢酸混合溶媒(50:50(v/v))に溶かして、5.3重量%のポリ-L-アラニン-ポリ-ε-ベンジルオキシカルボニル-L-リジン混合体(9/1)溶液とした。この溶液から、製造例1と同様の方法により、ポリ-L-アラニン-ポリ-ε-ベンジルオキシカルボニル-L-リジン混合体(9/1)からなる繊維構造体を得た。
[Production Example 27] Fiber structure of poly-L-alanine-poly-ε-benzyloxycarbonyl-L-lysine mixture (9/1) Poly-L-alanine obtained in Production Example 1 and obtained in Production Example 5 The poly-ε-benzyloxycarbonyl-L-lysine was dissolved in a dichloromethane-trifluoroacetic acid mixed solvent (50:50 (v / v)) at a molar ratio of 9: 1 in terms of monomer, and 5.3 wt. % Poly-L-alanine-poly-ε-benzyloxycarbonyl-L-lysine mixture (9/1) solution. From this solution, a fiber structure comprising a poly-L-alanine-poly-ε-benzyloxycarbonyl-L-lysine mixture (9/1) was obtained in the same manner as in Production Example 1.
〔製造例28〕 ポリ-L-アラニン-ポリ-ε-ベンジルオキシカルボニル-L-リジン混合体(6/4)の繊維構造体
 製造例1で得たポリ-L-アラニンならびに製造例5で得たポリ-ε-ベンジルオキシカルボニル-L-リジンをモノマー換算したモル比6:4の割合で、ジクロロメタン-トリフルオロ酢酸混合溶媒(50:50(v/v))に溶かして、5.3重量%のポリ-L-アラニン-ポリ-ε-ベンジルオキシカルボニル-L-リジン混合体(6/4)溶液とした。この溶液から、製造例1と同様の方法により、ポリ-L-アラニン-ポリ-ε-ベンジルオキシカルボニル-L-リジン混合体(6/4)からなる繊維構造体を得た。
[Production Example 28] Fiber structure of poly-L-alanine-poly-ε-benzyloxycarbonyl-L-lysine mixture (6/4) Poly-L-alanine obtained in Production Example 1 and obtained in Production Example 5 Poly-ε-benzyloxycarbonyl-L-lysine was dissolved in a dichloromethane-trifluoroacetic acid mixed solvent (50:50 (v / v)) at a molar ratio of 6: 4 in terms of monomer, and 5.3 wt. % Poly-L-alanine-poly-ε-benzyloxycarbonyl-L-lysine mixture (6/4) solution. From this solution, a fiber structure comprising a poly-L-alanine-poly-ε-benzyloxycarbonyl-L-lysine mixture (6/4) was obtained in the same manner as in Production Example 1.
〔比較例1〕 ポリ-γ-ベンジル-L-グルタミン酸繊維構造体
 N-カルボキシ-γ-ベンジル-L-グルタミン酸無水物を重合してポリ-γ-ベンジル-L-グルタミン酸とした後、ジクロロメタン-トリフルオロ酢酸混合溶媒に溶かして、4重量%のポリ-γ-ベンジル-L-グルタミン酸溶液とした。この溶液から、製造例1と同様の方法により、ポリ-γ-ベンジル-L-グルタミン酸からなる繊維構造体を得た。
[Comparative Example 1] Poly-γ-benzyl-L-glutamic acid fiber structure N-carboxy-γ-benzyl-L-glutamic acid anhydride was polymerized into poly-γ-benzyl-L-glutamic acid, and then dichloromethane-tri It was dissolved in a mixed solvent of fluoroacetic acid to obtain a 4% by weight poly-γ-benzyl-L-glutamic acid solution. From this solution, a fiber structure composed of poly-γ-benzyl-L-glutamic acid was obtained in the same manner as in Production Example 1.
〔比較例2〕 キトサン繊維構造体
 キトサン粉末(和光純薬工業社)を酢酸-トリフルオロ酢酸混合溶媒(10:90(v/v))に溶かして、4重量%のキトサン溶液とした。この溶液から、製造例1と同様の方法により、キトサンからなる繊維構造体を得た。
Comparative Example 2 Chitosan Fiber Structure Chitosan powder (Wako Pure Chemical Industries, Ltd.) was dissolved in an acetic acid-trifluoroacetic acid mixed solvent (10:90 (v / v)) to obtain a 4% by weight chitosan solution. From this solution, a fiber structure made of chitosan was obtained in the same manner as in Production Example 1.
〔比較例3〕 セルロース繊維構造体
 セルロース粉末(和光純薬工業社)を酢酸-トリフルオロ酢酸混合溶媒(10:90(v/v))に溶かして、4重量%のセルロース溶液とした。この溶液から、製造例1と同様の方法により、セルロースからなる繊維構造体を得た。
[Comparative Example 3] Cellulose fiber structure Cellulose powder (Wako Pure Chemical Industries, Ltd.) was dissolved in an acetic acid-trifluoroacetic acid mixed solvent (10:90 (v / v)) to obtain a 4% by weight cellulose solution. From this solution, a fiber structure made of cellulose was obtained in the same manner as in Production Example 1.
〔比較例4〕 ゼラチン繊維構造体
 ゼラチン粉末をトリフルオロ酢酸に溶かして、9重量%のゼラチン溶液とした。この溶液から、製造例1と同様の方法により、ゼラチンからなる繊維構造体を得た。
[Comparative Example 4] Gelatin fiber structure Gelatin powder was dissolved in trifluoroacetic acid to obtain a 9 wt% gelatin solution. From this solution, a fiber structure made of gelatin was obtained in the same manner as in Production Example 1.
〔測定1〕 重量平均分子量の測定方法
 重量平均分子量の測定は、ゲル浸透クロマトグラフィー装置(GPC、日立社、LaChrom Elite)に分析カラム(昭和電工社、Shodex K-802ならびにK-806M)を取り付けて行った。測定溶液の調製は、ポリアミノ酸濃度が0.25~1.0%(w/v)となるようにクロロホルムに溶かした後、フィルター濾過を行った。測定溶液を10~80μl注入し、溶離液流速:1ml/分、カラム保持温度:40℃の条件にて測定を行った。重量平均分子量の算出には、較正用ポリスチレンを用いた。
[Measurement 1] Method for measuring weight average molecular weight The weight average molecular weight is measured by attaching an analytical column (Showa Denko, Shodex K-802 and K-806M) to a gel permeation chromatography apparatus (GPC, Hitachi, LaChrom Elite). I went. The measurement solution was prepared by dissolving in chloroform so that the polyamino acid concentration was 0.25 to 1.0% (w / v), followed by filter filtration. 10 to 80 μl of a measurement solution was injected, and measurement was performed under the conditions of an eluent flow rate of 1 ml / min and a column holding temperature of 40 ° C. Calibration polystyrene was used to calculate the weight average molecular weight.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔評価1〕 電界紡糸における吐出速度の評価方法
 工程1~5を含有する電界紡糸法による繊維構造体の製造において、工程2におけるノズルからの溶液の吐出を開始してから終了するまでの間に、吐出した溶液の全量を、開始してから終了するまでの時間で除した値を吐出速度とした。評価基準は以下の通りである。
    ○:吐出速度が10ml/時以上
    ×:吐出速度が10ml/時未満
[Evaluation 1] Evaluation Method of Discharge Rate in Electrospinning In the production of a fiber structure by the electrospinning method including steps 1 to 5, between the start and end of solution discharge from the nozzle in step 2 The value obtained by dividing the total amount of the discharged solution by the time from the start to the end was taken as the discharge speed. The evaluation criteria are as follows.
○: Discharge speed is 10 ml / hour or more ×: Discharge speed is less than 10 ml / hour
〔評価2〕 平均繊維径の評価方法
 得られた繊維構造体の表面が均一であることを目視で確認した後、その表面の一部を採取し、直径12~13mmの円形カバーグラスもしくはカバースリップ(Thermo Scientific社、Nunc Thermanox Plastic Coverslips)に装着した。採取した繊維構造体の表面を実体顕微鏡(ニコン社、SMZ800)で観察し(倍率10倍)、表面が均一であることを確認した後、走査型電子顕微鏡(SEM、日立社、S-4800)での表面観察に供した。初めに倍率500倍で測定試料の全体を俯瞰し、表面が均一であることを確認した後、倍率を5,000倍に切り替えて無作為に写真撮影を行った。得られた写真を横長に置き、横方向ならびに縦方向をそれぞれ5等分ならびに2等分することで、10個の等面積な区画に分けた。それぞれの区画の中央もしくは中央に最も近い繊維のうち焦点のあっているものを選びその径を測定し、それらの平均値を求めて平均繊維径とした。評価基準は以下の通りである。
    ◎:平均繊維径が150nm未満
    ○:平均繊維径が150nm以上500nm未満
    △:平均繊維径が500nm以上1μm未満
    ×:平均繊維径が1μm以上
[Evaluation 2] Evaluation method of average fiber diameter After visually confirming that the surface of the obtained fiber structure is uniform, a part of the surface was sampled and a circular cover glass or cover slip having a diameter of 12 to 13 mm. (Thermo Scientific, Nunc Thermanox Plastic Coverslips). The surface of the collected fiber structure was observed with a stereo microscope (Nikon, SMZ800) (magnification 10 times), and after confirming that the surface was uniform, a scanning electron microscope (SEM, Hitachi, S-4800) It was used for surface observation at. First, the whole measurement sample was looked down at a magnification of 500 times, and after confirming that the surface was uniform, the magnification was switched to 5,000 times and photographs were taken at random. The obtained photograph was placed horizontally and divided into 10 equal area sections by dividing the horizontal direction and the vertical direction into 5 equal parts and 2 equal parts, respectively. The fibers in focus at the center of each section or the fibers closest to the center were selected and their diameters were measured, and the average value of them was obtained to obtain the average fiber diameter. The evaluation criteria are as follows.
A: Average fiber diameter is less than 150 nm B: Average fiber diameter is 150 nm or more and less than 500 nm Δ: Average fiber diameter is 500 nm or more and less than 1 μm X: Average fiber diameter is 1 μm or more
〔評価3〕 繊維径均一性の評価方法
 評価2で測定した平均繊維径の標準偏差値を求めた。評価基準は以下の通りである。
    ◎:標準偏差値が30nm未満
    ○:標準偏差値が30nm以上90nm未満
    △:標準偏差値が90nm以上200nm未満
    ×:標準偏差値が200nm以上
[Evaluation 3] Evaluation Method of Fiber Diameter Uniformity The standard deviation value of the average fiber diameter measured in Evaluation 2 was obtained. The evaluation criteria are as follows.
◎: Standard deviation value is less than 30 nm ○: Standard deviation value is 30 nm or more and less than 90 nm Δ: Standard deviation value is 90 nm or more and less than 200 nm ×: Standard deviation value is 200 nm or more
〔評価4〕 液滴有無の評価方法
 得られた繊維構造体の表面を走査型電子顕微鏡(SEM、日立社、S-4800)で無作為に撮影して得た写真(倍率1,000倍)の中に、最大径が5μm以上の円形物(液滴状態のままコレクター上に集積したことを示す痕跡)の個数を測定した。評価基準は以下の通りである。
    ◎:円形物の個数が3個以下
    ○:円形物の個数が4個以上7個以下
    △:円形物の個数が8個以上15個以下
    ×:円形物の個数が16個以上
[Evaluation 4] Evaluation method for the presence or absence of droplets Among photographs (1,000x magnification) obtained by randomly photographing the surface of the obtained fiber structure with a scanning electron microscope (SEM, Hitachi, S-4800) In addition, the number of circular objects having a maximum diameter of 5 μm or more (traces indicating that they were collected on the collector in a droplet state) was measured. The evaluation criteria are as follows.
◎: The number of circular objects is 3 or less ○: The number of circular objects is 4 or more and 7 or less △: The number of circular objects is 8 or more and 15 or less ×: The number of circular objects is 16 or more
〔評価5〕 細胞接着抑制効果の評価方法(1)
 得られた繊維構造体を直径12~13mmの円形カバーグラスもしくはカバースリップ(Thermo Scientific社、Nunc Thermanox Plastic Coverslips)に装着し、24ウェル培養プレート(日本ベクトンデッキンソン社、Falcon培養プレート)にセットした。滅菌のため70%エタノール水溶液に浸漬した後、リン酸緩衝生理食塩水(タカラバイオ社、PBS(-))で洗浄した。ヒト骨髄間葉系幹細胞(Lonza社、Human Mesenchymal Stem Cell)を間葉系幹細胞培地(Lonza社、MSCGM)、又は、非働化したウシ胎児血清(Invitrogen社、GIBCO FBS)及びペニシリン-ストレプトマイシン(Sigma-Aldrich社)を含んだダルベッコ変法イーグル培地(Invitrogen社、GIBCO DMEM)に懸濁させて、20,000cell/ウェルずつ播種し、5%CO2/37℃の条件でインキュベーター(Thermo Scientific社、フォーマインキュベーター)内で3日間、培養した。培養後、培地を取り除き、ラウリル硫酸ナトリウム(ナカライテスク社)を含んだクエン酸(ナカライテスク社)-塩化ナトリウム(ナカライテスク社)緩衝液で細胞を溶解させた。これにビスベンズイミドH33258フルオロクロム三塩酸塩DMSO溶液(ナカライテスク社)を加え、細胞内DNA量を定量することにより、繊維構造体上で接着及び増殖した細胞数を求めた。比較対照のため、24ウェル培養プレートに繊維構造体をセットせずに細胞の播種及び培養を行い、その細胞内DNA量を定量した。評価基準は以下の通りである。
   ◎:細胞内DNA量が比較対照のそれに対して15%未満
   ○:細胞内DNA量が比較対照のそれに対して15%以上30%未満
   △:細胞内DNA量が比較対照のそれに対して30%以上50%未満
   ×:細胞内DNA量が比較対照のそれに対して50%以上
[Evaluation 5] Evaluation method of cell adhesion inhibitory effect (1)
The obtained fiber structure was attached to a circular cover glass or coverslip (Thermo Scientific, Nunc Thermanox Plastic Coverslips) having a diameter of 12 to 13 mm, and set in a 24-well culture plate (Nippon Becton Deckonson, Falcon culture plate). . After immersing in 70% ethanol aqueous solution for sterilization, it was washed with phosphate buffered saline (Takara Bio, PBS (-)). Human bone marrow mesenchymal stem cells (Lonza, Human Mesenchymal Stem Cell) or mesenchymal stem cell medium (Lonza, MSCGM), or inactivated fetal bovine serum (Invitrogen, GIBCO FBS) and penicillin-streptomycin (Sigma- Aldrich Co.) laden Dulbecco's modified Eagle's medium (Invitrogen Corp., was suspended in GIBCO DMEM), was seeded by 20,000Cell / well, 5% CO 2/37 ℃ conditions incubator (Thermo Scientific, Inc., former incubator ) For 3 days. After the culture, the medium was removed, and the cells were lysed with a citrate (Nacalai Tesque) -sodium chloride (Nacalai Tesque) buffer containing sodium lauryl sulfate (Nacalai Tesque). Bisbenzimide H33258 fluorochrome trihydrochloride DMSO solution (Nacalai Tesque) was added thereto, and the amount of intracellular DNA was quantified to determine the number of cells adhered and grown on the fiber structure. For comparison, cells were seeded and cultured without setting the fiber structure in a 24-well culture plate, and the amount of intracellular DNA was quantified. The evaluation criteria are as follows.
A: The amount of intracellular DNA is less than 15% of that of the comparison control. ○: The amount of intracellular DNA is 15% or more and less than 30% of that of the comparison control. Less than 50% ×: The amount of intracellular DNA is 50% or more of that of the control
〔評価6〕 細胞接着抑制効果の評価方法(2)
 評価5と同様に、得られた繊維構造体の培養プレートへのセット、並びに細胞の播種及び培養を行った。播種し3日間培養した後、培地に生細胞数測定試薬(ナカライテスク社、Cell Count Reagent SF)を添加した。再度、インキュベーター中に置いて4~5時間経過した後、吸光度(測定波長:450nm)を測定した。比較対照のため、24ウェル培養プレートに繊維構造体をセットせずに細胞の播種及び培養を行い、生細胞数測定試薬の添加、ならびに、吸光度の測定を同様に行った。評価基準は以下の通りである。
   ◎:吸光度が比較対照のそれに対して15%未満
   ○:吸光度が比較対照のそれに対して15%以上30%未満
   △:吸光度が比較対照のそれに対して30%以上50%未満
   ×:吸光度が比較対照のそれに対して50%以上
[Evaluation 6] Evaluation method of cell adhesion inhibitory effect (2)
As in Evaluation 5, the obtained fiber structure was set on a culture plate, and cells were seeded and cultured. After seeding and culturing for 3 days, a viable cell count measuring reagent (Nacalai Tesque, Cell Count Reagent SF) was added to the medium. Again, after 4-5 hours in the incubator, the absorbance (measurement wavelength: 450 nm) was measured. For comparison, cells were seeded and cultured without setting the fiber structure in a 24-well culture plate, and the addition of a reagent for measuring the number of viable cells and the measurement of absorbance were performed in the same manner. The evaluation criteria are as follows.
A: Absorbance is less than 15% relative to that of the comparison control. O: Absorbance is not less than 15% and less than 30% relative to that of the comparison control. More than 50% of that of the control
 評価5ならびに6に示す評価方法は、操作簡便性、測定精度等から、何れも細胞数を測定するのに汎用の方法である。 The evaluation methods shown in Evaluations 5 and 6 are all general-purpose methods for measuring the number of cells from the viewpoint of ease of operation, measurement accuracy, and the like.
 上記製造例1~28により得られた繊維構造体をそれぞれ実施例1~28とし、これに比較例1~4を合わせて、上記評価1~6の評価を行った。その結果を表2及び表3に示す。 The fiber structures obtained in the above Production Examples 1 to 28 were referred to as Examples 1 to 28, respectively, and Comparative Examples 1 to 4 were combined with them to perform the above Evaluations 1 to 6. The results are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、ポリ-γ-ベンジル-L-グルタミン酸については、吐出速度を調整しても平均繊維径の小さい繊維構造体を得ることができない上、細胞接着抑制効果も十分ではなかった(比較例1)。また、キトサン、セルロース、ゼラチンについても、ことごとく液滴が残り、平均繊維径の均一性にもばらつきが見られるなど、繊維構造体としての品質が十分なものは得られなかった(比較例2,3,4)。一方、実施例1~28に関しては、液滴問題が解消され、繊維径も満たす好ましい結果が得られた。これらのうち、ポリ-L-アラニン、ポリ-L-ロイシン、ポリ-β-ベンジル-L-アスパラギン酸、ポリ-ε-ベンジルオキシカルボニル-L-リジン、ポリ-L-アラニン/γ-メチル-L-グルタミン酸共重合体(9/1)、ポリ-L-アラニン/γ-メチル-L-グルタミン酸共重合体(6/4)、ポリ-L-バリン/γ-メチル-L-グルタミン酸共重合体(6/4)、ポリ-L-イソロイシン/γ-メチル-L-グルタミン酸共重合体(6/4)、ポリ-L-アラニン/ε-ベンジルオキシカルボニル-L-リジン共重合体(9/1)、ポリ-L-バリン/ε-ベンジルオキシカルボニル-L-リジン共重合体(6/4)、ポリ-L-アラニン/L-リジン共重合体(9/1)、ポリ-L-アラニン-ポリ-L-リジン混合体、ポリ-L-アラニン-ポリ-ε-ベンジルオキシカルボニル-L-リジン混合体(9/1)は、高い細胞接着抑制効果が示された(実施例1,2,4,5,8,9,12,13,16,19,25,26,27)。特にポリ-L-アラニンの場合は、平均繊維径、均一性、液滴問題、細胞接着抑制の全てにおいて好ましい結果であった。 As shown in Table 2, with respect to poly-γ-benzyl-L-glutamic acid, a fiber structure having a small average fiber diameter could not be obtained even when the ejection speed was adjusted, and the cell adhesion inhibitory effect was not sufficient. (Comparative Example 1). In addition, with regard to chitosan, cellulose, and gelatin, all of the droplets remained and the uniformity of the average fiber diameter was found to be uneven, so that a fiber structure with sufficient quality could not be obtained (Comparative Example 2, 3, 4). On the other hand, with respect to Examples 1 to 28, the droplet problem was solved, and preferable results were obtained that satisfied the fiber diameter. Of these, poly-L-alanine, poly-L-leucine, poly-β-benzyl-L-aspartic acid, poly-ε-benzyloxycarbonyl-L-lysine, poly-L-alanine / γ-methyl-L -Glutamic acid copolymer (9/1), poly-L-alanine / γ-methyl-L-glutamic acid copolymer (6/4), poly-L-valine / γ-methyl-L-glutamic acid copolymer ( 6/4), poly-L-isoleucine / γ-methyl-L-glutamic acid copolymer (6/4), poly-L-alanine / ε-benzyloxycarbonyl-L-lysine copolymer (9/1) Poly-L-valine / ε-benzyloxycarbonyl-L-lysine copolymer (6/4), poly-L-alanine / L-lysine copolymer (9/1), poly-L-alanine-poly -L-lysine mixture, poly-L-alanine-po The -ε-benzyloxycarbonyl-L-lysine mixture (9/1) showed a high cell adhesion inhibitory effect (Examples 1, 2, 4, 5, 8, 9, 12, 13, 16, 19 , 25, 26, 27). In particular, poly-L-alanine was a favorable result in all of the average fiber diameter, uniformity, droplet problem, and cell adhesion suppression.
〔評価7〕 製造条件(印加電圧、およびノズルとコレクターの距離の設定)の影響

 製造例22に示すポリ-L-バリン/L-フェニルアラニン(1/1)溶液に印加する電圧を19~20kVに変えたことを除いて、製造例22と同様の方法により、ポリ-L-バリン/L-フェニルアラニン(1/1)からなる繊維構造体の作製を試みた。
 また、製造例22に示すポリ-L-バリン/L-フェニルアラニン(1/1)溶液に印加する電圧を15kVに変えたことを除いて、製造例22と同様の方法により、ポリ-L-バリン/L-フェニルアラニン(1/1)からなる繊維構造体の作製を試みた。
 また、製造例22に示すポリ-L-バリン/L-フェニルアラニン(1/1)溶液に印加する電圧を10kVに変えたことを除いて、製造例22と同様の方法により、ポリ-L-バリン/L-フェニルアラニン(1/1)からなる繊維構造体の作製を試みた。
 また、製造例22に示すポリ-L-バリン/L-フェニルアラニン(1/1)溶液に印加する電圧を19~20kVに変え、かつ該溶液を入れたノズルとコレクターとの間隔を5cmに変えたことを除いて、製造例22と同様の方法により、ポリ-L-バリン/L-フェニルアラニン(1/1)からなる繊維構造体の作製を試みた。
 得られた繊維構造体の表面を目視で評価した。具体的には視認可能な粒状物の個数を測定した。粒状物に対する評価基準を下記の通りとして、その結果を表4に示す。
    ◎:粒状物の個数が1cm四方あたり0個
    ○:粒状物の個数が1cm四方あたり1個以上9個以下
    △:粒状物の個数が1cm四方あたり10個以上49個以下
    ×:粒状物の個数が1cm四方あたり50個以上
    -:測定不可能
[Evaluation 7] Influence of manufacturing conditions (setting of applied voltage and distance between nozzle and collector)

A poly-L-valine was prepared in the same manner as in Production Example 22 except that the voltage applied to the poly-L-valine / L-phenylalanine (1/1) solution shown in Production Example 22 was changed to 19 to 20 kV. An attempt was made to produce a fiber structure composed of / L-phenylalanine (1/1).
Further, poly-L-valine was produced in the same manner as in Production Example 22 except that the voltage applied to the poly-L-valine / L-phenylalanine (1/1) solution shown in Production Example 22 was changed to 15 kV. An attempt was made to produce a fiber structure composed of / L-phenylalanine (1/1).
Further, poly-L-valine was produced in the same manner as in Production Example 22 except that the voltage applied to the poly-L-valine / L-phenylalanine (1/1) solution shown in Production Example 22 was changed to 10 kV. An attempt was made to produce a fiber structure composed of / L-phenylalanine (1/1).
Further, the voltage applied to the poly-L-valine / L-phenylalanine (1/1) solution shown in Production Example 22 was changed to 19 to 20 kV, and the distance between the nozzle containing the solution and the collector was changed to 5 cm. Except for this, an attempt was made to produce a fiber structure composed of poly-L-valine / L-phenylalanine (1/1) by the same method as in Production Example 22.
The surface of the obtained fiber structure was visually evaluated. Specifically, the number of visible granular materials was measured. The evaluation criteria for the granular materials are as follows, and the results are shown in Table 4.
◎: The number of granular materials is 0 per 1 cm square ○: The number of granular materials is 1 or more and 9 or less per 1 cm square △: The number of granular materials is 10 or more and 49 or less per 1 cm square ×: Number of granular materials 50 or more per 1 cm square-: Impossible to measure
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 ポリ-L-バリン/L-フェニルアラニン(1/1)繊維構造体の製造では、ノズルとコレクター間に印加する電圧を低くして、特に10kVにすると、紡糸性が不良となり、繊維構造体を得ることができなかった。また、電圧を15kVとした場合は、繊維構造体を製造することはできたが、吐出した溶液の多くが液滴状態のままコレクター上に到達し、繊維構造体の表面に10個以上の粒状物が視認された。また、ノズルとコレクター間の間隔を短くして、特に5cmにすると、吐出した溶液の殆どが液滴状態のままコレクター上に到達してしまった。
In the production of a poly-L-valine / L-phenylalanine (1/1) fiber structure, when the voltage applied between the nozzle and the collector is lowered, particularly at 10 kV, the spinnability becomes poor and a fiber structure is obtained. I couldn't. In addition, when the voltage was 15 kV, the fiber structure could be manufactured, but most of the discharged solution reached the collector in the form of droplets, and 10 or more granular particles were formed on the surface of the fiber structure. Things were visible. Moreover, when the distance between the nozzle and the collector was shortened to 5 cm in particular, most of the discharged solution reached the collector in a droplet state.
 特定のポリアミノ酸を主成分として含有させることにより、生体にとって安全であり、かつ生体適合性が高く、細胞や組織の接着抑制効果の高い医療用材料(特に足場材料)に使用しうる繊維、更には医療用材料あるいは足場を提供できるようになったことは意義深い。 By containing a specific polyamino acid as a main component, fibers that can be used for medical materials (particularly scaffold materials) that are safe for the living body, high in biocompatibility, and highly effective in suppressing adhesion of cells and tissues, It is significant that we can now provide medical materials or scaffolds.
 本出願は、2009年6月9日出願の日本国特許出願、特願2009-138599を基礎としており、その内容は全て本明細書に包含される。 This application is based on Japanese Patent Application No. 2009-138599 filed on Jun. 9, 2009, the entire contents of which are included in this specification.

Claims (18)

  1.  ポリアミノ酸を主成分として含有し、且つ平均繊維径が50nm以上500nm未満であることを特徴とする、繊維構造体。 A fiber structure comprising polyamino acid as a main component and having an average fiber diameter of 50 nm or more and less than 500 nm.
  2.  アミノ酸が、グリシン、アラニン、バリン、ロイシン、イソロイシン、フェニルアラニン及びプロリンからなる群より選ばれる1種又は2種以上であることを特徴とする、請求項1に記載の繊維構造体。 The fiber structure according to claim 1, wherein the amino acid is one or more selected from the group consisting of glycine, alanine, valine, leucine, isoleucine, phenylalanine and proline.
  3.  アミノ酸が、アラニンであることを特徴とする、請求項1又は2に記載の繊維構造体。 The fiber structure according to claim 1 or 2, wherein the amino acid is alanine.
  4.  ポリアミノ酸が、1種のアミノ酸より構成されることを特徴とする、請求項1~3の何れか1項に記載の繊維構造体。 The fiber structure according to any one of claims 1 to 3, wherein the polyamino acid is composed of one kind of amino acid.
  5.  ポリアミノ酸が、2種のアミノ酸より構成されることを特徴とする、請求項1に記載の繊維構造体。 The fiber structure according to claim 1, wherein the polyamino acid is composed of two kinds of amino acids.
  6.  2種のアミノ酸が、酸性アミノ酸又は塩基性アミノ酸と非極性の中性アミノ酸との組み合わせであることを特徴とする、請求項5に記載の繊維構造体。 The fiber structure according to claim 5, wherein the two types of amino acids are a combination of an acidic amino acid or a basic amino acid and a nonpolar neutral amino acid.
  7.  2種のアミノ酸が、酸性アミノ酸又は塩基性アミノ酸と芳香族アミノ酸との組み合わせであることを特徴とする、請求項5に記載の繊維構造体。 The fiber structure according to claim 5, wherein the two kinds of amino acids are acidic amino acids or a combination of basic amino acids and aromatic amino acids.
  8.  酸性アミノ酸がグルタミン酸であることを特徴とする、請求項6又は7に記載の繊維構造体。 The fiber structure according to claim 6 or 7, wherein the acidic amino acid is glutamic acid.
  9.  塩基性アミノ酸がリジンであることを特徴とする、請求項6又は7に記載の繊維構造体。 The fiber structure according to claim 6 or 7, wherein the basic amino acid is lysine.
  10.  非極性の中性アミノ酸が、アラニン、バリン、ロイシンまたはイソロイシンから選ばれることを特徴とする、請求項6に記載の繊維構造体。 The fiber structure according to claim 6, wherein the nonpolar neutral amino acid is selected from alanine, valine, leucine or isoleucine.
  11.  芳香族アミノ酸がフェニルアラニンであることを特徴とする、請求項7に記載の繊維構造体。 The fiber structure according to claim 7, wherein the aromatic amino acid is phenylalanine.
  12.  ポリアミノ酸を構成するアミノ酸の側鎖に保護基が結合していることを特徴とする、請求項1~11の何れか1項に記載の繊維構造体。 The fiber structure according to any one of claims 1 to 11, wherein a protective group is bonded to a side chain of an amino acid constituting the polyamino acid.
  13.  保護基が、メチル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基及びトリフルオロアセチル基からなる群より選ばれる1種又は2種以上であることを特徴とする、請求項12に記載の繊維構造体。 The protective group is one or more selected from the group consisting of a methyl group, a benzyloxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, and a trifluoroacetyl group. The fiber structure described.
  14.  下記工程を含有することを特徴とする、繊維構造体の製造方法;
    工程1)ポリアミノ酸を溶媒に溶解して溶液とする工程、
    工程2)シリンジ内に入れた前記溶液をシリンジの先に取り付けたノズルから連続的に吐出する工程、
    工程3)前記吐出において高電圧発生装置でノズルとコレクターの間に高電圧を印加する工程、
    工程4)ノズルとコレクターの間で前記吐出溶液を繊維の形状に変える工程、
    工程5)当該繊維をコレクター上に捕集する工程。
    A method for producing a fiber structure, comprising the following steps;
    Step 1) Step of dissolving a polyamino acid in a solvent to form a solution,
    Step 2) A step of continuously discharging the solution put in the syringe from a nozzle attached to the tip of the syringe,
    Step 3) A step of applying a high voltage between the nozzle and the collector with a high voltage generator in the discharge,
    Step 4) changing the discharged solution into a fiber shape between the nozzle and the collector,
    Step 5) A step of collecting the fiber on a collector.
  15.  工程1におけるポリアミノ酸の溶液濃度が1~20重量%であり、工程2におけるポリアミノ酸の溶液の吐出速度が1~20ml/時であり、工程3におけるノズルとコレクターの間に印加する電圧が11~45kVであり、工程4におけるノズルとコレクターの間隔が10~40cmであることを特徴とする、請求項14に記載の製造方法。 The polyamino acid solution concentration in step 1 is 1 to 20% by weight, the polyamino acid solution discharge speed in step 2 is 1 to 20 ml / hour, and the voltage applied between the nozzle and collector in step 3 is 11 15. The manufacturing method according to claim 14, wherein the manufacturing method is characterized in that it is ˜45 kV, and the distance between the nozzle and the collector in step 4 is 10 to 40 cm.
  16.  工程1における溶媒が、トリフルオロ酢酸、酢酸、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,2-トリフルオロエタノール、N,N-ジメチルホルムアミド及び水からなる群より選ばれる1種または2種以上であることを特徴とする、請求項14又は15に記載の製造方法。 The solvent in Step 1 is trifluoroacetic acid, acetic acid, dichloromethane, chloroform, 1,2-dichloroethane, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,2-trifluoroethanol. The production method according to claim 14 or 15, wherein the production method is one or more selected from the group consisting of N, N-dimethylformamide and water.
  17.  請求項1~13の何れか1項に記載の繊維構造体を含有することを特徴とする、医療用材料。 A medical material comprising the fiber structure according to any one of claims 1 to 13.
  18.  癒着防止材である、請求項17に記載の医療用材料。 The medical material according to claim 17, which is an adhesion preventing material.
PCT/JP2010/059745 2009-06-09 2010-06-09 Fiber structure WO2010143646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-138599 2009-06-09
JP2009138599 2009-06-09

Publications (2)

Publication Number Publication Date
WO2010143646A1 true WO2010143646A1 (en) 2010-12-16
WO2010143646A8 WO2010143646A8 (en) 2011-03-10

Family

ID=43308901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059745 WO2010143646A1 (en) 2009-06-09 2010-06-09 Fiber structure

Country Status (1)

Country Link
WO (1) WO2010143646A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077691A1 (en) * 2010-12-06 2012-06-14 味の素株式会社 Medical material and method for manufacturing same
JP2017507001A (en) * 2014-01-30 2017-03-16 ポリ−メッド インコーポレイテッド Time-dependent synthetic biological barrier materials
WO2019089944A1 (en) * 2017-11-03 2019-05-09 Kci Usa, Inc. Nutrient-enriched dressing
WO2020116552A1 (en) * 2018-12-07 2020-06-11 国立大学法人 東京大学 Polyamino acid, block copolymer, and polymer particle composition
US11891727B2 (en) 2014-01-30 2024-02-06 Poly-Med, Inc. Thermally and dimensionally stabilized electrospun compositions and methods of making same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004321484A (en) * 2003-04-24 2004-11-18 Sangaku Renkei Kiko Kyushu:Kk Medical high molecular nano-micro fiber
JP2006283241A (en) * 2005-04-01 2006-10-19 Kanai Hiroaki Method for producing nano-fiber web, nano-fiber web or laminate, collector electrode and nano-fiber web production apparatus
JP2008502376A (en) * 2004-05-25 2008-01-31 バイオインターアクションズ リミテッド Absorbable biocompatible material
JP2009091682A (en) * 2007-10-05 2009-04-30 Idemitsu Technofine Co Ltd Fiber crosslinked body and method for producing fiber crosslinked body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004321484A (en) * 2003-04-24 2004-11-18 Sangaku Renkei Kiko Kyushu:Kk Medical high molecular nano-micro fiber
JP2008502376A (en) * 2004-05-25 2008-01-31 バイオインターアクションズ リミテッド Absorbable biocompatible material
JP2006283241A (en) * 2005-04-01 2006-10-19 Kanai Hiroaki Method for producing nano-fiber web, nano-fiber web or laminate, collector electrode and nano-fiber web production apparatus
JP2009091682A (en) * 2007-10-05 2009-04-30 Idemitsu Technofine Co Ltd Fiber crosslinked body and method for producing fiber crosslinked body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077691A1 (en) * 2010-12-06 2012-06-14 味の素株式会社 Medical material and method for manufacturing same
US9192624B2 (en) 2010-12-06 2015-11-24 Ajinomoto Co., Inc. Medical material and method for manufacturing same
JP2017507001A (en) * 2014-01-30 2017-03-16 ポリ−メッド インコーポレイテッド Time-dependent synthetic biological barrier materials
US11739452B2 (en) 2014-01-30 2023-08-29 Poly-Med, Inc. Time-dependent synthetic biological barrier material
US11891727B2 (en) 2014-01-30 2024-02-06 Poly-Med, Inc. Thermally and dimensionally stabilized electrospun compositions and methods of making same
WO2019089944A1 (en) * 2017-11-03 2019-05-09 Kci Usa, Inc. Nutrient-enriched dressing
US11877910B2 (en) 2017-11-03 2024-01-23 Systagenix Wound Management, Limited Nutrient-enriched dressing
WO2020116552A1 (en) * 2018-12-07 2020-06-11 国立大学法人 東京大学 Polyamino acid, block copolymer, and polymer particle composition

Also Published As

Publication number Publication date
WO2010143646A8 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
Schiffman et al. A review: electrospinning of biopolymer nanofibers and their applications
JP5910505B2 (en) Medical material and manufacturing method thereof
Nair et al. Development of novel tissue engineering scaffolds via electrospinning
Elsabee et al. Chitosan based nanofibers, review
Jafari et al. Electrospun chitosan–gelatin nanofiberous scaffold: Fabrication and in vitro evaluation
Fang et al. Applications of electrospun nanofibers
Spasova et al. Preparation of PLLA/PEG nanofibers by electrospinning and potential applications
Jayakumar et al. Novel chitin and chitosan nanofibers in biomedical applications
Alessandrino et al. Electrospun silk fibroin mats for tissue engineering
Moroni et al. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds
Ghosal et al. Poly (ester amides)(PEAs)–Scaffold for tissue engineering applications
Jeong et al. Electrospun gelatin/poly (L-lactide-co-ε-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds
Lee et al. Nanofabrication of microbial polyester by electrospinning promotes cell attachment
Wang et al. Fabrication and characterization of electrospun gelatin-heparin nanofibers as vascular tissue engineering
KR101684790B1 (en) A porous membrane having different specific surface double layer for hard tissue regeneration and method for preparing the same
WO2010143646A1 (en) Fiber structure
JP2011500980A (en) Method for producing nanofiber
CN101678150A (en) Scaffold with increased pore size
Xu et al. Chemical crosslinking and biophysical properties of electrospun hyaluronic acid based ultra-thin fibrous membranes
Feng et al. The influence of type-I collagen-coated PLLA aligned nanofibers on growth of blood outgrowth endothelial cells
Shin et al. Cell-adhesive matrices composed of RGD peptide-displaying M13 bacteriophage/poly (lactic-co-glycolic acid) nanofibers beneficial to myoblast differentiation
Kwon et al. Electrospinning of microbial polyester for cell culture
Jayakumar et al. Perspectives of chitin and chitosan nanofibrous scaffolds in tissue engineering
Szewczyk et al. Mimicking natural electrical environment with cellulose acetate scaffolds enhances collagen formation of osteoblasts
Kurokawa et al. Electrospinning and surface modification methods for functionalized cell scaffolds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10786177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP